Tektronix
 COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

SI 5020

Switch

 Matrix\qquad

Copyright © 1989 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and are registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

INSTRUMENT SERIAL NUMBERS

Each instrument manufactured by Tektronix has a serial number on a panel insert, tag, or stamped on the chassis. The letter at the beginning of the serial number designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

> B010000 - Tektronix, Inc. Beaverton, Oregon, USA
> G100000 - Tektronix Guernsey, Ltd., Channel Islands
> E200000 - Tektronix United Kingdom, Ltd., London
> J300000 - Sony/Tektronix, Japan
> H700000 - Tektronix Holland, NV, Heerenveen, The Netherlands

Instruments manufactured for Tektronix by external vendors outside the United States are assigned a two digit alpha code to identify the country of manufacture (e.g., JP for Japan, HK for Hong Kong, IL for Israel, etc.).

CONTENTS

ILLUSTRATIONS iii
TABLES iv
OPERATORS SAFETY SUMMARY v
SERVICING SAFETY SUMMARY vi
1 Specification
SPECIFICATION 1-1
INTRODUCTION 1-1
STANDARD ACCESSORIES 1-1
IEEE-488 (GPIB) FUNCTION CAPABILITY 1-1
PERFORMANCE CONDITIONS 1-2
2 System Installation
SYSTEM INSTALLATION 2-1
PREPARATION FOR USE 2-1
FRONT PANEL CONTROLS AND CONNECTORS 2-4
REPACKAGING INFORMATION 2-5
3 Programming Information
PROGRAMMING INFORMATION 3-1
INTRODUCTION 3-1
OVERVIEW 3-1
COMMANDS AND MESSAGE FORMATS 3-1
MESSAGE PROCESSING 3-3
IEEE 488 INTERFACE MESSAGES 3-4
INTRODUCTION 3-4
GPIB CONTROLLER INTERFACE MESSAGES 3-4
COMMANDS 3-7
COMMAND SUMMARY 3-7
DETAILED COMMAND LIST 3-7
FRONT PANEL SWITCHES AND RELAY ACTIONS 3-12
HARDWARE AND SOFTWARE IMPLEMENTATION 3-13
HARDWARE DEFINITION 3-13
CONTROLLER SOFTWARE OVERVIEW 3-13
DIAGNOSTIC SOFTWARE 3-13
STATUS AND ERROR REPORTING 3-14
SERVICE REQUEST, STATUS BYTE, AND ERROR QUERY 3-14
STATUS BYTE ORGANIZATION 3-15

WARNING

The information in the remaining sections of this manual is for qualified service personnel only. Refer to the "Service Safety Summary" located later in this manual.
4 Theory of Operation
THEORY OF OPERATION 4-1
INTRODUCTION 4-1
MAIN BOARD 4-1
GPIB CONTROLLER BOARD 4-3
INTERNAL ADDRESS DECODE AND MPU BUFFERS 4-3
FRONT PANEL BOARD 4-4
5 Performance Check
PERFORMANCE CHECK AND FUNCTIONAL VERIFICATION PROCEDURE 5-1
INTRODUCTION 5-1
PREPARATION 5-1
SI 5020A PROCEDURE 5-1
SI 5020B PROCEDURE 5-2
SI 5020C PROCEDURE 5-2
6 Maintenance
MAINTENANCE AND DIAGNOSTICS 6-1
GENERAL MAINTENANCE 6-1
CIRCUIT BOARD REMOVAL AND INSTALLATION 6-4
SIDE COVERS 6-4
GPIB BOARD 6-4
MAIN BOARD 6-4
FRONT PANEL BOARD 6-4
TROUBLESHOOTING 6-4
7 Options
8 Replaceable Electrical Parts
9 Diagrams
10 Replaceable Mechanical Parts

ILLUSTRATIONS

Figure Page
1-1 Channel insertion loss vs. trequency 1-3
1-2 Channel isolation vs. frequency 1-3
1-3VSWR vs. frequency1-3
2-1 IEEE 488 bus address and message terminator switches 2-1
2-2 Installation and Removal 2-3
2-3 SI 5020A front panel controls and connectors 2-4
2-4 SI 5020B front panel controis and connectors 2-5
2-5 SI 5020C front panel controls and connectors 2-5
3-1 ASCII and IEEE 488 (GPIB) Code Chart 3-6
4-1 Block diagram for the Main Board 4-2
4-2 Block diagram for the GPIB Controller Board 4-5
6-1 Orientation and disassembly of multipin connectors 6-3

TABLES

Table Page
1-1 IEEE 488 Interface Function Subsets 1-1
1-2 Electrical Characteristics 1-2
1-3 Environmental Characteristicsa 1-4
1-4 Mechanical Characteristics 1-4
3-1 SI 5020 GPIB Command Summary 3-7
3-2 Status Byte Definitions 3-14
3-3 Event Classes 3-14
3-4 Status Byte \& Event/Error Codes 3-16
4-1 Main Board Device Addresses 4-1
4-2 Internal Addressing 4-3
4-3 GPIB Module Address Selection 4-4
5-1 Test Equipment Required 5-1
6-1 Relative Susceptibility to Static Discharge Damage 6-1

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply and do not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

TERMS

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the markings, or a hazard to property, including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

DANGER - High voltage.

Protective ground (earth) terminal.

ATTENTION - Refer to manual.

Power Source

This product is intended to operate from a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before making any connections to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Danger Arising from Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulated) can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.

Use the Proper Fuse

To avoid fire hazard, use only a fuse of the correct type, voltage rating and current rating as specified in the parts list for your product.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this instrument in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the instrument without the covers and panels properly installed.

SERVICING SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections or components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate from a power source that does not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

SPECIFICATION

INTRODUCTION

The SI 5020 is a device for switching two independent sets of six-position multiplex switches carrying signals of up to 18 GHz . Each of the two switch sets has a common connector (positioned in the center of the SMA connector circle in each switch set shown on the front panel), and operates in the normally open mode. The operation of each switch can be software driven via the GPIB or directly via front panel controls.

The SI 5020 High Frequency Multiplexer is a TM 5000 Series plug-in instrument. All functional electronics are included, but it requires insertion into a TM 5000 Series Power Module for interfacing to both basic power supplies and the system GPIB interconnection.

Each switch actuation can be accomplished in approximately 15 ms at the junction of the relay; however, bus acquisition and related software functions could add an additional 1 to 3 ms . In addition, when switch operation is via the front panel, the software is designed to add an additional 25 ms to allow for possible front panel switch contact bounce (software equivalent of debounce circuitry). Hence, a usable cable routing switchover can be accomplished in approximately 18 ms when initiated by the controller and 40 ms when initiated via the front panel.

STANDARD ACCESSORIES

One Instruction Manual is shipped with the SI 5020.

IEEE-488 (GPIB) FUNCTION CAPABILITY

The IEEE Standard 488-1978 identifies the interface function repertoire of a programmable instrument on the digital interface in terms of interface function subsets. The subsets are defined in the standard. The subsets that apply to the SI 5020 are listed in Table 1-1.

NOTE

Refer to IEEE Standard 488-1978 for more detailed information. The standard is published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, New York 10017.

NOTE

The GPIB control bus driver is a tri-state device. The data bus driver operates in either a normal open-collector mode, or in a tri-state mode when parallel polled. The SI 5020 does not respond to a parallel poll.

Table 1-1
IEEE 488 Interface Function Subsets

Function	Subset	Capability
Source Handshake	SH1	Complete.
Acceptor Handshake	AH1	Complete.
Basic Talker	T6	Responds to Serial Poll. Untalked if My Listen Address (MLA) is received.
Basic Listener	L4	Unlistened if My Talk Address (MTA) is received.
Service Request	SR1	Complete.
Remote-Local	RL1	Complete.
Parallel Poll	PP0	Does not respond to Parallel Poll.
Device Trigger	DT0	No Capability.
Device Clear	DC1	Complete.
Controller	C0	No Controller functions.
Drive Electronics	E1	Tri-state.

PERFORMANCE CONDITIONS

The limits stated in the Performance Requirements column of Table 1-2 are valid only if the SI 5020 is operated in an ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ unless otherwise stated.

The SI 5020 must be in an environment whose limits are described under Environmental Characteristics (Table 1-3).

Table 1-2
Electrical Characteristics

Characteristics	Performance Requirements
FRONT PANEL INPUT/OUTPUT	
Insertion Loss (any port to common - see Figure 1-1)	$\begin{aligned} & <0.2 \mathrm{~dB} \text { at } 0-3 \mathrm{GHz} \\ & <0.3 \mathrm{~dB} \text { at } 3-8 \mathrm{GHz} \\ & <0.4 \mathrm{~dB} \text { at } 8-12.4 \mathrm{GHz} \\ & <0.5 \mathrm{~dB} \text { at } 12.4-18 \mathrm{GHz} . \end{aligned}$
Channel isolation (any port to common - see Figure 1-2)	$\begin{aligned} & >80 \mathrm{~dB} \text { at } 0-3 \mathrm{GHz} \\ & >70 \mathrm{~dB} \text { at } 3-8 \mathrm{GHz} \\ & >60 \mathrm{~dB} \text { at } 8-18 \mathrm{GHz} . \end{aligned}$
Crosstalk Isolation (between any two ports with common and all unused ports terminated)	$\begin{aligned} & >80 \mathrm{~dB} \text { at } 0-3 \mathrm{GHz} \\ & >70 \mathrm{~dB} \text { at } 3-12.4 \mathrm{GHz} \\ & >60 \mathrm{~dB} \text { at } 12.4-18 \mathrm{GHz} . \end{aligned}$
VSWR (any port to common - see Figure 1-3)	$\begin{aligned} & <1.21 \text { at } 0-3 \mathrm{GHz} \\ & <1.31 \text { at } 3-8 \mathrm{GHz} \\ & <1.41 \text { at } 8-12.4 \mathrm{GHz} \\ & <1.51 \text { at } 12.4-18 \mathrm{GHz} . \end{aligned}$
Maximum Switched Current	$50 \mathrm{~mA} \mathrm{dc} \mathrm{or} \mathrm{peak} \mathrm{ac}$.
Maximum Switched Voltage	15 V dc or peak ac.
Maximum Carry Current	3.0 A.
Maximum Switchable Power	125 mW (RF into 50Ω).
Maximum Carry Power	450 W to 100 MHz 200 W to 700 MHz 100 W to 3.5 GHz 50 W to 1.8 GHz (all into 50Ω).
Dielectric Standoff	$50 \mathrm{~V} \mathrm{dc} \mathrm{or} \mathrm{peak} \mathrm{ac}$.
Switch Life	10^{6} operations.
Settling Time	41 ms .
POWER SUPPLY	
Output Voltage	$\begin{aligned} & +5 \mathrm{~V}^{+} 4 \% \text { from no load to } 1.5 \mathrm{~A} . \\ & +26 \mathrm{~V} \text { 土 } 9 \% . \end{aligned}$
Current Limit Threshold	3.0 A .
Undervoltage Reset	RESET line goes to a TTL LO for a minimum of 0.2 second if voltage drops below $4.55 \mathrm{~V} \pm 2 \%$ or longer.

Figure 1-1. Channel Insertion loss vs. frequency.

Figure 1-3. VSWR vs. frequency.

Figure 1-2. Channel isolation vs. frequency.

Table 1-3
Environmental Characterlstics ${ }^{\star}$

Characteristics	Description
Temperature Operating	Meets MIL-T-28800B, class 5.
	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Non-operating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Humidity	Meets MIL-T-28800B, class 5.
	$\begin{aligned} & 95 \% \mathrm{RH}, 0^{\circ} \mathrm{C} \text { to }+30^{\circ} \mathrm{C} \\ & 75 \% \mathrm{RH}, \text { to } 40^{\circ} \mathrm{C} \\ & 45 \% \mathrm{RH}, \text { to } 50^{\circ} \mathrm{C} . \end{aligned}$
Altitude Operating	Meets MIL-T-28800B, class 5.
	4.6 km ($15,000 \mathrm{ft}$).
Non-operating	$15 \mathrm{~km}(50,000 \mathrm{tt})$.
Vibration ${ }^{\text {b }}$	Meets MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {c }}$.
	0.38 mm (0.015 in) peak to peak, 5 Hz to $55 \mathrm{~Hz}, 75$ minutes.
Shock	Meets MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {c }}$.
	20 g 's ($1 / 2$ sine), 11 ms duration, 3 shocks in each direction along 3 major axes, 18 total shocks.
Bench Handling ${ }^{\text {d }}$	Meets MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {c. }}$
	12 drops from $45^{\circ}, 4$ in or equilibrium, whichever occurs first.
Transportation	Qualified under National Safe Transit Association PreshipmentTest Procedures 1A-B-1 and 1A-B-2.
EMC	Within limits of FCC Regulations, Part 15, Subpart J, Class A; VDE0871; and MIL-461A tests RE01, RE02, CE01, CE03, RS01, RS03, CS01, and CS02.
Electrical Discharge	20 kV maximum charge applied to instrument case.
awith power module. ${ }^{-}$Requires retainer clip. ${ }^{\text {chefer to }}$ TM 5000 power module specifications. dWithout power module.	

Table 1-4
Mechanical Characteristics

Characteristics	Description
Nominal Overall Dimensions	
Height	$4.961 \mathrm{in}(126.0 \mathrm{~mm})$.
Width	$2.63 \mathrm{in}(66.8 \mathrm{~mm})$.
Length	$11.493 \mathrm{in}(291.9 \mathrm{~mm})$.
Net Weight	$2 \mathrm{lb}(0.907 \mathrm{~kg})$.
Finish (front panel)	Plastic/aluminum laminate.

SYSTEM INSTALLATION

PREPARATION FOR USE

Operating Environment

The SI 5020 should be operated in a clean, controlled environment that does not exceed the environmental limitations listed in Section 1, Table 1-3.

NOTE

Before installation, refer to the Operators Safety Summary in the front of this manual and to the Change Information section at the rear of this manual. Also refer to the power module instruction manual for line voltage requirements and power module operation.

Front Panel Controls

Each switch has a pushbutton on the SI 5020 front panel control. This pushbutton is also under program commands sent over the IEEE 488 (GPIB) digital interface. Refer to the above commands listed in the Programming Information section of this manual for more information.

IEEE 488 Address and Message Terminator Switches
A bank of eight switches is located in a cut-out in the lower right-hand comer of the rear panel on the SI 5020 when looking from the rear. These switches are used before installation to set the IEEE 488 talk-listen address and message terminator for the operating system.

The upper five switches are set to select the primary address; secondary addressing is not implemented in the operating system. When the rocker is down on the OPEN side, it has a low binary weight for that bit. Adding the binary weights establishes the decimal address. For example, Figure 2-1 shows the switches set to decimal address 11 and message terminator to the EOI position.

NOTE

Do not set the SI 5020 to the same address as the controller being used.

Valid addresses are from 1 to 30 . Address 0 is reserved for maintenance and servicing the instrument. Address 31 is the IEEE 488 (Untalk) and UNL (Unlisten) interface address message; setting address 31 effectively prevents the SI 5020 from communicating over the IEEE 488 digital interface.

NOTE

When shipped, the SI 5020 address is set to decimal 11 and message terminator set to EOI.

TOGGLE LEFT FOR LOGIC 0, RIGHT FOR LOGIC 1
7753-04

IEEE 488 (GPIB) PRIMARY ADDRESSES											
Switches					Primary Address	Switches					Primary Address
A5	A	A 3	A2	A1		A5	A	A3	A2	A1	
0	0	0	0	0	0	1	0	0	0	0	16
0	0	0	0	1	1	1	0	0	0	1	17
0	0	0	1	0	2	1	0	0	1	0	18
0	0	0	1	1	3	1	0	0	1	1	19
0	0	1	0	0	4	1	0	1	0	0	20
0	0	1	0	1	5	1	0	1	0	1	21
0	0	1	1	0	6	1	0	1	1	0	22
0	0	1	1	1	7	1	0	1	1	1	23
0	1	0	0	0	8	1	1	0	0	0	24
0	1	0	0	1	9	1	1	0	0	1	25
0	1	0	1	0	10	1	1	0	1	0	26
0	1	0	1	1	11	1	1	0	1	1	27
0	1	1	0	0	12	1	1	1	0	0	28
0	1	1	0	1	13	1	1	1	0	1	29
0	1	1	1	0	14	1	1	1	1	0	30
0	1	1	1	1	15	1	1	1	1	1	31

Figure 2-1. IEEE 488 bus address and message terminator switches.

The number 8 switch sets the message terminator so that the operating system can respond to one of two possible message terminators controllers may send on the IEEE-488 digital interface, EOI only or LF/EOI. Message terminators are as follows:

Input message terminator:
EOI position - Only the EOI line on IEEE-488 digital interface asserted with last data byte as the message terminator.

LF/EOI position - <CR> <LF> and <EOI> are added to the end of the message being sent (EOI is asserted with the <LF> character). If the <LF> character without EOI, EOI with <LF > , or EOI is asserted with any data byte in the message string, the SI 5020 recognizes it as a message terminator.

Output message terminator:
EOI position - <; > with EOI asserted.
LF/EOI position - <; > <CR > then <LF> with EOI asserted.

Installation and Removal

To prevent damage to the SI 5020, turn off the power module before installation or removal. Do not use excessive force when installing or removing the S/ 5020. Refer to the Operator Safety Summary at the front of this manual and check the change information at the back of this manual for additional safety notes.

Before installation, set the IEEE-488 bus address, then check to see if the plastic barrier on the interconnecting jack of the selected power module compartments matches the cut-out in the circuit board edge connectors at the rear interface (see Figure 2-2).

Align the chassis of the plug-in unit with the upper and lower guide rails of the selected compartments. Push inward and press firmly to seat the circuit board edge connectors in the interconnecting jacks.

To remove the SI 5020, turn off the power module and pull on the release latch (front panel, lower left comer) until the interconnecting jacks disengage. Pull straight forward to remove the plug-in from the power module.

Power-Up and Front Panel Indications

Apply power to the SI 5020 by activating the POWER switch on the TM 5000-Series power module.

There is no indication on the front panel that power is applied.

SRQ will be initiated at power-on.

The ADDRESSED light is illuminated every time the SI 5020 is programmed (addressed) to talk or listen over the IEEE-488 digital interface; it should not be illuminated at power-up (not under program control).

The power-on conditions for the SI 5020 are restored by the INIT command sent over the IEEE-488 digital interface. For more information on this command and a list of power-up parameters, refer to the Programming Information section of this manual.

Figure 2-2. Installation and Removal.

FRONT PANEL CONTROLS AND CONNECTORS

See Figures 2-3 through 2-5 for the three SI 5020 configurations front panel controls and connectors.

Connections to and from any of the front panel SMA connectors should be made using a high quality $50-\Omega$ coaxial cable, such as RG 58A/U, or better.

For best vswr (voltage-standing wave ratio) and maximum power transfer conditions, the signal source output impedance should match the input load impedance of the signal receiving device. Unmatched source and load impedances degrade the vswr specifications.

Flgure 2-3. SI 5020A front panel controls and connectors.

Signal Connectors
SMA-type connectors for input and output signals.

(2) Relay Switches and LEDs

These switches control the relays which determine which of the front-panel inputs are connected to each other. Only 4 relays can be closed at any one time. When a relay is
closed, its LED is on; otherwise, that relay is open and its LED is off.

WARNING

Do not have more than two relays closed per switch for extended periods or overheating will occur, and personal injury could result if the instrument is disassembled and the switch is touched.

GPIB STATUS LEDS

These LEDs give an indication of GPIB activity. Look at these LEDs if a steady-state problem arises (such as dead front-panel controls). Each LED is described below.

LOCK - If this LED is lit, the AT 5010 will not respond to any front-panel control.

SRQ - If this LED is lit, the AT 5010 is asserting the SRQ GPIB hardware line to request service. When the controller performs a serial poll, this LED will go out.

ADDR - When this LED is lit, the AT 5010 is addressed to talk or listen.

Common Connector
SMA-typecommon connector which connects to all of the 6 signal connectors (either A or B). The three SI 5020 versions (A, B, and C) use this common connector as described below:

SI 5020A both A and B have a common connector.

SI 5020B only A has a common connector.

SI 5020C neither A nor B has a common connector.

NOTE

Switches with common connector should only use paths through the common for proper impedance matching. Connections across the switch, i.e. 4 to 1, will have impedance discontinuities caused by the common and equipment connected to it. Switches without common maintain 50Ω impedance when connections between any two connectors are made.

Figure 2-4. SI 5020B front panel controls and connectors.

REPACKAGING INFORMATION

If the instrument is to be shipped to a Tektronix Service Center for service or repair, attach a tag showing:

- Owner (with address) and the name of the individual at your firm that can be contacted.
- Complete instrument description and its serial number.
- A description of the service required.

If the original package is not fit to use or not available, repackage the instrument as follows:

Figure 2-5. Si 5020C front panel controls and connectors.

- Surround the instrument with polyethylene sheeting, or other suitable material, to protect the exterior finish.
- Obtain a carton of corrugated cardboard of adequate strength that has inside dimensions no less than six inches more than the instrument dimensions.
- Cushion the instrument by tightly packing dunnage or urethane foam between the carton and the instrument, on all sides.
- Seal the carton with shipping tape or an industrial stapler.

The carton test strength for your instrument is 200 pounds.

PROGRAMMING INFORMATION

INTRODUCTION

OVERVIEW

Abstract

NOTE The SI 5020 connects to the IEEE-488 digital interface through a TM 5000-Series power module. Refer to Section 2 for information related to setting the primary address and message terminator switches before programming the SI 5020.

This section of the manual provides information for programming the SI 5020 by remote control via the IEEE-488 digital interface. The digital interface is specified and described in the IEEE-488-1978 standard, "Standard Digital Interface for Programmable Instrumentation".

The following information assumes that the reader has some understanding of the communication process between instruments on the IEEE-488 digital interface and some experience with controlier programs. In this manual, the IEEE-488 digital interface is called the General Purpose Interface Bus (GPIB).

NOTE

The IEEE-488-1978 standard is published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, New York 10017.

The SI 5020 is designed to communicate with any GPIB-compatible controller that sends ASCll characters (ISO 7-bit code representation) or messages over the digital interface. The messages are commands used to program the system or used to request information related to data, events, conditions, or status of the system.

The commands are designed for compatibility among instrument types within the TM 5000 family. The same command may be used for different instruments to control similar functions. In addition, commands are specified in mnemonics related to the functions they implement. For example, the INIT command initializes instrument settings to their power-up states.

The commands are presented in abbreviated summaries (see Table 3-1) and in a detailed description format. The Detailed

Command List further differentiates the commands into command types that define the commands based on the internal processing. These types are:

- operational commands, which cause a particular action
- settings commands, which control the instrument settings
- query or output commands, which ask for data or status

NOTE

If the power-on self-test routine has been successfully completed, the SI 5020 starts with the SRQ (Service Request) line on the IEEE-488 digital interface asserted.

COMMANDS AND MESSAGE FORMATS

Introduction

Each command begins with a header, a word that describes the function to be implemented. Many commands require an argument following the header which is a word or number that specifies the desired state of the implemented function.

The query commands have no arguments; the header contains the question mark character (?) to identify the header as a query command.

NOTE

Command headers and arguments must contain, at a minimum, the exact characters shown in the abbreviated examples.

Command Separator

A complete message contains one command or a series of commands, followed by a message terminator. Messages consisting of multiple commands must have the commands separated (delimited) by semicolons. A semicolonat the end of a complete message is optional. For example, each line immediately following is a complete message:

```
INIT
TEST;INIT;RQS ON;ID?;CLOSE?
OPEN?;
```


Message Terminator

A complete message may be terminated with EOI or the ASCII line feed character < LF > . Some controllers assert the EOI line on the GPIB concurrently with the last data byte in the message, while others use only the <LF > character as a terminator. The SI 5020 can be set to accept either type of message terminator.

With EOI ONLY selected as the terminator, the SI 5020 interprets a data byte received with the EOI line asserted as the end of an input message. The SI 5020 also asserts the EOI line concurrently with the last data byte of an output message.

If LF/EOI is selected as the message terminator, the SI 5020 interprets the LF character without EOI asserted, or any data byte received with EOI asserted, as the end of an input message. At the end of an output message, the SI 5020 transmits carriage return <CR>, followed by line feed <LF > with EOI asserted.

Selecting one of the above mentioned termination schemes is done via switch SW1 on the GPIB controller PCB.

nOTE

The SI 5020 is shipped with message terminator set to EOI only and IEEE-488 address switches set to decimal 11.

Formatting a Message

Commands must have the proper format (message syntax) to be understood. However, this format is flexible in that many variations are possible. The following material describes this format and the acceptable variations.

The system expects all commands to be encoded in ASCll and will accept both upper and lower case characters. All data output returned to the controller is in upper case.

A command consists of a header followed, if necessary, by an argument (or arguments). A command with an argument must have a header delimiter which is the space character <SP> between the header and the first argument. The space character $<\mathrm{SP}>$, carriage return <CR>, and line <LF> are shown as subscripts in the following examples. If extra formatting characters are added between the header delimiter and the argument, they are ignored.

Example 1:

```
RQS SpON;
```

Example 2:
$\mathrm{RQS}_{\mathbf{8 P}} \mathrm{sp}^{\mathrm{ON}}$;
Example 3:
RQS $_{\text {SP CR LF }}$ sp spON

In general, these formatting characters are ignored after any delimiter and at the beginning and end of a message.

Example 4:

$$
\mathrm{sp}^{\mathrm{RO}} \mathrm{~S}_{\mathrm{SP}} \mathrm{ON} \mathrm{~N}_{\mathrm{CR}}^{\mathrm{LF}}
$$

NOTE

All message commands must be delimited with a semicolon (;) or a message terminator. Space characters <SP> are not allowed between the last alpha ornumeric character in anymessage unit and the message unit delimiter (;) or message terminator. Also, the <LF> character cannot be used for format if the LFIEOI message terminator mode is selected.

In the command list, some headers and arguments are listed in two forms, a full-length command version and an abbreviated version. Any header or argument containing at least the characters listed in the abbreviated form will be accepted. Any characters added to the abbreviated version must be those given in the full-length version.

For documentation of programs, the user may add alpha characters to the abbreviated version. Alpha characters may also be added to a query header, provided that the question mark character <?> is added at the end of the alpha characters. For example:

```
CL?
CLO?
CLOS?
ClOSE?
```

Multiple arguments are separated by commas. However, a space <SP> or spaces will be accepted as a dellimiter. For example:

```
A2,A3
A2 spA3
A2 spspA3
A2,spA3
```

nOtE
In the last example, the space is treated as a format character because it follows the comma (the argument delimiter).

MESSAGE PROCESSING

Introduction

When a message is received, it is stored in an input buffer, processed, and then executed. Processing a message consists of decoding commands, detecting delimiters, and checking the message syntax.

When commands are processed, the indicated changes are then stored in an execution buffer. If an error is detected during processing, the Service Request (SRQ) line is asserted, and the remainder of the message is ignored.

Executing a message consists of performing the actions specified by its command(s). This involves updating the instrument settings and recording these updates in a current settings buffer. Command execution occurs when the instrument processes the message unit terminator.

The query command is executed by retrieving the appropriate data and loading it in theoutput buffer; processing and execution then continues for the rest of the message. The data in the output buffer are sent to the controller when the SI 5020 is made a talker.

All commands are executed in the order received, so that the buffered mode of operation can be precisely defined.

Multiple Messages

The input buffer has finite capacity, and to avoid having a single message long enough to fill it, each portion of the message is processed before additional input data are accepted. During command processing, additional data are held off (NRFD line on the GPIB is asserted) until space is available in the buffer.

After a query command in a message is executed, the response is held in the output buffer until the controlier makes the instrument a talker. If a new message is received before all of the data in the output buffer are read, the output buffer is cleared before executing the new message. This prevents the controller from getting unwanted data from old messages.

One other situation may cause the data in the output buffer to be deleted. The execution of a long message might cause the output buffer to become full. This occurs when a large number of queries (greater than 30) are being retained for transmission. When the SI 5020 detects this condition (output buffer full), it generates an error message, asserts the SRQ line, and deletes the data in the output buffer. This action informs the controller that the message was executed and that the output was deleted.

Status and Event/Error Reporting

The GPIB Service Request (SRQ) function may be used by the instrument to alert the controller that it needs service. The SRQ function is also a means of indicating that an event, status change, or error has occurred.

When the GPIB controlier services the request, it performs a serial poll routine. In response, the instrument returns a status byte (STB), indicating whether it needs service or not. The status byte provides a limited amount of information about the SRQ.

Talked With Nothing To Say

If the SI 5020 is addressed a talker without having received a message that specifies exactly what it should output, a single byte with all bits equal to 1 (FFh) with a message terminator will be returned, i.e., output buffer empty.

IEEE 488 INTERFACE MESSAGES

INTRODUCTION

All of the IEEE 488 interface messages listed below are sent with the ATN line on the digital interface asserted. See Figure 3-1 for bus interface control messages at the low level. Higher level commands are also available for the user. For the following commands, $A=32$ plus instrument address and $B=64$ plus instrument address.

Example:

for address 26:

$$
\begin{aligned}
& A=32+26=58 \\
& B=64+26=90
\end{aligned}
$$

NOTE

For Tektronix controllers, the SPE (Serial Poll Enable) and SPD (Serial Poll Disable) interface messages are implemented in the POLL statement. The TCT (Take Control), GTL (Go To Local), LLO (Local Lockout), PPC (Parallel Poll Configure), PPE (Parallel Poll Enable), and PPU (Parallel Poll Unconfigure) interface messages are not implemented. The IFC (Interface Clear) unline message has the same effect as both the UNTalk UNListen interface messages. If illuminated, the front panel ADDRESSED light will turn off.

GPIB CONTROLLER INTERFACE MESSAGES

The SI 5020 responds to the following Interface Messages from the GPIB Controller:

Attention (ATN)
Interface Clear (IFC)
Device Clear (DCL)
Selected Device Clear (SDC)
Go To Local (GTL)
Remote Enable (REN)
Local Lockout (LLO)
My Listen Address (MLA)
My Talk Address (MTA)
Unlisten (UNL)
Untalk (UNT)
Group Execute Trigger (GET)
End of Message (END)
Serial Poll Enable (SPE)
Serial Poll Disable (SPD)

Attention (ATN) - tells the SI 5020 that the accompanying multiline message should be interpreted as an Interface Message.

Interface Clear (IFC) - causes the reset of the Talker and Listener interface conditions. Reception of this message will not terminate any operation.

Device Clear (DCL) - is sent to the SI 5020 by the controller to restart the communications process. None of the SI 5020's settings are changed but the SI 5020 will stop execution of any previously received command, clear both the input and output buffers, and clear SRQ and the status byte and any pending status.

Selected Device Clear (SDC) - is the same as DCL but is an addressed command sent to the listen addressed devices on the bus. The SI 5020 response is the same as to DCL.

Go To Local (GTL) - is an addressed command sent to the SI 5020 by the controller to cause it to go to Local mode from Remote mode.

Remote Enable (REN) - is the message sent to the SI 5020 from the controller indicating the REN interface signal line is being asserted. This message along with MLA causes the SI 5020 to enter Remote mode.

Local Lockout (LLO) - is the message sent by the controller to make the SI 5020 front panel switches completely inoperative. The only way to return to Local mode of operation is by receiving the GTL command from the controller or the unassertion of the REN line on the interface, neither of which the SI 5020 has control over.

My Listen Address (MLA) - controller telling SI 5020 to listen.

My Talk Address (MTA) - controller telling SI 5020 that it is okay to talk (transmit data to controller). If the SI 5020 has data to transmit, it does so after the reception of MTA. If the SI 5020 has no data to transmit, it sends the "talked with nothing to say" message (all data bits set to a "1", FF hex) and EOI.

Unlisten (UNL) - is the message to SI 5020 from controller telling it to stop listening. Being unlistened temporarily will not by itself cause loss of data. Reception of data will resume again when MLA is received.

Untalk (UNT) - is the Untalk message sent by the controller to the SI 5020 . If the SI 5020 is talking when this message is received, transmission is interrupted but no data is lost. The Sl 5020 will pick up where it left off when it receives MTA again.

Group Execute Trigger (GET) - it is an addressed command and is not implemented on the SI 5020.

End of Message (END) - is the End of Info message sent to the SI 5020 to indicate end of message. It is selectable via SW1 on GPIB Controller PCB to either EOI with last data byte or ASCII Line Feed character with or without EOI.

Serial Poll Enable (SPE) - is the message which enables the SI 5020 to output serial poll status bytes when it is talk addressed.

Serial Poll Disable (SPD) - puts the SI 5020 back in the normal mode outputting data bytes when talk addressed.

Remote/Local Operation

When powered up, the SI 5020 is in the Local mode of operation and is ready to accept GPIB interface messages and/or device dependent commands via GPIB. The relays may be open and closed at this time only via the front panel switches. A transition from Local mode to Remote mode is caused by the reception of a command through the GPIB port, REN line asserted and My Listen Address (MLA). Any opening or closing of the relays in the switch matrices that the controller wishes to make must be done in the REMOTE mode. Therefore, the device dependent messages which the SI 5020 can receive can be divided into two distinct groups; Local/Remote commands and Remote Only commands.

At power-up, the SI 5020 is in Local mode and the reception of any Remote Only commands will result in an error indication being sent to the controller, SRQ asserted, and the commands being ignored. Any Local/Remote commands received in Local mode will be executed.

In Remote mode, the SI 5020 front panel switches are still completely functional (the relays may be opened either by GPIB commands or front panel switches). To disable the front panel switches, the controller needs to instruct the SI 5020 to go to Remote mode with Lockout. There are two ways to get to Remote mode with Lockout. The first is to place the SI 5020 in Remote mode as mentioned above; then the controller sends a Local Lockout (LLO) message. The second is if the SI 5020 is in Local mode and the controller sends LLO and MLA interface messages.

A transition from Remote mode to Local mode can occur one of two ways:

- the controller sends GTL (Go To Local) command
- the REN line becomes unasserted

The GPIB interface goes to Local mode almost immediately, but the SI 5020 may not (it will make the transition to Local mode when the end of the current message is processed).

There is no front panel method to make the SI 5020 go from Remote mode to Local mode.

Figure 3-1. ASCII and IEEE 488 (GPIB) Code Chart.

COMMANDS

COMMAND SUMMARY

Table 3-1 contains a command summary for the SI 5020.

Table 3-1
SI 5020 GPIB Command Summary

Command	Action
CLose	Close relays in both matrices.
OPen	Open relays in both matrices.
HElp	List of available command headers.
ERror	Event/error status reporting.
EVent	Event/error status reporting.
ID	SI 5020 identification.
INit	Return instrument to power up configuration.
MSgdlm	Message delimiter.
RQs	Service request.
SEttings	Query setup of SI 5020.
TEST	SI 5020 power up tests.

DETAILED COMMAND LIST

The following material is a detailed description of each command.

CLose (CL) Command

Type: Setting and Query
Modes: Settings - Remote Only
Query - Local/Remote
Setting Syntax:
CLose < matrix> <relay_number>
[, < matrix > < relay_number > ...]
where:
<matrix> settings argument list
A (specifies matrix A)
B (specifies matrix B)
<relay_number > settings argument list
1 (closes relay labeled 1 in specified matrix)
2 (closes relay labeled 2 in specified matrix)
3 (closes relay labeled 3 in specified matrix)
4 (closes relay labeled 4 in specified matrix)
5 (closes relay labeled 5 in specified matrix)
6 (closes relay labeled 6 in specified matrix)
Example: CL A1,A3,A5,B2,B4,B6
closes relays 1,3, and 5 in matrix A and closes relays 2,4 , and 6 in matrix B (if relays were previously open)

Query Syntax: CLose?
Query Response:
CLOSE < matrix > <relay_number> [. < matrix > <relay_number> ...]:
where:
<matrix > and <relay_number > argument
lists are the same as settings list
Example Response: CLOSE A1,A2,A3,B4,B5,B6;
relays 1,2 , and 3 are closed in matrix A and relays 4,5 , and 6 are closed in matrix B

Discussion:

The CLOSE command closes the relays specified by the argument list. No more than four relays may be closed in matrix A or matrix B at one time. If there is an attempt to close more than four relays in a matrix, an error will be generated. Refer to "Status and Event Reporting" for more on error conditions.

OPen (OP) Command

Type: Setting and Query

Modes: Settings - Remote Only
Query - Local/Remote

Setting Syntax:

OPen < matrix > <relay_number>
[, < matrix > <relay_number> ...]
where:
< matrix > settings argument list
A (specifies matrix A)
B (specifies matrix B)
<relay_number > argument list
1 (opens relay labeled 1 in specified matrix)
2 (opens relay labeled 2 in specified matrix)
3 (opens relay labeled 3 in specified matrix)
4 (opens relay labeled 4 in specified matrix)
5 (opens relay labeled 5 in specified matrix)
6 (opens relay labeled 6 in specified matrix)
ALL or all (opens all relays in both matrices)

Example: OP A1,A3,A6,B2,B4,B6
opens relays 1,3 , and 6 in matrix A and
opens relays 2,4 , and 6 in matrix B
(if relays were previously closed)

Query Syntax: OPen?

Query Response:

Example Response: OPEN A1,A2,A3,A5,B2,B3,B4,B6;
relays $1,2,3$, and 5 are open in matrix A relays $2,3,4$, and 6 are open in matrix B

Discussion:

The OPEN command opens the relays specified by the argument list. OPEN ALL will open all relays in both matrices.

$$
\begin{aligned}
& \text { < matrix> < relay_number> argument } \\
& \text { lists are the same as settings list }
\end{aligned}
$$

```
```

OPEN < matrix> < relay_number>

```
OPEN < matrix> < relay_number>
    [. < matrix > <relay_number > ...];
    [. < matrix > <relay_number > ...];
    where:
    where:
                < matrix> <relay_number> argument
                < matrix> <relay_number> argument
                    lists are the same as settings list
```

 lists are the same as settings list
    ```

\section*{Help (HElp?) Command}

Type: Query

Modes: Local/Remote

Query Syntax: HElp?

\section*{Query Response:}

\section*{CLose;ERror;EVent;HElp;ID;INit;MSgdIm;OPen;RQs;SEt; TEST;}

\section*{Discussion:}

This is a query command which will result in the SI 5020 sending a list of all the valid command headers.

\section*{Event/Error (EVent? or ERror?) Command}

Type: Query

Modes: Local/Remote

Query Syntax: EVent? or ERror?

\section*{Query Response:}

EVENT <event code> or ERROR <event code>;
For codes for specific events, refer to "Status and Event Reporting."

\section*{Discussion:}

EVENT is a query which can be sent to the SI 5020 by the controller to retrieve an event code. The SI 5020 response to this query is EVENT <event code>. The <event code > is a number corresponding to a certain condition in the SI 5020 caused by an SRQ. The <event code> returned by the SI 5020 depends on whether RQS is ON or OFF.

With RQS ON, the event query returns the event code for the most recent SRQ generated. When the event code is returned to the controller, that event is considered reported and will not be reported again. An event code of zero means that there are noevents to report. WithRQS OFF the SI 5020 returns the event code corresponding to the highest priority pending status (assuming a Serial Poll has been done before the first EVENT? to enable the SI 5020 to respond to the EVENT? query).

The event code and status byte are then removed from the pending status list. An error code of 0 is returned if there were no errors. If RQS is changed from OFF to ON, the SI 5020 begins sending the SRQ's that were stacked up while RQS was OFF.

ERR? is an alternate header for the EVENT? query. They are equivalent messages and result in the same response from the SI 5020 except for the different header, ERROR <event code>.

Identify (ID?) Command

Type: Query

Modes: Local/Remote

Query Syntax: ID?

Example: ID?

Query Response: ID TEK/SI 5020,V81.1,F1.1

\section*{Discussion:}

The ID query is the query sent by the controller when it wants the SI 5020 to identify itself. The SI 5020 retums the ID command header followed by the name of the instrument, Tektronix Codes \& Format version, and firmware version.

Programming Information

\section*{Message (MSgdim) Delimiter}

Initialize (IN) Command

Type: Operational

Modes: Remote Only

Setting Syntax: INit

Example: INit

Discussion:
The INITIALIZE command returns the SI 5020 to the power up default values. Power-up defaults are RQS ON;OPEN A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5,B6;CLOSE 0 ;. The default MSgdlm is semicolon. Internal diagnostics are not run, the power on SRQ is not sent, and the SI 5020 is not unlistened.

Type: Setting and Query

Modes: Local/Remote

Setting Syntax:
MSgdim semicolon
or
MSgdlm If

Query Syntax: MSgdim?

Query Response:
MSGDLM SEMICOLON;
or
MSGDLM LF;

Discussion:
The settings command controls the message unit delimiter sent by the SI 5020 for query commands. If LF is selected, then a line feed character will follow any query response. If SEMICOLON is selected, then a semicolon character will follow any query response.

\section*{Request For Service (RQs) Command}

Type: Setting and Query

Modes: Local/Remote

\section*{Setting Syntax:}

RQs ON
or
RQs OFF

Query Syntax: RQs?

Query Response:
RQS ON;
or
RQS OFF;

\section*{Discussion:}

When the SI 5020 needs service from the system controller, it generates a service request by asserting the GPIB SRQ interface line. This usually causes an interrupt to the controller, which then conducts a serial poll to find out which instrument on the bus caused the assertion of the SRQ line.

There are times when the controller would like to disable a device's ability to generate SRQs. The RQS command gives the controller this ability. With RQS OFF, the SI 5020 doesn't generate SRQs. If RQS is changed from OFF to ON, the SI 5020 begins sending the SRQs that stacked up during the time that RQS was OFF. While RQS is OFF, the controiler can poll the SI 5020 for events which may be stacking up using the Serial Poll and EVENT? queries.

RQS? is the query sent by the controller to find out the current RQS mod the SI 5020 is programmed to (either ON or OFF).

\section*{Setting (SE?) Command}

\section*{Type: Query}

Modes: Local/Remote

Query Syntax: SEttings?

Query Response: <current settings>;

Example Response:
RQS OFF; MSGDLM SEMICOLON;
CLO A4,A5,A6,B1,B2,B3;OPE A1,A2,A3,B4,B5,B6;

\section*{Discussion:}

The settings query returns the current RQS setting, current message Unit Delimiter setting, and which relays in the switch matrices are open and closed in the SI 5020. The response of the SET? query does not contain the SET header, but is a concatenation of the responses to the RQS?, MSGDLM?, CLOSE? queries in one message.

\section*{Test (TEST) Command}

Type: Output

\author{
Modes: Remote Only
}

Syntax: TEST

\section*{Discussion:}

This command can be sent to the SI 5020 to execute power-up diagnostics. The SI 5020 performs three diagnostic tests on its circuitry. The first is a checksum on all locations in EPROM, the second is a check of functionality of RAM, and the third is a check for legal GPIB primary address. If all three tests are error free, the "test complete" SRQ is sent to the controller on completion. If one of the tests finds an error, it is reported via SRQ, internal error status byte, and an error code. This command will not be executed if RQS if OFF; an execution error indication will be returned instead. Refer to "Status and Event/Error Reporting" for specific codes for error conditions.

\section*{FRONT PANEL SWITCHES AND RELAY ACTIONS}

The opening and closing of relays in Matrixes \(A\) and \(B\) may also be accomplished via switches on the front panel of the SI 5020 HF Relay Switch Module. There are 12 switches, one associated with each relay in both matrices. To open or close a relay, press the switch associated with that relay. The action is that of a toggle (if the relay is closed, then it will open when the switch is pressed; if open, it will close when the switch is pressed).

If a relay is closed as the result of a GPIB command or its controlling front panel switch, then the front panel LED associated with that relay will be on; conversely, if the relay is open, its LED will be off.

\section*{Front Panel Switch Interaction With GPIB Programmed Relays}

If the controlling front panel switch of a relay is pushed, it will open if it was previously closed, or it will close if it was previously open. However, the GPIB controlier still considers the relay to be in its previous state.

A possible solution to this problem is to have the user determine the status of the front panel switches via an event/error reporting mechanism. Whenever a front panel switch is pressed, the event for that switch is recorded. To determine if the relay is open or closed, one would have to query the instrument for relay status. The report will include those changed via the front panel as well as via GPIB.

\section*{Power Up Default Conditions}

When power is applied to the SI 5020, a diagnostic self test routine is performed to check the functionality of the memory (ROM and RAM), GPIB Controller, and selection of the GPIB Primary Address. If errors are found, front panel LEDs are blinked to inform the user of an error condition.

\section*{SI 5020 Relay Switch Closure Limitations}

\section*{WARNING}

Do not have more than two relays closed per switch for extended periods or overheating will occur, and personal injury could result if the instrument is disassembled and the switch is touched.

There is a limit to the number of relays that can be closed at any one time in either matrix A or B via GPIB commands. This limit is set to four so as not to exceed manufacturer's recommendations for switch matrix closures. If the current number of closed relays is four in either matrix, and a command to close another relay in the matrix is received, an error will be generated. If a front panel switch tries to close more than four relays, it is ignored and no error is reported.

\section*{HARDWARE AND SOFTWARE IMPLEMENTATION}

\section*{HARDWARE DEFINITION}

The SI 5020 HF Relay Switch Matrix module consists of three circuit board assemblies, one containing the microprocessor, memory (ROM and RAM), address decoders, interface circuitry and GPIB controller.

A listing of the instrument hardware is:
\begin{tabular}{ll} 
CPU & \multicolumn{1}{c}{\begin{tabular}{l} 
Motorola \(6809 @ 8 \mathrm{MHz}\) \\
\((500 \mathrm{nsec}\) cycle) \()\)
\end{tabular}} \\
& \(4464 \mathrm{C} 8 \mathrm{k} \times 8\) Static \\
RAM & \(2725632 \mathrm{k} \times 8\) EPROM \\
ROM & Texas Instruments TMS9914A
\end{tabular}

The second circuit board assembly contains power supply circuitry, latches for processor input/output of data from front panel switches, and relay drivers for switch matrices.

\section*{CONTROLLER SOFTWARE OVERVIEW}

The base system consists of a Motorola 6809 microprocessor, 8 K of RAM, 32K of ROM, the Texas Instruments TMS9914A GPIB Controller and various registers for controlling switch matrices and monitoring front panel switches. Processor instructions are fetched from system ROM and dynamic variables and buffers are stored in system RAM. All registers are mapped into system memory space for easy I/O manipulation.

At power-up, diagnostics are run on system ROM, RAM, and the GPIB Controller to determine system readiness. If there are no errors encountered, the system enters a monitor loop described below. If there are errors, a diagnostic loop is entered, flashing an LED on and off once every half second. The scheme by which the system software determines service information for the front panel switches or commands from the GPIB bus is a simple polling routine called the monitor loop.

If the SI 5020 is not in remote with local lockout, then the front panel switch registers are checked for a change in status. If a change in front panel switch status is found, then the switch is debounced (wait 25 ms , then reread to make sure switch is still depressed) and the appropriate action for that switch depression is performed.

A check is then made to determine if a command has been received via GPIB. If a command was received, it is processed for legal SI 5020 syntax.

If the SI 5020 is talk addressed, then whatever information is in its output buffer will be sent to the GPIB controlier (possibly a response to a query command). If the buffer is empty, it simply answers with a single byte with all bits set to a 1 (FFh).

\section*{DIAGNOSTIC SOFTWARE}

Diagnostics that are run at power up or after receiving the TEST command from the GPIB controller perform four checks on system hardware. If any errors are found during these tests, the HF Relay Switch Matrix will not respond to GPIB commands or front panel switches.
- A checksum calculation on all bytes in system ROM starting at location 8002h through FFFFh. This calculation will be an 8 bit Exclusive OR (XOR) of all locations into a checksum value. All of the even bytes from 8002h thru FFFEh will be XORed, then compared with a known good value stored in ROM at location 8000. All of the odd bytes from E003h thru FFFFh will be XORed, then compared with a known good value previously stored in ROM at location 8001h. The LED associated with relay 1 in Matrix B is the error indicator for this test and will flash on and off every half second.
- A RAM test to check ability to read/write all locations from 0000 h thru 1FFFh with a simple checker board pattern of 55h, then AAh. This gives a 10101010 then 01010101 then 10101010 etc. The LED associated with relay 2 in Matrix B is the error indicator for this test and will flash on and off every half second.
- The GPIB Controller register read/write is checked to see if it can respond to the CPU. The LED associated with relay 3 in Matrix B is the error indicator for this test and will flash on and off every half second.
- GPIB Primary Address selection is checked for a legal value (0 through 30). If a legal value is not found, then the LED associated with relay 4 in Matrix B on the front panel will flash on and off once every half second.

If any errors are found during these tests, then the HF Relay Switch Matrix will not respond to GPIB commands or front panel switches and an LED in Relay Switch Matrix B associated with each test will flash on and off once every half second.

\section*{STATUS AND ERROR REPORTING}

\section*{SERVICE REQUEST, STATUS BYTE, AND ERROR QUERY}

The IEEE 488 Service Request (SRQ) function may be used by the instrument to alert the controller that it needs service. The SRQ function is also a means of indicating that an event, status change, or error has occured.

When the controller services the request, it performs a serial poll routine. In response, the instrument returns a status byte (STB), indicating whether it needs service or not. The status byte provides a limited amount of information about the SRQ (see Table 3-2).

If there is more than one event or error to be reported, the instrument continues to assert SRQ until it reports all events. Each event or error is automatically cleared when it is reported via the serial poll.

\section*{NOTE}

The DCL (Device Clear) interface message may be used to clear all events, except for the power-on \(S R Q\).

Commands are provided to control the reporting of some individual events and disable all service requests. The Request For Service (RQS) command controls whether the instrument reports any events by asserting SRQ. The RQS OFF command inhibits all SRQ's (except power-up event).

With RQS OFF the controller may find out about events without first performing a serial poll.The error query (ERR?) may be sent at any time and the instrument returns an error code waiting to be reported. The controller can clear all errors by sending the error query (ERR?) until a zero ( 0 ) code is returned, or the DCL message.

With RQS OFF the controller may perform a serial poll, but the status byte only contains device-dependent status information. With RQS ON, the status byte contains the class of the event and a subsequent query returns additional information about the previous event reported in the status byte.

Table 3-2
Status Byte Definitions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{Data Bits} & \multicolumn{2}{|l|}{Decimal} \\
\hline STB EXamples & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & Not busy & Busy \\
\hline Power-on Event & 0 & 1 & 0 & X & 0 & 0 & 0 & 1 & 65 & 81 \\
\hline Card Event & 1 & 1 & 1 & X & 0 & 0 & 0 & 1 & 225 & 241 \\
\hline Execution Error & 0 & 1 & 1 & X & 0 & 0 & 1 & 0 & 98 & 114 \\
\hline & & &  &  &  &  &  & & - Define ge proces an abnor ting servic es event os device & \begin{tabular}{l}
nts is busy event \\
\(s\) tus
\end{tabular} \\
\hline
\end{tabular}

Because the status byte conveys limited information about an event, the events are divided into classes; the status byte reports the class of event. The classes of events are defined in Table 3-3 as follows:

Table 3-3
Event Classes
\begin{tabular}{c|l}
\hline \multicolumn{1}{c|}{ Class } & \multicolumn{1}{c}{ Indicator } \\
\hline \hline Command Error & \begin{tabular}{l} 
Indicates the instrument has received a \\
command that is invalid or it cannot \\
understand.
\end{tabular} \\
\hline Execution Error & \begin{tabular}{l} 
Indicates that the instrument has received \\
a command it cannot execute (argument \\
value out of range, or settings conflict).
\end{tabular} \\
\hline Internal Error & \begin{tabular}{l} 
Indicates that the instrument has detected \\
a hardware condition or firmware problem \\
that prevents operation.
\end{tabular} \\
\hline System Events & \begin{tabular}{l} 
Events that are common to instruments in \\
a system (Power On, User Request, etc.).
\end{tabular} \\
\hline Execution & \begin{tabular}{l} 
Instrument is operating but the user \\
should be aware of potential problems.
\end{tabular} \\
\hline Warning & \begin{tabular}{l} 
Indicates that the instrument has detected \\
an internal problem, but remains \\
operational (e.g., out of adjustment).
\end{tabular} \\
\hline Device Status & \begin{tabular}{l} 
Device-dependent status.
\end{tabular} \\
\hline
\end{tabular}

The error query (ERR? or EVE?) may be used by the controller program to obtain additional information not provided by the status byte. After examining the status byte to determine whether the instrument requested service or not, the ERR? or EVE? command may be sent. In response, the instrument reports a number code that defines the error or event in more detail. Serial poll responses (status bytes) and error code numbers are listed in Table 3-4.

\section*{STATUS BYTE ORGANIZATION}

The status byte information is indicated below:

\footnotetext{
D101-DI04 are used to further specify system or device status; they are used in conjunction with DIO8.

DI05 is the busy bit
\(1=\) SI 5020 is processing or executing a command \(0=\) SI 5020 is ready

DI06 is the error bit
1 = abnormal condition (error)
\(0=\) normal condition (non-error)
```

D107 is RQS
$1=$ SI 5020 is requesting service $0=S I 5020$ is not requesting service

```
}

Dl08 is the Device/System status bit
1 = bits DI01 thru Dl04 contain a code corresponding to a particular device status.
\(0=\) bits DI01 thru DI04 contain a code corresponding to a particular system status.
\begin{tabular}{ll} 
System Status - DIO8 \(=0\) & 87654321 \\
Abnormal Conditions - DIO6 \(=1\) & \\
command error & \(011 \times 0001\) \\
execution error & \(011 \times 0010\) \\
internal error & \(011 \times 0011\) \\
execution error & \(011 \times 0101\) \\
internal error warning & \(011 \times 0110\) \\
Normal Conditions - DIO6 = 0 & \\
power on (online) & \(010 \times 0001\) \\
Operation complete & \(010 \times 0010\) \\
Device Status - DIO8 = 1 & \\
Abnormal Conditions - DIO6 \(=1\) & 87654321 \\
this class of errors will be & \(111 \times 0000\)
\end{tabular}
reported through response to
event query( EVENT? ) and not encoded in this status byte
Normal Conditions - DIO6 = 0 87654321
test complete 110x 1000
Matrix A Front Panel Switch pressed 110x 0001
Matrix B Front Panel Switch pressed 110x 0010
Normal Device Dependent Status - D106, D107 \(=0\)
No status to report \(110 \times 0000\)

Table 3-4
Status Byte \& Event/Error Codes
\begin{tabular}{|c|c|c|}
\hline Description & Event/Error Query Response (In decimal) & Serial Poll Response (in decimal) \\
\hline No Errors or Events Active, No Errors To Report & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{gathered}
\hline 0 \\
128
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Command Errors \\
Command header error \\
Header delimiter error Command argument error \\
Argument delimiter error Nonnumeric Argument (if numeric expected) Missing Argument Invalid message unit delimiter Unrecognized argument type Argument contains to many characters
\end{tabular} & \[
\begin{aligned}
& 101 \\
& 102 \\
& 103 \\
& 104 \\
& 105 \\
& 106 \\
& 107 \\
& 150 \\
& 151
\end{aligned}
\] & \[
\begin{aligned}
& 97 \\
& 97 \\
& 97 \\
& 97 \\
& 97 \\
& 97 \\
& 97 \\
& 97 \\
& 97
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Execution Errors \\
Remote Only Command, while in local mode I/O buffers full, output dumped (dead lock) Integer Overfiow, maximum 65520 Attempt to execute TEST command with RQS OFF Output Buffer full (too many query commands) Input Buffer full (command too long)
\end{tabular} & \[
\begin{aligned}
& 201 \\
& 203 \\
& 253 \\
& 257 \\
& 271 \\
& 272
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 98 \\
& 98 \\
& 98 \\
& 98 \\
& 98
\end{aligned}
\] \\
\hline Internal Errors RAM error ROM error GPIB error & \[
\begin{aligned}
& 350 \\
& 351 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 99 \\
& 99 \\
& 99
\end{aligned}
\] \\
\hline System Events Power on & 401 & 65 \\
\hline \begin{tabular}{l}
Device-Dependent Events \\
Attempt to close more than four relays in Matrix A, command ignored \\
Attempt to close more than four relays in Matrix B, command ignored \\
Matrix A Front Panel switch 1 was pressed Matrix A Front Panel switch 2 was pressed Matrix A Front Panel switch 3 was pressed Matrix A Front Panel switch 4 was pressed Matrix A Front Panel switch 5 was pressed Matrix A Front Panel switch 6 was pressed Matrix B Front Panel switch 1 was pressed Matrix B Front Panel switch 2 was pressed Matrix B Front Panel switch 3 was pressed Matrix B Front Panel switch 4 was pressed Matrix B Front Panel switch 5 was pressed Matrix B Front Panel switch 6 was pressed Operation complete, all is operational
\end{tabular} & 258
259
700
701
702
703
704
705
706
707
708
709
710
711
799 & \[
\begin{gathered}
98 \\
98 \\
\\
193 \\
193 \\
193 \\
193 \\
193 \\
193 \\
194 \\
194 \\
194 \\
194 \\
194 \\
194 \\
66
\end{gathered}
\] \\
\hline Device-Dependent Errors Firmware Error - illegal event occured & 823 & 224 \\
\hline
\end{tabular}

\section*{THEORY OF OPERATION}

\section*{INTRODUCTION}

The SI 5020 consists of two high frequency single-pole, six-throw or 6X6 microwave switches under front panel and remote programming control. Each of the switch elements are individually relay driven and are essentially independent, except that each switch (of six elements) has a common connection on one side of each element (the center connector, as viewed from the front panel).

Each switch element allows a signal transmission rate of 18 GHz and, acting in conjunction with another simultaneously opened or closed switch, can change an incoming signal path in 65 ms ( 15 ms actuation time plus 50 ms software allowance for debounce).

Up to four connections can be remotely closed at any one time per relay (this limit is set to keep within manufacturer's allowances for heat tolerance), and any programmed (or unprogrammed) switch element may be overridden manually. An override changes the open/closed mode that the switch is already in.

In the ensuing text, the two main circuits, supported on separate PCboards, are described individually. The first circuit containing principal functional elements is called the Main Board. The second board consisting of the GPIB remotely controlied (receiver) portion, is called the GPIB Controller Board. A third board called the Front Panel Board is also discussed. It forms a holder for the switches and display LEDs.

\section*{MAIN BOARD}

Figure 4-1 provides a block diagram for the Main Board. A detailed schematic is included in the Diagrams section at the back of this manual.

The board basically consists of a power supply and latches and drivers for the relay switches and various LEDs. In particular, a large part of the circuit is duplicated for the two separate but essentially identical relay switches whose inputs and outputs dominate the front panel. Both on the front panel and in the block diagram (as well as the Main Board and Controller discussions), the two sets of relays are referred to as forming part of the A matrix (Upper), and the B matrix (Lower).

The principal elements for the A relay are U43, U44, and U45. The equivalent elements for the B relay are U46, U47, and U48.

The U43 Buffer works in conjunction with R47; U43 reads the front panel switches while R47 provides a constant pull-up. A HI on any U43 input signifies an open switch. When a Numeric switch is closed, it pulls the input of U43 LO - which is read and the result sent to U44 to toggle the relay contact.

Both the front panel LEDs and the input to the relay driver U45 are driven by U 44 . When a HI is presented to the input of U45, the corresponding output goes LO, toggling the relay contact (note that the front panel port characters differ from the numbers painted on the relay).

The GPIB status LEDs on the front panel are driven by U49 via J46. Data lines and device select lines are provided from JP1 on the Controller Board to JP42 on the Main Board. The addresses used to select devices on the Main Board are shown in Table 4-1.

Table 4-1
Main Board Device Addresses
\begin{tabular}{c|c|c}
\hline Address & Device & Function \\
\hline \hline 2000 & U44 & Drives 1-6 LEDs and Upper Relay. \\
\hline 2001 & U43 & Reads switches 1-6 on Relay A. \\
\hline 2002 & U47 & Drives 1-6 LEDs and Lower Relay. \\
\hline 2003 & U46 & Reads switches 1-6 on Relay B. \\
\hline 2004 & U49 & Drives GPIB status LEDs. \\
\hline
\end{tabular}

The Main Board interacts with the TM5000 Series Power Module via connectors P41A and P41B. The SI 5020 High Frequency Multiplexer uses \(+8 \mathrm{~V},+26 \mathrm{~V}\) and ground. The +8 V is used by U41 and U42 to provide +5 V regulated supplies used by both the Main Board and the GPIB Controller Board. The +26 V is used to power the microwave switch relays.


Figure 4-1. Block diagram for the Main Board.

\section*{GPIB CONTROLLER BOARD}

The Controller Board allows the SI 5020 Multiplexer to operate by remote commands over the GPIB backplane connection. It also has a provision for both front panel direct control (over switched connections), or exclusively using a front panel lockout feature.

As illustrated in Figure 4-2, this board contains the microprocessor (MPU), memory (ROM and RAM), GPIB control logic, interrupt timer, and address decoders as well as microprocessor buffer/tatch circuitry. The following subsections describe the board circuitry as it most closely relates to the circuit groups mentioned.

\section*{Microprocessor Operations}

The controller is based on a Motorola 6809 Microprocessor Unit (MPU) running at 8 MHz (500-ns cycle). The microprocessor (U1) accesses 32k bytes of ROM and 8k bytes of RAM, and externally addresses up to 16 devices through JP1.

The power supplies are provided from the Main board via JP1. At power-up, U3 remains LO for 200 ms until these stabilize. After power supply settling, the microprocessor begins to search for ROM locations FFFEh and FFFFh to get the starting address for the operations program.

Related circuits involve U2 and U3; U2 provides the 8-MHz clock source, and U3 provides power protection. If at any time a voltage lower than 4.55 V is detected (as in a power-down), U3 will pull the reset line LO causing U1 to reset.

\section*{ROM And RAM}

The ROM (U11) contains the operating system code needed for control of the GPIB and Main Board. It also contains lookup tables and jump vectors.

The RAM (U10) contains uninitialized variables, system heap and system stack.

\section*{Main Board Device/Address Selection}

Main board device selection is accomplished by U6 and U7. The device selection and buffered data lines interface with the Main board through JP1. Only one device on the Main board can be selected at any time.

The S0 to S7 outputs from U6 are selected by reading or writing to addresses 2000h through 2007h. The S8 through S15 outputs of U 7 are selected by reading or writing to addresses 3000h through 3007h.

Interrupt (1 ms) Timer
The Counter/Timer at U4 divides down the 'E' line from U1. After 1.024 ms , pin 1 of U4 goes HI , saturating Q1 and pulling the FIRQ line of U1 LO.

This interrupt can be counted by the software to create delays or timeouts. After each cycle, U4 is reset by U1.

\section*{Internal Address Decode and MPU Buffers}

Internal addressing of devices is provided by U5. Table 4-2 contains a list of this information. Pin 14 of U5 is a write enable output and pin 15 is a read enable. These outputs are used by U8 and U9.

Table 4-2
Internal Addressing
\begin{tabular}{c|c|c}
\hline \begin{tabular}{c} 
U5 Pin \\
Number
\end{tabular} & \begin{tabular}{c} 
Device \\
Addressed
\end{tabular} & \begin{tabular}{c} 
U5 Output Address \\
Range
\end{tabular} \\
\hline \hline 18 & U10 & \(0000-1 F F F\) \\
\hline 11 & U6 & \(2000-2007\) \\
\hline 12 & U7 & \(3000-3007\) \\
\hline 9 & None & \(4000-4 F F F\) \\
\hline 16 & U12 & \(5000-5 F F F\) \\
\hline 17 & U13 & \(6000-6007\) \\
\hline 13 & U4 & \(7000-7 F F F\) \\
\hline 19 & U11 & \(8000-\) FFFF \\
\hline
\end{tabular}

ICs U8 and U9 serve as buffers for the MPU; U8 is a read buffer, and U9 functions as both a write buffer and latch because of the short write time of U1.

\section*{GPIB Control And Address Selectlon}

As with other GPIB compatible plug-ins, the controller first identifies the complete module. The address for the SI 5020 is achieved through SW1 and is constituted by the sum of switches 1 through 5 . The binary value of these switches is shown in Table 4-3.

The valid address range is 1 through 31 and is selected by pressing down the rocker switch on the right (closed) side. For instance, selecting positions 4, 2, and 1 would produce an address location of 11 . Note that address 0 is reserved for service and maintenance and address 31 for Unlisten (see Figure 2-1 for related set-up notes).

\section*{Theory Of Operation}

\section*{FRONT PANEL BOARD}

The Front Panel board is used to mount the twelve switches and LEDs associated with both sets of relay switches. Also mounted is the interface plug (JP43A and J46A) for the relays and LEDs, and three LEDs for GPIB status.

The LED for each switch, e.g. D77 for SW77, will illuminate in the relay switch 'closed' position only. Also, when software programmed front panel lockout is not present, the adjacent switch will toggle the switch to the alternate condition, e.g., if the relay switch was off, the front panel switch will turn it on, and vice versa. This will occur independent of what the controller has programmed it for. For this reason, switch conditions should always be reset to a known condition if connections are changed during interruption of an ongoing program.

Note that the software is programmed to generate anerror if more than four relays are closed at any one time. This is done to hold internal heat limits within the microwave switch manufacturer's recommendations.

Table 4-3
GPIB Module Address Selection
\begin{tabular}{c|c}
\hline Switch Number & Binary Value \\
\hline \hline 1 & 1 \\
\hline 2 & 2 \\
\hline 3 & 4 \\
\hline 4 & 8 \\
\hline 5 & 16 \\
\hline
\end{tabular}


Figure 4-2. Block diagram for the GPIB Controller Board.

\section*{PERFORMANCE CHECK AND FUNCTIONAL VERIFICATION PROCEDURE}

\section*{INTRODUCTION}

This procedure is used to verify proper operation of the instrument and its controls. These checks may also be used as an acceptance test and as a preliminary troubleshooting aid.

\section*{PREPARATION}

Test equipment items listed in Table 5-1 are required to perform this procedure.

There is a separate procedure for each Sl 5020 version (A, B, and C ) since they differ in relay-matrix configurations.

Table 5-1
Test Equipment Required
\begin{tabular}{l|l|l}
\hline \multicolumn{1}{c|}{ Item and Description } & \multicolumn{1}{c|}{ Use } & \multicolumn{1}{c}{ Examples of Applicable Test Equipment } \\
\hline \hline 1. Power Module & Power for SI 5020. & TEKTRONIX TM500/5000 Series Power Module. \\
\hline 2. Ohmmeter & Relay check. & DM 5010 Digital Multimeter. \\
\hline
\end{tabular}

\section*{SI 5020A PROCEDURE}
1. Connect one lead of the ohmmeter to the inner conductor of the A Matrix common SMA connector.
2. Verify that all of the A Matrix LEDs are off.
3. Push the number 1 Matrix A switch. Its associated LED should tum on.
4. Connect the other ohmmeter lead to the inner conductor of the number 1 Matrix A SMA connector.
5. CHECK - That the ohmmeter shows continuity between the two connectors.
6. Disconnect the ohmmeter lead from the number 1 A Matrix SMA connector. Connect it in tum to each of the other five SMA connectors and CHECK that the ohmmeter shows no continuity between the two connectors.
7. Push the number 1 Matrix \(A\) switch. Its associated LED should turn off.
8. Repeat Steps 3 through 7 for Matrix A switches numbers 2 through 6. In these steps, substitute the current switch number being tested for the number 1 switch.
9. Repeat Steps 1 through 8 for the Matrix B switches. In these steps, substitute the \(B\) matrix for the \(A\) matrix.

\section*{SI 5020B PROCEDURE}
1. Connect one lead of the ohmmeter to the inner conductor of the A Matrix common SMA connector.
2. Verify that all of the \(A\) Matrix LEDs are off
3. Push the number 1 Matrix \(A\) switch. Its associated LED should turn on.
4. Connect the other ohmmeter lead to the inner conductor of the number 1 Matrix A SMA connector.
5. CHECK - That the ohmmeter shows continuity between the two connectors.
6. Disconnect the ohmmeter lead from the number 1 A Matrix SMA connector. Connect it in turn to each of the other five SMA connectors and CHECK that the ohmmeter shows no continuity between the two connectors.
7. Push the number 1 Matrix A switch. Its associated LED should turn off.
8. Repeat Steps 3 through 7 for Matrix A switches numbers 2 through 6. In these steps, substitute the current switch number being tested for the number 1 switch.
9. Disconnect the ohmmeter lead from the common A Matrix SMA connector.
10. Connect one ohmmeter lead to the number 1 Matrix B SMA connector and the other lead to the number 2 Matrix B SMA connector.
11. Push both the number 1 and number 2 switches for Matrix B.
12. CHECK - That the ohmmeter shows continuity between the two connectors and that both of their LEDs are turned on.
13. Push both the number 1 and number 2 switches for Matrix B. Both of their LEDs should turn off.
14. Disconnect the ohmmeter leads from the B Matrix SMA connectors.
15. Repeat Steps 10 through 14 for the following Matrix \(B\) switch pairs (2 and 3, 3 and 4, 4 and 5, and 6 and 1).

\section*{SI 5020C PROCEDURE}
1. Connect one ohmmeter lead to the number 1 Matrix \(A\) SMA connector and the other lead to the number 2 Matrix A SMA connector.
2. Push both the number 1 and number 2 switches for Matrix \(A\).
3. CHECK - That the ohmmeter shows continuity between the two connectors and that both of their LEDs are turned on.
4. Push both the number 1 and number 2 switches for Matrix A. Both of their LEDs should turn off.
5. Disconnect the ohmmeter leads from the A Matrix SMA connectors.
6. Repeat Steps 1 through 5 for the following Matrix A switch pairs (2 and 3, 3 and 4, 4 and 5, and 6 and 1).
7. Repeat Steps 1 through 6 for the Matrix B switches. In these steps, substitute the B matrix for the A matrix.

\section*{MAINTENANCE AND DIAGNOSTICS}

\section*{GENERAL MAINTENANCE}

\section*{Static-Sensitive Components}


Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 6-1 for relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

Observe the following precautions to avoid damage:
- minimize handling of static-sensitive components.
- transport and store static-sensitive components or assemblies in their original containers, on a metal rail, or on conductive foam.
- label any package that contains static-sensitive assemblies or components.
- discharge the static voltage from your body by wearing a wrist strap while handling these components.
- service static-sensitive assemblies or components only at static-free workstations by qualified service personnel.
- nothing capable of generating or holding a static charge should be allowed on the work station surface.
- keep the component leads shorted together whenever possible.
- pick up components by the body, never by the leads.
- do not slide the components over any surface.
- avoid handling components in areas that have a floor or work surface covering capable of generating a static charge.
- use a soldering iron that is connected to earth ground.
- use only special antistatic suction type or wick type desoldering tools.

Table 6-1
Relative Susceptibillty to Static Discharge Damage
\begin{tabular}{l|c}
\hline \multicolumn{1}{c|}{ Semiconductor Classes } & \begin{tabular}{c} 
Relative \\
Susceptlbilty \\
Levels
\end{tabular} \\
\hline \hline \begin{tabular}{l} 
MOS or CMOS microcircuits or \\
discretes, or linear microcircuits \\
with MOS inputs. (Most Sensitive)
\end{tabular} & 1 \\
\hline ECL & 2 \\
\hline Schottky signal diodes & 3 \\
\hline Schottky TTL & 4 \\
\hline High-frequency blpolar transistors & 5 \\
\hline JFETs & 6 \\
\hline Linear microcircuits & 7 \\
\hline Low-power Schottky TTL & 8 \\
\hline TTL (Least Sensitive) & 9 \\
\hline
\end{tabular}
\({ }^{2}\) Voltage equivalent for levels:
\begin{tabular}{lll}
\(1=100\) to 500 V & \(4=500 \mathrm{~V}\) & \(7=400\) to 1000 V (est) \\
\(2=200\) to 500 V & \(5=400\) to 600 V & \(8=900 \mathrm{~V}\) \\
\(3=250 \mathrm{~V}\) & \(6=600\) to 800 V & \(9=1200 \mathrm{~V}\)
\end{tabular}
(Voltage discharged from a 100 pF capacitor through a resistance of 100 ohms.)

\section*{Cleaning}

This instrument should be cleaned as often as operating conditions require. Loose dust accumulated on the outside of the instrument can be removed with a soft cloth or small brush. Remove dirt that remains with a soft cloth dampened in a mild detergent and water solution. Do not use abrasive cleaners.


To clean the front panel use freon, isopropyl alcohol, or denatured ethyl alcohol. Do not use petroleum-based cleansing agents. Before using any other type of cleaner, consult you Tektronix Service Center or representative.

The best way to clean the interior is to blow off the accumulated dust with dry, low-velocity air (approximately \(5 \mathrm{lb} / \mathrm{in}^{2}\) ) or use a soft brush or cloth dampened with a mild detergent and water solution.

Hold the board so the cleaning residue runs away from the connectors. Do not scrape or use an eraser to clean the edge connector contacts. Abrasive cleaning can remove the gold plating.

\footnotetext{


Circuit boards and components must be dry before applying power.
}

\section*{Obtaining Replacement Parts}

Electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, it may be possible to obtain many of the standard electronic components from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, Inc., check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

\section*{NOTE}

When selecting replacement parts, remember that the physical size and shape of a component may affect its performance in the instrument.

Some parts are manufactured or selected by Tektronix, Inc., to satisty particular requirements or are manufactured for Tektronix, Inc., to our specifications. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. To determine the manufacturer, refer to the Replaceable Parts List and the Cross Reference Index, Mfr. Code Number to Manufacturer.

When ordering replacement parts from Tektronix, Inc., include the following information:
1. Instrument type and option number.
2. Instrument serial number.
3. A description of the part (if electrical, include complete circuit number).
4. Tektronix part number.

\section*{Soldering Techniques}

\section*{WARNING}

To avoid electric-shock hazard, disconnect the instrument from the power source before soldering.

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used when repairing or replacing parts. General soldering techniques which apply to maintenance of any precision electronic equipment should be used when working on this instrument. Use only \(60 / 40\) rosincore, electronic grade solder. The choice of soldering iron is determined by the repair to be made.


All circuit boards in the instrument are multilayer-type boards with a conductive path laminated between the top and bottom board layers. All soldering on these boards should be done with extreme care to prevent breaking the connections to this conductive path. Only experienced maintenance personnel should attempt to repair these boards.

When soldering on circuit boards or small wiring, use only a 15-watt, pencil type soldering iron. A higher wattage soldering iron can cause the etched circuit wiring to separate from the board base material and melt the insulation from small wiring. Always keep the soldering iron tip properly tinned to ensure the best heat transfer to the solder joint. Apply only enough heat to remove the component or to make a good solder joint. To protect heat sensitive components, hold the component lead with a pair of long-nose pliers between the component body and the solder joint. Use a solder removing wick to remove excess solder from connections or to clean circuit board pads.

\section*{Integrated Circuits}

To remove in-line integrated circuits use an extracting tool. This tool is available from Tektronix, Inc.: order Tektronix Part Number 003-0619-00. If an extracting tool is not available, use care to avoid damaging the pins. Pull slowly and evenly on both ends of the integrated circuit. Try to avoid disengaging one end before the other end.

\section*{Multipin Connectors}

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the wires. To replace damaged multipin connectors, remove the old pin connector from the holder. Do this by inserting a scribe between the connector and the holder and prying the connector from the holder. Clamp the replacement connector to the wire. Reinstall the connector in the holder.

If the individual end lead pin connectors are removed from the plastic holder, note the order of the individual wires for correct replacement in the holder. For proper replacement, see Figure 6-1.


Flgure 6-1. Orientation and disassembly of multipin connectors.

\section*{CIRCUIT BOARD REMOVAL AND INSTALLATION}

\section*{SIDE COVERS}

Before any circuit boards can be removed, the side covers must first be removed from the sides of the instrument chassis. Turnthe side cover fasteners a quarter turn clockwise, then lift the covers slightly and separate them from the notch at the rear of the instrument.

\section*{GPIB BOARD}

To remove the GPIB board from the instrument, perform the following steps:
1. Disconnect the connector from near the front of the GPIB board.
2. Remove 2 screws connecting the GPIB board to the spacers to the Main board.
3. Remove 1 screw connecting the GPIB board to the nut block on the back of the instrument chassis.
4. Lift the GPIB board forward and out of the instrument chassis.

Toreinsert the GPIB board into the chassis, perform the reverse of the preceding steps.

\section*{MAIN BOARD}

To remove the Main board from the instrument, perform the following steps:
1. Remove the GPIB board as described above.
2. Disconnect the 4 connectors from near the front of the Main board which connects it to the matrix switches and the Front Panel board.
3. Remove 2 screws connecting the front of the Main board to the instrument chassis.
4. Remove 2 screws connecting the rear of the Main board to the instrument chassis.
5. Slide the Main board forward until the regulators clear the mounting tabs, then lift out of the instrument chassis. (Do not bend the regulators up too high, or their legs could break.)

To reinsert the Main board into the chassis, perform the reverse of the preceding steps. When the Main board is reinstalled, perform the GPIB installation procedure.

\section*{FRONT PANEL BOARD}

To remove the Front Panel board from the instrument, perform the following steps:
1. Disconnect the 4 connectors from near the front of the Main board which connect it to the matrix switches and the Front Panel board.
2. Remove 4 screws connecting the Front Panel to the chassis. Remove the latch knob from the latch assembly and slide the Front Panel module forward.
3. Remove 6 screws connecting the Front Panel board to the front of the instrument chassis.
4. Lift the Front Panel board backwards and out of the instrument chassis.

To reinsert the Front Panel board into the chassis, perform the reverse of the preceding steps. Be sure that the pushbuttons are aligned with the Front Panel holes. Install washer-less screw in mounting hole above latch. Align the board so pushbuttons don't bind before tightening mounting screws.

\section*{TROUBLESHOOTING}

Troubleshooting the circuit boards is straightforward. Review Theory of Operation for an understanding of the circuit operation. Also see "Hardware and Software Implementation" in Section 3, Programming Information.

\section*{OPTIONS}

No options are available.

\title{
REPLACEABLE ELECTRICAL PARTS
}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{LIST OF ASSEMBLIES}

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

\section*{CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER}

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

\author{
ABBREVIATIONS \\ Abbreviations conform to American National Standard Y1.1.
}

\section*{COMPONENT NUMBER (column one of the Electrical Parts List)}

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:
Example a. component number


Read: Resistor 1234 of Assembly 23


Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

\section*{TEKTRONIX PART NO. (column two of the Electrical Parts List)}

Indicates part number to be used when ordering replacement part from Tektronix.

\section*{SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)}

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

\section*{NAME \& DESCRIPTION (column five of the Electrical Parts List)}

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

\section*{MFR. CODE (column six of the Electrical Parts List)}

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

\section*{MFR. PART NUMBER (column seven of the Electrical Parts List)}

Indicates actual manufacturers part number.

\section*{CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER}
\begin{tabular}{|c|c|c|c|}
\hline Mfr. Code & Manufacturer & Address & City, State, Zip Code \\
\hline 01295 & TEXAS INSTRUMENTS INC SEMICONDUCTOR GROUP & 13500 N CENTRAL EXPY PO BOX 655012 & DALLAS TX 75265 \\
\hline 01537 & \begin{tabular}{l}
MOTOROLA \\
COMMNICATIONS AND ELECTRONICS INC
\end{tabular} & 2553 N EDGINGTON ST & FRANKLIN PARK IL 60131-3401 \\
\hline 02735 & RCA CORP SOLID STATE DIVISION & ROUTE 202 & SOMERVILLE NJ 08876 \\
\hline 04713 & MOTOROLA INC SEMICONDUCTOR PRODUCTS SECTOR & 5005 E MCDOWELL RD & PHOENIX AZ 85008-4229 \\
\hline 05397 & UNION CARBIDE CORP MATERIALS SYSTEMS DIV & 11901 MADISON AVE & CLEVELAND OH 44101 \\
\hline 09922 & BURNDY CORP & RICHARDS AVE & NORWALK CT 06852 \\
\hline 32997 & BOURNS INC TRIMPOT DIV & 1200 COLLMBIA AVE & RIVERSIDE CA 92507-2114 \\
\hline 50434 & HEWLETT-PACKARD CO OPTOELECTRONICS DIV & 370 W TRIMBLE RD & SAN JOSE CA 95131 \\
\hline 53387 & MINNESOTA MINING MFG CO & PO BOX 2963 & AUSTIN TX 78769-2963 \\
\hline 54583 & TDK ELECTRONICS CORP & 12 HARBOR PARK DR & PORT WASHINGTON NY 11550 \\
\hline 55680 & NICHICON /AMERICA/ CORP & 927 E STATE PKY & SCHAUMBURG IL 60195-4526 \\
\hline 56289 & SPRAGUE ELECTRIC CO WORLD HEADQUARTERS & 92 HAYDEN AVE & LEXINGTON MA 02173-7929 \\
\hline 57668 & ROHM CORP & \begin{tabular}{l}
8 WHATNEY \\
PO BOX 19515
\end{tabular} & IRVINE CA 92713 \\
\hline 80009 & TEKTRONIX INC & 14150 SW KARL BRAUN DR PO BOX 500 & BEAVERTON OR 97077-0001 \\
\hline 81073 & GRAYHILL INC & 561 HILLGROVE AVE PO BOX 10373 & LA GRANGE IL 60525-5914 \\
\hline TK0961 & NEC ELECTRONICS USA INC ELECTRON DIV & \begin{tabular}{l}
401 ELLIS ST \\
PO BOX 7241
\end{tabular} & MOUNTAIN VIEW CA 94039 \\
\hline TK1483 & TEKA PRODUCTS INC & 45 SALEM ST & PROVIDENCE RI 02907 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part No. & Serial/Assembly Mo. Effective Dscont & Mame \& Description & Mfr. Code & Mfr. Part No. \\
\hline A1 & 671-1310-00 & & CIRCUIT BD ASSY:GPIB AT5010 & 80009 & 671-1310-00 \\
\hline A4 & 671-1192-00 & & CIRCUIT BD ASSY:HF MLX & 80009 & 671-1192-00 \\
\hline A5 & 671-1311-00 & & CIRCUIT BD ASSY:FRONT PANEL & 80009 & 671-1311-00 \\
\hline A1 & 671-1310-00 & & CIRCUIT BD ASSY:GPIB AT5010 & 80009 & 671-1310-00 \\
\hline A1C1 & 290-0722-00 & & CAP, FXD, ELCTLT: 100 UF, 20\%,10V & 56289 & 1960107XC010PE3 \\
\hline A1C2 & 290-0527-03 & & CAP, FXD, ELCTLT:15UF,20\%,20VDC & 05397 & T361 (ADVISE) \\
\hline A1C3 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{FF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1-223M-T \\
\hline A1C4 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50 V & 54583 & MA12X7R1H223M-T \\
\hline AlC5 & 281-0909-00 & & CAP, FXD,CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50 V & 54583 & MA12X7R1H223M-T \\
\hline A1C6 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline A1C7 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50 V & 54583 & MA12X7R1H223M-T \\
\hline AlC8 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline A1C9 & 281-0909-00 & & CAP, FXD,CER D1:0.022UF,20\%,50V & 54583 & MA12X7R1H223M-T \\
\hline AlCio & 281-0909-00 & & CAP, FXD, CER DI:0.022UF,20\%,50V & 54583 & MA12X7R1-223M-T \\
\hline AlCII & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{VF}, 20 \%\),50V & 54583 & MA12X7R1H223M-T \\
\hline A1C12 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 U F, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1-223M-T \\
\hline A1C13 & 281-0909-00 & & CAP, FXD, CER DI:0.022UF,20\%,50V & 54583 & MA12X7R1H223M-T \\
\hline A1C14 & 281-0909-00 & & CAP, FXD, CER DI:0.022UF,20\%,50V & 54583 & MA12X7R1H223M-T \\
\hline A1C15 & 281-0909-00 & & CAP, FXD,CER DI: \(0.022 \mathrm{UF}, 20 \%\),50V & 54583 & MA12X7R1H223M-T \\
\hline A1C16 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\),50V & 54583 & MA12X7R1H223M-T \\
\hline A1C17 & 281-0909-00 & & CAP, FXD, CER DI:0.022UF, \(20 \%\); 50 V & 54583 & MA12X7R1HR23M-T \\
\hline A1C18 & 281-0909-00 & & CAP, FXD,CER DI: \(0.022 U F, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1-223M-T \\
\hline A1C19 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\),50V & 54583 & MA12X7R1H223M-T \\
\hline A1JP1 & 131-3364-00 & & CONN, RCPT, ELEC:HEADER, STRAIGHT,34 PIN & 53387 & 3594-6002 \\
\hline Al01 & 151-0736-00 & & TRANSISTOR:NPN, SI, TO-92 & 80009 & 151-0736-00 \\
\hline AlR1 & 322-3289-00 & & RES, FXD, FILM:10K \(01 \mathrm{M}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20 FXE 10KD \\
\hline AlR2 & 322-3289-00 & & RES, FXD, FILM:10K \(0+\mathrm{N}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB2O FXE 10K0 \\
\hline AlR3 & 322-3289-00 & & RES, FXD, FILM:10K OHM, 1\%,0.2W, TC=T0 & 57668 & CRB2O FXE 10K0 \\
\hline AlR4 & 322-3289-00 & & RES, FXD, FILM:10K OHM, 1\%, 0.2W, TC=T0 & 57668 & CRB2O FXE 10K0 \\
\hline AlR5 & 322-3289-00 & & RES, FXD. FILM:10K \(0+4,1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20 FXE 10K0 \\
\hline AlR6 & 322-3289-00 & & RES, FXD, FILM:10K OHM, 1\%,0.2W, TC=T0 & 57668 & CRB2O FXE 10K0 \\
\hline AlR7 & 322-3289-00 & & RES, FXD, FILM:10K OHM, 1\%,0.2W, \(\mathrm{TC=T0}\) & 57668 & CRB20 FXE 10K0 \\
\hline AlR8 & 307-0445-00 & & RES NTK, FXD, FI:4.7K OHM, 20\%, (9)RES & 32997 & 4310R-101-472 \\
\hline A1SW1 & 260-1721-00 & & SWITCH,ROCKER:8,SPST, 125MA, 30VDC & 81073 & 76SB08S \\
\hline AlU1 & 156-1494-01 & & MICROCKT,DGTL:MMOS, 8 BIT MICROPRC, SCRN & 04713 & MC68B09 \\
\hline Alu2 & 119-1897-00 & & OSCILLATOR, RF:XTAL CONTROLLED,8.00NHZ,0.01\% & 01537 & RASCO-1-8.00 MHZ \\
\hline A143 & 156-2396-00 & & MICROCKT,LINEAR:BIPOLAR,MPU RESET GENERATOR & 01295 & TL7705 ACP \\
\hline Alua & 156-2355-00 & & MICROCKT, DGTL:CMOS, 14 STAGE BIN RIPPLE CNTR & 02735 & CD74HCT4020EX \\
\hline Alu5 & 160-6479-00 & & MICROCKT,DGTL: EECMOS,LDGIC ARRAY,PRGM & 80009 & 160-6479-00 \\
\hline Alug & 156-0469-00 & & MICROCKT,DGTL:3-LINE TO 8-LINE DECOOER & 01295 & SN74LS138N \\
\hline Alu7 & 156-0469-00 & & MICROCKT, DGTL:3-LINE TO 8-LINE DECOOER & 01295 & SN74LS138N \\
\hline Alus & 156-1111-00 & & MICROCKT,DGTL:OCTAL BUS TRANSCEIVERS & 01295 & SN74LS245N \\
\hline A149 & 156-1858-00 & & MICROCKT, DGTL:TRANSPARENT D-TYPE LATCHES & 80009 & 156-1858-00 \\
\hline Alulo & 156-2473-00 & & IC,MEMORY:CMOS,SRAM; 8K X 8,200NS,101A & TK0961 & uPD4464C-20 \\
\hline Alvil & 160-6580-00 & & MICROCKT,DGTL: \({ }^{\text {M }}\) ( \({ }^{\text {, }} 32768 \times 8\) EPROM, PRGM & 80009 & 160-6580-00 \\
\hline Alul1 & 160-6758-00 & & MICROCKT, DGTL:32768 X 8 EPROM W/3 ST OUT & 80009 & 160-6758-00 \\
\hline Alul2 & 156-1111-00 & & MICROCKT,DGTL OCTAL BUS TRANSCEIVERS & 01295 & SN74LS245N \\
\hline Alvi3 & 156-1444-01 & & MICROCKT, DGTL: MYOS,GPIB INTFC CONTROLLER & 01295 & TMS9914A (NL \\
\hline AlU14 & 156-1415-00 & & MICROCKT, DGTL:TTL,OCTAL GPIB XCVR MGT BUS & 01295 & SN75161A N \\
\hline AIU15 & 156-1414-00 & & MICROCKT,DGTL:TTL, OCTAL GPIB XCVR DATA BUS & 01295 & SN75160 ( N OR J) \\
\hline A1XU11 & 136-0755-00 & & SKT,PL-IN ELEK:MICROCIRCUIT, 28 DIP & 09922 & DILB28P-108 \\
\hline A4 & 671-1192-00 & & CIRCUIT BD ASSY:HF MLX & 80009 & 671-1192-00 \\
\hline \(\mathrm{A4Cl}\) & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\),50V & 54583 & MA12X7R1H223M-T \\
\hline A4C2 & 290-0974-01 & & CAP, FXD, ELCTLT:10UF,20\%,50V & 55680 & UNX1H100MAA1TA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Component No. & Tektronix Part Ho. & Serial/Assenbly Mo. Effective Dscont & Mame \& Description & Hfr. Code & Mfr. Part No. \\
\hline A4C3 & 290-0944-01 & & CAP, FXD, ELCTLT:220UF,20\%,10V & 55680 & UNXIC221MPAITA \\
\hline A4C4 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline A4C5 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50 V & 54583 & MA12X7R1H223M-T \\
\hline A4C6 & 290-0974-01 & & CAP, FXD, ELCTLT:10UF, 20\%,50V & 55680 & UNX1HIOONAA1TA \\
\hline A4C7 & 290-0944-01 & & CAP, FXD, ELCTLT: 220UF, \(20 \%\), 10V & 55680 & UNX1C221MPA1TA \\
\hline A4C8 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline A4C9 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50V & 54583 & MA12X7R1H223M-T \\
\hline A4C10 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50V & 54583 & MA12X7R1H223M-T \\
\hline A4C11 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50 V & 54583 & MA12X7R1H223M-T \\
\hline A4C12 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{FF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12×7R1H223M-T \\
\hline A4C13 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50V & 54583 & MA12X7R1H223M-T \\
\hline A4C14 & 281-0909-00 & & CAP, FXD,CER DI: \(0.022 \mathrm{~F}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline AAC15 & 281-0909-00 & & CAP, FXD,CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12×7R1H223M-T \\
\hline A4C16 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1H223M-T \\
\hline A4C17 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{LF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1-223M-T \\
\hline A4C18 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%\), 50V & 54583 & MA12X7R1H223M-T \\
\hline A4C19 & 281-0909-00 & & CAP, FXD, CER DI: \(0.022 \mathrm{UF}, 20 \%, 50 \mathrm{~V}\) & 54583 & MA12X7R1+223M-T \\
\hline A4F1 & 156-0159-00 & & MICROCKT, DGTL:NON-INVERTING 1-OF-8 DCDR & 04713 & MC4048P \\
\hline A4F2 & 156-0159-00 & & MICROCKT,DGTL:NON-INVERTING 1-OF-8 DCDR & 04713 & MC4048P \\
\hline A4J4 & 131-1857-00 & & TERM SET, PIN: \(36 / 0.025\) SQ PIN,ON 0.1 CTRS (7 LOCATIONS) & TK1483 & 082-3643-SS10 \\
\hline A4J5 & 131-1857-00 & & TERM SET,PIN:36/0.025 SQ PIN,ON 0.1 CTRS (7 LOCATIONS) & TK1483 & 082-3643-SS10 \\
\hline A4J6 & 131-1857-00 & & TERM SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS (3 LOCATIONS) & TK1483 & 082-3643-SS10 \\
\hline A4JP1 & 131-3364-00 & & CONW,RCPT, ELEC: HEADER, STRAIGFT, 34 PIN & 53387 & 3594-6002 \\
\hline A4JP2 & 131-3362-00 & & CONN,RCPT, ELEC:HEADER,STR, 26 PIN & 53387 & 3593-6002 \\
\hline A4R1 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, \(1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57688 & CRB20FX150EAXIAL \\
\hline A4R2 & 322-3114-00 & & RES, FXD, FILM: 150 OHN, 1\%, \(0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R3 & 322-3114-00 & & RES, FXD, FILM: 150 OHN, 1\%, \(0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R4 & 322-3114-00 & & RES, FXD, FILM: 150 OHN, 1\%, 0.2W, TC=T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R5 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, 1\%, \(0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R6 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, \(1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R7 & 307-0445-00 & & RES NTKK, FXD, FI :4.7K OHM, 20\%, (9)RES & 32997 & 4310R-101-472 \\
\hline A4R8 & 322-3114-00 & & RES, FXD, FILM: \(150 \mathrm{OHM}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) TO & 57668 & CRB20FX150EAXIAL \\
\hline A4R9 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, \(1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R10 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, 1\%, O. \(2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R11 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, 1\%, 0.2W, TC=T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R12 & 322-3114-00 & & RES, FXD, FILM: \(150 \mathrm{OHN}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) TO & 57668 & CRB20FX150EAXIAL \\
\hline A4R13 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, \(1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) TO & 57668 & CRB20FX150EAXIAL \\
\hline A4R14 & 307-0445-00 & & RES NTW, FXD, FI :4.7K OHM, 20\%, (9)RES & 32997 & 4310R-101-472 \\
\hline A4R15 & 322-3114-00 & & RES, FXD, FILM: \(150 \mathrm{OHM}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R16 & 322-3114-00 & & RES, FXD, FILM: \(150 \mathrm{OH}, 1 \%, 0.2 \mathrm{~W}, \mathrm{TC}=\) T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4R17 & 322-3114-00 & & RES, FXD, FILM: 150 OHM, 1\%, 0.2W, TC=T0 & 57668 & CRB20FX150EAXIAL \\
\hline A4U1 & 156-0277-00 & & MICROCKT, LINEAR:VOLTAGE REGULATOR & 04713 & LM340T-5.0 \\
\hline A4U2 & 156-0277-00 & & MICROCKT, LINEAR:VOLTAGE REGULATOR & 04713 & LM340T-5.0 \\
\hline A4U3 & 156-1111-00 & & MICROCKT, DGTL :OCTAL BUS TRANSCEIVERS & 01295 & SN74LS245N \\
\hline A4U4 & 156-2357-00 & & MICROCKT, DGTL:OCT LATCH,NONINV,D TYPE FF & 01295 & SN74HCT574N3 \\
\hline A4U5 & 156-1245-00 & & MICROCKT,LINEAR: 7 XSTR,NPN,SI,HV/HIGH CUR & 01295 & ULN2003AN-P3 \\
\hline A4U6 & 156-1111-00 & & MICROCKT, DGTL :OCTAL BUS TRANSCEIVERS & 01295 & SN74LS245N \\
\hline A4U7 & 156-2357-00 & & MICROCKT, DGTL:OCT LATCH,NONINV,D TYPE FF & 01295 & SN74HCT574N3 \\
\hline A4U8 & 156-1245-00 & & MICROCKT,LINEAR: 7 XSTR,NPN,SI, HN/HIGH CUR & 01295 & ULN2003AN-P3 \\
\hline A4U9 & 156-2357-00 & & MICROCKT,DGTL:OCT LATCH, NONINV,D TYPE FF & 01295 & SN74HCT574N3 \\
\hline A5 & 671-1311-00 & & CIRCUIT BD ASSY:FRONT PANEL & 80009 & 671-1311-00 \\
\hline A5D1 & 150-1161-00 & & LT EMITIING DIO:YELLON & 50434 & QLMP 1487 \\
\hline A5D2 & 150-1161-00 & & LT EMITIING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Companent Mo. & Tektronix Part No. & Serial/Assembly Ho. Effective Dscont & Name \& Description & \begin{tabular}{l}
Mfr. \\
Code
\end{tabular} & Mfr. Part Mo. \\
\hline A5D3 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A504 & 150-1161-00 & & LT EMITIING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5D5 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A506 & 150-1161-00 & & LT EMITTING DIO:YELLON & 50434 & QLMP 1487 \\
\hline A5D7 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A508 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A509 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5010 & 150-1161-00 & & LT EMITIING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5D11 & 150-1161-00 & & LT EMITIING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5012 & 150-1161-00 & & LT EMITTING DIO:YELLON & 50434 & QLMP 1487 \\
\hline A5013 & 150-1161-00 & & LT EMITIING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5014 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A5D15 & 150-1161-00 & & LT EMITTING DIO:YELLOW & 50434 & QLMP 1487 \\
\hline A536 & 131-4671-00 & & CONN, RCPT, ELEC: \(1 \times 3,0.1\) SPACING & 80009 & 131-4671-00 \\
\hline A5.JP2 & 131-4950-00 & & CONN,RCPT, ELEC: \(2 \times 13\), PIN STRIP,GOLD, VERT & 80009 & 131-4950-00 \\
\hline A5SW1 & 260-2280-00 & & SW, PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW2 & 260-2280-00 & & SW, PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW3 & 260-2280-00 & & SW, PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW4 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM, SPST, MORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW5 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW6 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW7 & 260-2280-00 & & SW,PUSH BUTTON:NINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW8 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW9 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW10 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM,SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW11 & 260-2280-00 & & SW, PUSH BUTTON:MINI MOM, SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline A5SW12 & 260-2280-00 & & SW,PUSH BUTTON:MINI MOM,SPST, NORM OPEN & 80009 & 260-2280-00 \\
\hline
\end{tabular}

\section*{DIAGRAMS}





GP i \(\mathbf{B} /\) Controller board.


\section*{REPLACEABLE MECHANICAL PARTS}

\section*{PARTS ORDERING INFORMATION}

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

\section*{ITEM NAME}

In the Parts List, an item Name is separated from the description by a colon(:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

\section*{INDENTATION SYSTEM}

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

12345
Name \& Description
Assembly and/or Component Attaching parts for Assembly and/or Component

END ATTACHING PARTS

Detail Part of Assembly and/or Component Attaching parts for Detail Part

END ATTACHING PARTS
Parts of Detail Part
Attaching parts for Parts of Detail Part
END ATTACHING PARTS
Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation.

Attaching parts must be purchased separately, unless otherwise specified.

\section*{ABBREVIATIONS}

Abbreviations conform to American National Standards Institute YI.I

\section*{CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER}
\begin{tabular}{|c|c|c|c|}
\hline Mfr. Code & Manufacturer & Address & City, State, Zip Code \\
\hline 01536 & TEXTRON INC CAMCAR DIV SEMS PRODUCTS UNIT & 1818 CHRISTINA ST & ROCKFORD IL 61108 \\
\hline 28979 & FREQUENCY SOLRCES INC WAVECOM DIV SUB OF LORAL CORP & 9036 WINNETKA AVE & NORTHRIDGE CA 91324-3235 \\
\hline 78189 & ILLINOIS TOOL WORKS INC SHAKEPROOF DIV & ST CHARLES ROAD & ELGIN IL 60120 \\
\hline 80009 & TEKTRONIX INC & 14150 SW KARL BRAUN DR PO BOX 500 & BEAVERTON OR 97077-0001 \\
\hline 83385 & MICRODOT MFG INC GRER-CENTRAL DIV & 3221 W BIG BEAVER RD & TROY MI 48098 \\
\hline 83486 & ELCO INDUSTRIES INC & 1101 SAMUELSON RD & ROCKFORD IL 61101 \\
\hline 93907 & TEXTRON INC CAMCAR DIV & 600187 H AVE & ROCKFORD IL 61108-5181 \\
\hline TK0858 & STAUFFER SUPPLY CO (DIST) & 810 SE SHERMAN & PORTLAND OR 97214 \\
\hline TK1326 & NORTTMEST FOURSLIDE INC & 18224 SW 100TH CT & TUALATIN OR 97062 \\
\hline TK2278 & COMTEK MANUFACTURING OF OREGON (METALS) & PO BOX 4200 & BEAVERTON OR 97076-4200 \\
\hline
\end{tabular}

Fig. 8
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Index Ho. & \begin{tabular}{l}
Tektronix \\
Part No.
\end{tabular} & Serial/Assembly Mo. Effective Dscont & Oty & 12345 Name \& Description & \begin{tabular}{l}
Mfr. \\
Code
\end{tabular} & Mfr. Part Ho. \\
\hline 1- & 105-0865-00 & & 4 & BAR, LATCH RLSE: & 80009 & 105-0865-00 \\
\hline & 105-0866-00 & & 4 & LATCH, RETAINING:SAFETY & 80009 & 105-0866-00 \\
\hline & 105-0932-00 & & 8 & LATCH, PANEL:SIDE & 80009 & 105-0932-00 \\
\hline & 148-0240-00 & & 3 & RELAY, SWITCH RF:COAXIAL, CONN SMA, FEMALE & 28979 & \\
\hline & 148-0241-00 & & 5 & RELAY,ARMATURE:RF COAX,18GHZ,24VDC, SP6T & 28979 & \\
\hline & 174-1981-00 & & 4 & CA ASSY,DP, ELEC:26,28 AWG,4.0 L, 8-N,RIBBON & 80009 & 174-1981-00 \\
\hline & 174-1982-00 & & 4 & CA ASSY, DP, ELEC:34,28 AWG,4.0 L,8-N,RIBBON & 80009 & 174-1982-00 \\
\hline & 175-8156-00 & & 8 & CA ASSY, SP, ELEC:7,26 AWG,3.25 L,RIBBON & 80009 & 175-8156-00 \\
\hline & 175-9555-00 & & 4 & CA ASSY, SP, ELEC:3.26 AWG,4.0 L, RIBBON & 80009 & 175-9555-00 \\
\hline & 210-0457-00 & & 16 & NUT, PL, ASSEM WA: 6-32 \(\times 0.312\), STL CD PL & 78189 & 511-061800-00 \\
\hline & 210-0586-00 & & 32 & NUT, PL, ASSEM WA:4-40 \(\times 0.25\), STL CD PL & 78189 & 211-041800-00 \\
\hline & 211-0101-00 & & 36 & SCREW,MACHINE:4-40 X 0.25, FLH, 100 DEG, STL & 93907 & ORDER BY DESCR \\
\hline & 211-0114-00 & & 4 & SCREW,MACHINE:4-40 \(\times 0.438\), FLH, 100 DEG, STL & 83385 & ORDER BY DESCR \\
\hline & 211-0121-00 & & 8 & SCR, ASSEM WSHR:4-40 \(\times\) 0.438, PNH, BRS & 93907 & ORDER BY DESCR \\
\hline & 211-0244-00 & & 16 & SCR, ASSEM WSHR:4-40 \(\times 0.312\), PNH STL & TK0858 & 211-0244-00 \\
\hline & 211-0711-00 & & 28 & SCR,ASSEM WSHR:6-32 X 0.25, PNH, STL, TORX, T15 & 01536 & ORDER BY OESCR \\
\hline & 211-0722-00 & & 4 & SCREW,MACHINE:6-32 X 0.25, PNH,STL & 80009 & 211-0722-00 \\
\hline & 213-0146-00 & & 8 & SCREW, TPG, TF: \(6-20 \times 0.312\), TYPE B, PNH, STL & 83385 & ORDER BY DESCR \\
\hline & 213-0793-00 & & 8 & SCREW,TPG,TF:6-32 X 0.4375, TAPTITE,FILH & 83486 & 239-006-406043 \\
\hline & 214-3143-00 & & 4 & SPRING, HLEXT: \(0.12500 \times 0.545 \mathrm{~L}, \mathrm{XLOOP}\) & 80009 & 214-3143-00 \\
\hline & 214-3364-00 & & 8 & FASTENER, LATCH:ACETAL, SIL GRAY & 80009 & 214-3364-00 \\
\hline & 214-3406-00 & & 4 & SPRING,FLAT:1.48 L X 0.125 W,CU BE & TK1326 & ORDER BY DESCR \\
\hline & 220-0729-00 & & 4 & NUT BLOCK:4-40 X 0.188,BRS NP & 80009 & 220-0729-00 \\
\hline & 333-3762-00 & & 4 & PANEL, FRONT: & 80009 & 333-3762-00 \\
\hline & 337-3039-00 & & 8 & SHIELD, ELEC:SIDE & TK2278 & ORDER BY DESCR \\
\hline & 337-3626-00 & & 4 & SHIELD, ELEC: SUBPANEL, SI5020 & 80009 & 337-3626-00 \\
\hline & 361-0041-00 & & 16 & SPACER, POST: 0.375 L W/4-40 THRU, AL, 0.25 HEX & 80009 & 361-0041-00 \\
\hline & 366-1516-00 & & 48 & PUSH BUTTON: IVORY GRAY, \(0.3 \times 0.665 \mathrm{H}, \mathrm{SQ}\) & 80009 & . 366-1516-00 \\
\hline & 366-1851-00 & & 4 & KNOB, LATCH: SIL GY, \(0.625 \times 0.25 \times 1.09\) & 80009 & 366-1851-00 \\
\hline & 378-2057-00 & & 4 & LENS,LIGHT:CLEAR, PLASTIC, PIPE & 80009 & 378-2057-00 \\
\hline & 385-0122-00 & & 8 & SPACER, POST:0.937 L W/6-32 THD EA END,AL & 80009 & 385-0122-00 \\
\hline & 386-3657-01 & & 8 & SUPPORT, PLUG-IN: & 93907 & ORDER BY DESCR \\
\hline & 386-4910-00 & & 4 & SUPPORT, FRAME:REAR & 80009 & 386-4910-00 \\
\hline & 386-5984-00 & & 4 & SUBPANEL, FRONT: & 80009 & 386-5984-00 \\
\hline & 426-0724-25 & & 4 & FR SECT, PLUG-IN:BOTTOM & 80009 & 426-0724-25 \\
\hline & 426-0725-24 & & 4 & FR SECT, PLUG-IN:TOP & 80009 & 426-0725-24 \\
\hline
\end{tabular}```

