
Oscilloscope Tube

PRELIMINARY DATA

GENERAL

This 13 cm diameter oscilloscope tube is primarily intended for use in inexpensive oscilloscopes and monitoring devices. The tube has sufficient deflector sensitivity to permit transistor driven deflection.

ABSOLUTE RATINGS - voltages with	respect to cathode	Max	Min	
First anode voltage	v_{a1}	2200	1250	v
Second anode voltage	v_{a2}	800	- •	v
Third anode voltage	v_{a3}	2250	1200	v
Negative grid voltage	-Vg	200	1.0	V
Peak x-plate to third anode voltage	v _x -a3 (pk)	500	-	v
Peak y-plate to third anode voltage	vy-a3 (pk)	500	-	v
Heater to cathode voltage	v_{h-k}	± 125		v
x-plate to third anode resistance	R _{x-a3}	2.0		$M\Omega$
y-plate to third anode resistance	Ry-a3	2.0	-	$M\Omega$
Grid to cathode resistance	R_{g-k}	1.5	, -	МΩ
Peak cathode current	i _{k(pk)}	_500	-	μΑ

PHOSPHOR SCREEN

This tube is usually supplied with GH phosphor (D13-630GH) giving a green trace of medium short persistence. Other phosphors can be made available to special order.

INTER-ELECTRODE CAPACITANCES

Grid 1 to all	cg1-all	5.5	pF
Heater and cathode to all	ch, k-all	3.8	pF
x ₁ plate to x ₂ plate	c _{x1-x2}	1.2	рF
y ₁ plate to y ₂ plate	c _{y1-y2}	1.1	рF
x ₁ plate to all, less x ₂ plate	c _{x1-all, less x2}	4.2	pF
x2 plate to all, less x1 plate	cx2-all, less x1	4.0	рF
y1 plate to all, less y2 plate	cy1-all, less y2	3.4	ρF
y2 plate to all, less y1 plate	cy2-all, less y1	3.4	рF
x1, x2 plates to y1, y2 plates	cx1.x2-y1.y2	0.8	pF

TYPICAL OPERATION - voltages wit	h respect	to cathode		
Mean deflector plate potential*		1500	2000	v
Third anode voltage for optimum astigmatism correction	v_{a3}	1500†	2000†	• 🔻
Second anode voltage for optimum focus	V _{a2}	315 to 465	420 to 620	v
First anode voltage	v_{a1}	1500	2000	v
Shield voltage for optimum raster shape	Vs	1500 †	2000†	v
Control grid voltage for cut-off	v _{g1}	-30 to -65	-40 to -87	v
x deflection coefficient	$\mathbf{D}_{\mathbf{X}}$	- 14.3 to 17.5	19 to 23	V/cm
y deflection coefficient	$D_{\mathbf{y}}$	9 to 11.3	12 to 15	V/cm
Minimum useful screen area (Diagonal 11.4 cm)		10 x 8.0	10 x 8.0 10 x 8.0 cm	
Grid drive to $10\mu\mathrm{A}$ beam current		13	13	v
Line width at $10\mu\mathrm{A}$ beam current Shrinking raster measurement at cent	re	0.36	0.31	mm

- * This tube is designed for symmetrical operation.
- \dagger The required voltage will not differ from the quoted value by more than \pm 50V.

RASTER DISTORTION AND ALIGNMENT

The undeflected spot will fall in a circle of $7\,\mathrm{mm}$ radius about the centre of the tube face.

Raster distortion: the edges of a test raster will fall between two concentric rectangles 8.5 cm x 7.0 cm and 8.3 cm x 6.88 cm.

Rectangularity of x and y axes is $90^{\circ} \pm 1^{\circ}$.

It is preferable that the mean x and y plate potentials are equal otherwise some deterioration in performance will occur. Under no circumstances should the mean y plate potential differ from the mean x plate potential by more than 50V.

MAGNETIC SHIELDING

Adequate magnetic shielding is required. In addition due attention should be paid to the position of the tube relative to transformers and chokes.

TUBE WEIGHT (approximate) 900 g

MOUNTING POSITION - unrestricted.

Thorn Radio Valves and Tubes Limited

