FILE COPY

Pre-Production Eng.

 INSTRUMENT CONTROLPlease Return
Instruction Manual
$81-1684$ Contzants

```
SBCLION L-INTRODUCIION
SECTION II-sPDGIFICARTON
SECTION III-PAINCIPLE
gECTION IV-THE SCHBNATTC DIAGRAM
SECTION V-OPERATION
    V.I. THE EXPLANATION OF THE FRONI PANEL
    Y, II M MEASUREMNP?
```



```
    V.IV. DIRECIION FOR USE OF EXTERNAL SRRIES RESISTOR }
    SBCTION VI-SUPPLEMBNT
20
```

The Plug-In Unit can be used with all kinds of conventonal oscilloscopes, directiy displying the variation of fTfor the dynamic points of a transistor on cathode ray tube, The measurable range of fT covers $25 \mathrm{Mc} / \mathrm{CM}$ to $400 \mathrm{Mc} / \mathrm{CM}$ in five steps and the emitter current is measured in the range between 0.1 mA and 500 mA . Model TF-100A is adapted for Toktronix Type 530 Series, Type 540 series and 550 series oscilloscopes.
SECTION IT - SPECIFICATION

Measurable Frequency : 100 Mo

$$
\begin{aligned}
& f_{T} \text { measurable range }: 25,50,100,200,400 . \mathrm{Mc} / \mathrm{CM} \text { in five steps } \\
& \text { (} 0 \text { to } 1,600 \mathrm{Mc} \text {) } \\
& \text { Collector Voltage range : } \pm 2 \text { to } 30 \mathrm{~V} \text {, contimuously variable } \\
& \text { Emittor Current range : } 0.1,0,2,0,5,1,0,2,0,5,0,10,20,0 \text {, } \\
& 50.0, \mathrm{~mA} \text {) CM in nine steps (0 to } 500 \mathrm{~mA} \text {) }
\end{aligned}
$$

Polarity : NPN, PNP Ekchangeahle

Calibration : Horizontal axis 0 120 division (CM).

$$
\text { vertical axis } 4 \text { division (CM) in } \quad 25 \mathrm{MC} / \mathrm{CM}
$$

Dimention: 147 wide $\times 174$ high $\times 232$ deep mm
Weight : 3.8 Kg .

$$
\begin{array}{r}
\text { Power supply: } \begin{array}{r}
\mathrm{A} \cdot \mathrm{C} \\
\mathrm{D} \cdot \mathrm{G} \text {. } 3 \mathrm{~V}, 50 \text { to } 60 \mathrm{e} / \mathrm{s} \\
+125 \mathrm{~V}, \text { below } 20 \mathrm{~A} \mathrm{~A} \\
\\
+100 \mathrm{~V}, \text { below } 3 \mathrm{~A} \\
+75 \mathrm{~V}, 150 \mathrm{~mA} \\
\\
-150 \mathrm{~V}, \text { below } 15 \mathrm{~A}
\end{array}
\end{array}
$$

SECIION I I I - HAINCIPLE

As show in Fig. I, the frequency oharpcterstic of hfe is approximated to the undermentioned equotion es one of par mator showting the higf frequenoy oharaotaristice of a transistor.

$$
-1=
$$

$$
\begin{aligned}
& \text { hf }=\mathrm{hf}_{0} 1 / 1+j(\mathrm{f} / \mathrm{f} a \theta) \\
& \text { ne : Common omittor, forward transfer ratio } \\
& \text { fao : Common emitter, current transfer radio }
\end{aligned}
$$

The above multiplication characteristic falls down at the curve of $6 \mathrm{dh} / 0 \mathrm{ct}$, and the descending ourvt'gives aB product of hie. This curve is an important one which determines the high range characteristic of common emmittor transistor and is called f_{T}. Since common emitter multiplication circuit is most available in the practical circuits, it is convenient to use the inherent GB product in place of the cut-bff frequency fa of ab of common base, forward current transfer ratio. As indicated in $F i g, \mathcal{L}^{2}$ f being the frequency to be hie $=1$, therelation between fee and fab is therefore given by

$$
\begin{aligned}
& \begin{aligned}
f_{T} & =f a \theta \times h f \theta_{0} \\
& =K \times a b \times f a b \cong K \times f a b
\end{aligned} \\
& \begin{aligned}
\boldsymbol{f}_{T} & =f a \theta \times h f \theta_{0} \\
& =K \times a b \times f a b \cong K \times f a b
\end{aligned} \\
& \begin{array}{l}
\quad=K X a b X f a b \cong K X f a b \\
\text { Where } K=f a e\left(1 \text { the } \theta_{0}\right) / f a b 4 \text { can note Arec(4) } 4 \text { (3) }
\end{array} \\
& K \text { is a coefficient to be determined by the electric potential } \\
& \text { - can not be Ane(4) } \\
& \text { gradient of the base region and its ordinary value is } 0,5 \text { \& } 0,8 \text {, a } \\
& \text { Moreover, upon representing the phase characteristic of common } \\
& \text { base forward ourront transfer ratio ab Ias as }-(\pi / 4+m) \text {, }
\end{aligned}
$$

\square
it follow that

$$
K \neq 1 / 1+m
$$

m is called the surplus phase and in case of an alloy junction type transistor,
it becomes $m=0,22 \mathrm{rad}(k=0.822)$

In anothar case of a drift type and othwr types transistors, it becomes muoh larger.

Since f_{T} shows $G B$ product of common emitter at frequency of $f>f a \theta$, if hfe at 100 Mc is measured, f_{T} is given by the follewing reldtion

$$
f_{T}=\mathrm{hfo} 100 \mathrm{Mc} \times 100 \mathrm{Mc}
$$

practioally, as shown in Fig. 2 (a), tno output voltage from an oscillator is impressed on R_{L} through R_{G}

In case of $\mathrm{R}_{\mathrm{G}} 》 \mathrm{R}_{\mathrm{L}}$, the electric current in whion flow into R_{L} is almost statiionhry eleotric current and voltage θ_{I} to be produced in R_{L} is

$$
\theta_{1}=10 \times h_{L}
$$

In the next place, as shown in Fig. 2 (b), in putting a transistor under test into the separation between A and B_{9} the output volsage from an oscillator is \cdot
impressed like the previos way on the base of the transistor through R_{Q}.
Since R_{G} is considerably large in this case, the ourrent to be flown into the base is nearly equal to the above mentioned ib.

Meanwhile, the current multiplied by hfe of ib flows into the collector of the

transistor

FRONT PANEL

Consequently, the voltage ez given by

$$
\begin{array}{ll}
\theta_{2} & =n f \theta+b \cdot R_{L} \\
\text { where nfe } & =\theta_{2} / \theta_{1}
\end{array}
$$

Moreover f_{I} being equal to f infe, fic given by measureing θ_{2} with taking some values for f and el.

In the long run, it is necessary for tie measurement to make the impedance high which is seen the oscilloscope section from the measurement base terminal. However, the floating capacity of the cut-of and socket to put a transistor as the practical apparatus exist and behaviour is snown in Fig。 3 (a).

Furthermore, it is the same as Fig. 3 (c) from the viewpoint of equivalent. In case of a small H_{I} it is shown in $\mathrm{Fig}_{\mathrm{o}} 3$ (c).

In 100 Mc , the effect of $C_{p}+C_{b e}+C_{b c}$ cannot be negiigible and, even if H_{S} is large, the impedance orop of the measurement base terminal is brought.

For the purpose, as shown in Fig. 4, the practical apparatus is designed to make the impodance at the measurement base terminal high with tuning oscillator frequency through the use of compensated ind otance.

SECTION IV-IHE SCHEMATIC DIAGRAM
The plug-in Unit mainly consists of the oscillating parts, measurement parts, local oscillating mixer parts, multiplication parts and power supply, and its main schematic circuit is shown in Fig. 5.

The output of oscillating frequency 100 Mc is impressed on The base of a transistor under test througH C_{g} and, R_{S}. When the output of R_{L} to the collector is impressed on the local oscillating mixer parts of oscillating frequency 90 Mc , it becomes 10 Mc output, which is amplified through a resistor attenuator R_{t} and is put into the input of the vertical axis amplification parts of the scope. Meanwhile, in using the half-wave rectified voltage to the emitter pow supply, the voltage is impressed on the horizontal axis of the scope as well as the emitter of a transistor under tEst is provided the common base to the power supply And f_{T} is measured by changing the emitter current aNd the collector voltage optionally. Since the horizontal axis is swept with the repetition $50 \mathrm{c} / \mathrm{s}$
halfowave rectified voltage, I_{E} can be read directly by calibrating the voltage sensitivity. The collector source voltage is provided with the transistorised and stabilized power supply and its voltage is continuously variable. 1
SECTION V - OPERATION

V. 1. The explanation of the Front Panel

(1) (COLLECTOR SOURCE VULTS) Adjust the voltage to supply
the collector of a trail istor under test with the Control Dial.
(2) (NPN - PNP EXCHANGE SW)

This is subject to the trans-
istor type to de measured.
(3) (IXXERNAL SERIES RESISTOR) The terminal is provided for the insertion of terminal resistor is series with the collector of atransistor under test.
(4) $(\mathrm{MC} / \mathrm{CM})$
fir range which has up to $400 \mathrm{MC} / \mathrm{CM}$ in five steps.
The calibration squid be done at $25 \mathrm{MC} / \mathrm{CM}$.
(5) (BOSITION)
line on the screen with unis.
(i) (CAL.) ... a driver for the calbration of anjlitude on the screen.
(7) (C.E.B.) ... a transistor under test into this socket.
(8) (Ie MA/CM) The Control Dial is to exchange
the emitter current of a transistor under test and
is divided into nine steps between 0.1 and $50 \mathrm{MC} / \mathrm{CM}$.
(9) (CHECK) .896.. Adust the sensitivity of the norizontal axis on the soreen with the push-button.
(10) (HOR , SWEEP OUTPUT) ... this is provided for the output of the sweep signal on the horizontal axis.

V.II. Measurement

(1) Insert the Plug - In Unit into the oscilloscope which is acceptable the Unit.
(2) Set ut the Front Panel as follow.
(COLLECTOR SOURCE VOLT) ... Approxinately 2 V .
(NPN - PNP Exchange SW) ... Subject to the type of a transistor to be measured.
(EXTERNAL SERIES RESISTER) . Wnen the external load resistor is in use, set SHORT SW , fth
($f_{T} M C / C M$) $25 M C / C M$
(POSITION) Approxima medium position
(CAL_) owk.............. - ditto -
($\left.I_{e} \mathrm{MA} / \mathrm{CM}\right) \quad \ldots \ldots \ldots \ldots .$.
(3) As to the operation of Tektronix Oscilloscope, it is subject to the instruction taanual pertaining to the scope.
(4) Exchange the o cill scope so that the sweep signal from external may bo put into the horizontal axis of the scope .

Comect two terminals between EXT. SWEEP INPUT of the oscilioscope and HOR, sWEEP OUTPUT of the Plug - In Unit, in use with attacned cord.
(5). Turn On the power supplyswitdh of the sco e . Then, ladjust
properly the beam intensity, the horigontal position and sensivity
only after tne scope is working normally.

The sweep signal from the Unit is about 30 V P $-P$
(6) When the beam line of the horizontal axis appears on the soreen, adjust POSITION Control of the Unit until the beam line appears approximately at the medium level of the graticule, Push CHECK pushbutton and adjust the holizontal sensivity so that the just 10 divisions $(200 \mathrm{~mm})$ may be obtained, The horizontal current sensitivity for I_{θ} is calibrated througn these procedures. However, every time NPN-PNP SW is exchanged in accordance with the polarity of a transistor undes test, adjuscthe position of the beam line because the sweop polarity of the horizontal axi s becomes reverse.
(7) Ingert the condenser 1000 pF into the holes B-C of the sooket for a transistor undex testid since each scope has alittle
different input capacitty, readjust $L 8$ under working in some cascosch But, even if the tuming loss may appear, there is no error in the measuroment value,when itis possible to adjust CAL.Control. After confirming that the control dial is set up at tine position of 25 $\mathrm{MC} / \mathrm{CM}$, turn CAL. with a driver and adjust so that the vertical axis amplitude on the soreen may be 4 divisions (40 mm).

Remove the condenser after adjusting.
The peasurement is prepared
through the above-mentioned procedures.
V. III. OBERATION
(1) Insert a transistor to be measured into the socket.
(2) Set up the range which is to be measured with COLLECTOR SOURCE VOLTS Control and Ie Control.

When the proper amplitude is made by exchanging $f_{T} M C / C M c o n t r o l$, the wave form like an envelope is displayed on the C, R, T soreen. $\quad f_{T}$ is obtained With the position of the amplitude and MC / cM Control. For example, if $\mathrm{f}_{\mathrm{T}} \mathrm{MC} / \mathrm{CM}$ Control set up at 100 , Ie MA/CM Control $0.2 \mathrm{MA} / \mathrm{CM}$ and collector Source voltage 10 V , as shown in $5 \mathrm{~g}, 6$, f_{I} is read as 200 MC at the emitter ourrent 1 mA and Collector Voltage 10 V .

V. IV. DIRECTION FOR USE OF EXTERNAL SERIES RESISTOR

Although SHORT SW is ordinarily settled at SHORT and Vo is constant, if the SW is switched to another side, the variations of f_{T} along the actual dynamic per
points sre observed by determing the values of power supply and load resistor. For example, if the variations of f_{T} are required for $V c=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{ohms}$ and $I_{e}=200 \mathrm{~mA}$, set up MA/CM Contral Dial at 5 as COLLECTOR SOURCE VOLTS $=$ $6(\mathrm{~V})+100(\mathrm{ahm}) \times 20(\mathrm{~mA})=8 \mathrm{~V}, \mathrm{E}_{x t^{R}}=100 \mathrm{ohms}$.

Besides, when SHORT SW is opened, it is possible to use the external collector power supply (0 to 250 V) between the underside of FRONT PAEL and ground terminal.

Since the horizontal axis sweep signal is produced in the positiof of the connector terminals at the reas of the Unit, it is unnecessary to connect the terminals in the oscilloscope's interior at every use, only when the said terminal and EXT. SWEEP INPUT terminal are conmeoted before operation

$$
-\quad 9 \quad-
$$

SECTION VI -$-$ SUPPLEMENT

The prinoiple of the measurement uses the descent of fae at $6 \mathrm{ab} / .0 \mathrm{ct}$., as said ahead. Accordingly, fr oannot oe displayed unless the measurable frequency 100 MC is on the descending curve of $6 \mathrm{db} / 0 \mathrm{ot}$, of a transistor under best. A transistor which has fae of below 30 MC is measured with the Unit. When a transistor having fae of over 30 MC is measured with this, hfe is simply measured at the frequenoy 100 MC . Although it is necessary to examine the rough fae of a transistor to be measured, fae is induced from the relation fae $=f a b / b e$, if fab and hfe are given beforehand. Furthermore, a transistor which is low I_{T} and has, for example, below 25 MC is observed a small amplitude on the $C_{0}, R_{0} I_{0}$ screen, so it is recommended to use the Unit of the measurable frequency 10 MC .

Since the measurable freguenoy of the Unit is 100 MC , the output appeare a little with the conneotions of the socket terminal without inserving a transistor into the socket. That is why the impedance at the texminals is mulinipiod with the res onance circuit. But, as the connection output hardly appears with the impedance between the base and the emitter of a transistor to be inserted at the time ne its measurement, it has no influence on the indication amplitude of fi.

The appearance of the abovementioned output can be confirmed with inserting a resistor valued a few hundred ohms into the base and the emitter holes (equivalent to the impedance betwee the base and the emitter of a transistor).

