TE K INFORMATION MARCH/APRIL
FOR TECHNOLOGISTS 1986

TECHNOLOGY

report

COMPANY CONFIDENTIAL

SELF-SYNCHRONIZATION
SPEEDS UP
STATE MACHINE

ASYMETRICAL
DELAY IS
THE KEY

=
Tektronib¢
COMMITTED TO EXCELLENCE

CONTENTS

Volume 8, No. 2, April/May 1986. Manag-
ing editor: Art Andersen, 642-8934, d.s.

Asymetrical Delay Makes Self-Synchronized
State Machine Faster

Engineering Forum Aims at Building

Business Excellence.............ccveuo..

Testing the Large Chip:

Artificial Intelligence Shows Promise
in Reconciling Functional with

Gate Level Testing

Tolerances Too Tight:
Aluminum-Extrusion Vendors Shy

Away from Doing Business with Tek.......

CONNECTIONS. . .

Lookahead Carry Speeds Up

Binary Addition/Subtraction and
Binary/BCD Addition—Less Logic Too

Standards Review Board

53-077. Cover: Monica Kaul, Graphic illus-
trator: John Kennedy. Composition editor:
3 Sharlet Foster. Published for the benefit of

the Tektronix engineering and scientific
community.

This document is protected under the copy-
right law as an unpublished work, and may
not be published, or copied or reproduced
by persons outside TEKTRONIX, INC., with-
out express written permission.

Why TR?

Technology Report serves two purposes.
Long-range, it promotes the flow of tech-

17 nical information among the diverse seg-
ments of the Tektronix engineering and
scientific community. Short-range, it pub-
licizes current events (new services avail-
able and notice of achievements by mem-
bers of the technical community at

18 Tektronix).

HELP AVAILABLE FOR
PAPERS, ARTICLES,
AND PRESENTATIONS

WRITING FOR
TECHNOLOGY REPORT

If you're preparing a paper for publication or presentation out-
side Tektronix, the Technology Communications Support (TCS)
group of Corporate Marketing Communications can make your
job easier. TCS can provide editorial help with outlines, abstracts,
and manuscripts; prepare artwork for illustrations; and format
material to journal or conference requirements. They can also
help you “storyboard” your talk, and then produce professional,
attractive slides to go with it. In addition, they interface with
Patents and Trademarks to obtain confidentiality reviews and to
assure all necessary patent and copyright protection.

For more information, or for whatever assistance you may need,
contact Al Carpenter, 642-8955.

Technology Report can effectively convey ideas, innovations,
services, and background information to the Tektronix techno-
logical community.

How long does it take to see an article appear in print? That is
a function of many things (the completeness of the input, the
review cycle, and the timeliness of the content). But the mini-
mum is six weeks for simple announcements and as much as
14 weeks for major technical articles.

The most important step for the contributor is to put the mes-
sage on paper so we will have something to work with. Don’t
worry about organization, spelling, and grammar. The editors
will take care of that when we put the article into shape for you.

Do you have an article to contribute or an announcement to
make? Contact the editor, Art Andersen, 642-8934 (Merlo
Road) or write to d.s. 53-077. O

TECHNOLOGY
REPORT

Asymetrical Delay Makes Self-
Synchronized State Machine Faster

| Donald C. Kirkpatrick is a senior hardware/

| software engineer in the Logic Analyzer Division.
Don joined Tek in 1972 from General Telephone
where he was an engineer. Don holds a PhD in
electrical engineering from Oregon State
University.

Synchronous machines have many advantages over asyn-
chronous machines, but asynchronous designs can run
faster. Don Kirkpatrick, Logic Analyzer Division, set out
to combine the best of both in one scheme. The result,
a major improvement to product-line functionality that
will be announced this summer.

Where speed is critical, an asynchronous machine has the dis-
tinct advantage of not having to wait for the next clock pulse.
On the other hand, in synchronous machines state assignment
is efficient and less logic is required.

Since synchronous machines have many advantages over
asynchronous machines, the Logic Analyzer Division needed
to combine the best of both machines in one scheme. We did
this by using self-synchronized asynchronous design, thus re-
taining the speed advantage of the asynchronous machine
while gaining the efficient state assignment and logic reduction
of the synchronous machine. The price for this is a clock
generator.

Our problem was to implement correctly the state-transition
function and output function of the machine as specified by a
flow table. A logical model for all state machines is shown in
Figure 1. This model is completely general. Any sequential
state machine can be built in this form.

| ts —> L ————P Outputs
nputs Combinational P
logic
Present Next
state state
Delay
elements

Figure 1. Huffman-Moore model finite state machine.

The combinational logic block, in the model, contains no
memory and the delay-element block contains only memory
devices. The input signal combination presented to the ma-
chine is called the input state. The output signal combination
produced by the machine is called the output state. The state-
variable signal combination is called the internal state. The in-
dividual input, output, or internal state-variable signals them-
selves will be referred to as inputs, outputs, or state variables.
Together, the internal and input states form the total state (or
just ‘state”).

The usual approach to designing simple asynchronous
machines, after the style of the Huffman-Moore machine
(Figure 1), is to base the design on broad conditions called
operating assumptions. Within these conditions proper func-
tional behavior can be assured.

For example, the most-often-required environmental condition !.
is that the machine be allowed to work in fundamental mode;

that is, a final stable state is reached between input state

changes. Machines operate either in fundamental or non-

fundamental mode. Some, such as UIC machines, operate in
non-fundamental mode.

The new next-state value is fed back to become the new pre-
sent state. The delay elements in the feedback path are one of
several classes of devices that delay feedback. These delay
elements compensate for the finite and differing speeds of the
various paths from inputs to next-state terminals.

The appropriate delay times depend on the particular circuitry
in the combinational logic. While the circuit technology deter-
mines the ultimate minimum delay time and maximum operat-
ing speed, the choice of a machine structure may adversely
impact this ultimate speed.

If there are several input signals to an asynchronous machine,
a distinction is made between single input change (SIC) and
multiple input-change (MIC) modes. In MIC mode, more than
one input is allowed to change, and all changes within some
small interval are accepted as if they were simultaneous. In the
SIC mode, of course, only one input is allowed to change.

Design methods for SIC machines are well established, although
not as direct and easy as methods for synchronous machines.
MIC mode machines are a bit more complex. In either case,
proper operation depends upon proper behavior of the input.
One way to make asynchronous-machine behavior predictable
and designable is to use speed independent machines. Input
changes for a speed independent machine are permitted only
when the machine indicates, through special outputs, that it is
ready to accept the next input change.

TECHNOLOGY
REPORT

According to the flow table of the machine, a single input
change may cause one or more changes of state. Since the
output is a function of the state, state changes may or may not
cause changes in the outputs. If no allowed input change
causes more than one output state change, the machine is a
single output-change (SOC) machine. If the number of output
state changes is bounded but sometimes more than one, the
machine is in the multiple output-change (MOC) category;
otherwise it is in the unbounded output-change (UOC) cate-
gory. An SIC, SOC machine in fundamental mode is a normal
fundamental mode machine.

Delay elements used previously in self-synchronized machines
exhibit one of three behaviors: (1) The monostable multivibrator
outputs an edge at a fixed time, D, after the input edge that
triggers it. (2) The pure delay shifts the entire input signal in
time by a fixed amount, D. (3) The inertial delay echoes the in-
put transition only after it has persisted for some delay time, D.
The inertial delay does not pass to its output any change that
does not last for the delay time, D.

One important specification for any asynchronous MIC machine
is a time interval, 8,, during which several input signals may
change. The machine is to consider these input changes to
be simultaneous. That is, these input-signal changes together
are to be considered as only one input-state change. Given
this specification and the required machine behavior, a circuit
is designed to realize the machine. One result from the design
is the determination of a second time interval, é,. The inputs
must remain stable during this second interval while the ma-
chine perambulates from one state to the goal state. If the in-
puts do not remain stable, unpredictable behavior will result.
The minimum time between input state changes is the sum of
the two intervals, &, +8,. A MIC machine with no specified § is
known as Unrestricted Input Change (UIC). Any input may
change at any time.

Timing Analysis

Over the years, the following notation has evolved as conven-
tional when writing timing expressions:

D : Delays through delay elements.

d : Stray delays through combinational logic.
s : Set-up times for flip-flops.

f : Propagation delays through flip-flops.

Subscripts M and m represent maximum and minimum values
respectively. This notation will be used throughout the timing
analysis that follows.

Because of functional hazards in the combinational logic, a
MIC Huffman-Moore machine having a proper critical race-free
state assignment will, in general, still require delay elements for
proper operation. During a multiple input change, the earliest
a change can reach the logic output is d; the latest a change
can reach the logic output is 8, +dy,. The combinational logic
may exhibit spurious output pulses for a period as long as the

difference between these two times. The delay elements must
filter out such spurious output. Thus the minimum delay ele-
ment value is:

D,,=é,+dy,—d,.

When any machine generates multiple output states, it does so
by “perambulating” through intermediate total states and gen-
erating output states. /f the inputs do not remain stable until
the final and stable state is reached, the fundamental-mode
assumption is violated. (Lift the fundamental-mode restriction
and the machine is in UIC mode.) The times between succes-
sive intermediate states (and thus successive output states) are
determined by the propagation delays through the combinational-
logic block and the delay element. The time for one intermedi-
ate state transition (D+d) is bounded by a minimum of D,,+d,
and a maximum of Dy, +dy.

The last changes caused by the final input change of an input
state, including any state variable change, must reach the
combinational-logic outputs before the first change of the next
input state. If n is the number of intermediate internal state
transitions required to produce all the output states, then

0y +d,, =dy, +n(Dy, +dyy).
Thus the time between input states must satisfy the inequality
8, +06, =06, +n(Dy, +dyy)+(dy, —d,)

If the machine is designed to operate in single output-change
mode, then n=1. If the transition function has no essential
hazards, then state assignments exist? that can result in a
delay-free realization (D),=0). For any level-sensitive Huffman-
Moore machine, a proper state assignment must be found.
This assignment is customized, based on the transition func-
tion, using the techniques developed by Liu and others.234

Self-Synchronized Machine Structures

While the Huffman-Moore model (Figure 1) can describe a
self-synchronized machine, it is better to augment the model
slightly as shown in Figure 2. This was first done about fifteen
years ago.®

Inputs Outputs
P Combinational —> P
logic
Present Next
state state
State
registers
¢ Clock
pulse
D Clock
generator

Figure 2. MOC clock generator—input and present state.

TECHNOLOGY
REPORT

In the augmented model, edge-triggered flip-flops—organized
as state registers—replace generalized delay elements and a
clock generator is added. With proper clock-generator design,
only one delay element is required (inside the clock gener-
ator). This delay element times the pulse edge that clocks the
flop-flops. The first self-synchronized machine was built in just
this fashion.® It operated only in normal fundamental mode.

By using this augmented model, the designer can design a
“standard” clock generator, without considering the behavior
of the machine itself. This universal approach reduces design
effort. In this model, the clock generator monitors the inputs
and state variables to produce a clock pulse when an input or
state-variable changes. This structure was first used in a multi-
ple output machine by Rey and Vaucher®

Self-synchronized timing analysis

In a self-synchronized machine using this augmented structure,
the first clock-pulse edge must not reach the flip-flops before
the input-generated changes have gone through the combina-
tional logic, reached the state-variable flip-flops, and met the
set-up time requirements. Thus,

D=6, +dy+s.

The state-transition time is the sum of the delays through the
flipflops and the combinational logic, and the set-up time for
the flip-flops (fy; +dy, +89). If the machine is to operate only in
single output-change mode, the inputs are permitted to change
after the state transition. However, to operate in the multiple
output-change mode, a clock pulse must be generated after
every state change, because more states might follow. Thus,
for MOC machines, n state transitions will generate n+1 clock
pulses (since the machine does not “know” no more states
will follow)

8, +D, = (n+1)(fy, +dy; +9)+Dy
and input state changes are separated by
8¢ +8, =68, +(n+1)(fyy +dy; +5)+(Dy —Dp)-

The time between input states is proportional to n+1, but in an
optimum machine, delay is proportional to n. For a SOC mode
machine, n=0, since it is known a priori no more states will
follow (only one clock pulse is ever needed).

For the single output-change operation, we can compare the
speed of the self-synchronized machine (n=0) with the level-
sensitive Huffman-Moore SOC machine (n=1 state transition).

Assuming equivalent technologies, the combinational-logic
delays (dy;) should be equal. The uncertainty terms are simply
the difference between the fastest and slowest state-variable
change (dy—d,,) and the difference clock-pulse (Dy,—D;)
respectively. The two uncertainty terms should also be nearly
equal for equivalent technologies. The two machines operate
at the same speed when the right-hand side of the input-state
timing inequalities are equal. Equating the two right-hand
sides and canceling these approximate equalities results in

Dy =fu+s.

A Huffman-Moore machine operating SIC is always faster if it
does not have an essential hazard since a delay-free (D), =0)
state assignment can be made.? In the self-synchronized MIC
machine, flip-flop set-up-time (s) and propagation-delay (f,,) de-
pend on technology, Dy, in the Huffman-Moore machine in-
creases with é,. Conclusion: the greater the é,, the greater the
advantage for self-synchronization when operating in MIC mode.

The designer should note that f,+s can be very small. Set-up
for the 74F374 and 10H131 are 4 nanoseconds and 1.4 nano-
seconds; typically maximum propagation delays for these
commercial latches are 10 and 2.1 nanoseconds respectively.

The designer can also customize clock-generator logic to the
behavior of the machine.” Since both clock generator and
combinational logic can access the same information, the
clock can compute the next state and generate a clock pulse.
However, such a behavior-customized architecture can't reach
ultimate speed, because the clock generator must be able to
detect when one intermediate-state transition is complete.
Since a clock pulse is generated (after a suitable delay) only
when the next state becomes different from the present state,
the logic condition must reach next-state and present-state
equal before another clock pulse can be issued. In an
intermediate-state transition during a multiple output-change
perambulation, an equality of states is often brief.

The next-state-must-equal-present-state restriction is crucial.
Consider what might happen if the delay through the clock-
pulse-required combinational logic is. less than the delay through
the state-transition-complete (next-equals-present) combina-
tional logic. In that case, at time fy, after the clock pulse
changes state s, to s, state s; appears at the inputs of both
combinational-logic blocks. If the request for the next clock
pulse comes out of the combinational logic before the next-
equals-present state is sensed, the clock generator may never
detect that transition §; is complete. This will cause the machine
to lock up in intermediate state s, and subsequent input
changes may not dislodge it.

Since at least 1962,8 many designers have known generating
a pulse each time an input changed could combine the best
features of asynchronous and synchronous machines. However,
they could not develop a clock that would not compromise the
inherent speed advantage of an asynchronous machine.

The clock generator

Our clock generator has two parts: a change detector to
determine when a clock pulse is needed and a delay element
to generate the clock pulse (figure 3). As discussed earlier, the
change detector could be customized to a machines clock-
pulse needs; this introduces timing restrictions that slow the
machine. It's better to use a generalized change detector.

TECHNOLOGY
REPORT

v

Change
Inputs > detector

DIFFER
—

Delay

element » CHANGE

Figure 3. Clock generator expanded.

The change detector outputs the signal DIFFER when the in-
put signals change. DIFFER propagates through the delay ele-
ment, emerging a predictable time later as the signal CHANGE.
This signal may be fed back to the change detector, which
turns off DIFFER; a short while later, DIFFER-off propagates
through the delay element and CHANGE goes off. By using a
monostable multivibrator (as an alternative delay element) the
designer can eliminate the need for feedback. In either case, it
is usually the final transition on CHANGE that clocks the state-
register ﬂip-ﬂops. If, for some special reason, the flip-flops are
clocked from the leading edge of CHANGE, then the timing
analyses must account for the interval in which CHANGE is
high after the flip-flops have been clocked.

Clock Generator Design
Change detectors for single input-change mode

The first practical clock-pulse generator was developed for a
normal fundamental-mode machine.5 Since only a single input
is permitted to change in this machine, the modulo 2 sum of
the input vector components changes for each input state.
This change-detector method is not suitable for a multiple
output-change machine unless there is only a single change
of state variable for each state change. One reason for using a
self-synchronized machine is to simplify the state assignment.
Constraining state encoding erases this advantage.

Change detectors for multiple input-change mode

Previous investigators have proposed two ways to generate
clock pulses for MIC machines. The change detector in the
first approach was a combinational-logic network customized
for the required machine behavior.” This approach is slower
than a generalized change detector.®

The second approach uses monostable multivibrators on the
inputs to convert changes in the level-sensitive inputs into
pulse-mode inputs.® These pulse-mode inputs are then com-
bined in an OR gate, which triggers another monostable muilti-
vibrator to form the clock pulse. Although such change detec-
tors are fundamentally sound, implementation can be difficult.
Since each input has an edge-to-pulse converter, each signal
input requires one multivibrator. Building accurate multivibra-
tors for narrow pulse widths is difficult—and high operating
speeds require short clock pulses.

Employing a digital differentiator as the change detector solves
the problems of the second approach. It converts a change in
input level into a level. To understand its operation, assume the
present input state is stored in the latch (figure 4) and the
enable (CHANGE) is off. When one or more inputs change,

the appropriate exclusive-or gate outputs a high and DIFFER
goes high. After a time determined by a delay element (not
shown), CHANGE goes high and the latch is opened. When
the latch outputs match the input state, DIFFER and (eventual-
ly) CHANGE again go low. The change detector can now ac-
cept the next input state. Figure 5 shows the timing relation-
ships for this change detector. The first input change (1,) starts
the cycle while | is the last change to be part of this input-
state change.

This clock generator is particularly economical. A clock gener-
ator that accepts up to eight inputs can be built with only two
parts: one 74F373 eight-bit latch and one 74F521 eight-bit
equality comparator. The minimum and maximum propagation
delays from input to DIFFER are 3 and 11 nanoseconds; the
delays from CHANGE to DIFFER are 8 and 24 nanoseconds.
Thus the change detector's minimum and maximum propaga-
tion delays are 11 and 35 nanoseconds.

But one more obstacle blocks ultimate speed.

If a self-synchronized machine with a symmetrical delay ele-
ment uses this clock generator, a timing restriction remains to
force the machine to operate at less than ultimate speed. The

CHANGE
D1, Qi
1p2 A2
de '(|; -
] LD e
F Dn & Qn(7] L
I(1) 7D—
I(2) L)
- DIFFER
I(N—1)}——l : j,

) >——o—:)D_‘

Figure 4. Digital differentiator as the change detector.

Iy 1
In S|
piFFER — L
CHANGE — I L
(51 52—>
dy +S»
D ——>

Figure 5. Symmetrical delay element MIC timing diagram.

TECHNOLOGY
REPORT

trailing edge of CHANGE, which clocks the flip-flops, is delayed
by D,,. However, the delay element itself only delays a signal
by D,/2. If the delay element is a pure delay, then DIFFER
had better not go low while the inputs are still permitted to
change. If DIFFER does go low, any input signal changing
near the end of the delay period will drive DIFFER high again
and generate additional clock pulses that will pass through a
pure delay. Thus, if a pure delay is used, we have the addi-
tional restriction

D, /2=4é,,
0y +0,=20,.

By using an inertial delay, DIFFER can be permitted to change
D,,/2 before the end of 6,. No pulse shorter than D, /2 will
pass through the delay element. But since the delay is inertial,
any input change at the end of 8, will extend the trailing edge
of the clock pulse by D, /2. Thus, using an inertial delay ele-
ment, we have the additional restriction:

8,=2D/2,
8, +6,=(3/2)8,.

Up to now, these delay-induced limitations have always pre-
vented self-synchronized machines from operating at max-
imum speed.

An optimum clock generator

To achieve maximum operating speed, the designer must
overcome three problems caused by clock structure:

(1) The symmetrical delay-element limitation

(2) the extra clock-pulse generated when the final stable state
is entered

(8) the fixed (constant) time between intermediate internal-state
transitions during a multiple output-change perambulation

Solving the first problem, the limitation imposed by the
symmetrical-delay element: As we saw earlier, DIFFER should
be high for the entire input-change period 8, to prevent inputs
changing late in 8, causing DIFFER to go high more than
once in a single input-state change. With a symmetrical-delay
element, the period DIFFER is high is also the minimum
period that DIFFER must remain low. By separating these two
times, we can optimize each for speed. In fact, the optimum
low time is zero and the machine would be “instantly” ready
for the next input state.

We can separate DIFFER high and low by delaying the rising
and falling edges of CHANGE by different amounts. In an
asymmetrical delay element the design sets rising-edge delay
but the falling-edge delay is “set” only by the technology.
Figure 6 shows the timing for a MIC machine using such an
asymmetrical-delay element. This element represents the op-
timum choice for speed. It solves the delay-element limit of
previous clock generators.

The beauty of this asymmetrical-delay element is that the
designer can base the D, on the problem specification and

the technology. It is easy to design the asymmetrical delay ele-

ment so that DIFFER remains high throughout the time the in-
puts are permitted to change, without forcing an performance-
degrading extension of the period between input-state changes.

Iy —

I N

DIFFER — 1
CHANGE 1

51 62
dy +s
Df,“

Figure 6. Asymmetrical delay element MIC timing diagram.

Solving the second problem, the extra clock pulse that occurs
at the end of an MOC internal-state change:

An early indication that the next state is stable is needed. It's
easy to determine a transition into a stable state from the flow
table. If the present and the next internal state, are equal, the
total state is stable; if they are not equal, then more states
follow.

As the first step in solving the extra-clock-pulse problem, we
added an output called MORE to the combinational-logic
block. Figure 7 shows the resulting machine architecture. If
more transitions are required, MORE will be high, otherwise
MORE will be low. This “early finish” indication (low) needs to
fed to the change detector with minimum impact on speed.
Thus the second step is to connect MORE to the T input of a
T flip-flop that is clocked by the trailing edge of CHANGE.
When the machine is clocked with MORE high, the flip-flop's
output changes. Such changes on a signal are exactly what
the change detector is designed to process. This change of
flip-flop output causes another clock pulse. If a clock pulse
occurs with MORE low, then the T flip-flop does not change
and the sequence ends.

Inputs ————f . ional
hputs Combinational Quiputs
logic
Present Next
state state
State
registers
MORE
CIockTPuIse
Clock
—> G
generator

Figure 7. MOC machine with early final state indication.

TECHNOLOGY
REPORT

I =T

In e

DIFFER — = = —
CHANGE 1 1 S
MORE I 1
NEXT r— -

51 62
dm +s dy+5+fuvpledm+s+iu
Dm —:t— Dyj—»{<— D,

Figure 8. Early final state indication timing diagram.

It's essential that the T flip-flop be clocked on the trailing edge
of CHANGE to guarantee the clock generator will accept the
next T flip-flop output change, if there is one. Figure 8 shows
one state transition caused by an input-state change and two
state transitions caused by the T flip-flop. The output of the T
flip-flop is named NEXT.

Figure 8 also shows the solution to the third problem—
optimizing the internal-state transitions during a multiple
output-change perambulation.

The delay-element time D, for a state transition may not need
to be a constant. We selected the first D, value to insure that
the first state transition would not malfunction. The machine
designer can completely control all state transitions except the
first. Since the input state must be stable, every state transition
except the first appears as a single input-change transition to
the clock generator; only the NEXT clock-generator input
changes. For the combinational-logic block, only the state vari-
ables change, and since these variables come from the state
register clocked by CHANGE, they arrive at the combinational-
logic block simultaneously. For all state transitions after the
first, Dy, can be reduced. To exploit such reduction, we need
to make our D, variable.

An Asymmetrical Variable-Delay Element

Our design scheme centers on the use of an asymmetrical-
delay element. Delay elements comprise circuitry inserted
(usually in the feedback path) to slow a signal change. In
previous asynchronous sequential machines, the delay ele-
ments have been one of three types: a monostable multi-
vibrator, a pure delay, or an inertial delay.

There are several ways to create an asymmetrical delay ele-
ment. One is the resistor-capacitor-diode combination shown

N
L~

!

Figure 9. Simple asymmetrical delay.

Although simple, this method has serious limitations. Large
delays require large capacitor values and the driving-circuit
output impedance becomes important. Because capacitor
voltage rises slowly, a buffer with hysteresis must be used.
With the input low, the circuit's noise immunity is degraded by
the diode forward-voltage drop. With the input high, noise is
coupled into the node due to the high source impedance.
Designers find nominal delay time is difficult to control.

The circuit in Figure 10° is an improvement over the simplistic
circuit of Figure 9. The delayed (rising) edge propagates along
the serial path while the non-delayed (falling) edge goes directly
to the output gate. The falling edge of CHANGE lags that of

DIFFER by only a technology-dependent gate delay (figure 6).

Total delay is spread over many smaller delays. This helps
solve problems caused by noise and slow rise time. The input
low-noise margin is restored since the second input of each
AND gate is connected to DIFFER. We built and tested the
scheme of figure 10 using 74F08s as AND gates. The perfor-
mance was excellent, with one exception. Propagation delay
varied significantly with temperature due to input-threshold drift
of the 74F08 (—4.4 millivolts per degree C). Propagation delay
varied 20% over 0 to 70 degrees C.

We solved the problem by replacing the delay AND-gate string
with a shift register (or counter), (figure 11). A low on DIFFER
holds the shift register in a reset condition. When DIFFER
changes to a high, the reset is removed and the register
begins to shift the high on the serial input down the register.
Only clock-oscillator accuracy now limits delay accuracy. Since
DIFFER also turns the oscillator on and off, the time to the first
shift is a predictable and constant.

in Figure 9.
I—N"’—|
— AVW

DIFFER P L

CHANGE

Figure 10. Series/parallel asymmetrical delay.

TECHNOLOGY
REPORT

" e—si 5 Qi D1
| Q2 D2 M
Fel ¢ q: Ual»
DIFFER ° ° ® X | CHANGE
R Eon Dn
G SEL
1
En Q
Osc DELAY

Figure 11. Improved asymmetrical delay element.

Programmable delay enables the designer to increase machine
throughput by customizing the delay to machine state. The
delay is changed using the binary vector DELAY to select the
proper input in the N-to-1 multiplexer. The improved asymetri-
cal delays can be much longer than those reasonable for the
resistor-capacitor-diode network.

With programmable asymetrical-delay the designer has a new
freedom to optimize performance using auxiliary information
about the machine being designed. For example, the designer
may know that when state s; is reached, only one input will
need to change to cause the next-state transition, but in state
sj, the next-state transition will be caused by a multiple input
change.

Suppose an additional set of output signals, called DELAY, is
introduced just when the state variables are produced. DELAY
is a function of the states and inputs just as are the state vari-
ables. We use these additional outputs to control the delay
time D,,,. Designers can customize the delay time leaving each
state, state by state, for the machine behavior required. The
number of different D, times needed determines the number
of bits in DELAY. The timing diagram in figure 8 shows two
values for D, a long time for the first state transition following
an input-state change and a short time for all subsequent state
transitions, but each state transition could have had different
delay times.

Extending Self-Clocked Machines

Designers can easily extend the self-synchronized MIC machine
to either the unrestricted input-change (UIC) mode or the
speed-independent mode.

Unrestricted input-change mode

Most asynchronous designs assume the machine will operate
in the fundamental mode—once the machine perceives a
change of input-state, it will reach a final stable state before
permitting the next input state-change. In the UIC mode, how-
ever, this assumption of fundamental mode is violated. Since
timing relationships between the input changes are not con-
strained, ambiguous input states result. For example, when
one input change is followed closely by another, should there
be one or two input states? Or what should the machine do
when an input changes during a state transition?

The designer’s problem is to describe what is a satisfactory
outcome when faced by these ambiguities.

As a first step in defining a satisfactory outcome, the concept
of an n-cube and spanning must be employed. In this con-
cept, there are 2" binary vectors with n components. This set
of all 2" vectors forms an n-cube. A subset of 2™ n-dimensional
vectors having the same value in n-m locations form a sub-
cube. Given a set of n-dimensional binary vectors, V, the set of
vectors spanned by V is the smallest subcube containing
every member of V. This set of vectors spanned is written T(V).
The concept of spanning is best illustrated by example. If

V={01001,01100},
then T(V) would be

T(V)={01000,01001,01100,01101},
={01-0-}.

(This definition of spanning differs from the definition of span-
ning used in linear algebra.)

T(i,.i,) would be all the input states that might be passed
through as an input vector changed from i, to i,. The machine
will not necessarily respond to all input states in the set of
states spanned. For example, with T as above, the machine
may respond as if any of these input sequences occur:
(01001, 01000, 01100), (01001, 01101, 01100), or (01001, 01100).
But it will not respond so to the sequence: (01001, 01000,
01101, 01100) since once an input changes, it will not change
back. If more than one input changes, some input states in
the set of states spanned must be skipped. However, observe
that the states in the input sequence are not necessarily all
single input changes (Hamming distance one).

A satisfactory outcome® of an input change from i, to i, with
initial state A is any stable state (s,i,) that could have been
reached by a sequence of input changes iy, iy, ... i, where, for
j=2 to n, i. is a member of T(ij_1,in).

Extending the MIC machine to the UIC mode is straightfor-
ward. All the inputs pass through a transparent latch before
presentation to the machine. While the machine is in a stable
state, the gate signal for the latch is true and the latch inputs
pass through to the machine. While the machine is in transi-
tion to a final stable state, the gate signal is false and the latch
outputs are frozen. Since the machine is busy if DIFFER,
CHANGE, or MORE are true, the latch-gate signal is the com-
plement of (DIFFER OR CHANGE OR MORE). When some
input changes, the gate is turned off, freezing the input state
in the latch. This input state is processed and the latch is
opened to capture another input state. As far as the machine
is concerned, it sees only multiple input changes and operates
in the fundamental mode. Thus, the input latch groups the in-
put changes into a sequence of batches for the machine to
process, and any such sequence eventually leaves the
machine in a satisfactory outcome.

TECHNOLOGY
REPORT

X4 X2 Y1 Yo
00 01 11 00

1,0 2,0 4,0 1,0
2,0 2,0 3,1 3,1
2,0 3,1 3,1
2,0 2,0 4,0 4,0

A WON =
-
o
- - 00
- O =0

Figure 12. Crumb Road problem flow table.

Designers should note that the UIC latch may exhibit metast-
able behavior; input changes may violate the set-up or hold
times for the latches used. To compensate for this, extend &,
to allow the latches to resolve the metastable condition. The
probability of non-resolution of a metastable condition is the
negative exponential of the delay interval. Using moderate
values of delay, designers can achieve very reliable resolution
by employing high gain/bandwidth circuitry.™

Speed independent mode

Speed-independent designs are characterized by employing
completion handshakes. Such a design is based on a chain of
subcircuits, each subcircuit sending completion signals to its
predecessor and responding to completion signals from its
successor. Each subcircuit is free to operate at its own speed.
In addition to being separated by the special completion
signals, the input states are separated by a special input state
called a spacer.

Each subcircuit cycles continuously through the sequence:
output data, request spacer, output spacer, request data.
When a subcircuit has responded to the input data from its
predecessor, and its output data has been accepted by its
successor, the subcircuit sends a completion signal (traditional-
ly called S) to its predecessor requesting a spacer. A subcir-
cuit outputs a spacer when one is requested by its successor
and its predecessor has output a spacer. When a subcircuit
has had a spacer input and its successor is requesting data,
the subcircuit itself requests data by sending a signal (tradi-
tionally called D) to its predecessor.

Although the self-synchronized machine itself is not speed in-
dependent, it can be made to operate in a chain of speed-
independent subcircuits. For a self-synchronized machine to
operate in speed-independent mode, S and D completion
signals must be added and sent to the predecessor subcircuit
and the machine must respond to completion S and D signals
from the successor subcircuit. Since there are no timing rela-
tionships between subcircuits, a self-synchronized sub-machine
(subcircuit) must operate in UIC mode.

To build integrated circuits vastly larger than those of today, we
must solve the problems of distribution delay and skew among
various data and clock lines. One way to do this is to organize
the system into pools of circuitry interconnected according to
the spirit of speed-independence. Alternative conventions for
interlocked signaling among self-timed units of a speed-
independent organization have been proposed.? .

For the near future, we feel that it's feasible to organize a large
chip as a single, globally equipotential region. Technology-
dependent designs and conservative system-clock rates can
compensate somewhat for the fact that an ideally synchron-
ized, lockstep operation runs with a period that increases in
proportion to the delay diameter representing the differences
in the various distribution paths. Tightly synchronized and
highly regular large arrays are an important approach to the
parallel resolution of large problems. In one-dimensional arrays
of processors, clocks can be pipelined at a rate independent
of the array size, but arrays of higher dimension can’t. “The
only [practical] means of improving performance [in really big
ICs] are technology improvement, clever design, and
self-timing.’12

A Design Example: The Crumb Road Traffic Control
Machine

Unger’s problem! is a well known example of all the things
that can go wrong in asynchronous design. His problem also
demonstrates how simple design can be with self-
synchronization.

This example employs, in one coherent design, nearly all the
ideas we have presented. The problem (see [1] for a complete
description) involves designing a sequential machine to control
the traffic at the hypothetical intersection of Crumb Road and
Route 1. After describing the problem with words, Unger
developed a flow matrix (figure 12) as a first attempt to solve
the problem.

—————1
= Z

ot D
T ¢
Xz B>
Xy p

T +—0—

A y

S e
Z = X1Y1Y2 + X1Y1Y2
Yi = X1X2Y1Y2 + X1Y1Y2 + XqYq
Yo = X1X2 + Y1¥Y2 + XqY2 + XyX2Y1Y2

Figure 13. Crumb Road problem sequential machine.

1 TECHNOLOGY
REPORT

From this flow matrix, he derived logic equations and de-
veloped the sequential circuit of Figure 13. He intentionally
ignored the design issues of the unrestricted input-change
mode, critical races, essential hazards, and logic hazards. He

then demonstrated how proper operation of this sequential cir-
cuit depends upon the relative magnitudes of the stray delays.

However, if this circuit did operate correctly, what would be its
speed? To answer this assume the gates and inverters have a
minimum/maximum propagation delays of 3 and 7 nanoseconds
and the delay element’'s maximum delay is 1.5 times its mini-
mum. These values fairly represent the real times for 74Fxx
series parts. Since the two input variables, x; and x,, can
change at any time, the machine operates in unrestricted
input-change mode and §, is 0. Using these values and the
previously developed timing analysis, the minimum delay-
element time is now calculated as

D, =6, +dy,—d,,=0+(7+7)—(3+3)=8 ns,
and the time between input states calculates as

84 +06,=6 +n(dy +Dyy)+(dyy —dpp),
=>0+1(21+1.5%x8)+(21-6)=48 ns.

We will convert this abysmal failure of an asynchronous
machine (as Unger demonstrated) into a practical design by
simply adding a change detector, UIC latch, and state
registers. The result (shown in figure 14) demonstrates the
power of self-synchronized design.

Again, assuming the flip-flops have a set-up time of 2 nano-
seconds and a maximum propagation delay of 10 nano-
seconds, with the gate delays the same as the previous case,
the delay element time is:

D, =6, +dy +s=4x10+(7+7)+2=56 ns.

To to compensate for a potential metastable condition in the
UIC latch, we assign 8, the value of four times the flip-flop
propagation delay. Metastability occurs when the latch inputs
change at a time that violates the latch’s specified set-up or
hold time. Since the change detector's combinational logic has
a minimum propagation delay of 6 (=3+3) nanoseconds, the
actual minimum delay-element value is 50 nanoseconds. Thus
the minimum time between input states is

8y +0,=06, +fyy +dy, +s+(Dy, —D,,),
=40+10+(14)+2+((75+14)—(50+6))=99 ns.

If simultaneous input changes are improbable, the UIC latch is
unnecessary (reasonable in this design problem) and the mini-
mum delay-element time can be reduced from 50 to 10 nano-
seconds. This also reduces the time between input states from
99 to 39 nanoseconds. The resulting self-synchronized design,
without the UIC latches, will then essentially match the speed
of the Huffman-Moore machine without self-synchronization.
Even more important, it will work.

»Z

o——

2

[»>
olg
)
=
ol 0| |21 O

Y
L
o

>
oo
Q

X

A Negative-edge

DIFFER

.
X1»—D 9)
E —]
r nQ i
x.»HD @
+EnQ i
T
TTTESY;
—Y;
|_Y1
1D Q:j
—EnQ
{5 a14
+1En Q

sensitive clock

CHANGE

Figure 14. Crumb Road problem self-synchronized machine.

R 1

Conclusion and Summary

In a digital system, asynchronous design is called for when
two modules do not share a common clock, or when a rapid
machine response to input changes is required. In doing such
designs, designers usually run into behavioral anomalies such
as races and essential hazzards and have to employ involved
methods to avoid them. Our approach simplifies all that. This
approach to self-synchronization enables the designer to
negate the anomalies that the differing and finite response
times of real circuits introduce.

This self-synchronized machine can operate with the speed of
a classic Huffman-Moore asynchronous machine. Its imple-
mentation can be as simple as a clocked machine. This
design style adapts to a almost any real-life implementation—
boards, arrays, even vastly separated elements on extremely
large integrated-circuit chips or wafers.

The clock is the key, the clock generator and its change
detector and delay element. Our generator for multiple inputs
is a digital differentiator with programmable assymetrical delay.
We found this to be the best organization for change detection
in self-synchronized machines running in the multiple input-
change (MIC) mode.

The asymmetry permits internal clocking at the maximum rate
for a chosen technology; no superfluous clock pulses are gen-
erated at the end of a multiple output-change (MOC) state se-
quence; and each clock pulse can be tailored to the minimum
duration necessary for a particular state transition. Thus, the
design’s ultimate speed is limited only by the speed of the logic
components being used and the durations and complexities of
the state-transition sequences necessary to the application.

Our self-synchronized design is suitable for a small, localized
circuit module. For a larger network of communicating modules,
two extensions to the design style can be considered: unre-
stricted input-change (UIC) mode and speed-independent
networks.

Real inputs may not maintain the intervals between input
changes fundamental-mode operation require. A self-
synchronized-machine can quarantee a satisfactory, although
possibly non-deterministic outcome of an input sequence. The
designer can do this using the UIC technique of applying the
local clock to an input latch (shown in the Crumb Road design).

The self-synchronized machine can operate in a network of
speed-independent subcircuit modules by means of hand-
shaking signals such as space/data control tokens, or a similar
protocol (for example, see [13]). In this mode, the UIC mode
machine would be an excellent choice as an 1/0 module for a
larger network.

For More Information
For more information call Don Kirkpatrick, 629-1236, 92-716. [

Bibliography

[1] Unger, S.H., Asynchronous Sequential Switching Circuits,
Wiley Interscience, New York, 1969.

[2] Tracey, J.H., “Internal state assignments for asynchronous
sequential machines,” IEEE Trans. Electronic Computers, vol.
EC-15, pp. 551-560, Aug. 1966.

[3] Liu, C.N., “A state variable assignment method for asyn-
chronous sequential switching circuits,” J. ACM, vol. 10, pp.
209-216, 1963.

[4] Tan, C.J., “State assignments for asynchronous sequential
machines,” IEEE Trans. Comput., vol. C-20, pp. 382-391, April
1971.

[5] Bredeson, J.G., and Hulina, PT., “Generation of a clock
pulse for asynchronous sequential machines to eliminate
critical races,” IEEE Trans. Comput., vol. C-20, pp. 225-226,
Feb. 1971.

[6] Rey, C.A., and Vaucher, J., “Self-synchronized asynchro-
nous sequential machines,” IEEE Trans. Comput., vol. C-23,
pp. 1306-1311, Dec. 1974.

[7] Chuang, HY.H., and Das, S., “Synthesis of multiple-input
change asynchronous machines using controlled excitation
and flipflops,” IEEE Trans. Comput., vol. C-22, pp. 1103-1109,
Dec. 1973.

[8] Unger, S.H., “Self-synchronizing circuits and nonfundamental-
mode operation,” |EEE Trans. Comput., vol. C-26, pp. 278-281,
March 1977.

[9] Seitz, C.L., “Chapter 7, System Timing” in Mead, C. and
Conway, L., Introduction to VLSI Systems, Addison-Westley,
Reading, Massachusetts, 1980.

[10] Unger, S.H., “Asynchronous sequential switching circuits
with unrestricted input changes,” IEEE Trans. Comput., vol.
C-20, pp. 1437-1444, Dec. 1971.

[11] Flannagan, S.L., “Synchronization in a CMOS technology,”
M.S. Thesis, Oregon State University, May, 1982.

[12] Fisher, A.L., and Kung, HT., “Synchronizing large VLSI
processor arrays,” IEEE Trans. Comp., vol. C-34, pp. 734-740,
Aug. 1985.

[13] Franklin, FA., and Wann, D.F,, “Asynchronous and clock-
ed control structures for VLS| based interconnection networks,”
Proc. Symp. on Computer Architecture, |IEEE and ACM, Apr.
26-29, 1982, Austin, Texas, pp. 50-59.

4' TECHNOLOGY
REPORT

Engineering Forum

Aims at Building Business Excellence

Tek’'s ambitious business-excellence renaissance is off to a
successful start. In manufacturing, the company has eliminated
more than $100 million of inventory, increased inventory turns
by better than 50%, installed MRP and won Class-A certifica-
tion for a score of plants, embraced just-in-time systems—and
lowered the manufacturing cost of sales.

The engineering community is also responding, with higher
levels of involvement: getting closer to the customer, helping
their colleagues in manufacturing and marketing, and—the
theme of Tek’s first Engineering Excellence Forum—recognizing
engineering’s opportunities to stimulate business results.

The Forum, held March 3 and 4 at the Greenwood Inn, focused
on our critical need to really understand customer needs. After
President/CEO Earl Wantland got the Forum started with open-
ing remarks, Executive Vice President Wim Velsink laid down
specific objectives. The overview was spelled out this way:

To “clearly establish” what engineering contributions are
essential to achieving ongoing business excellence. . .(and) to
communicate individual and organizational challenges of con-
tinued engineering development. . .

In his keynote address, Wim cited Tek’s historic reputation for
across-the-board excellence, and positioned the Forum as an
opportunity to build on that.

The Forum was geared toward a three-fold program to dramati-
cally reduce time-to-market through 1) improved customer-
need understanding, 2) project management disciplines for im-
proved execution, and 3) increased use of CAE tools. The big
target: Reducing average time-to-market of successful products
by 50% within three years.

In Wim's words: “A major, and perhaps the most fundamental,
building block of business excellence is achieving a contin-
uous flow of products that serve our customers’ needs better
than any alternative.”

In addition to asking for drastic cuts in cycle times, Wim also
challenged the Tek’s engineering community to get customer

ENGINEERING
EXCELLENCE

Technical
Excellence

Design
Economics

Customer
Need
Understanding

Project
Management

People
Involvement

requirements defined before allocating major resources, and
ensure that post-DC engineering milestones are met.

Presentations on increasing customer involvement and under-
standing customer needs were made by Dennis Brunnen-
meyer (GVG), Wendell Damm (DAG-Logic Analyzers), Sue
Grady (IDG-Interactive Display Systems, Graphic Workstations),
Jerry Ashley (IDG-Graphic S/W Products, Graphics Terminals),
and Dave Squire (IDG-Atrtificial Intelligence Machines).

Internal CAE tools were surveyed, and a panel (Rick Potter,
Rick LeFaivre, Chuck Saxe, Jack Hurt, Jim Carden and Dave
Brown) dealt with “Future Directions in CAE.” Jerry Sullivan
moderated.

Other Tek people contributing to the two-day Forum included
Dick Knight, Denton Tarbet, Jim Carden, Tom Long, Dave
Moser, John McCormick, George Kersels, Harry Anderton,
John Sonneborn, Steve Ratner, Dave Friedley, Larry Kaplan,
Gary Andrews, Jon Reed, Rose Marshall, Dave Cassing, Fred
Hanson, Lyle Ochs, Mayer Schwartz and Binoy Rosario. [J

N 3

Testing the Large Chip:
Artificial Intelligence Shows Promise
in Reconciling Functional with Gate-

Level Testing

Eirik Fuller is a software engineer Il in the Com-
putational Algorithms Department of the Com-
puter Research Laboratory. He joined Tektronix
in 1985. Eirik holds a BS and an MS in math
from Rensselaer Polytechnic Institute, Troy, NY.

Richard Sheng is a software engineer Ill in the
Computational Algorithms Department of the
Computer Research Laboratory. He joined Tek
in 1984. While studying for his PhD in electrical
engineering and computer science at the Univer-
sity of California, Berkeley, Richard was a sum-
mer intern at Fairchild’s Artificial Intelligence
Laboratory. Richard’s BSEE is from National
Taiwan University, Taipai, Taiwan.

Balaji Krishnamurthy is the manager of the Com-
puter Algorithms Department of the Computer
Research Laboratory. He joined Tek in 1984 from
General Electrics Research Center in Schenec-
tady, New York. Balaji has an MS in math from
the Birla Instititue of Technology and Science,
India. He also has an MS and PhD in computer
science from the University of Massachusetts.

In the Computer Research Laboratory, we are developing an
Al-based hierarchical test-generation system. By using high-
level design information to guide the search process, we ex-
pect to speed up the automatic test-generation process to the
extent that it becomes feasible for the large, complex circuits
typical of today’s VLSI designs.

What We’re Trying to Do

With VLSI, digital testing confronts a wall of intractability. The
complexity of advanced integrated circuits is far beyond the
capabilities of current generation programs. Because test gen-
eration belongs to a class of intractable problems, there is no
hope for an efficient deterministic algorithm. However, prob-
lems in this class can frequently be solved by heuristic algo-
rithms. These algorithms are guided by heuristics intended to
make them finish test generation quickly for inputs of practical
interest. (However, they won't finish quickly for all possible
inputs.)

The goal in digital testing is a test set, a sequence of input
patterns. These patterns must, when applied to the circuit
under test, detect all possible faults as discrepancies in the
output values. Implicit in test generation is a fault model,
which defines the list of all possible faults in a circuit. For
reasons to be discussed, no fault model actually accounts for
all possible faults. Incidentally, the test-generation problem is
not concerned with fault isolation. In filtering out defective ICs,
the aim is not to repair them. In process control or the repair
of discrete circuits, fault isolation is a different problem.

The usual fault model for test generation is the single stuck-
line fault model. In this model, a fault manifests itself as a
single lead stuck at a logical value. Since each lead can be
stuck at one of two values, there are two faults for each lead
in the circuit. There are several reasons that this model is in-
complete. There might be more than one fault. More to the
point, individual faults might not manifest themselves as stuck
leads. The circuit is modeled as interconnected logical gates;
a physical defect within a gate might not produce the same
logical behavior as one of its leads being stuck.

These are reasonable objections, yet the single stuck-line fault
model is widely accepted. Multiple faults are unlikely, and it's
not clear that including them in the fault model is worth the
added complexity. Modeling digital circuits with gates has the
advantage of being useful for all logic families; a fault model
too closely related to any one logic family defeats this advan-
tage. Informally, this fault model can be justified: A test set
which tests all single stuck-at faults in a circuit can, in some
sense, fully exercise the circuit.

The problem of generating a test set eventually reduces to find-
ing tests for individual faults. This problem, a search on the in-
put space, is intractable. The real expense in this search is
backtracking, the process of restoring the circuit to a previous
state after an inconsistency is detected. The expense of back-
tracking can be reduced in two ways: make correct decisions
as often as possible, and detect inconsistencies as soon as
possible. Conventional test generation programs use heuristics
based on controllability values to guide the decisions in the
search process.

As an example, consider the circuit fragment shown in figure
1. Suppose we want to generate a test for lead E stuck at one.
This requires two independent tasks. One is to justify a value
of zero on E. The other is to push the fault-sensitive value for-
ward from E along a path to some output.

1 TECHNOLOGY
REPORT

D

Figure 1. Suppose we want to generate a test that will
determine if lead E is stuck at one. To do this we would
have to justify a value of zero on E and to push the fault-
sensitive value forward to some output.

In general, each task generates others as it is performed. For
instance, sensitizing a path from E requires a one on F, as well
as sensitizing a path from G. Also, there are decisions to make
when there are multiple ways of performing tasks; for instance,
a path sensitized from G can go through either / or J.

Justifying a one on F requires a one on either C or D. A typi-
cal heuristic for deciding which to try first would use a con-
trollability measure, with the idea that the lead on which it is
easiest to justify a one is the least likely to require backtrack-
ing. On the other hand, justifying a zero on E requires zeros
on both A and B. In this case, the least controllable lead
would be processed first, since backtracking, if it must occur,
should occur as early as possible to minimize the wasted time.

In essence, the problem with typical test-generation heuristics
is that they work as well on random circuits as they do on
useful ones. Many intractable problems of practical interest are
solvable by algorithms which fail on contrived counter examples
of no practical value. To be useful, heuristics for test genera-
tion should work on well-designed circuits; that they fail on
useless, arbitrary circuits is a reasonable price, in fact a bargain.
It is simply impossible for a program which treats a circuit as

an unstructured collection of interconnected logical gates to
make this distinction.

While a gate-level description of a large digital circuit is tech-
nically accurate, it is worthless for someone trying to under-
stand how the circuit works. A good design is a structured,
layered hierarchy, in which each level consists of a relatively
simple configuration of well-defined modules. This is the way
an engineer perceives a circuit when designing it, or when
manually generating a test set for it. We think a test-generation
program should be able to guide its search by using this infor-
mation about the structure of a circuit, the semantics of the
design.

This idea is not new. Treating a circuit as a collection of high-
level modules for the purpose of test generation is called func-
tional testing. The foremost objection to this approach relates
to its fault model. As discussed previously, the inability of the
single-stuck-line fault model to account for all possible faults is
excused by its reasonably uniform coverage. At higher levels,
this uniformity is progressively diminished.

How We Do It

Our approach to test generation is based on the goal of recon-
ciling high-level reasoning with a gate-level fault model. For
high-level reasoning, we use a new control structure, in which
operations on gates are replaced by operations on arbitrary
modules. These operations are supported by an expandable
rule base. For this rule base, we are developing a language in
which a designer can encode instructions to the test-generation
program for performing operations required for the fault-
searching process.

Some examples of the rules are shown in figure 2; these ex-
amples are taken from our prototype (described later). We
concocted the voter circuit out of comparators and multi-
plexers, also shown. As indicated, even gates are treated as
modules, with their own rules. The informal language used in

Example rules: comparator

A B

Example rule: multiplexerl

Z=0 if A#B

A B

= Z=1
Z

it A=B

$475" | "

Ay A, fault on'dj = fault on Z

#S =1

Z

fault on B = fault on Z
if A=B

Example rule: OR gaal

Example rule: voter circuitl

A fault on B = fault on Z
B3)Z

LR fault on B = fault on Z
A B [.
M if
TTTT
7z As#B and B=C

B i A=0

Figure 2. Some of the rules from CRL’s test system prototype. The language used is an informal prototype of the for-
mal language expected for a production system. The voter circuit shown in the lower right window is made up of the
comparator, multiplexor, and OR gate shown in the other windows.

R

these examples is a rough indication of the language we ex-
pect to be using for writing actual rules.

To reconcile this high-level reasoning with a gate-level fault
model, we use a variable representation of the circuit structure,
in which a module can be replaced by its innards.

To test a fault which is inside of a module, we perform this
replacement as many times as it takes to make the faulty lead
visible. The circuit is represented at a mixed level, since there
is no immediate need to open any other modules. While slight-
ly more complicated than a highest-level representation, this
mixed-level view of the circuit is far less complicated than a
purely gate-level view, and there is no reduction in fault
coverage.

This ability to open a module and reason about its innards
(which allows a gate-level fault model) has a useful side effect.
The rules for high-level modules, used by the control structure
in its searching, are typically incomplete; that is, the rules
ignore some possibilities. By enumerating the most likely alter-
natives and neglecting the more obscure possibilities, the rules
implicitly define the heuristics for the search. Without the capa-
bility of opening modules, this would make the search non-
deterministic. With this capability, an incomplete rule can be
completed by adding a final case which says, in effect, “if all
else fails, open my box.” This “trick” bottoms out at the gate
level, where all rules are complete.

This approach to test generation yields two immediate im-
provements in efficiency. First, the effective size of the circuit
is reduced (the number of modules at a high level is far less

than the number of gates); even for internal faults, most of the
circuit is represented at the highest level. Second, backtrack-
ing, which would otherwise occur inside the module bound-
aries, is sidestepped (bypassed by the rules for that module).
These improvements are useful, but the real hope is that bet-
ter heuristics will reduce external backtracking as well.

Our Prototype

We demonstrate these concepts with a prototype of our test-
generation system. In addition to the test-generation program,
written in C, we have a user interface, written in Smalltalk.
Consisting of a rudimentary schematic editor with a subtasking
facility, the interface animates the test-generation program. The
test-generation program is run as a subtask, using pipes to
send and receive commands. The interface interprets the com-
mands by highlighting the specified circuit elements in the
schematic view.

The interface is one entry in a long and growing list of examples
at the Computer Research Lab that show the power of the
Smalltalk programming environment in the rapid development
of graphics prototypes. The interface, in addition to serving its
purpose of demonstrating our research, might help us to eval-
uate heuristics as we develop them for the test-generation pro-
gram. Our prototype, including the C program, runs on a
Tektronix 4404 workstation.

Figure 3 shows a “snapshot” from the animation interface.
The top-level circuit, a voter circuit, is in the window labeled
“43major.” Its three modules are detailed in the other three
windows. The highlighted circuit elements show the progress

‘ 42c0mp|

L

|_|l_|__

A B
i

Figure 3. Animation shows, by dynamic highlighting, how the test-generation algorithm is progressing in the voter

circuit and its major segments.

TECHNOLOGY
REPORT

1

of the test-generation algorithm. The voter circuit is a circuit we
devised at lunch one day. lts output is the most frequently oc-
curring bit pattern on the inputs.

The Future

Many research issues remain to be explored. The rules we
used in our example were manually coded at a low level, with
little in the way of heuristics. We expect to be able to encode
these rules in a higher-level language, with provision for more
heuristics. After a compiler is written for this language, these
rules can be compiled into a rule base, for interpretation by
the control structure.

We also want to extend our ideas to sequential circuits; at pre-
sent they work only for combinational circuits. For this exten-
sion we are particularly optimistic about the usefulness of high-
level reasoning. We are also developing refinements to the
search process, which we expect to be useful even for gate-
level reasoning. Finally, we intend to enhance the animation
interface.

For More Information
For more information call Eirik Fuller, 627-6410 (50-662). [J

Tolerances Too Tight:
Aluminum-Extrusion Vendors Shy
Away From Doing Business with Tek

Dick Borts
Metals Materials Management

Two major vendors of aluminum extrusions have told us they
will no longer accept orders from Tektronix. In addition, two
other vendors have said they would prefer not doing business
with Tek. These four vendors are the cream of the crop in
extrusions.

The reasons given are Tek’s unusually tight dimensional and
finish requirements. They feel that Tek designers are not well
informed about extrusions and their inherent limitations. Two
vendors say that 60 percent of all Tek-ordered material is re-
jected at the extrusion press, creating a situation in which do-
ing business with Tektronix is not feasible. These four com-
panies do business with H-P, Xerox, IBM and other companies
with few problems.

We suspect most tolerances specified on Tek drawings are
tighter than they need to be. We have found tolerances of as
tight as 0.005” where +0.020” would have been acceptable.

To salvage our business relationships with other extrusion ven-
dors, we need to ease our unnecessarily tight dimensional
and finish specifications.

We have a list of specific part numbers which we have been
asked to provide relief. Tek users of these parts will be con-
tacted soon. We ask your cooperation in working with us to
solve this problem.

Melvin Krusell, general manager of Futura Home Products,
has offered to conduct a seminar on the design, fabrication,
and application of aluminum extrusions. If you are interested,
please contact Dick Borts, 627-2741, or Bill Gilbert, 627-1154.
Both are located at MS 16-298. J

TRR17

CONNECTIONS. . .

Lookahead Carry Speeds Up Binary
Addition/Subtraction and Binary/BCD
Addition—Less Logic Too

By Virgil LaBuda, staff applications engineer, Motorola, Inc.

By employing the logic of Jookahead carry in any of its
many forms, the designer can significantly shorten the
time needed to complete addition/subtraction. In doing
so, the designer faces various trade-offs of amount of
the additional logic required versus amount of computa-
tion time saved.

This article in the Connections series (see box) demon-
strates the optimum use of components to realize binary
addition/subtraction and binary/BCD addition within mini-
mal space and with the shortest signal delays. By using
lookahead carry, as detailed here, designers can signifi-
cantly shorten addition/subtraction time.

Although the internal logic of most computers employs binary
numbers, input/output equipment generally use decimal num-
bers. Because most logic accepts only two-valued signals,
decimal numbers must be encoded in binary. This has caused
a family of binary codes that represent decimal numbers to
evolve. While the only requirement for a code to be valid is
that each decimal digit be represented by a unique combina-
tion of binary digits, those codes adopted industry-wide are
distinquished by having some specific purpose rather than
employing an arbitrary assignment.

The sets of binary codes for decimal digits are classified as
either weighted or non-weighted. In a weighted code, the posi-
tion of each code bit is assigned a weighting factor. The code
is converted to its decimal equivalent by summing the products
of each positional weight times the value at that position. For
example, in a 4-bit weighted code with a weighting scheme of
W(3), W(2), W(1), and W(0), the decimal value represented by
the coded representation N(3)N(2)N(1)N(0) would be N(3)W(3)
+ N@W(E2) + N)W@) + NO)W(0).

Two examples of weighted codes are the binary-coded
decimal (BCD) and the 6-3-1-1 code. The 8-4-2-1 BCD code is
the simplest, with each decimal digit represented by a 4-bit-
wide binary equivalent; the weighting factors are 84,2, and 1,
proceeding from the most-significant bit (MSB) to the least-
significant bit (LSB). In the 6-3-1-1 code, the weighting factors
work the same way.

Three examples of non-weighted codes are the Excess-3,
2-out-of-5, and Gray. Excess-3 is formed from the BCD code
by adding 3 (0011) to each decimal representation. The 2-out-
of-5 code is used primarily in error checking. In the Gray code
each successive decimal digit differs at exactly one bit posi-
tion. This article will focus on using the BCD code and straight-
binary representation for adder/subtractor implementations.

For numbers of even modest size (e.g., 16-bit binary) most of
the addition/subtraction time is consumed in delivering a
carry-in bit to each bit in the number. This is especially true
when a carry is rippled across the entire length of the number.
By employing the logic of lookahead carry in any of its many
forms, the designer can significantly shorten the time needed
to complete the addition/subtraction. In doing so, the designer
faces trade-offs of the amount of additional logic required ver-
sus computation time saved.

The Connections Program is a critical part of Tek’s strat-
egy for the computer aided engineering market. But
“Connections” is more than a marketing stategy, it's a
way for Tek circuit designers to access the products and
the know-how of a score of IC vendors. Wes Brunning,
Connection's program manager (629-1488) can provide
additional information on how Connections can help Tek
designers.

Motorola’s MCA2500ECL Macrocell Array library contains half
adders, full adders, as well as building blocks useful in gener-
ating these computation elements. This article demonstrates
the optimum use of components in realizing binary addition/
subtraction and binary/BCD addition with minimal space and
with the shortest signal delays. Comparable building blocks for
Motorola’s other semicustom macrocell array are available in
their respective array libraries.

The Lookahead Carry Concept

Let's examine what occurs at the K-th bit position during the
addition of two binary numbers, each larger than ‘K’ bits. The
two bits being added will be called A(K) and B(K) (referred to
as augend and addend). Let C(K) represent a possible carry-
out generated by such an addition, and C(K'1) represent a

—] TECHNOLOGY
REPORT

possible carry-in to the K-th bit position. A quick reflection on
the situation reveals that a carry-out, C(K), is generated when
there is either a carry-in of Logic “1,” C(K'1), and at least one
of the two bits being added, A(K) or B(K), is a Logic “1”; or
both A(K) and B(K) are Logic “1”. A truth table reveals this
relationship:

C(K) = AK)*B(K) + (A(K)@B(K))*C(K-1) (1)

This truth table reveals that a carry-out will be produced if
either 1) A(K) and B(K) are each Logic “1” (A(K)eB(K)) irre-
spective of the value of the carry-in, or 2) either A(K) or B(K) are
a logic “1” and a carry-in of logic “1” exists (A(K)eB(K)eC(K'1)).
The principle of lookahead carry is that the carry-out is deter-
mined from an examination of the addend and augend. But
how can the concept of lookahead carry be extended to
number systems of other than base 27

Clearly, the above relationship was developed by considering
the events occurring in a binary system. If instead these events
are viewed from a general stance, it can be said that a carry-
out is produced when either 1) a carry-out is generated solely
by the two numbers at the K-th bit position or 2) a carry-out is
generated solely by the presence of a carry-in to the K-th bit
position. Case 1 occurs when the sum of A(K) and B(K)
equals or exceeds the base of the number system in question.
Case 2 occurs when the sum of A(K), B(K), and C(K-1) equals
the base of the number system in question. It has proven con-
venient to express these concepts as follows:

C(K) = G(K) + P(K)eC(K'1) @

This expression states that a carry-out from the K-th position,
C(K), is produced when 1) it is “generated” at the K-th bit
position when the sum of A(K) and B(K) equals or exceeds
the base of the number system, or 2) it is produced by the
presence of a carry-in of logic “1” to the K-th bit position,
C(K'), and the sum of A(K) and B(K) is one less than the
base of the number system. The second case can be thought
of as the sum of the addend and augend at the K-th bit posi-
tion “propagating” (P(K)) the carry-in through to the carry-out
position. In the case of a binary (base 2) system, one can in-
tuitively generate the boolean expressions which fit the general
form of equation 2. Reference to equation 1 shows that G(K)
= A(K)eB(K) and P(K) = A(K)eB(K). Extending the concept of
lookahead carry to other number systems, notably binary-
coded decimal (BCD), involves developing the proper boolean
expressions to satisfy the generic definition of the generate
(G(K)) and propagate (P(K)) (see references).

Equation 2 focuses solely on the events that occur at the K-th
bit position, and as such represents a lookahead expression
spanning one numeral (for whatever numeric radix of interest).
This recursive relationship is easily expanded to provide a
lookahead carry expression spanning any number of numerals.
That is, for a number ‘N’ numerals long, with the first numeral
being the least-significant numeral and the N-th numeral the
most significant, the lookahead expression providing the carry-
out from the N-th numeral is:

C(N-+1)=G(N)+P(N)sG(N—1)+P(N)sP(N—1)e
G(N=2)+...+P(N)eP(N—1)e...P(1)eC(1) ®)

where ‘C(1)’ is the carry-in to the least-significant numeral.

Clearly this only provides the carry-out for the N-th numeral,
whereas every numeral must receive a carry-in, whether pro-
duced from a ripple or lookahead source. For most numerals
in a number, supplying the carry-in with the lookahead tech-
nique is the most expedient approach. Supplying each and
every numeral in a number with its carry-in in such a fashion
is termed 700% lookahead. However, this necessitates the pro-
duction of lookahead logic blocks whose sizes rapidly become
onerous as their number lengths increase; 100% lookahead is
unrealistic with the number lengths routinely used by current
computational architectures. Fortunately, adaptations of the
lookahead concept can significantly reduce add time over the
time achieved with a 100% ripple of the carry through a
number without using 100% lookahead.

Providing 100% lookahead carry for even a modest-sized
number is not practical because doing this requires a large
amount of logic as well as large input gates, with the concur-
rent requirement for signals driving very large fanouts. Examin-
ing the boolean expressions for a variety of lookahead lengths
reveals that realizing lookahead beyond a length of four numer-
als becomes unattractive, whether dealing with macrocells
available in Motorola’s MCA2500ECL macrocell library or avail-
able discrete SSI/MSI packages. (Of course, the designer deter-
mines what is “unattractive’ as he trades speed for logic.) Faced
with this subjective limitation the designer could elect to:

(1) Implement lookahead using generates (G(K)) and propa-
gates (P(K)) derived directly from blocks of addend and
augend bits (A(K) and B(K)), providing lookahead carries
between these blocks of bits wherein the carry is rippled
through.

(2) Employ multi-level lookahead wherein the generates and
propagates that will form the lookahead carry are derived
in turn from the generates and propagates derived directly
from addend and augend bits, or even from other inter-
mediate generate and propagates.

(8) Employ a combination of methods 1 and 2 tailored to the
designer’s immediate need.

It is left to the reader to perform the boolean algebraic man-
ipulation to convince himself of the validity of such muilti-level
structures. A lookahead carry that is generated from generates
and propagates that are derived directly from the addend and
augend bits is usually called a “zero-level lookahead.” Higher
multi-level lookahead carries utilizing one, two,...., N levels of
intermediate generates and propagates are called first, se-
cond,....,(N1)-th level lookahead schemes respectively.

A family of lookahead subunits has been developed to support
Motorola’s MCA2500ECL (MCA Il) Macrocell Array semi-custom
program. These lookahead subunits optimumly use those
macros (macrocells) available in this macrocell library, deliver-
ing minimum propagation delays across bit spans of various
lengths, while consuming minimum chip space.

19

Binary Addition/Subtraction

In representing signed binary numbers, three coding systems
dominate: sign-and-magnitude, 1's-complement, and 2's-
complement. Although the sign-and-magnitude representation
is the easiest to understand, designing logic networks to do
arithmetic with sign-and-magnitude binary numbers is very
awkward. Performing arithmetic employing 2’s complement
representation, on the other hand, is straightforward.

In the 2's-complement system, positive numbers are repre-
sented by a zero followed by the number’s magnitude (just as
in the sign-and-magnitude system). Negative numbers are
represented by the 2's complement of their positive counter-
part, which, for binary numbers, is formed by inverting each
bit and adding 1’ to the least-significant-bit position. (This
methodology is not the definition of how to form the 2's com-
plement of a number for any base. However, the definition of
2's complement can be extended to any number system.)
Forming the 2’s complement of a number currently repre-
sented in 2's-complement notation is equivalent to changing
the sign of that number. Of course, the result remains in 2’s-
complement notation. To add two numbers in 2’s-complement
notation does not require manipulation of either number prior
to performing the addition. Subtracting one number from
another, each in 2's-complement notation, is carried out by
forming the 2’s complement of the number to be subtracted
(changing its sign) and then adding the two numbers. In either
case, addition is carried out just as if each number was posi-
tive, but with any carry from the sign position ignored. This will
always give the correct result except when an “overflow” con-
dition occurs.

An overflow is said to occur if, when adding two numbers
each with a length of ‘N’ bits, the correct representation of the
sum, including the sign, requires more than ‘N’ bits. An
overflow condition is easy to detect: it is indicated when the
addition of two positive numbers would otherwise indicate a
negative result (a ‘1" in the sign bit position) or the addition of
two negative numbers would otherwise indicate a positive
result (a ‘0’ in the sign bit position). The proper representation
of a sum, when an overflow occurs, uses the overflow bit as
the sign bit, with the ‘N’ bits, previously sized to contain both
the sign and magnitude segments of augend and addend,
representing solely the sum’'s magnitude. There is no need to
examine the carry from the sign bit position (N-th bit for ‘N’ bit
addends and augends) because ignoring any carry always
gives the correct answer. Addition of 1’s-complement numbers
is the same as addition using 2’s complement numbers, ex-
cept that instead of discarding the carry from the sign posi-
tion, the carry is added to the sum at the least-significant-bit
position (“‘end-around carry”). Because this involves more
logic, we will focus on using the 2's-complement system for
addition or subtraction.

Forming the 2's complement of a binary number is most effi-
ciently done by exclusive-or gating to each bit input of the
adder structure of choice, using one of the exclusive-or inputs
as a control line to select bit inversion. An appropriate scheme
must also be realized as input to the carry-in to the least-
significant bit of the adder structure, providing for the carry-in
of 1" when needed to generate the 2's complement of a

number as well as providing the usual carry-in capability.
Finally, provision must be made for generating the overflow bit.

Quick reflection on the logic realized by a full adder reveals
that:

S(@i)) = A)eB()oC(IN) 4)
C(OUT) = A(i)eB() + A(i)eC(IN) + B(i)eC(IN) (5)
Where: A()) = addend bit at the i-th position in a number

1

B()

S(i)
C(IN)
couT =

augend bit at the i-th position in a number

1

sum bit at the i-th position in a number

carry-in to the ith position in a number

carry-out from the i-th position in a number

Equation 4 can be rewritten as:
S(@) = P(i))@C(IN) (6)

and, from the discussion of lookahead techniques, equation 5
can be expressed as:

C(OUT) = G(i)+P()*C(IN) @)

In designing an adder, the most expedient way to employ a
lookahead scheme is to focus on a realization that provides
the generates and propagates for each sum-bit rather than
first realizing the sum bit directly. Fortunately, the M283 2-bit
Lookahead Carry macro does this, supplying the individual
propagates for each of two bits (labeled 'H(0)' and ‘H(1)’ in the
design manual’s library rather than ‘P(0)' and ‘P(1), the carry-
out ‘C(0)’ for one pair of bits to be added, as well as the
(group) propagate and (group) generate for a two-bit span.

This important building block (M283) is extremely fast and ex-
tremely space-efficient. By itself, this macro can form the core
of a two-bit-adder structure significantly faster and smaller in
real estate than any other MCA2500ECL structure, including
those macros designed to provide that specific function—while
producing all the terms needed for lookahead carry generation.

Figure 1 shows this basic unit adapted for use in a binary
adder/subtracter of arbitary size.

Figure 2 shows a higher-level building block built from this
basic unit for use in the realization of larger binary adders/
subtractors as well as the amendment necessary to provide a
carry-in of 1’ when the 2's complement of a number is formed,
in addition to the usual provision of carry-in capability.

Figure 3 shows an 8-bit-wide block ($SUBU BINSTERM) to be
used as the terminal segment of a larger binary adder/subtractor
structure, as evidenced by the propagation of the carry with
the aid of lookahead logic rather than a straight ripple be-
tween M283 blocks. This particular 8-bit-wide block was
developed because, in an optimally designed adder/subtractor,
the longest delay path should terminate in the most significant
bit (assuming that the same logic is required at each ‘bit posi-
tion to produce the sum bit, as is the case here). Anticipating
that 8 bits would be the minimum binary length of interest to
the reader, 8-bit binary adder/subtractor blocks were used in-
stead of individual bits or M283 2-bit units in conjunction with

2 TECHNOLOGY
REPORT

Add/Subtract “B”’

Add/Subtract “A"

SEL: Hi: Subtract*
Lo: Add

*forms 2's complement
of number selected

M283

Sp, S1: Sum Bits

Cq: complemented
carry-out from
most-significant
sum bit (Sq)

Figure 1. Binary Adder/Subtractor Basic Unit.

A A3
B2 B3
SELA SELg

Ao Aq
Bo B
SELa SELp

As A7
Bg By
SELA SELB

C1 o

C;=<+—— $SUBU BIN-2 $SUBU BIN-2 [<— $SUBU BIN-2 < $SUBU BIN-2 +<—Cin
S_G i ! Sq4 Ss S S3 So $q
P3 &3 7 & P G 7o Go

8-Bit Wide Straight Ripple Binary Adder Subtractor Block
($SUBD BIN-8; see Appendix for coding)

CINLsB

SELA s
SElg—————d

Cin
Cong

LSB Input Amendment for Binary Adder Subtractors
($SUBD CIN2COMP; see Appendix for coding)

CiNLsB

Figure 2. Intermediate-level building blocks for binary adder/subtractor realizations.

ER01

various lookahead units. These blocks are used to construct
binary adder/subtractors of varying sizes, with ripple through
the 8-bit-wide slice propagating the carry-in to that slice’s bits.
Because a significant amount of the overall longest-path prop-
agation delay was utilized in the ripple through the terminal
adder/subtractor block, speed would be significantly increased
by employing lookahead logic within this segment as well.

The proper use of the binary adder/subtractor constructs pre-
sented relies on the following constraints:

e Both augend and addend are supplied to the unit in 2’s
complement representation.

e At most, only one of the two numbers (addend or augend)
will have its sign changed (2's complement formed).

° An additional carry-in of 1 to the least-significant bit will not
be provided when a 2's complement of either the addend
or augend is being performed.

Binary/BCD Addition

Although representing decimal digits in binary code is not an
efficient way to communicate information (i.e., information den-
sity), there are cases where other (display/interface) considera-
tions must be met. One could achieve BCD addition by first
performing binary addition on the two strings of BCD numbers,
then adding six (0110) to each 4-bit BCD string that exhibits a
carry-out of 1 from the most-significant bit.

In such a scheme two additions are being performed rather
than one. This can be avoided by developing the appropriate
expressions for the propagate and generate terms for each
BCD digit, then employing the same lookahead techniques
used for the binary adder/subtractor. Such a straightforward
approach will increase the amount of logic and propagation
delay time, but not as much as necessitated by dual addition.
Figures 4 and 5 show the logic for each binary/BCD unit.

Again, the M283 2-bit Lookahead-Carry is used as the core
construct of the binary/BCD adder because it can produce
intermediate propagate and generate terms.

Binary Adder/Subtractor and Binary/BCD Adder
Implementations

Figures 3 and 6 show realizations of binary adder/subtractors
of various bit lengths. Figure 7 shows an 8 bit adder. Table 1
lists specifications for each, both in longest propagation delay
as well as size. Because it is probable that the user of Motor-
ola’s MCA2500ECL Macrocell Array will employ additional
logic when using these adders, the propagation delay times
represent an elapsed time with t50 being the arrival of all of
the addend and augend bits at the first gates in the network,
and the final elapsed time the arrival of the last sum bit from
the final network gate with 1) fanout of zero in the case of the
binary adder/subtractors, and 2) fanout of four in the case of
the binary/BCD adders. Further, delay times use nominal metal
lengths between various building blocks (macros), as supplied
by the CAD system, rather than values after a place and route
of the final network on the arrived at MCA2500ECL array.

All realizations were built solely with (internal) M cells, but user
needs may dictate otherwise. Because the specifications as-
sume the simultaneous application of all addend and augend
bits, any select lines should be developed with sufficient fanout
and delivered with appropriate timeliness as not to be a rate
limiting path.

The binary adder/subtractor implementations all employ look-
ahead between units of 8 bits. The carry is rippled across
each 8-bit-wide block except for that block comprising the
most-significant-eight bits; that block employs internal look-
ahead to maximize performance. These adder/subtractor de-
signs were implemented with lookahead schemes chosen to
cause the longest propagation delay to terminate in the most

Variation of
$SUBU BINSTERM $SUBU CIN2COMP
14 N A
Ag-A7 Bg-B7 A4-A5 Bg-Bs A2-A3 B2-B3 SEL
SELA SELp SELp SELA
SELg SELg SELg <
CIN
CN+3 CN+2 (=] LSB $SUBU =
$SUBU BIN-2-TERM |< $SUBU BIN-2 $SUBU BIN-2 t—| $SUBU BIN-2 s l<€—Cin
S S7 Sy S, So
Overflow S5 ul S3 =~ _ S1_~
G P P
$SUBU LA-N-2 CINLsB
| | | | | |
& + 2 # e‘@ Pl 7.; P_0¢
$SUBU LA-N-3 <) CINLSB

Figure 3. 8-bit Binary Adder/Subtractor.

2 TECHNOLOGY
REPORT

A3 B3 Ay By A1 By Ao Bo
c D* A B* c D* A B* =
Tt n
E* C1 Esi
A3 B3 Az B [} Ay By Ao Bo Cin
M283 M283

q

Fm—t——————————————

1
|
I
|
[
I
|
|
|
|
|
[
|
|
I
|
|
I
[

Couto 000 O | 1 F==—=——=H

Figure 4. Binary/BCD Adder Basic Unit.

(0)A YA
(H3)B AL:]
(Ha)C Ye

(87200 M202 NP

(Ho)A
(GT;E)A';Doi Gy)B

(GolC
(GPza)B:j:>T (512D M201
(GGpy)C Y Ald)

(S12)D
12) Yg4)
(G)E g
(F7IF YC
(01 _ z
i (FC
Gk !
(Gl (F3)A —s
(G2)G—
(S12)H—] (512)8B—7
(GolL (G1)D*
(M M320 Yo (GP3IL
M312 (GPo1IM
(GoIE*

When Sq2 is Hi: BCD Add
When Sq3 is Lo: Binary Add

Figure 5. Realization of C_,, for use with Binary Adder/Subtractor Basic Unit.

G0

As56-A63
Bse-Be3
SELA SELg

A4g-Ass
B4g-Bss
SELA SELg

Aq0-A47
B4o-Ba7
SELA SELp

A32-A3g
B32-B3g
SELA SELg

CN+3 CN+4 CN+4 CN+4
$SUBU BINSTERM < $SUBU BIN-8 $SUBU BIN-8 |<— $SUBU BIN-8
S56-S63 Sag- Sa0- S3o-
A Ss5 - S47 19 S3g
Overflow Gog- Goo- Grg-
&7 o o o G1o i
27 P24-P27 23 P20-P23 ik P16-P19
C
$SUBU || $SUBU $SUBU AR
LAN4GPGG LAN4GPGG T LAN4GPGG
CN+4
GG1p GP12 GG1g GP1g GGg GPg
o= $SUBU LA-N-3 <—
CN+4
SELA
SELg
Variation of $SUBU CIN2COMP $SUBU =
I M313 ¢ L
A24-Azq A16-Az3 Ag-A1s Ag-A7
B24-B31 B16-B23 Bg-B1s Bo-B7
SELa SElg SELA SELg SELA SELg SELa SELg
CN+3 CN+4 CN+4
$SUBU BIN-8 <at— $SUBU BIN-8 a5 $SUBU BIN-8 |~at— $SUBU BIN-8 [<®&—{CIN|sB
S24- S16- Sg- So-
S31 S23 515 7
G- 5 . N
— 5= 5— — = 5— G4-G7 o Go-G3 3= 5=
G1s P12-P15 G Pg-P11 P4-P7 073 Po-P3
$SUBU $SUBU $SUBU $SUBU «—|CNLsp
LAN4GPGG LAN4GPGG LAN4GPGG <CN—4 LAN4GPGG
GG;| GP; GGy GP4 GGz G—P2‘ ﬁov GPy
— $SUBU LA-N-3 <€—|CIN_ s
~| —I NN | R | —_ _ 1 —
G71 P7+ Gs 1 P51 GG31 GP31 GGw GPq1
L] $SUBU LA4-NOGP <
CN+4 CIN_ s

Figure 6. 64-bit Binary Adder/Subtractor.

24

TECHNOLOGY
REPORT

Number Binary/BCD Adder Binary Adder/Subtractor .
of Bits |Max Pp (ns) Size (M cells) |Max Pp (ns) Size (M cells) ComitiebtE ke BINAREASHe earatson
8 6.950%** 21 4.500%* 13.50 Selects have fanout of b.
16 8.375 43 5.975 25.75 Longest delay path is ripple through first block of 8
(A = 0.225 ns); Selects have fanout of 8.
24 8.625 64.25 7.475 38 Longest delay path is ripple through second block
of 8 (A = 0.275 ns); Selects have fanout of 8.
32 9.900 86 8.400t 51.25 Longest delay path is ripple through third block of 8
(A = 1.800 ns); Selects have fanout of 8.
64 Exceeds Macrocell Array 10.2751 102.50 Longest delay path is ripple through seventh block
Size Limitations of 8 (A = 2.200 ns); Selects have fanout of 8.

** 100% Fault graded (see text for additional detail).
+ Potential for increased speed performance (see text).

Ag-A7
Bo-B7
S12
Cin

$SUBU ADDER-8 €
P1 Sp-S7
G| Pp Go| Po
Sg €——— $SUBU M331 -

—Cin

Figure 7. 8-bit Binary/BCD Adder.

Table 1. Binary/BCD Adder and Binary Adder/Subtractor Realizations Utilizing MCA2500ECL “M” Cells.

significant bit. However, analyses of the longest propagation
delay in each design revealed that, except in the eight-bit
adder/subtractor, the longest delay terminated instead through
the next-to-least-significant block; this delta is due to the long
ripple of the carry across eight bits. This delta (indicated in
table 1), seems to be significant only in large structures. Addi-
tional delay reductions could be realized in these cases by
adding lookahead for that block if the performance gain would
justify the additional logic.

The binary/BCD adder implementations are somewhat more
straightforward, with lookahead logic needed to support (at
most) eight binary/BCD digits (each 4 binary-bits wide). Figure
8 details an intermediate building block called “ADDER-8",
which comprises two BCD digits with lookahead transporting
the carry from one to another. This block is utilized for all the
structures, easing the design task.

$SUBU BIN-BCD

[

L —

T |

I $SUBU BIN-BCD —Cip,

I

[
G{

-

Ag-A3 Bo-B3
S12 Cin

e)

I
l_J
o

$SUBU CARRY-4

Figure 8. $SUBD ADDER-8 detail. (See figure 7.)

MGG

Summary

Using Motorola’s MCA2500ECL Macrocell library, binary/BCD
adders and binary adder/subtractors employing lookahead
carry have been implemented in popular bit widths. To op-
timize for speed and part count, a family of lookahead units
spanning varying bit/BCD-numeral lengths has been developed.
Adder/subtractor structures were built using stepwise-refinement
with intermediate-level building blocks developed to perform in-
termediate levels of logic complexity. Each lookahead subunit
as well as the binary/BCD and binary adder/subtractor cells
have been 100% fault graded for accuracy. However, some
adder/subtractor implementations may be limited by the size
or pinouts available in the chosen array.

Using multi-level lookahead for carry transport can produce
significant speed advantages over single-level lookahead. In
multi-level lookahead, the number of bits spanned by the
lookahead construct equals the product of the bits spanned
by lookaheads at each level (when all lookaheads at a given
level have equal lengths). This proves quite useful when span-
ning a large number of bits. For example, the 64-bit binary
adder/subtractor, shown in figure 6, employs three levels of
lookahead; per 32-bit slice, with lookahead spans of 2, 4, and
4—realizing a final lookahead length of 2x4x4 or 32 bits.

The lookahead carry subunits were developed with two pri-
mary constraints: 1) what propagates/generates were available
(true or complemented form), and 2), if both forms were avail-
able, what consideration should be given to their time-of-arrival
differences. For example, in the binary adder/subtractors only
the complemented terms are available (from M283). Implement-
ing the binary/BCD adders allowed all four possible terms to
be available, but the true forms were noticeably faster. Another
constraint was the desire not to supply a logical ‘1’ to any in-
puts (this would require more logic).

Other concerns: Should the lookaheads provide propagates/
generates as well as carries? Is either the true or comple-
mented form of the carry needed? What is the initial versus
succeeding time delay to conduct the carry through the
lookahead structure(for multilevel lookahead)? These look-
ahead structures were developed to satisfy specific criteria,
criteria not necessarily the same for all design situations. This
caveat and figure 9 should help the designer decide the ap-
propriate choice of lookahead subunits for implementations
other than presented in table 1. Figure 9 shows that a con-
stant “bit-transport” rate is not achieved irrespective of what
lookahead structure is chosen. This fact is evident in “logic
overhead” embodied in the lookaheads spanning shorter

700
4 Initial ¢=C 4=C
+ =
Subsequent = C A= C C = Carry-out
% C = Carry-out complement
= —Trace of C for
Initial run.
-
¢
500 |-
4
-
- o
400 —
Delay/Bit + ¢ A
(ps)
+ P
300
<+
¢
200 -
-
100
1= L1 11 L1
M313, M211 M216, M331 M217, M218 M218, (M218+M313)
CN+1 CN+2 CN+3 CN+4

Figure 9. Lookahead carry propagation delays for various bit spans.

TECHNOLOGY
REPORT

2

lengths. Because there are but a few adder/subtractor struc-
tures of interest, and lookahead performance is nonlinear, it is
best to use an empirical approach when working up a look-
ahead implementation. This last sentence gives the bottom
line: No formula will automatically dictate what form of look-
ahead should be used for an adder/subtractor of radix X, ‘y’
bits long. One must look at the lookahead units available (see
figure 9) then choose the units and scheme appropriate for

the problem.

For More Information

An application note, AN953, shows these and additional look-
ahead implementations, along with the code needed to build
any of adder/subtractors. For this application note or more in-
formation about Macrocell Arrays, call Katie Hamilton, sales
engineer, Motorola, 503-641-3681.

For more information about the Connections program, call
Wes Brunning 629-1488 (92-824). O

Been Asked to Organize a Session
or to Talk at a Conference?

DN Professional conferences are
“c’ “+) an integral part of the infor-
\[\ mation-transfer process. The
&:}33 ~ success of such ‘conferences
f/ X i}/ depends on many things. The
6~)\ : theme, the facilities, even the
e weather are important, but the

speakers and the organizers
are critical.

I \

To help session organizers and speakers, Technology Com-
munications Support has prepared two guides, each based on
extensive experience in preparing and supporting professional
communications.

If you've been invited to talk, So You're Giving a Talk at a Pro-
fessional Conference will help you organize your talk and pre-
pare effective slides to go with it. The rules in this booklet are
few and simple, but they can help you look like a “pro” in-
stead of an ill-prepared amateur.

If you've been invited to organize a session, you'll be expected
to be not only the manager of a team but the coach, scheduler,
and expediter as well. So You're Organizing a Session for a
Professional Conference gives the basic rules and guidelines.

To get a copy of either or both guides, and to get professional
support in preparing talks and slides, contact Technology Com-
munications Support d.s. 53-077 (642-8920). [

Technology Report
MAILING LIST COUPON

U ADD Name:

D.S.:

0 REMOVE

Not available to
field offices or
outside the U.S.

MAIL COUPON
TO 53-077

Payroll Code:
(Required for the mailing list)

For change of delivery station, use a directory
change form.

0T

Standards Review Board

Organization Appointing Manager SRB Member/Alternate Location Phone
Instrument Systems Frank Hermance, LI Joel Swanno/John Hazard 39-113/39-113 627-3055/627-3053
Jim Koehn, ISI Jim Brammer C1-469 253-5770
Sal Kadri, Accessories Rick Wilson/Bill Dippert C1-708/C1-775 253-5415/253-5394
Portable Inst. & Mfg. | Fred Hanson, VP&GM Merle Nielsen/Pam Weightman | 47-670/47-664 627-2981/627-3008

Dick Knight
Soren Vestergaard
George Kersels, VP EMCG

Jeff Allen/Rick Cummings

F1-186/F1-186

640-2288 x4248

Jim Herinckx/Paul VanDomelen | 16-285/16-285 627-7814/627-0763
Robin March 19-290 627-5070
Technology George Kersels, VP Maria Lochmann 50-252 6271242
Communications Fran DiGiorgio R1-000 923-4442
Morris Engelson, FDI Ken Durk/Steve Kvavle 58-620/58-585 627-1398/627-1254
Larry Kaplan, TV Bob Melton 58-594 6271345
Information Display Geo. Rhine, Actg GWD Ron Murrey (East) 63-281 685-3230
Roy Barker, PD Marlene Conklin 63-223 685-3511
Jerry Ramey, TD Bill DeVey/Lee Winer 63-083/83-416 685-3520/685-3048
Geo. Rhine, Actg GWD Mike Massey (Central) 60-559 685-2478
Design Automation Tom Clark, SDP Brent Anderson 92-551 6291677
Dick Lemke, LA Larry Larson 92-7083 629-1883
Vince Lutheran, STS Haydn Piper/Alice Houtsager 94-442/94-442 629-1240/629-1125
Corp. Services & Jim Baker, Mgr. Del Knapp 56-125 642-8658

U.S. Field Support

Factory Service

Tek's Standards Review Board reviews all proposed group and company-wide standards. The Board also reviews revisions
to existing Tek standards.

COMPANY CONFIDENTIAL
NOT AVAILABLE TO FIELD OFFICES

1¥0d34 A90TONHI3 L
TIIMNY0T 3 dYVHIT Y

G8Z-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer.

