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Why TR?

Technology Report serves two purposes.
Long-range, it promotes the flow of technical
information among the diverse segments of
the Tektronix engineering and scientific com-
munity. Short-range, it publicizes current
events (new services available and notice of
achievements by members of the technical
community).

Contributing to TR

Do you have an article or paper to contrib-
ute or an announcement to make? Contact
the editor on ext. MR-8934 or write to d.s.
53-077.

HELP AVAILABLE FOR
PAPERS, ARTICLES,
AND PRESENTATIONS

If you're preparing a paper for publication or presentation out-
side Tektronix, the Technology Communications Support (TCS)
group of Corporate Marketing Communications can make your
job easier. TCS can provide editorial help with outlines, abstracts,
and manuscripts; prepare artwork for illustrations; and format
material to journal or conference requirements. They can also
help you “storyboard” your talk, and then produce professional,
attractive slides to go with it. In addition, they interface with
Patents and Trademarks to obtain confidentiality reviews and

to assure all necessary patent and copyright protection.

For more information, or for whatever assistance you may need,
contact Eleanor McElwee, ext. 642-8924. [J

WRITING FOR
TECHNOLOGY REPORT

Technology Report can effectively convey ideas, innovations,
services, and background information to the Tektronix techno-
logical community.

How long does it take to see an article appear in print? That is a
function of many things (the completeness of the input, the re-
view cycle, and the timeliness of the content). But the minimum is
six weeks for simple announcements and as much as 14 weeks
for major technical articles.

The most important step for the contributor is to put the message
on paper so we will have something to work with. Don’t worry
about organization, spelling, and grammar. The editors will take
care of that when we put the article into shape for you.

Do you have an article to contribute or an announcement to
make? Contact the editor, Art Andersen, 642-8934 (Merlo Road)
or write to d.s. 53-077. [J

TECHNOLOGY
REPORT



PRESENT AND FUTURE
COLOR DISPLAY
TECHNOLOGIES FOR

GRAPHICS

John J. McCormick is the manager of Display
Research, part of Tek Labs. John joined Tektronix
in 1965. He has been involved with oscilloscope
designs, A/D converters, and display technology
including liquid crystals and electroluminescence.
Earlier, he was a member of the technical staff at
RCA Laboratories where he worked in quantum
electronics. John received an MS in electrical en-
| gineering from Princeton University in 1965 and a
BS in electrical engineering from the University of
Kansas in 1962.

Computer graphic displays are increasingly using color to
improve productivity in complex applications. But, to ob-
tain color, the user typically must give up something else,
such as resolution. This article describes the commonly
used methods for generating color graphic displays, all of
which are based on the cathode-ray tube (CRT). The arti-
cle also identifies the more important characteristics of
those color displays. After assessing these characteris-
tics, it looks briefly at what some new approaches still in
the laboratory might do to improve color displays. John
presented much of this information at the Conference on
Computer Graphics Applications for Management and Pro-
ductivity (CAMP ’83) in Berlin, Germany, March 1983.

It is the CRT that determines what characteristics a color display
will have. All other factors, such as color display systems, are
subordinate to the strengths endowed and the weaknesses im-
posed by the physics and economics of the cathode ray tube.

Three types of color CRTs are used for graphics displays today.
The shadow-mask dominates, but the penetron and the direct-
view storage tube with color write through enjoy special posi-
tions. (Throughout this article, “display” is used to mean the
CRT and associated hardware.)

Let's look at the tube that Tektronix has never used - the
penetron.

The Penetron Tube

The penetron or penetration tube resembles a monochrome
CRT except that the phosphor is actually two phosphors, in
separate layers. Each layer requires a different electron-beam
energy to activate it. In one method, shown in figure 1, the red
phosphor acts as an energy barrier that the beam must pene-
trate to reach the green phosphor — hence the name penetron.

GREEN
RED PHOSPHOR

PHOSPHOR \

CRT
r— FACEPLATE

LOW ENERGY RED
ELECTRON BEAM &> LIGHT
MEDIUM ENERGY YELLOW
ELECTRON BEAM — LIGHT

HIGH ENERGY — GREEN
ELECTRON BEAM — 5 LIGHT

Figure 1. An example of a penetration-phosphor CRT. By
changing beam energy, one or the other (or both) phos-
hors are activated.

Although it is theoretically possible for such a tube to have three
phosphors, all practical tubes have only two, usually red and
green. A low-energy (6 kV) electron beam excites only the outer
red phosphor and is stopped by the dead layer. A high-energy
beam (12 kV) penetrates the dead layer and excites the green
phosphor.

Although the different beam energies can be obtained in several
ways, two are most common. In one method, the target poten-
tial is switched. In the other, two electron guns are employed,
each at a different potential, and then current is simply turned
on in one or the other gun. In either method, each color re-
quires a different deflection voltage or current to deflect the
beam to a particular point on the screen. This requirement must
be taken into account in the system electronics.

Color Write Through

The second type of color tube is a Tektronix storage CRT that uti-
lizes the penetration effect. This direct-view storage tube (DVST),

shown in figure 2, uses “color write through” (CWT) to provide

color.

The tube consists of a writing gun that operates at a large nega-
tive potential (6 kV) with respect to the target, an array of low-
energy (several hundred volts) flood guns, and a special phos-
phor target.
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Figure 2. The direct-view storage CRT with color write-through uses the penetration technique and the two-gun struc-
ture standard in DVST. A second color is obtained by employing two phosphors instead of just one.

The phosphor is separated from a transparent conductor by an
insulating layer pierced with an array of conductive dots. As in
the penetron, the phosphor is actually two phosphors. In this
case, small particles of each phosphor are mixed together. The
normal green phosphor for storage is mixed with red phosphor
particles surrounded by a dead layer.

The normal storage operation of the DvsTis unchanged by
the special phosphor structure.

The flood guns at ground potential continuously flood the entire
phosphor target with electrons, maintaining it near ground poten-
tial through the action of secondary electron emission. When the
DVST is in the storage mode, the writing gun scans the target
and “writes” by leaving a charge on the phosphor dielectric.
Because the high-energy beam produces a secondary electron
emission greater than unity, the written areas charge to a
moderate positive potential (about 300 V) with respect to the
flood-gun cathode. Therefore, when the flood electrons strike
the written target areas, they cause the phosphor to luminesce.
The unwritten areas, which are maintained near ground poten-
tial by the flood electrons (which charge the screen negatively)
do not luminesce.

To prepare the screen for new information, the written areas are
erased by pulsing the conductive backplate and resetting the
phosphor potential to its lower bistable state.

If the writing-beam current is decreased below some threshold
value, no information is stored, but the phosphor luminesces
briefly as a result of the writing gun’s high energy. This phenom-
enon is known as “write-through.” With the penetration phos-
phor in place, the writing beam’s high energy electrons pene-
trate the red phosphor’s dead layer and excite both phosphors,
thus producing a yellowish green trace. This is color write
through.

Meanwhile, because the flood electrons have much lower energy,
they excite only the green phosphor where the image is stored.
Only one color is available for stored images, but other colors
can be obtained in the non-storage mode or by writing over the
stored trace with the write beam.

Shadow-Mask CRT

Overwhelmingly, the color display of choice is the shadow-mask
CRT. ltis also, in some respects, the most complex.

In the shadow-mask tube, shown in figure 3, three electron guns
are used to address either three primary-color phosphor dots or
three primary-color stripes. The dots and stripes are grouped in
triads, so closely spaced that they appear to the eye as one.
Color results from a proportional mixture of the luminescence
from the individual dots or stripes of the triad. The shadow mask
assures that each beam addresses only its assigned color dot
or stripe. The beams from the red, green, and blue guns must
be angled properly to pass through the mask openings and
strike their corresponding phosphor; all other phosphors dots
are “shadowed.”

SHADOW MASK
DEFLECTION YOKE

ELECTRON

PHOSPHOR
SCREEN

FUNNEL

Figure 3. An example of a shadow-mask color CRT. This
tube dominates the color graphics market today.

Because the dot pattern permits smaller horizontal spacing be-
tween triads, dots are used when maximum resolution is re-
quired. The guns are typically configured in a delta for dots and
in-line for stripes. Although in-line guns can also be used with
phosphor dots, the delta configuration produces smaller spots.
In-line guns, on the other hand, require less convergence
circuitry.

TECHNOLOGY
REPORT



PHOSPHORS
ON GLASS
FACEPLATE

ELECTRON
GUNS

GREEN
g
1
N
\\
SLOTTED e
METAL r
MASK -
PHOSPHORS
ON GLASS
FACEPLATE L/

Figure 4. Shadow-mask CRTs use one of two gun/phos-
phor pattern configurations: (A) Delta gun arrangement with
dot-patterned phosphor; (B) In-line gun arrangement with
strip-patterned phosphor.

Misconvergence typically occurs because the three beams pass
through the deflection yoke at slightly different angles and loca-
tions, and are thus deflected to slightly different points on the
screen. Correction circuitry is necessary to maintain conver-
gence and thereby assure registration of the three primary
colors.

Misconvergence can be avoided by displaying the three primary
colors one at a time, and never simultaneously. This technique
is used in Tek’s Color DAS. The Color DAS displays just three
colors: red, green, and yellow. The CRT is a special with red,
green, and yellow dots.

Color Display Systems

Three methods are commonly used for displaying color graphics
on CRTs: vector storage, refresh vector, and raster refresh.
Vector-storage displays must use the direct-view storage tube.
In theory, both the refresh-vector and the refresh-raster displays
could use either the penetration CRT or the shadow-mask CRT.
However, the refresh vector can more easily be implemented
with the penetration CRT, while the refresh raster is almost exclu-
sively implemented with the shadow-mask CRT.

Refresh Vectors - A typical refresh-vector display system using
a penetration CRT is shown in figure 5. Vectors are drawn by
deflecting the beam between the specified end points of the
vector. An image formed from a combination of vectors can be
rapidly changed by merely changing the vector end points.
Since relatively few points are needed to define images con-
sisting mostly of lines, the dynamic capabilities of this type of
display are excellent. But since the complete image must be
refreshed (repeated) often so that the viewer perceives a cons-
tant luminance, deflection speed usually limits the number of
vectors that can be drawn before flicker becomes a problem.

Because the penetron requires a different deflection-amplifier
gain for each of the two colors, field-sequential operation is gen-
erally used in refresh-vector systems. The red information is writ-
ten in the first field, and then the deflection-amplifier gain is
changed before the green information is written in the second
field. Because producing a third color by registering (combin-
ing) two colors is difficult, a third color (if provided) is usually
produced by an intermediate acceleration voltage in a third
field.

Vector storage - By storing vectors on the screen, the vector-
storage display overcomes the flicker-imposed limit on the num-
ber of vectors that is inherent in a refreshed-vector system. A
typical vector-storage display system using a DVST with color
write-through is shown in figure 6. Although the DVST deflection
system is similar to that of the refresh-vector system, deflection
speed is not critical - when the DVST is set to the storage mode,
green vectors are stored on the screen. Deflection speed, there-
fore, affects only the time required to draw a complete graphics
image. There is no flicker, no matter how many vectors are
drawn. The DVST, therefore, is an excellent display for complex,
intricate images.

By employing the unique capabilities of the DVST with CWT, im-
ages with another color can be added to the display. When the
write beam is operated with reduced current to prevent storage,
a yellow-orange spot is produced on the screen. This non-stored
spot can be deflected to produce refreshed vectors. The num-
ber of vectors in this second color, however, is limited by maxi-
mum deflection speed and flicker.

A third color can be obtained by writing the refresh vector on top
of an identical, stored vector. This mode produces a greenish-
yellow. Unlike the penetron, no misregistrations are encoun-
tered since the same writing-beam potential is used to write in
all modes.
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Figure 5. A typical penetration CRT refresh-raster display system. Because the deflection drives need to change for

each color, field sequential operation is used.
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Figure 6. Block diagram of a vector storage display
system with color write-through capability.

While a stored image must be erased all at once, a refreshed
image can be selectively updated and even provide dynamics —
displaying the motions of machinery, for example.

Refresh raster — The refreshed raster is the most common color
graphic display. An example of such a system using the shadow-
mask CRT is shown in figure 7(a). In this type of display, three
beams are deflected together over the phosphor screen in a pre-
determined raster pattern, as shown in figure 7(b). A bit-map
memory determines when each of the three guns receives cur-
rent, and how much, and thereby how much of each color is
produced at each point (pixel) on the screen.

The information in the bit map must be read out repeatedly at a
rate fast enough to avoid flicker. On the other hand, the time re-
quired to change images on the screen is determined by how
fast scan conversion can reload the bit map. The larger the bit
map, the slower this process is; thus, raster images with many
pixels must trade off speed of interaction and cannot produce
dynamic images. As the number of pixels increases, so does
the rate at which information is clocked out of the bit map. The
deflection speed of the CRT beam and the bandwidth of the
CRT video amplifier must increase accordingly and will ultimate-
ly limit the number of pixels.

Characteristics of Color Graphic Displays

Two characteristics of color displays are particularly important to
graphics users — display quality and information handling.

Display-quality factors are diverse, including optical characteris-
tics such as resolution, edge sharpness, brightness, contrast, and
color quality. In addition, temporal and spatial *noise” add such
undesirable optical characteristics as flicker, jaggies, and moire
patterns.

The second user-important characteristic — information handling -
includes factors such as display size, number of vectors or pix-
els, number of colors, and interactivity.

You must bear in mind that the distinction between the two char-
acteristics is not absolute. The distinctions are technical and ar-
bitrary. The user's perception of image quality is strongly influ-
enced by such “information-handling” factors as size, number
of pixels, and the colors available. Because perception is so im-
portant, Jerry Murch of IDD is continuing his investigations of
user perceptions.

Image-Quality Characteristics

Resolution strongly affects image quality. Because this is so, it is
particularly important to precisely understand what resolution is —
and is not. In discussions of raster displays, the term resolution
is often used incorrectly as synonymous with the number of scan
lines (addressability).

Resolution is the display’s ability to resolve - that is, separate -
two closely spaced points or lines.

Resolution is the essential characteristic that determines image
sharpness. Resolution is independent of display size, but smaller
displays need higher resolution than large displays to resolve an
equal number of lines or pixels.
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Figure 7. (A) Block diagram for a typical refresh-raster color display system. (B) Raster scanning pattern. Raster lines are
written from top to bottom, with retrace a small fraction of the total field time.

Addressability, on the other hand, is the display’s ability to posi-
tion lines or pixels anywhere on the screen. A display’s address-
ability can exceed its resolution; this will not affect the resolution
of the display. However, if the addressability is not high enough,
the resolution of complex images will suffer, since some image
points will either not be presented or they will be misplaced on
the screen.

The resolution of vector displays is primarily a function of the
electron-beam spot size as vector-generated images consist of
lines equal in width to the spot. (The current distribution in an
electron beam usually is Gaussian and circularly symmetrical,
as shown in figure 8.)

B

Bo

A B -1
1.0 By a2

W W=1.670
50%

37%

>

Figure 8. The Gaussian spot profile is the primary factor
in image resolution.

Although several techniques are used to specify the resolution
of displays, the modulation transfer frequency (MTF) method is
the most definitive because it takes into account not only the
spot size, but spot shape and the minimum spacing between
spots too.

Images can be thought of as being made up of a set of line pairs
of different spacings (spatial frequencies) and contrast, much
the same as thinking of electrical signals as a set of sine waves
of different amplitudes and frequencies.

The MTF is a measure of how well a display passes the different
spatial frequencies in an image. MTF can be plotted as contrast
versus spatial frequency. Obviously, at spatial frequencies where
the MTF is large, there is good resolution. Conversely, the reso-
lution is poor for spatial frequencies where the MTF is small. The
profile of the MTF provides information about how sharp the line
edges appear, and hence how good the resolution of the dis-

play is.

The method generally used to measure CRT resolution is to dis-
play a raster of lines, and then shrink the raster until the lines
cannot be resolved. At this point, dividing the raster height by
the number of lines yields a measure of how close two lines can
be placed and still provide an acceptable image. But this method
gives only the upper limit on the MTF profile - the shape of the
spot must be known before the MTF can be derived. Figure 9
shows the line spacing obtained with this method for a Gaussian
spot shape and an idealized spot shape, which plots as a rec-
tangle. In practice, the spot is somewhere between rectangular
and Gaussian. (Whatever the shape of the current-distribution
plot, the perceived CRT spot is circular.)

In the case of the DVST, the target threshold for storage shapes
the Gaussian distribution of the writing beam current into a more
rectangular spot. This change produces a sharper line edge than
refresh-vector displays can achieve. The result is a crisp edge
and the appearance of very high resolution for stored-line-type
images.

In both refresh-vector displays and vector-storage displays, reso-
lution is improved by trading off brightness for a smaller spot
because spot size is usually the limiting factor and lower beam
currents lead to a smaller spot. However, it is possible to make
these displays exceed the eye’s resolution at normal viewing
distances.
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Figure 9. Scan-line spacing determined by the ““shrinking-raster’’ method for (A) a Gaussian beam profile, (B) an

idealized rectangular beam profile.

In shadow-mask CRTs, the resolution of color raster displays is
determined not only by the electron-beam spot size, but also by
the pitch of the shadow mask, the number of scanning lines, and
the bandwidth of the video circuit.

In raster displays, the resolution in the vertical axis is a function
of the spot size, the number of scan lines, and the spacing of the
shadow-mask holes. The limiting effects of raster-line spacing
and shadow-mask holes follow the Shannon sampling theorem.
The scanning line-pair frequency must be at least twice that of
the highest spatial frechency in the image to be presented; 2.5
to 3 times is optimum. 2

If the raster line spacing is smaller than the shadow-mask pitch,
then the mask pitch is the limiter. Conversely, if the spot size is
larger than the shadow-mask pitch, then spot size will be the
primary factor limiting resolution. Ultimately, the spot size limits
the resolution of shadow-mask CRTs; the spot size is essentially
determined by the shadow-mask pitch and is set so as to avoid
image pattern noise caused by interference effects between the
raster lines and the periodic pattern of the phosphor. A Gaus-
sian spot size (full width at half maximum) of between 1.2 and
1.5 times the shadow-mask pitch is usually required. When the
optimum spacing (for contrast) between raster lines is used, the
number of resolvable scanning lines can be determined as will
be seen later.

Resolution in the horizontal axis is determined not only by the
spot size but also by the bandwidth of the video amplifiers,
since the time between adjacent pixels is given by

t(pixel) = T{rame)

where T(frame) is the “active” frame time, Nv is the number of
scan lines and Nh is the number of pixels per horizontal line. As

the number of pixels (Nv x Nh) increases, so does the band-
width required of the video circuits. To reduce the bandwidth re-
quired, some raster displays use a 30-Hz interlaced raster; how-
ever, this approach produces more flicker than a 60-Hz non-
interlaced display.

Addressability — Good addressability is necessary for (but does
not guarantee) high resolution and many vectors or pixels. Ad-
dressability is the ability to position a line or pixel to a given place
on the screen. The vector displays have inherently high address-
ability, limited only by digital-to-analog (D/A) converters and
noise. For example, a vector display capable of resolving 1000
lines may be able to position vector end points on a 4000 x 4000
grid. Generally, to assure a smooth line, the D/A converters limit
addressability to about four times the resolution.

Raster displays are more limited in addressability due to the fixed
pattern of the beam. The size of the bit map limits addressability
because the number of pixels is limited. Useful bit-map size is
determined by the number of scan lines and the bandwidth of
the Z-axis video ampilifier. The number of scan lines limits the ad-
dressability in the vertical dimension; the video bandwidth limits it
horizontally. Increasing the number of pixels in either the vertical
or horizontal dimension requires a corresponding increase in the
pixel clock rate and a faster bit-map memory system.

Increasing the number of scan lines and pixels per line increases
the addressability of the display system, but does not increase
image resolution unless the spot size is reduced accordingly
and the video bandwidth increased. Alternatively, addressability
can be increased by increasing the display size rather than re-
ducing the spot size; however, the video bandwidth still must be
increased since bandwidth depends on pixels per line and not
display size.
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Image artifacts - While vector displays present relatively smooth
lines, raster displays produce artifacts in addition to the desired
image. These artifacts are unwanted images caused by the
sampling effects of the raster pattern. This sampling produces
high spatial frequencies on the display that do not exist in the in-
tended image. If the viewer sees the higher-frequency artifacts
(called aliasing), they appear as noise on any edges oriented
other than vertically or horizontally. It is aliasing that makes a
sloping line look like a staircase instead of a smooth line. This
staircase is often called a “jaggie.”

Moire — Moire is an artifact, produced by either the interference
between the frequencies of image lines or the interference of the
raster lines with the sampling frequency of the shadow mask.
When the spacing of raster lines is close to the spacing of the
mask, then brightness varies periodically across what should be a
uniformly colored field unless the spot size exceeds the shadow-
mask spacing by a sufficient margin. Generally, the spot size
chosen is from 1.2 to 1.5 times the shadow-mask pitch, with the
raster spacing about equal to the spot width. Resolution depends
upon spot width, which is related to the mask pitch. Therefore,
the shadow-mask pitch is the primary fundamental limitation to
the resolution of a shadow-mask display.

Color Quality Characteristics

The quality of color includes brightness, contrast, purity, and
convergence.

Brightness — The brightness (B) of a CRT is determined accord-
ing to the following relationship:
ke IV

nA
where k is the attentuation factor due to the glass faceplate and
the shadow mask, o is the phosphor efficiency, | is the time aver-
‘age of the beam current, V is the electron-beam accelerating
voltage, and A is the scanned or written area.

B=

The brightness of the penetration CRT in a refresh-vector system
can be quite high, limited only by the beam current and the cur-
rent saturation of the phosphor. (The efficiency « decreases
with high beam current.)

The DVST with color write through, on the other hand, has limited
brightness in both the storage and refresh mode. The stored-
image brightness is limited because only the low-voltage flood
electrons excite the phosphor. The color refresh image bright-
ness is limited, although it is produced by the high-voltage
writing beam, because the writing beam current must be kept
low to prevent storage.

The brightness of a color raster display, although quite good for
low-resolution CRTs, is limited by shadow mask interception of
about 80 percent of the beam current. The fact that there are
three beams partially compensates for this loss.

Contrast - Two mechanisms limit the contrast of CRT displays:
intrinsic and extrinsic. Intrinsic contrast is the contrast of the writ-
ten parts of the image relative to the unwritten parts as measured
in a dark room. The intrinsic contrast, Ci, can be defined as the
ratio:

Bw

Ci=5onw

where Bw and Bunw represent the brightness of the written and un-
written parts of the screen, measured in a darkened room. This
contrast is quite high for both the refreshed-vector and raster
color displays. The DVST has low intrinsic contrast because the
unwritten areas of the target receive some excitation from the
flood guns.

The other type of contrast - extrinsic contrast (Cex) relates better
to the “real-world.” It is given by:

Bw+ R

Cex=ginw+R

where R is the reflected and scattered ambient light off the phos-
phor and screen surface.

Because all three types of color displays reflect and scatter about
the same amount of room light, their contrasts are primarily deter-
mined by their brightness. Extrinsic contrast can be improved
by placing a filter in front of the display screen. Such a filter at-
tenuates emitted light once while reflected light must make a
“double pass” and is therefore attenuated twice.

More effective are selective filters designed to absorb room light
while transmitting the light emitted from the display. The CRT itself
can have either an "“anti-glare” coating applied to the front sur-
face or a matte finish to prevent specular reflections.

Color Purity and Convergence - Color purity generally refers to
the uniformity of color over a large area of the screen. Purity is a
measure of whether or not the primary colors are spectrally pure.

Purity is not much of a problem with the penetron and the DVST/
CWT, but it can be a problem in the shadow-mask CRT. To pro-
duce pure color, each of the three beams should excite its en-
tire phosphor dot — and only its dot - when the beams pass
through the shadow-mask hole properly.

In a shadow-mask CRT, if some electrons meant for the red dot im-
pinge upon the green dot, then the red is not pure. Slight changes
in the shadow-mask position due to manufacturing tolerances or
thermal distortions can cause one or more beams to miss parts
of their respective color dots. The resulting differential loss at one
triad causes the purity problem.

Convergence, on the other hand, is a measure of whether or
not each primary color image is in perfect registration with the
other two primary color images. Convergence usually differs
from place to place on the display screen.
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Misconvergence in penetration refresh-vector displays occurs
because the electron beam operates at different energies; regis-
tration requires different deflection currents. Such deflection-
factor matching is difficult because of hysteresis in the deflection
yoke and the random nature of the deflection currents, among
other things. Convergence is not a problem with the DVST/CWT
displays due to both the limited nature of their color and because
all colors are written by the same beam.

Misconvergence in shadow-mask CRT raster displays is caused
by the fact that the three color guns pass through the deflection
yoke differently and are thus exposed to slightly different deflec-
tion fields. The error is a non-linear function of the deflection cur-
rent, and is difficult to eliminate. A compromise is usually ac-
cepted. Both static and dynamic corrections are used. These
must be periodically adjusted because of circuit drifts and other
factors.

Several graphics terminals provide the user with a keyboard
convergence adjustment, but until convergence adjustment is
automated, or its need eliminated, the user will continue to be
inconvenienced by this annoying characteristic of shadow-mask
CRT displays. (The color display of the 4115 uses a feedback
method to automatically adjust convergence.)

While convergence accuracy on the order of 1/4 pixel is desir-
able for good image quality, most displays suffer from more
than one pixel worth of convergence error somewhere on screen.
As the resolution of the shadow mask is increased, the problem
of misconvergence becomes worse and elaborate correction cir-
cuits and procedures will be required.

Image Information Handling Characteristics

Size — The maximum size for graphic displays using penetration
CRTs, DVST, and shadow-mask CRTs is about 25 inches (635 mm)
diagonal. The penetron and DVST can also be made quite small
(6 inches, or 152 mm, diagonal) and, by having a small spot, still
provide many vectors. The number of vectors in a refresh-vector
system is not limited by the resolution, but by the deflection speed
required to write vectors at a flicker-free rate. To display many re-
freshed vectors, the deflection system must have very high band-
width (at the expense of power). The DVST avoids the need for
high power by storing many vectors, but faces the same trade
off for refresh color write-through vectors.

The shadow-mask CRT, however, encounters serious trade-offs
when attempting to make the size either quite small or quite large.
Since the shadow-mask pitch sets the spot size, which then de-
termines the resolution, smaller CRTs must have a smaller mask
pitch to present the same number of resolvable raster lines as the
larger CRTs. There appears to be an ultimate limit to how small
the mask pitch can be made: about 0.2 mm for CRTs 13 inches
(8330 mm) diagonal or smaller.

As the size of the CRT goes up, it is difficult to maintain a small
pitch in the mask; practical, cost-effective 19-inch (483-mm) di-
agonal CRTs probably will not have a shadow-mask pitch smaller
than 0.25 mm, although some Japanese manufacturers claim
that 0.21 mm is possible. Currently, 0.3-mm-pitch shadow-mask
CRTs are commonly used for high-resolution 19-inch (483-mm)
graphics displays.

The most resolvable pixels that can be displayed is determined
by translating the mask pitch into the required spot size — about
1.2 times the mask pitch - then dividing the line spacing (ap-
proximately equal to the spot size) into the “usable” vertical and
horizontal dimensions of the CRT. Figure 10 shows how the
number of pixels varies with the size of the CRT. It can be seen
that a shadow-mask CRT of any size is not likely to be capable
of displaying more than about 1150 x 1500 resolvable pixels.
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Figure 10. Number of resolvable pixels in shadow-mask
displays as a function of screen size. Displays beyond
1000x1400 resolvable pixels are unlikely.

Number of colors — The penetron CRT is limited to at most three
distinguishable colors; the DVST with CWT also is limited to three
colors - but both are typically used as two-color tubes. Only the
shadow-mask CRT offers a full range of colors. Figure 11 shows
the color gamut of each of the three types on the CIE color dia-
gram. The color gamut of the shadow-mask CRT is pretty well
determined by the availability of phosphors for the three primary
colors (red, green, and blue). These color gamuts will be reduced
in the presence of high ambient lighting.

Summary and Future Possibilities

Of the three types of color CRTs used for graphics, the DVST
and shadow-mask raster dominate.
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Figure 11. The color gamut for penetron, DVST, and
shadow-mask CRT displays. All but the shadow-mask CRT
produce limited color displays.

Although the penetron refreshed-vector display is found in some
specialized graphic displays — such as avionics displays — it isn’t

used much in computer graphics because of its cost and severe
limitations. The penetron can present only a few colors, and it is
inherently difficult to converge.

The DVST with color write through has been found to be very
useful in displaying complex images in which color is needed
only to highlight areas of the display.

The shadow-mask raster display is by far the most prevalent type
of color display in computer graphics applications. Although
higher resolution and better convergence are desired, the pri-
mary industry emphasis seems to be on better visual ergonom-
ics and better interactivity. In raster displays, it is the frame buf-
fer that limits the interactivity, that is the updating and changing
of images.

In the future, a few new technologies might significantly improve
resolution, convergence, and size. Let’s look briefly at these
next.

Limited Color Displays

Two alternatives to the penetron look very promising. These
should allow highly interactive, high resolution, multicolor im-
ages consisting of refresh vectors (raster displays are also
possible).
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Figure 12. Current-sensitive color CRT. Physically similar
to the penetron, this CRT differs by selecting color by cur-
rent level changes rather than by changing accelerating
voltages.

The first alternative, being developed by SONY, is the current-
switched color CRT!3 shown in figure 12. Like the penetron, this
limited color display uses a mixture of two phosphors; each pro-
duces a different color. Because the two phosphors differ in
current-saturation characteristics, as beam current increases the
displayed color changes from red to green. The red phosphor
saturates, and all further light comes from the green phosphor.
As in the penetron, the spot size can be small; however, since
the electron-beam accelerating voltage is identical for both col-
ors, there is no problem with registering colors.

A continuum of colors can obtained by beam-current modula-
tion. This modulation can be performed a point at a time or field-
sequentially. However, the current-switched color CRT, like the
penetron, produces a a narrow-range of colors. Another short-
coming is that color and brightness are difficult to control
independently.

The second alternative to the penetron, being developed here
at Tek, also employs a simple, one-gun “monochrome” CRT
(see figure 13). It is a field-sequential color display that uses a
liquid-crystal color switcht*%. A monochrome CRT with an un-
patterned multicolored phosphor is placed behind an electrical-
ly controlled color filter. By synchronizing the red information
written on the CRT during field number one with a color switch
set to pass only red light, and likewise the green information in
field number two with the switch passing green light, a two-
primary field sequential color display can be produced.

Writing information in both fields produces yellow. Varying the
electron beam current in each field makes any color combina-
tion of the two primaries possible. There are no convergence
problems, and the resolution is limited only by the size of the
spot.

A limitation is a somewhat limited viewing angle, which makes
it most suitable for use by just one or two viewers.
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Figure 13. Block diagram of a liquid-crystal-switched field-sequential color display.

Full Color Displays

Optical projection systems are another possibility for producing
large, high-resolution color displays. Such systems converge
the output from several single-color projection displays. A light
valve may be used to gain sufficient brightness. The liquid-
crystal light valve!® (shown) in figure 14 is an example of such
a device.
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Figure 14. A liquid-crystal light-valve projection system.

The low-current electron beam writes a charge on a liquid-crystal
target in the CRT. Polarized light is projected through the light
valve and an analyzer to the screen. Three such light valves
would provide a full-color display without the size and resolution
limits of the shadow-mask CRT.

Conclusion

Clearly, the shadow-mask raster display dominates the color
graphics market today. The good image and interactivity inher-
ent in this technology have gained it wide acceptance. However,

color does not replace resolution in all applications, and the de-
mand for both full color and very high resolution is pushing
shadow-mask technology to its limits. Although alternatives pro-
viding higher resolution are emerging, it is not yet possible to pre-
dict what technology will replace the shadow-mask CRT. It ap-
pears, however, that the liquid crystal color shutter display be-
ing developed by Tek has the best chance of all the contenders.
g
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This article presents an overview of automating the design
and implementation of software. This material was pre-
pared for Northcon.

The increased number of computers has caused a severe short-
age of trained software professionals. The U.S. Department of
Defense! estimates the gap between demand and supply is be-
tween 50,000 to 100,000 software professionals. Furthermore
they suggest that the gap will widen to between 860,000 and
1,000,000 software professionals by 1990. See figure 1.
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Figure 1.

Clearly, the United States will not have enough software profes-
sionals. So the professionals we now have must become more
productive. Productivity can be increased by improved manage-
ment techniques, appropriate software engineering methodolo-
gies, better eduction, and by better tools. This article will focus
on increasing programmer productivity through new tools.

Over the past 30 years, the computer industry has discovered a
number of tools that increase a programmer’s productivity. The
invention of the compiler provided one of the early productivity
increases. More recently the UNIX? system, with its many sys-
tem utilities and its unique way of connecting them together,
provides significant time savings for many programming
applications.

Each of these discoveries provided a way for programmers to
work at a higher level of abstraction, that is, in a more problem-
oriented domain where they could ignore implementation details.
Future productivity increases will result from even higher levels
of abstraction and from automating more of the tedious aspects
of programming.

Three Automation Approaches

This article discusses three approaches to automating the design
and implementation phases of the software development task:
(1) employing prebuilt software components, (2) employing
program generators, and (3) directly executing program
specifications.

Software Components

Using previously built software components is a simple way to
avoid some design and implementation effort. A small industry
has sprung up to supply these components for the more popu-
lar microprocessors. A software component is a routine designed
to solve a common software task. The component has documen-
tation to aid its integration into a particular application, as well as
extensive performance data and usually some test cases to show
that the program works. Components range from simple math
routines such as FPAKS to real-time operating systems such as
MTK, VRTX, and MTOS*®. Typically, software components are
basic functions at the lowest levels of many microprocessor-
based products.

There are several difficulties that must be solved before a large
market for software components can develop: user differentia-
tion between similar products; assuring that the component works
correctly; and determining whether the component meets one’s
needs (for example, is a real-time operating system fast enough
for a certain application?). The software-component industry must
establish industry-wide standards for documentation, interfacing,
data structuring, and performance assessment. Ideas for solu-
tions to these problems can be found by studying the creation
of the integrated-circuit industry.

Some order may be brought to the software-components indus-
try when the new Department of Defense language Ada’ be-
comes available. The Ada language has a special mechanism
called packages that allows a programmer to describe what a
software component will do and to describe an interface without
showing how the component is implemented. The idea is that
the package “encapsulates” the data used along with the rou-
tines that modify that data in one unit that is hidden from the
user. Programmers can freely use the component but, since
they do not know how it is implemented, they cannot abuse the
component by exploiting its implementation. Ada also provides
a generic feature that enhances the software component ap-
proach by allowing one algorithm to be used for different types
of data.
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While employing software components can significantly in-
crease productivity, few programmers have tried it. One block-
age is an aspect of the not-invented-here syndrome — program-
mers shy away from using someone else’s code because read-
ing and debugging foreign code is painful. They are also con-
cerned that the code will not exactly fit the specifics of the proj-
ect or that it will be so general as to be inefficient. (We found
that programmers who are the most receptive to using software
components are those with an unreasonably short schedule.)

The use of software components has the potential for large pro-
ductivity increases. To this end, a number of researchers have
extended the idea to include tools that not only keep track of pre-
viously built software components but that also support software
design by encouraging programmers to decompose a program
into a small set of subprograms. Decomposition is done in such
a manner that, if all the subprograms are finished, then the over-
all program is completed. This is using the mathematician’s strat-
egy of reducing the problem to a previously solved problem. If a
designer reduces a program into subprograms and those sub-
programs have already been completed, then the tools notify
the designer that further decomposition is unnecessary.

Two systems employing the “previously solved” strategy are
USE.IT8 and SARA®. Each of these systems is tightly coupled to
a particular design methodology to increase productivity by
guiding the designer to work in a disciplined manner. Since
these methodologies are based on mathematics, these tools
can partially verify that the decomposition of a program into
subprograms was done correctly. While these tools will not find
all design errors, they nicely complement the human review; the
computer-based tools doing the tedious repetitive checking
while the person looks for conceptual errors.

Systems like USE.IT and SARA are not as popular as they should
be, because the methodologies connected with these tools take
quite a bit of practice. Before the value of the system is appreci-
ated, the typical programmer is likely to give up trying to master
the methodology. However, as more disciplined methodolo-
gies'® are taught in universities, this problem will be lessened.

Even if a tool is not used to keep track of software components,

it can still significantly increase productivity. Early work suggests
software components can reduce the software development cy-
cle by up to 50 percent.

Program Generators

The second type of radical productivity increase can come from
program generators. A program generator accepts a descrip-
tion of how a program is to behave and then produces the pro-
gram. A compiler compiler is an example of this idea. The syn-
tax of a language is fed into a compiler compiler, and a syntax
parser is produced’!. Menu generators and database-report
generators are other examples of tools that fall into this
category2.

Presently, these tools are used only by a few experts. Database
experts use report generators, and compiler designers make
good use of compiler compilers. However, these tools can aid
all sorts of software development beyond the intended use. For
example, a compiler compiler can rapidly generate the human-
interface portion of many software applications or generate por-
tions of network protocol software! The applications are limited
only by the user’s imagination and the knowledge of how to use
these tools.

Program generators are best used for a class of problems that
are well understood and whose variations can be described by
a formal language. Software components are not radically dif-
ferent from program generators; in fact, one can argue that
some simple program generators are nothing more than a deci-
sion tree that helps a user find the right reusable software com-
ponent. A better way to view these tools is as a continuum. Ad-
vanced software-component systems begin to look like program
generators. Likewise, the distinction between advanced pro-
gram generators and executable program-specification systems
is hazy.

Executable Program Specifications

Engineering research

The expert-systems and knowledge-based engineering research
in the artificial-intelligence field has lead to impressive demon-
strations of executing a user’s specification. Specifications are
constructed in a rigorous language or in English and a program
evaluates the specifications and, where the specification is un-
clear, asks the user for more information. This process contin-
ues until the system can execute the specification. One example
of this tool is the PSI Program Synthesis System 3.

The PSI system is composed of two phases: the acquisition
phase, which interactively acquires the high-level specification
of the program, and the synthesis phase, which produces an
optimized program. Figure 2 shows a dialogue between the PSI
system and a user who is developing a program named CLASS.
The program will input a sample set of items (for example, a list
of job qualifications). Then the program repeatedly inputs a trial
set (for example, applicant qualifications) and prints “fit” or “didn’t
fit” accordingly. The program terminates when the word “quit”
is typed in place of the trial input.

During this dialogue, the acquisition phase developed a pro-
gram model that serves as input to the synthesis phase. The
synthesis phase transforms the program model into a legal pro-
gram. The present system produces LISP code, but research
has shown that a block-structured language such as Pascal
could be generated instead. The synthesis phase also performs
program optimization using cost-of-execution time and memory
size as decision factors. The optimization is extensive; even the
data structures are analyzed during the optimization phase (for
example, to determine whether an array or a hash table is more
efficient for the particular task).
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Figure 2. Research in the artificial intelligence field has
lead to impressive demonstrations of executing user
specifications. In this dialog between the PSI system and
a user the process develops an executable specification
(from reference 13).

While this work is still in a research mode, enough is known for
to begin applying this technology to certain problems.

Conclusions

There is a large shortage of software professionals. The need is
so large and is growing so fast that the demand cannot be met
just by training more people. Instead, software professionals
must find ways to be more productive. Firms should start pilot
projects to demonstrate the viability of using software compo-
nents in their particular applications and measure the effects on
productivity.

In many cases, program generators can be used for unique ap-
plications quite different from their intended use. However, this
will only happen if the average software engineer has experi-
ence with these tools; creative training is needed.

12.

13.

) ) Finally, we recommend that the expert systems and automated
PSI: What is the name of the program you want to write? programming work in the artificial-intelligence field be closely
USER: CLASS monitored and explored by industry’s applied research groups.
PSI:  Does CLASS have a special program type? .
a PRSIEIETRD P For More Information
USER: Classification. . ,
PSI:  Please describe CLASS. For more information, call Norm Kerth, ext. 627-5379. O
USER: CLASS first inputs a concept. Then it repeatedly ac- References
cepts an input scene from the user, classifies it based n e ¥
on whether or not it fits the concept, and outputs this 1. Strateg'y.for a DOD SOﬂWare |nl'[latlve, RADC//SIS, vol. 1,
classification to the user. p. 6, Griffiss AFB, NY 13441,
PSIl:  What is the structure of the concept? 2. UNIXis a trademark of Bell Laboratories.
USER: A concept is a collection of relations. Each relation is 3. FPAC - United States Software Corporation, Portland,
a string. Oregon.
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Al Pl ioIE R diEs o g 4. MTK - United States Software Corporation.
USER: Stop when the user types “quit” instead of a scene. 5. VRTX — Hunter & Ready. Palo Alto. Californi
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USER: The same as concept. 6. MTOS - Industrial Programming, Inc., Jericho, New York.
PSI:  Please define what it means for a scene to fit a 7. Ada is a trademark of the United States Department of
concept. Defense.
USER: A scene fits a concept if all the relations in the con- 8. Allen Razdow, Ron Hackler, and Richard Smaby, “Automatic
cept are in the scene. Code Generation Steps up Software Productivity,” Elec-
PSI:  What is the format of the classification output? tronic Design, Dec. 23, 1982.
USER: Output “fit” if the scene fit, “didn’t fit” if it didn’t. 9. Maria Heloisa, “The Use of a Module Interface Description
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Pascal’'s prominence in microcomputer software design is not ac-
cidental. As a high-level language, Pascal offers considerable
machine independence, allowing programming skills to be readi-
ly transferred from one processor to another. As a structured
language, it easily accommodates the “top down,” or structured
design and implementation approach, which has become a vital
tool in organizing and controlling today’s large software projects.

Yet despite these formidable assets, conventional Pascal is, figu-
ratively speaking, full of holes in the support it extends to the
microcomputer software engineer. During several phases of the
microcomputer software design cycle, the programmer must
resort to assembly code or complex system command files to
get the job done. Often these "“non-Pascal” interludes consume
much labor and become a major obstacle to improving design
productivity.

To close these costly gaps in high-level software design support,
MDP developed a new approach called the Pascal Language
Development System (LANDS). Pascal LANDS is the first high-
level microcomputer software design support to extend through
the entire software design cycle, from initial source code editing
to the final debugging in the prototype hardware environment.

This article will show how LANDS supports each major phase of
microcomputer software development, including editing, com-
piling, integrating and debugging.

Language Directed Editor Cuts Recompiling

Since Pascal is a compiled language, syntax errors entered dur-
ing initial source code editing can ultimately be quite costly in
terms of time. In a conventional software development system,
syntax errors creep undetected into the source file, where they
wait to wreak havoc during compilation. Once the error is flagged
by the compiler, the error must be located in the source code,
modified, and a new source file reflecting the repair must be
compiled all over again (figure 1). The result is a considerable
drain, both on human and system resources.

CONVENTIONAL
EDITOR

1st EDIT
SESSION

COMPILER =

2nd EDIT
SESSION

A 4

2nd
COMPILER
RUN

! (“N” ITERATIONS)

OBJECT
CODE

Figure 1. Because conventional software development
systems allow syntax errors to creep undetected into the
source file, conventional editors such as this are a time-
consuming necessity.

The LANDS Language Directed Editor (LDE), part of LANDS,
eliminates source code errors long before they reach the com-
piler. LDE has a built-in understanding of Pascal syntax and flags
any syntax-related errors during source code entry and editing
(figure 2). Our studies show that LDE eliminates up to 20 per-
cent of initial coding errors and reduces later code changes by
more than 50 percent. For user convenience, the syntax check
can be performed at either the line level, the procedure/function
level, or the program level. When an error is flagged, the user
receives an immediate prompt message locating and explaining
the error.

The LDE includes other Pascal-specific benefits. Program lines

are automatically indented to their correct position to reflect pro-
gram structure. Also, there is extensive “cut and paste” capabil-
ity, which allows blocks of text to be easily moved, deleted, and
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Figure 2. The LANDS Language-Directed Editor (LDE)
“understands” Pascal syntax. The LDE can check syntax
at the line, procedure/function, or program level, thus the
editor can eliminate some initial coding errors. Later code
changes are cut in half.

copied. Since LDE is screen-oriented, the user enjoys easy graph-
ic interaction during editing. In addition, LDE allows all Pascal
key words to be abbreviated, which reduces the chances of
misspelling them during entry.

LANDS Compiler Targets on uC Design

Most Pascal compilers are excellent for producing code for chan-
neling high-level data flow, but lack the enhancements for con-
trolling the machine-level operations vital to many microcom-
puter applications. And they also lack the features needed to
support the gradual transfer of I/0O functions from the micropro-
cessor development system emulation environment to the proto-
type hardware.

The LANDS Pascal compiler fills these two support gaps through
enhancements aimed at team-design of microcomputer soft-
ware. The LANDS compiler permits modular compilation; a
large program can be divided into a series of modules, and
each module coded and compiled separately. A module can
contain both procedures and functions that transfer data be-
tween modules and the main program. This allows procedures
and functions to be put into modular groups that form a top-
down hierarchical approach to software planning and organiza-
tion. This approach, also known as structured design, is a power-
ful tool when properly applied to large programming efforts in-
volving many team members.

Pascal LANDS includes enhancements aimed at hardware-level
code manipulations. These include the ability to manipulate data

at the bit level through boolean functions, and to directly assess
I/0 ports. Also, through the enhancements, any variable can be
assigned an absolute location in memory, not subject to modifi-
cation at link time. In addition, interrupt processing procedures

can be written in Pascal.

The LANDS Pascal compiler also has sophisticated provisions
for simulating /O during the early debugging, when the soft-
ware execution is being emulated in the development system
environment. During this state, the program may reside in the
debug system memory and execute on a processor identical in
function to the one targeted for the prototype. Because there
may not yet be a physical connection to prototype hardware,
there are provisions to simulate I/0O operations using develop-
ment system resources, such as the terminal, disk or printer.

From a software standpoint, I/O simulation requires that tempo-
rary code be inserted for simulated I/0O, later to be replaced by
code that services the actual prototype I/0. The modularity of
Pascal LANDS allows all simulation code, such as procedures
and functions, to be grouped into one or more modules, that
are later replaced with module(s) containing the actual proto-
type 1/0 code. This modular method is much less cumbersome
than “patchwork” insertions at locations scattered throughout
the program.

The LANDS Pascal compiler includes an optimizer, which is op-
tionally executed. It uses sophisticated optimization techniques
to reduce the number of instructions in the compiled object code.
The result is a program that requires less execution time and
memory space, which are both areas of critical concern in many
microcomputer design projects. In typical test cases, we were
able to reduce code by as much as 37 percent.

Integration Control System
Interfaces Software, Hardware

Although a Pascal compiler produces code targeted to a specif-
ic processor, it does not complete the transition from the high-
level language to code executable in the prototype hardware
environment. First off, the compiler can’t take into account the
hardware options associated with contemporary 16-bit micro-
processors. For instance, a processor might have an optional
co-processor to handle floating point operations, or address
large or small data spaces. All these options must be reflected
in the run-time support library, with the appropriate modules
called in at link time, which involves generating a complex linker
command file.

Also, the linker command file generated by the user must in-

clude information that places the object code correctly within

the prototype memory map, with instructions and constants in i
their proper ROM spaces, and global variables, heap and stack
in RAM. In addition, some applications call for certain vectors to
be copied from ROM to RAM during initialization. In any case,
compiler-imposed requirements of this sort make the linker com-
mand sequence increasingly complex, laborious, and much
more prone to error.

TNRI08 7



f_——_[__—l M iNnreRRUPT |
CoMLL? RUNTIME |, .| RUNTIME | INITIALIZATION/ | ARG |
i SUPPORT A SUPPORT Z | ReseTcope | | M35 |
] J L__—f_—J L__T__J
A n{ M =
LINKER
LINKER |« = COMMAND 14— HARDWARE
| COMMAND | SPECS
L__=- _
v
EXECUTABLE
LOAD
FILE

Figure 3. At link time, the user must place the object code in the prototype’s memory map. The old-style linker com-
mand file does this partially with complex user-supplied data. Some applications require certain vectors to be copied
from ROM to RAM during initialization. In this figure, the blocks drawn in solid lines represent existing software; broken
lines represent user-furnished software. Contrast this time-consuming, laborious process to the improved process

shown in figure 4.

Besides linking requirements, the user must generate assembly
code that handles hardware-specific operations such as initiali-
zation, reset and low-level interrupt handling. Initialization/reset
code usually involves accessing and clearing individual regis-
ters within the processor and other devices, and therefore can
only be accomplished through assembly code. Interrupt handling
involves the hardware’s initial response to the interrupt asser-
tions, and therefore requires assembly code to perform such
tasks as identifying the interrupt source and vectoring to the
proper handler. The interrupt handler connects the interrupt to
the proper high-level interrupt service routine. Finally, all this
machine-specific assembly code must be properly linked to the
Pascal program. Figure 3 summarizes the software situation that
exists at link time.

The Pascal LANDS Integration Control System (ICS) uniquely
solves the problems posed by microcomputer software/hard-
ware interfacing. With the ICS, the user’s input is reduced to re-
sponding to a simple menu or creating a brief file with the sys-
tem editor. Figure 4 shows how software/hardware interfacing
would proceed using the ICS. Once the system editor or ICS
menu is used to create an ICS source file, the ICS Processor
uses this information to automatically perform all other tasks
necessary to complete the interface. These tasks include gener-
ating hardware/reset object code, interrupt handling code, and
the linker command file that designates the proper runtime sup-
port and governs memory mapping.

Using ICS reduces integration time by 80-90 percent. The key
feature of the ICS is a simple user interface, that can reduce
software/hardware interfacing tasks from days to a few minutes.
The ICS source file can be created via the ICS prompter, where
a simple menu lists the parameters essential to creating the in-
terface spec (figure 5). This menu prompts the user to define all
hardware interface information necessary for an 8086-based de-
sign, with prompts on the left and user inputs on the right. In this
example, the hardware configuration is first defined, followed by

memory mapping information. Next, the reset is affirmed and
service calls for 1/O simulation are ruled out. Next, the Pascal
code is identified and special library and file handling are ruled
out. Interrupt vectors are then placed in ROM, and identified by
type number, and floating point save on interrupt is ruled out in
all cases. Next the processor is instructed to halt when presented
with an unspecified interrupt, and a vector for the specified in-
terrupt is indicated. Finally, the symbolic label for restarting the
code is defined.

The information entered through the ICS prompter menu is auto-
matically converted into an integration source file. (Or, if the user
chooses, this same file can be created directly through interac-
tion with the system editor.) The ICS processor now uses the in-
tegration source file as input to implement all aspects of the soft-
ware/hardware interface. These include all object code neces-
sary for initialization, reset and low-level interrupt handling. ICS
also produces a linker command file (which controls the linkage
of compiled object files), run-time support files, and ICS-produced
object files into an executable object file conforming to the proto-
type memory map. As a result, the user doesn't need to write
complex linker command sequences or involved assembly code
for machine-level operations.

Debug Elevated into Pascal

Once the Pascal code has been converted into an executable
load file, it is ready for debugging. In a typical microcomputer
software design environment, debugging is accomplished through
real-time emulation, which uses a processor identical in function
to the one targeted for the prototype. The emulator processor
executes the code under the control of the development sys-
tem’s debug software. This execution allows the user to observe
how the code will behave when executed by the target hard-
ware. Observing is done by setting “breakpoints,” which halt
the code'’s execution at points specified by the user.
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INTEGRATION
CONTROL SYSTEM
ICS PROMPTER
USER (OR SYSTEM
EDITOR)
y
ICS
SOURCE FILE
. — v
ICS HARDWARE INTERRUPT
INITIALIZATION HANDLING
PROCESSOR ALIZA NDLI
\ 4
LINKER
COMPILED
PASCAL CODE COMMAND
FILE
¢ ) 4
RUN TIME 1< -
FROM o
LIBRARY L] v
RUN TIME EXECUTABLE
SUPPORT Z LOAD FILE
\

PASCAL__CONFIGURATION
HARDWARE__CONFIGURATION
INSTRUCTIONS_ROM
CONSTANTS_ROM
GLOBAL__VAR_RAM
HEAP__STACK_RAM
RESET_MEMORY

ICS.MODULE
8086
[0100H,03FFH]
[0400H,07FFH]
[0800H,09FFH]
[0AOOH,0BFFH]
YES

SERVICE__CALLS NONE
SOFTWARE__CONFIGURATION trafficlight.po
MODULE two.po

LIBRARY NONE
FILE_HANDLING DEFAULT
INTERRUPT_CONFIGURATION ROM
INTERRUPT_TYPES__USED 30
SAVE__FLOATING__POINT NO
EXCEPT_FOR NONE
FAULT_NOTIFICATION STOP

VECTOR type30handler,30
RESTART__LABEL PASCAL__BEGIN
END

Figure 4. Mapping object code in prototype memory is a menu-prompted “piece-of-cake” for the ICS user. A simple
menu prompts the scenario for creating the interface specification. (See figure 5.)

Once the program is halted by a breakpoint, the debug software
typically presents the user with a disassembled listing of instruc-
tions and operands as they exist in the emulator processor. This
listing will also show the status of the processor’s internal work-

ing registers as they responded to each instruction cycle.

Conventional debug software will also permit a “hex dump” that
displays the contents of memory at the breakpoint. But the dis-
played information has no direct relationship to the original Pas-
cal source code. What the user sees is an assembly-type version
of compiled object code as executed by the emulator processor.
If a bug is found, the user must mentally translate this assembly-
type code back into Pascal in order to make the necessary re-
pairs or analyze the specific nature of the problem. This transla-
tion is often arduous, time-consuming, and error-prone.

By elevating the entire debug tool set from the assembly level to
the Pascal level, LANDS Pascal Debug eliminates 40 to 60 per-
cent of debug time. The user can now debug completely within
the context of the original source code, allowing powerful analytic
insights when isolating a problem and faster corrective action

Figure 5. The LANDS user can create a software/hard-
ware interface in mere minutes by responding to this

menu.

once the problem is found.
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For setting breakpoints at the source code level, Pascal Debug
provides two methods. First, breakpoints can be specified ac-
cording to the program statement numbers produced by the com-
piler, allowing fast access to any point in the program. Second,
breakpoints can be assigned according to program elements,
such as individual modules, procedures, statement labels, or
variable names. This way, the user can assign breakpoints that
are logically connected to a particular problem, such as an in-
correct value assigned to a variable.

An important feature of Pascal Debug is the ability to set the
breakpoint on variables and to qualify the breakpoint for read or
write access to the variable, or both. Pascal Debug uses hard-
ware features in the emulator to implement these breakpoints.
Using LANDS Pascal Debug does not affect object program
size or execution speed.

Pascal Debug also includes a single-step command that allows
the Pascal program to be executed one statement at a time.
Whenever execution is halted, a return command causes pro-
gram execution to resume at any point specified by the user.
And to start all over again, a reset command initializes the pro-
gram to its original state at the time it was loaded into program
memory.

At any time, the user can access a variable according to its sym-
bolic name within the Pascal program, read its current value
and, if desired, modify that value. This ability applies to all stan-
dard Pascal data types and user-defined types. The user may
also query the data type of any variable by simply entering
“type” and the variable’'s symbolic name in the source code.

Besides source-level breakpoints and variable examination/modi-

fication, Pascal Debug has two powerful features for tracing pro-

cedure activation. One is a “trace” command, which displays a
message each time a procedure is entered, and each time it is
exited. The values of any parameters passed to the procedure

are also listed. Second, a “traceback” command lists, in reverse
order, the procedures called and displays a traceback to the
main program. In addition, the value of local variables for each
procedure may be requested. Through these trace commands,
the user clearly sees an informative picture of control flow within
the program as it executes.

Applying the Pascal Language Development System

To see how the LANDS tools work in practice, consider a hypo-
thetical application calling for an 8086-based microcomputer
system. This system will control traffic signals extending across
Maple Street. The signal system has three elements: (1) a traffic
light with red, green and yellow states; (2) a crosswalk signal in-
dicating “walk” or “wait,” and (3) a pedestrian button to inform
the system that a pedestrian wishes to cross.

Specifications for the signal system call for the traffic light to re-
main green and the crosswalk signal to display “wait” until a pe-
destrian pushes the button. This initiates a chain of events caus-
ing the traffic light to go yellow then red, and the crosswalk to
go from “wait” to “walk.” After a specified period, the crosswalk
signal reverts to “wait,” and a short time later, the traffic signal
reverts to green. The system will stay in this state for a specified
interval before it will act on a new signal from the pedestrian
button.

Figure 6 shows the hardware, software and I/O needed to im-
plement the system. Besides the main program, there are two
modules dedicated to handling /0. Module 2 handles the three
traffic light colors and the two crosswalk messages. Module 3
handles the pedestrian button, which has an automatic hard-
ware reset. Module 3 also handles a real-time clock interrupt,
that the program requires to measure the time intervals between
the signal states.

PASCAL
OPERATING
MAIN PASCAL 1/0 SIMULATION SYSTEM
PROGRAM MODULE INTERFACE SYCSI;IF‘II'EM
Procedure »
(seconds:integer) > wait Wiaiting for
(3) 3 seconds
Function ;
: Is pedestrian
tacleary [ ResoliBg present? (YorN) KEYBOARD
(true) Y
)
Procedure ) .
(newcolor:color) = maple _p| Changing traffic
(red) signal to:red
(new message: Procedure Changing cross
message) » crosswalk D> signal to:
(walk) walk

Figure 6. The Maple Street traffic control system.
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1 program trafficlight;
2
3 const
4 yellowlength = 3;
5 walklength = 30;
6 waitlength = 10;
7 greenlength = 45;
8
9 type
10 color =(green,yellow,red);
11 message = (walk,wait);
12
13 var
14 0:B current : color;
15
16 procedure wait(seconds : integer);extern;
17
18 function pedestrian : boolean;extern;
19
20 procedure maple(newcolor : color);extern;
21
22 procedure crosswalk(newmessage : message);extern;
23
24 begin
25 1 6:S current : =green;
26 2 11:S maple(current);
27 3 18:S crosswalk(wait);
28 4 24:S while true do (forever)
29 5 30:S begin
30 6 30:S while not pedestrian do (nothing);
31 7 41:S current : =succ(current);
32 8 49:S maple(current);
33 9 56:S wait(yellowlength);
34 10 67:S current : =succ(current);
35 11 75:S maple(current);
36 12 82:S crosswalk(walk);
37 13 88:S wait(walklength);
38 14 99:S crosswalk(wait);
39 15 105:S wait(waitlength);
40 16 116:S current : =green;
41 17 121:S maple(current);
42 18 128:S wait(greenlength);
43 18 end
44 18 end.

Figure 7. Valid traffic signal source code produced by the Language-Directed Editor and ready for the Pascal Compiler.

Figure 7 shows the source code for the main program as entered  Imagine that the Pascal keyword “procedure” was misspelled in
through the LANDS language-directed editor. A number of con-  “procedure maple.” Without the LDE, this simple mistake would
stants are declared for I/O with the signal devices, and a variable  have been included in the source file sent to the compiler. The

is declared to change the traffic light color. Three procedures compiler would have caught it and signaled an error requiring
and one function handle 1/0 operations with the signal devices the source code files to be fixed and then entirely recompiled.
and real-time clock. All of these are declared to be “external,” However, LDE catches the misspelling during the editting ses-
meaning they reside in modules outside the main program. sion and the error is corrected in seconds.

The main program itself begins by defining the system’s initial Suppose the programmer had used LDE’s abbreviation feature.
state and then describes the sequence for responding to a pe- Reducing the Pascal key word, “procedure,” to “PS” probably
destrian pushing the button. Notice that the left-hand column would have prevented the spelling error.

shows assigned statement numbers. These numbers can be

used later to specify breakpoint locations during debugging. The traffic light application code is now ready to be run through

the LANDS Pascal compiler. This will produce the object code

RN




used in the debug phase and executed on the emulator pro-
cessor. To provide the simulated 1/O for emulation and debug,
the compiler creates a module containing the three procedures
and one function declared external to the main program (figure
8). When the main program executes it calls each procedure
when needed and passes data to it.

Once the emulation and debug are complete, the two /0O mod-
ules described in figure 8 can be coded to replace the simula-
tion module in figure 8. Module two will contain procedures for
I/0 with the prototype hardware controlling the traffic and cross-
walk signals. Module three contains the 1/O function for the pe-
destrian button, and procedures for handling the interrupt-
generated real-time clock.

Each of these modules contains LANDS enhancements aimed at
machine-level manipulation of microcomputer hardware. Figure 9
shows the final I/O module used to control the traffic signal and
crosswalk signal. The microcomputer hardware has memory-
mapped I/0, with the signal devices controlled through I/O ports
located at addresses 0200H and 0202H.

Conventional Pascal has no direct means of sending and receiv-
ing data through these ports, so special I/O assembly modules
would have to be written and linked to the main program. How-
ever, with Pascal LANDS, 1/0 access is direct and simple. The
two signal ports are declared as variables (mapleport and cross-
port) that are specifically located at 0200H and 0202H. Each
port has a procedure that receives new output data from the
main program and translates this data, with a case statement,
into binary for the signal device.

For instance, if “procedure maple"' in figure 9 receives a "“new-
color” of red, it uses a case statement to assign the traffic signal
port (mapleport) a data byte of 0100,, which is then output to
the traffic light, causing it to turn red. Likewise, if *‘procedure
crosswalk” receives a “newmessage’” of “walk,” it uses a case
statement to output 01, on the crossing signal’s 1/O port
(crossport).

Interrupt handling and data manipulation at the bit level are two
other important low-level attributes supplied with Pascal LANDS.
Both are illustrated in I/O module 3, shown in figure 10. LANDS
allows interrupt servicing to become an integral part of the high-
level code — without requiring assembly code. With convention-
al Pascal, interrupt servicing is often troublesome because com-
plex assembly coding is needed to define the relationships be-
tween interrupt service routines and the source code.

In figure 10, two procedures, “enable” and “disable,” are de-
clared external to module 3. These procedures are located in
the runtime support library and will be called in at link time. They
are used to turn interrupt 30 on and off in an 8086-based sys-
tem. “Procedure wait” receives a “seconds” value from the
main program and assigns it to a variable, “count.” Next, the in-
terrupt is turned on through “procedure enable” which activates
“type30handler,” which decrements the “count” variable each
time an interrupt pulse is received. This process continues until
the count reaches zero, and control is returned to the main pro-
gram. In this manner the interrupt pulses, which occur at one
second intervals, have been used to decrement a counter value
assigned by the main program through “procedure wait.” In ef-
fect, the programmer has supplied the Pascal code with a real-
time clock/timer without ever resorting to assembly-level
programming.

TRAFFIC
LIGHT
o K — ©
MODULE 2
O warr
"""""""" CROSSWALK
SIGNAL
WALK
MAIN ¢ 4 MICROCOMPUTER
PROGRAM ‘——$ HARDWARE
""""""" PEDESTRIAN
o I e BUTTON
MODULE 3
REAL-TIME
CLOCK INTERRUPT

Figure 8. The I/O simulation used during emulation of the processor and debug of the object code for the traffic signal

system.
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1 module two;

2

3 type

4 color = (red,yellow,green);

5 message = (walk,wait);

6 byte =0..255;

7

8 var

9 mapleport [port16#0200] : byte;
10 crossport [port16#0202] : byte;
11 0:B lastcolor : color;
12
13 procedure maple (newcolor : color);public;
14 begin
15 1 7:S case newcolor of
16 2 14:S red: mapleport : = 2#0100;
17 3 26:S yellow: mapleport: = 2#0010;
18 4 38:S green: mapleport : = 2#0001;
19 4 end;
20 5 49:S lastcolor : = newcolor;
21 5 end;
22
23 procedure crosswalk(newmessage : message);public;
24 begin
25 6 66:S case newmessage of
26 6 walk:
27 7 73:S crossport : = 2#01;
28 7 wait:
29 8 85:S crossport : = 2#10;
30 8 end;
31 8 end;
32
33 end.

0 Errors
0 Warnings

Figure 9. The finished I/0O module used to control the traffic signal and crosswalk signal. The module contains

microprocessor extensions.

“Function pedestrian” in figure 10 illustrates data manipulation
at the bit level through a boolean operation. “Pedport” is the /0
port that receives input from the pedestrian button, which sup-
plies a 0000, input as long as the button has not been pushed.
This input is ANDed with the value 0110,. If the result is 0110,
then the boolean expression is not equal to zero, and “function
pedestrian” returns a “true” value to the main program, which
in turn activates the entire traffic signal cycle.

To interface the “traffic light” program with its 8086-based hard-
ware, the user interacts with an integration control system menu
similar in format to that shown in figure 5. This interaction pro-
vides interface parameters such as memory allocations, inter-
rupt specifications, and hardware configuration.

Once all information requested by the menu is completed, an
executable load file can be built as shown in figure 11. From a
set of special library routines, ICS constructs object code for
both initialization/reset and handling a type-30 interrupt from the
real-time clock. It also determines which specific run time sup-
port libraries must be searched by the linker for the specified
hardware and software configuration (in this case, an 8086 pro-
cessor without 8087 co-processing for floating point). The ICS
creates a linker command file that causes the compiled Pascal
code, runtime support modules, interrupt handler code and in-
itialization/reset code to be linked into an executable load file
which conforms to the prototype memory map. With minimal ef-
fort, the user now has a program ready to be debugged in the
prototype hardware environment.
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pedport [port 16#100] : byte;

while count > 0 do {nothing};

pedestrian : = (pedport and 2#00110) < > 0;

1 module three;
2 type byte =0..255;
3 0:B var count: integer;
4
5
6 procedure enable;extern;
7
8 procedure disable;extern;
9
10 procedure wait(seconds:integer);public;
11 begin
12 1 7:S count : = seconds;
13 2 20:S enable;
14 3 23:S
15 4 51:S disable;
16 4 14:S end;
17
18 4 procedure type30handler [interrupt];
19 begin
20 5 65:S count : =count-1;
21 5 end;
22
23 function pedestrian: boolean; public;
24 begin
25 6 94:S
26 6 end;
27 end.
0 Errors
0 Warnings

Figure 10. Microprocessor extensions - interrupt attributes.

The “traffic light” program is now run under control of the LANDS
Pascal Debug. To initiate the debugging process, the execut-
able load file is transferred to the development system’s pro-
gram memory via Pascal Debug where it can be directly ac-
cessed by the emulator processor, which controls the prototype
hardware through a probe connecting it to the vacant processor
socket on the prototype board. This way, the emulator can direct-
ly control I/O operations in exactly the same manner the target
processor will control them in the final product.

In the course of running the program on the emulator, a major
bug is encountered. At a-time when the program changes the
pedestrian crosswalk signal to “walk” it also changes the traffic
light to green — a potentially lethal situation in the real world. To
understand the nature of this problem, the main program and
the 1/0 module for the crosswalk signal and traffic light are pre-
sented in figure 7 and 9. Statement 11 of the main program is
the point where the traffic light should be changed to red. This
operation is carried out by “procedure maple” in module 2,
which receives the new traffic light color through the parameter
“newcolor.” This procedure then uses a case statement to
select a statement which outputs a function code for the new
color as a binary value through the /O port “mapleport.”

Figure 12 lists the Pascal Debug sequence used to track down
the problem. A set of line numbers (1 to 27) has been added for
reference to its contents. The “~" character is an input prompt
from Pascal Debug to halt the code’s execution at line 11 of the
main program where the light should be changed to red. Line
(4) shows that hardware breakpoint one (HW1) did indeed halt
the program at line 11. Line (6) requests the current value of the
variable “current” in the main program, and line (7) shows that
this value is red. From this information, we now know that the
main program passed the correct argument to “procedure
maple,” and that the problem most likely resides somewhere in-
side module 2, which contains “procedure maple.” For this rea-
son, the next breakpoint on statement number 4 of “procedure
maple” is set in line (8) to see what happens after the argument
is received. Line (11) shows the program stopped at statement
number 4 in module two, where the execution of “procedure
maple” is complete. Line (13) requests the current value of
“mapleport,” and line (14) shows it to be the integer one, whose
binary equivalent at the port’s output is 0001, which corre-
sponds to green at the traffic light.
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EXECUTABLE
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LINKER LOAD

FILE
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MODULE 3

RUNTIME SUPPORT

(PASCAL LIBRARY)

# break trafficlight#11

#go

# Breakpoint Encountered:

HW1: Used R/W  TRAFFICLIGHT#11
Program stops at statement 11 of TRAFFICLIGHT
# current

CURRENT =RED

# break two.maple #1

#go

Breakpoint encountered:

HW2: Used R/W TWO.MAPLE#1
Program stops at statement 4 of TWO

# mapleport

14 MAPLEPORT =1

15 # newcolor

16 NEWCOLOR =GREEN

—
CQOWONOOORAWN =

—_
WN =

17 #tb

18 $0: MAPLE 1AE at statement number 4
19 Parameter(s):

20 NEWCOLOR = GREEN

21 $1: TRAFFICLIGHT E2 at statement number 12
22 # type newcolor

23 COLOR

24 # type color

25 (RED,YELLOW,GREEN)

26 # type trafficlight.color

27 (GREEN,YELLOW,RED)

Figure 12. The Pascal debug sequence that identified the
walk/green light problem, which is the way “procedure
maple” interprets the argument pass.

Figure 11. After the user provides the menu-prompted information, an executable load file can be built.

Itis now known that the main program is passing a “red” argu-
ment to “procedure maple,” which in turn is outputting a “green”
value to the traffic light control hardware. Line (15) requests the
value of the local variable “newcolor” used by the case state-
ment, and line (16) shows it to be “green.” It now appears that
the problem centers on the way “procedure maple” is inter-
preting the argument passed from the main program. To verify
this, line (17) requests a traceback of activation for “procedure
maple.” Line (18) shows this procedure was currently activated
when the last breakpoint occurred, and line (20) shows that its
parameter was “green.” Line (21) shows that “procedure
maple” was called from the main program, “traffic light.”

Based on the traceback, it becomes apparent that the color
data is being inadvertently switched from red to green during
the transfer from the main program to “procedure maple” in
module two. This indicates that there may be a data type prob-
lem, so line (22) requests a data type check on the variable
“newcolor,” and line (23) shows it to be “color.” Since “color”
is an enumerated type, the next step is to check its declaration
within the current procedure, “mapleport.” line (25) shows it
declared here as (“red, yellow, green”). Next line (26) requests
the declaration for the data type “color” within the main pro-
gram and line (27) shows it to be (“green, yellow, red”).

GO




Comparing the data type declarations for “color” within the main
program and calling the procedure in module two pinpoints the
problem. The declarations are inconsistent as to the order in
which the values are placed. In the main program the order is
green, yellow, red. In module two, the order is switched to red,
yellow, green. This means that “red” data sent from the main
program will be interpreted as “green” when it enters module
two and "procedure maple.” As a consequence, the variable
“newcolor” receives a “green” value through the mixed up data
declaration and is used by the case statement to switch on the
green light even though the main program originally requested
“red.” With larger design teams and modular programming,
problems like this are commonplace.

To track down this same problem using assembly-level debug
tools would have been a formidable task. At each step, the de-
bug data would have to be translated by the user back into its
source code context. Besides consuming time, it means the
user's concentration on the real problem is continually inter-
rupted, making accurate analysis doubly difficult. Pascal Debug,
on the other hand, keeps the user constantly in the Pascal pro-
gram environment and creates a much more productive problem-
solving climate.

Summing Up LANDS Pascal

The Pascal Language Development System is the first high-level
microcomputer software development package that extends ful-
ly to every phase of program development. The Language-
Directed Editor provides complete Pascal syntax checking, and
thus eliminates a major source of errors that lead to recompiling.
The LANDS Pascal compiler extends high-level control right
down to the hardware level, removing the need for assembly
coding of low-level operations. The Integration Control System
reduces software/hardware interfacing to a brief session with a
menu or file. Pascal Debug elevates all debug commands and
resultant trace information to the source code level, allowing the
programmer to debug entirely in Pascal. Taken either as parts
or a whole, Pascal LANDS offers an efficient, cost-effective
pathway to increasing software design productivity by 40 to

50 percent.

For More Information

For more information, call Charles Montgomery, 629-1100. [J

This article was adapted from material that was later
published as an article by Charles Montgomery in Elec-
tronic Design, July 21, 1983. This material was also
presented at ELECTRO 1983 by Doug Johnson.
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