POWER SUPPLY/DEVICE TESTING

Tektronix

TABLE OF CONTENTS PAGE

1. INTRODUCTION 2-3
Special Consideration 3
2. INSTANTANEOUS POWER MEASUREMENT 4
Measuring Power Dissipation 4
Set-up 5
Using the Program 5-6
3. SAFE OPERATING AREA MEASUREMENT 7
Verifying Safe Operating Limits 7
Set-up 7-13
Using the Program 14
4. MAGNETIC TESTING B/H CURVE 15
Background 15
B/H Measurements 16
Set-up 16
Using the Program 17
Energy Algorithm 18
7854 Implementation of Algorithm 18-20
5. OUTPUT IMPEDANCE MEASUREMENT 21
Set-up 22
Using the Program 22-24
Special Considerations 25-27
6. RIPPLE AND NOISE MEASUREMENT 28
Set-up 28-29
Using the Program 30

SECTION 1

INTRODUCTION

This applications guide describes the use of the advanced waveform processing functions of the Tektronix 7854 Programmable Oscilloscope in a typical series of five power supply and power device test operations.

Stating the Problem

In designing switching power supplies, the two primary requirements are high efficiency and high reliability. These goals are within reach when, through careful design techniques, highly reliable components are included and operated within published specifications. The features of the 7854 can help the designer to significantly shorten and simplify this process.

7854 Features

The 7854, with its waveform calculator, combines the best features of a high-performance plug-in oscilloscope with the flexibility, speed and accuracy of a dedicated waveform-oriented digital processor. Single-key functions, equivalent-time-sampled digitization of waveforms to 400 MHz equivalent-time bandwidth, program storage for more than 2000 commands, and GPIB capability are just a few of the key features of the 7854 .

Waveform Calculator Keyboard

The waveform calculator keyboard allows single-keystroke functions, many of which are particularly well suited to power supply testing. Differentiation (DIFF), integration (INTG), energy (ENERGY) and root-mean-square (RMS) are several of the more important of these functions that apply to such testing. The waveform averaging (AVG) mode is also very useful in reducing random noise. Cursors are available for quick and accurate time and amplitude measurements.

7854 Programing

Several operations may be programmed into the 7854 for later execution. The programs, consisting of a series of commands or functions, can be entered, edited and executed from either the waveform calculator or the GPIB port.
As the following five applications examples show, these features provide the power supply designer with a very powerful and useful tool.

The 7854 control settings and certain 7854 program entries apply to the particular power supply used in this guide. Your control settings and appropriate 7854 program lines may differ on the power supply you are testing.

In the illustrations and photos, units of measure are abbreviated which make the measurements more generally applicable to any power supply.

Test Instrument

A 7854 with maximum memory (Option 2D) was used for the tests in these application examples. An off-the-shelf switching power supply was modified to add the test points shown in test operations. All other test equipment, including probes and oscilloscope plug-ins, is as shown in the examples.

SPECIAL CONSIDERATIONS

It may be necessary, depending on the voltage and current probes used, to compensate for any probe signal delay. Although the technique for finding the delay is well known, a brief description is offered here. It includes a suggested method of incorporating this delay into the application programs in this guide.

Calculating Delay

The calibrator signal from the 7854 will be used to drive a resistive load. A 51 Ohm carbon resistor was used as the load resistor. Set the 7A13 to $10 \mathrm{mV} / \mathrm{div}$., +input to DC, -input to GND, and the bandwidth limit switch to FULL. Connect the voltage probe from the calibrator output side of the resistor.

Figure 1 Test Set-Up
Set the 7A18A mode switch to CH 1 , channel 1 to $10 \mathrm{mV} / \mathrm{div}$., and channel 1 to DC. Connect the AM503 through a 50 Ohm terminator to the channel 1 input. Set the 7854 trigger source switch to right vertical. Connect the current probe around the resistor lead. Set the "A" horizontal (7B85) to $50 \mathrm{~ns} /$ div. Figure 1 shows the proper test setup.

Figure 2 shows a 7854 program that will capture both waveforms and calculate the delay between waveforms. With the voltage and current probes used in this note, 16 nanoseconds was an average delay.

Implementing Delay

The 7854 has a command that adjusts the waveform in time. The HPLFT or HPRGT will shift the display left or right by the time specified in the argument. With a 16 nanosecond delay, the user simply calls up the current waveform,

```
OOO VMDL HMDA
O01 STORED AQR 2 >WFM
002 VMDR
003 AQR 3 >WFM
0 0 4 2 \text { WFM CRS1 0 >HCRD}
005 MID >VCRD HCRD 2 >CNS
0 0 6 3 \text { WFM O >HCRD}
007 MID >VCRD HCRD 3 >CNS
0 0 8 2 \text { DSW}
009 3 CNS 2 CNS -
```

Figure 2 Calculating Probe Delay
enters 16 nanosecond (16EEX 9CHS ENTER) and presses the HPLFT (f SMOOTH). This step can be added to any of the application programs that follow.

INSTANTANEOUS POWER MEASUREMENT

In the design and evaluation of a switching power supply, the power dissipated in the switching transistor(s) is an important consideration. There are several methods for investigating dissipation. These range from monitoring the case temperature of the device to taking a picture of the waveforms for the voltage across and the current through the device and calculating the power at a specified point of interest.

7854 Power Dissipation Measurement

The capacity of the 7854 to capture both the voltage and current waveforms, multiply these waveforms, and display the power as a function of time, greatly increases measurement ease and accuracy. With a single cursor, the power dissipated at any point of the waveform can be read.

Inductive Loading

The typical load of switching transistors is inductive, generally transformer-type. This inductive load opposes any change in the current flowing through the inductor. As shown in Figure 3, this results in increased power dissipation.

Measuring Power Dissipation

In this test, a Tektronix AM503 current amplifier and a Tektronix A6302 current probe are used to capture the current through a switching transistor. The amplifier is connected to the channel 1 input of a 7A18A vertical amplifier. Two P6055 10x voltage probes are connected, one to the emitter and one to the collector of the switching transistor. These probes are connected to the + and -input of a 7A13 differential amplifier. The set-up is shown in Figure 4.

Figure 3. Current Lag With Inductive Loads

Figure 4. Instantaneous Power Measurement Test Set-up

Set-up

7A18A MODE to CH1 TRIGGER SOURCE to CH 1 CH1 VOLTS/DIV. to $10 \mathrm{mV} / \mathrm{div}$.
7 A13 VOLTS/DIV. TO 5V/div
$7 B 85$ MODE to B STARTS AFTER DELAY
TIME/DIV. TO $10 \mathrm{~ms} / \mathrm{div}$.
7B87 TIME/DIV. to $2 \mu \mathrm{~s} / \mathrm{div}$.
Set 7854 trigger source to right vertical.

Enter the program shown in Figure 5 into the 7854 memory.

Using the Program

Ground the inputs to both vertical amplifiers and turn on the test power supply.

Press the 7854 START (f RUN) button. The program will acquire a ground reference for both vertical plug-ins and stop at line 004.

Set the 7A18A CH1 and the 7A13

Figure 6. Instantaneous Power

+ and - inputs to DC. Adjust the 7854 delay time on the 7B87 time/ division if necessary to display only the overlapping positive current step and negative voltage step. Enter the AMPS/DIV. setting of the AM503 on the 7854 keyboard.

```
000 VMDALT HMDA CLD OFF
001 GND
002 SCOPE
003 HMDB
004 STOP
005 ENTER
006 1 >CNS
OO7 AQR STORED
008 1 CNS >VSCL
009 0 WFM 2 >WFM
010 1 WFM 2 WFM * 3 >WFM
011 1 WFM 1 P-P VSCL / / VXPD
012 2 >VZR
013 2 WFM 1 P-P VSCL / / VXPD
014 . 5 >VZR
015 3 WFM 3 P-P VSCL / / VXPD
0 1 6 ~ 3 C H S ~ > V Z R
017 1 DSW 2 DSW
018 CRS1 0 >HCRD MAX >VCRD
019 STOP
```

Figure 5. Power Measurement Program

Acquisition

Press the RUN button. The program will acquire the voltage and current waveforms, multiply the two and display all three (the original plus the resultant). The program will then stop at line 019.

Special Considerations

For the highest data accuracy, check the AM503 amplifier zero offset before running the program.

Conclusion

The 7854 is a valuable tool for looking at the power dissipated in power supply switching transistors. It removes the tedium of repetitive manual calculation.

As shown in Figures 6 and 7, the program is uncomplicated and the resultant waveforms are informative.

line 000 -vertical mode to $A L T$, horizontal mode to A, turn off cursors.
line 001-Acquire ground reference. 002-7854 to scope mode. 003 -Horizontal mode to B

User sets up the delayed/delaying time base to the area of interest.
line 004-stops the program

Figure 7. Instantaneous Power Program Flow Chart

SECTION 3

SAFE OPERATING AREA MEASUREMENT

Most manufacturers publish safe operating area (SOA) curves and graphs for their products to provide to the circuit designer an easy method for specifying power transistors. An example of an SOA curve is shown in Figure 8. The information in these graphs, such as dissipation capabilities and current and voltage ratings, are important to the designer.

Figure 8. Typical SOA Graph
The ability of the 7854 to display power dissipation as a function of time, to join waveforms, to create waveforms and to display waveforms in an X versus Y mode is used in this application. The measurement of the power dissipation of a switching transistor under operating conditions can help the designer meet reliability goals.

Figure 9 SOA Curve

Verifying Safe Operating Limits

The 7854 allows you to enter the SOA limit information from the manufacturer's data sheet, capture the Ic and Vce waveforms of the switching transistor, and display the resultant waveform in a log-log format just as in the data sheet. Figure 9 is an example of the SOA information of one of the switching transistors in the test power supply.

Set-up

The test set-up is similar to that for the instantaneous power measurement application example (see Figure 4).

7 A 18 MODE to CH 1

TRIGGER SOURCE to CH 1
CH1 VOLTS/DIV. to 10 $\mathrm{mV} /$ div.
7 A13 VOLTS/DIV. to 5V/div.
$7 B 85$ B DELAY MODE to independent, TIME/DIV. to $5 \mu \mathrm{~s} / \mathrm{div}$. TRIGGERING MODE TO P-P AUTO or AUTO
$7 B 87$ TIME/DIV. to $2 \mu \mathrm{~s} / \mathrm{div}$.
7854 A \& B TRIGGER SOURCE to RIGHT

Enter the program into the 7854 memory as shown in the listing in Figure 10.

This program allows you to enter the manufacturer's SOA limits on a device and check the device against those limits under actual
working conditions. The $X-Y$ display is in a log scale just as in the manufacturer's data sheet. Cursor coordinates are logarithmic values.

Linear values for time can be obtained by entering "HCRD . 4343 / EXP". A program flow chart is shown in Figure 11.

00010 CHS ENTER $2>C N S$
0010 ENTER $4>C N S$
0021 ENTER $5>C N S$
003.01 ENTER $6>C N S$

004 CLD OFF VECT TIME STORED
0051 WFM 0 * 1 >WFM 2 >WFM
006 L00
007 STOP ENTER
0086 CNS IFY>X CLX 01 LBL GOTO
009 CLX 6 CNS ENTER
010 L01
011 LN . 4343 * $1>C N S$
012 CLX 5 CNS IFY>X CLX 02 LBL GOTO
013 CLX 5 CNS ENTER
014 LO2
015 LN .4343 * 0 CNS
0160 CNS 2 CNS IFX=Y 20 LBL GOTO
0171 WFM 0 CNS 10 LBL GSB
0180 WFM 1 >WFM
0192 WFM 1 CNS 10 LBL GSB
020 O WFM 2 >WFM
0214 CNS $2+4>C N S \quad 0$ CNS $2>C N S$
02210 ENTER 4 CNS IFX=Y 20 LBL GOTO
02300 LBL GOTO
024 L10
025 HSCL 4 CNS * >ORD
0264 CNS O IFX=Y 15 LBL GOTO
027 HSCL 4 CNS 2 - * HSCL 4 CNS *
028 O WFM 5 >WFM CLX ITRP
029 L15
030 RTN
031 L20
0321 WFM
033 HSCL 10 * $\mathrm{P} / \mathrm{W} / \mathrm{P} / \mathrm{W} 1$ - *
$0347>C N S \quad 0$ CNS $X<>Y>O R D$
035 HSCL 4 CNS 2 - *
0367 CNS ITRP
0370 ENTER P/W $1->P N T O$ WFM 5 >WFM
038 . 5 HXPD 5 HSCL * HPRGT
0390 WFM 1 >WFM
0402 WFM HSCL 10 * P/W / P/W 1 - *
0417 >CNS 6 CNS LN . 4343 * $\mathrm{X}\langle>\mathrm{Y}>\mathrm{ORD}$
042 HSCL 4 CNS 2 - * 7 CNS ITRP
0430 ENTER P/W 1- >PNT O WFM 5 >WFM
044 . 5 HXPD HSCL 5 * HPRGT
0450 WFM 3 >WFM 1 WFM $2>W F M$

046 L 31
047 STORED TIME BOTH
048 VMDR HMDA GND STOP
04930 AVG CRS 2-1 STOP
050 HXPD MIN - 8 >WFM
051 VMDL GND STOP
052 ENTER 10 >CNS
05330 AVG HXPD OFF STORED
05410 CNS >VSCL
0556 CNS 11 >CNS $0 \quad W F M$
056 MIN - 40 LBL GSB
057 HSCL 3 WFM X<>Y $>$ HSCL
058 CLX 0 WFM +60 LBL GSB
$0596 \mathrm{X}<>\mathrm{Y}$ VSCL / / VXPD
060 3CHS MIN VSCL /
061 - >VZR
062 O WFM $4>$ WFM
$0635 \mathrm{CNS} 11>C N S 8 \mathrm{WFM}$
06440 LBL GSB
065 HSCL 2 WFM X<>Y $>H S C L$
066 CLX 0 WFM +60 LBL GSB
$0679 \mathrm{X}\langle>\mathrm{Y}$ VSCL / / VXPD
068 5CHS >VZR
$0691>V S C L$
070 WFM 5 $>$ WFM
0711 >VSCL
0724 WFM 5 VS VECT
073 STOP
074 TIME 31 LBL GOTO
075 L40
$0766>W F M$ CLX MIN X<>Y
077 IFY>X 50 LBL GOTO
0786 WFM 11 CNS - SGN
$0791+2 / 6$ WFM * 11 CNS +
080 WFM $6>$ WFM
081 L50
0826 WFM LN . 4343 *
0830 P/W $1->P N T$
0840 WFM $6>W F M$. 5 HXPD
085 RTN
086 L60
087 CRS 1 HSCL 5 * $>$ HCRD
088 CRS2-1 0 >HCRD HSCL 10 *
$089 \mathrm{P} / \mathrm{W} / \mathrm{HSCL} 10$ * $\mathrm{X}\langle>\mathrm{Y}$ -
090 HSCL 5 * - >HCRD P-P
091 OFF RTN

Figure 10. SOA Program Listing

018-store results in 1 WFM

019-recall 2 WFM \& 1 CNS, goto label 10 subroutine

020-store results in 2 WFM

021 -increment count by 2, store in 4 CNS, store voltage entry in 2 CNS

022 -check count, if count equals 5 goto label 20

023-goto label 00 if done, restart loop

024-label 10
025 -move to point at horizontal scale
factor times number of entries, create point equal to entry

026-if first entry, then goto label 15

027 -find previous entry

028 -connect last 2 points with straight line
029-1abel 15
030-return from subroutine

053 -waveform averaged 30 times \& expanded over same area as previous, cursors are turned off, display is in stored mode 054-scale factor is in amps

055 -recall minimium voltage level, o WFM 056-goto subroutine at label 40

057-get scale factor from current waveform, recall 3 WFM \& add scale factor

058-combine current waveform with x part of limit curve \& goto label 60 subroutine
line 059 to 61 - the waveform is adjusted in size and offset to the correct position on screen

062 -current waveform is stored in location 4

063 -recall voltage waveform \& minimium voltage
$064-$ goto label 40 subroutine
$065-$ recall voltage scale factor, recall
2 WFM \& add scale factor

066 -add voltage waveform to Y part of SOA curve \& goto label 60 subroutine

Using the Program

Ground the inputs to both vertical amplifiers.

Initialization

Press the START (f RUN) button. This will initialize the program, which will stop at line 007 to wait for the first point of the SOA curve. The SOA curve points are entered as $X-Y$ coordinates. For example, 1 Volt and 10 Amps would be entered as "1 ENTER 10 RUN)". Entry should begin with the minimum voltage/maximum current point (upper left corner) and proceed sequentially to the maximum voltage/minimum current point (lower right corner).

In lines 010 through 020, the voltage and current information are changed into log 10 and two waveforms are formed for an X-Y display (lines 021 through 023). Line 012 ends the input if the last two voltage points were equal. Line 022 ends the input if a total of five points were entered.

Program lines 031 through 045 compress the 2 waveforms by $1 / 2$, put both in the right half of the waveform, and store both as waveforms 2 and 3 . Later, these waveforms will be combined with the current and voltage acquisitions for $X-Y$ display. Thus, each waveform will be one half acquired data and the other half SOA limit information. Lines 046 through 048 acquire a ground for the left vertical plug-in.

Turn on the device under test and set the right vertical inputs to DC.

Bracket the Waveform

Press the RUN button. The program will stop in line 049. You can now move the cursors to bracket the section of waveform that is of interest. Press the RUN button again and the waveform will be acquired and expanded horizontally (to the limits set by the cursors), then stored as waveform 8. A ground reference will also be acquired for the left vertical channel.

Waveform Combination

Set the left vertical input to DC, enter the AMPS/DIV. setting from the AM5O3 and press the RUN button again. The waveform will be acquired and expanded, then both waveforms changed to log 10 data and compressed by $1 / 2$ (lines 075 through 085). The four waveforms are thus combined into two waveforms. Waveforms 2 and 8 are combined and stored as waveform 4. Waveforms 3 and 6 become waveform 5 . Waveforms 4 and 5 are displayed in X versus Y mode.

Conclusion

Power supply device safe operating limit information is important to the power supply designer. The usual method of obtaining this information is to measure the device, then compare it to a manufacturer's data sheet. As shown, with the 7854 this measurement and comparison are made at the same time automatically.

SECTION 4

MAGNETIC TESTING B/H CURVE

Background

The following paragraph provides a brief review of magnetics in switching power supplies. It includes a brief discussion of magnetic design and power supplies, then B / H curves and applications, and finally, a chart that shows the units and terms used in magnetics. Material of this type can be found in a variety of sources; however, UNITRODE has summarized the subject in excellent fashion in their power supply design seminary workbook.*

Components

Magnetics must be considered in two very important components used in power supplies, the transformer and the inductor. These devices are somewhat similar, but are used quite differently. A transformer is used to couple energy and, therefore, any energy storage
is undesirable. The inductor, however, is intended primarily to be an energy storage device. In designing a power supply, transformer energy storage results in inefficiencies and losses, decreasing the efficiency of the supply. Thus, an efficient inductor design must take into account the maximum energy storage, at the threshold of saturation, that will result in the desired ripple current.

Terms

Term	Parameter	SI Units.	CGS Units
B	Magnetic flux density	Tesla	Gauss
H	Magnetic field intensity	A-T/m	Oersted
u_{o}	Permeability	$4 \times 10-7$	1
Ae	Effective magnetic area	m 2	cm 2
le	Mean magnetic path length	m	Cm
ϕ	Magnetic flux	Weber	Maxwell
mmf	Magnetic potential	amp-turns	Gilbert
N 1	Number of turns on the core		
N 2	Number of turns on pickoff winding		
H field $=\mathrm{N} 1 \times \mathrm{l} / \mathrm{l}$ l			
B field $=1 / \mathrm{N} 2 \times$ Vdt.			

Energy Storage

By using a B/H curve from a magnetic core, the energy storage of that core can be determined. A B/H curve is the plot of the flux density against the magnetic field intensity of the core. A number of parameters must be known about a core in order to calculate the B / H curve, including the length of the magnetic path, the effective magnetic area, the number of turns in the winding, and others.
B field $=1 / \mathrm{N} 2 \times V d t$.

[^0]

Figure 12. B/H Curve

Figure 13. B/H Curve Test Set-up

B/H

 MeasurementsThe 7854 can provide a method for checking the losses in the transformer in a switching power supply under actual operating conditions. The program for such an application displays the B / H curve of a switching power transformer with the proper labels in SI units, which can be easily transformed into CGS units. The area of the B / H curve can be calculated and displayed. Figure 12 shows the B / H curve of the transformer in the test power supply. The set-up is shown in Figure 13.

Set-up

7A18A Display Mode to ADD, trigger source to CH 2 POLARITY to INVERT, V/DIV to $50 \mathrm{mV} / \mathrm{div}$ (both).
7 A 13 V/DIV to $1 \mathrm{~V} / \mathrm{DIV}$. This setting depends on the turns ratio (primary to pickoff) times the voltage swing on the primary. Display to Center Screen
7B85 TIME/DIV to $10 \mu \mathrm{~s} / \mathrm{div}$ B DELAY MODE to INDEPENDENT
7854 A TRIGGER SOURCE to LEFT VERT.
Enter the program shown in Figure 14 into the 7854 memory.

```
000 L00
001 VMDL HMDA CLD TIME GND STOP
002 10 AVG CRS2-1
O03 STORED STOP
004 0 WFM
O05 HXPD 4 >WFM VMDR GND STOP
OO6 ENTER 3 >CNS
007 10 AVG HXPD 6 >WFM OFF
008 30 ENTER
009 10 ENTER
010 1 >CNS CLX O >CNS
011 100 ENTER 4 ENTER 3.14 * /
012 7 >CNS
013 1 ENTER 1 CNS / 4 >CNS
014 10EEXCHS4 ENTER 6 >CNS
015 . 27 ENTER
016 . 18 ENTER
017 30 >CNS CLX 20 >CNS
018 3 CNS O CNS * 30 CNS /
019 5 >CNS
020 LO2
021 OFF
022 4 WFM O >WFM 3 CNS >VSCL
023 MEAN -
024 1.5 VXPD
025 0 WFM 4 >WFM
026 6 WFM MEAN - INTG
027 MEAN -
```

Figure 14. B/H Curve Program Listing

Using the Program

Set the input coupling to ground on both vertical amplifiers and turn on the test power supply.

Press the 7854 START (f RUN) button. The program will acquire a ground reference for the lefthand vertical plug-in and stop at line 002 .

Set the 7A18A CH1 and CH 2 inputs to DC.

Bracket the Waveform

Press the RUN button. The program will acquire the current waveform and turn on the cursors. You can then bracket the cycle or cycles of interest in the waveform with the cursors (one complete cycle is adequate for a good display).

Press the RUN button again. This causes the area bracketed by the cursors to fill the entire screen. Also, the program will acquire a ground reference for the righthand vertical plug-in.

Set the 7A13 + input to DC.
Enter the current/div setting (probe setting times $50 \mathrm{mV} / \mathrm{div}$) on the 7854 calculator keyboard.

Curve Calculation

Press the RUN button again. The program will acquire the voltage waveform and expand it as with the current waveform. Program lines 005 through 011 initialize the constants necessary to provide the proper units (see Figure 15).

In line 005, enter the AMPS/DIV setting (3 CNS is the proper setting of amps/div for the AM503).

Program Description

Program lines 017 through 020 accomplish positioning and vertical expansion. Line 021 integrates the voltage waveform. Line 032 re-labels the voltage waveform. Line 036 re-labels the current waveform. Line 039 calculates the area. Line 041 displays the B / H curve, and the area is displayed in the X register. The algorithm is defined as follows:

All values are expressed in SI units. The H field or magnetic field intensity is expressed in Amp Turns/Meter.

Figure 15. Transformer Core

Energy Algorithm

The following is a description of the energy loss in a transformer core:
$\mathrm{N}_{1}=$ number of primary turns
$\mathrm{N}_{2}=$ number of secondary turns
$A=$ cross sectional area of core
$\ell=$ mean length of the core
$\mu=$ permeability of the core
To find the work (energy loss of the core):
$W=\int H \cdot d B=\int H\left(\frac{d B}{d t}\right) d t$
where:
$B\left(\underset{(2 W F M \text { in 7854) }}{\text { magnetic flux density })}=\frac{\mu N_{2} i_{2}}{\ell}=\frac{1}{N_{2} A} \int v_{2} d t\right.$
$H\left(\underset{(3 W F M}{\text { magnetic field intensity })}=\frac{N_{1} i_{1}}{\ell}\right.$

7854 Implementation of Algorithm

To the 7854 , this is
3WFM, 2WFM, DIFF * AREA

As shown in Figure 16, the program is simple and efficient.

enter amps

line 000-label 00
001 -vertical mode to left, horizontal mode to A, clear display, reset mode to time, ground is acquired and program stops
The user now sets left vertical to DC, turns on the power supply and presses RUN on the 7854 keyboard

> 002 -waveform is averaged 10 times, 2
> cursors are turned on
> 003- 7854 mode to STORED and program stops The user now brackets the section of waveform of interest with the cursors (for most pleasing results, bracket an integer number of cycles) Now press RUN

```
004-0 WFM is in X register
005-expand waveform, store in location
    4 ~ W F M , ~ v e r t i c a l ~ m o d e ~ t o ~ r i g h t ,
    acquire ground reference and
    program stops
The user sets the right vertical to DC, enters
the amps/div and presses RUN
```



```
027-recall voltage waveform, subtract
    the mean, and integrate the waveform
028-expand the waveform by 1.5
029-store waveform in 5 WFM
030-label 05
031-recall current waveform
032-recalculate scale factor in amp-turns
033-store scale factor in 21 CNS
034-store waveform in 2 WFM
035-recall current waveform
036-recalculate scale factor in Webers
037-store scale factor in 31 CNS
038-store waveform in 3 WFM
039-differentate 2 WFM, multiply 3 WFM
    times resultant waveform, find the
    absolute area
    040-store area in 40 CNS
    041-display 3 WFM versus 2 WFM, area is
        displayed in the X register
    042-044-clear x, calculate area,
        and stop
```

The user may now redisplay the waveform with units in CGS by pressing RUN

```
045-051-changes from SI to CGS units and
    displays waveform
```

Figure 16. B/H Curve Program Flow Chart

Conclusion

By using the B / H curve program, the 7854 can measure inductor energy storage under dynamic conditions. This allows the designer to optimize inductor designs for the most efficient power supply.

SECTION 5

OUTPUT IMPEDANCE MEASUREMENT

In power supply evaluation, it is often desirable or necessary to measure the output impedance versus frequency of a supply under operating conditions. This is because power supply stability is an important consideration, and a relatively simple way to check the stability of a supply under actual load conditions is to check the output impedance of the supply over a certain frequency range. In using the 7854 in such applications, a capacitively coupled sinewave is applied to the output of the test power supply as shown in the test set-up of Figure 17. For best results, it is desirable that the signal-to-noise ratio be 30 dB . The amount of current and voltage induced in the output of the supply is used to calculate the output impedance (Zout = Epk-pk/lpk-pk). Figure 18 shows an example of the test supply output impedance.
Note that the program listed in Figure 19 requires the user to input the next frequency into the sinewave generator before continuing the program. This is fine for checking a few points, however in Figure

18, 128 points were checked from 1000 Hz to 0.1 MHz . An automated version of this program was used to generate this waveform. A discussion of automating this program is on page 25.

Current versus voltage phase measurements over the frequency range can also be added easily to this program. This information can provide the designer with more information about the power supply.

Figure 17. Output Impedance Measurement Test Set-up

Set-up

7A18A

MODE to CH 1
CH1 to DC V/DIV to $10 \mathrm{mV} / \mathrm{div}$
7A13 BANDWIDTH to 5 MHz AC/DC to AC VOLTS/DIV to 2 mV /div 7B85 B DELAY to INDEPENDENT TIME/DIV to $10 \mathrm{~ms} /$ div Sinewave Frequency to 1000 Hz generator Output to 5 volts

Set A trigger mode to LEFT VERT.

Enter the program shown in Figure 19 into the 7854 memory.

Figure 18. Output Impedance

Figure 19. Output Impedance Measurement Program

Using the Program

Turn on the test power supply. Press the 7854 START (f RUN) button. Program lines 000 through 008 initialize the constants. Line 003 is the AMPS/DIV setting that is entered by the user. Line 004 zeroes the counter. Line 005 is the number of steps. Line 006 is the starting frequency. Line 008 is the ending (maximum) frequency. Lines 008, 009 and 010 together
are the frequency per step. Line 011 is the amps/div.

Enter the AMPS/DIV setting from the AM503 and press the 7854 RUN button.

Acquisition

Line 012 steps to the acquisition subroutine. Lines 019 through 032 acquire the waveform, measure the peak-to-peak value, and place it into 3 CNS. The voltage (2 CNS) is divided by the current (3 CNS) to determine the resistance. This value is then used as the next data point in waveform 4.

Calculations

Lines 033 through 041 contain the display subroutine. The impedance waveform (waveform 7) is converted to $\log 10$ and stored as waveform 9 . The impedance waveform and the log impedance waveform are then displayed.

As shown in Figure 20, the program is uncomplicated and efficient. However, note the special considerations that follow the figure.

Special Considerations

If large frequency ranges are to be tested, the 7B85 time/division will require manual adjustment as the frequency increases. It is recommended that between 2 and 10 cycles be displayed during each measurement.

Automation

To further automate this test, one line can be added to the 7854 program and a short program can be generated on a GPIB controller (such as the Tektronix 4052A) to take the next frequency from the 7854 and set a programmable sinewave generator (such as the Tektronix FG5010) to this frequency.

Adding a "SENDX" to line 019 before the "STOP" will cause the 7854 to send the next frequency step to the controller. The controller will then send the frequency setting to the sinewave generator. An example program for the controller is shown in Figure 21.

```
100 PAGE
110 POLL D,S;24
120 PRINT @24:"FREQ 1000;AMPL 5;
OUTPUT ON;FUNC SIN;MOD CONT"
130 POLL D,S;24
140 ON SRQ THEN 1000
150 S=0
160 PRINT @1:"O GOTO"
170 PRINT @1:"RUN"
180 IF S<>2 AND S<>66 THEN 180
190 PRINT "ENTER AMP/DIV "
200 INPUT A
210 PRINT @1:"READX"
220 IF S<>147 AND S<>211 THEN 220
230 PRINT @1:A
240 IF S<>2 AND S<>66 THEN 240
250 FOR I=1 TO 127
260 S=0
270 PRINT @1:"RUN"
280 IF S<>146 AND S<>210 THEN 280
290 INPUT @1:F
300 S=0
310 PRINT @24:"FREQ ";F
320 CALL "WAIT",2
330 NEXT I
340 PRINT @1:"RUN"
350 END
1000 CALL "WAIT",. 2
1010 POLL D,S;1
1020 CALL "WAIT",.2
1030 RETURN
```

Figure 21. 4052A Program

Phase Information

The 7854 can capture and display phase information with the addition of a subroutine to the program. The listing and flow chart for this subroutine are shown in Figures 22 and 23. In addition to the subroutine, the only program lines that must be added are a "3 LBL GSB" after line 014 and a line to display the waveform at the end of the program.

The results of the phase programs are shown in Figure 24.

```
046 L03
047 2 WFM
048 1 SMOOTH
049 CRS1 HSCL . 5 * > HCRD
050 CRS2-1 HSCL 9 * > HCRD
051 MID - O WFM HXPD OFF
052 MID 2 / PER 9 >CNS
053 360 / 2 >CNS
054 0 WFM CRS1 0 >HCRD
055 CRS2-1 9 CNS >HCRD
056 0 WFM HXPD
057 CRS1 0 >HCRD
058 SGN DIFF SGN
059 MAX >VCRD
060 HCRD 4 >CNS OFF
061 3 WFM O >WFM
062 CRS1 HSCL . 5 * >HCRD
063 CRS2-1 HSCL 9 * >HCRD
064 0 WFM HXPD
065 CRS1 0 >HCRD
066 CRS2-1 9 CNS >HCRD
067 0 WFM HXPD CRS1
068 SGN DIFF SGN
069 MAX >VCRD HCRD 3 >CNS
070 4 CNS 3 CNS - 2 CNS /
071 12 >CNS OFF
072 5 WFM
07312 CNS 10 CNS >ORD
074 0 WFM 5 >WFM
075 RTN
```

Figure 22. Phase Plot Subroutine

Figure 23. Phase Plot Flow Chart

Conclusion

By using the 7854 with a controller such as the 4052A and a programmable generator such as the FG5010, dynamic power supply stability is checked automatically. This measurement would require a lot of "button pushing" and "babysitting" without the use of the 7854, 4052A and FG5010.

Figure 24. Phase of Current vs. Voltage Over Frequency Range

RIPPLE AND NOISE MEASUREMENT

Semi-automatic ripple and noise testing of power supplies is often desirable in production environments. Using the 7854, this can be done efficiently.

Ripple Measurement

Ripple of interest could be a multiple of the 6 OHz input or the
switching frequency of the power supply. This can be measured easily with the 7854 , but a precaution must be mentioned. It may be necessary to use either line triggering for the 7B87 timebase or an external trigger from the switcher with 64 averages by the 7854 to examine the actual ripple signal.

Figure 25. Example of Noise Measurement Technique

Figure 26. Ripple/Noise Measurement Test Set-up

Noise Measurement

There is no universally accepted measurement procedure or technique for measuring output noise of switching power supplies. Ground loops, lead lengths, inductive loading and other factors can drastically affect such measurements. One technique that is sometimes used is shown in Figure 25. This technique requires very careful set-up, however.
Another technique compares noise among several power supplies. This is done with the test setup shown in Figure 26 and with the procedure and program that follow.

Set-up

7A13 + and - inputs to AC VOLTS/DIV to $10 \mathrm{mV} / \mathrm{div}$. B DELAY MODE to INDEPENDENT.
Enter the program shown in Figure 27 into the 7854 memory.

Figure 27. Ripple/Noise Program

Figure 29. Ripple Measurement with Limit Lines

Using the Program

Press the START (f RUN) button. The program will produce a display (see Figure 29) and X register readout of the ripple and noise size. For this example, program lines 001 through 011 create two limit lines: waveform 2 is +25 millivolts from center screen, waveform 3 is -25 millivolts from center screen. Lines 012 to 017 acquire the waveform, compare the peak-to-peak voltage with 50 millivolts and stops if it is not within specifications.

A flow chart for this program is shown in Figure 28.

Ripple and noise measurements to desired specifications can be made using the listed program. The 7854 provides an efficient means of automatically rejecting any supply that does not meet requirements.

You may want your program to examine specific frequency components, several different frequency components, or total noise. The random noise generated by this test set-up is quite large. The two averages at line 013 reduce the random noise. However, you may want to change the test setup to reduce this noise further.

Summary

The 7854 Programmable Oscilloscope with its waveform processing capability is a powerful tool for power supply design. It helps the designer to provide reliable, properly specified power supply components. It can also help to shorten and simplify the design process.

The 7854 makes use of a waveform calculator for added flexibility. The 7854 is a high performance oscilloscope for general power supply measurements. It is also a digitizer for automation of key power supply design function.

Roger Ensrud
 Applications Marketing Laboratory Instruments Division Tektronix, Inc.

The author offers special thanks for the able assistance of Laudie Doubrava, Dave Drummond and Clark Foley.

For further information, contact:
U.S.A., Asia, Australia, Central \& South America, Japan
Tektronix, Inc.
P.O. Box 1700

Beaverton, Oregon 97075
For additional literature, or the address and phone number of the
Tektronix Sales Office nearest you, contact:
Phone: (800) 547-1512
Oregon only: (800) 452-1877
Telex: (910) 467-8708
TLX: 151754
Cable: TEKWSGT
Europe, Africa,
Middle East
Tektronix Europe B.V
European Headquarters
Postbox 827
1180 AV Amstelveen
The Netherlands
Phone: (20) 471146
Telex: 18312-18328

Canada

Tektronix Canada Inc.
P.O. Box 6500

Barrie, Ontario L4M 4V3
Phone: (705) 737-2700

Tektronix sales and service

offices around the world:
Albania, Algeria, Angola, Argentina, Australia, Austria, Bangladesh, Belgium, Bolivia, Brazil, Bulgaria,
Canada, Peoples Republic of
China, Chile, Colombia, Costa Rica,
Czechoslovakia, Denmark, East
Africa, Ecuador, Egypt, Federal
Republic of Germany, Fiji AWA New Zealand, Finland, France, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Ivory Coast, Japan, Jordan, Korea, Kuwait, Lebanon, Malaysia, Mexico, Morocco, The Netherlands, New Zealand, Nigeria, Norway,
Pakistan, Panama, Peru,
Philippines, Poland, Portugal,
Qatar, Republic of South Africa, Romania, Saudi Arabia, Singapore,
Spain, Sri Lanka, Sudan, Sweden,
Switzerland, Syria, Taiwan,
Thailand, Turkey, Tunisia, United Arab Emirates, United Kingdom, Uruguay, USSR, Venezuela, Yugoslavia, Zambia, Zimbabwe.

Copyright © 1984, Tektronix, Inc All rights reserved. Printed in U.S.A. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX TEK, SCOPE-MOBILE, TELEQUIPMENT and are registered trademarks. For further information, contact: Tektronix, Inc., Corporate Offices, P.O. Box 500, Beaverton, OR 9707. Phone: (503) 627-7111; TLX: 151754 sidiaries and distributors worldwide.

[^0]: *Unitrode Power Supply Design
 Seminar, Copyright 1982 Unitrode
 Corp., Lexington, MA.

