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EMGAP SOLVES ELECTROMAGNETIC 
PROBLEMS USING FINITE 
ELEMENT ANALYSIS 

Jeffrey Beren supervises electromagnetic model- 

ing in High Frequency Component Development, 
part of the Solid State Group. Jeff joined Tek in 
1977. He received his BSEE from Washington 

University (St. Louis, Missouri); his MSEE from the 
University of Arizona (Tucson); and his PhD in 
electrical engineering from the University of 

Arizona. 

Bob Kaires is an electrical engineer doing electro- 

magnetic modeling within High Frequency Com- 

| ponent Development, part of the Solid State 
Group. He joined Tek full time in 1979 after 
summer interning in 1978. Bob received his BS in 

physics from Rutgers College (New Jersey) 
and his MS in physics and MS in electrical 

engineering from Michigan State University. 

Introduction 

The Electromagnetic General Analysis Package (EMGAP) is an 
evolving collection of software programs that allows the user to 
solve electromagnetic problems in 1, 2, and 3 dimensions. 

The package is divided into three major parts (see figures 1 and 
2). The input and output parts are handled by pre- and post- 
processor programs, which reside on a VAX computer opti- 
mized for interactive graphics. The numerical analysis program 
resides on a Cyber computer optimized for numerical analysis. 
In this configuration, additional preprocessors, postprocessors 
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Figure 2. 

and numerical analyzers can be added to EMGAP as the need 
arises. 

EMGAP Today and Tomorrow 

The current version of EMGAP is a collection of Structural 

Dynamics Research Corporation (SDRC) software designed for 
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mechanical engineering finite element analysis!'-7] (This soft- 
ware is marketed by General Electric, Computer-Aided Engi- 
neering International.) Because the finite element technique is a 
very general numerical technique (see The Finite Element 
Method), nothing inherently restricts the technique to mechani- 
cal engineering. Many of the mathematical equations that 
describe mechanical engineering problems also describe elec- 
trical engineering problems. 

In the current version of EMGAP, we use the SDRC software 
that solves the mechanical engineering heat problem (Laplace's 

equation). For electromagnetics, the heat problem can be inter- 
preted as the electrostatics problem. Thus, we can make corre- 
spondence between isotherms and equipotentials, heat flux and 
electric flux, heat source and electric charge. 

In EMGAP, the SDRC preprocessor program SUPERTAB 
handles interactive graphic input. Interactive graphics output is 
handled by SDRC postprocessor program SUPER, which plots 
the problem geometry, equipotentials (isotherms), and lines of 
constant-D field (heat flux) magnitude. 

The numerical analysis is done with SDRC analysis program 
SUPERB. SUPERB solves Laplace's equation (electrostatic and 
magnetostatics problems in source-free regions), and we have 
modified it to calculate electrostatic capacitance (or magneto- 
static reluctance). SUPERTAB and SUPER temporarily reside on 
the HCAD VAX with the VMS operating system, and SUPERB 
resides on the CYBER A machine (figure 2). 

In future versions of EMGAP, Poisson’s equation (electrostatics 
and magnetostatics problems in regions containing sources) 
and Helmholtz’s equation (electrodynamics) will be available. In 
addition, the organization of the package is versatile enough to 
let us add software other than mechanical engineering software. 
Thus specific programs written directly for electrostatic applica- 
tion!8] could be added to the package. The software added 
could then employ SUPERTAB to set up the problem geometry. 
However, future development depends on how users respond 
to the current version of EMGAP and what future capabilities 
users want. 

Applications and Capabilities 

Some of the 2-D capability of EMGAP now includes shielded 
transmission lines of arbitrary cross-section, magnetic relays, 

gallium arsenide (GaAs) bridges and air lines, and high voltage 
structures. 

A shielded microstrip problem is an example of an EMGAP 
solution of a shielded transmission line of arbitrary cross-section. 
Figure 3 shows the element arrangement of half of a shielded 
microstrip transmission line. Only half of the geometry need be 
entered because of the symmetry plane perpendicular to, and 

bisecting, the microstrip. Figures 4 and 5 show the equipoten- 
tials for substrate dielectric constants (e€,, equal to 1 and 10, 
respectively). 

For the substrate with e,= 10, a closed-form solution, accurate 
to 1%, gives a capacitance of 178.074 pF. Using 60 cubic 
elements, EMGAP gave a capacitance value of 181.507 pF, a 
difference of 1.9%. The problem was solved again using 150 

cubic elements, reducing the difference to less than 1%. 
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For the case of substrate dielectric e, = 1, EMGAP gives a value 
of capacitance of 27.491 pF. Using this value and the one 
above for e, = 10, we calculated the characteristic impedance 
for the shielded microstrip as 47.67 ohms. 

Another EMGAP application involves an axially symmetric 
magnetic relay. Figure 6 shows a radial slice of a 3-dimensional 
object used to model a magnetic relay. The solid can be gener- 

ated by rotating the slice about the Z axis. SUPERB handles this 
as a 2-dimensional problem because of the symmetry. 

Figures 6 and 7 show lines of constant magnetic potential. 
Figure 7 is a magnification of an interesting area that also shows 
element density. From repeated solutions of this problem for dif- 
ferent armature/pole piece separations, we produced a curve of 
reluctance vs. spacing (figure 8). 
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GaAs INTERELECTRODE CAPACITANCE 
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Figure 9. 

The GaAs bridges and air lines example demonstrates the ability 
of the EMGAP program to handle a problem with more than 
one dielectric region. Figure 9 shows five different dielectric 

regions. For one such interelectrode configuration — the air 

bridge — three of the five regions (R1, R2, and R3) have air 
dielectric constants. Figure 10 shows the equipotentials and 
finite element density for this analysis. If R3 has a dielectric con- 

stant other than air, the same model (figure 9) represents a 
bridge conductor resting on a dielectric support. For various 
spacings of electrode 1 to electrode 2 and for different dielec- 
trics, it was possible to develop design curves for the interelec- 
trode capacitance (figure 11). This information can be used to 

help design GaAs circuits. 

EMGAP also solves high-voltage analysis problems such as a 
wire over a ground plane (in a box) (figure 12). We can set up 
the model to minimize the effects of the sides and top of the box 
(figure 13). Windowing in on figure 13, we can see the details of 
the equipotential lines for a line above a ground plane (figure 
14). SUPERB calculates field strength, field energy, and poten- 
tials. For more complex problems, we can study the effect the 
model’s geometry has on these parameters. 

A shielded square capacitor problem demonstrates the 3-D 

capability of the program (figure 15). For this example, we con- 

sidered the dielectric region to be.air. The element density and 
equipotential contours are presented at various cross-sections: 

(1) in the plane of the square plate (figure 16), (2) in a plane paral- 

lel to the preceding case but one unit above the plane of the 

square plate (figure 17), and (3) in a perpendicular plane bisecting 

the square plate (figure 18). Note the similarity of the equipoten- 

tials for the bisecting plane (figure 18) and the equipotentials for 

the shielded microstrip problem (figure 4). 

IL \ 
\\ 

AN AAA WZ AS 
ont tit 2 
Shhh 

eS ENN WO AA aS 
TEES tp pa a ar A 
SS “NS —— | L L ~* 

EQUIPOTENTIAL AND ELEMENT PLOT 

Figure 10. 

24 1 | 

INTERELECTRODE CAPACITANCE 

22 

20 

U q ' ‘ . ' ' T 

R3/R2 

77 

3.8/3.8 
OO 

TH 

CA
PA

CI
TA

NC
E 

fF
/1

00
 
pm
 

i 
T
T
T
P
E
T
C
T
P
I
T
r
r
y
p
r
r
r
r
r
y
p
r
y
p
r
 

yr
 

7?
 

r
i
a
i
b
i
d
l
i
t
i
r
i
y
 

t
i
 
t
a
t
s
 

b
a
 
t
a
t
 

SPACING pz m 

~ mele 3.8/1 

6 a 
ol. - * miei 

4 

2 

0 i i L l L i rn L 

0 2 4 6 8 40 12 

Figure 11. 

TECHNOLOGY 
REPORT 



SHIELD 

— 

WIRE 

WIRE OVER A GROUND PLANE IN A BOX 

GROUND pane! 

Figure 12. 

WIRE OVER A GROUND PLANE IN A BOX 
EQUIPOTENTIAL PLOT 

Figure 13. 

FIGURE 13 MAGNIFIED 

Figure 14. 

SHIELD 
aN 

2 

\ Ss 
GROUND PLANE 20M 

THREE DIMENSIONAL PLATE 

SQUARE PLATE OVER A GROUND PLANE 

Figure 15. 

T
S
 

a
 

NEU = = 
wae 

Mii po 
IN
 

THREE DIMENSIONAL PLATE (CU) 

EQUIPOTENTIAL AND ELEMENT PLOT 

Figure 16. 

TECHNOLOGY 
REPORT 



act | et A 
Lae = \ 
WE 
LLG 

a
 

P
J
 

—
 

—
—
}
f
 

Ga
N 

—
—
—
E
 

a
 

NJ
 

N
 

—
 

|
 

e
™
 

iY
” 

WA
 

S
P
S
L
 

4 

M
I
M
E
 

L
n
 Gy:
 

A
W
A
 

THREE DIMENSIONAL PLATE (CU) 
EQUIPOTENTIAL AND ELEMENT PLOT 

Figure 17. 

The square capacitor example has wider application. If the 
square plate is replaced by several rectangular strips, this ex- 
ample could represent a shielded meander line in the quasi- 
static approximation and would apply to CRT deflector analysis. 
lf the rectangular plate is replaced by two rectangular plates of 
different widths, the example could represent the quasi-static 
approximation to a step in a microstrip line. An equivalent circuit 
could then be derived and the resulting equivalent circuit could 

be used in GLUMP or SUPER COMPACT. This, in turn, would 
lead to more accurate high-frequency analysis. 

How to Operate EMGAP 

To use EMGAP, users need a HCAD VAX user number and a 

CYBER A user number. A beginner’s user manual is available 

from Carolyn Schloetel, ext. B-1762. EMGAP temporarily resides 
on HCAD VAX and may be moved in the future. However, such 
a move will not affect usage. 
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For More Information 

For more information, call Jeff Beren ext. B-3128 or Bob Kaires 

ext. B-3150. (J 
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THE FINITE 
ELEMENT METHOD 

The finite element method (FEM) is a numerical technique for 
solving differential or integral equations. The distinguishing 
feature of this technique is that a 3-dimensional region of space 
is divided into subregions (or elements). This subdivision 
facilitates the numerical treatment. 

Different finite element approximations arise from mathematical 
formulations such as variational principles, weighted integral ex- 
pressions, Lagrangian multipliers. The finite element method 
discussed next will be of the variational type and will be used to 
solve Laplace's equation. 

Laplace’s equation, V2¢ =0, together with boundary conditions 
uniquely specifies the electric potential ¢ in a region of space. 
Another way to find electric potential is by minimizing the 
energy integral: 

W(d) =e [Vo |?dv 
Vv 

This is called the minimum energy principle. The potential ¢, 
which minimizes the energy integral, also satisfies Laplace’s 
equation with boundary conditions. In fact, these two methods 
of finding ¢ can be shown to be mathematically equivalent. 

The energy integral can be minimized using the Rayleigh-Ritz 
method in which an approximate potential function: 

o=o(a,, Qn, Og i) 

is specified. 

The parameters, a,,, are chosen such that 

OW O for all n. 
day, 

This results in n simultaneous equations for n unknowns. Using 
the boundary conditions along with the n simultaneous equa- 
tions leads to the determination of the a,,'s. 

The finite element method discussed here is an extension of the 
Rayleigh-Ritz technique. The region of interest is divided into 
elements and Rayleigh-Ritz technique is applied over each ele- 
ment. The potential is then approximated over each element by 
a function, in this case a polynomial expansion: 

$0 =6 el), aff), .) 

A number of spacial coordinates, called nodes, are identified in 
each element. The polynomial expansions are formulated in 
terms of the unknown potentials at these nodes. The ‘‘nodal 
potentials’ which minimize the energy expression are then 

found. 

Two features that distinquish the finite element method from 

other methods are: 

1. In finite elements, once the nodal potentials are known, the 
potential field throughout the element is described by the ap- 
proximating polynomial. In contrast with this, the finite aif- 
ference method — a well-known numerical technique — for- 
mulates the solution at discrete points in space. 

2. The minimum energy principal is a stationary variational for- 

mula. This means that first-order small errors in @ lead to 

second-order small errors in energy. We can therefore ex- 

pect that quantities derived from energy (capacitance for ex- 
ample) are more accurate than the electric potential solution 
might indicate. 

The following one-dimensional example illustrates the principles 
of the finite element method: 

Consider the one dimensional case where the potential only 
varies in one direction (an infinite parallel-plate capacitor, for ex- 
ample). To within a constant, the electrostatic energy is equal to: 

wd) = | ¥6] ®dv 

Further, let’s divide the region into three linear elements: 

ELEMENT 2 

o,=1V e=1 2 e=2 $3 e=3 o,=0V 

xy a X2 1X3 XA 
L} bo, bg are the 

unknown nodal 

potentials. 

NODE 2 

x 4 
W=(|Vol 2 dv=AyAz 9$| °ax j |Vo| y " ax 

V 

3 
W= L We We is the elemental energy 

e=1 

X 
e+] 

_ ag) 2 
We=AyAz | ss dx 

é 

The approximating polynomial over element e is: 

g(x) = ax +b. 

The nodal potentials are: 

OK) =, 
e _ 

o! Key )=be41 

We can reformulate ¢(x) in terms of these nodal potentials as: 
X_ 7X +e X_—X 

_ e+ _ 
Xe Koa Xe Xo4t 

ox) =, 7 
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The integrand of the elemental energy integral can now be 

found: 

2 ag) 

ax 
%o~ bo+1 

X_—%* 

2 2 
2 beat — 2b F414 4% = E 

e+1 

Here we've assumed that all elements are equal in length to L, 

therefore: 

W_,= AyAz 7 

3 3 
AyAz 2 2 

and W= & We= 1 oni fett 2b5 %o447% 

for minimization oW =0, ow =Q 
d¢5 d$. 

These two constraints together with the two boundary condi- 

tions ¢4 =1 and ¢4=0 leads to the matrix equation: 

10 0 0 , 1 

1-2 1 0 b5 _ 6) 

0 1 -21]] 45>] oO} 
00 0 1 b4 0 

the solution is: by = AV 

b3= Vav 

Substituting back into the expression for p(x) for e=1, 2, 3; 
#(x) is now known element-by-element over the entire region. 

06(x) 
Ox 

will be piecewise continuous, there being a discontinuity al- 
lowed at element boundaries. 

#(x) will be continuous over the region and 
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HIGH LEVEL SIMULATION 
OF DIGITAL SYSTEMS USING N.mPc 

Jack Gjovaag is a software engineer in the Com- 
puter Research Lab, part of the Applied Research 
Laboratories. Jack joined Tektronix in 1975 from 
California Computer Products. His experience in- 
cludes computer graphics, computer aided de- 
sign, and automated cartography. 

Marc Wells is a hardware/software engineer in the 
Computer Research Lab, part of the Applied Re- 
search Laboratories. Marc joined Tektronix in 
1974. He has a BA in math and physics from 
Whitman College, 1974. 

With high level simulation, digital system behavior can be 
studied without completing a full hardware design and im- 
plementation, software evaluation can begin before hard- 
ware is available, and design changes are more easily made 
than if the design were implemented in hardware. This ar- 
ticle describes the N.mPc simulation system and discuss- 
es some cases where it is being used profitably. 

The traditional approach to digital system design involves carry- 
ing a tentative design down to a point where it can be imple- 
mented in hardware, building a prototype of the design, and 
then evaluating the design by running appropriate software on 
the prototype hardware. Based upon observed performance, 
the design may change. These changes must be installed in the 
prototype hardware and the process repeated. This approach is 
outlined in figure 1. 

It is important to observe that most performance characteristics 
of a system are determined by the time the functional descrip- 
tion of the hardware is specified. Thus building a hardware proto- 
type to investigate performance involves more detail designing 
than is theoretically necessary. This overdesigning is usually 
done only because it is difficult to analyze the performance of a 
complex system based on its functional description. 

The N.mPc system is intended to improve the design methodol- 
ogy shown in figure 1 by providing methods for design evalua- 
tion before prototyping. The major advantage of this is that the 
system need not be designed to greater detail than that neces- 

sary for validating the system. This is done by providing a formal 
language that can be used to describe the function of a digital 
system, some programs that support development of system soft- 
ware, and a simulator that will run the software on the described 
system and permit observation of performance. The design meth- 
odology using N.mPc is shown in figure 2. 
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Figure 1. The traditional design process for digital sys- 
tems requires building a hardware prototype to evaluate 
the design. N.mPc eliminates the prototyping bottleneck 
(see figure 2). 

Register transfer level descriptions 

Note in figure 2 that the design loop is completed before de- 
tailed logical and electrical design. For this to be possible, the 
design must be expressed on a higher level of abstraction than 
logic gates. The N.mPc system uses a register transfer level (or 
RT) description to express the function of the system being de- 
signed. An RT description is composed of two types of compo- 
nents: registers, which are devices for holding collections of bits; 
and transfer functions, which alter and transfer data between 
registers. Such a system description will undergo a sequence of 
discrete states as fields of bits are transformed by the transfer 
functions and stored in destination registers. Generally there is a 
bit or short field of bits (called a clock) that is a product term in 
most of the transfer functions. This clock field changes in step 
with time, thereby enabling transfer functions only at discrete 

time intervals. | 
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Figure 2. The design process using N.mPc eliminates the 
early hardware prototype traditionally required for digital 

system evaluation. 

A register transfer description has the power to describe trans- 
fer functions at a level of abstraction higher than that of logic 
gates. For example, an RT statement to transfer the product of 
two 8-bit registers called A and B to a 16-bit register called C is 

as follows: 

state A <8>, 

B <8>, 
C <16>; 

main: =(C =A*B) 

The first three lines merely declare the size and names of the 

registers and the third defines the single transfer function of our 
example description. Notice the strong similarity between the 
example and a small program written in a high level program- 
ming language. In fact, the similarity is more than just appear- 
ance; RT descriptions may be executed or caused to simulate 
the behavior of the described system. The contents of the regis- 
ters, as well as the elapsed simulated time, may be examined 
during the simulation. Thus the system behavior over time can 

be accurately predicted. 

Components of the N.mPc system 

The example RT description shown above is stated in a RT lan- 
guage called ISP’, which is a component of the N.mPc system. 
The complete N.mPc system is shown in figure 3. RT descrip- 
tions are processed by the ISP’ Compiler. Simulated memories 
and their initial contents are prepared through the use of a flexi- 
ble component called the MetaMicro Assembler and the Linking/ 
Loader. Simulated memories and compiled ISP’ descriptions are 
combined according to interconnection information supplied in 
the ecology file by the Ecologist program to produce a simulation 
file. The simulation file is an executable file which when run will 
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CODE 

SIMULATOR 

TIMING 
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Figure 3. The N.mPc system. 

allow interactive examination of the behavior of the system and 

will gather timing information for selected registers. Graphic tim- 
ing diagrams can be produced using a postprocessor called td. 

ISP’ Descriptions 

In this section we will give a brief description of the ISP’ language 
and show some examples of its use. 

Structures 

The registers in an ISP’ description store information between 
transfers. The registers are called structures in the documenta- 
tion. The registers are of three types: 

e States are registers internal to the ISP’ design. They may be 
declared to be of varying length with varying bit numbering. 
For example, the declaration 

state accum <1:9>; 

declares a 9-bit register called accum whose high-order bit is 
numbered 1. A file of registers may be declared as follows: 

state status[0:7]<15:0>; 

e Ports are registers which may be connected externally to 
other ISP’ descriptions. Ports may be written by one !SP’ de- 
scription and read by another, thus implementing communi- 
cation between modules. 

e Memories are special arrays of constant-length registers that 

may be set to a desired initial state through use of the Meta- 
Micro assembler, the Linking/Loader and the Ecologist. 
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Register transfer statements 

Register transfers are specified with register transfer statements, 
which correspond roughly to assignment statements in a program- 
‘ming language. For example, the register transfer statement 

Areg = Buff *: logical — 3; 

will cause the contents of Buff to be logically right shifted by 3 
bits and the result transferred to Areg. ISP’ provides a broad set 
of operators for specifying the register transfer function, such as 
including the common arithmetic and logical operators. 

Simulated time 

Perhaps the biggest difference between ISP’ descriptions and 
programs written in a conventional high level language is the 
concept of simulated time. Each execution of a register transfer 
statement has an associated number, which is its simulated time 
of occurrence. This number orders the transfers in simulated 
time such that the states produced by a transfer at a certain sim- 
ulated time can have no effect on transfers at an earlier simu- 
lated time. Also, all transfers occurring at the same simulated 
time are, in effect, simultaneous. 

Control of simulated time is achieved with a delay statement. 

When a delay statement is executed, all transfers prior to it are 
completed and the simulated time is advanced by the number 
of time units specified in the statement. The units — microseconds, 
nanoseconds - are not specified in the ISP’ description. 

Without specific instructions to the contrary, all transfers with the 
same simulated time of occurrence will be treated as parallel ac- 
tions. Thus the contents of two registers can be exchanged by 
the following pair of transfer statements without destroying one 
of the values: 

a=b; 

b=a; 

It is sometimes desirable to impose sequentiality of execution on 
transfers that occur at the same simulated time. For example, if 
one wishes to transfer the contents of register r1 to register r2 
and then transfer the new contents of r2 to register r3, the first 
transfer must be forced to complete before the second. This is 
done with the next statement: 

r2=r; 

next 

r3=r2: 

The next statement causes all transfers preceding it at the cur- 
rent simulated time to be completed but without advancing the 
simulated time. 

Considerable flexibility in the execution order of statements is 

provided through a conventional set of control-flow statements 

such as an if statement, a while and do until, a case statement 
and a procedure call. 

Processes 

Statements and declarations are grouped into collections called 
processes. Processes are independent of each other in the sense 
that they can all run concurrently. Each process may be in one 
of three states: 

Running: All conditions for the execution of the process have 
been satisfied and the process has reached the head of a queue 
of processes eligible to run, 

Ready: All conditions for the execution of the process have been 
satisfied but the process is not at the head of the queue of pro- 
cesses eligible to run. 

Waiting: Some condition necessary for the execution of the pro- 
cess has not been satisfied. The process will sleep until all condi- 
tions have been satisfied then its status will be changed to ready. 

Conditions necessary for executing a process are established 
by the process declaration statement and by wait and delay 
statements within the process body. A main process is a pro- 
cess that is executed repeatedly during the simulation except 
when made to wait by wait or delay statements. A main process 
is placed in a running status at the beginning of a simulation. A 

when process is a process that becomes ready only when some 
event on a port occurs. Possible events are leading edge, trail- 
ing edge, or change port value. When the last statement of a 
when process is executed, the process sleeps again until the 
event reoccurs. 

The preceding discussion of ISP’ is incomplete and serves only 
to illustrate the major features of the language. It should, how- 
ever, be sufficient to permit understanding of practical ISP’ de- 
scriptions. One such description taken from a much larger simu- 
lation done in the Computer Research Labs is shown in figure 4. 
It describes a process that manages the reading and writing of 
an array of random access memory. 

/% 
« Memory management process 
x/ 

macro LONGWORD 2 31:86, 
. = 3 next; 8; 

port LRW, lread/urite signal 
LUBE , lupper byte enable 
LLBE, !'lower byte enable 
LAS, laddress strobe 
Los, 'data strobe 
LAck, 'data acknowledge 
LBus <LONGWORD>;!!ocal bus 

state address <23:1>; 

memory datamem [@:32767] <7:@>; 

when (LAS: lead) := 
( 

address = LBus <23:1>; 
delay (128); 
LAck = 1; 
LDS = 1; 
if LAW , 

delay (68); 

if LUBE datamem [address *: ftogical 1) = LBus <15:8>; 
if LLBE datamem [address «: logical 1 + 1) = LBus <7:@>; 

) 
else 

if LUBE LBus <15:8> = datamem (address «: logical 1); 
if LLBE LBus <7:@> = datamem [address «x: logical 1 + 1); 

); 
Wait (LAS: trail); 
LBus = 8, 
LAck = 8, 
LOS = @. 
) 

Figure 4. An ISP’ description that describes the reading 
and writing of a random access memory. 
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Integration of Processes 

Compiled ISP’ descriptions can be compared to classes of elec- 
tronic packages with pins for connection to the outside world 
where the pins correspond to ISP’ ports. Integrating these de- 
scriptions into a system amounts to selecting as many “pack- 
ages” of each type as needed and interconnecting them. This 
interconnection is done with the topology file. 

The topology file has two major components: signal declara- 
tions — where a signal is a named connection between ports, 
and processor declarations — where the term processor means 
a compiled ISP’ description. Signal declarations occur at the be- 
ginning of the topology file and are similar in form to the state 

and port declarations in ISP’. Processor declarations specify: 
the ISP’ description to be used, a name by which the processor 
may be identified during simulation, the files containing the initial 
contents of memories used (described more fully in the next 
section,) the time units used in delay statements, and the con- 
nections between ports in the ISP’ description and the declared- 

signal names. 

Signals are the names by which certain states internal to a pro- 
cessor may be referenced, however one processor cannot alter 
the value of a port in another processor. The value of a signal is 
the logical sum (OR) of the values of all of the ports connected 
to the signal. Thus a port may be viewed as an open-collector- 

output negative-logic transceiver. 

Simulated Software 

Any system which uses a programmable device (such as a micro- 
processor or a ROM-based state machine) must have some way 
of specifying the program for that device. Since N.mPc is intend- 
ed to be a general purpose tool, it must provide a way of gener- 
ating programming data for many devices, including commercial- 
ly available parts as well as custom designed applications. The 
solution to this programming problem is the MetaMicro Assembler. 

The MetaMicro Assembler 

Writing a program using the MetaMicro Assembler is a two-stage 
effort. First, the instruction set of the target machine must be de- 
fined andthe mapping between instruction mnemonic and ma- 

chine bit format specified. Second, the actual code has to be 
written for the target machine. The instruction set is specified in 
the declaration section of the assembler source file, the actual 
code is contained in the instruction section. Figure 5 shows a 

sample of a MetaMicro Assembler declaration, a subset of the 

Intel 8080 instruction set. 

The instr declaration specifies the name which will refer to instruc- 
tions elsewhere in the assembler. The maximum number of ma- 
chine words per instruction and the default number of machine 
words per instruction are indicated between square brackets. The 
number enclosed in angle brackets indicates the number of bits 
per machine word. The format declaration specifies the names 
of various fields of the instruction. The number in square brack- 
ets indicates which word of a multiword instruction is to be used; 
the numbers in angle brackets indicate which bits of the word 

are to be used. 

Meta-Micro Assembler Declaration Section for 8888 

tx (8888, m. x»! 
!x metaMicro description file for Intel 8888 x! 
! ! 

instr inst (3,1]<8> % ! three words of eight bits each 
! default length of instruction is 1 

format op = jinst{@}<7:6>, !main op code 
dst = inst{@]<S:3>, !destination or op code 
src = inst{@}<2:@>, !source or op code 
rx = inst{@}<S:4>, !register pair 
ndi « inst{@]<7:8>, !whole first word 
wd2 = inst{1]<7:8>, !whole second word 
nd3 inst{2]<7:8>8 lwhole third word 

macro ret wd1l=8311 $ &, {return unconditional 
rnz = wdl«8380 $ & lreturn no zero (Z=@) 
rz = wd1l=98318 $ &, lreturn zero (Z=1) 
rnc = wd1=8328 8 & —Treturn no carry (CY=@) 

! winx This section contains the 8888 illegal op codes xox 

bind iopc "ILLEGAL OP CODE FORMED", 
bcde "REGISTER PAIR MAY ONLY BE bc OR de", 
rple "REGISTER PAIR MAY ONLY BE: b,d,h,sp", 
rp2c "REGISTER PAIR MAY ONLY BE: b,d,h,psw", 
mbrg “OPERAND MUST BE A REGISTER" 8 

elegal(val)= (wdleval;) jopeé, Imacro for illegal declarations 
illegal (wd1=8818) jiopc, (udi=882@) iopc, 

(ud1=8848) iopc, (wdi-8858) iopc, 
(wd1=8878) jiopc, (wdi=8313) iopc, 
(wdl = 8375) bcede, 
(wd1 = 8335) rpic, 
(wd1 = 9331) rp2c, 
(wd1 = 8355) morg 8 

(ud1 =8838) iopc, 
(udl=8868) jopc, 
(wd1#8166) iopc, 

Figure 5. A MetaMicro Assembler declaration. This is a 
subset of the Intel 8080 instruction set. 

Bit patterns are built using macros. The macro declaration spec- 
ifies the way in which bit patterns are to be combined to form 
machine instructions. Parameters are passed to the macro; these 
parameters determine the value of bit fields in the completed in- 
struction. Several types of arithmetic and logical operations may 
be performed on the macro parameters. Conditional expressions 
of the form /f-then or if-then-else may be used at any time, either 
as part of a macro or in the instruction section itself, to perform 
conditional assembly. 

The assembler can be set by the il/ega/ declaration to indicate 

when an illegal bit pattern has been formed. When an illegal bit 
pattern is detected, a user defined warning message is printed. 

The instruction section of the assembler is what is converted into 
bit patterns. If the instruction definition macros have been set up 
well, code written for the MetaMicro Assembler will look like any 
ordinary assembler code. In fact, declaration sections for several 
processors, such as the 8080, Z80, 68000, and'so on, have been 
written which provide a syntax very similar to that of the vendor- 

supplied assemblers (see figure 6.) 

Once the assembler has been defined and the desired code 
written, the assembler creates an output file which the Linking 
Loader uses to create a machine executable image of the 
program. 

The Linking Loader 

The Linking Loader takes one or more files from the assembler 
and links them together to fit in the address space specified. 
Again, since the Linking Loader is designed as a general tool, 
there are several aspects of the operation which are user defin- 
able. Figure 7 is an example of the command file for the Linking 

Loader. 
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Meta-Micro Assembler Instruction Section for 8888 

include /nmpc/softgen/mmpd/ i 88888 
begin 

Ixi (h,128) 
Ixi (sp,256) 
Ixi (b, 788) 

loop: 
der (c) 
jnz (loop) 
der (b) 
jnz (loop) 
hit 

end 

Figure 6. An example of a program written for the 8080 
using the MetaMicro Assembler. 

The size and format of the instruction word are specified as in 
the MetaMicro Assembler using the instr and format keywords. 

The mode declaration specifies the method to be used to resolve 
address references. A particular piece of code, such as a sub- 
routine, must have its address field modified to reflect the new 

destination address. 

It may be necessary for the linker to break up a sequence of in- 
structions and move some of them to a physically different area 
in memory. In order to maintain the correct program flow, a jump 
to the new address must be inserted. The method for doing this 

is specified by the transfer directive. 

Linking Loader Directives for 8888 

Pectttetetcos sett tte ri tere et esessest ese seese tec w es ote 
lx 18888. i x! 
lx Linking Loader description for the Intel 8888 x! 
Lnpooinioloaiai i aigaiaiar ioral oooorairoooronoooooooooonmooaniaiaax | 

instr 

inst [3,1] <8>8 

format 
op = inst{@)<7:6>, 

dst = inst [@]<S:3>, 
src = inst(@]<2:@>, 

rx = inst[@)<5S:4>, 
wdl = inst [(@)<7:@8>, 

nd2 = inst[l]<7:@>, 

wd3 = inst[2)<7:8>8% 

space 
<8: 4895>8 

transfer 

{new 
udil = 83838 
wd2 = address$ 
wd3 = address ~ -8$% 
length = 38 

} 

mode 
case length eql 3: 

wd2 ~ (wd3*8) + wd2 + address$ 
wd3 ~ ((wd3*8) + wd2 + address)%*-8&% 

break$ 

esac, 

default: 

wd] ~ (wd2*8) + wdl + address$ 
wud2 ~ ((wd2*8) + wdl + address)*-88% 

break$ 

esac$ 

Figure 7. Linking Loader directives example. 

The space declaration defines the memory space into which the 
code will be allocated. The numbers in angle brackets specify 
the lower and upper address of a block of available memory. Any 
memory locations not specifically included in a space statement 
are not used and any attempt to store information in these loca- 
tions will cause an error. 

Once the address modification and transfer mechanisms have 
been defined, the memory allocator can be invoked. There are 
several user-selectable methods of allocating the memory, includ- 
ing a fragmented scheme, high- or low-end packing and a mod- 
ified first-fit scheme. The output of the allocator is a file which is 
ready to be loaded into an N.mPc simulation. 

A utility to convert from the N.mPc machine image format to a 
format readable by the TLOGS gate-level logic simulator has 
been written. This allows files for use in TLOGS to be written 
using the MetaMicro Assembler. It is important to note that the 
allocator-output file can be used (by an appropriate utility pro- 
gram) to program PROMs for the target hardware. The capa- 
bility to program PROMs is very valuable because software 
can be written and debugged using the simulator before any 
hardware is available. 

Running Simulations 

Once all the pieces have been put together, from ISP’ descrip- 
tions of the hardware components to the MetaMicro Assembler 
descriptions of the software, the simulation is ready to be run. The 
simulation runtime environment is interactive. The user controls 
the simulation from a terminal which is used to start and stop the 
simulation, examine and modify registers in the various processes, 
and examine the various memories. Data can also be saved in a 
file which can later be processed to generate timing diagrams. 

Displaying and modifying data 

Before running the simulation, the parts of the simulation that the 
user wants to watch should be specified. The value of registers 
within processes, the value of signals between processes, and 
the contents of any memory can be monitored throughout the 
simulation. The display command is used to watch registers with- 
in processes. When anything selected is written to, or optionally 
read, its value and the simulation time is printed on the users ter- 
minal. The trace command is identical to display except the out- 
put goes to the trace file. In the example below, the value of reg- 
ister step in process stmachine is printed to the users terminal 
whereas the value of register next of the same process is saved 

in the trace file: 

display stmachine:step read 
trace stmachine:next 

The display data will also be displayed whenever the register is 
read. 

If a signal between processes is monitored with a display or trace, 
only values written to the signal from within the specified process 
will be shown. Since the actual value of a signal is the OR of all 
processes connected to that signal, a different command must 
be used to determine the true value of the signal. The show com- 

mand displays signal values on the terminal and the dump com- 
mand saves the signal value in the trace file. 
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Whenever the simulation is not running, the value of any registers 
in any process, the value of any signals between processes, and 
the contents of any memory can be examined and modified. The 
examine command will display the last value written to a register 

or a signal in the specified process: 

examine cpu:ir 
examine cpu:addrbus 

The first example will display the value of register ir in process 
cpu, the second example will display the last data written to sig- 
nal addrbus by process cou. Memory is displayed using the mem- 

ory command: 

memory cpu:rom 0 20 

memory cpu:rom prout prend 

In the first example, the contents of memory rom in process cpu 
are displayed starting at location 0 and going through location 20. 
The second example prints the contents of the same memory 
from the location specified by label prout through the location 
specified by label prend. 

Data can be loaded into a register, signal, or memory location 

using the deposit command: 

deposit 0b01001010 cpu:ir 
deposit 0h01fa cpu:addrbus 
deposit ‘“?” cpu:rom[125] 

The first example loads a binary value into register ir, the second 
loads a hexadecimal value into signal addrbus and the last exam- 
ple loads the value of the ASCII character ‘?” into location 125 

of memory rom. 

Runtime commands 

The simulation is started by entering the run command. Simula- 
tion will continue until a breakpoint is reached, an error condition 
occurs, a deadlock condition occurs, or the user interrupts the 
system. A deadlock occurs when there are no processes ready 
to run, that is, every process is waiting for another process and 

no process is running. 

Breakpoints can be set to stop the simulation on the occurrence 
of some event within the simulation. The value of some register 

within a process, the simulation time, or a combination of these 
can be used to form a breakpoint. If, for example, some process 
named cpu contains a register named pc, the following will stop 
the simulation when the value of pc is greater than or equal to 5: 

bkpt cpu:pc geq 5 

The form: 

bkpt 500 

will cause the simulation to stop at simulation time 500. 

The following conditions can be monitored as breakpoints: the 
value of a register is less than, equal to, or greater than a given 
value; if the value of a register changes either up or down; or if 
a register is written or read. Breakpoints may be linked so that 

complicated relationships may be specified. The breakpoint 
specification: 

bkpt 250 after proc1: ir eql Ohif 

will stop simulation 250 time steps after register ir in process proc? 
is equal to hexadecimal 1f. 

N.mPc has many more commands and combinations of com- 
mands available than those outlined above. There are methods 
for making timing measurements, for determining the minimum 
and maximum values of registers, and for triggering events based 
on the state of the simulation. Any of these commands may be 
combined in a file that, when loaded, will automatically execute 
the commands in the file. 

Creating timing diagrams 

A program, named td, to draw timing diagrams from data saved 
in the trace file by the trace and dump commands has been writ- 
ten.3 The timing diagrams are displayed using printer characters 
so that no special graphics capability is needed; timing diagrams 
can be displayed on the same terminal used to run N.mPc. All 
these are selectable: the data to be displayed, the order in which 
it is to be displayed, and the simulation time period over which it 
is to be displayed. Since registers and signals in N.mPc may be 
made up of more than one bit, the td program is capable of dis- 
playing multibit data. 

A line of data to be displayed is defined by specifying the name 
of the register or signal, the first bit to display, the number of bits 
to display and, if more than one bit is being drawn, the radix in 
which to print the display. Single-bit displays are printed more 
or less as a conventional timing diagram, multibit displays are 
printed with the value of the specified bits separated by charac- 
ters to indicate where transitions occur. Figure 8 is an example 
of a timing diagram created by the td program from data gener- 
ated by an N.mPc simulation. 

Applying N.mPc 

N.mPc has been successfully applied to a logic design task in the 
Computer Research Lab. The task was to redesign a significant 
portion from a TTL-implemented design into a large scale inte- 
grated circuit. While the way that N.mPc was used in this situa- 
tion was not exactly as its designers had intended, it neverthe- 
less performed an important function that would have otherwise 
been difficult. 

The circuit to be redesigned was documented primarily by sche- 
matic diagrams and some supporting descriptions of bus signals. 
After determining what parts of the original circuit were candidates 
for LSI implementation, it was necessary to discover the behavior 
of the signals forming its interface. For this purpose, the entire 
circuit was described in ISP’, sometimes using quite low-level 
transfer functions that modeled the individual logic gates when 
the functionality of a part of the circuit was not well understood. 

When the description was completed and simulations run, the 
behavior of the circuit could be studied and its function better 
understood. While it was not necessary, low level descriptions 
were replaced by higher level constructs as our understanding 
improved. Once the simulation was running correctly and we 

comprehended its workings, the part to be redesigned was de- 
scribed in ISP’ and the functions to be replaced were removed. 
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File magl.d, simulation run on Tue Oct 12 09:11:81 1982 
Plot produced on Tue Mar 1 11:84:28 1983 

Start time = S, reer time = 31. 

proc: 
clock (8:1) 

proc: 
miscireg(@:4) 

A(8:23) 

pstep (8:5) 

File mag6.d, simulation run on Tue Nov 3@ 18:88:17 1982 
Plot produced on Tue Mar 1 11:11:38 1983 

Start time = 128, stop time = 3218. 
{128 |657 }1194 

Ck (8:1) + 

------ Q------|---------------~--786908----------------|-0-| 

----8 

-784888------------------------- 

~-----Q------ | -1-|-18-|-11]-12]-13-|-14]-15-]-16]-17-|-@-|-1-|-18-|-11]-12-|-13|-14-|-15]-14|-15-|-14|-15-|-14|-15- 

IRW_(@:1) + | 

AS_ (8:1) + | 

DS_ (8:1) + 

proc: 
pe (8:8) 

proc: 
pstep (8:5) -- 8 

proc: 
sysreg (@;8) - - 8 

") -|- wa--]----------------+- 

----|--1-|-18]-11-]-12-|-13-]-14-|-15-|-16]-17-|--@-|--1-|--2-|--3-|-4-]--5-]--4-|-5- 

-- | --------------------- | -------------------- 

Figure 8. A timing diagram produced by td from N.mPc output. 

The new description was connected to what remained of the old 
and the simulation was rerun to validate the new design. 

The value of this simulation was demonstrated when a number of 

design errors were discovered that might have gone unnoticed 
through chip fabrication. Obviously, when the circuit being de- 
signed is a chip, rework is not possible. 

Another project is being planned where N.mPc is expected to 
be valuable. A large array of very simple processors organized 
in a tree structure is planned to be implemented in VLSI. The ex- 
pected benefits from simulating the chip at the register transfer 
level before constructing it are: 

© Determine the best workload distribution among 
the processors. 

© Minimize the required communication bandwidth 
between processors. 

e Establish effective interprocessor communication 
protocols. 

e Measure the overall performance of the system. 

e Encourage experimentation early in the design. 

Conclusions 

The high level digital simulation system N.mPc has proved to be 
quite useful in system design. We feel that in one project, it 
saved considerable effort and helped locate errors that might 
have otherwise been missed. At least one advanced application 
of N.mPc is planned where even greater benefits are 
anticipated. 

One note of caution is in order. The N.mPc system was de- 
signed and developed in a noncommercial research environ- 
ment. The syntax of the various languages used — ISP’, topolo- 
gy description, MetaMicro and the Linking Loader — are often in- 
consistent for no apparent reason. Some documented features 
have been discovered to be unimplemented. The system occa- 
sionally fails in mysterious ways due to program errors or insuffi- 
cient error checking. Despite these problems, however, the sys- 
tem is quite workable and effective. 

For More Information 

For more information, contact Jack Gjovaag ext. B-6160, or 
Marc Wells ext. B-6179. 

Substantial improvements and modifications are being made to 
N.mPc in another organization. Ellen Mickanin, ext. WR-1909 or 
Pat Thompson, ext. WR-1006, can elaborate on these changes. 

Contact Marc Wells, ext. 6179, or Karen Conrad, ext. B-6155, 

for copies of the ARG Technical Reports listed below. 0 
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ENGINEERING ACTIVITIES COUNCIL 
MEMBERSHIP CHANGES 
The semiannual EAC “rotation” took place recently. About every 
six months the membership of the Engineering Activities Coun- 
cil (EAC) is partially changed (rotated) as old members finish 
their terms and new members are selected. 

The Engineering Activities Council (EAC) is a group of about 20 
engineers and scientists, chartered to stimulate communication 
between engineering and management, and also among engi- 

neers. Members are nominated by their managers, peers, or 
themselves, and then selected by Bill Walker, executive vice- 

president, to represent the different engineering disciplines and 
organizations within Tektronix. The EAC addresses issues of engi- 
neering concern through a diverse set of activities including tech- 
nical forums, technical seminars, new engineer orientations, and 

engineering surveys. 

EAC Goals 

e Promote communications between engineers concerning issues 
such as professional development, new technologies, and inter- 
nal developments. 

e Promote communications from engineering to management con- 
cerning issues such as technology, environment, and market- 
place trends and pressures. To this end, the EAC needs to be 
aware of engineers’ views and be capable of advising on issues 
concerning the engineering community. 

® Promote communication from management to engineering con- 

cerning company philosophy and business directions. 

The Engineering Activities Council (EAC). From left to right, front row: Kathy Dagostino, Paul Dittman, Preston Seu, 
Chairman. Second row: Phil Baker, Pat Green, Tom Ruttan, Nick Fkiaras, Paula Mossaides, Mike Nakamura, Ward Cun- 

ningham. Back row: Bill Wilke, Russ Anderson, Mike Hatch, Steve Lyford. Not present: Mark DeSpain, Gary Fladstol, 
Richard Greco, Geoff Herrick, Bill Trent, Mike Zuhl. 
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EAC ROSTER 

Russ Anderson WR-1869 92/726 

DAID-DAD/Logic Analyzers 

Phil Baker DR-3149 13-035 
\&TG/Solid State Group 

Ward Cunningham DR-6180 50/384 
|&TG/Applied Research Group 

Kathy Dagostino WR-1729 92/515 

DAID-DAD/MDP. 

Mark De Spain WL-3755 63/356 

DAID-IDD/GPP 

Paul Dittman DR-3058 39/111 

|&TG-ISD/Lab Instruments 

Nick Fkiaras WL-3033 63/397 
|&TG/Computer-Aided Engineering 

Gary Fladstol DR-3064 39/103 
I&TG-ISD/Lab Instruments 

Richard Greco W1-3176 63/196 
DAID-IDD/GAS 

Pat Green DR-5461 50/252 

1&TG/Display Group 

Mike Hatch DR-2649 39/204 

1I&TG/Portables 

Geoff Herrick DR-6374 59/840 

|&TG/Solid State Group 

Steve Lyford DR-2952 39/194 

1&TG/Portable Instruments 

Paula Mossaides W1-2352 61/215 

DAID-IDD/ECS 

Mike Nakamura DR-1343 58/594 

C&IG/TV Products 

Tom Ruttan DR-1463 58/733 

C&lG/FDI 

Preston Seu W1-3856 63/356 
DAID-DAD/GPP 

Bill Trent DR-1447 58/305 

C&IG/CNA 

Bill Wilke WR-1521 92/815 

I&TG/GPI 

Mike Zuhl W1-2551 61/215 

DAID-IDD/ECS 

MODULA-2 AS A SOFTWARE 
ENGINEERING TOOL 

Patrick Clancy is a software engineer II in the Ad- 
vanced Instrument Research Group, part of the 
Applied Research Group. Pat joined Tektronix in 
1981. He received his MSCS from the University 
of Wisconsin, Madison. 

Modula-2 is a programming language developed by Niklaus 
Wirth and is a descendent of Pascal. Because it is intended for 
systems programming, Modula-2 provides many features not 
found in Pascal, or even in Pascal extensions. These features 
enhance Modula-2’s suitability for the creation of modular sys- 
tems, for providing access to the underlying machine, and for 
real-time control applications. These are the areas in which Pas- 
cal is most deficient, and where the need for a next-generation 
Pascal successor has been most strongly felt by systems 

programmers. 

This article reports on the construction of a Modula-2 compiler 
and run-time system for the Motorola MC68000 microprocessor, 
and on the desirable language features which led to the under- 
taking of this project. This work was done as part of a program 
in Advanced Instrument Research to develop computer-based 

instrumentation. Using the Modula-2 tools, a software develop- 
ment team has created stand-alone modules to drive the hard- 
ware of an instrument system prototype. 

Modula-2 was chosen over more readily available languages 
because it was better suited to meet the stringent requirements 
of software engineering for complex instrument systems. The 
most important requirements we identified were (1) modularity 
of design, (2) reconfigurability of the system, (3) compiler type- 
checking across all system interfaces, and (4) the ability to do all 
coding in the high-level language (HLL); assembly code should 
not be required. (Assembly code can be included, but it is not 
required as it is in other languages for certain functions.) 

Language Features 

A brief overview of Modula-2’s distinguishing features will be 
presented here. A manual and report on Modula-2 can be 
found in [8]. 

The basic control and data structures of Modula-2 and Pascal 
are almost identical. (Modula-2 has one control construct, LOOP/ 
EXIT, and two data types, procedure and process, which do not 
have Pascal counterparts). In this article, Pascal will be used as 
the basis for comparison. 
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Niodules 

Programs in Modula-2 are written in terms of modules. All sepa- 
rate compilation units are modules; in addition, modules may be 
nested within procedures or other modules. Modules are a means 
of partitioning a program and creating abstract data types. Mod- 
ules can be used to group together related operations and hide 
global data that should not be generally accessible. 

The most significant aspect of the module feature is its role in 
providing a separate compilation capability within the language. 
A special type of module, called the definition module, is used 
as an interface between compilation units. The information from 
definition modules is accessed by the compiler to type check 
externally referenced (imported) names. This type checking is 
as complete as the checking within compilation units, since dec- 
larations in definition modules provide all the necessary informa- 
tion. For example, complete checking of parameter types is done 
on the usage of procedures exported from separately compiled 
modules. This capability is usually unavailable in Pascal, includ- 
ing those extended Pascals that provide for separate compila- 
tion, since major syntactic modifications and additions would be 
necessary. 

Each definition module has a corresponding implementation 
module, which provides the actual code body of all procedures 

declared in the definition module. In addition, the implementa- 
tion module may contain other objects which are not exported. 
The compiler checks the consistency between declarations in 
the definition module and their corresponding implementations. 
The important consequence of this mechanism is that the imple- 
mentation in one module may be changed with certain knowl- 
edge that other parts of the system will continue to function cor- 
rectly as long as the interface (definition module) remains un- 
changed. The interfaces are the anchor points for the overall 
program design, allowing the implementations to be carried out 
independently, possibly by different members of a software 

design team. The overall structure of a Modula-2 program is 
shown in figure 1. 

Processes and Interrupts 

The real-time control requirements that characterize complex 
hardware systems usually cannot be met within the framework 

of commonly used HLLs. For this reason, the software control- 

ling such systems often contains some assembly code to deal 

with machine-level tasks such as interrupt-handling. Modula-2 
provides the facilities to program real-time control entirely within 
the language. This is done without enforcing a particular high- 
level view of processes and scheduling, as is found in other 
multiprogramming languages,such as Concurrent Pascal [3], 
Mesa [5], or Ada [6]. 

To support multiprocessing, Modula-2 provides a PROCESS 
data type and a TRANSFER operation on this type to effect a 
context switch. This constitutes a simple co-routine mechanism. 
A scheduler module (written in Modula-2) can be provided to 
implement true multitasking. Modula-2 thus provides the lowest- 
common-denominator mechanism upon which any sort of multi- 
tasking can be easily built; a scheduler can be constructed in 
about 50 lines of Modula-2 code. 

DEFINITION MODULE A DEFINITION MODULE B 

EXPORT foo 

DEFINITION MODULE C 

EXPORT bar 

VAR bar = RECORD 

PROCEDURE foo (); ‘ 

END; 
” 

“ 
- 

at. aN 
o 

FROM B IMPORT foo FROM C IMPORT bar FROM B IMPORT foo 

PROCEDURE foo (); 
BEGIN IMPLEMENTATION MODULE C 

<code body of foo> 
END foo; 

IMPLEMENTATION MODULE A 

IMPLEMENTATION MODULE B 

Figure 1. The structure of a Modula-2 program. All ex- 
ports out of the compilation unit are from definition mod- 
ules. Definition modules may contain all types of declara- 
tions, but no executable statements. For exported proce- 
dures, the procedure heading only appears in the defini- 
tion module. If a definition module remains fixed, the cor- 

responding implementation module can be changed at will 
without affecting the correct functioning of other parts of 
the system. 

To support interrupt-handling, Modula-2 provides an |OTRANSFER 
operation. This operation is similar to TRANSFER except that it 
causes the caller to suspend pending a specified interrupt. In- 
terrupt handlers are therefore written in Modula-2. A priority spec- 
ification for modules is also provided, so that interrupts having a 
given hardware priority may be disabled during execution of criti- 
cal code. This establishes a “critical section” [2] within a module, 
which guarantees that operations on data accessible to multiple 
processes will be indivisible and correct. Once again, Modula-2 
provides a simple and elegant abstraction of the machine archi- 

tecture, which allows complete flexibility in implementing higher- 
level operating system functions (see figure 2). 

State of the run-time interrupt table after calling IOTRANSFER (x, y, 1) 

val va2 va3 
a aie eel RTT, 

PROCESS PROCESS 
variable variable 

x y 

Va, = table entry for 
nth 68000 
interrupt vector 

Figure 2. To support interrupt-handling, Modula-2 employs 

an operation called IOTRANSFER. This operation causes 
the caller to suspend pending a specified interrupt. The 
effect of calling IOTRANSFER (X,Y,1) is shown. When in- 
terrupt 1 occurs, the current process state is stored in Y 
and process X is activated. 

Although these system operations were originally modeled after 
the PDP-11 processor architecture [8], we found that they were 

yy TECHNOLOGY 
REPORT



entirely sufficient for the 68000 as well. They are probably a 
good fit with most processors that have an interrupt capability. 

Machine Access 

One reason assembly language has commonly been used in 
system-level programming is the insulation of many HLLs from 
access to the underlying machine. Such insulation restricts the 
system-programmer in languages—like Pascal—that enforce 
strong type checking rules. 

Modula-2 uses Pascal-style type checking but provides methods 
to circumvent the checks. This is done by using special un- 
checked data types (WORD, ADDRESS), or using type names 
as type-transfer functions. It is still up to the programmer to iso- 
late hardware-dependent code into modules that can be easily 
identified and replaced when hardware is modified. 

The Compiler 

The complete compiler system was created by constructing a 
front-end compiler using UNIX* tools (C, yacc, lex), and incor- 
porating this compiler with an existing code generator for the 
68000. The code generator comes from the GCS Pascal com- 
piler, which was discussed in a previous issue of Technology 
Report [7]. Because of the close similarity of most Modula-2 and 
Pascal statement and data types, the intermediate code form re- 
quired as input to the code generator was with few exceptions 
sufficient as an output language for the front-end. (The inter- 
mediate code consists of quadruples, which resemble a high- 
level assembly language.) 

The front-end compiler operates in two passes. Two passes are 
required because Modula-2 allows references within the same 
scope to identifiers whose declarations have not yet been en- 
countered. Thus, the forward declaration of Pascal is not re- 
quired, and constant/type/variable declarations need not be 
grouped at the beginning of a block. 

In addition to the usual syntactic and semantic checks, the infor- 
mation from definition modules must be accessed for externally 
referenced (imported) names. This accessing of symbol-table in- 
formation from other compilations (completed during the first 
pass) constitutes, in fact, a separate linking step. This step is not 
found in languages that have no interface specifications. The 
compiler does version control when accessing this external in- 
formation, by checking time stamps created when the definition 
modules were compiled; this ensures that imports of the same 
name are accessing identical information. (Different versions 
bearing the same name would be created if, for example, a 
definition module were modified and recompiled in between 
compilations of two other importing modules. This situation is 
usually to be avoided). This version-control process is illustrated 
in figure 3. 

Run-Time System 

The run-time system must implement the operations on the 
PROCESS data type, in addition to the more usual operations 
such as error checking and floating-point processing. Because 
of the simplicity of the system model, the amount of extra run- 
time support code for PROCESS operations is relatively small. 

DEF. MODULE Q DEF. MODULE Q 

EXPORT foo , | EXPORT foo 

o 
RECOMPILE 

001 

TIME. H 
STAMP i 

009 

ra ! 

ev i 
? i 

ey 
DEF. MODULE X / DEF. MODULE Y ¥ 

4 

contains: ra contains: 
Q. foo [001] Q. foo [009] 

003 O11 

Sa a 
an importing module 

ERROR! 
incompatible versions (DEFINITION or IMPLEMENTATION) 

of Q. foo 
discovered here 

*UNIX is a trademark of Bell Laboratories. 

Figure 3. In the Modula-2 compiler, version control is ac- 
complished by checking time stamps. This ensures that 
all imports bearing the same version name are identical. 

One complication arises from the dynamic nature of the inter- 
rupt specification; a particular interrupt vector on the 68000 can 
be dynamically associated with different sets of Modula-2 pro- 
cesses. This association requires that an interrupt table exist at 
run-time, to store pointers to the process state variables (see 
figure 2). 

We have written an operating-system kernel in Modula-2 to pro- 
vide multitasking (and eventually multiprocessor) capabilities, 
as well as various operating-system utilities such as a terminal 

driver. This kernel constitutes a stand-alone system for the 68000 
single-board computers that control instrument system 
hardware. 

Experiences with Modula-2 

Modula-2 has met the requirements of modularity, reconfigura- 
bility, inter-module type checking, and real-time contro! capabili- 
ty that are crucial to well-engineered software for a complex 
computer-based instrument system. In fact, we expect the bene- 
fits of using Modula-2 will increase as the size and complexity of 
software development efforts increase—because interface spec- 
ification and modularity become correspondingly more impor- 
tant under these circumstances. 

Problems and Qualifications 

While this article has emphasized Modula-2’s good points, there 
are also some qualifications to be made, and problems to be 
pointed out: 

1. Some language features need to be either clarified, modified, 
or extended. In order to write flexible 1/O functions, for exam- 
ple, variable argument counts in procedure calls should be 
allowed in some situations. Other problems include the lack 
of a way to specify initial values in variable declarations and 
Modula-2’s overly restrictive limitation on set size. 

2. Modula-2 is harder to compile than Pascal. One reason for 
this is the greater sophistication of the scope-of-visibility rules 
for identifiers—this sophistication is due to the module feature. 
These rules make compiler symbol-table operations much 
more complex than those needed for Pascal. This extra 
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degree of flexibility in controlling identifier visibility is termed 
scope control [1], and implementation solutions have not yet 
been much discussed in the compiler literature. 

The definition-module interface also adds to compiler com- 
plexity. A Modula-2 compiler therefore requires more machine 
resources to run than a Pascal compiler. (The compiler de- 
veloped by the author runs on a VAX 11/780.) Note, however, 
that Modula-2 presents fewer implementation problems 
(because of its inherent simplicity) than some other systems- 

programming languages, such as Ada. 

3. While Modula-2 can facilitate the software engineering of 
large programming projects, it is not necessarily the best 
choice for doing a small job fast. This is because module in- 
terfacing and type checking add overhead to the program 
development process; for very small programs the benefits 
which go along with this overhead will not be apparent. 

Conclusions 

Modula-2 provides an excellent basis for applying software 
engineering principles to large software projects, especially for 
operating-system and stand-alone systems development. As 
computer-based systems become more complex, high-level 

language features that can manage complexity will be increas- 
ingly important in the software development process. U 
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BOOK BY TEK AUTHOR 
DEALS WITH STANDARDS 

Charles D. Sullivan 

Charles D. Sullivan, late manager, Technical Standards, has 

written a monograph Standards and Standardization, published 
by Marcel Dekker, Inc., New York. Chuck has compiled a broad 
overview of the subject based on his many years of on-the-job 
involvement with standards. 

Standards and Standardization is an excellent introduction to 
this important subject. Engineering students will welcome it as 

an essential text that can be studied without prerequisites, and 
engineers will appreciate the perspective this book offers. It is 

equally valuable for professional seminars and in-house training 
programs, as well as supplementary reading in social science 
courses. 

Some subjects covered: 

e Approaches to standards 

e Ancient standards 

e Voluntary and mandatory standards 

e Mechanics of standards preparation 

e Organizations 

e The Standards Engineering Society 

e Standards coordination 

° The General Agreement on Tariffs and Trade (GATT) 

For more information, call Bonnie Kooken, ext. B-1800. CJ 
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ERGONOMIC BARRIERS 
TO SALES ARE REAL 

Gene Lynch is a human factors engineer in the 
Systems Engineering group, part of IDD. Gene 
ioined Tektronix in 1981 after teaching math, phys- 
cs, and mechanical engineering at the Santa Cat- 
lina School and the Naval Postgraduate School 

n Monterey, California. Each summer from 1973 
o 1980, he was a consultant to Tek. Gene holds 

a BS, MS, and PhD in Engineering Science from 
the University of Notre Dame. 

Late in 1981 IDD started losing sales in ergonomically sensitive 
markets. Sales statistics dramatically pointed toward worse losses 
to come. To separate ergonomic fact from fiction IDD formed the 
Human Factors Task Force. Its mission was to establish good 
communications with our people in the ergonomically sensitive 
markets and with technical organizations, government commis- 
sions, and the standards bodies. Then, the task force was to de- 
termine what was needed to eliminate ergonomic barriers to sales. 

The members of the task force were Bruce Carroci, Bob Edge, 

Jerry Murch, Bob Russell, and Gene Lynch (chairman). 

A little more than two years ago few of us had heard of er- 
gonomics. It was a term that was popular in Europe. Its sim- 
plest meaning is the science of making work easier. A more 
complete definition is the adaptation of equipment and the 
work environment to meet man’s strengths, capabilities, 
and limitations. Ergonomics is derived from two Greek 
words: ergon, for work and nemein, meaning to manage, 
divide, or distribute. 

A World-Wide Challenge 

In Europe ergonomics has focused on improving the nature of 
work with productivity a secondary goal. In the United States 
the primary interest has been in increasing productivity. Prelimin- 
ary data supports the position that good ergonomics is good 

economics. 

Germany has two, somewhat conflicting, sets of standards: the 
German Safety Standard by the TCA (Trade Cooperative Asso- 
ciation) and the DIN 66234 by the Deutches Institut fur Normung. 

The TCA can, in essence, ban from sale in Germany any equip- 
ment violating TCA standards. In Germany it is not uncommon 
for sales engineers to be met by a purchasing agent holding the 
pink booklet containing the TCA safety standard. It also is com- 
mon for workers’ councils to have a say in a purchase or in pur- 
chase policy. These councils are demanding ergonomically de- 
signed terminals and workstations. 

The effects of a TCA ban extend beyond Germany. Although only 
Germany and Sweden have official ergonomic standards, in the 
absence of an International Standards Association (ISO) standard, 
most of Europe has accepted the German standards as de fac- 
to. The ISO will begin working on a standard this spring. 

in Germany it is not uncommon for purchasing agents to 
greet sales engineers with the TCA safety standard in 
their hand. 

Canada too is active in ergonomics, trying to regulate video dis- 
play terminals (VDTs). The Task Force on Micro-electronics and 
Employment has just released recommendations for such regu- 

lations in their report, “In the Chips.” British Columbia wrote non- 
binding guidelines last year. This year, the British Columbia Gov- 
ernment Employees Union is saying, ‘the guidelines must be 

followed.” 

In the US Too 

In this country several states have considered VDT regulations. 
This is unsettling, because the absence of a national standard 

could put Tektronix in the untenable position of having to deal 
with numerous conflicting standards in the American market. 
The lack of a U.S. position also limits Tek input to the ISO com- 
mittee that will draft the ISO standard. 

Tektronix is working with the Human Factors Society in trying to 
get an American standard through the American National Stan- 
dards Institute (ANSI). ANSI is a member of ISO. 

Although we are not enthusiastic that ergonomics is an area that 
needs to be standardized, we strongly support the development 
of an American position—we face the reality of the German stan- 
dards, the German standards influence on the ISO, and the devel- 
opment of state-by-state ergonomic standards. We feel that now is 
the time to pursue a reasonable standard while we have a chance 
to help define its structure and content. 

How does all this affect our products? Without serious attention 
to ergonomic issues, we could be maneuvered out of one or more 
markets. We need to develop cost-effective answers to the chal- 
lenges of this rapidly moving market requirement. Rather than 
just meeting the standard, our goal should be to meet our cus- 
tomers needs by following the underlying principles of ergonomics. 

Guidelines Available 

Rather than merely designing products to meet the letter of the 
regulations, IDD people have been proactive in industry efforts 
to develop standards and guidelines that assure product salea- 
bility. One effort, the Human Factors Task Force, has recently 
published Guidelines for Eliminating Ergonomic Sales Barriers. 
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The Guidelines were developed after closely scrutinizing ergo- 
nomic regulations and practices and noting market sensitivities. 
IDD designers who follow the guidelines should be able to not 
only avoid building unsaleable products, but their products should 
be more saleable because the needs of the user are dominant in 

the Guideline. 

Although the Guidelines are based on IDD product and market 
needs, designers in the other divisions may find the contents of 
this 17-page publication useful. The guidelines deal with displays, 
keyboard electronics, workstations, systems considerations, soft- 
ware and measuring techniques. Copies are available from 
Gene Lynch, d.s. 63-225. 

IDD designers may want to discuss specific standards and mar- 

kets with either Jerry Murch, W1-3858, or Gene Lynch, W1-3730. 

Here are some of the highlights from this document: 

Displays 

The minimum contrast ratio should be 3:1 in normal lighting 

conditions. 

The contrast must be manually adjustable by the operator. 

Some sort of antiglare treatment is required. 

The display should be flicker free. 

Jitter is to be less than 0.7 minutes of arc as seen at 500 mm or 

less than 0.1 mm actual motion. 

Distortions are to be less than +1 percent of screen height or 

width. 

Visible variation of brightness across the screen is to be avoided. 

The screen surround as well as other surfaces are to have matt 

finish and with reflectivity between 20 percent to 50 percent. 

The display should be adjustable for tilt and viewing distance (in- 
tegral or optional device). 

Characters 

A7x9 matrix is the preferred minimum with a 5 x7 as an ab- 

solute minimum. 

The character height is to be a minimum of 2.6 mm (from the 
German standards) to a minimum of 3.1 mm (from the Canadian 

requirements). 

Keyboards 

Keyboards are to be detached and as thin as possible (30 mm 

at the home row). 

Tactile feedback is desirable, as is optional audio feedback (pop- 

ular with the French). 

When numeric entry is used extensively that a 10 key pad is rec- 
ommended. If possible, it should be relocatable to the left or 

right of the main keyboard. 

From DESIGN, May 1980 

Keyboard slopes should be adjustable (8 degrees for fixed slope 
keyboards). 

Slide stops should be provided to keep the keyboard from slip- 
ping on the work surface. 

National keyboards should have all legends in the native 
language. 

Red indicators should only indicate warnings, not status. 

The keyboard cable should allow placing the keyboard up to 
6 feet from the center of the display. 

The legends on the keyboard should be dark characters on a 
light background. 

System 

Controls should be easy to reach and operate. 

Equipment plus ambient noise must not exceed 55 dBA. The 
equipment itself should not exceed 50 dBA (measured at the 
operator’s position). 

From DESIGN, May 1980 
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Thermal comfort is a concern. Exposed surfaces are to be com- 
fortable to the touch. Exposed heat sinks should be kept below 
60 degrees C. Hot spots should be avoided. No part of the op- 
erator’s body should be exposed to a temperature higher than 
3 degrees C above the ambient. 

Drafts should be avoided. Air flow at the neck, wrists, and ankles 

should be less than 0.1 meter per second. 

The height of the display at its lowest position should be no 
higher than 14 inches above the work surface. Its highest posi- 
tion should be at least 20 inches above the work surface. 

Workstation 

Displays should be able to tilt, swivel, and be easily positioned 
in the work area (by integral design or auxiliary device). 

The viewing angle should allow for maximum perpendicularity. 
Perpendicularity and glare requirements can conflict, so glare 
control and tilt are both required. 

There should be 50 to 100 mm unused space in front of the key- 
board on the work surface for a palm rest. 

Surfaces should be adjustable to accommodate the range of all 
persons from those larger than the 5th percent female to smaller 
than the 95 percent male. 

All adjustments should be easy and require little force and should 
not accidentally readjust. 

All corners and edges should be rounded. 

There should be adequate leg and knee room. 

The elements of the workstation should be modular, reconfigur- 
able, and flexible. 

Adequate work surface should be provided for the application. ' 

The workstation should include a proper chair and, where re- 
quired, a document holder. 

Cables should not interfere with the operator. 

Software 

In the near future (now if possible) system and error messages 
should be in the native language to match the national keyboards. 

The software should be in the native language. 

While standards and ergonomic barriers have not been devel- 
oped or identified in the area of firmware and software, it is clear 
that the ergonomic aspects of firmware and software is every bit 
as important or more important than the physical ergonomics. A 
DIN committee is working on a standard dealing with man com- 
puter dialogues. 

For Nore Information 

The Human Factors Task Force has completed its work, but the 
job of monitoring, tracking and influencing the standards contin- 
ues. Gene Lynch (63-225/W1-3730) and Jerry Murch (63-489/ 
W1-3858) will up date the Guidelines as necessary. They will 
also be happy to answer questions concerning standards and 
ergonomics. LJ 

USER INTERFACE ASPECTS 
OF A DESKTOP CAD SYSTEM 

_| John H. Harms is a software engineer in Graphic 
Design Application Systems (GDAS) part of IDD. 
John joined Tektronix in 1980 to work on the team 
of engineers that designed and implemented Tek 
2-D Drafting. He is now working on new CAD sys- 
tems. John received his BS in computer science 
from Oregon State University. While at OSU he de- 

| signed and implemented circuit board placement 
and routing systems. 

The user interface is a very important, but sometimes over- 
looked, facet of a CAD (computer-aided design/drafting) 
system. The man-machine interaction needed to make all 
of the features work effectively really determines a sys- 
tem’s usefulness. It is most desirable to have a user inter- 
face that makes the system easy to learn and use, and yet 
provides sufficient power to fully control a complex CAD 
system. This article details some guidelines for the design 
or selection of systems that fulfill these goals. 

In designing a system that is both easy to use and powerful, the 

use of a desktop computer in the CAD system has several ad- 
vantages that make it an attractive alternative to the typical host- 

computer terminal configuration. A desktop computer often has 
display and interaction features that are unavailable on host-based 
workstations in the same price range. For example, special- 
function keys may require an expensive intelligent terminal sup- 
ported by special software. Many desktop computers, however, 
include such capabilities as standard features. 

Other advantages of a desktop computer include instant response 
(the computer has only one user to think about) and dedicated 
peripherals (such as plotters and graphic tablets connected di- 
rectly to the workstation). These advantages make it possible to 
design a highly interactive user interface at much lower cost than 
would be possible with a larger computer. 

This article examines several facets of man-machine interaction 
as they relate to drafting systems. Some examples are taken from 
the Tektronix, Inc. PLOT 50 2-D Drafting package, a computer- 
aided drafting system that runs on a desktop computer. Four 
important aspects of a user interface will be discussed: 

1. Employing the computer display effectively. 
2. Making it easy to enter information into the system. 

3. Providing capabilities that allow fast and efficient operation. 

4. Preventing unpleasant surprises and uncertainty. 
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Although the Tektronix 2-D Drafting system is used for examples, 
the concepts in this article apply to the design of any CAD user 

interface on a desktop computer. 

Employing the Display Effectively 

The effectiveness of a user interface depends a great deal on 
how well the hardware is utilized. In particular, the computer’s 
display is the focal point of the user’s attention. 

In general, the larger the screen, the better the user interface. 
For one thing, a large screen has more room for tutorial mes- 
sages to help the user decide how best to respond. For exam- 
ple, a menu can use full English phrases: 

Select dimension alignment 

1. Aligned (text at appropriate angle) 

2. Unidirectional (text forced horizontal) 

With a small screen, it may be necessary to use cryptic abbrevi- 
ations, like ALIN and UNDR. Such abbreviations tend to increase 
learning time and force users to refer to manuals more often. 

Another advantage of a large, high-resolution screen is the big, 
detailed image. The user can put more of the drawing on the 
screen and yet keep small features visible. 

Employing a DVST can complicate the design of a good user in- 
terface, because once an image is drawn on the screen, it re- 
mains until the whole screen is erased. Prompts and messages 
can quickly fill the screen forcing the image to be redrawn, a pro- 
cess which can take time. Until recently, the only way to get the 
screen size and resolution of the DVST, without the redraw limi- 
tation, was to employ a very expensive high-resolution refresh- 
display terminal. However, it is now possible to use a relatively 
inexpensive desktop computer (such as the Tektronix 4054) that 
provides both stored images and refreshed images. Such re- 
freshed graphics are called “dynamic graphics.” 

Why are dynamic graphics important? First of all, they go a long 
way toward eliminating a major objection to DVST displays — the 
need for redraws. With all messages and user inputs in refresh, 
there are no full-screen redraws forced by a message area be- 

coming filled. 

Since any graphic image can be placed in refresh and moved 
around on the screen at will, refresh has many other uses. For 
example, the user can “drag” symbols and text around on the 
screen until their locations are satisfactory. A complex and ac- 
curate cross-hair cursor helps the user precisely locate graphic 
positions. Other powerful tools such as rubber-band lines (lines 
that “stretch” as the cursor moves), blinking location indicators, 
and blinking messages are provided. There is an option for the 
refresh images to appear in orange, which provides a sharp con- 

trast to the stored green image. 

Making It Easy to Enter Information 

A system that is easy to learn and use is achieved by designing 
the user interface to be friendly, yet powerful. This presents the 
designer with two conflicting goals: simple enough for the novice, 
but still efficient for the expert. 

There are several common methods for telling a CAD system what 
to do next. One is command entry. Here the user types in a com- 
mand, usually with parameters. For example: COPYROT 45,7 
might mean to make seven copies after rotating the image 45°. 
Although very efficient once learned, the command-entry method 
requires the user either to memorize command names and pa- 
rameter orders or to refer repeatedly to a manual. The command 
method requires extensive user training. 

Another common technique is called menu hierarchy. This meth- 
od presents a menu of commands; each command choice from 
a menu can produce another menu, and so on (see figure 1). In 
the copy-rotation example, the user might choose EDIT from a 
menu consisting of ANNOTATION, GEOMETRY, EDIT, and 
PLOT. His choice might then produce an “edit” menu consist- 
ing of BLANK, COPY, MODIFY, DELETE. Selecting COPY 
would produce a “copy” menu: MIRROR, ROTATE, RESCALE, 
and TRANSLATE. After ROTATE is selected, the user is asked 
for the degrees of rotation and the number of copies. Although 
easier to use than command entry, the menu method can be 

tedious for an experienced user, who, instead of going directly 
to the desired function, has to go through many levels of 

menus. 

MENU HIERARCHY EXAMPLE: 

ANNOTATION,GEOM ETRY,EDIT,PLOT 

BLAN COPYMODIFY,DELETE 

MIRROR. ROTATE, RESCALE, TRANSLATE 

ADDITIONAL PROMPTS 

Figure 1. The menu-hierarchy technique presents a 
choice of commands. If the user selects ‘‘Edit’’ from one 
level, the next level is presented. If “Copy” is selected, a 
third level appears . . . and so forth. 

A third method, which is gaining popularity, uses the tablet 
menu. The tablet menu is a formatted menu on a digitizing tab- 
let from which the user selects by pointing with a special pen 
(see figure 2). In the copy-rotate example, the user points to the 
COPY:ROTATE function and then is asked for the degree of ro- 
tation and the number of copies. The tablet-menu method has 
much of the speed of command entry, yet does not force the 
user to memorize command syntax or to wade through menu 
levels as in the menu-hierarchy method. 

Prompts 

“Prompts” are a process in which the system asks the user for 
information. Preferably, each prompt should be complete and 
somewhat tutorial, yet concise. For example, “Enter name of 
drawing to be deleted” is better than “Name.” In contrast, 

“Please enter the name of the stored drawing that you want to 
be deleted from the flexible disk drive’ is too wordy. Prompts of 
an appropriate length give the user enough information to make 
an intelligent response. 
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Figure 2. Tablet menus offer much of the speed of com- 
mand entry without forcing the user to memorize names 
of parameters. 

Because desktop computers are fast they have the advantage 
here. On a host/terminal system, the slow communication speed 
(low baud rate) can limit interaction speed with anything beyond 
very abbreviated prompts. 

Menus and yes/no prompts allow the user to see all his options 
and to select the one that matches what he wants to do. This al- 
lows the user to work without having to memorize the options or 
to repeatedly refer to a manual. For example, if the drafting sys- 
tem requires the user to specify the units for dimensioning, it 
should show the choices: 

Select dimension units 

Unitless decimal 

Decimal foot 

Decimal inch 

Foot, inch, fraction 

a 
F
O
N
 

Inch, fraction 

The user should not have to look up dimension choices in a man- 
ual or guess and hope that unit type 4” is what he needs (or 
that “FT/IN/FRAC” is a valid input). 

Most prompts should have a default. (A default is what the sys- 
tem assumes if the user does not enter the requested informa- 
tion.) If a default exists, it should be displayed with the prompt. 
Good default selections serve two important purposes: (1) to 
help the experienced user work faster, and (2) to suggest a re- 
sponse for a new user who may not understand the full implica- 
tions of the question. The choice of defaults should follow the 
principle of “least astonishment,” which is discussed in the sec- 
tion on preventing unpleasant surprises. 

As much as is possible, prompts and messages should be in 
the user’s language. Although some computer terminology is 
necessary, the system should avoid computer jargon whenever 
possible. Most users who would scratch their heads at “I/O de- 
vice #2 byte count exceeds current capacity” would readily un- 
derstand “Drawing will not fit on the drawing disk.” 

A side note: Prompts in both upper and lower case are much 
easier to read than those in all upper-case. The ‘“‘shape” of the 
words can be perceived and understood more quickly. 

Input to the System 

Desktop computers often have great flexibility on how the user 
can answer a prompt. (Input to a system is the user’s answer to 
a prompt.) For example, it is easy for the program to receive one 
character at a time (single-key) and give instant feedback. (On a 
large computer system, instant feedback is often not practical due 
to low communication speeds and time-sharing lags.) 

A user interface can take advantage of single-key input in sever- 
al ways. First of all, invalid keys can be screened out immediate- 
ly by having a friendly bell ring right after the user presses one. 

Without single-key input, the user would type in a whole line of 
text and press RETURN only to get a “syntax error” message. He 
would then have to re-enter the correct text. Single-key input also 
speeds information entry, since one-character entries like Y and N 
for yes and no responses require only one keystroke. 

When prompted for information, the user should always be pro- 
vided with a method to quickly “escape” to some known place. 
For example, pressing the ESC key on the Tek 2-D drafting sys- 
tem immediately returns the user to the point where he selects a 
function from the tablet menu. Alternatively, pressing RUBOUT 
returns the user to the previous question in a prompt sequence. 
Escapes make it very easy to correct mistakes and give the user 
more control over the system. 

Numeric input is the input of parameter values to the system. A 
system should be able to receive numeric input (and produce 
output) in the measurement unit selected by the user. For exam- 
ple, suppose a drawing has a scale of 1/4 inch = 1 foot. The user 
should be able to specify five feet, three and one-eight inches 
with something like 5’ 3-1/8 instead of 5.2604166. A system that 
does not provide automatic scaling may even require the user 
to compute the scaling by hand (6.2604166 x 0.25 + 12 =0.109592 
for the above distance). When entering numbers, it is much easier 
if the user can choose from a variety of ways. For example, 3/4, 
2-7/8, 35° 16’, and 6.02E + 23 all make sense as numbers and 
should be accepted. 

Graphic input is how the user indicates positions on the drawing. 
Flexibility is extremely important here. The user may want to sim- 
ply indicate a position with a screen cursor. Usually, he will want 
to have this indication “snap” to the nearest grid point (like graph 
paper), but sometimes he may want to ignore the grid. On the 
other hand, the user might want to “connect” to something al- 
ready in the drawing, such as the endpoint of a line or arc. Al- 
ternatively, he might want to use numbers to indicate the loca- 
tion, either by absolute coordinates or by something relative to a 
previous entry. Since there is no way the system can predict 
which method the user wants to use, how should it prompt him? 
Tek 2-D Drafting addresses this problem with a mode called 
“free input.” 

TEM D7 



In the free input mode, any time the system needs a graphic po- 
sition input, it gives the user instant access to any one of nine 
methods of entry (see figure 3). Initially, in free input, a full-screen 
cross-hair cursor appears; then the user selects a positioning 
method by pressing a key. (Valid keys and their meanings are 
displayed on the screen as shown in figure 4.) Basically, the 
user can position by snapping to the nearest grid location (or ig- 
nore the grid); or he can snap to one of four item types (points, 
line endpoints, arc endpoints, and symbol connection points); 
or the user can key in coordinates (either absolute or relative). 
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Figure 3. ‘Free Input” gives the user nine options for 

specifying any location. 
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Figure 4. Valid keyboard keys for “Free Input” are dis- 
played (underlined) at the bottom of the screen. This 
screen hardcopy also shows the cross-hair cursor that is 
controlled by a set of thumbwheels next to the keyboard. 

The flexibility of numeric and graphic input is further extended by 
allowing the user to enter with either the tablet or the keyboard. 
He might want to use the tablet to “digitize” or to trace a drawing 
manually. On the other hand, to create a drawing from scratch, 
the keyboard thumbwheels might be faster. The user has com- 
plete control over the input source, and can even briefly switch 
from one source to another for just one entry. 

Providing Capabilities for Speed and Efficiency 

No matter how fast a computer is, there will be times when a user 
must wait for some operation to finish. The Tek 2-D Drafting sys- 
tem improves user interactions with the system by providing ca- 
pabilities that minimize this waiting. These capabilities include item 
selection, redraw, and drawing simplification. 

Item Selection and Redraw 

Often, in drafting, the user will need to select an item from a draw- 
ing. Suppose the user wants to delete a circle; how would he go 
about it? Typically with drafting systems, you point to the circle 
on. the screen using some sort of cross-hair cursor (like a gun 
sight). The system then looks for the item closest to the cursor. 
The Tek 2-D Drafting system uses a special cursor that has a 
small circle at the intersection of the cross-hair lines. The circle 
at the cross-hair intersection indicates a search tolerance. If you 
put part of the item you are selecting inside the circle, the sys- 
tem stops looking as soon as that item is found. With this method, 
the item will usually be found much faster since it is not neces- 
sary to search the whole drawing for the closest item. The Tek 
4100 Series has this process implemented in firmware, which 
makes it even faster. 

Anything that reduces the number of items through which the 
system must search speeds the selection process. The user 
should be able to select by specifying the type of item. If he is 
selecting an arc, the user should be able to tell the system to 
look for arcs only and, thus, by ignoring lines, notes, symbols, 
dimensions, etc., the system can speed through the selection 
process. 

The order of search also significantly affects selection speed. The 
Tek 2-D Drafting system follows the “last in, most active” philos- 
ophy. In other words, the items most recently added to a draw- 
ing are the most likely to be selected for some further operation. 
For example, it is more probable that the user will want to edit a 
note just entered than one which was entered yesterday. For this 
reason, searching is done backwards, that is, from the end of 

the drawing to the beginning. 

Redraw is another operation that benefits from the “last in, most 
active” philosophy. The Tek 2-D Drafting system provides an 
option to stop a redraw. Using this option, the user can start the 
redraw and probably see what was wanted sooner (that is, the 
items most recently added). He can then stop the redraw and 
continue working. 
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Simplifying the drawing 

Anything that temporarily simplifies a drawing will speed up vir- 
tually all operations. One design approach is to allow the user to 
turn off certain item types; for example, by telling the system not 
to display annotation. The disadvantage of this method is that no 
annotation will be visible and the user may need to see some of it. 

A better approach is full blank and unblank capability. This al- 
lows the user to blank (make invisible to both the user and the 
system) by item type, level, pen, or other criteria. Blanking is 
even more useful if the user can apply such criteria by region. 
For example, the user could blank all dimensions that are out- 
side of an area (a box which he indicates on the screen). Blanked 
items are ignored by the selection and redraw processes until 
the user unblanks them. Figures 5 and 6 show an example use 
of blanking. 
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Figure 5. Drawing before blanking. 

EXAMPLE USE OF BLANKING 

Figure 6. Same drawing as in figure 5 after blanking. 

Preventing Unpleasant Surprises and Uncertainty 

The design of a user interface should follow what James Foley 
calls the principle of “least astonishment” (see bibliography). This 
means that what really happens when the user tells the system 
to do something should cause the least surprise and shock. In 
addition, the user should never be left wondering “What's going 
on — is everything working OK?” Proper implementation of the 
user interface (and of the system in general) will help prevent 
unpleasant surprises and uncertainty. This increases the user's 
confidence in the system and in its ability to do what he wants. 

Reliability 

Paul Heckel, one of the innovators of the Craig Language Trans- 
lator, gives a good example of what system reliability really means: 
Suppose there were two systems. One would get your work done 
in two hours, and the other would get it done in one hour. Which 
one would you use? Obviously, the one-hour system. Now sup- 
pose you found out that the one-hour system really gets your 
work done in half an hour, but at the end of the half hour des- 
troys all your work and makes you start from scratch. Which one 
would you use now? 

It is never fun to lose your work. Making a system reliable in- 
volves several things. 

First of all, the entire system should be “solid.” The hardware 
should work together and should have a reasonable mean time 
between failures. The software should be virtually bug free. The 
user should never be hit with a computer error message like 
UNDEFINED VARIABLE. Even in the event of error, the user 
should not be left dead in the water. Except for the most ex- 
treme hardware failures, users should be able to recover and 
resume work without losing their drawings. 

An additional reliability factor to consider is the ability of a sys- 
tem to recover from a power failure. Recovery is especially im- 
portant in offices, where users rarely have the protection of an 
uninterruptable power supply (a special device that maintains 
equipment power in the event of a brownout or a total power 
failure). 

Another advantage of desktop computer systems is that if one 
workstation goes down, the others stay up. In comparison, if a 
central computer goes down, all of the workstations are dead. 

Preventing and recovering from user errors 

One important way that a CAD system can help a user prevent 
errors is to make sure the user knows what items on which the 
system intends to operate. For example, suppose the user wants 
to delete a line. Once the line is selected from the screen, the line 
should be highlighted to verify that the correct item was chosen. 
This could be done by making the particular item blink or change 
color. The more visible and conspicuous the highlighting is, the 
less likely it is that the user will make an irreversible error. 
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The system should ask the user to confirm major actions. In the 
above example, once the line to be deleted is highlighted, a 
“Delete item?” yes/no prompt will prevent much distress if the 
user intended to delete a different line. Potentially destructive 
operations also can be flagged with blinking warning messages. 
For example, if the user meant to blank an item but mistakenly 
selected the delete function, a message that blinks “Warning: 
deleted items cannot be restored” will help him catch the mis- 

take before it is too late. 

Another form of confirmation can be useful when the user is ma- 
nipulating items. For example, when the user is duplicating an 
item in the Tek 2-D Drafting system, the first duplication is shown 
in refresh until the user confirms that it is correct. Only then does 

the system actually change the drawing. 

Another useful function is some sort of a delete-last-item or undo 
command. This capability allows the user to quickly reverse an 
action. How much you can undo varies from system to system. 

Some will only remove the last item entered in the drawing, 
whereas some systems can actually “unmodify” items that were 
changed somehow. Once the system starts working on a com- 
mand, the user should be able to stop it at any time by pressing 
a special-function key or by some other action. Whenever possi- 
ble, this interruption should leave things unchanged. For exam- 
ple, if the user cancels an operation that involves overwriting a 
drawing that already exists on disk, it is best if the system can 
leave the original on the disk untouched. 

There will be times when a user will ask the system to do some- 
thing impossible, like finding the intersection of two parallel lines. 
The result should be an error message, and possibly a warning 
bell so the user will not have to constantly monitor the message 
areas. (The bell should be friendly, not offensive or irritating.) The 
error message itself should respect the user’s dignity and not 
“shout.” In the parallel-line example, ILLEGAL INTERSECTION!! 
is too emotional (am | going to jail?). A much better message 
would be: “Lines are parallel - no intersection possible.” Friend- 
ly error messages are less traumatic and increase user satisfac- 

tion with a system. 

Feedback to the user 

We have all encountered the uncertainty that occurs when we 
press a doorbell and hear no ring. Is it working? Should | knock? 
Is no one home? Am | making a fool of myself standing here? 
This is analogous for what a user feels when a CAD system does 
not give instant feedback. We usually don’t mind waiting at the 
door if we know that we were heard and that someone is coming. 
Likewise, it is much easier to wait for a computer when you know 
it understood and is performing your command. Timeshared 
host-based systems, although intrinsically faster than desktop 
computers, often make the user “wait at the door” without any 

feedback. 

The user interface of a CAD system must provide fast feedback; 
this can take several forms. When the system user “presses the 
doorbell,” something should happen. If you can hear a “ring,” 
at least you know the system works. Likewise, when the user re- 
sponds to a prompt on a computer, something should happen 
instantly. For example, the prompts could disappear. 

After you ring a doorbell, it is reassuring to hear responding foot- 
steps indicating that you were heard. Likewise, the computer 
should indicate that operations are in progress. To do this, the 
Tek 2-D Drafting system displays a special message - “Working” — 
any time the computer is busy. The user finds this message is 
especially reassuring in operations that do not cause display ac- 
tivity, such as saving a drawing on disk. In addition, many com- 
mands produce running status messages like “15 items deleted.” 
Some operations even display countdowns that indicate how 
soon they will be finished. 

Feedback is one of the best ways to reduce user uncertainty 

about a computer system. The more certain the user is, the 
more comfortable and productive he will be. 

Conclusion 

User interfaces have come a long way in recent years. The em- 

phasis is moving more and more toward making the user as com- 
fortable with the system as possible. 

Desktop computers have helped to speed this change by provid- 
ing interactive features at very attractive price-to-performance 
ratios. Some desktop-computer features are unavailable on all 
but the most expensive host-based systems. 

No matter how good the computer hardware is, however, the sys- 
tem is less useful if the computer software provides a user inter- 
face that is difficult or unpleasant to use. It is the combination of 
reliable, highly interactive hardware with reliable, highly interac- 
tive software that makes a good user interface. This is what makes 
a system really friendly, easy to learn, and efficient to use. These 
factors, in turn, will greatly influence how useful the total system 

is to the user. 

For More Information 

For more information, call John Harms, ext. W1-3439. LJ 

This article was developed from material presented at the 
Design Engineering Conference held in March, 1983. 
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