INSTRUMENT REFERENCE BOOK
for the Tektronix Type

3A7

high-gain
differential comparator plug-in unit

Inter-Office Communication

To: New Product Sales Release Distribution Date: July 19, 1965

From: Ted Brandt

Subject: U. S. Marketing New Product Sales Release Type 3 A7

Major Sales Features: The $3 A 7$ is a high sensitivity differential three series plug-in with a built in comparator for slide-back measurements. Operational characteristics are similar to those of the W plug=in.

Markets: The W market primarily has been with the Defense, NASA, Computer and Nuclear industry classifications with major usage in RED. The component industry showed large usage in production.

Price $=\$ 635$.
Support Activities:
Advertising Program
Spec. Sheet - Week 28 Preliminary; Week 31 Final (in the field)
Short Form Catalog 1966
Training Program
Same material as W unit
Product Technical Information Program
PRB - Week 34

Marketing Product Administration Program

Demo availability - Start week 37
Customer instrument availability - Week 40
Major Trade Show Program

1. Wescon 65
2. NEC 165
3. NEREM 165
4. IEEE 66

Information on the $3 A 7$ can be made public after the start of Wescon.

I. INTRODUCTION:

The 3A7 is a high sensitivity differential plug-in for the 560-Series. It features a built-in comparator for slideback measurements. It offers the features of the W Unit in the 560-Series package.

II. SPECIFICATIONS:

Conventional Amplifier:

Sensitivity:	$1 \mathrm{mv} /$ div to $50 \mathrm{mv} /$ div in 1, 2, 5 steps. Continuously variable (uncalibrated) between steps.
Frequency response:	dc to $10 \mathrm{mc} / \mathrm{s} @ 50 \mathrm{mv} / \mathrm{div}$ to $10 \mathrm{mv} / \mathrm{div}$ dc to $8 \mathrm{mc} / \mathrm{s} @ 5 \mathrm{mv} / \mathrm{div}$ dc to $6 \mathrm{mc} / \mathrm{s} @ 2 \mathrm{mv} / \mathrm{div}$ dc to $4 \mathrm{mc} / \mathrm{s} @ 1 \mathrm{mv} / \mathrm{div}$
Atrenuators:	Decade steps from 1 to $\times 1000$
Accuracy is:	$\begin{aligned} & \pm 0.05 \% @ \times 10 \\ & \pm 0.15 \% @ \times 100 \\ & \pm 3 \% @ \times 1000 \end{aligned}$
Inputs:	DC or AC, AC low frequency response (30\%) is $<2 \mathrm{cps}$
Input RC:	$1 \mathrm{meg}, 20 \mathrm{pf}, \mathrm{R} \infty$ is $>10,000$ megohms

Differential Input Amplifier:

Common Mode Rejection Ratio:

$D C:$	$\geq 20,000: 1$ with 11 vdc from V_{c} out
$A C:$	$\geq 1,000: 1$ with a $60 \mathrm{cps}, 15 \mathrm{v}$ peak sinewave

High Frequency (dc coupled):
20 kc sinewave: $\geq 20,000: 1$ @ 15 vpeak
500 kc sinewave: ≥ 500 : 1@, 15 v peak
Maximum Peak Input Voltage:

$\times 1$		$\pm 15 \mathrm{v}$
$\times 10$	$=$	$\pm 150 \mathrm{v}$
$\times 100$	$=$	$\pm 500 \mathrm{v}$
$\times 1000$	$=$	$\pm 500 \mathrm{v}$

Calibrated Differential Comparator:

Overdrive Recovery: $\quad \leq 300 \mathrm{nsec}$ to within $\pm 10 \mathrm{mv}$
Overdrive DC Shift: $\quad \leq 5 \mathrm{mv}$ after 1 sec
II. SPECIFICATIONS: (continued)

Calibrated Differential Comparator:
Comparison Voltage: 0 to 1.1 v 0 to 11 v
(continued)
$\pm 0.15 \%$ of the indicated value $\pm 0.5 \%$ of the full scale

DC Supply Resolution:
$\begin{array}{ll}0 \text { to } 1.1 \mathrm{v} & = \\ 0 \text { to } \pm 11 \mathrm{v} & =100 \mu \mathrm{v} / \mathrm{minor} \text { dial division } \\ 1 \mathrm{mv} / \text { minor dial division }\end{array}$

III. GENERAL INFORMATION:

The 3A7 is in most respects simply a repackaging of the W Unit. There are a few minor differences in the circuitry; otherwise its performance will be the same as the W. A cathode follower load balance adjustment has been added in the input stage in order to obtain a little better low frequency Common Mode Rejection Ratio. The adjustment is used in conjunction with the differential balance control. There are a pair of 6153 diodes shunting the output of the differential comparator amplifier which do not appear in the W. The purpose of the diodes is to limit the swing of the signal to the driver amplifiers. The driver stage has more gain by a factor of 4 than the W driver and if the signal is not limited it can saturate the driver and introduce distortion.

The problems of the W are still with us in the 3A7 with one possible exception, we have not found the oscillations that have occurred with the W when looking at the calibrator. There does not seem to be the coupling in the 560-Series power supplies that there is in the 540 -Series. The $3 A 7$ has a definite negative input R characteristic which can create a problem when you have the right length of cable connected in at $X 1$. The inductance of the cable along with the input capacity and the negative R characteristic make for an excellent oscillator. The solution is to incorporate a small 100Ω resistor in series. The instrument appears to be very sensitive to shock as far as trace drift is concerned. Rotating an atrenuator switch creates enough shock to cause the tract to shift $\approx 1 \mathrm{mv}$; however, in the absence of shock and in a constant thermal environment with a regulated line, the 3A7 exhibits a drift characteristic of $\approx 1 \mathrm{mv} / \mathrm{hour}$ and in one case a $3 A 7$ trace remained on screen over a period of four days. (@1 mv/cm)

The overload recovery characteristic, as given in the specifications, is 300 nsec to return to $\pm 10 \mathrm{mv}$. In practice we have found that most 3A7's will recover to within 2 mv in about $2 \mu \mathrm{sec}$ and to within 1 mv in $\approx 50 \mathrm{msec}$. See the photos of recovery time.

The 3A7 will find its stiffest competition among our own units. Listed below is a chart comparing the more outstanding features of the $3 A 7$ with its nearest competitors.

Sensitivity (max)	1 mv @ $4 \mathrm{mc} / \mathrm{s}$	$1 \mathrm{mva} 8 \mathrm{mc} / \mathrm{s}$	1 mv (3) $35 \mathrm{mc} / \mathrm{s}$	50 mv (0) $13 \mathrm{mc} / \mathrm{s}$	5 mv @ $15 \mathrm{mc} / \mathrm{s}$	$\begin{aligned} & 10 \mu \mathrm{~V} \\ & 600 \mathrm{kc} \text { (est.) } \end{aligned}$
point) Bandwidth (max 3 db point)	$10 \mathrm{mc} / \mathrm{s}$	$23 \mathrm{mc} / \mathrm{s}$	$45 \mathrm{mc} / \mathrm{s}$	$13 \mathrm{mc} / \mathrm{s}$	$15 \mathrm{mv} / \mathrm{s}(3 \mathrm{db} \pm 1 \mathrm{db})$	$\approx 5 \mathrm{mc} / \mathrm{s}^{\widehat{\mathrm{D}}}$
$T_{r}(\mathrm{~min})$	35 nsec	15.2 nsec	7.8 nsec	27 nsec	24 nsec	$\approx 70 \mathrm{nsec}$
CMRR	$\begin{array}{r} 20,000: 1 \mathrm{DC}-20 \mathrm{kc} \\ 500: 1 @ 500 \mathrm{kc} \\ 1,000: 1 @ 60 \mathrm{c} / \mathrm{s} \\ (\mathrm{AC}) \end{array}$	$\begin{array}{r} 20,000: 1 \mathrm{DC}-20 \mathrm{kc} \\ 1,000: 1 @ 60 \mathrm{c} / \mathrm{s} \\ \text { (AC) } \end{array}$	$\begin{array}{cc} 20,000: 1 \mathrm{DC}-100 \mathrm{kc} \\ 10,000: 1 & 100 \mathrm{kc}- \\ 1 \mathrm{mc} / \mathrm{s} \end{array}$	40,000:1@1 kc	40,000:1 DC to 1 kc	none slideback only
Effective Screen Height	$\pm 11,000 \mathrm{~cm}$	$\pm 11,000 \mathrm{~cm}$	$\pm 6,000 \mathrm{~cm}$	$\pm 2,000 \mathrm{~cm}$	$\pm 2,000 \mathrm{~cm}$	$\pm 1,500,000 \mathrm{~cm}$
Comparison Voltage	$\left.\begin{array}{l} \pm 11 \mathrm{v} \\ \\ \pm 1.1 \mathrm{v} \end{array}\right\} \begin{aligned} & 0.15 \% \\ & + \\ & 0.05 \% \text { F.S. } \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \pm 11 \mathrm{v} \\ \\ \pm 1.1 \mathrm{v} \end{array}\right\} \begin{aligned} & 0.15 \% \\ & + \\ & 0.05 \% \text { F.S. } \end{aligned}$	± 6 v@0.1\% + 5 mv	$\begin{aligned} & \pm 100 v @ 0.15 \% \\ & \pm 10 \mathrm{v} @ 0.2 \% \\ & \pm \\ & \hline \end{aligned}$		I source@.01\% $10 \mu \mathrm{a}$ to 1.4 ma
Comp. Voltage Pickoff Linearity	0.05\%	0.05\%	0.05\%	0.05\%	0.05\%	Info N.A.
Recovery Time	300 ns to $\pm 10 \mathrm{mv}$	300 ns to $\pm 10 \mathrm{mv}$	$\begin{aligned} & 300 \mathrm{~ns} \text { to } \pm 2 \mathrm{mv} \\ & 1 \mathrm{msec} \text { to }<.5 \mathrm{mv} \end{aligned}$	(2)	Info N.A.	1 to $8 \mu \mathrm{sec}$
Input Attenuator Accuracy	$\begin{array}{\|l} \times 10= \pm 0.05 \% \\ \times 100= \pm 0.15 \% \\ \times 1000= \pm 3 \% \end{array}$	$\begin{aligned} & \times 10= \pm 0.05 \% \\ & \times 100= \pm 0.15 \% \\ & \times 1000= \pm 2 \% \end{aligned}$	$\begin{aligned} & \times 10= \pm 0.125 \% \\ & \times 100= \pm 0.25 \% \end{aligned}$	2\%	$\frac{2 \%}{\text { one special(@) } 0.2 \%}$	0.01\%
Attenuator Marching	X 10 adj to.> $1000: 1$	X 10 adj to $>1000: 1$	$\begin{aligned} & \times 10-2000: 1 \\ & \times 100-200: 1 \\ & \times 1000-50: 1 \end{aligned}$	None	None	Info N. A.

(1) Based on Adage spec of 0.1%, 200 kc (gain unspecified)
2. Information not available. Rate of rise limitations given as +1 v in 7 nsec and -1 v in 5 nsec.

IV. COMPETITION: (continued)
Input Impedance
Max Input Voltage

Fig. $1 \quad$ S/N B 03
Horiz: 200 nsec/div
Vert: $5 \mathrm{mv} / \mathrm{div}_{,} \mathrm{Xl}$
A Input
Sig in: 105, 10 vamp , 10 kc rep-rate

Fig. $3 \quad S / N$ B 03
Horiz: . $2 \mathrm{msec} /$ div
Vert: $5 \mathrm{mv} / \mathrm{div}_{\mathrm{y}} \mathrm{Xl}$
A Input
Sig in: 105, 10 vamp , 1.0 kc rep-rate

Fig. $5 \quad S / N B 03$
Horiz: $5 \mu \mathrm{sec} / \mathrm{div}$
Vert: $5 \mathrm{mv} / \mathrm{div}_{\text {, }} \mathrm{Xl}$
A Input
Sig in: 105, 10 vamp , 10 kc rep-rate

Fig. $2 \quad \mathrm{~S} / \mathrm{N}$ B 03
Horiz: 200 nsec/div
Vert: $5 \mathrm{mv} / \mathrm{div}_{\mathrm{g}} \mathrm{Xl}$
B Input
Sig in: 105, 10 vamp , 10 kc rep-rate

Fig. 4 S/N B 03
Horiz: . $2 \mathrm{msec} / \mathrm{div}$
Vert: $5 \mathrm{mv} /$ div, Xl
B Input
Sig in: 105, 10 vamp , 1.0 kc rep-rate

Fig. $6 \quad \mathrm{~S} / \mathrm{N}$ B 03
Horiz: $5 \mu \mathrm{sec} / \mathrm{div}$
Vert: $5 \mathrm{mv} /$ div, Xl
B Input
Sig in: 105, 10 vamp , 10 kc rep-rate

Fig. 1

Fig. 3

Fig. 2

Fig. 4

3A7 (5/N B O3)
Common Mode Rejection Ratio
frequency
E
3A7 (S/N B 03)
Common Mode Rejection Ratio

PERFORMANCE

The power supply loading indicated below will vary somewhat with line-voltage and front-panel control settings. Where series-regulator shunts are indicated, the shunt consists of 2 k in the indicator unit in series with 0 to 6 k in the plug-in, the series combination connected between the unregulated supply and the regulated supply (in the -100 v supply, between the unregulated +supply and ground). The shunt supplies the extra current drawn by the plugin beyond that which can be handled by the series regulator. The actual amount of shunt current varies with line-voltage, so if a positive power-supply bus in the plug-in is opened to take a current reading, the reading will be in error unless the bus is opened on the load side of the shunt connection (with the shunt still connected). The -100 v bus carries the entire load current, so a current measurement at
the plug-in connector is always correct for this supply. There is no shunting for the -12.2 v supply.

CAUTION: The values below should not be used to determine if there is any "extra" power available in the compartment for other purposes or plug-in modifications. The values of the shunts, the total dissipation in the plug-in, the limitations of the indicator (transformer and series regulators) and the characteristics of the other plug-ins with which a given plug-in may be used all limit the amount of power "available" in a given plug-in compartment; in most cases, there is little or no margin allowed for extra current drain without modification of the shunts or circuitry. See 040-0245-00 instructions and power drain discussion in PRB's for indicators.

| Plug-In, SN | -100 v, shunt | -12.2 v | +125 v , shunt | +300 v , shunt | 6.3 v AC | 117 v |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 A 7 | $37.5 \quad 1 \mathrm{k}$ | 690 | 67 FS | $74 \quad$ FS | 1.2 A | 0 |

MODIFIED PRODUCTS

Product	Mod	Description
3 A 7	505B	Medical system for Ampex. RM561A, 3A7, $2 \mathrm{B67}$.
3 A7	505B	Medical system. RM564, 3A7, 2B67.
3 A 7	803B	Two vertical inputs paralleled to rear, BNC.

CHANGE NOTICE
Instrument Type: \qquad
Publication affected: Engineering Instrument Spec. No. $134 \quad$ Dated 6/14/65
Page: $3-3$ Item OVERDRIVE DC SHIFT (3.1.14)
Change to/radidx
3.1.14 Overdrive DC Shift

Set MILLIVOLTS/DIV to 10, Vc RANGE to O, COMPARISON VOLTAGE to 500, Input Selectors to DC, and DISPLAY to A-Vc. Vertically center the trace and switch Vc RANGE to +1.1. Wait 30 seconds and then return Vc RANGE to 0 . After 1 second the trace should return to within 0.5 divisions of graticule center. Switch DISPLAY to B-Vc and repeat test.

Reason for change:

To provide better test for sustained $D C$ overdrive.

INSTRUMENT PERFORMANCE CHARACTERISTIC
CHANGE NOTICE

Instrument Type: | SA HIGH GAIN DIFFERENTIAL COMPARATOR |
| :--- |
| Publication affected: Eng. Instrument Specification No. $134 \quad$ Dated 6/14/65 |
| Page: $3-2$ |

Change to/ $\mathrm{X} \neq \mathrm{AXX}$

Check as in 3.1 .6 and apply 20 kHz signal at 30 V P to P. Change MV/CM to 10. Apply 500 kHz signal at $30 \mathrm{~V} P$ to P and again check common-mode rejection ratio.
\qquad $11-11-66$ (Project Manager) me

ENGINEERING INSTRUMENT SPECIFICATION

TYPE 3A7 HIGH GAIN DIFFERENTIAL COMPARATOR

FOR INTERNAL USE ONLY TEKTRONIX, INC.

ENGINEERING

INSTRUMENT SPECIFICATION
TYPE BAT
HIGH GAIN
DIFFERENTIAL COMPARATOR

Prepared by Technical Writing Department
Engineering Product Evaluation \& Modification
Sunset Ext 279 Alan da Nan zee LaGrange

(E) Electrical
(M) Mechanical

FOR INTERNAL USE ONLY
TEKTRONIX, INC.

Page

```
Introduction . . . . . . . . . . . . . . . . . . . I
    General Information
    Operating Data
Section 1.0. . . . . . . . . . . . . . . . . . . l-1
    1.1 Electrical Characteristics
    1.2 Environmental Characteristics
Section 2.0 Miscellaneous Information . . . . . . . . . . 2-1
    2.1 Ventilation
    2.2 Finish
    2.3 Dimensions
    2.4 Connectors
    2.5 Warm-up Time
Section 3.0 Electrical Test Methods . . . . . . . . . . 3-1
    3.1 Amplifier
    3.2 Attenuator
    3.3 Comparison Voltage Supply
Section 4.0 Environmental Test Methods. . . . . . . . . . 4-1
    4.1 Temperature
    4.2 Altitude
    4.3 Vibration
    4.4 Transportation
```

This is the Instrument Specification for the Type 3A7 High=Gain Differential Comparator, and is the reference document for all company activity concerning performance requirements.

General Information

The Type 3A7 is designed for use with Tektronix 560 series Oscilloscopes. It may be used as a differential input preamplifier in addition to its use as a comparator.

Sensitivity settings from $1 \mathrm{mv} / \mathrm{div}$ to $50 \mathrm{v} / \mathrm{div}$ are selectable by two switches. The mv/div switch changes amplifier gain, in a $1-2=5$ sequence, from $1 \mathrm{mv} / \mathrm{div}$ through $50 \mathrm{mv} /$ div. The input attenuator provides decade attenuation from IX to 1000X.

In the differential input mode, the dynamic range of $\pm 11 \mathrm{v}$ allows common-mode signals up to $\pm 11 \mathrm{v}$ to be applied to the unit without attenuation. Common-mode rejection ratio of better than 20,000:1 at dc and ac frequencies to 20 khz allows measurement of differential signals less than 1 mv in amplitude on $\pm 11 \mathrm{v}$ common-mode signals.

As a calibrated differential comparator, the Type 3 A7 has an effective screen height of $\pm 11,000$ div at maximum sensitivity. Within the dynamic range of ± 11 volts, calibrated \pm dc comparison voltages can be added differentially to the input signal to permit a maximum of about 0.001% to be resolved.

Operating Data

Amplifier
Millivolts/div Positions
1 to $50 \mathrm{mv} / \mathrm{div}$ in $1-2-5$ sequence. Deflection factor is extended to $50 \mathrm{v} /$ div with attenuator.

Variable Millivolts/div Range
2.5:1 (provides continuously variable uncalibrated deflection factors from $1 \mathrm{mv} / \mathrm{div}$ to $125 \mathrm{v} / \mathrm{div}$).

Input Connectors
A and B are $B N C$ connectors (+ signal to B deflects trace downward). Both have input coupling switches for $A C, D C$ or Gnd.

Output Connectors
Vc output provides comparison voltage output at front panel via tip jack.

Vc Range Switch

Sets Vc ranges of 0 to $1.1 \mathrm{v}, 0$ to 11 v , either polarity. Can also be set at O position, providing no Vc output at any setting of other Vc controls.

Comparison Voltage Controls
Knob selects most significant digit of a voltage within the V_{c} range. Duodial provides continuously variable calibrated voltage selection between knob settings.

Input Atten Switch
Controls both inputs by attenuations of 1X, 10X, 100X, or 1000X. Also has $R \approx \infty$ position (provides high input R at $1 X$ attenuation).

Display Switch
$\mathrm{A}-\mathrm{Vc}$
Signal is applied to Input A, Vc applied internally to B. Main-frame crt displays differential voltage.
$A=B$
Signals applied to both inputs. Main-frame crt displays differential voltage.

Vc-B
Vc applied internally to A and signal applied to B. Mainframe crt displays differential voltage. Signal applied to B is inverted on the screen.

Balance Adjustments
DC Bal
Balances amplifier for no trace shift through range of Variable Millivolts/div control.

Amp Bal
Balances amplifier for no trace shift through range of Millivolts/div switch.

Diff Bal
Natches input stages for maximum common-mode rejection.
Amp Cal Adjustment
Adjusts overall amplifier gain.

1.0 Performance Requirements
 l.l Electrical Uharacteristics

Performance requirements listed for the characteristics in this section are valid throughout the environment specified in jection 1.2 unless there is a statement to the contrary.

Performance requirements are validated by Engineering according to Sections 3 and 4. Froduction test methods may differ.

The following codes are used to categorize performance requirements.
G (General Use) This performance requirement may, but not necessarily will, be quoted to a customer.

I (Internal Use Cnly) This is a customer type performance requirement (not a factory test limit), but will not be quoted to a customer.

A (All) It is recommended by Engineering that electrical testing of this performance requirement be performed on 100\% of instruments. Environmental testing is performed on a sample basis.

I (Sampled) This performance requirement carries a high confidence level and may be tested on a sample basis.

Conditions under which a performance requirement is wid niay be listed under Supplemental Information or in Bection 3 (Llectrical Test lethods). These conditions are an essential part of the performance requirement.

NCTE: Code column also provides reference to related electrical test method.

See page l-1 for coding legend

1.1.1 AMPLIFIER (continued)			
Characteristic	Performance Requirement	Code	Supplemental Information
Trace Drift with Line Voltage Change	$\leq 0.5 \mathrm{~cm}$ with $\pm 10 \%$ line variation, after 1 minute stabilization at each extreme	$\begin{aligned} & \mathrm{GA} \\ & 3.1 .9 \end{aligned}$	Checked at 1 mv/div after $20-\mathrm{min}$ warm up
Input CF Grid or Gas Current	≤ 2 nanoamps	$\begin{aligned} & \mathrm{GA} \\ & 3.1 .10 \end{aligned}$	$I=$ trace shift in volts divided by 1 megohm
Input Crosstalk	$\leq 5 \%$ (A to B or B to A) with 4-div, 50-khz sinewave at $50 \mathrm{mv} / \mathrm{div}$. $\leq 2 \operatorname{div}$ at 5 mv	$\begin{aligned} & \text { GA } \\ & \text { 3.1.11 } \end{aligned}$	Checked with Type 190B
Microphonics	51 mv	$\begin{aligned} & \text { IA } \\ & 3.1 .12 \end{aligned}$	Switching Vc Range to produce shock
Overdrive Recovery	$\leq 300 \mathrm{nsec}$ to within 10 mv	$\begin{aligned} & \mathrm{GA} \\ & 3.1 .13 \end{aligned}$	
Overdrive DC Shift	$\leq 5 \mathrm{mv}$ after 1 sec	$\begin{aligned} & \text { GA } \\ & 3.1 .14 \end{aligned}$	
Range of Adjustment Gain	S17.50/div to 224.4v/div at crt vertical neckpins	${ }_{\text {IA }}^{3.1 .15}$	
DC Balance	$\geq 100 \mathrm{mv}$	$\begin{aligned} & \hline \text { IA } \\ & \text { 3.1.16 } \\ & \hline \end{aligned}$	
Transient Response	$\leq 2.5 \%$ aberration of 4 -div centered square wave having ≤ 3 nsec risetime	$\begin{aligned} & \mathrm{GA} \\ & 3.1 .17 \end{aligned}$	Checked with Type TUS
Positioning Effect on Transient Response	Change in front corner $\leq \pm 2 \%$ (of signal amplitude) with entire signal displayed on screen	$\begin{aligned} & \text { GA } \\ & 3.1 .18 \end{aligned}$	Any signal amplitude

See page l-1 for coding legend

The Type 3A7 is a laboratory instrument. The following environmental limits are applicable.
1.2.1 Storage

No visible damage or electrical malfunction after storage at $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ and 50,000 feet, as described in Sections 4.1 and 4.2. Adjustments may be performed to meet required accuracy after storage tests.

1.2.2 Temperature

The instrument will perform to limits indicated in Sections l.l over a range from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ when tested according to Section 4.1.

1.2.3 Altitude

The instrument will perform to limits indicated in Section 1.1 following vibration tests described in Section 4.3.
1.2.5 Transportation

The instrument will be so packed that it will meet the National Safe Transit requirements described in Section 4.4.
2.0 Miscellaneous Information
2.1 Ventilation

No special ventilation required. Ventilation adequate for 560 series instruments is adequate for the Type 3A7.
2.2 Finish

Front panel has an anodized finish.
2.3 Dimensions

Fits 3 -series plug-in compartments.
2.4 Connectors

A and B input connectors are BNC type. Vc output connector is a tip jack.
2.5 Warm-up Time
l'wenty minutes for rated accuracies at $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.

secrion 3

3.0 Electrical Test Methods

3.1 Avaplifier

3.1.1 Millivolta/div Accuracy

Checked with Standard Squareowave Calibrator Signal. at each mv/div setting. using an amplitude which should provide 4 or 5 div of defiection. Accuracy is deviatron from correct ampltude expressed as a percentage of correct mplitude.
3.1.2 Vaxiable Millivolts/div Range.

With Variable in calm, a div calibrator sknal is displayed. Variable is then rotated to full ccwo Ratio is 5 divisions divided by the full cew amplituce.

3.1.3 Frequency Respone

High Frequency:

A 50akhz sinewave is applied from a Type 190B (to A in AoVc, to B in Vc-B) and a 4 dy refereace anplituce is establizhed. The frequency is then increased to the point where the displayed amplitude decreaser to 2.8 div and the frequeney noted.

Low Frequency: AC Coupled:
Based on input Xe being equal to, or less thas. R at 2 cps. Checked at 50 me/div with 1003 attenuation. A input is checkee in $A-V c$ and B inpur is checked in Vc-B. Sweep rate is set at $0.1 \mathrm{sec} / \mathrm{div}$. The testoscope + Gate pulse is ac coupled to the input. Variable mp/divisadjusted for 4odiv mplitude. The time required for the waverorm to fall sxow the 4 div aplitude point to the 1.5 div amplitude point is then measured.

Optional Test Method

Establish 4 con Sohhz reference signal using an audio generator Decrease audio geaerator frequeacy, mantaining constat output level (Monitor with de coupled test scope), to the point where the display vertical aplitude falls to 2.8 cw. Check bise audio generator frequency for 2 he or less.

3.1.4 Risetime

Calculated from bandwidth by formula $\operatorname{Tr}=\frac{.35}{B W}$

3.1.5 Low Frequency Linearity

A test scope with a differential plug-in unit is required in addition to the plug-in scope. Pins 17 and 21 of the Type 3A7 output connector are ac coupled to the two inputs of the test-scope differential plug-in unit.

A calibrator signal is connected to either input of the Type 3A7 and the controls adjusted to display exactly 2 div deflection centered on the plugein scope graticule. Test-scope controls are then edjusted to display exactly 4 div deflection.

Type 3A7 Vc control (not Position control) is used to move the plug-in scope display 2 div above and 2 div below the centered position. At each extreme, the effect on the amplitude of the test-scope display is noted.
3.1.6 DC Common-Mode Rejection Ratio

Measured at $1 \mathrm{mv} /$ div. The trace is first centered with both inputs grounded and with the mode at A-B. Vc controls are set for 10 v and Vc output is dc coupled to both inputs. The indicated voltage (trace shift x mv/div setting) is then noted. Rejection ratio is the input voltage divided by the indicated voltage. Check with +10 v and with - 10 v .
3.1.7 AC Common-Mode Rejection Ratio

A $60-\mathrm{hz}, 15-\mathrm{v}$ peak sinewave is ac coupled to both inputs and rejection ratio measured as in 3.1.6.
3.1.8 HF Common-Mode Rejection Ratio.
*Check as in 3.1.6 and apply 20 kHz signal at 30 VP to P. Change MV/CM to 10. Apply 500 kHz signal-at 30 VP to P and again check common-mode rejection ratio.
3.1.9 Trace Drift with Line Voltage Variation

Line voltage is changed to 10% below design-center voltage, allowed to stabilize for 1 minute and the trace centered. Line voltage is then changed to 10% above design-center voltage and, after 1 minute stabilization, trace drift is noted.
*Change notice \#134-1, 11-11-66
3.1.10 Input CF Grid or Gas Cusqent

Checked at 1 mv/aiv. xi and O Pe Rume. A imput is checked in AoVc and $\frac{1 n}{} \mathrm{VeaB}$. Staxtime with the inpert selector at Gnd, the trace is centreed. The input selectos is then switched to DC and the brece bhite noted Grid cureent is calculated by Ohn s law using the voltage didicated by trace shift and the 1 negohm input resistance.
3.1.11 Input CrosstaIk

Connect sinewave from Type 190 to A input in AoVc mode. Signal amplitude is adjusted for 4 odiv at $50 \mathrm{mv} / \mathrm{div}$. The mode is switched to VcoB and crosstalk noted. Repeat at $5 \mathrm{mv} / \mathrm{div}$. Move the signal to B input and repeat the check at $5 \mathrm{mv} / \mathrm{div}$ and $50 \mathrm{mv} / \mathrm{div}$.
3.1.12 Microphonice

Checked In A-B at 1 mu/div. The Vc Range is suitched Irom extreme to extreme at a 1 second sate. The amplitude of resulting microphonic is moted.
3.1.13 Overdrive Recovery

Connect Type 105 Orsput through a $50-2$ cable and $50-2$ termination to A input. Set Millivolts/div at 5 and Input Atten at 1000. Set sweep rate at 50 usec/div.

Set the Type 105 ros 10 k s signal then trigger the sweep from the Type 105 Syac output.

Adjust Type 105 Output Amplitude Sor 2adiv display. Switch Iaput Atten to 1 and adurs vertical position so that the top of the signal, just prior to the trailing edge, retums to the graticule center IIne.

Change sweep sate to i peec/div. Adjust homizontal position so that the leading edge of the signal crosses the bottom ine of the graticule at the junction of one of the vertical lines.

The trace must be within 2 divisions of graticule ceater 300 nsec later.
3.1.14 Owerdrive DC Shie
*Set MILLIVOITS/DIV to 10, Ve RANGE to 0, COMPARISON VOLTAGE to 500, Input Selectors to $D C$, and DISPLAY to $A-V C$. Vertically center the trace and switch Vc RANGE to +1.1 . Wait 30 seconds and then return Vc RANGE to 0 . After 1 second the trace should return to within 0.5 divisions of graticule center. Switch DISPLAY to $B-V c$ and repeat test.
*Change notice \#134-2, 2-2-67

Connect a 100 mv calibrator signal to A input. Set MillivoltsAiv at 20 and Input Atten at 1. Turn Gain fully ccw. Use test scope, ac coupled at $20 \mathrm{v} / \mathrm{cm}$, to measure the signal voltages at the two crt vertical deflection pins. The algebraic difference between these two voltages should be 87.5 volts or less.

Turn the gain fully cw and repeat the measurement. The algebraic difference between the two vertical deflection voltages should now be 122 volts or less.
3.1.16 DC Balance Range

Measured as vertical trace movement, at $50 \mathrm{mv} / \mathrm{div}$, caused by rotation of the $D C$ Bal adjustment from extreme to extreme.

3.1.17 Transient Response

A square wave is connected from a Type 107 through a $50-\Omega$ cable and $50-\Omega$ termination to the input (both are checked). The controls are adjusted to display 4 divisions of vertical deflection. The waveform is checked for excessive rounding, overshoot, ringing or tilt.
3.1.18 Position Effect on Transient Response

Measured in conjunction with 3.1.17. With the signal connected to A input, the top of the signal is moved from the top graticule line, down the graticule as far as possible with 100% of the signal displayed on the screen. Note any change in transient response. With the signal applied to B input. Move the bottom of the signal from the bottom graticule line up the graticule as far as possible with 100% of the signal on the screen. Note any change in transient response.

3.2 Attenuator

3.2.1 Maximum Peak Input Voltage

Apply (dc coupled) then remove the vcltage specified in Section 1.1.2. This test should result in no destruction of tubes, transistors or other components.
3.2.2 Input Attenuator Error

10X
$\overline{\text { Set }}$ Vc Range to +11 v . Connect +11 v from TP 420 to A input and to Precision DC Divider Voltage Input.
Connect a 1 megohm $\pm 1 \%$ resistor from Precision DC Divider Voltage Output to erround and connect Precision DC Divider ground to Type 3A7 ground.
Set Vc knob at a position between any 2 detents to internally disconnect comparison voltage from Vc Output connector and from input tube grids.

Set Mode at A-Vc. Connect Precision DC Divider Voltage Output to the Vc Output connector (connects l.l v to B input).
Note indicated voltage and express as a percentage of 1.1 volts.
Switch Mode to $V c-B$ and move the jumper from A input to B input. Again note indicated voltage and express as a percentage of 1.1 v .

100x
Switch input attenuator and Precision DC Divider to 100:1 attenuation.

Note indicated voltage and express as a percentage of 110 mv.
Change Mode to $A-V c$ and move the jumper from B input to A input. Express indicated voltage as a percentage of 110 mv .

1000X

Connect jumpers irom Vc Out to both inputs. Disconnect all other jumpers and Precision DC Divider.

Set Vc Range at O and Vc knob at 10. Set Comparison Voltage duodial full cw and set Input atten at 1000.

Center the trace then switch Vc Range to +11 . Note trace shift and express as a percentage of 11 mv .

Switch Mode to $V c-B$ and again express trace shift as a percentage of 11 mv .

3.2.3 Input Attenuator Compensation

Measured as transient response to a 4 -division calibrator signal. Check for excessive rounding, overshoot, ringing or tilt.

3.2.4 1X Input Resistance

Set Vc Range at +11 v and set Mode at A-Vc. Connect 21 megohm $\pm 1 \%$ resistor from TP420 to A input and to a precision non-loading voltmeter. Set Input Atten at 10 and note the voltmeter reading.

Change Input Atten to 1 and note the difference between the new voltage reading and the previous voltage reading. Express the difference as a percentage of the previous voltage reading.

Double the percentage to obtain actual IX input resistance error.
Repeat the test for B input.

3.3 Comparison Voltage Supply

3.3.1 Accuracy

A non-loading voltmeter with better than $\pm 0.05 \%$ accuracy must be used (Vc output impedance and accuracy will decrease with loading). Set Vc knob and duodial full cw. Check + and positions of Vc Range switch for accuracy and polarity. Switch Ve Range to 1.1 (either polarity) and check for accuracy. Set duodial at 0.00 and check each position of Vc knob for accuracy. Set Vc knob full ccw and check duodial for tracking at each major dial division ($1.00,2.00$, etc.) 。

NOTE: Zo $\approx 4 \mathrm{k} \Omega$ with $V c$ switch and duodial at midrange. Decreases toward O volts and 11 volts.

SECTION 4

4.0 Environmental Test Methods

4.1 Temperature

4.1.1 Nonoperating

Store for 4 hours at $-40^{\circ} \mathrm{C}$ and 4 hours at $+65^{\circ} \mathrm{C}$, one cycle only. Temperature change rate must not exceed $5^{\circ} \mathrm{C} / \mathrm{min}$.
4.1.2 Operating

Make all electrical checks at room ambient temperature. Then turn off instrument and store at $0^{\circ} \mathrm{C}$ for 4 hours. After 20 minutes warm up, again make all electrical checks.

Raise ambient temperature to $50^{\circ} \mathrm{C}$ with instrument operating. Hold for 4 hours and again make all electrical checks. Temperature change rate must not. exceed $5^{\circ} \mathrm{C} / \mathrm{min}$. Return instrument to room temperature and after 4 hours (or temperature stabilization) make all electrical checks.
4.1.3 Failure Criteria

Nonoperating
Instrument and components must meet performance requirements before and after storage. (Adjustments may be performed if necessary to meet required accuracies).

Cracking, warping, and significant color discoloration or deformation which interferes with the normal mechanical function will not be permitted.

Operating
Instrument must be within indicated performance requirements at each step of the operating temperature check. Controls and switches shall be checked for ease of operation.

4.2 Altitude

4.2.1 Nonoperating

Store at $-40^{\circ} \mathrm{C}$ and 50,000 feet altitude for 4 hours. This may be performed along with the storage tests.
4.2.2 Operating

The instrument while operating will be maintained at an altitude of 15,000 feet for 4 hours (with necessary thermal derating). At the end of this period and while the above conditions are maintained, the electrical checks will be performed. When necessary, the vacuum chamber may be opened and the necessary
switching performed as rapidly as possible. The instrument will then be allowed to stabilize for 1 hour at the above conditions before completing the electrical checks.
4.2.3 Failure Criteria

Nonoperating
Instrument will meet performance requirements before and after the 50,000 feet storage test.

Operating
Instrument will meet performance requirement during operation at altitude. Any evidence of malfunction will constitute failure, i.e., erratic operation, noise, etc.
4.3 Vibration
4.3.1 Operating

Vibrate for 15 minutes along each of the 3 axes at a total displacement of $0.015^{\prime \prime}$ (1.9 at 50 cps) with the frequency varied from $10-50-10 \mathrm{cps}$ in l-minute cycles. Hold at any resonant point for 3 minutes. If no resonances are present vibrate at 50 cps for 3 minutes in each axis. Total vibration time about 55 minutes. Sporadic output will be permitted during vobration.

4.3.2 Failure Criteria

Broken leads, chassis or other components, loose parts, excessive wear or component fatigue. Change in value of any component outside its normal rated tolerance. Deformation which interferes with the normal mechanical function.

The test will be completely re-run after repairing any of these failures.

Tube failures will be permitted during test and when replaced, the test will be continued from that point (this does not apply to transistors).

Instrument must meet performance requirements before and after the vibration test.

Tests are performed with the instrument in a fixture.
4.4 Transportation

The instrument, when packaged, must meet the National Safe Transit type of test.
4.4.1 Vibration

One hour on the vibration platform with an amplitude slightly in excess of 1 g and causing the package to just leave the vibration surface.
4.4.2 Drop Test

Drop from a height of 30 inches on cne corner, all edges radiating from that corner and all flat surfaces.
4.4.3 Failure Criteria

Instrument must meet performance requirements before and after the transportation tests.

There must be no serious damage such as broken components, leads or chassis. Deformation which interferes with normal mechanical function will not be permitted.

SPECIFICATION CHANGE HISTORY

PROBLEM

When the Type $3 A 7$ is overdriven for a relatively long time (30 seconds or so), the 0 -volts baseline can shift so that one second after the removal of the overdrive signal, the instrument may not have recovered to within specifications.

This is caused when Q154 or Q254 (depending on the polarity of the overdrive) turns off with the overdrive signal. While the transistor is off, it cools, causing a change in $V_{b e}$. After the overdrive signal is removed and the transsistor is turned on again, it warms up so that the $V_{b e}$ returns to its original value. This change in $V_{b e}$ causes the shift in the 0 -volts baseline.

SOLUTION

The solution is to add heat dissipators (PN 214-0498-00) to Q154 and Q254. This stabilizes the transistor junction temperature so that the change in $\mathrm{V}_{\text {be }}$ is minimized. This mod appears to reduce the 0 -volts baseline shift by a factor of approximately two.

Ron Gantner/jm
6-19-67

FACTORY TEST LIMITS

QUALIFICATION

Factory test limits are qualified by the conditions specified in the main body of the factory calibration procedure. Instruments may not meet factory test limits if calibration or checkout methods and test equipment differ substantially from those in the factory procedure.

These limits usually are tighter than advertised performance requirements, thus helping to insure the instrument will meet or be within advertised performance requirements after shipment and during subsequent recalibrations. Instruments that have left the factory may not meet factory test limits but should meet catalog or instruction manual performance requirements.

AMPLIFIER

Fil Bal: adjusted for min trace shift AMP BAL: adjusted for min trace shift Driver DC Level: adjusted for 59 VDC Position Range: adjusted for centered trace Average Deflection Plate Voltage: $190 \pm 10 \mathrm{~V}$ Sig/Trig DC Level: adjusted for 0 VDC Trigger Output: ≥ 2 volts/displayed div in a 561A main frame

COMPARISON VOLTAGE

Vc Cal: adjusted for 11 VDC $\pm 1 \mathrm{mV}$
Vc Tracking: adjusted for 1 VDC $\pm 0.2 \mathrm{mV}$
Comparison Voltage Accuracy
$\pm 0.03 \% \pm 1 \mathrm{mV}$ (with dial at 0.00)
Comparison Voltage 10:1 divider: $\pm 0.04 \%$

- Comparison Voltage: $\pm 0.1 \%$

GAIN
AMP CAL range; 87.5-122V, adjusted for $1 \mathrm{mV} / \mathrm{div}$
Compression/Expansion: $\leq 1 \mathrm{~mm}$
MILLIVOLTS/DIV Accuracy: $\pm 2 \%$
VARIABLE ratio: $\geq 2.5: 1$
1000 INPUT ATTEN: $\pm 2 \%$
DC BAL Range: $\geq 100 \mathrm{mV}$
Positioning Neons: indicates direction of trace from graticule area

TEK

INPUT AMPLIFIER

Grid Current: ≤ 0.5 na
Microphonics: $\leq 1 \mathrm{mV}$
Trace Drive: $\leq 0.5 \mathrm{mV}$
Peak Input Voltage: 20VDC @ 1X

DIFFERENTIAL BALANCE

DIFF BAL \& CF Load: adjusted for optimum horizontal trace

INPUT ATTEN RESISTANCE
X10 Attenuator: $\pm 0.04 \%$
X100 Attenuator: $\pm 0.14 \%$
X 1 to X10 Attenuator: $\mathrm{XI}=\mathrm{X} 10$ $\pm 0.06 \%$

INPUT COMPENSATION

Input Compensation: $\leq 1 \%$ aberrations ptp with a 4 div display

OVERDRIVE RECOVERY (Rough Set)
Overdrive Recovery: rough set for slightly peaked square-wave

COMMON MODE REJECTION RATIO

20Hz CMRR:	$\geq 30,000: 1$
$60 \mathrm{~Hz} \mathrm{CMRR:}$	$\geq 1,000: 1$ ac coupled
20 kHz CMRR:	$\geq 30,000: 1$
500 kHz CMRR:	≥ 500 : 1
10X CMRR:	adjusted for minimum deflection
DC CMRR:	$\geq 30,000: 1$

OVERDRIVE RECOVERY
Overdrive Recovery Time: $\leq 0.3 \mu s$ $<10 \mathrm{mV}$
Overdrive DC Shift: $\leq 5 \mathrm{mV}$ after 1 s
HIGH FREQUENCY COMPENSATION

High Frequency Compensation: max aberration: 2.5% ptp
Transient Response: max aberration: 2.5% ptp
Positioning Effect: $\leq 1 \%$
Trigger Amp Risetime: $\leq .45 \mathrm{~s}$
Input Crosstalk: $\leq 2 \%$

Test Limits - continued

HIGH FREQUENCY COMPENSATION
High Frequency Compensation: max aberration: 2.5% ptp
Transient Response: max aberration: 2.5% ptp
Positioning Effect: $\leq 1 \%$
Trigger Amp Risetime: $\leq .45 \mathrm{~s}$
Input Crosstalk: $\leq 2 \%$
AMPLIFIER BANDPASS

Bandpass: $1 \mathrm{mV} / \mathrm{DIV}: \quad \geq 4 \mathrm{MHz}$ $2 \mathrm{mV} / \mathrm{DIV}: \quad \geq 6 \mathrm{MHz}$ $5 \mathrm{mV} / \mathrm{DIV}: \quad>8 \mathrm{MHz}$ 10mV/DIV: $\quad \geq \overline{10} \mathrm{MHz}$ 20mV/DIV: $\quad \geq 10 \mathrm{MHz}$ $50 \mathrm{mV} / \mathrm{DIV}: \quad \geq 10 \mathrm{MHz}$

FREQUENCY RESPONSE (sample check)
AC Coupled Low Frequency: $\leq 2 \mathrm{~Hz}$

VERTICAL POSITION \|NDICATOR $\mathbb{N E} 2 H$ NEON BULBS

For the Tektronix Type 3A7 Plug-in
Serial numbers 100-199

DESCRIPTION

NE2H neon bulbs 150-0050-00, used as Vertical position indicators (B300 and B302) are no longer available and are replaced by NE2V neons, 150-0030-00. This necessitates changing the bulb biasing circuit because of the different current and firing voltage requirements.

NOTE: If the serial number of your instrument is above those listed, or if this kit has already been installed, disregard the instructions and use P/N 150-0030-00 as a direct replacement.

®

Publication:
Instructions for 050-0283-00
February 1966
(C) 1966, Tektronix, Inc. All Rights Reserved.

PARTS LIST

Quantity
2 ea Bulb, neon, NE2V
1 ea Resistor, comp, 1 ea Resistor, comp,

Description
Part Number

INSTRUCTIONS:

IMPORTANT: When soldering to the ceramic strips, use the silver-bearing solder supplied with this kit.

CAUTION: When soldering to the neon bulb holders, use as little heat as possible to avoid melting the holders.
() 1. Unsolder the wires from the "up" neon holder and pry the gray section from the black panel-mounted section.
() 2. Likewise, unsolder the wires from the "down" neon holder and pry the gray section from the black panel-mounted section.
() 3. Unsolder from the Vc RANGE switch the two bare wires which went to the neon holders, and the red wire connected to the same switch terminal.
() 4. Remove the neon bulbs from the holders, clean out the holes and insert the new bulbs from the kit. DO NOT solder or clip off the leads yet.
() 5. Push the bulbs forward as far as they will go and solder the cable and 27 k resistor (from kit) as indicated in Fig 1 (viewed from rear).

Fig 1

INSTRUCTIONS (con'd):

Refer to Fig 2 while performing steps 6 through 8 .
() 6. Unsolder and remove the 22 k resistor (R302) between CSM-3 and CSN-3.
() Remove the bare wire between CSM-4 and CSN-3.
() 7. Relocate the red wire from CSM-3 to CSM-4.
() 8. Replace the 56 k resistor (R300), located between CSM-5 and CSN-5, with the 82 k resistor from the kit.

THIS COMPLETES THE INSTALLATION.
() Check wiring for accuracy.
() Moisten the back of the MODIFIED INSTRUMENT tag (from kit) and place it on the Manual Differential Amplifier Schematic.
() Fasten the insert page in your Instruction Manual.
TL:cet

Fig 2

VERTICAL POSITION
 \|NDICATOR $\mathbb{N} E 2 H$ NEON BULBS

Type 3A7-- s/n 100-
Installed in Type 3A7 s/n \qquad Date \qquad

GENERAL INFORMATION

NE2H neon bulbs 150-0050-00, used as Vertical position indicators (B300 and B302) are no longer available and are replaced by NE2V neons, 150-0030-00. This necessitates changing the bulb biasing circuit because of the different current and firing voltage requirements.

The information on this page supersedes the information in your Manual.

ELECTRICAL PARTS LIST

Ckt. No.	Part Number		Description BULBS
B300	150-0030-00	NE2V	
B302	$150-0030-00$	NE2V	

RESISTORS
Resistors are fixed, comp, 10\%

R300	$302-0823-00$	82 k	$1 / 2 \mathrm{~W}$
R302	$302-0273-00$	27 k	$1 / 2 \mathrm{~W}$

SCHEMATICS

DIFFERENTIAL AMPLIFIER (Partial Diagram)

MODIFICATION SUMMARY

(C) 1965, Tektronix, Inc. All Rights Reserved.

Effective Prod s/n 120
FRONT PANEL SYMPTOM: None.
PROBLEM: The installation of a wire by final assembly was made easier by adding a dummy lug to the Vc RANGE switch.

PRODUCTION CHANGE: A dummy solder lug was added to the Vc RANGE switch at W3-4R. The part number of the switch (260-0633-00) remained the same.
** Pilot-1, 2, etc., designate modification installed in Pilot Production that was not assigned a standard mod number.

Effective Prod s/n 200
Usable in field instruments SN 100-199
FRONT PANEL SYMPTOM: Vertical indicator neons do not indicate trace deflection.
PROBLEM: The trace indicator neons were sometimes failing to indicate trace deflection.
PRODUCTION CHANGE: B300 and B302 were changed from NE2H to NE2V. The NE2V contains a small amount of radioactive material to assure more reliable ignition. It was also necessary to change R 300 from 56 k to 82 k and R 302 from 22 k to 27 k to provide proper bias for the NE2V neons. See 'Before-After' schematic.

Parts Removed:

B300, B302	Bulb, neon NE2H	$150-0050-00$
R300	Res, comp, $56 \mathrm{k} \mathrm{1/2W} \mathrm{10} \mathrm{\%}$	$302-0563-00$
R302	Res, comp, $22 \mathrm{k} 1 / 2 \mathrm{~W} \mathrm{10} \mathrm{\%}$	$302-0223-00$

Parts Added:

B300, B302	Bulb, neon NE2V	$150-0030-00$
R300	Res, comp, $82 \mathrm{k} 1 / 2 \mathrm{~W} \mathrm{10} \mathrm{\%}$	$302-0823-00$
R302	Res, comp, 27 k $1 / 2 \mathrm{~W} \mathrm{10} \mathrm{\%}$	$302-0273-00$

INSTALLATION INSTRUCTIONS:

Parts Required: Parts Replacement Kit 050-0283-00
Installation Procedure:
Refer to kit instructions.

BEFORE M10155

AFTER M10155

Effective Prod s/n 200
FRONT PANEL SYMPTOM: Transient response variations in low Millivolt/Division settings when input attenuator shield is shorted to ground.

PROBLEM: Transient response variations could result at low MV/DIV settings if the attenuator was grounded to the chassis with a screwdriver shaft.

PRODUCTION CHANGE: The attenuator shield grounding was improved by replacing a washer with a solder lug, and adding a bare wire from the lug to ground. See drawing for location.

Parts Removed:
Washer, steel 5S x 9/32
210-0801-00
Parts Added:
Lug, solder SE6
210-0202-00

OUTPUT AMPLIFIER CHASSIS
SILKSCREENING ADDED TO
IDENTIFY POTENTIOMETER
INFORMATION ONLY
PILOT-3** FUNCTION

Effective Prod s/n 201
FRONT PANEL SYMPTOM: None
PROBLEM: R280 was changed from a fixed value to a variable resistor, 311-0496-00. This required chassis labeling. All instruments were re-worked to change to a variable resistor.

PRODUCTION CHANGE: The word "DAMPING" was silkscreened on the chassis to identify R280. Prior to silkscreening, all instruments were stamped with 'R280" on the chassis. The chassis part number was not changed.

ATTENUATOR CAPACITOR

CHANGED TO STANDARDIZE
INFORMATION ONLY
M10703
CHANNELS 1 AND 2
Effective Prod SN 330
FRONT PANEL SYMPTOM: None
PROBLEM: C 109B adjusted near the end of its range.
PRODUCTION CHANGE: C109B was changed from $1.8-13 \mathrm{pF}$ to $1.7-11 \mathrm{pF}$ to center the adjustment range and make the CH 1 and CH 2 attenuators identical and thereby facilitate assembly and test.

Parts Removed:
Cl09B
Cap var air 1.8-13pF
281-0103-00

Parts Added:
C109B
Cap var air $1.7-11 \mathrm{pF}$
281-0102-00

JT:cet

Effective Prod SN not given
NOTE: All diodes in any one instrument will not necessarily change at the same time. The effective SN furnished will be when the final diode in the particular instrument is changed.

FRONT PANEL SYMPTOM: None.
PROBLEM: Zener diode values are at present widely scattered in both voltage and tolerance. The proposed modifications will standardize all $400 \mathrm{~mW}, 1 \mathrm{~W}, 1.5 \mathrm{~W}$ and 10 W Zeners now listed as 10 and 20% to 5% tolerance; and change the majority of non-standard parts to standard JEDEC units. One of these changes is to minimize the number of active part numbers. There will be no increase in cost for the 5% Zeners.

PRODUCTION CHANGE: Voltage tolerance for 10% and 20% Zener diodes was changed to 5% for all uses. At the same time, all 250 mW Zener diodes were changed to 400 mW . Refer to parts removed and added list for details.

Parts Removed:
$\begin{array}{lll}\text { D324 } & \text { Diode, 1N970A } 24 \mathrm{~V} \pm 10 \% & 152-0172-00 \\ \text { D286 } & \text { Diode, } 1 \mathrm{~N} 980 \mathrm{~A} 62 \mathrm{~V} \pm 10 \% & 152-0176-00\end{array}$
Parts Added:
D324
Diode, 1N970B $24 \mathrm{~V} \pm 5 \%$
152-0265-00
D286
Diode, 1N980B $62 \mathrm{~V} \pm 5 \%$
152-0285-00

WITH OVERDRIVE
Effective Prod SN 460

Usable in field instruments SN 100-459

FRONT PANEL SYMPTOM: Relatively long term overdrive (in the order of 5 seconds and longer) causes the Zero-Volt base line to shift more than the specified 5 mV . This is especially noticeable on the 5,10 and $20 \mathrm{mV} / \mathrm{div}$ positions.

AF TER

OVERDRIVE -500 MV FOR $30 \mathrm{SEC} \quad \mathrm{T} / \mathrm{Div}=1 \mathrm{SEC} \quad \mathrm{V} / \mathrm{Div}=10 \mathrm{MV}$
PROBLEM: This problem causes extreme difficulty in making voltage measurements shortly after minor overdrive occurs. The overdrive need not be steady to cause this problem. Repetitive overdrives of one polarity can cause cumulative baseline shift. It takes several minutes of normal operation to restore the original Zero-Volt base line.
Q154 and Q254, depending on polarity of the overdrive, turn off. When one transistor is turned off, it cools, causing a shift in $V_{B E}$. Also minor overdrive causes the plate voltage of V174 or V274 to drop, so that tube conduction switches from the plate to the screen. Recovery from this change in operating mode adds to the difficulty in regaining the original Zero-Volt base line.

PRODUCTION CHANGE: A 10 V Zener diode was added in series with the collectors of Q154 and Q254. This lowers the operating dissipation after being turned off. A series R-C ($470 \Omega 180 \mathrm{pF}$) was added across R264 to eliminate CMR breakdown, which occurs in some units at 500 kHz after the 10 V Zeners are added. At the same time, two 5.1 V Zener-signal diode combinations were added in complimentary manner, to limit the overdrive amplitude applied to V174 or V274.

Parts Added:
D152, D252
D261, D263
D260, D262
C158
Diode, Zener 1N961B 10V
152-0149-00

R158
Diode, Silicon
152-0185-00
Diode, Zener 5.1 V
152-0195-00
Capacitor, cer disc 180 pF
283-0103-00
Resistor, comp $470 \Omega 1 / 4 \mathrm{~W} 5 \%$
315-0471-00

Part of this mod is superseded by M12034. Also see M12514.
continued

INSTALLATION INSTRUCTIONS:

Parts Required: See 'Parts Added' and parts listed below.
C155 Capacitor, cer 2.7 pF 500 V 281-0547-00
C150A Capacitor, cer 3.3 pF 500 V 281-0534-00
Installation Procedure: DO NOT DISCARD ANY PARTS UNTIL MOD IS COMPLETED.
a) Remove the following wires and components:

1. R157, a $2.26 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor between CSC-7 and CSD-7.
2. C155, a 1.5 pF capacitor between CSC-8 and CSD-8.
3. R155, a $1.27 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor between CSC -8 and CSD-8.
4. R149, a $1.5 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor between CSC-12 and CSD-12.
5. R249, a $1.5 \mathrm{k} 1 / 2 \mathrm{~W} 1 \%$ resistor between CSC-13 and CSD-13.
6. bare wire from collector of Q154 to the base of Q164.
7. bare wire from collector of Q254 to base of Q264.
8. C255, a $1.5-7 \mathrm{pF}$ var capacitor between CSC-17 and CSD-17.
9. R294, a $33 \mathrm{k} 1 \mathrm{~W} 5 \%$ resistor between CSA -6 and CSB-7.
b) Install the following wires and components:
10. bare wire between CSC-19 and CSC-20.
11. bare wire between CSB-2 and CSC-9.
12. bare wire from emitter of Q274 to CSB-6 then to CSC -16 .
13. R158, a $470 \Omega 1 / 4 \mathrm{~W} 5 \%$ resistor between CSC-19 and CSD-19.
14. C158, a 180 pF ceramic capacitor between CSD-19 and CSD-20.
15. D152, a 10 V Zener diode between collector of Q154 and base of Q164. Install with the cathode (banded end) the collector of Q154.
16. D252, a 10 V Zener diode between collector of Q254 and base of Q262. Install with the cathode (banded end) to collector of Q254.
17. D261, a silicon diode between CSC-8 and CSC-11, outside of strip. Install with the cathode (banded end) to CSC-8.
18. D262, a 5.1 V Zener diode between CSC-11 and CSC-17, outside of strip. Install with the cathode (banded end) to CSC-17.
19. D260, a 5.1 V Zener diode between CSC-8 and CSC-14, outside of strip. Install with the cathode (banded end) to CSC-8.
20. D263, a 5.1 V silicon diode between CSC-14 and CSC-17, outside of strip. Install with the cathode (banded end) to CSC-17.
21. R155, a 1.27 k resistor removed in step a-3, between CSC-8 and CSD-8.
22. C155, a 2.7 pF capacitor between CSC-9 and CSD-8.
23. R157, a 2.26 k resistor removed in step a-1, between CSC-7 and CSD-7.
continued

Installation Procedure: (continued)
15. R149, a 1.5 k resistor removed in step a-1 between CSC-12 and CSD-12.
16. R249, a 1.5 k resistor removed in step a-5 between CSC-13 and CSD-13.
17. C255, a $1.5-7 \mathrm{pF}$ var capacitor removed in step a-8 between CSC-16 and CSD-17.
18. R294, a 33 k resistor, removed in step a-9, between CSA -6 and CSB-7.
19. C150A, a 3.3 pF ceramic capacitor, on the MILLIVOLTS/DIV switch between contacts W1-11R and W2-11R (parallel with R150A, a $3.01 \mathrm{k} 1 \%$ resistor).

* COMPONENT ADDED

Effective Prod SN 510
FRONT PANEL SYMPTOM: Excessive transient response aberrations on front corner of square wave in the 2 and $5 \mathrm{mV} /$ div ranges.

PROBLEM: Test department reports difficulty in meeting $2.5 \% \mathrm{P}$ to P specification on aberrations in the 2 and 5 mV /div ranges due to insufficient capacity compensation in feedback loop around Q154/Q164 and Q254/Q264. Also, there is no capacity compensation across R150A.

PRODUCTION CHANGE: Capacitive feedback TO the emitters of Q154 and Q254 was reconfigured to originate FROM the emitters of Q174 and Q274 respectively. Also, a 3.3 pF capacitor was added across R150A, the 2 mV /div range (see schematic). This results in approximately 3 to 1 improvement in the aberrations.

* Component added

Effective Prod SN 570
FRONT PANEL SYMPTOM: None.
PROBLEM: Cannot obtain charcoal gray output socket in the small quantity required.
PRODUCTION CHANGE: Charcoal gray socket was replaced by a more readily available black socket.

Parts Removed: Socket, 1-pin tip jack, charcoal 136-0163-00
Parts Added: Socket, 1-pin tip jack, black 136-0098-00

DIFFERENTIAL AMPLIFIER
COMPENSATION CAPACITOR VALUE
CHANGED TO INCREASE RANGE OF
INFORMATION ONLY
M12310 ADJUSTMENT

Effective Prod SN 570
FRONT PANEL SYMPTOM: None.
PROBLEM: The small range of capacity covered by C281 causes unnecessary selection of C280.

PRODUCTION CHANGE: C281 was changed froma $5-25 \mathrm{pF}$ variable to an $8-50 \mathrm{pF}$ variable.
Parts Removed:
C281 Capacitor, ceramic 5-25 pF Var 281-0075-00
Parts Added:
C281
Capacitor, ceramic 8-50 pF Var
281-0022-00

DIFFERENTIAL AMPLIFIER HEAT SINKS ADDED TO TRANSISTORS TO REDUCE See SQB M12514 OVERDRIVE RECOVERY DIFFICULTIES

Effective Prod SN 570
modified out of sequence
316 405-6
$359 \quad 420$
$400 \quad 499$
$403 \quad 502$

502

Usable in field instruments SN 100-569**

$509-11$	550
519	$558-61$
527	564
$545-6$	566

** Prior to SN 460, M12021 should also be installed.
FRONT PANEL SYMPTOM: The zero-baseline fails to recover to within 5 mV within one second after a relatively long-term overdrive has been removed.

PROBLEM: Q154 or Q254, depending on the polarity of the overdrive, turns off when overdrive occurs. While the transistor is off, it cools causing a shift in $V_{B E}$. After overdrive ceases, the transistor that had been cut off must warm up again to the point where V_{BE} returns to its normal operatting value.

PRODUCTION CHANGE: Heat dissipators were added to Q154 and Q254 to reduce the temperature difference between their base-emitter junctions and ambient air. This reduces, by a factor of 2 , the amount of junction temperature restabilization required after overdrive.

Parts Removed None.
Parts Added: Heat sink for transistor case (2) 214-0498-00

INSTALLATION INSTRUCTIONS:
See MI - 12514.

COUPLERS CHANGED ON POT SHAFTS
TO REDUCE MIS-ALIGNMENT AND BINDING
INFORMATION ONLY
M12572
Effective Prod SN 690
FRONT PANEL SYMPTOM: Some front panel screw driver adjustments are binding.
PROBLEM: Solid couplers used between potentiometers and extension shafts cause misalignment and binding.

PRODUCTION CHANGE: The solid coupler was changed to a flexible type.
Parts Removed: Coupling, shaft $1 / 4 \mathrm{D} \times 1 / 2$ Long 376-0029-00
Parts Added: Coupling, flexible $1 / 8$ to $1 / 8 \quad$ 376-0051-00

Effective Prod SN 790
Usable in field instruments SN 100-789
FRONT PANEL SYMPTOM: COMPARISON VOLTAGE potentiometer shaft binds.
PROBLEM: Misalignment between switch SW420 and potentiometer R425.
PRODUCTION CHANGE: Switch shield bracket 337-0761-00 was modified (PN changed to -01) to allow addition of resilient pot mount 426-0289-00. See 'Before' and 'After' drawings on following page.

Parts Removed:	Shield, bracket	$337-0761-00$
Parts Added:	Mount, resilient	$426-0289-00$
	Shield, bracket, w/slotted hole	$337-0761-01$

INSTALLATION INSTRUCTIONS:

Parts Required: See 'Parts Added.'
Installation Procedure:
Replace the potentiometer bracket and install the pot as shown in 'After' drawing on following page.

Continued.

Effective Prod SN 890
NOTE: All diodes in any one instrument will not necessarily change at the same time. The effective SN furnished will be when the final diode in the particular instrument is changed.

FRONT PANEL SYMPTOM: None.
PROBLEM: Zener diode values are at present widely scattered in both voltage and tolerance. The proposed modifications will standardize all $400 \mathrm{~mW}, 1 \mathrm{~W}, 1.5 \mathrm{~W}$ and 10 W Zeners now listed as 10 and 20%, to 5% tolerance; and change the majority of non-standard parts to standard JEDEC units. One of these changes is to minimize the number of active part numbers. There will be no increase in cost for the 5% Zeners.

PRODUCTION CHANGE: Voltage tolerance for 10% and 20% Zener diodes was changed to 5% for all uses. At the same time, all 250 mW Zener diodes were changed to 400 mW . Refer to parts removed and added list for details.

Parts Removed:

D324	Diode, 1N970A $24 \mathrm{~V} \pm 10 \%$	$152-0172-00$
D286	Diode, $1 \mathrm{~N} 980 \mathrm{~A} 62 \mathrm{~V} \pm 10 \%$	$152-0176-00$

Parts Added:
D324
Diode, 1N970B $24 \mathrm{~V} \pm 5 \%$
152-0265-00
D286
Diode, 1N980B 62 V $\pm 5 \%$
152-0285-00

BE:fb

IMPROVED COMPARISON VOLTAGE POTENTIOMETER MOUNTING

This modification adds a resilient potentiometer mounting plate to the rear of the COMPARISON VOLTAGE switch for mounting the COMPARISON VOLTAGE potentiometer. The resilient mounting plate eliminates binding between the potentiometer shaft and the switch caused by misalignment of the two components.

PARTS REQUIRED

Quantity Tektronix Part Number

Description

2 ea
210-0004-00
2 ea
210-0586-00
2 ea 211-0011-00
1 ea 337-0761-01
1 ea
426-0289-00

Lockwasher, int \#4
Nut, Keps, $4-40 \times 1 / 4$
Screw, $4=40 \times 5 / 16$ PHS
Shield, bracket
Mount, resilient

INSTALLATION

1) Turn the COMPARISON VOLTAGE potentiometer to the extreme ccw position.
2) Loosen the Allen head screws on the potentiometer shaft, remove the potentiometer mounting nut, and pull the potentiometer back out of the way.
3) Replace the CONVERSION VOLTAGE switch rear mounting plate with the new, PN 337-0761-01, mounting plate.
4) Mount the resilinet mount, and remount the potentiometer as shown in the drawing on page 2. Note that the potentiometer mounting nut on the potentiometer side of the bracket is no longer used.

THIS COMPLETES THE INSTALLATION.
Correct your Instruction Manual Mechanical Parts List, and check the COMPARISON VOLTAGE 10-turn dial for mechanical zero as described in the Calibration section of the Instruction Manual.
continued

DW:Is

TRANSISTOR HEAT DISSIPATORS ADDED TO IMPROVE OVERDRIVE RECOVERY CHARACTERISTICS

Relatively long term overdrive (approximately 30 seconds) causes amplifier transistors Q154 or Q254 (depending on the polarity of overdrive) to be cut off.

The cut off transistor cools causing a shift in $V_{B E}$ which must be restabilized after overdrive ceases.

The addition of heat dissipators reduces the temperature difference between the transistor base-emitter junctions and the ambient air, thereby reducing the amount of restabilization required after overdrive.

Below serial number 460, Tektronix Modification Instructions MI - 12021 should also be installed.

PARTS REQUIRED

Quantity	Tektronix Part Number
2 ea	$214-0498-00$

Description

Heat sink for transistor case

INSTALLATION

Install the new heat sinks over Q154 and Q254.

* The following serial numbered instruments were modified at the factory:
$\begin{array}{llllllll}316 & 400 & 405-6 & 499 & 509-11 & 527 & 550 & 564\end{array}$
$\begin{array}{llllllll}359 & 403 & 420 & 502 & 519 & 545-6 & 558-61 & 566\end{array}$

INSTRUCTION MANUAL

TYPE 3 AT TENT SN 890

ELECTRICAL PATS LIST CORRECTION

CHANGE TO:

D286	$152-0285-00$	IN980B	$0.4 \mathrm{w}, 62 \mathrm{~V}, \pm 5 \%$
D324	$152-0265-00$	IN970B	$0.4 \mathrm{w}, 24 \mathrm{~V}, \pm 5 \%$

This insert is placed in its appropmiate position in your Product Reference Book and printed on colored paper to expedite retrieval. In a standard monual, it will be filed at the back of the manual.

INSTRUCTION MANUAL

PARTS LIST ADDENDUM

CORRECTION

ADD:

TO Q154, Q254
1 each
Heat Sink
214-0498-00

This insert is placed in its appropriate position in your Product Reference Book and printed on colored paper to expedite retrieval. In a standard manual, it will be filed at the back of the manual.

Inductors (Cont'd)

Ckt. No

LR208B	$* 108-0298-00$	$0.25 \mu \mathrm{H}$
LR208D	$* 108-0271-00$	$0.25 \mu \mathrm{H}$
L269	$* 108-0148-00$	$2.5 \mu \mathrm{H}$
L270	$* 114-0190-00$	$50-75 \mu \mathrm{H}$
L280	$* 108-0057-00$	$8.8 \mu \mathrm{H}$

Description
(wound on a 36Ω resistor) (wound on a 51Ω resistor)

Core 276-0511-00 Var

S/N Range

Connector

P11 131-0149-00 Chassis mounted, 24 contact male

Transistors

Q144	$* 151-0139-00$	Selected 2N918's (dual)
Q154	$* 151-0133-00$	Selected from 2N3251
Q164	$* 151-0108-00$	Replaceable by 2N2501
Q174	$* 151-0103-00$	Replaceable by 2N2219
Q234	*151-0103-00	Replaceable by 2N2219
Q254	$* 151-0133-00$	Selected from 2N3251
Q264	$* 151-0108-00$	Replaceable by 2N2501
Q274	*151-0103-00	Replaceable by 2N2219
Q284	*51-0133-00	Selected from 2N3251
Q294	*51-0136-00	Replaceable by 2N3053
Q304	*151-0096-00	Selected from 2N1893

Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R103	316-0470-00	47Ω	$1 / 4 \mathrm{~W}$			
R105A	323-0680-00	988 k	$1 / 2 \mathrm{~W}$		Prec	1\%
R105B	311-0487-00	30 k		Var		
R106A \dagger	325-0004-00	900 k	1/4W		Prec	0.1%
R106C $\dagger \dagger$	325-0003-00	99.8 k	$1 / 8 \mathrm{~W}$		Prec	0.1\%
R106E	311-0486-00	500Ω		Var		
R106F	316-0101-00	100Ω	1/4 W			
R108A	323-0681-00	990 k	$1 / 2 \mathrm{~W}$		Prec	1/2\%
R108F	321-0637-00	9.9 k	$1 / 8 \mathrm{~W}$		Prec	1/2\%
R108G	311-0485-00	250Ω		Var		
R109A	323-0623-00	999 k	1/2W		Prec	1\%
R109B	316-0101-00	100Ω	$1 / 4 \mathrm{~W}$			
R109D	316-0470-00	47Ω	$1 / 4 \mathrm{~W}$			
R109F	321-0193-00	1 k	$1 / 8 \mathrm{~W}$		Prec	1\%
R110	315-0271-00	270Ω	$1 / 4 \mathrm{~W}$			5\%

Resistors (Cont'd)							
Ckt. No.	Tektronix Part No.		Descrip				S/N Range
R111	323-0373-00	75 k	$1 / 2 W$		Prec	1\%	
R114	323-0281-00	8.25 k	$1 / 2 W$		Prec	1\%	
R120	316-0101-00	100Ω	$1 / 4 \mathrm{~W}$				
R122	323-0481-00	1 meg	$1 / 2 W$		Prec	1\%	
R123	323-0373-00	75 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R126	316-0101-00	100Ω	$1 / 4 W$				
R128	323-0327-00	24.9 k	$1 / 2 W$		Prec	1\%	
R129	321-0215-00	1.69 k	$1 / 8$ W		Prec	1\%	
R130	311-0566-00	5 k		Var			
R132	321-0215-00	1.69 k	1/8W		Prec	1\%	
R134	323-0289-00	10 k	$1 / 2 W$		Prec	1\%	
R136	323-0277-00	7.5 k	$1 / 2 W$		Prec	1\%	
R138	321-0389-00	110 k	$1 / 8 W$		Prec	1\%	
R140	323-0293-00	11 k	1/2W		Prec	1\%	
R142	321-0077-00	61.9Ω	$1 / 8 \mathrm{~W}$		Prec	1\%	
R143	316-0562-00	5.6 k	$1 / 4 \mathrm{~W}$				
R147	316-0101-00	100Ω	$1 / 4 \mathrm{~W}$				
R149	323-0210-00	1.5 k	$1 / 2 W$		Prec	1\%	
R150A	323-0239-00	3.01 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R150B	323-0181-00	750Ω	$1 / 2 \mathrm{~W}$		Prec	1\%	
R150C	323-0147-00	332Ω	$1 / 2 \mathrm{~W}$		Prec	1\%	
R150D	323-0116-00	158Ω	$1 / 2 \mathrm{~W}$		Prec	1\%	
R150E	323-0647-00	61.4Ω	$1 / 2 \mathrm{~W}$		Prec	1\%	
R152	308-0301-00	10 k	3 W		WW	1\%	
R155	323-0203-00	1.27 k	$1 / 2 W$		Prec	1\%	
R157	323-0227-00	2.26 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R158	315-0471-00	470Ω	$1 / 4 \mathrm{~W}$			5\%	X460-up
R162	308-0383-00	12 k	5 W		WW	5\%	
R166	316-0470-00	47Ω	$1 / 4 \mathrm{~W}$				
R168	323-0291-00	10.5 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R170	*310-0626-00	2 k	11 W		WW	1\%	
R172	302-0104-00	100 k	$1 / 2 \mathrm{~W}$				
R173	323-0303-00	14 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R174	316-0470-00	47Ω	$1 / 4 \mathrm{~W}$				
R205A	323-0680-00	988 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R205B	311-0487-00	30 k		Var			
R206A \dagger	325-0004-00	900 k	$1 / 4 \mathrm{~W}$		Prec	0.1\%	
R206Ct†	325-0003-00	99.8 k	$1 / 8 \mathrm{~W}$		Prec	0.1\%	
R206E	311-0486-00	500Ω		Var			
R206F	316-0101-00	100Ω	$1 / 4 \mathrm{~W}$				
R208A	323-0681-00	990 k	$1 / 2 \mathrm{~W}$		Prec	1/2\%	
R208F	321-0637-00	9.9 k	1/8 W		Prec	1/2\%	
R208G	311-0485-00	250Ω		Var			
R209A	323-0623-00	999 k	$1 / 2 W$		Prec	1\%	
R209B	316-0101-00	100Ω	$1 / 4 \mathrm{~W}$				
R209D	316-0470-00	47Ω	$1 / 4 \mathrm{~W}$				

\dagger Furnished as a unit with R106A (matched pair).
$\dagger \dagger F u r n i s h e d$ as a unit with R106C (matched pair).

Resistors (Cont'd)

Ckt. No.

R209F	$321-0193-00$	$1 k$
R210	$315-0271-00$	270Ω
R211	$323-0373-00$	$75 k$
R212	$311-0497-00$	$50 k$
R214	$323-0281-00$	$8.25 k$

R216	$311-0329-00$	50 k
R220	$316-0101-00$	100Ω
R222	$323-0481-00$	1 meg
R223	$323-0373-00$	75 k
R226	$316-0101-00$	100Ω

R230	$316-0470-00$	47Ω
R232	$323-0242-00$	3.24 k
R233	$311-0443-00$	2.5 k
R236	$323-0277-00$	7.5 k
R238	$321-0389-00$	110 k
R240	$323-0293-00$	11 k
R242	$321-0077-00$	61.9Ω
R243	$316-0562-00$	5.6 k
R244	$311-0482-00$	150Ω
R245 \dagger	$311-0568-00$	600Ω

R247	$316-0101-00$	100Ω
R249	$323-0210-00$	1.5 k
R252	$308-0301-00$	10 k
R253	$311-0475-00$	5 k
R255	$323-0203-00$	1.27 k

R257	$323-0227-00$	2.26 k
R258	$311-0091-00$	1 k
R260	$311-0474-00$	2 k
R262	$321-0076-00$	60.4Ω
R264	$308-0334-00$	7 k

R266	$316-0470-00$	47Ω
R270	*310-0626-00	2 k
R272	$302-0104-00$	100 k
R273	$323-0303-00$	14 k
R274	$316-0470-00$	47Ω

R276	$321-0061-00$	42.2Ω
R277	$308-0107-00$	1 k
R278	$323-0291-00$	10.5 k
R279	$321-0061-00$	42.2Ω
R280	$311-0496-00$	2.5 k

R281	$323-0244-00$	3.4 k
R282	$301-0563-00$	56 k
R284	$323-0320-00$	21 k
R288	$311-0074-00$	5 k
R289	$323-0315-00$	18.7 k

\dagger Furnished as a unit with SW245.

Description

$1 / 8 \mathrm{~W}$		Prec
$1 / 4 \mathrm{~W}$		1%
$1 / 2 \mathrm{~W}$	Var	Prec
$1 / 2 \mathrm{~W}$		Prec
1%		

	Var		
$1 / 4 W$			
$1 / 2 W$		Prec	1%
$1 / 2 W$		Prec	1%
$1 / 4 W$			

$1 / 4 W$		
$1 / 2 W$	Par	Prec
		1%
$1 / 2 W$		Prec
$1 / 8 W$		1%
		Prec

Var
Var
$1 / 4 W$
$1 / 2 W$
3 W
$1 / 2 \mathrm{~W}$
$1 / 2 W \quad \operatorname{Var}$
$1 / 8 \mathrm{~W}$
$3 W$
$1 / 4$ W
11 W $1 / 2 W$ $1 / 2 W$ $1 / 4 \mathrm{~W}$ $1 / 8 W$
$5 W$
$1 / 2 W$
$1 / 8 W$ $\begin{array}{ll}1 / 2 W & \\ 1 / 2 W & \\ 1 / 2 W & \text { Var } \\ 1 / 2 W & \end{array}$
1%
1%
1%

Prec	1%
WW	
Prec	1%
WW	3%

WW	1%
Prec	1%

Prec	1%
WW	5%
Prec	1%
Prec	1%

Prec	1% 5%
Prec	1%
Prec	1%

S/N Range
\%

Resistors (Cont'd)							
Ckt. No. \quad Tektronix			Description				S/N Range
R290	323-0306-00	15 k	$1 / 2 \mathrm{~W}$		Prec	1\%	
R292	316-0101-00	100Ω	$1 / 4 W$				
R294	303-0333-00	33 k	1 W			5\%	
R300	302-0563-00	56 k	$1 / 2 W$				100-199
R300	302-0823-00	82 k	$1 / 2 W$				200-up
R302	302-0223-00	22 k	$1 / 2 \mathrm{~W}$				100-199
R302	302-0273-00	27 k	$1 / 2 \mathrm{~W}$				200-up
R304	302-0563-00	56 k	$1 / 2 \mathrm{~W}$				
R306	316-0153-00	15 k	$1 / 4 \mathrm{~W}$				
R310	316-0223-00	22 k	$1 / 4 \mathrm{~W}$				
R314	308-0271-00	667Ω	5 W		WW	5\%	
R318	316-0271-00	270Ω	$1 / 4 \mathrm{~W}$				
R320	308-0319-00	4.5 k	$3 W$		WW	1\%	
R322	323-0347-00	40.2 k	$1 / 2 W$		Prec	1\%	
R324	303-0223-00	22 k	1 W			5\%	
R330	303-0123-00	12 k	1 W			5\%	
R332	316-0220-00	22Ω	$1 / 4 \mathrm{~W}$				
R336	303-0680-00	68Ω	1 W			5\%	
R338	311-0001-00	10Ω		Var	WW		
R342	304-0102-00	1 k	1 W				
R346	302-0104-00	100 k	$1 / 2 W$				
R401	308-0360-00	13.3 k	3 W		WW	1\%	
R403	308-0359-00	10.35 k	3 W	$?$	WW	1\%	
R406	301-0113-00	11 k	$1 / 2 \mathrm{~W}$			5\%	
R408	Selected						
R410	311-0484-00	500Ω		Var			
R413	308-0326-00	9.9 k	$1 / 8 \mathrm{~W}$		WW	0.01 \%	
R415	308-0324-00	1.222 k	1/8W		WW	0.01 \%	
R422	308-0316-00	3.1 k	$1 / 2 \mathrm{~W}$		WW	1\%	
R423	311-0484-00	500Ω		Var			
R425	311-0360-00	5 k		Var			
R427	302-0102-00	1 k	$1 / 2 \mathrm{~W}$				

$\left.\begin{array}{l}\text { R430 } \\ \text { R431 } \\ \text { R432 } \\ \text { R433 } \\ \text { R434 } \\ \text { R435 } \\ \text { R436 } \\ \text { R437 } \\ \text { R438 } \\ \text { R439 } \\ \text { R440 } \\ \text { R441 }\end{array}\right\}$

308-0323-00 $1 \mathrm{k} \quad 1 / 4 \mathrm{~W} \quad$ Matched set of 12 to $\pm 0.02 \%$ grouping.

6-6

Switches				
Ckt. No.	Tektronix Part No.	Description		S/N Range
	Unwired Wired			
SW101	260-0603-00	Rotary	AC-DC-GND A	
$\left.\begin{array}{l} \text { SW105t } \\ \text { SW205 } \end{array}\right\}$	260-0634-00 *262-0680-01	Rotary	INPUT ATTEN	
SWliott	260-0635-00 *262-0679-00	Rotary	DISPLAY	
SW150	260-0713-00 *262-0734-00	Rotary	MILLIVOLTS/DIV	100-509
SW150	260-0713-00 *262-0734-01	Rotary	MILLIVOLTS/DIV	510-up
SW201	260-0603-00	Rotary	AC-DC-GND B	
SW245ttt	311-0568-00			
SW410	260-0633-00 *262-0733-00	Rotary	Vc RANGE	
SW420	260-0712-00 *262-0732-00	Rotary	COMPARISON VOLTAGE (Vc)	

Test Points

TP264	$344-0105-00$	Clip, test point
TP294	$344-0105-00$	Clip, test point
TP420	$129-0006-00$	Post, connecting

Electron Tubes

V113 $1+\dagger \dagger$	$* 157-0099-00$	8056, checked
V124	$154-0187-00$	6DJ8
V134	$154-0187-00$	6 DJ8
V174	$154-0491-00$	8608
V213+it \dagger	$* 157-0099-00$	8056, checked
V224	$154-0187-00$	6DJ8
V274	$154-0491-00$	8608

HSW105 and SW205 furnished as a unit.
HSW110 concentric with SW105 and SW205
†ttSW245 furnished as a unit with R245.
$\dagger \dagger \dagger \mathrm{V} 113$ and V213 furnished as a pair.

\qquad
\qquad
\qquad

\qquad

$\square 10$

_100__

(1) $\frac{\text { REFEREENCE DIAGRAM }}{\text { OIFERENTAL }}$

IMPORTANT:

Circuit voltages were obtained with a $20,000 \Omega /$ Volt de VOM. All readings are in volts.
Voltage, waveform-amplitude and dc-level measurements are not absolute and may vary from unit to unit. To obtain these measurements, a 30 -inch flexible-cable extension (012-0066-00) was used to operate the Type 3A7 out of the oscilloscope plug-in compartment.

Actual waveform photographs are shown on the schematic diagram. To show the waveforms in a time-related sequence, the test oscilloscope used for signal tracing was set for + Ext triggering on the 2 -volt reference signal applied to Input A of the Type 3A7. Refer to the Maintenance section for full details about signal tracing.

VOLTAGES AND WAVEFORMS were obtained under these conditions:

Vc RANGE	+ 11
COMPARISON VOLTAGE	11 (10-10-0)
AC-DC-GND (Input A)	GND (for voltages) DC (for waveforms)
AC-DC-GND (Input B)	GND
INPUT ATTEN	10
DISPLAY	A-B
MILLIVOLTS/DIV	50
VARIABLE	CAL
POSITION	Centered
Signal - 2-volt $1-\mathrm{KHz}$ cal input A connecto nector.	gnal applied to Type 3A7 st oscilloscope +Ext con-

