Tektronix

1910

Digital Generator
Operator Manual
070-4466-01

Please check for change information at the rear of this manual.

Fig. 1-1. The 1910 Digital Generator.

SPECIFICATION

INTRODUCTION

Reference Documentation

The following documents were used as references in the preparation of this Operators Manual.

UL 1244-Standard for Electrical and Electronics Measuring and Testing Equipment.

FCC Rules and Regulations, Section 73.676 (f) and Figures 13, 14, and 15 of Section 73.699 for Remote Control Monitoring of Television Broadcast Transmitters.

RS-170A-Color Television Studio Picture Line Amplifier Output.

RS-189 EIA STANDARD-Encoded Color Bar Signals.
RS-232-C EIA STANDARD-Interface Between Data Terminal Equipment and Data Communications Equipment Employing Serial Binary Data Interchange.

Proposed SMPTE Standard for a Composite Parallel Digital Video Interface.

ANSI Y1.1—1972, Abbreviations.

Product Description

The TEKTRONIX 1910 DIGITAL GENERATOR (see Fig. $1-1$) is a high quality test instrument capable of providing a variety of test signals useful for testing NTSC video systems or discrete parts of the systems. The test signals generated are available from the FULL FIELD OUTPUT as field information. Also, most of the test signals are available as Vertical Interval Test Signals (VITS) inserted on the incoming Program Line Signal.

A non-volatile memory maintains selected VITS and Full Field Signals after a power-line interruption. There is a provision for insertion of up to four external VITS for such services as Teletext and closed captioning. If external VITS is not needed, this provision can be replaced with a Pulse Output board that provides four signals: H Drive, V Drive, Comp Blanking. and Burst Flag.

The test signals generated by the 1910 are derived from information stored in sets of PROMs. This provides several advantages. Test signal format changes are accomplished by replacing the appropriate test signal memory. No recalibration is required and changing industry test signal standards will not cause absolescence. The other advantage is the exceptional stability of the test signals. This stability means that very little maintenance and recalibration is required.

The 1910 test signals may be genlocked ${ }^{1}$ to the incoming Program Signal or to a Black Burst master generator, thus assuring accurate timing and phasing of the output signal. In the absence of burst, the 1910 locks to the leading edge of sync. A front-panel light will illuminate upon loss of sync, indicating a free-running state of the instrument's oscillator. In the free-running state the 1910 oscillator is controlled by a crystal in a constant-temperature oven.

The signals generated by the 1910 are programmed to be SCH (subcarrier-to-horizontal sync) phase referenced. Because of this it is not recommended to genlock the 1910 with a signal where sync and burst are non-synchronous.

The 1910 Digital Generator has remote-control capabilities for some of its functions. The remote-control capabilities may be utilized by either the REMOTE CONTROL interface or the RS-232 CONTROL interface on the rear panel. The 1910 is compatible with other instruments that have RS-232 interface; some examples are: TEKTRONIX 4006 Computer Display Terminal, TEKTRONIX 4010 Computer Display Terminal, TEKTRONIX 4052 Desktop Computer, and TEKTRONIX 1980 ANSWER. (Some hand-held computers and personal or home computers may be compatible with the 1910 RS-232 CONTROL port.)

The 1910 will also accept digital information from an external source through the DIGITAL INPUT connector to generate test signals. A DIGITAL OUTPUT connector provides access to the 10 -bit words that are being used to generate the Full Field Signals.

[^0]
SPECIFICATION

The performance requirements listed here apply over an ambient temperature range of $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ after a warmup time of 20 minutes. The rated accuracies are valid when this instrument is calibrated at $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$ after a warm-up time of ten minutes minimum.

Test equipment used in verifying performance requirements must be calibrated and working within the limits specified under Table 3-1, Recommended Test Equipment, provided in Section 3, Performance Check Procedure, of the Service Manual.

Items listed in the Performance Requirements column of the Electrical Characteristics tables are verified by completing the Performance Check in Section 3 of the Service Manual, unless specifically stated otherwise. Items listed in the Supplemental Information column may not be verified in either manual; they are either explanatory notes or performance characteristics for which no limits are specified.

The Performance Check Step No. column lists the specific step number of the Performance Check procedure in Section 3 of the Service Manual that checks the appropriate Performance Requirement items.

Table 1-1
PROGRAM SIGNAL PATH/VITS INSERTER

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Program Line Input Input Level		$1 \mathrm{~V}(0.7$ to 1.4 V$)$	
Input Impedance	75Ω nominal		53
Return Loss Power On	At least 46 dB to 5 MHz		53
Power Off/Bypass	At least 40 dB to 5 MHz		53
Program Line Out Program Monitor Out Impedance	75Ω nominal		53
Return Loss	At least 36 dB to 5 MHz		53
Hum Rejection	At least 10 dB . Referenced to 1 V hum.	Jumper selectable to 20 dB . Requires unique test equipment capable of inserting 1 V hum on the program line.	15
Keyboard (no noise)	Less than 0.25 IRE		9
Video Gain	Unity Gain $\pm 0.5 \%$		1
DC Blanking Output Level	$0 \mathrm{~V} \pm 100 \mathrm{mV}$		8
VITS Pedestal Offset from Blanking $0 \vee$ Hum	2 mV or less		10
1 V Hum	10 mV or less	Requires unique test equipment capable of inserting 1 V hum on the program line.	

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Isolation Program Line to Program Monitor	At least 40 dB to 5 MHz	Referenced to 1 V	2
Pulse-to-Bar Ratio T/2	100\% $\pm 2 \%$		3
T	100\% $\pm 0.5 \%$		3
$2 T$	100\% $\pm 0.25 \%$		3
Pulse and Bar Aberrations T/2	2\% or less		4
T	0.5\% or less		4
2 T	0.25\% or less		4
Waveform Tilt Field Tilt (Field Rate Square Wave)	0.5\% or less		5
$\begin{aligned} & \text { Bar Tiitt } \\ & (25 \mu \mathrm{~s} \text { Bar }) \end{aligned}$	0.5\% or less		5
Differential Phase (10-90 APL)	0.15° or less		22
Differential Gain (10-90 APL)	0.2\% or less		23
Inserted VITS Differential Phase	$0.4{ }^{\circ}$ or less		
Differential Gain	0.7\% or less		
Amplitude Nonlinearity	0.25\% or less		6
Frequency Response	$\begin{aligned} & \pm 0.5 \% \text { to } 5 \mathrm{MHz} \\ & \pm 1 \% \text { to } 10 \mathrm{MHz} \\ & \pm 3 \% \text { to } 15 \mathrm{MHz} \end{aligned}$		11
Random Noise Output	At least 75 dB (rms) down	Referenced to 1 V . 5 MHz low-pass filter and a noise weighting filter into a rms meter.	18
Residual Subcarrier	At least 60 dB down	Referenced to 1 V . 5 MHz low-pass filter into an oscilloscope.	12
Hum	At least 60 dB down	Referenced to 1 V . 5 MHz low-pass filter into an oscilloscope.	16

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Spurious Signals During Blanking Up to 5 MHz	At least 40 dB down (10 mV or less)	Insertion transient	17
Above 5 MHz	At least 46 dB down (5 mV or less)	Clock noise	17
Delete Mode Signal Attenuation 2T Pulse	At least 70 dB down	Referenced to 0.714 V	14
Subcarrier	At least 60 dB down	Referenced to 0.714 V	14
Crosstalk (Internal to Program Line) $2 T$	At least 70 dB down	Referenced to 0.714 V	13
Subcarrier	At least 60 dB down	Referenced to 0.714 V	13
Insert Delay Range	$\pm 8 \mu \mathrm{~s}$, (16 $\mu \mathrm{s}$ total)	In 70 ns increments (internal DIP switch)	19
INSERT SUBCARRIER PHASE ADJUST RANGE	Minimum 10° total	Continuously adjustable over 70 ns (internally)	21
Instrument Delay		25 ns typical. Input to output delay.	
Insertion Width	$9.8 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$ to $10.9 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$	Front Porch (jumper selectable): $1.6 \mu \mathrm{~s}$ to $1.32 \mu \mathrm{~s}$ nominal. Back Porch (jumper selectable): $8.46 \mu \mathrm{~s}, 8.74 \mu \mathrm{~s}$, $9.02 \mu \mathrm{~s}$, or $9.3 \mu \mathrm{~s}$ nominal.	20

Table 1-2 GENLOCK FUNCTION

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step No.
Genlock Input (via PROGRAM IN or BLACK BURST $\operatorname{IN})$			
Burst Amplitude	40 IRE $\pm 6 \mathrm{~dB}$		25
Phase Change with APL		For 1° or less phase change over 10% to 90% APL.	
Sync Amplitude	40 IRE $\pm 6 \mathrm{~dB}$		25
Return Loss BLACK BURST IN	At least 46 dB to 5 MHz		53
Genlock Performance Burst Lock	$3.579545 \mathrm{MHz} \pm 20 \mathrm{~Hz}$	0.00056\%	
If Burst Not Present	Clock is referenced to leading edge of sync.		
Sync Lock	$15.73426 \mathrm{kHz} \pm 0.079 \mathrm{~Hz}$	Requires unique test equipment capable of measuring 0.079 Hz sync frequency offset.	
If Sync and Burst Not Present		Clock is referenced to temperature-controlled crystal oscillator.	
Oscillator (Free Running) Subcarrier Frequency	$3.579545 \mathrm{MHz} \pm 10 \mathrm{~Hz}$	Digitally derived from 14.3 MHz clock.	26
Sync Frequency	$15.73426 \mathrm{kHz} \pm 0.04 \mathrm{~Hz}$	Digitally derived from 14.3 MHz clock. Locked to subcarrier by 455/2 ratio.	
Jitter	5 ns or less		27

Table 1-3
EXTERNAL VITS INPUT

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step No.
Maximum Input	$\pm 1 \mathrm{~V}$ peak	Ac plus dc.	
Input Impedance	75Ω nominal		
Return Loss	At least 40 dB to 5 MHz	Power on and off.	53
Insertion Level	$\pm 5 \mathrm{mV}$	Referenced to External VITS In blanking level.	42
Insertion Gain	Unity $\pm 1 \%$		43
Frequency Response	Flat within 1% to 5 MHz	-3 dB at 8 MHz	44
Pulse-to-Bar Ratio $2 T$	100\% $\pm 1 \%$		45
T	$100 \pm 2 \%$		45
Pulse and Bar Aberration $2 \mathrm{~T}$	Less than 0.5\%		45
T	Less than 1\%		45
Differential Phase	0.5° or less	10 to 90% APL. Blanking at 0 Vdc .	48
Differential Gain	0.5\% or less	10 to 90% APL. Blanking at 0 Vdc .	49
Amplitude Non-linearity	0.5\% or less		47
Line-Time Tilt	1\% or less		46
External Input Isolation	Greater than 60 dB to 5 MHz		50
Switching Transients	Less than 10 mV p-p to 5 MHz	(Switching transient at insertion time.)	51
	Less than 5 mV above 5 MHz	(Generator clock noise.)	51

Table 1-4
TEST SIGNALS-FULL FIELD \& VITS

Characteristics	Performance Requirements		Supplemental Information	Perf. Ck. Step. No.
AC bOUNCE	0 to 100 IRE on 4 out of 5 lines		Refer to FIELD SQ WAVE Amplitude specification.	7
Bounce Frequency	Adjustable from approximately 1 Hz to greater than $1 / 30 \mathrm{~Hz}$.			7
BOUNCE \& APL			Selected full-field signal on one line with the Bounce or APL signal on the next four lines.	
Amplitude	100 IRE ± 0.7 IRE			28
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
Line Timing	See Fig. 1-2A.			
FIELD SQ WAVE	Lines 72 to 202			
Field Timing				
Lines (White)				
Lines at Blanking			All remaining active lines.	
Field Tilt	0.5% maximum			34
Line Tilt	0.5\% maximum			33
Amplitude	100 IRE ± 0.7 IRE			28
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
Line Timing	See Fig. 1-2A.			
WINDOW/FIELD BAR	100 IRE ± 0.7 IRE			
White Bar Amplitude				
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
Field Tilt	0.5\% maximum			
Line Tilt	0.5\% maximum			
Field Timing	Lines 72 to 202		Window only	
Line Timing	See Fig. 1-2B.			
FCC MULTIBURST/ MULTIBURST 100	100 IRE ± 0.7 IRE			
White Reference Bar Amplitude				
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
Multiburst Packets Amplitude	FCC MB	MB 100		
	$\begin{aligned} & 60 \text { IRE, } \pm 1 \text { IRE, } \\ & \text { p-p } \end{aligned}$	100 IRE ± 2 IRE, p-p		
Average Level	40 IRE ± 1 IRE	50 IRE ± 1 IRE		

Table 1-4 (cont)

Characteristics	Performance Requirements		Supplemental Information	Perf. Ck. Step. No.
Frequencies	500 kHz 1.25 MHz 2.0 MHz 3.0 MHz 3.58 MHz 4.1 MHz		Digitally derived from 14.3 MHz clock.	
Packet Rise Time $500 \mathrm{kHz}$	$140 \mathrm{~ns} \pm 14 \mathrm{~ns}$		The packets are envelope shaped.	
The Remaining	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$			
Harmonic Content	At least 40 dB down			
Line Timing	See Fig. 1-2C.			
MULTIPULSE 70/100 70	70 IRE ± 0.7 IRE white reference bar. 10 IRE ± 0.5 IRE pedestal level.			
100	100 IRE $=0.7$ IRE white reference bar. No pedestal.			
70 and 100 Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
Puise-to-Bar Ratio	100\% $\pm 1 \%$			
Pulse Half Amplitude Duration 2 T HAD	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$			
25T HAD	$3.14 \mu \mathrm{~S} \pm 0.3 \mu \mathrm{~S}$			
12.5T HAD	$1.57 \mu \mathrm{~s} \pm 150 \mathrm{~ns}$			
Modulated Puise Frequencies	MP 70	MP 100	The first pulse HAD is 25 T , and the remaining pulse HADs are 12.5 T . All pulses are digitally derived	
1st Pulse	1.25 MHz	1.0 MHz		
2nd Pulse	2 MHz	2 MHz		
3rd Pulse	3 MHz	3 MHz		
4th Pulse	3.58 MHz	3.58 MHz		
5th Pulse	4.1 MHz	4.2 MHz		
Group Delay	10 ns or less			31
Other Perturbations on Baseline	0.5 IRE or less.			
Line Timing	See Figs. 1-2D and 1-2E.			

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
COLOR MULTIPULSE			
White Reference Bar			
Amplitude	100 IRE ± 0.7 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Pulse-to-Bar Ratio	$1: 1 \pm 1 \%$		
Pulse Half Amplitude Duration			
2 THAD	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
12.5T HAD	$1.57 \mu \mathrm{~s} \pm 150 \mathrm{~ns}$		
Modulated Pulse			
Frequencies			
1st	2.379545 MHz		
2nd	2.679545 MHz		
3 rd	2.979545 MHz	HAD for all modulated pulses	
4th	3.279545 MHz		
5th	3.579545 MHz	All pulses digitally derived	
6th	3.879545 MHz		
7th	4.179545 MHz	Phase of the 5th pulse	
8th	4.479545 MHz	is	
9th	4.779545 MHz		
Group Delay	10 ns or less		31
Other Baseline Perturbations	0.5 IRE or less		
Line Timing	See Fig. 1-2F.		
SPECIAL MULTIPULSE White Reference Bar Amplitude	100 IRE ± 0.7 IRE	This signal occupies two adjacent television lines.	
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Pulse-to-Bar Ratio	$1: 1 \pm 1 \%$ for pulses to 5 MHz		30

Table $1-4$ (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
5.5 MHz		Typically -3\%.	
6.0 MHz		Typically -7.5%.	
Pulse Half Amplitude Duration 2 THAD	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
12.5T HAD	$1.5 \mu \mathrm{~s} \pm 150 \mathrm{~ns}$		
25 T HAD	$3.14 \mu \mathrm{~s} \pm 0.3 \mu \mathrm{~S}$		
Modulated Pulse Frequencies First Line	1.0 MHz 1.5 MHz 2.0 MHz 2.5 MHz 3.0 MHz	First two pulses are 25T HAD. Last three pulses are 12.5T HAD. All pulses are digitally derived from 14.3 MHz clock.	
Second Line	3.5 MHz 4.0 MHz 4.5 MHz 5.0 MHz 5.5 MHz 6.0 MHz	All pulses are 12.5T HAD and digitally derived.	
Group Delay	10 ns or less for puises of 5 MHz or less.		31
5.5 MHz Pulse		20 ns typical.	
6.0 MHz Pulse		100 ns typical.	
Line Timing	See Fig. 1-3A.		

Table 1-4 (cont)

Characteristics	Performance Requirements			Supplemental Information	Perf. Ck. Step. No.
COLOR BARS Luminance and Chrominance	Absolute amplitudes of luminance signal, setup, and sync are within 1% or 1.5 mV , whichever is greater, with respect to blanking. Chrominance amplitudes are within 1% of their given value.				
75\% Amplitude, 7.5\% Setup	$\begin{aligned} & \text { LUM } \\ & (\mathrm{mV}) \end{aligned}$	CHROMA P-P (mV)	Phase (degrees)		
Full Field \& SMPTE BARS	714.3	1.0 or less			
Gray	549.1	1.0 or less			
Yellow	494.6	444.2	167.1		
Cyan	400.4	630.1	283.4		
Green	345.9	588.5	240.8		
Magenta	256.7	588.5	60.8		
Red	202.2	630.1	103.4		
Blue	108.1	444.2	347.1		
Full Field Black	53.6	1.0 or less			
IYQB -1	53.6	285.7	303.0		
IYQB White Ref	714.3	1.0 or less			
IYQB \quad Q	53.6	285.7	33.0		
IYQB + Pluge	82.1				
IYQB - Pluge	25.0				
Luminance Rise Time Full Field	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$				
SMPTE	$140 \mathrm{~ns} \pm 15 \mathrm{~ns}$				

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Chrominance Rise Time -1	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Q	$833 \mathrm{~ns} \pm 80 \mathrm{~ns}$		
All Others	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Bar Duration Full Field		$6.5 \mu \mathrm{~s} / \mathrm{bar}$ (8 bars).	
SMPTE		$7.5 \mu \mathrm{~s} / \mathrm{bar}$ (7 bars).	
Time Difference Between Luminance and Chrominance	20 ns or less		
Residual Subcarrier	At least 52 dB below 1 V White, Black		40
Spurious Subcarrier	At least 52 dB below 1 V		
Other Spurious Outputs	At least 52 dB below 1 V , except 40 dB for 2nd harmonic		41
Field Timing FULL FIELD COLOR BARS		241 lines per field.	
BARS/Y (Full Field Color Bars)		Modulated bars first 181 active lines per field; unmodulated bars last 60 lines of the field.	
BARS/RED (Full Field Color Bars)		Same as for BARS/Y except last 60 lines of the field are red.	
SMPTE BARS		EIA Color Bars first 161 active lines per field; Reverse Blue Bars for 20 lines; and IYQB with Pluge for the last 60 lines of field.	
Line Timing FULL FIELD COLOR BARS	See Fig. 1-3B.		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Color Bars for SMPTE BARS or EIA COLOR BARS	See Fig. 1-3C.		
IYQB	See Fig. 1-3D.		
REVERSE BLUE BARS	See Fig. 1-3E.		
RED FIELD Luminance Amplitude	$202.2 \mathrm{mV}, \pm 1 \% \text { or } 1.5 \mathrm{mV}$ whichever is greater, with respect to blanking.	NOTE: These electrical characteristics are the same as for red color bar.	
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Chrominance Amplitude	$630.1 \mathrm{mV} \pm 1 \%$		
Phase	$103.4^{\circ} \pm 0.3^{\circ}$		
Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Duration	$51.9 \mu \mathrm{~s}$		
Line Timing	See Fig. 1-4A.		
FCC/NTC 7 COMPOSITE Modulated 5-step Staircase			
Luminance Amplitude FCC	80.4 IRE ± 0.7 IRE		
NTC 7	90.2 IRE ± 0.7 IRE		
Riser Amplitude	1/5 of 5 -step amplitude $\pm 0.5 \%$		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Chrominance			
Phase	Same as burst $=0.3^{\circ}$		
Amplitude	$40 \mathrm{IRE} \pm 0.5 \mathrm{IRE}(3.6 \mathrm{mV})$		
Inherent Diff Gain	0.6\% or less		38
Inherent Diff Phase	0.3° or less		37
Envelope Rise Time FCC	$375 \mathrm{~ns} \pm 37.5 \mathrm{~ns}$		
NTC 7	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
2T Pulse			
Pulse-to-Bar Ratio	100\% $\pm 0.5 \%$		30
Half Amplitude Duration (HAD)	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Ringing	1.0 IRE or less		36
Modulated SineSquared Pulse			
Pulse-to-Bar Peak Amplitude	100\% $\pm 0.5 \%$		
Half Amplitude Duration (HAD)	$1.563 \mu \mathrm{~s} \pm 150 \mathrm{~ns}$		
Chrominance-toLuminance Delay	10 ns or less		
Chrominance-toLuminance Gain Inequality (RCL)	$\pm 0.5 \mathrm{IRE}(\pm 1 \%)$		
Other Perturbations on Baseline	0.5 IRE or less		
Harmonic Distortion of Subcarrier	At least 40 dB down		41
Phase	$60.8^{\circ} \pm 1^{\circ}$		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Bar			
Amplitude	100 IRE ± 0.7 IRE		
Rise Time			
FCC	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
NTC 7	$125 \mathrm{~ns} \pm 15 \mathrm{~ns}$		
Line Timing			
FCC	See Fig. 1-4B.		
NTC 7	See Fig. 1-4C.		
MODULATED BAR			
White Reference Bar			
Amplitude	100 IRE ± 0.7 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Pulse-to-Bar	$1: 1 \pm 1 \%$		
Pulse Half Amplitude Duration			
12.5 HAD	$1.57 \mu \mathrm{~S} \pm 180 \mathrm{~ns}$		
2 THAD	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
12.5 Modulated Puise			
Frequency	3.579545 MHz	Digitally derived from 14.3 MHz clock.	
Phase	$327^{\circ} \pm 1^{\circ}$		
Modulated Bar Chrominance			
Amplitude	100 IRE ± 1 IRE		
Rise Time	$1.56 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$		
Frequency	3.579545 MHz	Digitally derived from 14.3 MHz clock.	

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Phase	$33^{\circ} \pm 1^{\circ}$		
Luminance Amplitude	$50 \mathrm{IRE} \pm 0.5 \mathrm{IRE}$		
Group Delay	Equal to or less than 10 ns		
Baseline Perturbations	0.5 IRE or less		
Line Timing	See Fig. 1-4D.		
INVERTED PULSE \& BAR Reference Bar Amplitude	100 IRE ± 0.7 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Pulse-to-Bar Ratio	1:1 $\pm 1 \%$		
2 P Pulse HAD	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Baseline Perturbations	0.5 IRE or less		
Timing	See Fig. 1-4E.		
VIRS (Vertical Interval Reference Signal) Chrominance Reference Amplitude	40 IRE ± 0.4 IRE		
Phase	Same as burst $\pm 0.3^{\circ}$		
Envelope Rise Time Time (Sine-squared shaped)	$1 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$		
Average Level of Chrominance Signal	70 IRE ± 0.7 IRE		
Luminance Reference 50 IRE Level	50 IRE ± 0.5 IRE		
Black Reference	7.5 IRE ± 0.5 IRE		
Line Timing	See Fig. 1-4F.		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
VICR (Vertical Internal Color Reference) Chrominance Reference Amplitude	100 IRE ± 1 IRE	Removed S/N B023197.	
Phase	Same as burst within $\pm 0.3^{\circ}$		
Envelope Rise Time	$1 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$	Sine-squared shape	
Average Level Chrominance Signal	50 IRE ± 0.5 IRE		
Luminance Reference 100 IRE Level	100 IRE ± 0.7 IRE		
Black Reference	7.5 IRE ± 0.5 IRE		
Line Timing	See Fig. 1-5A.		
BLACK BURST, 10/25i 50/100 IRE PED Pedestal Amplitudes BLACK	7.5 IRE ± 0.5 IRE		
10 IRE	10 IRE ± 0.5 IRE		
25 IRE	25 IRE ± 0.5 IRE	Removed S/N B023197.	
50 IRE	50 IRE ± 0.5 IRE		
100 IRE	100 IRE ± 0.5 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Tilt	0.5\% or less		
Line Timing	See Fig. 1-5B.		
GCR Positive (Ghost Cancellation Reference, Positive) Pedestal Amplitude.	30 IRE $\pm 0.5 \mathrm{IRE}$	Added S/N B023197.	
Chrominance Amplitude	80 IRE ± 1 IRE		
Spectrum	Flat to $4.1 \mathrm{MHz} .-3 \mathrm{~dB}$ at 4.3 MHz		
Line Timing	See Fig. 1-6D.		
GCR Negative(Ghost Cancellation Reference, Negative)		Added S/N B023197.	
Pedestal Amplitude	30 IRE ± 0.5 IRE		
Chrominance Amplitude	80 IRE ± 1 IRE		
Spectrum	Flat to 4.1 MHz. -3 dB at 4.3 MHz		
Line Timing	See Fig. 1-6E.		
GCR (Ghost Cancellation Reference) for Options	See individual Appendix sections.		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
MOD PED (Modulated Pedestal) Pedestal Amplitude	50 IRE ± 0.5 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Tilt	0.5\% or less		
Chrominance Amplitudes 20 IRE	20.01 IRE p-p, ± 0.5 IRE		
40 IRE	40.02 IRE p-p, ± 0.5 IRE		
80 IRE	80.04 IRE p-p, ± 0.5 IRE		
Phase Relative to Burst	90° within 0.3°		
Relative to the Other Two	0° within 0.5°		
Harmonic Distortion	At least 40 dB down		
Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Line Timing	See Fig. 1-5C.		
5-STEP STAIRCASE, MODULATED 5 STEP Luminance Amplitude	100 IRE ± 0.7 IRE		
Linearity	$\pm 0.5 \%$ of total amplitude	Any step amplitude will match any other by 0.5 IRE.	29
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Chrominance 5-STEP STAIRCASE	No modulation		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
MODULATED 5 STEP (each step)			
Amplitude	40 IRE ± 0.5 IRE		
Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Phase	180°		
Line Timing	See Fig. 1-5D.		
10-STEP STAIRCASE, MODULATED 10 STEP			
Luminance			
Amplitude	100 IRE ± 0.7 IRE		
Linearity	$1 / 10$ of 10 -step amplitude $\pm 0.5 \%$		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Chrominance 10-STEP STAIRCASE	No modulation		
MODULATED 10 STEP (Each Step) Amplitude	40 IRE ± 0.5 IRE		
Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Phase	Same as burst		
Line Timing	See Fig. 1-5E.		
$\frac{\operatorname{Sin} x}{x}$ Spectrum	Flat within $\pm 0.2 \mathrm{~dB}$ to 4.5 MHz . -3 dB at 4.75 MHz .		
Main Pulse Zero Crossing	$210 \mathrm{~ns} \pm 21 \mathrm{~ns}$		
Small Lobe Zero Crossing	$105 \mathrm{~ns} \pm 15 \mathrm{~ns}$		
Bar Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Line Timing	See Fig. 1-5F.		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
MOD RAMP 80/100, Y RAMP 100			
Luminance Amplitudes MOD RAMP 80	0 to 80 IRE ± 0.7 IRE		
MOD RAMP 100, Y RAMP 100	0 to 100 IRE ± 0.7 IRE		
Slope	1:1	LSB:Sample	
Linearity	Within 1\%		
Chrominance			
Amplitude	$40 \mathrm{IRE} \pm 0.5 \mathrm{IRE}$		
Inherent Diff Gain	0.6\% or less		38
Inherent Diff Phase	0.3° or less		37
Envelope Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Phase	Same as burst within $\pm 0.3^{\circ}$		
Line Timing	See Figs. 1-6A \& 1-6B.		
NTC 7 COMBINATION			
Multiburst White Reference Bar Amplitude	100 IRE ± 0.7 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Overshoot	1\% or less		
Tilt	0.5\% or less		
Multiburst Packets Amplitude	50 IRE ± 0.5 IRE p-p		
Average Level	$50 \mathrm{IRE}=0.5 \mathrm{IRE}$		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Frequencies	500 kHz 1.0 MHz 2.0 MHz 3.0 MHz 3.58 MHz 4.2 MHz	Digitally determined from 14.3 MHz.	
Packets Rise Time $\begin{aligned} & 500 \mathrm{kHz}, \\ & 1 \mathrm{MHz} \end{aligned}$	$140 \mathrm{~ns} \pm 14 \mathrm{~ns}$	The packets are envelope shaped as indicated.	
Remaining Packets	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Harmonic Content	40 dB down		
Modulated Pedestal Pedestal Amplitude	50 IRE ± 0.5 IRE		
Rise Time	$250 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Tilt	0.5\% or less		
Chrominance Amplitude $20 \text { IRE }$	20.01 IRE ± 0.5 IRE		
40 IRE	40.02 IRE ± 0.5 IRE		
80 IRE	80.04 IRE ± 0.6 IRE		
Phase	$90^{\circ} \pm 0.5^{\circ}$		
Relative to the Other Two Levels	$0^{\circ} \pm 0.3^{\circ}$		
Harmonic Distortion	At least 40 dB down		
Rise Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Line Timing	See Fig. 1-6C.		

Table 1-4 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
CONVERGENCE			
Crosshatch Vertical Lines			
Pulse Polarity	Positive		
Line Puise HAD	$225 \mathrm{~ns} \pm 25 \mathrm{~ns}$		
Dot Pulse HAD	$350 \mathrm{~ns} \pm 35 \mathrm{~ns}$		
Crosshatch Horizontal Lines Number of Unblanked Pulses	14 per frame		
Pulse Polarity	Positive		
Line Pulse Rise Time	$140 \mathrm{~ns} \pm 15 \mathrm{~ns}$		
Line Pulse Duration	2 lines (1 line on each field)		
Dot Pulse	3 lines (1 line on one field and 2 lines on the other field)		
EYE TEST PATTERN Amplitude	68 IRE	This signal occupies two adjacent television lines. The second line is of opposite phase. High $=70$ IRE, Low $=2 \operatorname{IRE}$	
Rise \& Fall Times	$100 \mathrm{~ns} \pm 25 \mathrm{~ns}$	Sine-squared shape.	
Bit Period	174.6 ns/bit	5.727272 MHz bit rate.	
Bit Sequence	16 cycles at 2.86 MHz 8 cycles at 1.43 MHz 5 cycles at 954 kHz 4 cycles at 716 kHz 4 cycles at 573 kHz 3 cycles at 477 kHz 2 cycles at 409 kHz 2 cycles at 358 kHz 1 cycle at 716 kHz 1 cycle at 954 kHz 2 cycles at 1.43 MHz 2 cycles at 2.86 MHz		

Table 1-4 (cont)

Characteristics	Performance Requirements		Supplemental Information	Perf. Ck. Step. No.
EYE PATTERN REFERENCE SIGNAL Amplitude	68 IRE		This signal occupies two adjacent TV lines. The second line is of opposite phase. High $=70$ IRE, Low $=2$ IRE	
Rise \& Fall Times	$100 \mathrm{~ns} \pm 25 \mathrm{~ns}$		Sine-squared shape.	
Bit Period	$174.6 \mathrm{~ns} / \mathrm{bit}$		5.727272 MHz bit rate.	
Bit Sequence	144 cycles at 2.86 MHz			
MATRIX 1	Signal	Lines	Customer definable.	
	MOD 10 STEP COLOR BARS RED FIELD	21-103 104-182 183-262		
MATRIX 2	MOD RAMP 100 EIA BAR REV. BLUE BAR MULTIPULSE 100	$\begin{gathered} 21-87 \\ 88-151 \\ 152-202 \\ 203-262 \end{gathered}$	Customer definable.	
MATRIX 3	CONVERGENCE EIA BAR REV. BLUE BAR CONVERGENCE IYQB CONVERGENCE	$\begin{gathered} 21-54 \\ 55-87 \\ 88-103 \\ 104-151 \\ 152-214 \\ 215-262 \end{gathered}$	Customer definable.	

Fig. 1-3. Test Signals With Amplitude and Timing Details.

Fig. 1-4. Test Signals With Amplitude and Timing Details.

Fig. 1-5. Test Signals With Amplitude and Timing Details.

Fig. 1-6. Test Signals With Amplitude and Timing Details.

Table 1-5
TEST SIGNALS—FULL FIELD OUTPUT
(Sync \& Burst)

Characteristics	Performance Requirements	Supplemental information	Perf. Ck. Step. No.
Amplitude	1.2 V maximum p-p into 75Ω		
Sync	$285.7 \mathrm{mV} \pm 2 \mathrm{mV}$		
Peak Level	$714.3 \mathrm{mV} \pm 5 \mathrm{mV}$		28
Blanking Level DAC DC Restorer On	$0 \mathrm{~V} \pm 2 \mathrm{mV}$		40
DAC DC Restorer Off	$0 \mathrm{~V} \pm 50 \mathrm{mV}$		40
Field Period	16.68 ms	Digitally determined from 14.3 MHz.	
Line Period	$63.56 \mu \mathrm{~s}$		
Sync Rise \& Fall Time	$140 \mathrm{~ns} \pm 15 \mathrm{~ns}$	10\% to 90\% amplitude.	
Sync Timing	See Fig. 1-7.		
Front Porch	$1.7 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$ using a 100 IRE pedestal	Digitally determined from 14.3 MHz.	
Line Blanking Interval	$11.28 \mu \mathrm{~s} \pm 100$ ns at 20 IRE points using a 100 IRE Pedestal		
Breezeway	$0.6 \mu \mathrm{~s}, \pm 50 \mathrm{~ns}$, at 50% of sync to 50% of burst amplitude		
Back Porch Duration	$4.83 \mu \mathrm{~s}, \pm 50 \mathrm{~ns}$, at 50% of sync to 20 IRE using a 100 IRE pedestal		
Line Sync	$4.7 \mu \mathrm{~s}, \pm 50 \mathrm{~ns}$, at 50% amplitude point		
Vertical Serration	See Fig. 1-8.		

Table 1-5 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. Nc
Duration	$4.7 \mu \mathrm{~s}, \pm 50 \mathrm{~ns}$, at 50% amplitude point		
Sequence		Three lines.	
Period	262.5 lines	Digitally determined from 14.3 MHz.	
Equalizing Pulse Duration	$2.33 \mu \mathrm{~s}, \pm 50 \mathrm{~ns}$, at 50% amplitude point		
Sequence		Three lines.	
Burst Rise \& Fall Time	$400 \mathrm{~ns} \pm 40 \mathrm{~ns}$		
Delay from Line	$5.308 \mu \mathrm{~s} \pm 35 \mathrm{~ns}$	19 cycles of subcarrier.	
Half-Amplitude Duration of Envelope	$2.51 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$	9 cycles of subcarrier.	
Amplitude	$285.7 \mathrm{mV} \pm 8.57 \mathrm{mV}$		
Residual Subcarrier (Luminance \& Blanking)	At least 52 dB below $1 \mathrm{~V}(2.5 \mathrm{mV})$	As viewed on a 1480 Waveform Monitor	40
Spurious Subcarrier on Outputs	At least 52 dB below $1 \mathrm{~V}(2.5 \mathrm{mV})$		40
Chrominance Subcarrier Frequency			
Locked Mode		Locked to incoming burst; locked to the leading edge of sync if burst is not present.	
Output Impedance	75Ω nominal		
Return Loss	At least -36 dB to 5 MHz		53
Isolation (Front- \& Rear-Panel Outputs)	At least -40 dB		35

Fig. 1-7. Horizontal Blanking Details.

Fig. 1-8. Composite Sync Details.

Table 1-6
SYNC \& SUBCARRIER

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
COMPOSITE SYNC Amplitude	$4 \mathrm{~V} \pm 10 \% \mathrm{p}-\mathrm{p}$, negative going, into 75Ω		
Rise \& Fall Times	$140 \mathrm{~ns} \pm 20 \mathrm{~ns}$	Measured from 10% to 90% amplitude points.	
Return Loss	At least 30 dB to 3.58 MHz		53
Line Period		$\begin{array}{r} \text { Nominal }(H)=63.556 \mu \mathrm{~s} \\ \frac{1}{455} \end{array}$	
Line Sync Duration	$4.7 \mu \mathrm{~s} \pm 50 \mathrm{~ns}$	Measured at 50\% amplitude point.	
Equalizer Pulse Duration	$2.3 \mu \mathrm{~s} \pm 50 \mathrm{~ns}$	Measured at 50\% amplitude point.	
Sequence Duration		Three lines each.	
Vertical Sync Pulse Serration	$4.7 \mu \mathrm{~s} \pm 50 \mathrm{~ns}$		
Sequence Duration		Three lines.	
Field Period	262.5 H Lines	16.6835 ms nominal.	
SUBCARRIER Amplitude	2 V p-p $\pm 10 \%$	into 75Ω.	
Return Loss	At least 30 dB into 5 MHz		53
Frequency		Locked to incoming burst. If burst is not present, locked to leading edge of incoming sync. If sync is not present, determined by an internal oven-controlled oscillator.	25

Table 1-6 (cont)

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Pulse Outputs ${ }^{\text {a }}$ Amplitude	H DRIVE, V DRIVE, BURST FLAG, \& COMP BLANKING $4 \mathrm{~V} \pm 10 \% \mathrm{p}-\mathrm{p}$, negative going, into 75Ω		
Rise \& Fall Times	$140 \mathrm{~ns} \pm 20 \mathrm{~ns}$	Measured from 10% to 90% amplitude points.	
Return Loss	At least 30 dB to 5 MHz		
Timing H DRIVE Duration	Start of line blanking to end of line sync $\pm 100 \mathrm{~ns}$		52
V DRIVE Duration	Nine lines	Coincident with beginning of field. Blanking extends nine lines.	52
BURST FLAG Delay from Line Sync	$5.3 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$		52
Duration	$2.5 \mu \mathrm{~S}$	9 cycles of subcarrier.	52
COMP BLANKING Line Blanking Duration	$11.1 \mu \mathrm{~S} \pm 100 \mathrm{~ns}$		52
Front Porch	$1.5 \mu \mathrm{~s}=100 \mathrm{~ns}$	Leading edge of comp sync to end of line blanking is $9.6 \mu \mathrm{~s} \pm 100 \mathrm{~ns}$.	52
Field Blanking Duration		Field $1=21$ lines Field $2=21$ lines Start: $1.5 \mu \mathrm{~S} \pm 100 \mathrm{~ns}$ before leading edge of first equalizing pulse.	52

[^1]Table 1-7
RS-232 CONTROL PORT INTERFACE

Characteristics	Performance Requirements	Supplemental Information	
Interface ${ }^{\text {a }}$		Supports EIA Standard RS-232-C format to the extent shown below.	
Baud	$300,1200,2400$, and 4800 bits/sec	Selectable through the RS-232 port.	
Input	Serial Asynchronous Data	Full duplex input and output.	
Output	Serial Asynchronous Data	ASCII	Eleven bits per character, including a start and two stop bits.
Data Code		No parity is required; and, if	
Character Length			
Parity	No parity is sent.		
Input		See Section 5 of this manual.	
Output			

${ }^{\text {a }}$ The control lines used in the 1910 are listed below:

Pin	Function	Input or Output
1	Protective Ground	
2	Receive Data	Input
3	Transmit Data	Output
4	Request to Send	Input
5	Clear to Send	Output
6	Data Set Ready	Output
7	Signal Ground	
8	Received Line Signal Detector	Output
	(Data Carrier Detect)	
20	Data Terminal Ready	Input

Table 1-8
DIGITAL INPUT INTERFACE

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Digital Format		Parallel, 12 balanced signal pairs consisting of 10 data bits per sample, a clock, and a timing reference signal.	
Encoding Format	Positive binary Sampling Frequency times color subcarrier. Nominally Sampling Phase Angle		Referenced to I and Q axis.

Table 1-9
DIGITAL OUTPUT INTERFACE

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Digital Format		Parallel, 12 balanced signal pairs consisting of 10 data bits per sample, a clock, and a timing reference signal.	
Timing Reference Signal		See Fig. 1-9.	
Encoding Format	Positive Binary		
Sampling Frequency	4 times color subcarrier nominal (14.31818 MHz)		
Sampling Phase Angle		Referenced to I and Q axis.	
Output Logic Levels	10K ECL compatible. High: -0.96 to -0.81 V Low: -1.85 to -1.65 V	At $25^{\circ} \mathrm{C}$.	
Dynamic Range 10 bits/sample	Blanking level (OIRE) is at digital word 240. Reference white (100 IRE) is at digital word 800 (5.6 LSB/IRE).		
Clock Timing	The 50% point of the leading edge of the clock pulse precedes the data by $5 \mathrm{~ns} \pm 5 \mathrm{~ns}$.		

TIMING REFERENCE SIGNAL

This signal occurs once every 63.56μ s. Field and Frame information change at line number $1 .{ }^{*}$
Bit 1 of Word 0 occurs 91 Clock cycles after the nominal 50% point of the leading edge of the Horizontal Sync pulse.

WORD 0
Bit 0 - Always High.
Bits 1 through 9 are always Low.
WORD 1
Bit 0 - Always High.
Bit 1 - High for Color Frame B^{*}
Bit 2 - High for Fields 2 and $4^{* *}$
Bit $3-2^{*}(M S B)$
Bit $4-2^{\text {i }} \quad$ Horizontal Line Count ${ }^{*}$
Bit $5-2^{*} \quad$ (straight binary sequence)
Bit $6-2^{5}$
Bit $7-2^{\text {a }}$
Bit 8 - Odd Parity for Word 1.
(Odd parity gives the word, including parity, an odd number of high states.)

WORD 2

```
Bit 0 - Always High
Bit \(1-2^{3}\)
Bit \(2-2^{2} \quad\) Horizontal Line Count \({ }^{*}\)
Bit \(\left.3-2^{\prime} \quad\right\}\) (straight binary sequence)
Bit 4-20 (LSB)
Bit 5 - High when the preceding Frame, Field or Line Count is invalid.
Bit 6 - High for lines with Color Burst.
Bit 7 - High when reference subcarrier is positive-going."
Bit 8 - Odd Parity for Word 2.
                    (Odd parity gives the word, including parity.
                    an odd number of high states.)
```

The remaining time of the Timing Reference Signal is High.
*The clocks repetition rate ($t_{\text {clk }}$) is equivalent to $1 / 14.31818 \mathrm{MHz}$.
"*As defined in the EIA Tentative Standard RS 170A for Color Television Studio Picture Line Amplifier Output.

Fig. 1-9. Timing Reference Signal Details.

Table 1-10
POWER SUPPLY

Characteristics	Performance Requirements	Supplemental Information	Perf. Ck. Step. No.
Supply Accuracy			
$+15 \mathrm{~V}$		$15 \mathrm{~V}=50 \mathrm{mV}$	
+5V Analog		$5 \mathrm{~V} \pm 50 \mathrm{mV}$	
+5V Digital		$5 \mathrm{~V} \pm 50 \mathrm{mV}$	
-5.2 V ECL		$-5.2 \mathrm{~V} \pm 50 \mathrm{mV}$	
-15V		$-15 \mathrm{~V} \pm 25 \mathrm{mV}$	
Current Limit		Nominal	
$+15 \mathrm{~V}$		0.7 A	
+5 V Anaiog		0.5 A	
-5V Digital		6.5 A	
-5.2 V ECL		2 A	
-15V		0.8 A	
Supply Ripple		Typical	
+15V		5 mV	
+5 V Analog		5 mV	
$+5 \vee$ Digital		5 mV	
-5.2 V ECL		5 mV	
$-15 \mathrm{~V}$		5 mV	
Line Voltage Range			
100 Vac	90 Vac to 110 Vac		
110 Vac	99 Vac to 121 Vac		
120 Vac	108 Vac to 132 Vac		
200 Vac	180 Vac to 220 Vac		
220 Vac	198 Vac to 242 Vac		
240 Vac	216 Vac to 250 Vac		
Crest Factor		At least 1.35	
Fuse Data			
100/120 Vac		1.6 A Slow-Blow	
200/240 Vac		0.8 A Slow-Blow	
Maximum Power Consumption		130 W	
Maximum Current at $120 \mathrm{Vac}, 60 \mathrm{~Hz}$		1.08 A	
Line Frequency		47 Hz to 63 Hz	

Table 1-11
PHYSICAL CHARACTERISTICS

Characteristics	Information
Dimensions Rackmount Height	See Fig. 1-10. 88 mm (3.470 inches)
Width	486 mm (19.134 inches)
Length	525 mm (20.650 inches)
Cabinet Height	96 mm (3.770 inches)
Width	442 mm (17.399 inches)
Length	525 mm (20.650 inches)
Net Weight Rackmount	12.2 kg (27 lbs)
Cabinet	11.6 kg (25.5 lbs)
Shipping Weight	16.7 kg (37 lbs)

Table 1-12
ENVIRONMENTAL CHARACTERISTICS

Characteristics	Information
Temperature	$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Non-Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Operating	To 50,000 feet.
Altitude	To 15,000 feet.
Non-Operating	15 minutes each axis at 0.015 inch, frequency varied from 10-50-10 c/s in 1-minute cycles with instrument secured to vibration platform. Three minutes each axis at any resonant point or at 50 C/s.
Vibration	30 g's, 1/2 sine, 11 ms duration, 2 guillotine-type shocks per axis.
Shock	Qualified under NTSC Test Procedure 1A, Category II (24-inch drop).
Non-Operating	

Fig. 1-10. Dimensional Illustrations for the 1910.

[^0]: ${ }^{1}$ Synchronization of signal in both frequency and phase.

[^1]: ${ }^{\text {a }}$ Available when the Pulse Output board, A15 (a standard accessory), is installed in place of the External VITS board, A17.

