Vol. 5 No. 3 WINTER 1980-81

Tektronix HANDSHAKE

COMMITTED TO EXCELLENCE ' ‘
Newsletter of Signal Processing and Instrument Control |

TTY YT ON TN oa B A W e 4w T

" S AFANE TRTLV Y i b B a Prs Fava F g 545y MR ke rd S e - W™ ey TERER o e A oy e s & e o PO S
Ry >3 o Sf o P STl B B T bty P AR SATR TR Tt St P p 0 PR o el vt gy B LR TP ady Sy S e
P Vg P & ¢ 3% Fara FAFa o T Uy e en ek Py et e D PR D edi i s 2 g W W N Rt e e T DO AR SRR
"r}»---a v _,-1,.”:3-.v*:”‘.!'.‘(ﬁ_,",..‘.,,-q-ﬂ‘--y"l?‘lvvg?-lxQ.:]rg_rq'w‘--{.-_ oy e e b L PN EAan N vm Ay T e B B L Y
L-v.--‘ » 44 i S SRl S SN B 2R R4 K I8 N S < MG e L o 2 PO S Sl e - BAER gy 7 e . 1 P o o B
At : '-"l"""“,':“rn»'!>‘7>'."”" .«‘,-"\-y\v-‘r-‘~,rq?—-,-~r-.<..«r.,,.;-A,‘ 4 ety Tabd y AR 0 RS NP S vy
F--- ry & g Ty AT fak i ¥a py PP urs nae U PRIR AN PR TR Fe T TS ey e TRER R P T PR T S B e v e i L R
Fafavs Vg 84 Py e Fobg e d b4t Py Pl P PP PR R IR By R Pl s At e Vol ol oo, 1, o, L s B THOUPRNA YN 2h g vy PR T v v
EW O » s .,1,-:-..2«'-»""'“'“,;‘;.4,,.~...¢§v434v'- g M Y . S B4 s 'ﬁi"li‘vilt""1l"a‘-vv(‘\?\--‘n‘-ﬂ.,‘"’-QQQ"“ R4
Pty P 'y W iy i s > oy O o e R A e L . FRUR Y P 408 PR MR BN bt ta b A T e o
3 b o o T R e (I <& e N N L ha bt e e T L B RS S o A ol A 1S D T L, W S, ok et s
= . & i D PR P S 54 el Shy by S S £ 490 YA TR 78 YR AL o b v e A XN R TR TS A T vt oo
; 3 ¥ . 3 o o Fop Py FaP PN T (:.w‘rir'l"""."*,“‘:““"“‘v"'"'""‘ PR TR S MM 4R T R PN S e, S b 4 -a FACH PR IBNA TN oy vt
: - g > "l R O Syl g "p.:""J’-"‘{U"“i“'!‘.(|lA"“f"’,(")p‘"ht'ﬁg“ﬁ\. .r--—‘w-rqr-,.‘...”,‘v,..',_‘,_‘vgf‘l
2 Ve 3 "t..yf‘,,.'-04‘-»w:"’_".m,,‘:..‘,r;-"v—q e o, Rl e e e - i e it e 1 i e Mt i b L e TNt o oy i
| Yaq L Faty S M v B Sy Sgagonih i SR S SRR Sy Sy i Syl h b abnt Lt Lo, Doy Seag Ry AN, 0 10, N o ok rin e o
24 o g e sl k ,:';-.;5\-- Fer T TR i T O @ P St e STl e s e T i e rdrg rdadieth ras rd tib eTh e s T ey
P, Frn g TR R Ty T e B b B r~4f-:,_‘,_,_\\,‘—,rs.»----r-q.qo:,~l,g:-;.-‘r'r-r‘ AT RS e Do Ro B rah B4 gy b e e ta Y T e Ay
E Crbavaip o by bd Fu b gk ¥y beby MR D RN 50 SR R A Sk S8 SR A S Ml TETRETUIAOLr A 0% 941t ba g v 4 ra. v, sara R . e S e e BT FeinRial
P Py o ¥s Favaratn oy e, PR R Py e Pl N e el A R R FREA P v v n ra o oy S ga SR R e T o hte B A ks L X T My
b P B P S, 4 ot ¥ il i Sl S8 el 2 OF S S T e Tdio e e P T s s o vy BN B YR D BEG, S e T e, e FREAG N oW e oy
Fad S g W T #y ¥4 Y &7 By Py P o Tl v-"; R R O O A TRV AT T TN TN R P Ea TR """""-«“'""‘f‘,r"l‘:-f e B e T g
E-..'s,"’"«' B ol o oI W A g e Pt P P, A Rk et oy e g e e WS S S S f~-}tr‘—1~,-ﬂr‘v1 TR oM T
E""Y’“ Fm ro o v s S i 4, "_!,.4,,41"4'. '..‘~”1\l."Qi"’""‘""""i-’flr"—"r’w-r.v‘-‘wﬂv"vin!-g o,q.v"r'éru-'ﬁ»«v‘vqnpirg,.;-,‘r s R
Ea ;‘:. il L7 A Rl B S Do aura v Py 4 v G Iy TRt Fhepdn pabam Feie .-7#,,A~~‘“v.,.iri‘,.,,\‘,‘,_,,,,..,’,,.‘,,‘.4,‘,‘ e e PSR Sl
P . e P 4 FLvprd ¥ A ALY ,","*-‘0—~v~~_<vynv—-v«ruv-(-a~¢.-.<vewtm_-1»r'1~r‘ CLERVUTUNL P g o P48 vt an s T
28 3 e s L e e B, SN ¢ e I RIS S P e el o b e v
S R b L b e cat e T T Sy PR LT N vt e
o S el S b e S e e T g DR g By
;. T Lot PR PR R T e ey PR ORI Y D R TS T oy -
o P e L ER AL A A A T i
L o s LA £ WD CTR R T ey CRA R ir . 4) gy ek
o I IR S o e T & e e B ALK
y o '_‘ ok, M i S i e e e e Lo R RE R e G iy
{1»~: % 40 4«’1.--»oﬂy-.-,q;qwna‘r;.wﬂn',.‘
pS LTy M et g s T BT e TN ey by
LR SRR AL P A b S et P e o ey il
3 LS Ve By '1r(9~v!§v—.w~v—<--_rjv--ﬂv—q.-‘,‘.
S g e B Ry e s et 6 g L2 g e R D Y
Pl FLAM T TR TE RN TR R o Py o b o B Tn
o

tie 4 o) B wd Fhridog g Aok e # A B AN ok g Ry i |
PR R e e e o LR v

i B i e g T ey o e Ao S o
(TR TR T N VAR TR, 1 1Y, 5
R e ol e Lo R TR L 2 WeY
M S PP Pl B i Vo N ol g

A -
G e e b ek b A A B bk i v gl b mrs
Ry Syl A S o s < W ST gt g
o S ey

TR AT T TR r R P T 2% 1 . A oa
I
ity diah i § o ke B o B R S
Tl T TN s ey

a ™3 '*‘*-‘»—*‘tv\-4‘.L,.‘..4,.,.,~‘....,.4.“‘
- - 4—~i»1,~,~v~.,".1,-.)}._,.,_‘,,,’~‘T_‘__""'
B e e S T o . AT, A g

TR % b e g B TR NS A v
ﬂ\-—t.v-'k“q'nﬂdu‘\,,y«‘.‘.‘.“‘,““"

rbra .y i
Ak g L e T B0 L G

R B S R o Vo Wi
M s S TR %
R S B € b s b | R
.\.ya.,—,--t,.;,~1»v\-4~¢.»*‘¢-4 e el
e e b B e o ¥ L gy
..q-\..,vi(i,’.i.ln~-§_~,;~4““~

. TN S o Mo A i
: AR el DAy,

: x-:—.y—g—..tum}»q»..‘.“
WA e v, T néﬂ»-u..,.q-pﬁ TH ok eia e
T Aot g

RN A A T s 1"‘*‘&'!““-.‘(*%
Vi ation T e Tt o PP, e 2

. e e gy
SR vy Sy vy FHEEFATS P v e o - -
RO Rt
4 v'*'-“.'v\vt'.--w\-xﬂ_v,‘-‘_._,“_:’_i,‘mh-
TN G 3 o e A il f e o SR i o A
TPy TR e Nt Ry A T v
TR R RN e e g U BTIRE
AR T hm b g MATE T TN £ v

VT ey N Ay o

. ,,-:,\-4"‘--\5*\’—‘..‘-.\ i T o Y

B B)
AN Ay e TRTE S v SR e e Py
L e T W P 4 T R o . ey,
e S e T W
‘ A et e T,
. . 3 \ E . T), AR i e o
wt wh %) y - ! " . el

s L T ey
TNy P
TNy S
T bR o]
A ey i eyt
s B W s Ny

Frmrs eaew ot

[

Ny s A Ly W e

e g L e i)

A Ry Ay ey
TIIow Gk Rl A, i o sy

T Y SR e

$ TN o e rds
T o iy i e v |
M e Ay o
TN i gy
A e e N o
PP |
e bt e T FEE

AN Rk S S on o

BT TR Tl Ay

o T R S Yy

et D o T

-
-

b AW i
R Ll B ARk i T Sl S
S SRR BEEE B n Sk o
- r~' ot el o-&f&! Ll el d.t: _’),
LR L LR N SN S ey ,v;-s_' ke 4
. G orir

Bt Lo = Rt 20l ol 0491' .

- L B ATAF S F pb gk aFyr Ty *
L_,.._;.l.r.‘w -‘5,_.‘...”,.,,;,:?:«‘_‘ 33
S R At o ith il e Ll S8 g

i
. - ’.‘i‘»‘r‘ e L
‘A,)’“,.Mr'.uoln?’ 3
",‘ggr&PQr"“"* AN ST Y
:; oy

et 4

o B¥

? %
- A h'?‘; Ay
2 b T T SR a5 M

- (‘“"".",Zwu&\ * e Sy Byt
ey By b ea R
R Y

b TR
% N y £ \b:‘.‘lf"_‘" St T ey
- R AR »-.,‘-,:‘" s
£ # o el gy PUrt .
e 'S bl B Tl AT R e s T
a b o L IR T . . . P, ey A TN
TP o7 2T ol wit - /, Y e e e C e

v e B Gy B
(2 24 &

T T ke
~~ - > ' o

B S e LR * :‘ At g g 4+ Sl Pt B et ey R Ca. ":..: LR
o 45 Bl a7 g ar gy I B A YA B Ay oy v ey e .- s
Y o -

’ BF pr i v A Pt B
R S T bt T ad pras p¥ .
PR RS e B MR s AT p :':}'. 1 >
W B B Gy B S B B e 8 A ‘:’;;,-, ?}"

Rl i ok T A s Y ey e T -
Bt RSB Bt o o T e it M IR S AT A g ety T b
Bl e T R, Bl Dy e St s R i e e T T R i e - :

. ballh s ot oo L8 o Trre. M Bt o B R s B o S
TR Yy e
, — R Py .8, b
P . o > Ve B e *§a >

P S T -t - - R et - e N vl e e e W e .

P R ad et 2 NG LR B R e WA R R e T R Y e |-~,vu‘P":*\-m""b\'t\w‘\
BB B A IR o 54 AL AT e B ot o ot or s W b N ws

L Ll P e S Lt P

- ”"m"“""‘lkQ‘-‘iv‘.1-‘-‘:y},‘-
e M ey 27 At B P s B e M N N A s et W N .
PR ST - -<

I AN IS W S S 4

Tektronix:

COMMITTED TO EXCELLENCE

HANDSHAKE

Newsletter of Signal Processing and Instrument Control

Table of contents
Solving the GPIB puzzle:

Talking to the 78564 Oscilloscope

with TEK SPS BASIC ..., 3

Simple approaches

to controlling the 7612D 12

CG551AP and TEK SPS BASIC

make auto cal easycoiiiiiiiiii.. 17
Literature available from Tektronix 22
ASCII & IEEE (GPIB) Code Chart 23
Getting the most out of TEK BASIC graphics 24
Programming hintscccoiiiiiiiiin.. 26

Managing Editor: Bob Ramirez
Edited by: Bob Ramirez
Graphics by: Joann Crook

HANDSHAKE is published quarterly by the HANDSHAKE Group.
Permission to reprint material in this publication may be obtained by
writing to:

HANDSHAKE Editor
Group 157 (94-384)
Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

HANDSHAKE is provided free of charge by Tektronix, Inc., as a forum for
people interested in programmable instrumentation and digital signal
processing. As a free forum, statements and opinions of the authors should
be taken as just that—statements and opinions of the individual authors.
Material published in HANDSHAKE should not be taken as or interpreted
as statement of Tektronix policy or opinion unless specifically stated to be
such.

Also, neither HANDSHAKE nor Tektronix, Inc., can be held responsible
for errors in HANDSHAKE or the effects of these errors. The material in
HANDSHAKE comes from a wide variety of sources, and, although the
material is edited and believed to be correct, the accuracy of the source
material cannot be fully guaranteed. Nor can HANDSHAKE or
Tektronix, Inc., make guarantees against typographical or human errors,
and accordingly no responsibility is assumed to any person using the
material published in HANDSHAKE.

Solving the GPIB
puzzle:

A preview

There are two ways to learn about the General
Purpose Interface Bus (GPIB) and how it can be
used to interface and operate test instrument
systems. The first way is to spend a lot of time
studying IEEE 488, the standard that defines the
GPIB, until you are thoroughly familiar with it
and the various ways it can be implemented.
Unfortunately, most of us don’t have the time for
that. That leaves us the second path—learning
enough from a few simple examples to get started.
Then, as need dictates, this base of knowledge is
added to. And finally, through several
experiences, a reasonable operating familiarity
with GPIB concepts and methods is developed.

This issue of HANDSHAKE offers you some
guidance down that second path. It contains
several examples of instrument control over the
GPIB. The controller used in the examples is a
Digital Equipment Corporation PDP*-11 series
minicomputer with a Tektronix GPIB interface,
and the instrument control and signal processing
software used is the Tektronix developed TEK
SPS BASIC package. The Tektronix instruments '
around which the examples are built are the 7612D
Programmable Digitizer, the CG551AP
Programmable Calibration Generator, and the
7854 Oscilloscope. Once you’ve seen how they are
operated over the GPIB, you’ll have the knowledge
base needed to take that first step toward your own
programs. m

*PDP is a trademark of Digital Equipment Corporation.

Copyright € 1981 Tektronix, Inc. All rights reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

page 2

Printed in U.S.A.

HANDSHAKE, WINTER 1980-81

Solving
the GPIB
puzzle:

Talking to the 7854 Oscilloscope
with TEK SPS BASIC

o \ LLLERAVARARUAAANAA NN

(== .

S o -

.

Fig. 1. The 7854 Oscilloscope with its attached
Waveform Calculator keypad.

The new TEKTRONIX 7854 Oscilloscope goes
far beyond what its name implies. It is much more
than a standard oscilloscope. Waveforms acquir-
ed through its 400 MHz mainframe can be
displayed in real time or digitized and stored in
memory for later analysis. And a good share of
that waveform analysis can be done via the7854’s
internal microprocessor and firmware. Many
individual functions—waveform maximum, min-
imum, RMS value, integration, differentiation,
etc.—are provided as single keys on the attached
Waveform Calculator (Fig. 1). Also, you can
combine and store these keystroke functions as
programs. In short, the 7854 is an oscilloscope
enhanced by a small onboard computer.

HANDSHAKE, WINTER 1980-81

Beyond being a powerful stand-alone measure-
ment and analysis tool, the 7854 can also be used
as a system component. It contains a GPIB
interface conforming to IEEE Standard 488-1978.
Thus, the 7854’s capabilities and capacities can be
further extended by adding a GPIB compatible
desk-top computer or a minicomputer. The
combination can be for any purpose, from simply
providing more program and waveform storage
space to providing additional computational
power.

One such combination, offering an extraordi-
nary variety of possibilities, is the pairing of the
7854 with a Digital Equipment Corporation PDP*-
11 series minicomputer using a Tektronix GPIB
interface and running with TEK SPS BASIC
software. But before any of the possibilities can be
realized, communication over the GPIB must be
established. Here’s how to do it with TEK SPS
BASIC.

Getting plugged in

GPIB compatibility means, in the simplest
sense, that you can plug your GPIB instrument
and minicomputer or controller together without
encountering any mechanical or electrical diffi-
culties. There is a standard GPIB cable that
matches the GPIB connectors on the instrument
and controller, and the electrical levels and
activities of the interface and bus lines are all
standardized for compatibility. So you can plug
things together as indicated in Fig. 2 without
having to know anything about GPIB operation
other than there must be a device load for every
two meters of cable.

But just plugging things together doesn’t mean
they’re going to work together!

*PDP is a trademark of Digital Equipment Corporation.

page 3

Talking to the 7854...

Peripheral
Storage

]

|

Hard
COpy TSNS .

Graphics |

GPIB

Plugs I | 7854 Other

i 1 - T— GPIB

i l I Instruments

Terminal

PDP-11 Series
Controller

Fig. 2. The 7854 and PDP-11 based GPIB system. Backplane space permitting, SPS TEK BASIC can
support up to four Tektronix GPIB interface cards. Each interface card and bus can support 15 devices (14
instruments plus controller) with one device load per two meters of cable.

GPIB compatibility also means there is a
defined set of interface functions that must be
used in governing bus operations and traffic. The
rub is that not all of those functions have to be
used to comply with the standard. In fact, most
instruments and controllers implement only a
subset of the available functions, and there are
usually differences from one type of instrument to
the next in what functions are implemented and
how they are implemented. In other words, it’s
possible to come up with two devices, each
complying with the standard while not being
functionally compatible with each other.

As an example, consider message terminators.
The GPIB has an EOI line (End Or Identify)
which can be asserted with the last byte of a
message as a message terminator. EOI can be
used as a message terminator, but it doesn’t
have to be. In fact, there are three typical
methods of message termination, all allowed by
the standard, in use:

1. line feed
2. EOI
3. line feed and EOI

Now, should you have an instrument using line
feed for message termination and a controller
expecting EOI for message termination, you have
a basic incompatibility.

Fortunately, most devices are strappable for
various message terminations. But this does

page 4

mean, however, that you will have to determine
the message terminator recognized by your
controller and strap your instrument for compati-
bility.

In the case of PDP-11 series controllers using
TEKTRONIX CP4100/IEEE 488 or CP1100/
IEEE 488 Interface Boards, TEK SPS BASIC
recognizes EOI as the message terminator. This
means that, for compatibility with TEK SPS
BASIC, your instruments must be strapped to
generate EOI as the message terminator. The 7854
has a set of switches for that purpose (see Fig. 3).
These switches also allow selection of a talk only,
listen only, or talk/listen communication mode for
the 7854. To set the 7854 for GPIB operation
with a PDP-11 and TEK SPS BASIC
software, set switch 1 to 1 (ON LINE) and
switches 2 and 3 to 0 (EOI, TALK/LISTEN
communication mode).

The remaining GPIB selection switches (4-8) are
used to set the 7854’s primary address. Possible
selections for the primary address run from
decimal 0 to 31. Which address you select depends
upon several things. First of all, although address
31 is a possible switch setting, it is not a valid
primary address. The instrument will essentially
be off line if a primary address of 31 is used. So
don’t use address 31. Secondly, each device on a
bus must have a different primary address. And
finally, some controllers reserve an address for

HANDSHAKE, WINTER 1980-81

GPIB ADDRESS SELECTION

00 EOI ONLY
01 LF OR EOI

1 - 10 TALK ONLY
11 LISTEN ONLY

|EEE-488-1975

Fig.3. 7854 Oscilloscope’s GPIB connector and
selection switches for setting primary address and
communication mode.

themselves. This means that you cannot use that
controller address for any other device on the bus.
The TEKTRONIX 4050-Series Graphic Compu-
ting Systems, for example, reserve address 0.
However, PDP-11 series controllers operating
with Tektronix GPIB interface boards and TEK
SPS BASIC software, assume no address. So you
can use anything from 0 to 30 for your 7854.
Generally, it’s more convenient to use address 1
for the first or only instrument on the bus, address
2 for the second instrument, 3 for the third, etc.

For the purposes of this article, the 7854 primary
address is set to 1. That means that 7854 GPIB
selector switches 4 through 7 should be putin the0
position and switch 8 in the 1 position.

Powering up with TEK SPS BASIC

Once your GPIB system is cabled and the
message terminator and addresses selected, it is
ready for power up. With Tektronix supplied
systems operating under TEK SPS BASIC, the
power-up sequence is not critical. However, for
GPIB systems in general, it’s good practice to
power up the controller and its peripherals first,
then load system software, and then power up the
instruments on the bus. (For multiple instrument
systems, more than halfthe bus-connected devices
have to be powered up.)

When the 7854 is powered up, it goes through a

self-test sequence. When the self test completes,
the 7854 asserts an SRQ (service request). This

HANDSHAKE, WINTER 1980-81

SRQ should be serviced by reading the status byte
to make sure the instrument’s power-up sequence
completed successfully.

This preliminary activity—servicing the SRQ
by reading the status—is done with the POLL
statement of the TEK SPS BASIC Low-Level
GPIB driver. To perform the poll, the driver must
first be loaded. This is done by entering the
following statement from your terminal.

LOAD "GPI.SPS"

The poll is then performed by entering a statement
similar to the following.

POLL @@,S,ST,SS;65

In actual practice, some variation of this
statement might be required. Any variation,
however, will relate to the @0 and 65 used above.

The @0 used here refers to controller interface
board number zero. As pointed out in Fig. 3, it is
possible to support up to four GPIB interface
boards (numbers 0-3) with a PDP-11 series
controller and TEK SPS BASIC. So, in order to
address an instrument on a particular bus, it is
necessary to first address the controller interface
board supporting that bus. In the example here,
interface board number 0 is being addressed.

The 65 used in the example POLL statement
refers to the talk address of the instrument having
a primary address of 1. The talk address is
obtained by adding 64 to the primary address. So,
in cases where your instrument has a primary
address other than 1, the talk address used will be
different.

A talk address is used in the POLL statement
because the poll is asking the instrument for
information. In order for the instrument to send
information (talk) to the controller, it has to be
addressed to be a talker. If, on the other hand, it
were being asked to receive information (listen)
from the controller, as is the case for some other
types of statements, it would need to be addressed
as a listener (primary address + 32).

The variables S, ST, and SS will contain the
information obtained by the POLL statement. S
will be the value of the instrument status byte, ST
will be the primary address of the instrument
polled, and SS will be the secondary address. For
example, after polling the 7854 power-up SRQ, the
values of S, ST, and SS can be observed by using

page 5

Talking to the 7854...

the PRINT statement as follows.

POLL @¢,S,ST,SS;65
PRINT S,ST,SS
65 65)

The first number printed is the decimal value of
the status byte. In this case it is 65, indicating
power on for the instrument. (A full list of status
byte meanings is provided in the 7854 Operators
Manual.) The second value printed, again 65 in the
example, is the talk address of the instrument
serviced by the poll. The third output, zero in the
example, is the secondary address of the serviced
‘nsirument. In the case of the 7854, secondary
addressing is not used, hence the returned value of
zero for SS.

It should be pointed out that the primary
purpose of a poll is to service an SRQ to find out
what the asserting device wants. If POLL is
executed when an SRQ isn’t being asserted, the
routine returns zeros to its status and address
variables. To get the status of an instrument
regardless of whether it is asserting SRQ, use the
GETSTA statement. For example,

GETSTA @¥,S,65

gets the status byte of the instrument on interface
0 and having a primary talk address of 65. If that
instrument happens to have SRQ asserted,
reading its status clears the SRQ.

In general operation, an initialization routine is
used to take care of power-up SRQs, addressing,
checking status, etc. A very simple TEK SPS
BASIC example is listed below.

1¢ REM INITIALIZATION ROUTINE
15 LOAD "GPI.SPS"

2¢ pl=1

25 L1=P1+32

309 T1=P1+64

35 POLL @@#,S,ST,SS;T1

4¢ IF S$=65 THEN 55

45 PAGE\PRINT S,ST,SS

5¢ PRINT "POWER-UP STATUS 65 NOT DETECTED'\GOTO 6@
55 PAGE\PRINT "POWER UP OKAY"
6@ END

This routine loads the GPIB low-level driver
(line 15) and then sets variables for the primary,
talk, and listen addresses (lines 20-30). Using
address variables is a matter of convenience—
mnemonically related variables are easier to
remember than the numbers and the required
increments, and changing addresses requires only
changing the value of one variable (P1) rather
than changing a numeric constant in each

page 6

program statement. The poll occurs in line 35, and
the line following that determines action based on
the status byte value. If the status is 65 (reserved

" in Tektronix GPIB instruments for valid power

up), line 40 causes a branch to line 55. If the status
is not 65, the routine prints the status and address
values obtained by POLL and then prints a
message indicating that the expected status was
not detected. The printed value of the status byte
gives an indication of what may be amiss.

Although this example initialization routine is
quite simple and directed toward a single
instrument, the same basic concept applies to
multiple instrument systems. Multiple instrument
systems just require more housekeeping tasks.

Simple instrument-controller dialog

Once your system is powered up and intialized,
you can begin transferring commands and data
back and forth between the 7854 and the
controller. A good share of this is done with the
PUT, RASCII, and WASCII statements of TEK
SPS BASIC.

Learning to use these statements is best done by
executing some simple operations in the im-
mediate mode. In other words, sit down at your
terminal and type in statements without line
numbers so that they execute as soon as you press
the return key. For example, if you’d like to put the
7854 into the SCOPE display mode, simply type

PUT '"'SCOPE" INTO @@,Ll1

To put the 7854 into the STORED display mode,
type
PUT '"STORED" INTO @¢,Ll

To put it into the BOTH display mode, type
PUT "BOTH" INTO @@,Ll

Each of these examples could also be followed by a
GETSTA or POLL to clear resulting SRQs. But,
when operating the 7854 in the immediate mode
with TEK SPS BASIC, you can just ignore the
SRQs.

For the above three examples, it is assumed the
7854 is on the bus serviced by controller interface
board number 0, hence the @0. L1 is the listen
address and is used because the 7854 has to be in
the listen mode to receive the message contained
in the PUT statement.

The message is enclosed in quotes and is device
dependent. Device dependent means it is specific
to an instrument, in this case the 7854. The

HANDSHAKE, WINTER 1980-81

message causes certain activities to take place
within the instrument. Specifically, SCOPE,
STORED, and BOTH cause the instrument to
react exactly as if you’d physically pressed the
SCOPE, STORED, or BOTH buttons on the 7854.
SCOPE causes a real-time waveform from the
plug-ins to be displayed, STORED causes a
waveform from 7854 memory to be displayed, and
BOTH causes simultaneous display of stored and
real-time waveforms.

All of the labels above the keys on the 7854
measurement keyboards correspond to device-
dependent messages that can be sent to the 7854
with a PUT statement. For example, the 7854
keystroke sequence for storing a waveform by
signal averaging 100 times and then finding the
peak-to-peak value can be executed by sending the
following PUT statement sequence.

PUT "BOTH" INTO @@,Ll
PUT "1 @ ¢ AVG" INTO @¢,Ll1
PUT "P-P'" INTO @@,L1

With regard to the second statement in the
sequence, several subtle items of 7854 format
should be noted. First, 1 0 0 AVG is the
command sequence for signal averaging 100
times. Notice that the command sequence is given
in Reverse Polish Notation; that is, the argument
(100) precedes the command (AVG). Also, notice
that each digit in the argument is separated by a
space. This again is 7854 format, which requires
that each keystroke be delimited by a space. Since
numbers are entered one keystroke per digit, each
digit must be separated by a space. And finally,
more than one keystroke or device-dependent
message can be included in a PUT statement. For
example, the sequence could be reduced to the
following.

PUT "BOTH 1 ¢ ¢ AVG P-P'" INTO @@,Ll

In either case, the result is the same—the 7854
signal averages a waveform 100 times and then
computes its peak-to-peak value and stores it in
the instrument’s X register. An example of the
resulting 7854 display is given in Fig. 4.

To transfer the X register contents (the peak-to-
peak value in Fig. 4) out of the 7854 to the system
controller, the 7854 must first be prepared for
sending data from the X register. This can bedone
using the SENDX message as shown below.

PUT "SENDX" INTO @@,Ll
Following this with
RASCII X FROM @¢,T1

HANDSHAKE, WINTER 1980-81

Zero Ref in

divisions from Horizontal
screen center Scale Factor
Designated
Waveform for Vertical
Operation Scale Factor

Last Function
Performed

Y-Register
Contents Contents

X-Register

Fig. 4. Example of 7854 display showing a
stored waveform with its peak-to-peak value in the
X register.

causes the value in the 7854’s X register to be
transferred over the bus into variable X of TEK
SPS BASIC.

Going the other way, you might rather read the
contents of a TEK SPS BASIC variable into the
7854’s X register. To do this, the 7854 must first be
prepared to read data from the bus. This can be
done using the READX message as follows.

PUT "READX" INTO @¢,Ll

The 7854 is now waiting for the data. To send the
data, the contents of TEK SPS BASIC variable ZZ
for example, use the following statement.

WASCII ZZ INTO @@,Ll

This causes the contents of ZZ to be converted to
ASCII and sent over the bus to listen address L1.
The 7854, listen address L1, reads the ASCII data
into its X register and also displays the value at
the X register location on its screen.

Transferring bigger chunks— wave-
form data

Generally, the choice will be to process
waveforms within the 7854. Eventually, however,
there’ll be a need to transfer waveforms into the
system controller. This might be for the more
extensive processing available with TEK SPS

page 7

Talking to the 7854...

BASIC, to archive waveforms in disk memory, or
simply to use the more convenient hard copy
capabilities for documenting waveforms. What-
ever the case, there is a substantial amount of
information to be handled in a waveform transfer
and a variety of control tasks to be performed.
Because of this increased complexity, successful
transfer will be more likely when done under
program control rather than from the terminal
keyboard.

In programming GPIB communication with
any instrument, there are a number of general
items that should be taken into consideration.

First of all, there is the interface time-out period.
Generally, GPIB controllers have a fixed or
default interface time-out value. If a bus hand-
shake cycle is not completed within that time, a
time-out error occurs. In short, the activity is not
completed in the alotted time, so the program is
aborted. This prevents the bus from being tied up
waiting for handshake completion should there
ever be an instrument malfunction. However,
there are also some normal operating cases where
the handshake cycle can take longer than usual.
This can occur with slow instruments or because a
program asks for a response to a time consuming
operation before the operation is complete.

In some cases, a time-out situation can be
avoided by careful programming. In TEK SPS
BASIC, however, time-out problems can easily be
avoided by using the SIFTO (set interface time-
out) command to select your own time-out value
before communicating with an instrument.

For just getting your programs running, it is a
good idea to put in a 1000-millisecond time-out
value (actual time varies slightly with controller
speed). This doesn’t slow anything down or
change anything other than just set up a condition
where software will wait longer (1000 milli-
seconds) if it has to for handshake completion.
Then, after the program is debugged and working
as it should, you can reduce the time-out value. For
simple programs this may not be necessary. But,
for multiple instrument applications requiring
fast completion, you may not want an instrument
malfunction tying up the bus while along time-out
expires. In such cases, experimentally reduce the
time-out value to the minimum required for
successful program operation.

After time-out considerations, the next con-
sideration is what you want your program to do
while an instrument is busy. There are two general
cases.

page 8

The first case is when a program needs
information from an instrument before going any
further. An example of this is telling an
instrument to send a waveform to the controller
for processing or storage. Naturally software
cannot process or store the waveform until the
instrument sends it. But it takes time for the
instrument to decode the SENDX message and
prepare for waveform transfer, and during that
time the program goes on executing commands
unless you make it wait for the instrument. This
waiting is often accomplished with a program
statement that loops on itself until the desired
instrument status is achieved. Then the program
picks up the information from the instrument and
goes on to process it.

The second case is somewhat opposite of the
first. It is where you set the instrument about some
task, but want your program to continue normal
execution until the instrument has completed the
task and is ready with information. Instruments
generally indicate completion of a task or
readiness with information by asserting SRQ
(service request). There are power-up SRQs,
command-completion SRQs, and so forth. With
TEK SPS BASIC, any SRQ can berecognized by a
WHEN statement and given a higher priority
than normal program execution. The WHEN
statement is a way of telling the program, “when
this particular condition or event occurs, stop
what you are doing, take care of the situation, then
return to what you were doing.” Typically, WHEN
statements are used in TEK SPS BASIC programs
to branch to polling routines for servicing
instrument SRQs as they occur.

Data format is the final major consideration in
waveform transfers over the GPIB. The data
format the instrument uses needs to be determined
so that you can either preserve that format for
easier transfers back to the instrument or modify
it as needed for external processing.

For the 7854, the waveform data format is
described in Fig. 5. The waveform data is sent in
three major parts. There is an ASCII waveform
preamble consisting of a header and then a string
of descriptors giving pertinent information about
waveform size, scaling, etc. This is followed by a
separator which is either a carriage return or
carriage return with line feed, depending on the
instrument’s message terminator setting (see Fig.
3). Following the separator is the curve header
(CURVE) and then the curve data points, which
are sent as ASCII-coded decimal numbers. All of

this is sent as a single message terminated by
EOL

HANDSHAKE, WINTER 1980-81

Waveform Data:
WFMPRE ENCDG:ASC,NR.PT:512,PT.FMT:Y,XZERO:0,XINCR:9.766E-06,
XUNIT:S,YZERO:2.704,YMULT:1,YUNIT:V;
CURVE 1.3779,1.3777,1.3778,1.3777,...,1.3777,-2.6953,-2.6955,-2.6954,

-2.6955

Definitions:
WFMPRE' waveform preamble (header)
ENCDG:ASC’ curve data encoded ASCII decimal
NR.PT:(P/W) number of points/waveform
PT.FMT.Y' point format (curve data in vert. div.)

XZERO:0' no horizontal offset
XINCR:[10*HSCL/(P/W)] horizontal increment between points

XUNIT:S horizontal scale factor units (S=seconds)
YZERO:[-(VSCL*VZR)] vertical zero offset

YMULT:(VSCL) vertical scale factor

YUNIT:V vertical scale factor units (V=volts)
CURVE waveform data header

'Fixed value. cannot be changed

Curve values are ASCII coded decimal numbers separated by commas. Each
number represents a point on the waveform and is the vertical distance of that
point above (+) or below (-) the center horizontal graticule line of the 7854
display.

Fig. 5. Data format for waveforms sent over the bus by the 7854 Oscilloscope. The waveform is sent as one
message consisting of a waveform preamble, separator (carriage return for EOI or carriage return and line

feed for LF OR EOQOI), and the curve data.

The above points—interface time-out, SRQ
handling, status detection, and waveform mes-
sage format—are taken into account variously in
the sample TEK SPS BASIC programs of Figs. 6
and 7. Figure 6 lists two programs—one for
reading a waveform out of a 7854 and onto a
floppy disk and one for writing the waveform back
into a 7854. The program in Fig. 7 is slightly
different in that it only reads the waveform into
the controller, where it is then converted to TEK
SPS BASIC format for waveform processing.

Starting at line 105 of the program for
transferring a waveform to a floppy disk (Fig. 6),
the interface time-out value is set to 1000. This is
followed in line 110 by setting the status variable,
S, to zero. Then an array, ZW, is dimensioned to
receive the curve data. In this case, it is presumed
the curve contains 512 data values (points 0
through 511); however, the dimension will need to
be changed for curves of other lengths. The next
line, line 120, uses a WHEN statement to cause
branching to the subroutine at line 1000 whenever
an SRQ interrupt occurs. Note that the subroutine
at line 1000 is simply a POLL to read the
instrument status into S. This concludes the
preliminary set up of conditions for transfer of a
7854 waveform.

HANDSHAKE, WINTER 1980-81

The program goes on at line 125 to send a
message telling the 7854 to put 0 WFM on the bus.
At this point the program must wait (loop) until
the 7854 is ready to send the waveform. Line 130
does this waiting by looping continuously while
checking the value of S until S reaches 210. S does
not reach 210 until the 7854 initiates the SENDX,
at which time the 7854 sets its status to 210
(SENDX initiated) and asserts SRQ. The WHEN
condition, set by line 120, recognizes the SRQ and
causes a branch to service it (POLL atline 1000). S
is set to 210 as a result of the POLL. Upon return
from the POLL subroutine, the statement at line
130 finds S to be equal to 210 (waveform ready to
send), and program execution moves to the next
line, line 135.

Line 135 sets the termination character
(STERMC) to a semicolon. In the next line,
RASCII begins reading the waveform message
into ZW$ until a semicolon is reached, which
denotes the end of the 7854 waveform preamble.
At that point, it switches to reading the waveform
data an element at a time into numeric array ZW.
Since RASCII is reading into a numeric rather
than string variable, it discards the data header
(CURVE) and all other characters except
numerics and +, -, ., and the letter E. The EOI, sent

page 9

Talking to the 7854...

16§ REM STORE 7854 § WFM ON FLOPPY
1¢5 SIFTO @¢,100¢

119 s=¢

115 DIM zZW(511)

12¢ WHEN @P HAS "SRQ" AT 51 GOSUB 1¢¢¢
125 PUT "¢ WFM SENDX" INTO @¢,L1

13p IF S<>21¢ THEN 13¢

135 STERMC @d,";"

14§ RASCIT ZW$,ZW FROM @@,T1

145 CANCEL DX1:"WAF.1"

15 OPEN #1 AS DX1:"WAF.1" FOR WRITE
155 WRITE #1,ZW$,ZW

160 CLOSE #1

165 END

2¢¢ REM READ WAF.l BACK TO 7854 f# WFM
2(¢5 OPEN #1 AS DX1:"WAF.1" FOR READ
210 READ #1,ZW$,ZW

215 CLOSE #1

220 SIFTO @¢,10¢¢

225 ZW$=ZW$&";CURVE "

239 s=¢

235 WHEN @P HAS "SRQ" AT 51 GOSUB 1¢¢¢
24¢ PUT "¢ WFM READX" INTO @¢,Ll1

245 IF S<>211 THEN 245

25 WASCII ZW$,ZW;INTO @@,Ll

255 END

1¢¢¢ POLL @§,S,ST,SS;T1

16¢5 RETURN

Fig. 6. TEK SPS BASIC programs for transfer-
ring 7854 waveforms to a floppy disk (lines 100-
165) and back to the 7854 (lines 200-255).

by the 7854 with the last byte of its message,
terminates the RASCII. At this point, the
waveform exists in the controller as the preamble
stored in ZW$ and the data values stored in array
ZW. The rest of the program uses standard
procedure to write these variables out to a floppy
disk.

The second program in Fig. 6 reads the
waveform data back out to the 7854 by essentially
just reversing the process. The disk file is opened
and the information read into ZW$ and array ZW.
After setting the interface time-out, the program
adds ;CURVE to ZW$ since those characters were
discarded by the RASCII in the preceding
program. Then, after setting up for communica-
tion over the bus, the waveform is written as two
parts, ZW$ and ZW, back out to the 7854.

While the programs listed in Fig. 6 perform 7854
waveform transfers with a minimum of data
format change, the program listed in Fig. 7 takes a
different tack. Its purpose is to read a 7854
waveform into the controller and then convert it to
the waveform processing format of TEK SPS
BASIC.

The difference begins in line 330 where the
termination character is set to a comma. This
allows the RASCII in the next line to read each
waveform preamble component, except the last
one, into separate variables for individual use

page 10

3¢ REM GET WAVEFORM FROM 7854

3¢5 SIFTO @¢,100¢

319 s=¢

315 WHEN @J HAS "SRQ" AT 51 GOSUB 1¢¢¢
32¢ PUT "@ WFM SENDX" INTO @@,L1

325 IF S<>21¢ THEN 325

33¢ STERMC @¢,","

335 RASCII 21$,22,23$,24$,25,26$,27,28 FROM @¢,Tl
340 STERMC @¢,";"

345 DELETE B

35¢ WAVEFORM WB IS B(Z2-1),HB,HB$,VBS
355 RASCII Z9$ FROM @¢,T1

36¢ STERMC @@,""

365 RASCII B FROM @@, Tl

37¢ B=B*Z8+27

375 HB=25\HB$=SEG(Z6$,7,LEN(Z6$))

380 VB$=SEG(29$,7,LEN(Z9$))

385 PAGE

399 GRAPH WB

395 END

1¢¢¢ POLL @@,S,ST,SS;T1

19¢5 RETURN

Fig. 7. TEK SPS BASIC program to get a
waveform from the 7854 and convert it to TEK
SPS BASIC format for signal processing.

later. Once the preamble is read in, the
termination character is set to a semicolon (line
340), and a TEK SPS BASIC WAVEFORM is
specified using the points-per-waveform informa-
tion (Z2) from the preamble. The last preamble
element, terminated by a semicolon, is then read
into Z9$ by line 335. Line 360 sets the termination
character to a null, indicating termination on EOI
only. Then the remaining waveform points are
read into array B of WAVEFORM WB.

Immediately following this, in line 370, the data
points are converted from divisions to waveform
values by multiplying by the scale factor (Z8, read
from preamble in line 335) and offset by the
appropriate amount (Z7). The next two lines deal
with setting the WAVEFORM’s digital increment
and units variables. Some string processing is
necessary to segment out the desired characters
for the units. Line 380 completes formatting of the
7854 waveform data to the WAVEFORM format
used by TEK SPS BASIC in signal processing.
The waveform is now ready for fast Fourier
transformation, convolution, correlation, or what-
ever TEK SPS BASIC capabilities you wish to
bring to bear on the analysis.

Program transfers

The final form of communication you might
want to set up is that of transferring 7854
programs back and forth between disk storage
and the 7854. The uses of this vary from the simple
one of providing permanent storage for 7854
programs to the more complex one of a multi-
instrument, distributed processing system where

HANDSHAKE, WINTER 1980-81

programs are down loaded from the host
controller to various 7854 stations as needed. For
either case, the basic idea of 7854 program

transfer is embodied in the two TEK SPS BASIC
programs listed in Fig. 8.

40¢ REM TRANSFER 7854 PROG. TO FLOPPY
4@5 SIFTO @@, 100¢

41¢ s=@\FL=¢

415 WHEN @ HAS "SRQ" AT 51 GOSUB 1¢¢@
42¢ PUT "EXECUTE § GOTO PROGRAM SAVE'" INTO @¢,Ll
425 IF $<>2(8 THEN 425

43 CANCEL DX1:'"P7854.PRO"

435 OPEN #1 AS DX1:"P7854.PRO" FOR WRITE
44 STERMC @@,CHR(13)

445 WHEN @f HAS "EOI" GOSUB 475

45¢ RASCII PL$ FROM @@,T1

455 PRINT #1,PL$

46 IF FL=¢ THEN 45@

465 CLOSE #1

47¢ END

475 FL=1

48(RETURN

5¢¢ REM TRANSFER PROG. TO 7854

5¢5 SIFTO @@, 1000

519 s=¢

515 WHEN @@ HAS 'SRQ" AT 51 GOSUB 1¢¢¢g
52¢ PUT "PROGRAM CLP NEXT" INTO @¢,Ll
525 IF $<>66 THEN 525

53¢ OPEN #1 AS DX1:"P7854.PRO" FOR READ
535 EOF #1 GOTO 555

54¢ INPUT #1,PL$

545 WASCIT PL$ INTO @@,Ll

55¢ GOTO 548

555 CLOSE #1

560 END

19¢¢ POLL @¢,S,ST,SS;T1

1¢¢5 RETURN

Fig. 8. TEK SPS BASIC programs for transfer-
ring a 7854 program to floppy disk (lines 400-480)
and back to the 7854 (lines 500-560).

Assuming you’ve developed a 7854 program and
have it keyed into a 7854, the first TEK SPS
BASIC program (Fig. 8, lines 400 to 408) allows
transfer of that program from the 7854 to a floppy
disk for storage. This program is quite similar in
many vrespects to those used for waveform
transfer. Interface time out is set in line 405, line
410 sets some variables for control use, and line
415 sets up a WHEN for the same reasons as
discussed before. The EXECUTE 0 GOTO
PROGRAM SAVE in line 420 is the command
sequence to the 7854 for setting up transfer of its
program, and the looping in the following line is
set for exit on a status value of 208, which
indicates initiation of the SAVE command.

Since the 7854 sends each of its program lines
terminated by a carriage return, line 440 sets the
termination character for RASCII to carriage
return (ASCII decimal code 13). Each line of 7854
program is then read into PL$ by RASCII (line

HANDSHAKE, WINTER 1980-81

450) and printed to the disk (line 455). Line 460
causes a loop back to read in and print the next
line, and so on until the end of the program is
reached.

The 7854 asserts EOI at the end of the program.
The EOI is detected by the WHEN set up by line
445. This results in the looping variable, FL, being
set to a value of one so that an exit occurs after the
last line of the program is read into PL$ and
printed to the disk. That completes transfer and
storage of the 7854 program, and the file is closed
at line 465.

The second program in Fig. 8 (lines 500 through
560) reads the 7854 program from the disk and
back into 7854 memory. This program is quite
similar to the one for transfer to the disk. A loop is
used toinput the program a line at a time and write
it out to the 7854 (lines 540 through 550). When the
end of the file(EOF) is reached on the disk, line 535
causes a branch out of the loop, the file is closed,
and the transfer program ended.

Taking the next step

All of the basic communication concepts and
tools for building a GPIB system based on TEK
SPS BASIC and the 7854 are embodied in the
programming examples given here. Constants,
commands, waveforms, and programs can all be
easily transferred back and forth between the
instrument and controller as needed.

The next step is to use these tools to build larger,
more specific programs for your particular
waveform capture, storage, and analysis needs.
Tektronix maintains a network of Field Offices
and overseas representatives that will be glad to
assist you in defining those measurement needs
and in selecting an instrumentation system to
meet them. If you would like one of our field people
to contact you, simply check the appropriate box
on the reply card bound into this issue of

HANDSHAKE. T NF

By Bob Ramirez, HANDSHAKE Staff,
with grateful acknowledgment to
David Haworth, SID Scope Evaluation,
and Mark Tilden, HANDSHAKE Staff,
for their programming assistance.

page 11

the GPIB
Puzzle:

Simple apprOaches

to controlling the 7612D

Tektronix recently opened a new door in the
field of high-speed sequential digitizers with the
7612D (see Spring/Summer 1980 HANDSHAKE).
This dual-channel digitizer samples at up to 200
megahertz, has pre-trigger capability, sample-rate
switching, and is fully programmable. Every
instrument function can be controlled via the
IEEE 488 bus (commonly referred to as the GPIB).

But taking full advantage of the 7612D’s
programmable features requires a powerful,
versatile software package. TEK SPS BASIC
provides the power and flexibility to make
instrument control via the GPIB a simple task.

To get you started with your own programs, this
article presents four simple routines for
controlling and acquiring data from the 7612D.
Each routine acquires a single record of data with
no breakpoints (constant sampling rate). In all
cases, it is assumed the 7612D has one 7A16
programmable plug-in in channel A, with the
input signal connected to the upper connector
(channel 1) on the plug-in. It is also assumed the
instrument is connected to GPIB interface number
0 and that the primary address of the instrument
is 1 and the secondary address is 0. (Refer to the
instrument manuals for more information on
setting the bus address). And, lastly, these
programs only acquire data—they do not modify
instrument settings. Programming instrument
settings as well as the various modes of data
acquisition will be covered in future articles.

Starting with the basics

The first program, shown in Fig. 1, uses the
standard low-level GPIB driver (GPI) that is part
of TEK SPS BASIC V02. This driver provides
general purpose (independent of the type of
instrument connected to the bus) line-level control
for the GPIB.

page 12

1§ REM THIS IS A SIMPLE 7612D ACQUISITION ROUTINE.
2¢ REM IT USES THE LOW-LEVEL GPIB DRIVER (GPI) FOR
3¢ REM TEK SPS BASIC VP2. THE ROUTINE ASSUMES THAT
4@ REM THE INSTRUMENT IS SET-UP TO ACQUIRE ONE RECORD
5¢ REM WITH A SINGLE SAMPLING INTERVAL. IT ALSO

6§ REM ASSUMES THAT A SINGLE PROGRAMMABLE PLUG-IN
7¢ REM IS INSTALLED IN CHANNEL A OF THE INSTRUMENT.
8¢ REM

9¢ REM #%% LOAD THE DRIVER AND SET-UP PARAMETERS %#%
10¢ REM

11¢ LOAD "GPI.SPS"

12 1L=¢

136 LA=32

140 TA=64

15¢ SA=96

169 SIFTO @IL,-1

17¢ REM *** GET RECORD LENGTH AND DIMENSION ARRAY ¥%%
18f DELETE A,WA

19¢ PUT "REC?" INTO @IL,LA,SA

20¢ GET A$ FROM @QIL,TA,SA

21 NP=VAL(SEG(A$,POS(AS,",",1)+1,LEN(A$)-1))

22 WAVEFORM WA IS A(NP-1),DA,HA$,VA$

23¢ REM *%% ACQUIRE ZERO REFERENCE **%

24¢ PUT "CPL?" INTO @IL,LA,SA+l

25¢ GET C$ FROM @IL,TA,SA+l

26¢ PUT "CPL GND" INTO @IL,LA,SA+l

27¢ PUT "ARM A" INTO @IL,LA,SA

280 WAIT 190

29¢ PUT "MTRIG;READ A" INTO @IL,LA,SA

3¢¢ READBI A FROM @IL,TA,SA

31¢ ZR=MEA(A)

32¢) REM *¥* ACQUIRE WAVEFORM DATA *¥%

33¢ PUT C$ INTO @IL,LA,SA+l

340 PUT "ARM A;MTRIG;READ A" INTO QIL,LA,SA

35¢ READBI A FROM @IL,TA,SA

360 REM *%% ACQUIRE SCALE FACTORS AND NORMALIZE ¥*%
37¢ HA$="s"

38¢ PUT "VSL1?'" INTO @IL,LA,SA

39¢ GET SF$ FROM @IL,TA,SA

4¢¢ PO=POS(SF$,",",1)

419 SF=VAL(SEG(SF$,POS(SF$," ",1)+1,P0-1))

42¢ VA$=SEG(SF$,PO+1,P0+1)

43p REM *** ASSUME ONE SAMPLING INTERVAL #**%

44¢ PUT "SBPT?'" INTO @QIL,LA,SA

45@ GET A$ FROM @IL,TA,SA

46¢ DA=VAL(SEG(A$,POS(A$,",",1)+1,LEN(A$)-1))

47¢ A=(A-ZR)*SF/32

480 PAGE

490 GRAPH WA

5@@ RELEASE "GPI.SPS"

519 END

Fig. 1.A Basic 7612D acquisition routine using
the low-level GPIB driver (GPI).

HANDSHAKE, WINTER 1980-81

The program starts by loading the GPI driver
and initializing the interface and address
variables. Then, line 160 sets the interface time-
out value to infinity (-1). This causes the driver to
wait indefinitely for the 7612D to respond. Next,
the waveform data arrays are deleted and the
program uses the REC? query to ask the 7612D for
its record length. The response is stored in string
variable A$. The format of the REC? query
response is:

REC n,y;

Where n is the number of records and y is the
length (number of samples) of each record.

Line 210 extracts the record length value (y)
from this string and assigns that value to the
variable NP. This value determines the size of the
destination array for the waveform data.

The WAVEFORM statement in line 220
declares a waveform named WA. This waveform
consists of the A data array (which is dimensioned
to NP-1 points), the sampling interval (DA),
horizontal units (HAS$), and vertical units (VAS$).
Figure 2 shows a typical waveform and identifies
its components. The complete waveform,
including data and scale factors, can bereferenced
using the waveform variable, WA.

Vertical
Multiplier
(Derived By
GRAPH Command)

1E-3 v—=——"Vertical Units (VAS$)

600 {

NV N N
R VL LT e
RN ENENREL

[]\ e

RERNIER \[

-100

1.536 2.048
+256 .768 1.28 1.792 2.304

Total
Horizontal Horizontal Units ~ Acquisition
Multiplier (HAS) Time
(Derived By (DA*N*Multiplier)

GRAPH Command)

Fig. 2. A complete waveform consists of data,
data sampling interval, horizontal units, and
vertical units. The wvertical multiplier and
horizontal multiplier are derived by the GRAPH
command.

HANDSHAKE, WINTER 1980-81

With the preparations out of the way, data
acquisition can begin. The first step is to acquire a
zero reference with the plug-in input grounded.
This reference level will later be subtracted from
the waveform data to compensate for the Position
control setting and yield a true DC level for the
waveform. Line 240 reads the Coupling setting
from the plug-in and stores this setting in C$.
Then Coupling is set to Ground (GND) and the
7612D is armed.

Since the 7612D may not trigger with its input
grounded, the program sends a manual trigger
(MTRIG) command to start the zero reference
acquisition. However, the arm process may take
many milliseconds to complete, so the WAIT
statement in line 280 delays program execution for
about 100 milliseconds to be sure that the arm
process completes before the manual trigger
command is sent.

Following MTRIG, the program also sends a
READ command. The READ causes the 7612D to
begin transmitting its data as soon as acquisition
is complete. The READBI command in line 280
accepts the data and puts it into array A. If the
acquisition is not complete when line 280 is
executed, the program simply waits. Theinterface
time-out value is set to -1, so the program will wait
indefinitely. During this period, the GPIB waits
for the 7612D to transmit data. As a result, no
other device-dependent messages can be sent
across the bus. This simplifies programming. But,
for multiple instrument systems or when speed is
important, another technique is demonstrated
later.

For now however, when the zero reference
acquisition is complete, line 290 sets the zero
reference value, ZR, to the mean of the acquired
data values. Next, the original setting for the plug-
in coupling, stored in C$, is sent back to the plug-
in. The instrument is armed again, and the
waveform data is acquired. Then, the data is read
into array A. Again, if the acquisition is not
complete when the READBI command is
executed, the program waits.

The next step is to acquire the scale factor and
units values that describe the waveform data. The
horizontal units will be seconds, so an “S” is
stored HA$. The vertical scale factors are acquired
using the VSL1? query (Vertical Scale factors for
the Left plug-in, channel 1). The 7612D responds to
this query with a message of the form:

VSL1 +5.E+@¢,V, CAL

page 13

Simple approaches...

Line 390 stores the query response in SF$. The
next two lines extract the volts/division value
from the string and assign that value to SF. Then,
line 420 assigns the units (V for volts) to VAS.

The SBPT? query in line 440 gets the sampling
interval (assuming a single sampling interval).
Line 460 puts the sampling interval value
extracted from the query response in DA.

Finally, the waveform data is normalized by
subtracting the zero reference value from each
data point, multiplying the result by the vertical
scale factor, and dividing that result by 32 (the
7612D has 32 data levels per division on a
standard 8-by-10 graticule).

Lines 480 and 490 page the terminal and graph
the data. The GRAPH command automatically
scales the vertical axis for best display. Then, it
generates the graticule, labels the axis with scale
factors, and graphs the data (see Fig. 2). When the
graphing is complete, line 500 releases the GPI
driver.

Interrupts free the bus

One limitation of the program presented in Fig.
1 is the “dead” time caused by waiting for the
7612D to complete its acquisition. Between the
time that the READ command is sent and the
acquisition is completed, the GPIB waits for the
7612D to transmit its data. While the bus is
waiting, no device-dependent messages can be
sent, which could be an important limitation in
multiple-instrument systems.

The 7612D has a feature that can be used to free
the bus for other traffic while an acquisition is in
progress. When a channel completes its
acquisition, the 7612D can generate an SRQ
interrupt to tell the controller that the waveform
data is ready for output. This interrupt is called a
waveform readable interrupt (WRI). Adding a few
lines to the program in Fig. 1 takes advantage of
this feature.

The modified program is shown in Fig. 3 with
the new lines in bold print. The program arms the
instrument and waits for a waveform readable
interrupt. During acquisition, the program waits,
but the bus is free for other traffic. When the
interrupt occurs, the program sends a read
command to the instrument and gets the data.

Lines 220-330 get the record length, declare the
waveform, store the plug-in coupling mode, and
prepare for zero-reference acquisition just as in the
first program. The difference starts at line 340.
Instead of immediately sending the READ

page 14

1§ REM THIS IS A SIMPLE INTERRUPT-DRIVEN 7612D

2¢) REM ACQUISITION ROUTINE. IT USES THE LOW-LEVEL GPIB
3¢ REM DRIVER FOR TEK SPS BASIC VP2. THE ROUTINE ASSUMES
4§ REM THAT THE INSTRUMENT IS SET-UP TO ACQUIRE ONE
5¢ REM RECORD WITH A SINGLE SAMPLING INTERVAL. IT ALSO
60 REM ASSUMES THAT A SINGLE PROGRAMMABLE PLUG-IN IS
7¢ REM INSTALLED IN CHANNEL A OF THE INSTRUMENT.

8¢ REM

99 REM *#%% LOAD THE DRIVER AND SET-UP PARAMETERS

16¢ REM

119 LOAD "GPI.SPS"

12¢ 1L=¢

13 LA=32

140 TA=64

154 SA=96

164 FL=¢

17¢ SIFTO @IL,2¢¢

18¢ REM *+** ENABLE WAVEFORM READABLE INTERRUPT
19¢ REM *** AND SET-UP WHEN FOR SRQ s
2¢¢ WHEN @IL HAS "SRQ" GOSUB 65@

21¢ PUT "WRI ON" INTO @IL,LA,SA

22¢ DELETE A,WA

23¢ PUT "REC?" INTO @IL,LA,SA

249 GET A$ FROM @IL,TA,SA

25¢ NP=VAL(SEG(A$,POS(AS$,",",1)+1,LEN(A$)-1))
26§ WAVEFORM WA IS A(NP-1),DA,HA$,VA$

27¢ REM *%* ACQUIRE ZERO REFERENCE *¥¥

28¢ PUT "CPL?" INTO @IL,LA,SA+l

299 GET C$ FROM @IL,TA,SA+l

3¢¢ PUT "CPL GND" INTO @IL,LA,SA+l

319 PUT "ARM A" INTO @IL,LA,SA

32§ WALIT 19¢

33p PUT "MTRIG" INTO @IL,LA,SA

34p REM *%* WAIT FOR WAVEFORM READABLE SRQ **%
35¢ IF FL=¢ THEN 358

36¢ FL=0

37¢ PUT "READ A" INTO @IL,LA,SA

38¢ READBI A FROM @IL,TA,SA

39¢ ZR=MEA(A)

4@ PUT C$ INTO @IL,LA,SA+l

41@ REM *%*% ACQUIRE WAVEFORM DATA *%*%

420 PUT "ARM A" INTO @IL,LA,SA

43@ REM *%* WAIT FOR WAVEFORM READABLE SRQ **¥*
440 IF FL=@ THEN 440

45¢ FL=¢

46¢ PUT "READ A" INTO @IL,LA,SA

47¢ READBI A FROM @IL,TA,SA

48@ REM *%% ACQUIRE SCALE FACTORS AND NORMALIZE *i#
499 HAS$="S"

5@¢¢ PUT "VSL1?" INTO @IL,LA,SA

51¢ GET SF$ FROM @IL,TA,SA

524 Po=POS(SF$,",",1)

53¢ SF=VAL(SEG(SF$,POS(SF$," ",1)+1,P0-1))

54@ VA$=SEG(SF$,PO+1,P0+1)

55¢ REM *%% ASSUME ONE SAMPLING INTERVAL ¥
564 PUT "SBPT?" INTO @IL,LA,SA

57¢ GET A$ FROM @IL,TA,SA

58§ DA=VAL(SEG(AS$,POS(AS$,",",1)+1,LEN(AS$)-1))
59¢ A=(A-ZR)*SF/32

60§ PAGE

61¢ GRAPH WA

620 RELEASE "GPI.SPS"

63¢ END

64¢ REM *** SRQ SERVICE ROUTINE ¥**

65¢ POLL @IL,ST,PP,SS;TA,SA;TA,SA+l;TA,SA+2

66@ IF PP<>TA THEN 70§

67¢ IF SS<>SA THEN 7¢¢

68@ VARTST ST,"4",FL

69@ GOTO 65@

7¢@ RETURN

Fig. 3.Adding a few lines to the program in Fig. 1
eliminates the “dead” time on the GPIB during
waveform acquisition.

command and waiting for the data, the program
loops at line 350 waiting for a flag (FL) to be set
(i.e., FL=0).

HANDSHAKE, WINTER 1980-81

FL is zero (cleared) until an SRQ interrupt is
received. When the interrupt is received, the
subroutine in lines 640-710 is executed. The
subroutine starts by polling each device whose
addresses are listed in the POLL command
arguments. The polling process stops with the
first device asserting SRQ. The status byte,
primary talk address, and secondary address of
this device are returned in ST, PP, and SS,
respectively. If none of the devices listed in the poll
command are asserting SRQ, the status byte,
primary address, and secondary address
variables are set to zero.

Lines 660 and 670 check the primary and
secondary addresses to see that the status byte is
from the 7612D mainframe. If the addresses do not
match, the subroutine returns without setting the
flag. The VARTST command in line 670 tests bit 3
of the 7612D’s status byte. If this bitis set, channel
A caused a waveform readable interrupt, so the
VARTST command sets the flag (FL) to one. If bit
3 of the status byteis a zero, the flagis cleared. The
GOTO statement in line 690 polls the devices
again to be sure that all SRQ’s are serviced before
returning to the main program.

When the waveform readable interrupt is
received and the flag set, the test in line 440 fails,
the flag is reset in line 450, and the program
proceeds. Lines 460 and 470 read the data from
channel A. The data transfer begins immediately
since the acquisition is complete.

The remainder of the program is identical to the
program in Fig. 1.

The high-level driver makes it easier

Now let’s take a look at the same program using
the optional high-level instrument driver (INS) for
TEK SPS BASIC V02/V02XM. This driver
provides simple “high-level” communication with
Tektronix instruments. It handles much of the
mechanics of controlling an instrument
automatically.

The program shown in Fig. 4 performs the same
functions as the original version—it’s just a lot
simpler because it uses the high-level driver. For
example, the original program shown in Fig. 1
uses three statements to get the record length
value (lines 190-210). Compare this to the single
statement used in line 120 of the new program
(Fig. 4). The high-level driver allows you to send a
query, get the response, and separate the response
into it’s component parts, all in one statement!

HANDSHAKE, WINTER 1980-81

1f REM THIS IS A SIMPLE 7612D ACQUISITION ROUTINE.

2¢) REM IT USES THE HIGH-LEVEL INSTRUMENT DRIVER (INS)
3¢ REM FOR TEK SPS BASIC VP2-(2/XM. THE ROUTINE ASSUMES
49 REM THAT THE INSTRUMENT IS SET-UP TO ACQUIRE ONE

5¢ REM RECORD WITH A SINGLE SAMPLING INTERVAL.

60 REM IT ALSO ASSUMES THAT A SINGLE PROGRAMMABLE PLUG-IN
7¢ REM IS INSTALLED IN CHANNEL A OF THE INSTRUMENT.

8¢ REM

9¢ LOAD "INS.SPS"

1¢¢ ATTACH #1 AS INS@,@:WITH 1 @@

11¢ DELETE A,WA

12§ GET NR,NP FROM #1,"REC?"
13¢ WAVEFORM WA IS A(NP-1),DA,HA$,VA$
149 REM **% ACQUIRE ZERO REFERENCE ***
15¢ GET C$ FROM #1;1,"CPL?"

16¢ PUT "CPL GND" INTO #1;1

17¢ PUT "ARM A" INTO #1

184 WAIT 19¢

19¢ GET A FROM #1,""MTRIG;READ A"

20¢ ZR=MEA(A)

21¢ PUT C$ INTO #1;1

22§ REM *¥* ACQUIRE WAVEFORM DATA *¥*

23¢ GET A FROM #1,"ARM A;READ A"
24 REM *¥*% ACQUIRE SCALE FACTORS AND NORMALIZE #%#
25¢ HAS$="s"

260 GET SF$;SF,VA$ FROM #1,"VSL1?"

270 VAS$S=SEG(VA$,1,1)

28p REM *** ASSUME ONE SAMPLING INTERVAL %%
29¢ GET BP,DA FROM #1,"SBPT?"

3¢¢ A=(A-ZR)*SF/32

310 PAGE

32§ GRAPH WA

33¢ DETACH #1

349 RELEASE 'INS.SPS"

354 END

Fig.4. Converting the basic acquisition routine
to use the optional high-level instrument driver
(INS) simplifies the program considerably.

The ATTACH statement in line 100 specifies an
ILUN (instrument logical unit number) which will
be used to reference the instrument. This
statement links the ILUN to the primary and
secondary addresses of the instrument, the
secondary addresses of it’s plug-ins, and the
interface number to which it is connected. After
the ATTACH statement is executed, only the
ILUN need be specified in a reference to the
instrument; TEK SPS BASIC automatically
addresses the instrument using the addresses
specified in the ATTACH.

From here, the program performs the same
basic functions as the previous two: It sets-up the
waveform arrays, acquires the zero reference,
data, and scale factors, normalizes the data, and
graphs the results.

The best of both—interrupts and the
high-level driver

Though the program in Fig. 4 is a lot simpler
than its equivalent in Fig. 1, it still has the same
waiting limitation—the bus is tied up while the
7612D completes acquisition. Fortunately,
modifying the program to use the 7612D’s

page 15

Simple approaches...

waveform readable interrupt feature is a simple
task. Figure 5 shows the modified program using
the high-level driver. The new parts are shown in
bold print.

Again, the basic operations are the same as the
program in Fig. 4. The program gets under way by
initializing the FL flag, loading the driver, and
attaching the instrument. Next, the automatic

1§ REM THIS IS A SIMPLE INTERRUPT-DRIVEN 7612D

2¢ REM ACQUISITION ROUTINE. IT USES THE HIGH-LEVEL
3¢ REM INSTRUMENT DRIVER (INS) FOR TEK SPS BASIC VP2-$2/XM.
4f REM THE ROUTINE ASSUMES THAT THE INSTRUMENT IS SET-UP TO
5¢ REM ACQUIRE ONE RECORD WITH A SINGLE SAMPLING INTERVAL.
6¢ REM IT ALSO ASSUMES THAT A SINGLE PROGRAMMABLE PLUG-IN IS
7¢ REM INSTALLED IN CHANNEL A OF THE INSTRUMENT.
8¢ REM

9¢ REM **%¥ LOAD THE DRIVER AND ATTACH THE INSTRUMENT %%
1¢¢ REM

11¢ FL=@

12¢ LOAD "INS.SPS"

130 ATTACH #1 AS INS@,$:WITH 1 @@

14§ REM %% ENABLE WAVEFORM READABLE INTERRUPT ‘%
15¢ REM *** AND SET-UP WHEN FOR SRQ wkk
16§ LOCKSRQ

17¢ WHEN #1 HAS "3@7" GOSUB 550

18¢ WHEN #1 HAS "SRQ" GOSUB 568

19¢ SRQENABLE @@

2¢¢ PUT "WRI ON" INTO #1

21¢ DELETE A,WA

22¢ GET NR,NP FROM #1,"REC?"

23p WAVEFORM WA IS A(NP-1),DA,HA$,VAS$

24@ REM “*¥% ACQUIRE ZERO REFERENCE ¥

25¢ GET C$ FROM #1;1,"CPL?"

26¢ PUT '"CPL GND'" INTO #1;1

27¢ PUT "ARM A" INTO #1

280 WAIT 16¢

299 PUT "MTRIG" INTO #1

3¢ REM **% WAIT FOR WAVEFORM READABLE SRQ **%

31¢ IF FL=¢ THEN 31¢

320 FL=0

33 GET A FROM #1,"READ A"

349 ZR=MEA(A)

35¢ PUT C$ INTO #1;1

360 REM “#% ACQUIRE WAVEFORM DATA *¥¥

37¢ PUT "ARM A" INTO #1

380 REM *** WAIT FOR WAVEFORM READABLE SRQ *%¥

39¢ IF FL=¢ THEN 39¢

40¢ FL=@

41§ GET A FROM #1,"READ A"

42¢ REM **%% ACQUIRE SCALE FACTORS AND NORMALIZE #¥¥
430 HAS$="S"

44p GET SF$;SF,VA$ FROM #1,"VSL1?"

45¢ VA$=SEG(VAS$,1,1)

46 REM *%% ASSUME ONE SAMPLING INTERVAL *¥¥

47¢ GET BP,DA FROM #1,"SBPT?"

48@ A=(A-ZR)*SF/32

49¢ PAGE

5¢¢ GRAPH WA

519 DETACH #1

52¢ RELEASE "INS.SPS"

53¢ END

54 REM *%% WRI SRQ SERVICE ROUTINE *¥¥

55¢ FL=1

56 SRQENABLE @¢

57¢ RETURN

Fig. 5. Adding interrupt handling to the high-
level program uses the best of both worlds—the
simplicity of the high-level driver and the
efficiency of interrupt-driven acquisition.

SRQ re-enabling feature of the high-level driver is
disabled with the LOCKSRQ statement. This
statement keeps the driver from recognizing and
processing an SRQ interrupt until the previous
one has been serviced.

Then, two interrupt conditions are set-up—one
for the specific SRQ of interest (waveform
readable), and one for all others. The first WHEN
statement in line 170 causes control to be
transferred to line 550 when the 7612D reports a
waveform readable interrupt from channel A.
Line 550 sets the FL flag to 1 and SRQs are re-
enabled in line 560. Finally, line 570 returns
control to the main program at the point where it
was interrupted by the waveform readable
interrupt.

The second WHEN statement (line 180) handles
all other interrupt conditions from instrument
number 1. These other interrupts do not affect the
main program, so the SRQ is simply re-enabled
without setting FL.

Back in the main program, lines 240-290 set the
instrument up to acquire the zero reference, arm
the time base, and manually trigger it. Then, the
program loops at line 310 waiting for FL to be set.
When the interrupt occurs, execution of the main
program is temporarily suspended, the interruptis
serviced, and FL is set. When the main program
begins executing agan, the IF statement at line
310 finds FL set, and program execution continues
to line 320. The same procedure is used to acquire
the waveform data in lines 370-410.

Choose your driver and build a program

The routines in Fig. 1-56 handle only the simplest
cases, but they do provide a basis for building a
complete program suited to your needs. Just a
word of caution—be careful in making your
selection of which driver to use. The high-level
driver is hard to beat in small systems of
Tektronix instruments. But don’t neglect the low-
level driver! It still comes out on top for larger
systems or systems with instruments from other
manufacturers.

In any case, a good acquisition routine using the
right driver can provide the foundation for a
powerful, flexible automated measurement
system. m

By Mark Tilden,
HANDSHAKE Staff

page 16

HANDSHAKE, WINTER 1980-81

Solving
the GPIB
Puzzle:

CG551AP and TEK SPS BASIC

make auto cal easy

Until now, most of the examples presented in
HANDSHAKE for controlling GPIB instruments
with TEK SPS BASIC have involved data
acquisition. But, TEK SPS BASIC is equally adept
at controlling programmable signal sources for
test stimuli or automatic calibration. A good
example is controlling the new Tektronix
CG551AP Programmable Calibration Generator.

Primarily designed as a programmable
calibrator for oscilloscopes, the CG551AP
generates reference signals for testing vertical
gain, horizontal timing and gain, vertical
bandwidth, transient response, probe accuracy
and compensation, and calibrator output
accuracy. In addition, it is fully programmable
over the IEEE-488 bus (GPIB)—every front-panel
setting can be remotely programmed. (For more

details see A closer look at the CG551AP in
this issue.)

Full programmability and high accuracy also
make the CG551AP a good choice for automated
calibration of waveform digitizers. When the
digitizer’s settings are programmable, the
calibration process can be completely automatic.
Non-programmable instruments may require
some manual interaction.

With the signal processing capabilities and
instrument control power of TEK SPS BASIC,
implementing a high-speed, fully automatic
calibration system becomes a simple task. Using
programmable digitizers, such as the Tektronix
7912AD or 7612D, the measurement system can be
automatically configured for calibration, the tests

continued on page 19

A Inputs—Free For

CP1100/CP4100 Controller

With

TEK SPS BASIC V02-02 Software

Other Uses

GPIB

CG551AP

Calibration Signal

Fig. 1. A simple automatic calibration system for checking low-frequency vertical gain.

HANDSHAKE, WINTER 1980-81

page 17

CG551AP and TEK SPS BASIC...

A closer look at |
the CG551AP |

Interested in faster, more accurate oscilloscope
calibration?

Then take a look at the TEKTRONIX CG551AP
Programmable Calibration Generator. It has a
complete list of oscilloscope calibration features
including a 40-microvolt standard amplitude and
slewed-edge timing markers for high-speed
accuracy. Plus, it’s a fully programmable,
microprocessor-based generator designed to give
you a choice of manual operation or fully
automatic operation under computer control for
calibration and verification of major oscilloscope
parameters such as:

eVertical gain

eHorizontal timing and gain

eVertical bandwidth/pulse characteristics
eProbe accuracy and compensation
eCurrent probe accuracy

eCalibrator output accuracy

Why computer-aided calibration?

The CG551APis GPIB compatible—it conforms
to IEEE 4881978. This means that it can be
integrated into systems and used along with other
GPIB instruments. A typical system is illustrated
in the accompanying diagram and has the
advantages of letting you program and auto-
matically document your calibration procedures.

Faster calibration, fewer errors. Compared
to conventional calibration set ups, the CG551 AP
under program control provides up to a fourfold
increase in calibration speed. Not only can you
increase throughput with the CG551AP, but you
can make calibration more complete and
consistent. Because the calibration is directed by
computer program, complete with operator
prompts if you wish, procedures are executed the
same every time. This significantly reduces the
chances of an operator overlooking a calibration
step or inadvertantly missetting a control.

page 18

|

Also, calibration error is automatically
computed by the CG551 AP’s microprocessor. This
removes another burden for the operator and
ensures faster, more accurate, and more
repeatable results. Additionally, limits of error
can be included as part of the calibration program
and used for pass-fail comparison with calibration
results. Again, the operator is relieved of the task
of continually comparing results to a specification
sheet. Software can do it automatically.

Automatic documentation. Calibration
results can also be documented automatically.
Software can tabulate the calibration results and
output them to a line printer or graphic terminal
for conversion to a paper document. This
eliminates time consuming hand recording of
results as well as the transposition and omission
errors common to hand prepared documentation.

The calibration results can also be archived on
magnetic storage media, such astape or disk. This
provides a readily accessible data base for
statistical analyses, instrument control,
traceability, etc.

Building your program

There are a variety of ways to put the CG551 AP
to work. One is to design your own system and
write the necessary software. Interfacing the
system is simple since the CG551AP is GPIB
compatible, so writing the software will be the
greatest task.

If you would rather avoid the software design
task, the TEKTRONIX SCPDA1 ScopeCal
Procedure Development Aid is the answer. This
software runs on a TEKTRONIX 4050-Series

HANDSHAKE, WINTER 1980-81

Other
GPIB Equipment

CG551AP
Programmable

IEEE 488 Interface Bus

System
Controller

Calibration
Generator

Y

Oscilloscope
Under Test

Hard Copy
Device

Fig. 1. Typical computer-controlled calibration system.

Graphic Computing System and provides a tool
for developing your own calibration procedures.
SCPDA1 guides you step-by-step through a
calibration process, allowing you to enter test
parameters, test limits, operator instructions, and
control settings as you need them. It also
automatically acquires and stores the CG551 AP
settings. As a result, you can develop automatic,
interactive calibration procedures without any
previous programming experience.

The F5165D3 Scope Calibration System is
another way to get underway with a
programmable calibration system. It provides
everything required for setting up a
programmable oscilloscope calibration system
based on the CG551AP. The system includes the
CG551AP Programmable Calibration Generator,

4052 Graphic Computing System, TM506 MOD
JB Mainframe, SG502 Sine-Wave Generator,
SG503 Sine-Wave Generator, SG504 Sine-Wave
Generator, and the SCPDA1 ScopeCal Procedure
Development Aid Software plus supporting
accessories and operating instructions for the
system.

Want more information?

This has only been a glimpse of what the
CG551AP can do to automate your oscilloscope
calibration procedures. For further information
on the CG551AP or a demonstration at your
calibration lab, check the appropriate box on the
HANDSHAKE Reply Card. m

By Dale Aufrecht,
HANDSHAKE Staff

continued from page 17

performed, results logged, and the system
returned to normal operation—all without any
human intervention. The resultis higher accuracy
and dependable calibration without removing the
instruments from their working environment and
without time-consuming manual calibration.

The controller can even use the test results to

automatically correct acquired data for
calibration error!

HANDSHAKE, WINTER 1980-81

To explore the auto cal possibility further,
consider the process of vertical auto cal. Figure 1
shows a simple automatic calibration system
using the CGbH51AP and a single 7612D
Programmable Digitizer with 7A16P
Programmable plug-ins. The calibration signal is
applied to the B inputs of each plug-in. The A
inputs are free for normal use. Since the 7TA16P’s A
and B inputs are very well matched, the
calibration signal follows essentially the same

page 19

CG551AP and TEK SPS BASIC...

path as a normal input signal. Errors introduced
while acquiring the calibration signal will also
show up in other acquired data. By comparing the
acquired calibration signal with the known
standard output from the CG551AP, these errors
can be computed and stored. Then, when data is
acquired, the errors can be automatically
corrected with a simple routine written in TEK
SPS BASIC.

Software tweaks the data

For example, assume that the channel A
vertical system (plug-in and mainframe
amplifiers) exhibits a +1.3% gain error on the 5
volts/division range. When the calibration
routine is executed, the controller sets the
CGbH51AP to generate six divisions of amplitude-
calibrated square wave at 5 volts/division. The
7612D acquires this waveform and sends the data

to the controller memory. Then, the controller
computes the difference between the amplitude of
the acquired waveform and the known output
from the CGbH51AP. For our example, the
amplitude of the acquired data will be 1.3%20.25%
higher than the output of the -calibration
generator (the CG551AP output is accurate to
$0.25% in voltage mode).

Data acquired through channel A in normal
operation will also be affected by this 1.3% error.
But, the controller can easily compensate for this
error by multiplying each data value acquired
from channel A by 0.987 (1-1.3%/100). This
reduces the gain error to a maximum of +0.25%—
far below the normal plug-in/mainframe gain
accuracy specification. The flow chart shown in
Fig. 2 describes the program required to acquire
the calibration signal and compute the error
values.

Save CG551AP and
7612D Settings

{

Set-Up CG551AP and
7612D for Cal

Save Plug-
Set-Up

in Settings
Plug-in
Select B Input

Acquire Data J

f

Build Histogram of
Acquired Data

f

Compute Amplitude
Error and Store

in Array

Select Other
Channel

Tested

All Volts/Div

Ranges
?

Decrement to Next
Lower Volts/Div
Range

Restore CG551AP
and 7612D Settings

Fig. 2.

page 20

f

Return

Flow chart of a routine to test low-frequency gain calibration.

HANDSHAKE, WINTER 1980-81

Getting down to the BASIC

With this basic auto-cal concept in mind, let’s
look at a TEK SPS BASIC program that uses the
CGb551AP to implement the simplest of automatic
calibration procedures—a vertical gain check. The
program shown in Fig. 3 checks thelow-frequency
vertical gain of a 7612D/7A16P system. The
routine returns an array of error values, one value
for each VOLTS/DIV setting on the 7A16P.

1§ REM * *
2 REM CG551AP VERTICAL AUTO CAL ROUTINE FOR THE 7612D
3(REM *¥%% dedkedeakeledeok Fokdok

4¢ DELETE VD$,C$,L$,QQ

5¢ DIM VD$(8),c$(2),L$(2),PE(8,1),QQ(511)

69 VD$(@)="5"\VD$(1)="2"\vD$(2)="1"\VD$(3)=".5"\VD$(4)="".2"
79 VD$(5)=".1"\vD$(6)="".85"\VD$(7)="".02"\VvD$(8)="".41"
8¢ C$(1)="A"\c$(2)="B"\L$(1)="L"\L$(2)="R"

9¢ LOAD "INS.SPS"

1¢¢ ATTACH #1 AS INS7:@¢

11§ ATTACH #2 AS INS@,#:WITH 1 @@

12 GET CS$ FROM #1,"SET?"

13¢ PUT "MODE V;MAG X1;MULT 6;CHOP ON;OUT ON;FXD'" INTO #1
14 GET MS$ FROM #2,"SET?"

15¢ FOR C=1 TO 2

16¢ GET PS$ FROM #2;C,'SET?"

17¢ PUT "TMBS ";C$(C);";WRI ON;CLK INT;BTA OFF;REC 1,512" INTO #2
18¢ PUT "SBPT @,1$E-6;LTC ";L$(C);";LEV 14" INTO #2
19¢ PUT "POS -3;POL NOR;VAR OFF;CPL DC;INP B" INTO #2;C
2¢¢ FOR I=¢ TO 8

219 PUT "U/D "&VD$(I) INTO #1

22¢ PUT "V/D "&VD$(I) INTO #2;C

23 GET QQ FROM #2,"ARM "&C$(C)&";READ "&C$(C)

240 REM Fededeiee Fededddokoioiot

25 REM GENERATE HISTOGRAM FROM ACQUIRED DATA.

26¢ REM COMPUTE AMPLITUDE AND PERCENT ERROR.

279 REM sk ol *

28¢ VR=VAL(VD$(I))*6

29¢ DELETE B

3¢¢ DIM B(255)

319 FOR J=¢ TO 255

326 B(QQ(J))=B(QQ(J))+1

33¢ NEXT J

340 CE=128

350 V1=CRS(B(@:CE) ,MAX(B(@:CE)))

360 V2=CRS(B(CE:255) ,MAX(B(CE:255)))

37¢ VM=(V2-V1)*VR/(6%*32)

38¢ PE(I,C-1)=(VM-VR)*10¢/VR

39¢ NEXT I

4@ PUT PS$ INTO #2;C

419 NEXT C

42¢ PUT MS$ INTO #2

43¢ PUT CS$ INTO #1

440 DETACH #1

45@ DETACH #2

46¢ RELEASE 'INS.SPS"

47 FOR C=1 TO 2

48 PRINT

49¢ PRINT '"CHANNEL ";C$(C)

5¢¢ FOR I=¢ TO 8

51¢ PRINT "ERROR FOR ";VD$(I);" VOLTS/DIV RANGE IS: ";PE(I,C-1);"%"
52§ NEXT I

53¢ PRINT

54¢ NEXT C

55¢ END

Fig. 3. A simple automatic calibration program
to check the low-frequency vertical gain of a
7612D/7A16P system.

This program uses the optional high-level
instrument driver (INS) of SPS BASIC V02-02.
This driver is designed to provide simple, “high

HANDSHAKE, WINTER 1980-81

level’”” communication with Tektronix
instruments. (For a complete discussion and
comparison of the high-level and low-level drivers,
see “Simple approaches to controlling the 7612D”
in this issue). The driver handles SRQ interrupts
automatically, provides a simple method of
addressing, and a number of other features that
simplify control of a GPIB-interfaced instrument.

Getting under way, the program initializes
variables and loads the high-level driver into
memory. String array VD$ stores the
volts/division settings for the plug-ins and
CGb551AP. Because the format for the plug-ins and
calibration generator both conform to a Tektronix
standard for GPIB message format, the same
string can be used to set the range for both
instruments.

Lines 100 and 110 “attach” the instruments.
These commands tell the software what the bus
address and interface number is for each
instrument. (This program assumes address 7 for
the CG551AP and 0 for the 7612D). After the
instruments are attached, they can be referred to
by the specified ILUN (Instrument Logical Unit
Number)—#1 for the CG551AP and #2 for the
7612D. Since the instruments are probably set up
to perform a specific measurement before the
calibration routine is executed, lines 120, 150, and
160 get and store the current instrument settings.
These settings are restored when the calibration
routine is completed.

Line 130 sets up the CG551AP to generate a six-
division amplitude-calibrated square wave. Then,
line 140 begins a two-pass FOR loop. On the first
pass, the routine checks the calibration of channel
A of the 7612D. The second pass checks channel B.
Lines 170 and 180 set up the 7612D to acquire the
calibration waveform, and line 190 sets up the
plug-in.

Next, the program begins another loop that
successively sets the plug-in to each VOLTS/DIV
range, and sets the CG551AP to generate a six-
division square wave for each setting. On each
pass, line 230 acquires the waveform, and lines
290 through 370 convert the data to a histogram.
The histogram is used to find the upper and lower
limits of the square wave whilerejecting noise and
overshoot. Finally, line 380 computes the
difference between the known output from the
generator and the amplitude of the acquired data.
This quantity is converted to a percentage of error
and stored in the array PE. The loop is repeated for
each of the nine VOLTS/DIV ranges, and the

page 21

CG551AP and TEK SPS BASIC...

error values are stored in corresponding elements
of the PE array.

When all nine ranges have been tested, the
channel A settings are returned to their original
values, and channel B is tested. Then, the
CGbH51AP settings are restored, both instruments
are detached, and the driver is released from
memory. The loop in lines 480-550 prints and
labels the error values. These errors need not be
printed, since they can be used to automatically
correct acquired data. Alternatively, the error
values could be printed only when they exceed
some specified limit.

Though this isn’t a complete automatic
calibration routine, it could be used as a
subroutine in a complete auto-cal program orin an
application program that requires high gain
accuracy. The concept could also be extended to
check and compensate for sampling inaccuracy,
nonlinearity, and even bandwidth. With
programmable instruments, like the CG551AP
and 7612D, and powerful software, like TEK SPS
BASIC, to link them together, the step up to full
automatic calibration can be an easy one.

By Mark Tilden,
HANDSHAKE Staff

Literature available from Tektronix

Copies of the following literature can be ordered
via the reply card bound into this issue of
HANDSHAKE.

GPIB Communication with the 7854,
Application Note AX-4416.

This application note demonstrates interfacing of
the 7854 over the GPIB to a 4052 Graphic
Computing System and 4924 Tape Drive. The
discussion is supported by a variety of programs
for transferring data, waveforms, text, and
programs between devices.

Capture fast waveforms accurately
with a 2-channel programmable
digitizer, Electronic Design reprint, AX-
4401.

This reprint contains an in-depth discussion of the
new 7612D Programmable Digitizer from
Tektronix, Inc. The major features—dual-channel
operation, variable record length, sample rate
switching, and pre- and post-triggering—are
described in terms of both operation and use. A full
application example, testing a three-electrode gas
lightning arrestor, is also presented.

page 22

Spectrum Analysis Systems, AX-4011.

The Spectrum Analyzer has long been recognized
as the most accurate and versatile instrument for
making a wide variety of RF component
measurements. But what about documentation of
the results? What about the computations
involved? This concept note describes how a
Digitizing Oscilloscope system can be used to
provide automatic spectrum acquisition, analysis,
and report generation.

An Overview of Disk System Testing,
TN-0005.

Waveform processing systems offer greater speed
and repeatability for evaluating and testing
magnetic disk systems. This technical note
provides an overview of the system and some of
the tests that can be made with a waveform
processing system.

HANDSHAKE Applications Library
Catalog.

The latest edition of the HANDSHAKE
Applications Library Catalog is now available.
Besides carrying a new name, this catalog lists ten
new programs and includes a listing of
Application Notes and Technical Notes that are
applicable to signal processing and instrument
control.

HANDSHAKE, WINTER 1980-81

ASCIl & GPIB CODE CHART

B7 o ' o 4 1 1 1 1
B6 o o 1 1)4 o 1 1
B5 o 1 o 1 4 1 o 1
BITS
NUMBERS
CONTROL SYMBOLS UPPER CASE LOWER CASE
B4 B3 B2B1
0 20 40 0 |60 16 | 100 0] 120 16 || 140 0| 160 16
o o o NUL | DLE SP 0 @ P . p
0 0] 10 16§ 20 32 |30 48 | 40 64| 50 80l 60 96 | 70 112
1 GTL | 21 LLO j§ 41 1|61 17 j§ 101 11121 17 141 1161 17
o o # 1| SOH | DC1 ! 1 A Q a q
1 1111 17§ 21 33 |31 49 il 41 65| 51 81Qf 61 97 | 71 113
2 22 42 2 |62 18 | 102 21122 18 | 142 2 |162 18
o 2 1 9] STX | DC2 " 2 B R b r
2 2112 18 22 34 |32 50 || 42 66 | 52 82§l 62 98 | 72 114
3 23 43 3|63 19 j 103 3128 19 143 3 (163 19
o 11| ETX | DC3 # 3 (o] S c s
3 3|13 19§ 23 35 (33 51 143 67 | 53 83 63 99 | 73 115
4 SDC | 24 DCL | 44 4 |64 20 § 104 4124 20) 144 4 | 164 20
o2 1 o #| EOT | DC4 $ 4 D T d t
4 4114 20)| 24 36 |34 52 44 68 | 54 84 1 64 100 | 74 116
5 PPC | 25 PPU || 45 5 |65 21 §105 5125 21§ 145 51165 21
1 g 1| ENQ | NAK % 5 E V) e u
5 5115 21125 37 |35 53 j§ 45 69 | 55 85§ 65 101 | 75 117
6 26 46 6 |66 22 106 6| 126 22 || 146 6 | 166 22
& 11 g| ACK | SYN & 6 F \' f v
6 6|16 22)| 26 38 |36 54 f 46 70 | 56 86 || 66 102 | 76 118
v 27 47 7 |67 23 107 71127 23) 147 7 (167 23
g 11 1| BEL | ETB ’ 7 G w g w
7 7117 23 § 27 39 |37 55 47 71|57 870 67 103 | 77 119
10 GET | 30 SPE }| 50 8 (70 24 110 8 [130 24 § 150 8 (170 24
19 0 0] BS | CAN (8 H X h X
8 8 (18 24 § 28 40 |38 56 f§ 48 72| 58 88 J§ 68 104 (78 120
11 TCT | 31 SPD || 51 9 |71 25 111 91131 25§ 151 9 (171 25
12 08 1| HT EM) 9 I Y i y
9 9 (19 2529 41 |39 57 § 49 73 | 59 89 1 69 105 | 79 121
12 32 52 10 |72 26 112 10| 132 26 j§ 152 10 | 172 26
121 08| LF | SUB * - J y 4 j z
A 10 | 1A 26 | 2A 42 |3A 58 §l 4A 74 | 5A 90 f§ 6A 106 | 7A 122
13 33 53 11 (78 27 § 113 11 | 133 27 § 153 11 1173 27
1911 VI | ESC + - K [k {
B 11 (1B 27 2B 43 |3B 59 4B 75| 5B 91§ 6B 107 | 7B 123
14 34 54 12 |74 28 114 12 | 134 28 | 154 12 [174 28
1129 FF | FS) < L \ | |
C 12 [1C 28 j2C 44 |13C 60 j§ 4C 76 | 5C 92 6C 108 | 7C 124
15 35 55 13 |75 29 § 115 13] 135 29 | 155 13 [175 29
119 1] CR GS - = M] m }
D 13| 1D 29 § 2D 45 |3D 61 4D 77 | 5D 93 §§ 6D 109 | 7D 125
16 36 56 14 |76 30 116 14 | 136 A 30§ 156 14 176’\1 30
111 9] SO RS . > N n
E 14 | 1E 30 | 2E 46 |3E 62 | 4E 78 | 5E 94 §§ 6E 110 | 7E 126
17 37 57 15 |77 UNL §j 117 151137 UNT j§ 157 15 | 177 GEL
1111 SI us / ? (o] —_ o (RUBOUT)
F 15 | 1F 31§ 2F 47 |3F 63 j§ 4F 79 | 5F 95l 6F 111 | 7F 127
ADDRESSED UNIVERSAL LISTEN TALK SECONDARY ADDRESSES
COMMANDS COMMANDS ADDRESSES ADDRESSES OR COMMANDS

KEY]
octal |25 PPU | GPIB code 1Ektro'le®

COMMITTED TO EXCELLENCE
NAK ASCII character
hex |15 21| decimal REF: ANSI STD X3. 4-1977
IEEE STD 488-1978
ISO STD 646-1973

pare

TEKTRONIX STD 062-5435-00 4 SEP 80
COPYRIGHT © 1979, 1980 TEKTRONIX, INC. ALL RIGHTS RESERVED.

HANDSHAKE, WINTER 1980-81 page 23

(}_etting the most out of
TEK BASIC graphics

Graphing data in log and log-log formats

Most array data, particularly waveform data,
can be conveniently displayed in the linear format
of the GRAPH command provided with TEK SPS
BASIC software. However, there still remain some
cases where a log or log-log display of data is more
appropriate. This is particularly true in dealing
with frequency-domain data where 3-dB points,
relative attenuation, and roll-offs are of interest.
For these cases, it is worthwhile to explore several
steps leading up to a log-log display.

Figure 1 shows a time-domain display of pulse
data in the linear format provided by the GRAPH
command of TEK SPS BASIC. Here, the linear
format is adequate for revealing the majority of
detail associated with the data. The frequency-
domain magnitude of this pulse, however, drops
rapidly from its maximum to some low-level side
lobes. As shown in Fig. 2, these side lobes are not
entirely visible. For such cases, a log-amplitude
display reveals more of the low-level detail, as can
be seen in Fig. 3, while also expressing amplitude
in decibels, which is a common requirement in
frequency-domain analysis.

Such log-amplitude or decibel displays are
easily achieved with TEK SPS BASIC software.
For example, let’s say that the frequency-domain
magnitude data in Fig. 2 is stored as a waveform
that has been defined by

WAVEFORM B IS Z(256),SB,HBS,VBS.

n
—
———

€ 50 100 1S5S0 200 300 350 400 450 500

250
1E-9 S

Fig. 1. Time-domain pulse graphed on a linear
scale.

page 24

1E-3 VS
180

€ 10z

.8 205.6 308.4
51.4 154.2

411.2
as7 359.8 462.6
1E 6 HZ
Fig. 2. Linear graph of frequency-domain
magnitude of the pulse shown in Fig. 1.

-100 14

-120

~140 l

-160 | l

-180

-200

3e8.4 411.2 514
257 359.8 462.6
1E 6 HZ

102.8 205.6
S1.4 154.2

Fig. 3. Log-amplitude graph of frequency-
domain magnitude.

WAVEFORM B can be converted to decibels with
the following two TEK SPS BASIC statements:

Z=20*L0G(Z) /LOG(1¢)
VBS$="DB"

The LOG function used in the first statementis the
natural log, hence the need to convert to base ten
by dividing by LOG(10). The second statement
simply specifies DB (decibels) for the vertical
units.

HANDSHAKE, WINTER 1980-81

There is a point of caution that should be
observed when converting data arrays to decibels:
the LOG function is not valid for zero. Ifitis called
to operate on a zero-valued array element, it will
return a value of zero and cause a warning error to
be issued. So it is wise to check arrays before
decibel conversion for zero values and either
change the elements to an acceptable nonzero
value for conversion or ignore the conversion
results for zero-valued elements.

After log amplitude, the next level of display is
to convert the horizontal or frequency axis from a
linear to a log scale. Doing this for the log-
amplitude data of Fig. 3 results in the display
shown in Fig. 4. This type of display is useful, for
example, in documenting or examining roll-offsin
terms of decibels per octave.

F-3DB= 4.6 E 6 HZ

-114

-133

-152

-171

-190

T
e 10 20 100 200 1000
MHZ

Fig. 4. Log-log plot of frequency-domain
magnitude.

Unfortunately, converting to a log horizontal
scale is not as straightforward as the decibel
conversion. However, the task can be done with
the program listed in Fig. 5. This program, in
conjunction with the engineering notation
program in Fig. 6, was used to produce the log-log
display in Fig. 4.

The program in Fig. 5 assumes that the array of
data to be plotted in log-log format has been
defined as

WAVEFORM B IS z(256),SB,HBS,VBS

and is the result of computing log magnitude after
doing a 512-point fast Fourier transform. The
routine scales the dB axis to the next higher value
of ten, and the frequency axis spans three decades
to accommodate the 257-point frequency function
resulting from the 512-point transform.

HANDSHAKE, WINTER 1980-81

20¢@ VIEWPORT 16¢,9¢¢,10¢,7¢¢

2419 PAGE

202¢ T=MAX(Z)\REM *** FINDS MAX OF DB VS. FREQ. ARRAY *¥¥
2039 L=ABS(MIN(Z))\REM *** FINDS ABS(MIN) OF SAME **%

2¢4@ REM *%%* THE NEXT 2 STEPS ROUND UP TO THE NEAREST 1§ **¥
235¢ T=ITP(T/1¢+.9)*1¢

206¢ L=ITP(L/1¢+.9)*1¢

2¢7¢ L=-L\REM *%% NEED MINUS TO DEFINE BOTTOM OF WINDOW *3¥*
2¢8¢ M=(T-L)/1@\REM *¥* DIVIDES TOTAL RANGE INTO 1§ PARTS k¥
2¢9¢ WINDOW LOG(1)/LOG(1¢),3,L,T

2199 SMOVE 1§¢,74@\REM *** MOVE TO TOP OF GRAPH AREA **%
211¢ PRINT "F-3DB= ";Rl;" E";-N,HB$\REM * PRINT -3DB VALUE *
212 K=1\REM *#%% SET UP FOR FIRST DECADE **%*

213 GOSUB 2250

2149 K=1$\REM
215¢ GOSUB 225¢

2160 K=1@¢\REM *** SET UP FOR THIRD DECADE *%%*

217¢ GOSUB 225¢

218¢ REM *#¥* THE NEXT 3 STEPS DRAW HORIZONTAL LINES #¥¥

219¢ FOR I=¢ TO 14

220¢ MOVE 3,-M*I+T

2219 DRAW LOG(1)/LOG(1¢) ,~-M*I+T

222¢ NEXT I

223¢ GOTO 2380

2240 REM THE NEXT 7 STEPS DRAW VERTICAL LINES *¥*

225¢ FOR I=K TO 9*K STEP K

226§ REM *** THE NEXT STEP PROVIDES LONGER FIRST & FIFTH LINES ¥
227§ GOTO I/K OF 2280,230¢,230¢,230¢,2280,2300,230¢,230¢,230¢,230¢
228¢ L1=L-M/5

229¢ GOTO 231¢

23¢0¢ L1=L

231¢ MOVE LOG(I)/LOG(1¢),T

232¢ DRAW LOG(1)/L0G(1¢),Ll

2339 NEXT I

234p MOVE 3,T

235§ DRAW 3,L

2360 RETURN

237¢ REM *%*% THE NEXT 3 STEPS PLOT DB VS. LOG FREQ. *¥%

238¢ MOVE LOG(1)/L0G(16),2(1)

2399 FOR I=2 TO 256

240¢ DRAW LOG(I)/LOG(16),z(1)

241¢ NEXT I

2420 SMOVE 45,72¢\REM *** MOVE TO TOP LEFT %%

243¢ PRINT "DB"

244 REM **% THE NEXT 3 STEPS PRINT DB VALUES ON THE LEFT *¥%
245¢ FOR I=¢ TO 1§

246¢ SMOVE 35,692-1%6¢

2479 PRINT —-I#M+T

248¢ NEXT I

249¢ K=1\REM *%* SET UP FIRST DECADE ***

25¢¢ GOSUB 2614

2514 K=1P\REM *%% SET UP SECOND DECADE ***

2529 GOSUB 261¢

2530 K=1@@\REM *** SET UP THIRD DECADE *#*%

2549 GOSUB 2614

255¢ SMOVE 48(,4@\REM *** MOVE TO BOTTOM CENTER %

2569 PRINT '"MHZ"

257¢ RETURN

258(REM **%* THE NEXT 7 STEPS PRINT ROUNDED MHZ LABELS AT 1,5,10,
259¢ REM *¥*% 5(1@ ,&5¢¢ TIMES THE SAMPLE INTERVAL ACROSS THE
26@¢ REM ¥*¥* BOTTOM OF THE GRAPH *¥*

2614 FOR I=K TO 1§*K STEP K

262§ GOTO I/K OF 263¢,2680,2680,2680,2630,268%,2680,268¢,2680,268¢
2639 L=SB*I*1E-@6

2649 L=(ITP(L*1¢@¢¢+.5)/10¢@#) \REM * ROUNDED AND IN MHZ *

2654 MOVE LOG(I)/LOG(16) ,~1@*M+T

2660 RSMOVE -2 ,-40

267¢ PRINT L

2684 NEXT I

269¢ RETURN

SET UP FOR SECOND DECADE **%*

Fig. 5. Routine for producing log-log plots.

Generally, the REMarks in the listing explain
the program’s operation. It should be pointed out,
however, that line 2110 prints the -3-dB frequency
at the top of the graph and requires this value to be
computed beforehand and converted to

page 25

TEK BASIC graphics...

100¢ REM

1$1¢ REM *%% SPS BASIC ROUTINE *¥%
1924 REM FOR ENG. NOTATION *

1939 REM *** 1¢/3/78 G.J. DEWITTE ***
1649 REM

1§6¢ N=LOG(R)/LOG(1¢)

1¢7¢ IF N>@ THEN GOTO 1160

1¢18@ REM

1¢9¢ REM %% ROUNDS UP TO NEXT HIGHER MULTIPLE OF 3 ww¥%
11¢¢ REM

1119 N=ITP(N/3-.999999)%*3

1126 GOTO 117¢

113¢ REM

1149 REM *¥%* ROUNDS DOWN TO NEXT LOWER MULTIPLE OF 3 W%
115¢ REM

116@ N=ITP(N/3)%3

117¢ N=-N

116¢ REM

119¢ REM *#%% GETS MANTISSA FOR ENG. NOTATION %

12¢¢ REM

1219 RI=R*1¢"N

122¢ REM

1239 REM *%* ROUNDS MANTISSA TO ONE DECIMAL PLACE #¥¥
1249 REM

125¢ RI=TTP(R1*1¢+.5)/1¢

127¢ RETURN

Fig. 6. Routine to convert to engineering
notation.

engineering notation. The -3dB frequency can be
computed by the following TEK SPS BASIC
statement

R=CRS(Z, (MAX(Z)-3))*SB

and the result can be converted to engineering
notation and placed in R1 by the subroutine listed
in Fig. 6.

With these preliminaries out of the way, the log-
log plotting routine can be run. Normally its run
time is adequate for most purposes. However, the
program does use three nonresident commands—
MOVE, DRAW, and SMOVE—and run time can
be decreased by specifying when TEK SPS BASIC
is loaded that there will be more than three
nonresident commands resident at one time.

By Gordon J. DeWitte,
Section Head,

High Speed Instrumentation,
EG&G, Inc., Los Alamos, NM

By acceptance of this article, the publisher and/or
recipient acknowledges the US Government’s
right to retain a nonexclusive, royalty-free license
in and to any copyright covering this paper.

Programming hints
TEK SPS BASIC makes strings match—in any case

If you’ve written many programs using TEK
SPS BASIC’s powerful string capabilities, you
probably have run into the problem of comparing
equivalent upper- and lower-case strings. For
example, one common technique is to ask a user to
input a string selected from a menu of
possibilities. The program usually accepts the
string and compares it to a list of possible
responses. If the user enters the correct string, but
not in exactly the same case, the compare will fail.
This problem can not only be irritating, but may
cause errors because of incorrect input.

This handy little subroutine converts any lower
case alphabetic characters in I$ to upper case.
Non-alphabetic characters are unchanged. The
program simply loops through lines 30-70 as many
times as there are characters in I$. On each pass,
line 40 extracts the next character from I$ and
stores it in a temporary string, T$. Then, line 50
checks to see if the character in T$ is a lower-case
alpha. If it is, 32 is subtracted from the ASCII

page 26

value of the character, which converts it to the
equivalent upper-case character. The resulting
character is added to the end of the output string,
0$. Each loop increments I by one, causing line 40
to select the next character in the input string.

When all the characters are tested and mapped,
line 80 prints the result. Lines 10, 80, and 90 may
be removed when using this program as a
subroutine in another program.

1¢ INPUT I$

2¢ O$=""

3¢ FOR I=1 TO LEN(I$)

4¢ T$=SEG(I1$,I,I)

5¢ IF T$>='"a" THEN IF T$<="2z'" THEN T$=CHR(ASC(T$)-32)
6@ 0$=0$&T$

7¢ NEXT I

8¢ PRINT 0%

9¢ GOTO 1§

By Mark Tilden,
HANDSHAKE Staff

HANDSHAKE, WINTER 1980-81

Finding out more about
Tektronix
Signal Processing Systems

Tektronix, Inc. Tektronix, Inc. Tektronix, Inc.

3320 Holcomb Bridge Road 3003 Bunker Hill Lane P.O. Box 344529
Peachtree Industrial Blvd. Santa Clara, CA 95050 Dallas, TX 75234
Norcross, GA 30092 (408)496-0800 (214)233-7791
(404)449-4770

Tektronix, Inc. Tektronix, Inc. Tektronix, Inc.

1258 Ortiz Drive, S.E. 24155 Drake Road 4660 Churchill Road
Albuquerque, NM 87108 Farmington, MI 48024 St. Paul, MN 55112
(505)265-5541 (313)478-5200 (612)484-8571

Tektronix, Inc.

2 Research Court
Rockville, MD 20850
(301)948-7151

Tektronix, Inc.

482 Bedford St.
Lexington, MA 02173
(617)861-6800

Tektronix maintains Field Offices and Service Centers throughout the world. In the United States, the Field
Offices listed below have Signal Processing Specialists ready to answer your questions and help you select the
system that best suits your measurement needs. Outside of the United States, the Tektronix subsidiary or

distributor in your country will be pleased to offer you the same services.

HANDSHAKE, WINTER 1980-81

page 27

Eksmrﬁo[‘uixq H_H HAN DSHAKE BULK RATE

Newsletter of Signal Processing and Instrument Control [IS POSTAGE
PAID

Tektronix, Inc.

HANDSHAKE

Group 157 (94-384)
Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

45 A-4737

page 28 HANDSHAKE, WINTER 1980-81

