P

TE APPLICATION VOL. 6 NO. 1
INFORMATION SPRING/SUMMER 1981
H P
NEWSLETTER OF SIGNAL PROCESSING AND INSTRUMENT CONTROL

s A T e Th N

Photo by Roger Stenbock.

e

HANDSHAKE

NEWSLETTER OF SIGNAL PROCESSING AND INSTRUMENT CONTROL

Table of contents

Data Logging...
Capturing the unpredictable
Part I—First steps to data logging................ 3
Part II—Event detection 9
Part III—Retrieving logged data 15
TEK SPS BASIC routine
for single-key program selection 20
Getting the most out of TEK BASIC graphics 22

Four new programmable
digitizer systems available 24

1360P/1360S provides GPIB control

of 129 signal pathsccccoviiiiiiiiiiinin. 25
New Real Time Clock ROM Pack— 26
7612D improves resolution

on low duty cycle pulse capture. 27
Literature available from Tektronix 28

Managing Editor: Bob Ramirez
Edited by: Bob Ramirez
Graphics by: Joann Crook

HANDSHAKE is published quarterly by the HANDSHAKE Group.
Permission to reprint material in this publication may be obtained by
writing to:

HANDSHAKE Editor
Group 157 (94-384)
Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

HANDSHAKE is provided free of charge by Tektronix, Inc., as a forum for
people interested in programmable instrumentation and digital signal
processing. As a free forum, statements and opinions of the authors should
be taken as just that—statements and opinions of the individual authors.
Material publishedin HANDSHAKE should not be taken as or interpreted
as statement of Tektronix policy or opinion unless specifically stated to be
such.

Also, neither HANDSHAKE nor Tektronix, Inc., can be held responsible
for errors in HANDSHAKE or the effects of these errors. The material in
HANDSHAKE comes from a wide variety of sources, and, although the
material is edited and believed to be correct, the accuracy of the source
material cannot be fully guaranteed. Nor can HANDSHAKE or
Tektronix, Inc., make guarantees against typographical or human errors,
and accordingly no responsibility is assumed to any person using the
material published in HANDSHAKE.

Data logging...
Capturing the
unpredictable

Since its seismic stirrings began in March of
1980, Washington’s Mount St. Helens has been a
spectacular example of modern data logging
needs and capabilities. Hundreds of monitoring
stations make up the Washington and Oregon
seismic network. Most stations continuously
monitor the mountain...discarding unwanted
activity...waiting for something significant to
happen. And plenty has happened, including the
devastating eruption shown on our cover. There’s
been, literally, a mountain of data to capture,
transmit, and analyze.

But Mount St. Helensis just one example of data
logging. Less spectacular, but every bit as
important, are the numerous uses of data logging
techniques in physics, biomedicine, chemistry,
nuclear research, vibration mechanics, anywhere
that events, trends, or changes occur
unpredictably, in rapid succession or just
occasionally.

In almost every case, whether you are
monitoring a mountain or a machine bearing,
data logging comprises three major operations:

1. Capturing and storing sensor output
2. Event detection
3. Retrieval of stored event data

This issue of HANDSHAKE covers all three
aspects, starting with an article on simple data
logging methods using the TEKTRONIX 7612D
Programmable Digitizer and TEK SPS BASIC
software. A second article continues with an
examination of ways to distinguish events wanted
for storage from unwanted base-level activity
(e.g., noise). And, finally, a third article looks at
retrieving the stored data.

Copyright © 1981 Tektronix, Inc. All rights reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

page 2

Printed in U.S.A.

HANDSHAKE, SPRING-SUMMER 1981

Data Logging...

Capturing the unpredictable
Part I—First steps to data logging

The violent eruption of Mount St. Helens on
May 18, 1980 stunned people in the northwest
United States and around the world. But for
months before and after the eruption, scientists
have carefully monitored the mountain’s every
shudder and quake. There are many days—even
weeks—when little or nothing happens. But they
can’t stop watching because the subtle hints of
what’s happening inside the mountain come in
short bursts of data buried in hours of silence.

In the past, this kind of long-term monitoring
often required low-speed recording on paper or
film. If events had to be detected in real-time,
someone had to stay glued to a chart recorder or
oscilloscope for hours on end. Today, much of the
monitoring, event detection, and recording is done
electronically. For example, most of the data from
St. Helens is collected by seismometers placed
around the mountain. These devices detect
tremors and either transmit the data to a remote
recording site or record data locally on magnetic
tape.

This process of monitoring and recording data
is generally referred to as “data logging” and it is
used in a variety of fields, from earthquake
seismology to monitoring high-speed data

communication channels. (See “Monitoring Data
Communication Channels with the 7612D”,
HANDSHAKE Fall 1980). This, the first part of a
three-part article, explores some simple
approaches to data logging with TEK SPS BASIC
and the 7612D Programmable Digitizer. The
techniques described here can (with minor
adaptation) be applied to most any data logging
application for signals up to the bandwidth of the
acquisition instrument (90 MHz, for the 7612D).

Digital data logging

A typical seismic data logging system based on
the 7612D is shown in Fig. 1. The seismometer(s)
sense vibration from earthquakes, machinery, or
other vibration sources, and convertit to electrical
signals. These signals are fed to a 7612D equipped
with 7A16P Programmable Amplifiers. The
7612D samples the input signals and converts
them to digital information for processing and/or
storage. Digitized data from the 7612D is sent to
the computer over the IEEE-488 bus (GPIB). The
computer may simply transfer the data to mass
storage device (magnetic disk or tape), or it may
perform some event detection or processing before
writing the data out.

SEISMOMETERS

*PDP is a registered trademark of the Digital Equipment Corporation.

7A16P PDP*-11
7612D SERIES
- 7A16P CONTROLLER
1
MASS
STORAGE

Fig. 1. A typical seismic data logging system using a 7612D and a PDP-11 series controller running TEK SPS
BASIC. The seismometers can monitor earthquake activity or vibration from machinery or other vibration

sources.

HANDSHAKE, SPRING-SUMMER 1981

page 3

Data logging...Part I

In the simplest case, the computer just acts as a
pipeline for data between the 7612D and the mass
storage device. The object is to acquire the data
and write it to the mass storage device as fast as
possible. Little or no processing is done, and the
7612D’s triggering is all that is used for event
detection.

Figure 2 shows a program that logs data in this
simple form, with no scale factors or other
information. It takes advantage of the DLOG
command that is part of the optional 7612D
Commands Package for TEK SPS BASIC V02
and V02XM.

10 LOAD "INS

20 ATTACH 81 AS INS1,03UWITH 1,2 €0

30 PRINT "ENTER FILENAHE FOR DATG LOGGING OUTPUT: °;
40 INPUT FS

S@ OPEN %2 AS DLO:FS FOR WRITE

60 PRINT "ENTER ACQUISITION MODE (ALT N OR REP N,C)*
70 PRINT * WHERE N=NO. OF REPETITIONS, C=CHANNEL(S) USED °;
80 INPUT MDS

9@ DLOG $2 FROM 3#1,MDS

100 DETACH #1

110 CLOSE 82

Fig. 2. A simple TEK SPS BASIC data logging
program for the 7612D. The program uses the
DLOG command, which is part of the optional
7612D Commands Package for TEK SPS BASIC
V02 and V0O2XM.

The program starts by loading the high-level
instrument driver (INS) and attaching the
instrument. It assumes that the 7612D’s primary
address is set to one and the mainframe secondary
address is set to zero. It also assumes that a 7A16P
plug-in is installed in both compartments.

Next, the program asks for the name of the file
you want data stored in. Line 80 opens the output
file for write. The default for the OPEN command
allocates one-half the largest free space on the disk
to the file. Unused space is returned to free when
the file is closed.

The DLOG command writes data in integer
array format. As a result, each block of space on
the disk can hold 256 samples. A few extra blocks
are required for file overhead. Keep this restriction
in mind when you specify the number of
waveforms to be logged, because trying to log too
many waveforms into a file will cause a P-11 error
(output file full). If this becomes a problem, cancel
files to free some space, specify fewer waveforms
for logging, or use the INTO option on the OPEN
command to allocate more space to the file. (Refer
to the TEK SPS BASIC System Software Manual
for more information).

Lines 50-70 get the command string that will be
sent to the 7612D to initiate acquisition. The

page 4

response must be a valid ALT or REP command.
The syntax of the ALT and REP commands is—

ALTn

where: n is the number of times to execute the
alternate sequence and

REP n,c

where: n is the number of times to execute the
repeat sequence, ¢ is the channel(s) used (A or Bor
A B or B,A).

In ALT mode, the 7612D alternately acquires
data from each channel. Data is read from one
channel while the other channelis acquiring data.
In REP mode, the instrument repetitively arms
and reads the specified channels. In each case, you
specify the number of waveforms acquired in the
command string. The choice of which mode to use
depends mostly on the timing of the signals to be
logged. More information is provided in the box
“To repeat or alternate—that is the question.”

With all the preparations made, line 90 initiates
the data logging. The DLOG command checks the
syntax of the command string you entered and, if
it is valid, sends it to the 7612D. Then the
instrument is addressed to talk. As acquisitions
complete, data is sent across the GPIB, through
the computer, and is written on the disk. Direct
Memory Access (DMA) is used for data transfer
from the 7612D to the computer and from the
computer to the hard disk (DK or DL)). DMA is not
used for floppy disks (DX) or magnetic tape (MT)
output.

When the data logging is complete, the
instrument is detached and the output file closed.

Simplest isn’t always best

This is data logging in it’s simplest form. The
problem with this approach is that a month later,
when you go back toretrieve and analyze the data,
several things are missing. For example: What
were the scale factors? Where was the zero
reference? At what time was the waveform
acquired?

With a fully programmable digitizer linked to a
powerful minicomputer and software, the solution
is simple—write a program to acquire the
instrument settings, zero reference, and
acquisition time and write this information on the
disk along with the logged data. Figure 3 shows a
listing of such a program.

HANDSHAKE, SPRING-SUMMER 1981

10 DIM CHS(1),PS(1)

20 CHS(Q)="A°\CHS(1)="B"\PS$(0)="L"\P8(1)=°R"

39 SA=0\BL=0

40 PRINT °"PLEASE ENTER DATE (DAY-FRON-YR)3 °;

5@ INPUT DS\SETDATE DS

60 PRINT °"PLEASE ENTER TIME (HHIMM1SS): °;

70 INPUT TS\SETTIME TS

80 PAGE

90 DELETE SFS$,SF,VAS8,ZR

100 REM XX GET MODE, CHANNELS, NO. OF WAVEFORMS AND FILENAME XX
110 PRINT ‘DO YOU WANT TO USE °ALT® OR °"REP® MODE TO ACUIRE DATA’;
120 INPUT S

130 IF MDS<>*ALT® THEN IF MDSC>"REP® THEN 118

140 IF MDS$="ALT® THEN 180

150 PRINT "ENTER CHANNEL(S) TO ACQUIRE DATA FROM CA OR B OR A,BI: “;
160 INPUT CS

170 IF C8<"A* THEN IF C8<°B° THEN IF C8<>"A,B° THEN
180 PRINT "ENTER NO. OF WAVEFORMS (MUST BE EVEN FOR ﬁLT OR REP A,B)3 °;
190 INPUT NU

200 IF NW<1 THEN 180

210 IF MD$="ALT® THEN IF ITP(NW/2)<ONJ/2 THEN 180

220 IF MDS="REP® THEN IF C$="A,B® THEN IF ITP(NW/2)ONJ/2 THEN 180
230 PRINT *ENTER FILE NAME FOR DATA LOGGING OUTPUT: ®;
240 INPUT FS

250 CANCEL DLO:FS

260 LOAD "INS

270 INTEGER NB(1),NR(1),RL(1)

280 ATTACH 81 AS INS1,0:UITH 1,2 @0

290 REM xx GET NO. OF RECORDS, RECORD LENGTH AND BREAKPOINTS XX
300 IF MDS="REP" THEN IF CS$="B" THEN 360

310 GET NR(@),RL(@) FROM #1,"TMBS A;REC?"

320 GET NB(®) FROM 81, "NBPT?"

330 DELETE BA\DIM BA(NB(®)x2-1)

340 GET BA FROM 81, °SBPT?"

350 IF MDS=°REP" THEN IF C8="A" THEN 410

360 GET NR(1),RL(1) FROM ‘1.'Tm B;REC?"

370 GET NB(1) FROM 81, “NBPT?

380 DELETE BB\DIM IB(N'(I)!E 1)

390 GET BB FROM #1,“SBPT?"

400 REM XX CALCULATE FILE SIZE AND OPEN FILE Xx

410 NI=NU

420 IF MDS="REP" THEN IF CS$<{>"A,B" THEN 440

430 NI=NU/2

440 BL=(NIX(RL(®)XNR(Q)+RL(1)XNR(1)))/266+4

450 OPEN 82 AS DLO:FS FOR WRITE INTO BL

460 REM XX WRITE NO. OF WAVEFORMS, MODE, CHANNEL(S) XX
470 REM %X NO. OF RECORDS, RECORD LENGTH, AND BREAKPOINTS XX
480 WURITE $2,NU,MDS,

490 IF MDS=°"REP°® THEN IF CS="B" THEN 510

500 WRITE #2,NR(@),RL(©®),NB(®),BA

510 IF MDS$="REP®" THEN IF CS=°"A" THEN 640

520 WRITE 82,NR(1),RL(1),NB(1),BB

530 REM XX ACQUIRE ZERO REFERENCE AND SCALE FACTORS XX
540 B=O\E=1

S50 IF MD$="REP" THEN IF CS8="A° THEN E=0

560 IF MD$="REP" THEN IF C$="B" THEN B=1

570 FOR J=B TO E

580 GET CP$ FROM 81;J+SA+1,°CPL?"

590 PUT °CPL GND* INTO 81;J+SA+1

600 PUT °"ARM ";CHS(J) INTO 81

610 DELETE A

620 FOR I=1 TO NR(J)

630 WAIT 25

640 PUT °"MTRIG®" INTO %1

650 NEXT I

660 JS="MTRIG;READ 'lCHl(J)

670 GET A FROM %1,J:

680 ZR=MEA(A)

690 PUT CPS INTO 8$1;J+SA+1

700 JS="US"LPS(J)&"17"

710 GET SF$;SF,UAS FROM $1,J8

720 VAS=SEG(VAS,1,1)

730 WRITE 82,2R,SF,UAS

740 NEXT J

750 REM XX GET TIME AND DATE MD BEGIN DATA LOGGING XX
760 DELETE A,NR,RL,NB,ZR,SF,BA,

7?70 DATE DS\TIFE T8

780 WRITE $2,D8,TS

790 RELEASE AUTO

800 IF MD$=°"REP" THEN L$="REP "&STR(NI)&®,"&CS

810 IF MDS="ALT" THEN L8$="ALT °&STR(NI)

820 DLOG $2 FROM $1,LS

830 CLOSE $2\DETACH $1

840 GOTO 80

Fig. 3. Adding program lines to acquire the zero
reference, scale factors, instrument settings, time,
and date makes the simple data logging program
of Fig. 2 more useful.

The program gets under way in lines 10-80 by
initializing some variables, setting the current
time and date, and paging (erasing) the terminal
screen.

Line 100 asks which mode (ALTernate or
REPeat) you want to use to log data. If the
response is not ALT or REP, line 120 branches
back to the question and it is asked again. If REP
mode is selected, line 140 asks which channel(s)
you want to acquire data from. The choices are A,
B, or AB. Line 160 checks the response for
validity. If ALT mode was selected, lines 140-160
are skipped, since no channel specification is
required.

HANDSHAKE, SPRING-SUMMER 1981

Next, line 170 asks how many waveforms you
want to log. If you selected ALT mode or REP A,B,
you must enter an even number, because the
waveforms are acquired in pairs (one from each
channel). Line 180 gets the response and lines 190-
210 check it for validity. Then, line 220 asks what
file name you want the data stored under. If a file
of the same name already exists, it is cancelled.

Lines 250-270 load the high-level instrument
driver (INS), dimension integer arrays, and attach
the 7612D and plug-ins as ILUN (Instrument
Logical Unit Number) 1.

To avoid the problem of overflowing the data
file, this program calculates the amount of space
required to log the requested number of
waveforms. The amount of space depends on the
number of waveforms, number of records, and
record lengths. If ALT or REP A,B mode was
selected, the number of records and record length
of both channels will be acquired. Otherwise, the
program only acquires the number and length of
records for the selected channel. The number of
breakpoints, breakpoint locations, and sampling
intervals are also acquired during this step.

Line 290 checks the mode and channel
responses to see if channel A will be used. If not
(REP B was specified), the queries for channel A
are skipped. Otherwise, line 300 gets the number
and length of records.

Line 310 gets the number of breakpoints and
line 320 dimensions an array to hold the
breakpoint locations and sampling intervals. The
SBPT? query returns two values for each
breakpoint—a breakpoint location (sample
number) and a sampling interval, so the array is
dimensioned to two times the number of
breakpoints.

From the number and length of records
information, line 430 calculates the minimum
number of blocks required to store the data. Since
each block can hold 256 data points in integer
array format, the number of blocks is:

No. of Wfms * (A Total Rec. Length + B Total Rec. Length)

of Blocks = +4

256

Total Rec. Length = Number of Records * Record Length

The number of waveforms is divided by twoin line
420if REP A,Bor ALTmodeis specified since each

page 5

Data logging...Part 1

To repeat or alternate—that is the question

The 7612D offers two acquisition modes
designed to increase throughput during data
logging or other repetitive acquisitions. One
mode—the REPeat mode—causes the 7612D to
repeat an ARM and READ sequence for a
specified number of times (or indefinitely, until a
device clear message is received). In the REP
mode, data is acquired from the specified channels
(A, B, or A and B) and read out after each
acquisition. If REP A Bis used, both channels are
acquired before reading any data out. Then both
channels of data are transmitted.

The other mode (ALTernate) causes the 7612D
to repeat an ARM and READ sequence for both
channels, and to transmit data from one channel
while acquiring data in the other. When data
acquisition is completed in channel A, channel B
begins its acquisition and data from channel A is

REP 6,A,B

ACQUISITION
ARM A B TRIGIGER COMPLETE

CHANNEL A
| DATA TRANSFER

transmitted on the bus. When channel B
completes its acquisition, channel A starts
another acquisition and channel B data is
transmitted.

The question is—which mode is best for a
particular application? To answer that, a clear
understanding of the timing in both modes is
important. Figure 1la illustrates the timing of a
REP 6,A,B command.

Notice that in each acquisition channels A and
B are acquired with minimal delay. They can even
be set-up with post-trigger mode to be
concatenated into a single extended-length record.
However, at the end of the acquisition, both
channels of data are transmitted and acquisition
stops until the data transmission completes and

ARM A,B TRIGGER
4 |

CHANNEL A|—4# ! !

CONTROLLER

P24 |

5 MORE

DATA

CYCLES

|

1l

! |
| LOG A&B

1

I

L

[4¢ |

L |
CHANNEL B|—5§ L

|
TRIGGER ACQUISITION

COMPLETE

TIME————»

> T cse

I
CHANNEL B TRIGGER

DATA TRANSFER

a. The REPeat command waits until acquisition in both channels completes before transmitting data.
If a single channelis used (REP A or REP B), data is transmitted as soon as the acquisition is complete—

the unused channel is not affected.

ALT 6

ACQUISITION
COMPLETE

ARM A TRIGGER (CIAIANINEL
]

DATA TRANSFER

ACQUISITION
COMPLETE

CHANNEL A

AR IR GER DATA TRANSFER

s
CHANNEL A|—f .

CONTROLLER

LOG

B 5 MORE

|
[
|
]
Y

CHANNEL B|—S J- e

I
|
)

DATA' CYCLES
t

|
ARM B

4 I
TRIGGER

CHANNEL B ARM B
DATA TRANSFER

ACQUISITION
COMPLETE

TWe——r— =

b. The ALTernate command acquires datain one channel while transmitting data from the other. If the
acquisition time is longer than the data transfer and logging time, digitizing can be nearly continuous.

Fig. 1. ALT and REP timing.

page 6 HANDSHAKE, SPRING-SUMMER 1981

the data is logged to a peripheral device. Also, if
pre-trigger mode is used (even when set for PRE 0),
a full record of pre-trigger data is acquired before
the channel is ready to be triggered.

Figure 1b shows the timing for an equivalent
ALT 6 command. Notice that the same trigger and
acquisition restrictions apply, but when channel
B begins its acquisition, channel A’s data can be
read out. When channel B finishes, data from
channel A can be read out. If the acquisition time

is long compared to the time required to transfer
and log the data (i.e. a slow sampling interval is
used), digitizing can be nearly continuous. It’s
important to remember that the time required to
write the data on the peripheral device must also
be included, since the controller can’t read more
data until the previous data is written out.

In applications where continuous digitizing is
important, ALT mode may be your best choice.
But remember that continuous digitizing requires

that the total acquisition time be longer than the
data transfer and logging time. Also, remember
that trigger restrictions still apply. Faster
controllers and peripherals allow continuous
digitizing at a higher rate.

If the application requires long records (up to
4096 points) or logging of two time-related signals,
REP mode is probably the best choice. Again,
remember the restrictions of pre-trigger
acquisition and triggering.

Using the flexible triggering of the 7612D, you
can set-up the channels for most any type of
acquisition. For example, to acquire two time-
related signals, both channels should be set for the
same mode (PRE or POST). They may be offset in
time by choosing different amounts of pre- or post-
trigger. To append the two channels, set one for
POST 8 and the other for POST 2048 (assuming a
record length of 2048) and use the same trigger.

)

continued from page 5

cycle acquires two waveforms—one from channel
A and one from channel B. If REP A or REP B
modes are specified, the number of waveforms is
unchanged.

>

STORE CURRENT
COUPLING & SET
COUPLING TO GROUND

Four extra blocks are added to the calculated
number of blocks for file overhead and the settings
and zero reference information thatis also written
in the file. Line 440 opens the output file as PLUN
(Peripheral Logical Unit Number) #2 into the
calculated number of blocks using the name you
specified.

INCREMENT MINOR
RECORD "NESTED"
COUNT FOR LOOP

RECORDS
?

NO
READ ACQUIRED DATA

COMPUTE MEAN

The first thing written to the output file is the
number of waveforms, the acquisition mode (REP %"W
or ALT), and the channel(s) used. This is followed y
in line 490 and 510 by the number of records,
record length, number of breakpoints and the
breakpoint locations and sampling intervals for
the selected channel(s).

RESTORE ORIGINAL
COUPLING

GET SCALE FACTORS

WRITE OUT SCALE FACTORS,
AND ZERO REFERENCE

After the settings information is written out, the
zero reference is acquired for each channel. Figure
4 shows a flow chart of the process. First, the
current plug-in coupling is saved in CP$. Then, the
coupling is set to ground and the time base is
armed. One Manual TRIGger (MTRIG) command
is sent for each record in the channel, since each
record requires a separate trigger. Appropriate
WAITSs are also included to allow each record to
complete before sending the next MTRIG.

Fig. 4. Acquiring the zero reference uses two
nested FOR loops. The major loop is executed once
for each channel used. The minor loop is executed
once for each record in the channel.

HANDSHAKE, SPRING-SUMMER 1981 page 7

Data logging...Part 1

When the acquisition is complete, the data is
read into the controller, averaged, and theresultis
stored in ZR. Then, the plug-in coupling is
returned to its previous setting.

Two nested FOR loops in lines 560-730
implement this process. The major FOR loop is
executed once for each channel used. In ALT or
REP A, B modes, two passes are executed. In REP
A or REP B modes, a single passis executed. Lines
530-550 set-up the beginning and ending index
variables for the loop. Lines 570-590 store the
current plug-in coupling, set the coupling to
ground, and ARM the time base. Then, the minor
FOR loop in lines 610-640 begins sending MTRIG
commands—one for each record. After each
MTRIG, a WAIT statement delays execution until
the record is complete. Then another MTRIG is
sent for the next record. (For long sampling
intervals, the WAIT value may have to be
increased since it takes longer to acquire each
record.)

When the zero reference acquisition is complete,
lines 650-660 read the data and line 670 finds the
mean (average) of it. This mean value represents
the zero reference for data acquired later.

For convenience, the vertical scale factor
information is also acquired as part of this loop.
Lines 690-710 get the scale factors and units, and
line 720 writes the zero reference, scale factor, and
vertical units to the output file.

Just before initiating the acquisition, the
number of waveforms (NW) is divided by two if
REP A B or ALT mode is selected. Since these
modes acquire two waveforms per iteration, the
count is divided by two before being used as a
command argument. Then, the unused variables
are deleted, the beginning acquisition time is
written in the output file, and all auto-loaded
commands are released. This frees all available
memory for faster execution of the DLOG
command.

When data logging is complete, the fileis closed,
and the instrument is detached.

The largest part of this “improved” program
involves acquiring the scale factors, zero
reference, settings, and time information. The
data logging itselfis still just one statement. Data
is passed from the 7612D, through the computer
and on to the disk without intervention.

Noise may add more steps

The two programs described here illustrate the
process of data logging with TEK SPS BASIC and
the 7612D. They operate well in most
environments where noise in the input signal is
not a major problem and where the 7612D’s
flexible analog triggerring system is sufficient to
detect valid data. In some applications, noise is a
more significant problem. Also, more
sophisticated techniques may be required to
differentiate between noise and valid data. The
second part of this article series examines several
approaches for detecting wvalid events and

reducing logged noise. m

By Mark Tilden,

HANDSHAKE Staff,

with grateful acknowledgment to:
Dr. Richard Couch,

Dr. Dale Bibee,

and Dr. Michael Fehler,

of the Geophysics Group,

School of Oceanography,

Oregon State University,

for providing valuable background
information and consultation.

We would also like to thank

Mr. Norm Smale,

of the Oregon Museum of Science & Industry,
for his suggestions and direction.

page 8

HANDSHAKE, SPRING-SUMMER 1981

Data Logging...

Capturing the unpredictable
Part II—Event detection

Part I of this article examined some simple
approaches to data logging with the 7612D and
TEK SPS BASIC. The programs presented in Part
I logged data directly to mass storage (disk) using
the optional DLOG command for TEK SPS
BASIC. The controller simply passed the data
from the GPIB to the disk as illustrated in Fig. 1.
Data acquisition was initiated when the 7612D
received a trigger either from its internal trigger
circuit or an externally supplied trigger signal.

The 7612D’s flexible triggering is adequate for
many applications. However, in noisy
environments or where data must be logged
selectively, the analog trigger may not be
sufficient. The instrument may trigger on noise or
log a considerable amount of unwanted data. This
article, Part II of the series, describes some
solutions to this problem using the signal
processing power of TEK SPS BASIC.

What is an event?

It’s usually easy to pick out valid information
from noise on an oscilloscope display—you know
basically what you’re looking for. But when the
data logging system is on the side of an active
volcano or in a room full of machinery, you can’t
always be there to pick out valid data from noise.
And the analog trigger circuits on the digitizer
may not be selective enough to do it either.

The solution? Acquire the data, read it into the
controller, and let the signal processing power of

TEK SPS BASIC decide if it is valid data. If it is,
log it. If not, ignore it and acquire more data.

This process of distinguishing valid data from
noise or other unwanted signals is called “event
detection.” An “event” is any valid data captured
in the process. In some cases, such as in
earthquake seismology, an event may be a
transient signal. In other applications, such as
monitoring machinery vibration, the event may
be a random or repetitive signal.

There are a multitude of techniques for digitally
detecting events. The choice of which one to use
and how to apply it depends on the type of data
you’re looking for. No technique is fool proof, but
knowing some basic information about the input
signal makes the choice easier. For example, what
is the frequency range of the signal? What is it’s
approximate amplitude range? Is the signal
repetitive, transient, orrandom? Also, an estimate
of the noise that will appear with the signal will
help.

The techniques discussed here are just a few of
the many that exist. Though they may not be
suitable for every application, they provide a basis
for developing an event detection routine that best
suits your needs.

Averaging cleans up the data

If theinput signal isrepetitive, signal averaging
may be the answer. Since noise sources are often

ANALOG r| 7A16P
INPUT < 7612D
SIGNALS ~ 7A16P

PDP-11
CONTROLLER

MASS
STORAGE

Fig. 1. In the simplest case, the controller simply acts as a pipeline between the 7612D and the mass storage
device. The 7612D’s analog trigger provides event detection.

HANDSHAKE, SPRING-SUMMER 1981

page 9

Data logging...Part II

random with respect to the data, averaging can
keep a single record of noise from being logged and
can reduce the effect of noise on the logged data.
As a result, a record of data triggered by a noise
spike will not be logged, but averaged in with
records of valid data (Fig. 2). The more averages
per logged waveform, the less random noise that
appears in the data.

The optional 7612D Commands Package for
TEK SPS BASIC V02 or V02XM contains a
DAVG command that automatically acquires and
averages data from a 7612D. This command
provides a convenient, fast way of acquiring and
averaging the data in preparation for data
logging. Figure 3 shows a simple program that
uses DAVG to acquire, average, and log data on
the disk.

After loading the high-level instrument driver
and attaching the instrument, the program asks
for the data file name. If an old file exists with the
same name, line 50 cancels it. Line 60 opens the
new file for write.

Then, lines 70-190 get the acquistion mode,
channel(s), number of times to average each
waveform, and the number of waveforms to log.
Lines 180 and 190 build the REP or ALT command
string for the 7612D from this information.

10 LOAD *INS

20 ATTACH 31 AS INS1,Q3UITH 1,2 €0

30 PRINT "ENTER FILENAME FOR DATA LOGGING OUTPUT: °;

40 INPUT FS

5@ CANCEL DLO:FS

60 OPEN 82 AS DLOIFS FOR WRITE

7@ PRINT "ENTER ACGUISITION MODE (ALT OR REP)s °;

80 INPUT MDS

90 IF MDS<>"ALT" THEN IF MDS<>"REP® THEN 70

100 IF MDS="ALT" THEN 140

110 PRINT "ENTER CHANNEL(S) TO ACQUIRE DATA FROM (A OR B OR A,B): °;
120 INPUT Cs

130 IF CS<>"A" THEN IF CS<>°"B®" THEN IF CS8<>"A,B" THEN 110

140 PRINT "ENTER NO. OF TIMES TO AVERAGE EACH WAVEFORMS °;

150 INPUT AV

160 PRINT "ENTER NO. OF WAVEFORMS (MUST BE EVEN FOR REP A,B OR ALT): *°;
170 INPUT NUW

180 IF MDS=°"REP® THEN IF CS$<>"A,B" THEN 210

190 IF NU/2OITP(NW/2) THEN 160

200 NW=NW/2
210 Js=MDs&”
220 IF MDS$=°REP" THEN JS=JS&", "&C
230 FOR I=1 TO NU

240 DELETE A,B

250 IF MDS="REP®" THEN IF MD$<>"A,B" THEN 280
26@ DAVUG A,B FROM 31,J8

270 GOTO 290

280 DAUG A FROM #21,JS

290 WRITE 32,A

300 IF MDS="REP" THEN IF CS$<>"A,B" THEN 320
310 WRITE 32,B

320 NEXT I

330 DETACH $1\CLOSE s2

Fig. 3. A TEK SPS BASIC program to acquire,
average, and log data from the 7612D. Signal
averaging keeps random noise from being logged
and reduces noise in logged data.

"&STR(AV)
8

Lines 230-320 form a FOR loop that acquires
and averages the waveforms and writes the
averaged results on the disk. If REP A or REP B
modes were selected, each pass through the loop
writes one averaged waveform on the disk. If REP
A,B or ALT modes were selected, line 200 divides
the number of waveforms (NW) by two, since each
pass through the loop writes two waveforms—one
from channel A and one from channel B. When the
specified number of averaged waveforms have
been written, line 330 detaches the 7612D and

AN

NO
SPI

W W :HW W

ISE
KE

=

SIGNAL
AVERAGING

TO
—> MASS
STORAGE

Fig. 2. Signal averaging repetitive events prevents random noise from being logged as an event. Instead, the
noise is averaged along with valid data, reducing its effect.

page 10

HANDSHAKE, SPRING-SUMMER 1981

closes the output file.

Looking for maximums

The signal averaging approach works well
when you can afford the time required to acquire
and average the data and when the input signal is
repetitive. But what about the times when the
signal occurs only once? Signal averaging is ruled
out because a repetitive signal is required.

One solution is a simple amplitude check on the
acquired data. If the amplitude of the noise is
consistently lower than the signal amplitude, data
can be discarded if it’s peak-to-peak amplitude is
below a certain threshold. The MIN and MAX
functions in TEK SPS BASIC can be used to
compute the peak-to-peak amplitude. This
technique only duplicates the analog trigger on
the 7612D. In some environments, that’s just not
enough.

Unfortunately, noise spikes are often narrow
high-amplitude pulses that will pass a simple
amplitude test (or trigger an analog trigger
circuit). To reduce the possibility of noise signals
slipping through, the acquired waveform can be
segmented into several parts and the peak-to-peak
amplitude of each segment computed. If a certain
number of the segments have amplitudes above
the threshold, the waveform is considered valid

data. Alternately, the peak-to-peak amplitudes for
all the segments can be averaged and the result
compared to a threshold value (Fig. 4).

A program that uses the segment averaging
technique is shown in Fig. 5. Lines 10-90 get user
input and open the output file as in the previous
programs. Line 110 defines the number of
segments and the threshold value. Notice that the
waveform is divided into equal segments, so the
number of segments should be chosen to divide
evenly into the record length. The threshold value

10 PRINT “WHICH CHANNEL DO YOU WANT TO USE (A OR B) “;
20 INPUT C$

30 IF CS$<>"A" THEN IF C8$<>°B" THEN 10

4@ PRINT "ENTER FILE NAME FOR DATA LOGGING OUTPUT: “°;
S50 INPUT F$

60 CANCEL DLO:FS

70 OPEN 82 AS DLO:FS$ FOR WRITE

80 REM XX N=NUMBER OF SEGMENTS TH=THRESHOLD XX
90 N=32\TH=30

100 DELETE PP\DIM PP(N-1)

110 LOAD “INS

120 ATTACH $1 AS INS1,03WITH 1,2 @O

130 DELETE A

14© GET A FROM $1,"ARM "&C$&°;READ "&C$

150 L=SIZ(A)

160 L=L/N

170 FOR I=0 TO N-1

180 B=IXL

190 E=((I+1)%XL)-1

200 PP(I)=MAX(A(BIE))-MINCA(BIE))

210 NEXT I

220 AV=MEA(PP)

230 IF AU>=TH THEN WRITE $2,A

Fig. 5. This program divides the waveform into
32 equal segments and computes the peak-to-peak
amplitude of each segment. These amplitudes are
averaged and the result is compared to the
threshold (TH). If it exceeds the threshold, the
data is considered valid and is logged.

SEGMENT 0 1 2

MAX -1

/

PEAK-TO-PEAK
AMPLITUDES 3.2 2.6 1.1
(MAX-MIN)

AVERAGE OF
AMPLITUDES = 1.44

0.85 0.5 0.4

Fig. 4. Dividing the waveform into several equal segments and averaging the amplitudes from the segments
reduces the possibility of noise spikes being detected as events.

HANDSHAKE, SPRING-SUMMER 1981

page 11

Data logging...Part 11

depends on the expected signal and noise levels.

Line 120 dimensions an array (PP) to hold the
peak-to-peak amplitudes for each segment of the
waveform. Then the instrument is attached and
the waveform acquired from the specified
channel. Lines 170 and 180 compute the size
(number of samples) of each segment. The FOR
loop, starting in line 190, computes the amplitude
in each segment. First, line 200 computes the
beginning position of the segment and line 210
computes the ending position of the segment. The
amplitude is computed in line 220 by subtracting
the minimum value in the segment from the
maximum value in the segment.

The loop is repeated until the amplitude for each
segment is computed. Then, the amplitudes are
averaged and line 250 compares the result with the
threshold value (TH). If the result is greater than
the threshold, the waveform is considered valid
data, and it is logged. Otherwise, it isignored. The
loop is repeated until the requested number of
waveforms have been logged.

The number of segments and the threshold
value can be adjusted to best fit the type of signals
and noise expected. Increasing the number of
segments tends to filter low-frequency noise by
looking at amplitude variations in smaller time
windows (segments). (It also takes more time,
since more amplitude values are calculated and
averaged.) Increasing the threshold requires a
larger amplitude variation within each segment to
detect an event.

More averages

A second averaging technique that can be used
where noise is relatively constant is the long-term
vs. short-term average. This technique compares a
long-term average computed over several
waveforms to a short-term average computed on
the current waveform. The long-term average
represents the average noise level, and the short-
term average represents the level of the signal just
acquired.

First, the waveforms are acquired and shifted to
center around zero by subtracting the mean of the
waveform from each point. Then, the absolute
value of the waveform is computed and the results
averaged. This average is proportional to the
energy of the waveform—not just it’s
instantaneous amplitude. As a result, it is usually
a better indicator of valid events than the simple
amplitude values used in the previous example.
Unfortunately, it’s also more time consuming.

page 12

The averages computed for each waveform are
stored in a table of averages (Fig. 6). When a new
waveform is acquired, the average of that
waveform is computed and compared to a long-
term average. This long-term average is the
average of the averages stored in the table, and it
represents the base noise level. If the short-term
average exceeds the long-term average by some
defined amount, the waveform is considered a
valid event. If not, the average of this waveformis
written in the next position in the average table.
The average pointer points to this position.

Average Table (AV)

Average of n-6th waveform AV(0)
Average of n-5th waveform AV(1)
Average of n-4th waveform AV(2)
Average of n-3rd waveform AV(3)
Average of n-2nd waveform AV(4)
Average of n-1st waveform AV(5)
Avera?:PF)’ointer Average of current waveform AV(6)
Average of n-7th waveform AV(7)

AV(0)+AV(1)+AV(2)+..+AV(7)

Long-term average 3

Fig. 6. The average table stores the averages of
the last eight “non-event” waveforms. The long-
term average is computed by averaging the
averages in the table. The average pointer (AP)
points to the location for the average of the current
waveform.

Notice that once the table is filled the first time,
old averages are overwritten by new ones. The
average pointer is incremented each time, so that
the table always contains the averages of the last
eight non-event waveforms.

A TEK SPS BASIC program that implements
this technique is shown in Fig. 7. The first 18lines
(10-180) perform the initialization and open the
output file as before. Then, line 190 sends the
7612D an ALT 0 command. This tells the 7612D to
continously repeat the ALTernate sequence until
it receives a device clear message. The GET
statement in line 200 reads the waveform data
from the 7612Dinto array A. The time and date are
then stored in T$ and D$ respectively. This will be
written in the file with the waveform data and
reported on the terminal screen to identify when
valid data was acquired.

HANDSHAKE, SPRING-SUMMER 1981

10 LOAD °"INS

20 ATTACH 1 AS INS1,0:UITH 1,2 e

30 PRINT "ENTER THE FILE NAME FOR DATA LOGGING OUTPUT: °;
49 INPUT F$

S50 PRINT "HOW MANY WAUVEFORMS DO YOU WANT TO LOG (MUST BE EVEN NO.): °;
60 INPUT NU

70 IF ITP(NU/2)<XONW/2 THEN SO

80 INTEGER NR(1),RL(1)

90 DIM AVU(T?)

100 AP=@\FL=0\TH=4\LC=1

110 GET NR(@),RL(®) FROM #1,"TMBS A;REC?"

120 GET NR(1),RL(1) FROM 21, "TMBS B;REC?®

130 IF RL(@)=RL(1) THEN 160

140 PRINT *“CHANNEL A AND B RECORD LENGTHS MUST BE EQUAL®
150 GOTO 420

160 BL=(NW/2)X(((RL(O)IXNR(Q))+(RL(1)XNR(1)))/128)+4
170 CANCEL DLO:FS$

180 OPEN 82 AS DLOIFS FOR WRITE INTO BL

190 PUT "ALT " INTO %1

200 GET A FROM $1

210 TIME TS\DATE DS

220 A=(A-MEA(A))

230 DELETE B\DIM B(SIZ(A)-1)

240 B=ABS(A)

250 Me=MEA(B)

260 IF FL=0 THEN 290

270 LA=MEA(AV)

280 IF MO>=LAXTH THEN 360\REM IF TRUE, WE HAVE AN EVENT!
290 AUV(AP)=M@

300 AP=AP+1

310 IF AP<8 THEN 200

320 AP=0

330 IF FL=0@ THEN PRINT "~GEVENT DETECTION ENABLED®
340 FlLei

350 GOTO 200

360 PRINT "EVENT NUMBER ";WC;" LOGGED AT °;D8$;" °;T$
370 WURITE 32,D8,TS,A

380 WC=WC+1

390 IF WC<=NW THEN 200

400 DEUCLEAR %1

410 CLOSE 32

420 END

Fig. 7. A TEK SPS BASIC program that
implements long-term uvs. short-term average
event detection.

Line 220 finds the mean of the waveform data
and subtracts that value from each point to center
the data around zero. If the DC level of the signal
is important, a true zero reference should be
acquired first and that value subtracted from the
signal. (Part I of this article series discussed zero
reference acquisition.)

The computation performed from here on
modifies the waveform data, so a separate
floating-point array is dimensioned in line 230. All
computations are performed in this second array,
while the original data remains in array A. Line
250 begins the processing by computing the
absolute value of the array. This effectively
“folds” the negative half of the waveform data
over and makes it positive. Then the mean of this
“folded” waveform is computed, and the result is
stored in MO (Fig. 8).

Since this technique depends on comparing the
average of a waveform to the average of the
previous eight waveforms, the first eight
waveforms acquired are not passed through the
event detection routine. Instead, the first eight
averages are just stored in the table. They will be
averaged to compute the first long-term average.
When the table is full, event detection begins. The
flag variable, FL, is cleared (zero)until the tableis
full. Line 260 branches around the event detection
when FL is equal to zero.

The average table is stored in array AV and the
next available location in AV is pointed to by AP

HANDSHAKE, SPRING-SUMMER 1981

ORIGINAL WAVEFORM

150
ii12.s -E-
|
37.s --
T

-37.5 4

-7 4
-112.6 4
-150Jﬂ-rr*w-vﬁ-*-ﬁﬂ-+-vw-r'ﬁ-v+v~w+vw-r'w-rﬂwrhwl
) 409 .819 1.228 1.638 2.047

.20S .614 1.024 1.433 1.842
1E 3

a. The original waveform, shifted to center
around zero.

ABSOLUTE VALUE OF WAVEFORM

150 +
112.5 4
75 4

37.5 4

alaaalasalaan

-112.5

=150

Py Y
®

- 409 .819 1.228 1.638 2.047
.205 .614 1.024 1.433 1.842
1E 3

b. The absolute value function ‘folds” the
negative half of the waveform over and makes it
positive. The average of the resulting waveform is
proportional to the area under the curve.

Fig. 8. The program in Fig. 7 first shifts the
acquired waveform to center around zero. Then
the absolute value is computed and the result
averaged. This average is a better indicator of the
waveform’s energy than the simple amplitude
test.

(Average Pointer). Line 290 stores the average of
the current waveform in AV, and line 300
increments the AP. When AP reaches eight, it is
reset to zero (to point to the top of the table again).
If FL is zero, the first eight acquisitions have just
been completed, so line 330 rings the terminal bell
and prints a message to tell the operator thatevent
detection has been enabled. Line 340 sets the flag
to one and line 350 branches back to get another
waveform.

page 13

Data logging...Part 11

When event detection is enabled, (FL~1) the
condition in the IF statement of line 260 fails.
Program control passes to the next line which
computes the long-term average. This average is
computed by taking the mean of the averages
stored in the AV table. If the short-term average
stored in MO1is greater than the short term average
times the threshold (TH), the waveform is
considered a valid event, and control is passed to
line 360.

Line 360 prints a message on the terminal
screen telling the operator that an event has been
detected and the time at which it was acquired.
Then, line 370 writes the time, date, and the
waveform data into the output file. The variable
WC counts the number of waveforms logged.
When it reaches the specified number of
waveforms, a device clear message is sent to the
7612D to abort the ALTernate sequence, and the
output file is closed.

Notice that averages of valid events are not
entered into the average table (AV). This keeps the
long-term average from growing too large during
a long string of events, which could prematurely
stop data logging. The updating of the average
table begins again on the first non-event
waveform.

Looking for a match

Each of the techniques discussed this far
provides some level of event detection based on
signal versus noise amplitude. Another more
sophisticated technique is available with the
signal processing power of TEK SPS BASIC. The
correlation command (CORR)in TEK SPS BASIC
compares two waveforms and produces an array
that represents the degree of matching between
the two. One of these waveforms is usually the
standard or reference waveform. The other is the
acquired signal. Correlation can detect similarity
between the two signals, even when they are
buried in significant amounts of noise.

For sophisticated event detection where high
noise levels are a problem or data logging must be
very selective, correlation may be a good choice.
But, it doesn’t come without cost. Correlation
requires about six times the amount of memory
required to store one waveform. Part of this
memory is used to store a reference waveform that
will be the standard for comparing acquired
waveforms. The rest is used to hold the double-
length result array and the scratch areas.

Correlation also requires a significant amount
of execution time—about 20 seconds for a 512-
point waveform on a PDP 11/03 or equivalent.
Execution will be considerably faster on a PDP
11/23 or PDP 11/34.

Do you have the time?

The event detection techniques covered here are
but a few of the many that exist for various
applications. The choice of which to use depends
on the type of data, the amount of noise, and how
much time you have to decide whether a signalis a
valid event. The more noise in the environment,
and the more selective you want to be, the more
sophisticated and time-consuming your event
detection scheme will have to be.

You will also need to decide whether data
logging must be continous or not. If event
detection takes too much time, the system may get
bogged down with processing data, and the
digitizer may have to wait with acquired data. As
a result, gaps in sampling may occur.

If the extra mass storage space is available, you
may want to consider logging data directly to the
peripheral device and performing the event
detection when the data is read back. If speed is
critical, the cost of the extra mass storage can be
made up by the significant time savings.

The moral of the story is: look carefully at your
input signal and noise and then choose the event
detection that best fits your needs, keeping in
mind the time constraints. You may have to
experiment a little to find the best technique for
your application. The programs and ideas
presented here will provide a starting point for
that investigation. ;

By Mark Tilden,
HANDSHAKE Staff,

with grateful acknowledgment to:

Dr. Dale Bibee and Dr. Michael Fehler,
of the Department of Geophysics,
School of Oceanography,

Oregon State University,

for their valuable assistance

and consultation.

page 14

HANDSHAKE, SPRING-SUMMER 1981

Data Logging...

Capturing the unpredictable
Part ITI—Retrieving logged data

The first two parts of this article series
examined several approaches to data logging and
event detection. But data logging, no matter how
sophisticated, is of little value if you can’t retrieve
the data after it is logged. Often, it is during this
step that the major processing and analysis is
done because there’s usually plenty of time. You
can read the data as slowly as you like and spend
as much time as required processing each
waveform.

This part of the series examines general
techniques for retrieving logged data and provides
some specific examples based on data logging
routines from Part I of this article.

Know your data formats

The key to reading any logged data is a little
foresight. It’s important to know exactly how the
data was written. For example, was only
waveform data written, or was settings
information also included? Was the time and date
of acquisition written? In what order were these
things written? Is the data written in ASCII
strings, numeric arrays, or individual numeric
variables?

The best tool for writing a program to read
logged data is a listing of the program that wrote
the data. It will provide specific information about
the amount, type, and order of the data.
Fortunately, some of the specifics are
automatically handled with the advanced array
processing and I/0 capabilities of TEK SPS
BASIC. In the simplest cases, youmay not have to
remember much of anything about the data.

For example, take the case of the simple data
logging program described in Part I of this article
series. A listing of that program is reproduced in
Fig. 1a. This program logged only the data with no
settings or other information added. Knowing
only that the data is written in numeric array
format by DLOG, a simple program, like the one
shown in Fig. 1b can be written.

First, the program asks for the file name in
which the data was stored. Line 30 opens the file
for READ and assigns it to PLUN (Peripheral

HANDSHAKE, SPRING-SUMMER 1981

1@ LOAD °“INS

20 ATTACH #1 AS INS1,Q3UITH 1,2 €0

30 PRINT "ENTER FILENAME FOR DATA LOGGING OUTPUT: °;
40 INPUT F$

S0 OPEN 32 AS DLO:FS FOR WRITE

60 PRINT "ENTER ACQUISITION MODE (ALT N OR REP N,C)"
7@ PRINT ® WHERE N=NO. OF REPETITIONS, C=CHANNEL(S) USED °;
80 INPUT MDS$

90 DLOG #2 FROM %1,MDS$

100 DETACH #1

110 CLOSE s2

a. A simple TEK SPS BASIC data logging
program for the 7612D The program uses the
DLOG command, which is part of the optional
7612D Commands Package for TEK SPS BASIC
V02 or VO2XM.

10 PRINT °ENTER THE INPUT DATA FILE NAME: °;
20 INPUT F$

30 OPEN 82 AS DLO3FS FOR READ

40 EOF 82 GOTO 110

SO DELETE A

60 READ 82,A

70 PAGE

80 GRAPH A

90 SMOVE 0,0\PRINT °"PRESS RETURN TO CONTINUE®;\WAIT
100 GOTO SO

110 CLOSE s2

120 END

b. A simple program to read the data file produced
by the data logging program of Fig. la.

Fig. 1. The most important tool for writing a
program to read data logging files is the listing of
the program that logged the data.

Logical Unit Number) 2. From this point on, the
file is accessed by this PLUN rather than the file
name. For the moment, skip over line 40, and we’ll
come back to it. Line 50 deletes array A for
subsequent use by the READ command.

Next, the READ command takes over and reads
the first waveform into array A. Itisn’t necessary
to know exactly how many elements are in the
array, because READ automatically takes care of
that. READ uses some special information written
in the file called “data descriptors” to determine
how big the destination array needs to be to hold
the data. Then it automatically dimensions the
array to that size. These data descriptors are
invisible to the user and are written in the file
automatically by WRITE or DLOG so you don’t
have to worry about them.

When the data is read in, lines 70 and 80 page
(erase) the terminal screen and graph the
wavform. Then, line 90 moves the cursor to the
bottom-left corner of the screen and prints a

page 15

Data logging...Part III

message. The program pauses until you press any
key. (RETURN is usually used). When RETURN
is pressed, execution continues, and line 100 sends
the program back to line 50 to get another
waveform.

This loop continues until the end of the data file.
But then what? That’s whatline 40is for. Sinceit’s
not known how many waveforms the file contains,
line 40 sets up a condition that says “when the end
of the file is reached (there are no more
waveforms), go to line 110.” When line 40 is
executed, nothing much happens. But, when the
last waveform is read, the end of file condition
causes program control to be passed out of the loop
to line 110, closing the input file and ending the
program.

In this simple case, there’s little left for you to
remember. All you needed to know was that the
file was written with DLOG or WRITE, and TEK
SPS BASIC takes care of the rest automatically.

What you write is what you read

There is often a lot more than just waveform
data written in a data logging file. There may be
settings, time and date information, number of
waveforms, or other information. When these are
added, the situation gets a little more complex.
TEK SPS BASIC still handles the mechanics of
data transfer for you, but you have to remember
the order in which things are written.

The second data logging program in Part I (Fig.
3, “Data Logging... Capturing the unpredictable,
Part I”’) provides a good example. The format of
the data file it produces is illustrated in Fig 2.

First, the number of waveforms in the file is
written as a single numeric variable. Therefore,
the program that reads this data file must read it
into a numeric variable or array. Next comes the
acquisition mode, written as a string, followed by
the channel(s) used, also written as a string.

Then, the number of records, record length,
number of breakpoints, and breakpoint locations
are written for each channel. However, they are
only written for the channel(s) used. For example,
if the channel(s) used information says that only
channel B was used, the information from
channel A is not recorded. The program thatreads
this data file mustlook at the channel information
and read only the appropriate data.

page 16

Number of waveforms (N)

Acquisition Mode (S)

Channel(s) Used (S)

Channel A No. of Records (NA)

Channel A Record Length (NA) Omitted if Channel A
Channel A No. of Breakpoints (NA) ‘ is not used
Channel A Breakpoints (NA)

Channel B No. of Records (NA) <

Channel B Record Length (NA) Offitted ¥ Channel B
Channel B No. of Breakpoints (NA) is not used
Channel B Breakpoints (NA)

Channel A Zero Reference (NA)]

Channel A Vertical Scale Factors (NA) Omitttiasdr::)tC::;dnel A
Channel A Vertical Units (NA)

Channel B Zero Reference (NA)

Channel B Vertical Scale Factors (NA) Omitt?:r:L(C:sa:;el B
Channel B Vertical Units (NA) j

Date S)

Time (S)

Waveform Data (NA)

N = Numeric variable
S = String

NA = Numeric array

Fig. 2. Format of the data file produced by the
second data logging program in Part I.

The zero reference, vertical scale factors, and
vertical units for each channel used are written
next, followed by the time and date of acquisition.
Finally, the waveform data is written in numeric
array format—one array per waveform.

Figure 3 shows the listing of a TEK SPS BASIC
program to read the data from this file, scale the
waveform data based on the scale factors and
units recorded in the file, and graph the resulting
data.

Getting under way, the program initializes some
variables, sets the current time and date, and sets
the viewport for the waveform graph.
(VIEWPORT defines the physical screen limits of
the graph—where it is placed on the screen and
how big it is.) Then, line 130 asks for the name of
the data file you want to read. Line 150 opens the
file for read, and line 160 reads the first three
entries in the file—the number of waveforms,
acquisition mode, and channel(s) used.

Using the channel and acquisition mode
information just read, line 170 checks to see if
channel A was used in acquisition. If not, the
statements that read the channel A settings are

HANDSHAKE, SPRING-SUMMER 1981

DIM CHS(1)

CHB(@)="A°\CHS8(1)=°"B"°

SA=O\BL=0\F=0

VIEWPORT 420,980,250,889

PRINT °"PLEASE EN‘I‘ER DATE (DAY-MON-YR)$ °;
INPUT DS\SETDATE DS

PRINT °PLEASE ENTER TIME (HH:MM3S8): °;
INPUT TS\SETTIME T8

PAGE
100 DELETE SFS$,SF,VUAS,ZR
110 DIM ZR(1),SF (1), unsu)
120 INTEGER NR(1),| RL(L) NB(1)
130 PRINT °ENTER DATR FILEMKI "3
140 INPUT F8$
150 OPEN 82 AS DLOlFl FOR READ
160 READ 82,NJ,MDS,CS
170 IF MD$=°REP° THEN IF CS="B° THEN 210
180 DELETE BA

883885885

190 READ E,M(O) RL(®),NB(0),BA

200 IF NDs= THEN IF CS=°A® THEN 230
210 DELETE B

220 READ OB,M(L).RLU.),N)(!),,'

230 Ms=MDS

240 IF MDS=°REP°® THEN MS-MDSL° °&CS
250 PRINT "NO. OF WAVEFORMS IN FILE: ";Nu;° ACQUIRED IN ";MS;° MODE®
260 PRINT
270 PRINT °"ENTER THE NUMBER OF THE WAVEFORM YOU WANT TO QET FROA THE®
280 PRINT ‘FILE, OR ENTER °ALL®" TO GET ALL WAVEFORMS.
299 PRINT
300 PRINT "WHICH WAVEFORM DO YOU WANT TO QET °;
WFs

330 IF UFS="ALL" THEN 370
34© I=VAL(WFS)
IF I<=0 THEN 300
360 IF IDNU THEN 300
370 B=O\E=1
380 IF MD$="REP°® THEN IF CS="A° THEN E=0
390 IF MD$="REP® THEN IF CS$="B° THEN B=1
400 FOR J=B TO E
410 READ CE,ZR(J) SF(J),VAS(J)

®
450 IF MDS$=* REP“ THEN IF CS8=°"B" THEN Ke1
460 FOR J=1 TO
470 IF ﬂDl-‘REP' THEN IF C8<"A,B° THEN 500
480 K=0
490 IF ITP(J/2)=J/2 THEN Ke=1i
508 DELETE ANDIM AC(NR(K)IXRL(K))=-1)
510 READ 82,A
520 IF WFS$<"ALL" THEN IF J<>I THEN 720
530 PAGE
640 PRINT °“WAUVEFORM NUMBER °;J;°® FROM CHANNEL °;CHS(K)
550 SETGR VIEWPORT
560 A=(A-ZR(K))IXSF(K)/32
570 GRAPH A
S80 SMOVE 350,420 \PRINT UAS(K)
590 SMOVE 0,690
600 PRINT "ACQUIRED ON: °;D8S
610 PRINT “STARTING AT: °;TS\PRINT
620 PRINT "DATA CONTAINS *;NR(K);" RECORD®;
630 IF NR(K)>1 THEN PRINT *S*;\PRINT
640 PRINT RL(K);' POINTS PER RECORD®\PRINT
65@ PRINT °"BREAKPOINTS:"
660 PRINT °*SAMPLE NO. SAMPLE XNTEWAL'\PRXNT
670 FOR N=@ TO NB(K)x2-1 STEP
680 IF K=@ THEN PRINT TAB(E);Bﬁ(N),Tﬁ!(ll),DQ(NOI)
690 IF K-! THEN PRINT TAB(2)3BB(N);TAB(11);BB(N+1)

710 SHOUE 0 O\PRINT “PRESS RETURN TO CONTINUE®;\WAIT
720 NEXT

730 CLOSE 82

740 GOTO 99

Fig. 3. This program reads the data file produced
by the data logging program shown in Fig. 2, Part
I It also scales the data and produces a display on
the terminal screen.

skipped, and control is passed to line 210.
Otherwise, the number of records, record length,
number of breakpoints, breakpoint locations, and
sampling intervals for channel A are read by line
190. Lines 200-220 do the same thing for channel
B.

Notice that the breakpoint location/sampling
interval array (BA for channel A, BB for channel
B) are deleted just before the READ statements in
lines 190 and 220. The READ command
automatically dimensions the array to the
appropriate size using the data descriptors written
in the file. But, it will only auto-dimension if the
array is not already dimensioned (i.e. a simple
numeric variable is specified). Thus, deleting the
array before reading it allows READ to dimension
the array to the correct size without knowing that
size before hand.

HANDSHAKE, SPRING-SUMMER 1981

Using the information read from the file so far,
the following message is printed on the terminal
screen:

NO. OF WAVEFORMS IN FILEs 18 ACQUIRED IN REP A,B MODE

ENTER THE NUMBER OF THE WAVEFORM YOU WANT TO GET FROM THE
FILE OR ENTER °"ALL®" TO GET ALL WAVEFORMS.

WHICH WAVEFORM DO YOU WANT TO GET?

The number of waveforms, acquisition mode,
and channel(s) used are filled in the first line from
the data in the file. Line 300 asks which waveform
you want to retrieve and graph. You can specify a
number from 1 to the number of waveforms in the
file or “ALL” to successively read and graph each
waveform in the file.

Line 310 gets yourresponse, and line 320 sets the
default number to the number of waveforms (NW).
Since the response may be a string (“ALL”) or a
waveform number, it is stored in a string. If the
response was “ALL”, line 490 branches around
the numeric conversion. Otherwise, lines 340-360
convert the string to a numeric value and check to
see that the valueis notless than or equal to zero or
greater than the number of waveforms in the file.

Next, a FOR loop is set up that will be executed
once for each channel used. If both channels are
used, the loop is executed twice. Otherwise, it is
only executed once. Lines 370-390 set-up the
beginning and ending index values for the loop.
The loop consists of only three statements—the
FOR and NEXT statements in lines 400 and 420,
and the READ statement in line 410. This READ
statement gets the zero reference, vertical scale
factors and vertical units for the channel(s) used.

For example, if REP A ,B mode was used, the IF
conditions in lines 380 and 390 fail, and the
statements are not executed. As a result, the
default beginning index value (0) and ending
index value (1) are used. On the first pass through
the loop, line 410 reads the zero reference, scale
factors, and vertical units for channel A into
element zero of the arrays. On the second pass, the
values for channel B are read into element 1 of the
arrays. If REP A mode was used, line 380 sets the
ending index to 0, so the loop is only executed for
channel A. For REP B mode, the beginning index
is set to 1 and the loop is executed for channel B
only.

The remainder of the program forms another
FOR loop that reads the waveform data, scales it
using the zero reference and scale factors, and
produces the output display.

page 17

Data logging...Part III

Just before starting the loop, line 430 reads the
time and date of acquisition. Lines 440 and 450 set
up a variable (K) thatis used in the loop to point to
the settings information for the channel each
waveform was acquired from. When REP AB or
ALT mode is used, data is acquired and written
into the output file first from channel A, then from
channel B. As a result, the odd number waveforms
(1,3,5,...) are acquired from channel A. Even
number waveforms (2,4,6,...) are acquired from
channel B (Fig. 4). When an odd number
waveform is read, K is equal to zero to point to
channel A settings. When an even number
waveform is read, K is equal to one to point to
channel B settings. If REP A mode is used, Kis set
to zero for all waveforms;if REP Bmodeis used, K
is set to one for all waveforms.

Waveform Pointer
Number Value (K)
Channel A Data 1 0
Channel B Data 2 1
Channel A Data 3 0
Channel B Data 4 1
Channel A Data 5 0

Fig. 4. When data is acquired with REP A,B or
ALT mode, channel A data is always written first.
The variable K points to the zero reference, record
length, and other settings for the corresponding
channel,

Line 440 sets K to a default value of zero. Then, if
REP B mode was used, line 450 sets K equal to one.
Line 460 begins the main loop.

Lines 470-490 set the value of K if REP AB or
ALT modes were used, since K’s value then
depends on the number of the waveform currently
being read. If REP A or REP B mode was used, the
value of K is fixed, and line 470 sends control
directly to line 500. Otherwise, line 480 sets K to
zero and line 490 checks the index variable, J. If J
is even, the expression in the IF statement is true,
so K is set to one.

Line 500 deletes array A and dimensions it
using the record length and number of records for
this channel. Notice that READ doesn’t auto-
dimension the array in this case because it was

page 18

manually dimensioned as a floating-point array.
If READ had auto-dimensioned it, an integer
array would have been created, which would make
the computation performed later slower and less
precise.

Next, line 520 tests to see if this waveform
should be displayed. If you asked for ALL
waveforms, or if the current index is equal to the
number of the requested waveform, the output
routine is executed. Otherwise, the output routine
is skipped, and control is passed directly to the
NEXT J statement in line 720, which starts the
next pass through the loop.

Line 530 begins the graphic output by paging
the terminal screen. A short message identifying
the waveform number and the channel it was
acquired from is printed at the top of the screen.
Then, the waveform is scaled using the scale
factors and zero reference, and line 570 graphs the
waveform in the area of the terminal screen
specified by the VIEWPORT command at the
beginning of the program. The remainder of the
loop from line 580 to line 710 prints the vertical
units, acquisition date and time, number and
length of records, and breakpoints. A typical
diplay is shown in Fig. 5.

WAVEFORM NUMBER S FROM CHANNEL A

ACQUIRED ON: 7-JUL-81
STARTING AT: 20:023126 8

DATA CONTAINS 1 RECORD

2048 POINTS PER RECORD L R
BREAKPOINTSS 4 B——
SAMPLE NO. SAMPLE INTERVAL] \

° 1. 07 2
920 5.00000E-08
1688 1.00000E-07 \

u_: \

-4

-6

.41 819 1.229 1.638 2.048
.205 614 1.024 1.434 1.843
1E 3

Fig. 5. A typical display produced by the
program of Fig. 3.

The program pauses at this point to allow you to
view or make a hard copy of the display. Execution
continues when you press RETURN. When the
requested waveform(s) have been displayed, the
loop ends, the output file is closed, and control is
passed back to ask youfor another input file name.

This program demonstrates the process of
reading a file with mixed data—waveforms,

HANDSHAKE, SPRING-SUMMER 1981

settings, and other information. The key is all in
knowing exactly how the file was written. The rest
of the program depends on the application. The
graphic output routine used in this example could
easily be replaced or augmented with analysis or
other data manipulation routines as the
application requires.

A

complete data logging/retrieval

system

The data logging program shown in Fig. 3, Part

I of this series and the program just discussed can
be combined to form a complete data
logging/retrieval system just by changing a few
lines. Since the combined program would be too
large to be completely memory resident in most
controllers, it is broken into a small main program
and two overlays—one for logging data and one
for reading data. Figure 6 illustrates the overlays.
The main program is shown in Fig. 7 and the two
overlays are shown in Figs. 8 and 9.

Line 10
MAIN PROGRAM
170
| |
| |) MEMORY
: OVERLAY :
| |
Line 1000 o/— — — \¢ J
Line 250 Line 250
DATA DATA
LOGGING RETRIEVAL
OVERLAY OVERLAY
1000 900

Fig. 6. The complete data logging/retrieval
program is divided into a small main program
that is always resident in memory and two
overlays that are loaded as they are needed.

10 DIM CHS$(1),P8$(1)

CHS()="A"\CHS8(1)="B"\PS(0)="L"\PS(1)="R"
SA=O\BL=0\F=0

VIEWPORT 420,960,260,680

PRINT “PLEASE ENTER DATE (DAY-MON-YR)s *;
INPUT DS\SETDATE D$

PRINT "PLEASE ENTER TIME (HH:MM3SS)s °;
INPUT TS\SETTIME T$

PAGE

PRINT ‘ENTER "LOG® TO LOG DATA, °"READ" TO READ DATA OR "QUIT" ‘;
INPUT F8

IF F8<>"LOG" THEN IF FS$<{>"READ" THEN IF FSO"QUIT® THEN 110

IF F$="LOG" THEN IF F<1 THEN OVLOAD DLO3"78L0G.OV1"

IF F$="READ® THEN IF F<{2 THEN OULOAD DL@3“76LOG.0uV2"

IF F$=°QUIT" THEN END

DELETE SFS$,SF,UAS,2R

Fig. 7. The small main program is always
resident. It loads the overlays (Figs. 8 and 9) as
required.

HANDSHAKE, SPRING-SUMMER 1981

960
970
980
950

Fig. 8. This overlay,

=1

REM XX GET MODE, CHANNELS, NO. OF WAVEFORMS AND FILENAME XX
PRINT ‘DO YOU WANT TO USE ®ALT" OR “REP® MODE TO ACUIRE DATA’;
INPUT MDS

IF MD$<"ALT® THEN IF MD$C>“REP* THEN 270

IF MDS=°"ALT" THEN 340

PRINT "ENTER CHANNEL(S) TO ACQUIRE DATA FROM CA OR B OR A,BJ: °;
INPUT Ct

IF C8<"A® THEN IF C8<>"B" THEN IF C8<>"A,B" THEN 340
PRINT "ENTER NO. OF WAVEFORMS (MUST BE EVEN FOR ALT OR REP A,B): °;
INPUT NW

IF NJ<i THEN 340

IF MDS$="ALT" THEN IF ITP(NW/2)<>NW/2 THEN 340

IF MD$="REP" THEN IF CS$="A,B" THEN IF ITP(NW/2){ONU/2 THEN 340
PRINT "ENTER FILE NAME FOR DATA LOGGING OUTPUT: °;

INPUT F$

CANCEL DLO:FS

LOAD "INS

INTEGER NB(1),NR(1),RL(1)

ATTACH 21 AS INS1,Q3WITH 1,2 €0

REM XX GET NO. OF RECORDS, RECORD LENGTH AND BREAKPOINTS XX
IF MDS$="REP®* THEN IF C$="B" THEN 520

GET NR(®),RL(®) FROM %1, "TMBS A;REC?"

GET NB(®) FROM 21, *NBPT?"

DELETE BA\DIM BA(NB(Q)%2-1)

GET BA FROM #1, "SBPT?*

IF MDS$="REP" THEN IF CS$="A" THEN 570

GET NR(1),RL(1) FROM %1, "TMBS B;REC?"

GET NB(1) FROM %1, “NBPT?"

DELETE BB\DIM BB(NB(1)X2-1)

GET BB FROM #1,"SBPT?"

REM XX CALCULATE FILE SIZE AND OPEN FILE Xx
BL=(NWX(RL(Q)XNR(Q))+(RL(1)XNR(1)))/256+1@

OPEN 82 AS DLO:FS$ FOR WRITE INTO BL

REM XX URITE NO. OF WAVEFORMS, MODE, CHANNEL(S)

REM XX NO. OF RECORDS, RECORD LENGTH, AND BREAKPOINTS u
WRITE 82,NuJ,MDS,CS

IF MD$="REP" THEN IF C$=°B" THEN 640

WRITE $2,NR(0),RL(Q®),NB(@),BA

IF MDS$="REP" TI-EN IF C8$="A" THEN 670

WRITE $2,NR(1),RL(1),NB(1),BB

REM XX ACQUIRE ZERO REFERENCE AND SCALE FACTORS XX

B=O\E=1

IF MD$="REP" THEN IF CS$="A" THEN E=0

IF MD$="REP" THEN IF C$="B" THEN B=1

FOR J=B TO E

GET CPS FROM #1;J+SA+1, *CPL?"

PUT *"CPL GND®* INTO #1;J+SA+1

PUT °"ARM *";CHS$(J) INTO 81
DELETE A

FOR I=1 TO NR(J)

WAIT 25

PUT *MTRIG" INTO 81

NEXT I

J$="MTRIG;READ "&CHS(J)

GET A FROM #1,J8

ZR=MEA(A)

PUT CP$ INTO $1;J+SA+1

JS="US"&PS(J)I&"17"

GET SF$;SF,VUAS FROM $1,J8

UAS=SEG(UAS,1,1)

WRITE 32,2R,SF,VAS

NEXT J

REM xx GET TIME AND DATE AND BEGIN DATA LOGGING Xx
IF MDS$=“REP* THEN IF C$<>"A,B" THEN 910
NU=NW-2

DELETE A,NR,RL,FS,NB,VAS,CPS,ZR,SF,BA,BB
DATE DS \TIME TS

URITE 32,D8,TS

RELEASE AUTO

IF MDS$="REP" THEN L$="REP "&STR(NU)&", "&CS
IF MDS$="ALT" THEN L$="ALT "&STR(NU)

DLOG 32 FROM #1,Ls

CLOSE $2\DETACH %1

GOTO 100

stored in the file

“76LOG.0OV1”, handles data logging. With the
exception of a few statements, it is identical to the
data logging program shown in Fig. 8, Part I.

Except for the mechanics of handling the

overlays, the program is functionally identical to
the ones described earlier. It asks whether you
want to log or read data and loads the appropriate
overlay based on the response. The flag variable
(F) in lines 140 and 150 of the main program, and
line 250 of the overlays, indicates which overlayis
currently resident, keeping the program from
needlessly re-loading an overlay that is already
resident if you ask for the same functon twice.

Notice also that the overlays are stored in a pre-

translated BASIC format. Normally, BASIC
programs are stored on the disk as ASCIItextand
are translated into an internal binary format
when loaded with the OLD command. This
translation is somewhat time consuming, so the
overlays for this program are stored on the disk in
the internal binary format so that they can be
directly loaded without translation.

page 19

Data logging...Part 111

250 F=2

AGE

27@ DIM ZR(1),SF(1),VAS(1)
280 INTEGER NR(1),RL(1),NB(1)
290 PRINT “ENTER DATA FILENAME: °;
300 INPUT FS
310 OPEN $2 AS DLO:FS FOR READ
320 READ $2,NJ,MDS,CS
330 IF HD"‘REP' THEN IF C$=°B* THEN 370
340 DELETE B
350 READ 32, M(O),RL(O) NB(®),BA
360 IF MDS="REP" THEN IF CS="A" THEN 380
370 DELETE BB
380 READ $2,NR(1),RL(1),NB(1),BB
390 MS=MDS
400 IF MDS$="REP" THEN MS=MD$&
410 PRINT °NO. OF WAVEFORMS IN FILEI “3NU;° ACQUIRED IN “;MS;" MODE®
420 PRINT
430 PRINT "ENTER THE NUMBER OF THE UAVEFORM YOU WANT TO GET FROM THE®
440 PRINT ‘FILE, OR ENTER °ALL®" TO GET ALL WAVEFORMS.
45Q PRINT
460 PRINT °"WHICH WAVEFORM DO YOU WANT TO GET “;
470 INPUT UFS
480 I=Nu
490 IF WFS="ALL" THEN 530
500 I=UAL(UFS)
S10 IF I<=0 THEN 460
520 IF I>NW THEN 460
530 B=O\E-=1
540 IF MD$="REP" THEN IF C$="A" THEN E=0
550 IF MDS="REP°® THEN IF CS$="B* THEN B=1
660 FOR J=B TO E
S READ $2,2ZR(J),SF(J),UAS(J)

0 NEXT J
590 READ 32,D8,TS
600 K=0
610 IF MDS$=°"REP" THEN IF CS="B" THEN K=1
620 FOR J=1 TO I
630 IF MD$="REP® THEN IF C8$<>°"A,B" THEN 660
640 K=0
650 1IF ITP(Jr2)=J/2 THEN K=
660 DELETE A\DIM ﬁ(lrﬁ(K)lRL(K)) 1)
670 READ 82,A
680 IF WFS<>"ALL®" THEN IF J<I THEN 880
690 PAGE
700 PRINT °"WAVEFORM NUMBER ";J;° FROM CHANNEL *";CHS(K)
710 SETGR VIEWPORT
720 A=(A-ZR(K))IXSF(K)/32
730 GRAPH A
740 SMOVE 350,420\PRINT VAS(K)
750 SMOVE 0,690
760 PRINT "ACQUIRED ON: *;D$
770 PRINT "STARTING AT ';T'\FRINT
780 PRINT "DATA CONTAINS ,m((),' RECORD" 3
790 IF NR(K)>1 THEN PRINT ®S°;\PRINT
800 PRINT RL(K); POINTS PER RECORD*\PRINT
810 PRINT ®"BREAKPOINTS:*
820 PRINT “SAMPLE NO. SAMPLE INTERVAL"\PRINT
830 FOR N=0 TO NB(K)X2-1 STEP 2
840 IF K=0 THEN PRINT TAB(2);BA(N)3;TAB(11);3;BACN+1)
850 IF K=1 THEN PRINT TAB(2)3;BB(N)3;TAB(11)3BB(N+1)
860 NEXT N
870 SMOVE ©,0\PRINT “PRESS RETURN TO CONTINUE®;\WAIT
8B0 NEXT J

Fig. 9. This overlay, stored in the file
“76LOG.0V2”, handles reading the data files and
producing the graphic output. It is functionally

identical to the program shown in Fig. 3 of this
article.

When an overlay is loaded, The statements in
the overlay file replace statements with the same
line number in memory. All other statements in
memory are unaffected. As a result, after the
overlay is loaded, control is passed to line 250,
regardless of which overlay is loaded. If the data
logging overlayisloaded, line 250is the beginning
of the logging routine. If the data retrieval routine
is loaded, line 250 is the start of that routine.

This data logging/retrieval system probably
won’t exactly meet your specific needs, but it can
be adapted and used as a base for building a
program. It could even be further enhanced to
contain a data logging overlay, an event detection
overlay, and a data retrieval overlay. In any case,
you should find the building blocks you need in the
example programs to build a software package
that best suits your needs. m

By Mark Tilden,
HANDSHAKE Staff.

TEK SPS BASIC routine for
single-key program selection

Do you find yourself drawing on a library of
standard programs for signal analysis? And do
you find yourself doing directory listings to find
file names every time you need another program?
Or do you load several programsinto different line
number blocks, then wind up doing a listing to
find the beginning line number each time you
want to GOTO a different program?

If you find yourself in any of these situations,
you can save yourself a lot of time and trouble by
using the TEK SPS BASIC program listed in Fig.
1. This menu program allows you to call up as
many as nine different routines or programs
simply by pressing the terminal keys for numbers
1 through 9.

page 20

For example, let’s say you frequently use
programs for 1) acquiring a waveform, 2) storing it
on a disk, 3) recalling it from a disk, 4) computing
pulse parameters, 5) comparison to a standard
waveform, 6) bandwidth determination, and soon
up through nine different programs of your choice.
In the menu routine listed in Fig. 1, all youhave to
do is install your programs in the line number
blocks 1100-1199 for terminal key 1, 1200-1299 for
2, 1300-1399 for 3, etc. Or, for programs too long to
fit in the assigned block of line numbers, you can
simply use the block for a short routine to overlay
the program from a disk. For this latter case,
however, you need to make sure the program being

HANDSHAKE, SPRING-SUMMER 1981

10 REM MENU ROUTINE

100 INPREQ CHAR,NOECHO GOSUB 1009
110 GOTO 110

1000 REM READ KEY

1005 INPUT I8

1010 ONERR ER GOTO 10SS5

1015 I=UAL(IS)

1020 ONERR

1030 LOCKKB

1035 GOSUB 1 OF 1100,1209,1300,14069,1509,1600,1700, 1800, 1900
1040 LOCKKB OPEN

1045 INPREQ CHAR,NOECHO GOSUB 1000
1050 RETURN

1055 ONERR RETURN GOTO 1060

1060 PRINT ®"INVALID INPUT. USE KEYS 1-9 ONLY.®
1065 RETURN

1100 PRINT “"PROGRAM 1°

1110 RETURN

1200 PRINT "PROGRAM 2°

1210 RETURN

1300 PRINT "PROGRAM 3*

1310 RETURN

1400 PRINT "PROGRAM 4"

1410 RETURN

1500 PRINT "PROGRAM S"

1510 RETURN

1600 PRINT "PROGRAM 6"

1610 RETURN

1700 PRINT "PROGRAM 7"

1710 PETUPN

1800 PRPINT “PROGRAM 8"

1810 PETURN

190@ PRINT “PROGRAM 9

1910 RETURN

Fig. 1. Menu program written in TEK SPS
BASIC V02-02 software.

overlayed is line-numbered 2000 and greater so
that it doesn’t overwrite the menu routine.

Once your library of programs is set up in the
assigned line number blocks or set up for
overlaying, all you need to do to call up a program
is press the corresponding numeric key (1-9) on the
terminal keyboard. As a memory jogger, small
gummed labels with the program names can be
stuck to your terminal above the number keys.

Beyond being a useful device for quickly calling
up utility programs, the menu routine of Fig. 1 is
also useful for demonstrating the INPREQ and
ONERR commands of TEK SPS BASIC. To see
how these commands function, let’s go through
the program beginning at line 100.

With TEK SPS BASIC V02-02 software, your
terminal keyboard is live. That means you can
enter data, commands, or program lines at any
time, even while a program is running. The
INPREQ command is simply a method of
directing keyboard entries occurring while a
program is running. In line 100 of Fig. 1, INPREQ
enables the input request for a single character via
the CHAR argument. Also, because of the
optional NOECHO keyword, your input is not
echoed (printed on the terminal). And finally, the
GOSUB 1000 directs the program to go to the
subroutine at line 1000 whenever there is
keyboard input to process.

After INPREQ s activated, the program goes to
line 110. This is simply a loop which keeps
repeating itself while the program waits for input.

As soon as any character key is pressed on the
terminal, INPREQ causes a branch from the loop
at line 110 to the input routine at line 1000. At line
1005, the ASCII character entered from the
keyboard is stored in the string variable I$.
Presumably, the character entered will be a single
digit of 1 through 9. However, accidents can
happen—an alpha character might be entered
instead of a numeric. So an ONERR condition is
set up atline 1010. The ONERR at 1010 essentially
says, “if an error occurs, put the error message
information into variable ER and go to line 1055
for error processing.” In the next line, line 1015,
the VAL function converts the ASCIIcharacter I$
to its decimal value. If the character is not a
number, a warning error occurs, and the ONERR
condition branches the program to line 1055
which causes a message about input restrictions
to be printed. Then the program returnstoline 110
to wait for a correct input. However, if I$ does
contain a single-digit number, VAL converts it to
floating point and stores the result in variable I.

In line 1020, the ONERR of line 1010 is disabled
by the ONERR without keywords. Following that,
INPREQ is disabled in line 1025 and the terminal
keyboard is locked by LOCKKB in line 1030. This
is done to keep further terminal input from
interrupting the program being selected by the
menu routine.

The single digit (1 through 9) entered from the
keyboard and stored in I is used in line 1035 to
branch to the subroutine line number in the list
having a list position equal to I. If I equals 1, the
branch is to the first line number in the list; if I
equals 2, the branch is to the second line numberin
the list; and so on.

When the subroutine containing your utility
program completes execution, the menu
program’s execution returns to line 1040. Here, the
keyboard is unlocked to allow keyboard entry for
selecting the next program. Then INPREQ is
enabled again at line 1045 so that the keyboard
input can be processed. And finally, line 1050
returns execution to the loop at line 110, where the
program remains until it receives a keyboard
input again. |

by Bob Ramirez,
HANDSHAKE Staff

Based on a program submitted
by Alan Jeddeloh, LDP Test Engineering,
Tektronix, Inc.

HANDSHAKE, SPRING-SUMMER 1981 page 21

G_e_tting the most o:t of
TEK BASIC graphics—

For a different view, try isometric projection

Sometimes the best way to view an object is to
pick it up in your hand, turn it around, and look at
it from another angle. That may be easy if the
object is sitting on the table in front of you. But
what do you do when the object exists only as a
computer simulation? You can use your
imagination and guess what’s hidden. Or, youcan
turn to sophisticated graphing techniques to
simulate a three-dimensional image. Then, by
specifying a viewing angle, you can get a glimpse
of any surface.

This technique can also be helpful in viewing a
series of related waveforms. In previous issues,
programs have been given for obtaining and
displaying multiple traces of slowly changing
data (see “Orthogonal Projection of Sin X/X,” Vol.
2 No. 2, Winter 76-77; “Studying Long Term
Variations,” Vol. 2 No. 3, Spring 1977; and “X-Y-Z
Plotting Adds Another Dimension to Analysis
Results,” Vol. 4 No. 3, Spring/Summer 1979).

An isometric projection can be produced by
tilting and rotating a set of waveforms on the X, Y,
and Z axes. Figure 1 shows an isometric projection
of long-term data variations resulting from
ultrasonic measurements. Figure 2 shows several
isometric projections of the data in Fig. 1 with a
variety of different tilt and rotation angles.

Since the tilt, rotation, and hidden-line
operations are done on a point-by-point basis,
completing a plot does take a noticeable amount of
time. But for the view you get, the wait is worth it!

TILT= 45 DEG’S
ROT = 45 DEG’S

Fig. 1. Isometric projection of long-term data
variations.

page 22

TILT= 30 DEG’S
ROT =-6© DEG’S

TILT= © DEG’S
ROT = 45 DEG’S

TILT= 45 DEG’S
ROT = © DEG’S

TILT= 20 DEG’S
ROT = 80 DEG’S

Fig. 2. Several different views of the isometric
projection using different tilt and rotation angles.

HANDSHAKE, SPRING-SUMMER 1981

Program Description

A TEK SPS BASIC program for producing an
isometric display is shown in Fig. 3. Lines 10
through 170 set up the basic program. Data for the
program is assumed to be stored on a flexible
diskette in drive #1;it can be previously digitized
data or data from a simulation routine. Line 120
allows the choice of finding the minimum and
maximum values of the input data to

10 REN Xxxx ISOMETRIC PROJECTION UITH HIDDEN LINE OPTION XXXX
20 REM XxxxXx FOR TEK SPS BASIC

30 PAGE

40 PRINT "INPUT NAME OF DATA FILE:°\INPUT NS

50 GS=NS&°.DAT"

60 PRINT °“INPUT DATE:"\INPUT DS

70 PAGE

80 WAVEFORM WA IS A(511),S5A,HAS,UAS

90 DIM H(511),V(511),P(511),PP(511)

100 CLOSE 82

110 OPEN 82 AS DX1:G8 FOR READ

120 PRINT "DO YOU WISH TO FIND THE MAX AND MIN DATA UALUES (Y OR N)*
130 INPUT HS

140 IF HS$="N" THEN GOTO 160

150 GOSUB 800

AGE
170 PRINT "DO YOU WISH TO USE HIDDEN LINE PLOTTING (Y OR N)"\INPUT QS
PRINT

I
o
©
)

190 PRINT °"INPUT ROTATION ANGLE (DEGREES)®N\INPUT R
200 RR=(RX3.142/180)\SR=SIN(RR)\CR=COS(RR)
PRINT

220 PRINT °INPUT TILT ANGLE (DEGREES)°NINPUT T
230 TT=(T%3.142/180)\ST=SIN(TT)INCT=COS(TT)
240 REM - DISPLAY DATA IN FORM SELECTED
250 RESET 82
260 P=-1000000
AGE

n
~
o
)

280 REM DEFINE Z-AXIS STEP SIZE
290 ZS=(DH-DL)/20

300 REM - COMPUTE X DELAY (NOTE: MUST BE INTEGER)
310 DE=ITP(S11XSR/((K-1)XCR))

320 REM - SET UP SIZE AND POSITION OF DISPLAY (NOTE: MUST BE SQUARE)
330 IF SR<® THEN GOTO 360

340 VIEWPORT ©,500,350,850

350 GOTO 380

360 VIEWPORT 500,1000,200,700

370 REM - SET UP DATA WINDOW

380 DU=DH+ZSX(K-1)

390 WINDOW @,511,DL,DU

400 SMOVE @,1S5O\PRINT *TILT=";T;" DEG’S®

410 SMOVE ©,130\PRINT °ROT =";R;" DEG’S®

420 SMOVE 800,30\PRINT °C*;D$;"1"

430 SMOVE 150,30\PRINT "ISOMETRIC PROJECTION OF DATA FILE: °;GS
440 FOR II=1 TO K

450 READ 32,UA

460 X=0

470 XA=X\YA=A(X)I\ZA=ZSK(II-1)\GOSUB 920

480 MOVE H(®),U(0)

490 PP=P

500 REM - DRAW DISPLAY

510 FOR X=1 TO 511

520 XA=X\YA=A(X)\ZA=ZSX(II-1)\GOSUB 920

530 IF @$="N° THEN GOTO 660

540 REM - ADJUST UIEWPORT IF ROTATIONAL ANGLE IS NEGATIVE
S50 IF DE<O® THEN GOTO 580

S60 IF X>511-DE THEN GOTO 660

S7@ GOTO 590

580 IF X<=—-DE THEN GOTO 660

590 XM=X-1

600 REM - TEST FOR HIDDEN LINE

610 IF U(XM)<=P(DE+XM) THEN GOTO 640

620 IF U(X)>P(DE+X) THEN GOTO 660

630 IF U(X)<=P(DE+X) THEN GOTO 680

640 IF U(X)<=P(DE+X) THEN GOTO 740

650 IF U(X)>P(DE+X) THEN GOTO 710

660 DRAW H(X),U(XI\PP(X)=U(X)

670 GOTO 750

680 GOSUB 990

690 DRAW XI,YI

700 GOTO 740

710 GOSUB

720 MOVE xx YINDRAW H(X),UCXINPP(X)=U(X)

730 GOTO 7

740 FF(X)-P(X*DE)

750 NEXT X

760 P=PP

770 NEXT II

780 SMOVE 0,0

790 END

800 REM - SUBROUTINE TO FIND DATA MAX AND MIN VALUES

810 PRINT "DATA FILE: ®;GS$;" NOW BEING SEARCHED FOR MAX AND MIN VALUES®

820 DH=-1000000

830 DL=1000000

840 K=0

850 READ 32,WA

86@ EOF $2 GOTO 910

870 IF DH<MAX(A) THEN DH=MAX(A)

880 IF DLO>MINCA) THEN DL=MINCA)

890 K=K+1

900 GOTO 850

910 RETURN

920 REM - SUBROUTINE TO PERFORM TILT AND ROTATION
930 ZX=511X%XZA/(ZSX(K-1))

940 H(X)=XAXCR+ZXXSR

S50 ZY=(DU-DL)XZA/(ZSX(K-1))

960 XY=(DU-DL)XXA/511

970 U(X)=YAXCT+(ZYXCR-XYXSR)IXST

980 RETURN

990 REM - SUBROUTINE TO FIND CROSSING POINTS
1000 S1=(P(X+DE)=P(XM+DE))/ (X-XM)

1010 S2=(V(X)=U(XM))/ (X-XM)

1020 XI=(P(XM+DE)-S1XH(XM)-U(XM)+S2XH(XM))/ (S52-51)
1030 YI=S2XXI+U(XM)-S2XH(XM)

1040 RETURN

Fig. 3. TEK SPS BASIC program listing to
produce an isometric projection.

automatically set up the data window; this
calculation is. handled by the subroutine in lines
800-910. You should always answer Y (yes) the
first time through the program; for subsequent
plots of the same data, N (no) uses the values
calculated the first time through the program to
save time.

Line 170 allows choice of hidden-line plotting.
Lines 190-230 ask you to input the rotation and tilt
angle for the isometric projection. Rotation refers
to the displacement angle from the Z axes in the
XZ plane; tilt is the displacement angle from the Y
axes in the YZ plane.

Data display begins at line 240. Line 310
computes the integer step for use with the hidden-
line option. Lines 320-360 set up a square-sided
viewport based upon the sign of the rotation angle;
370-390 set up the data window. Lines 400-440
provide labels for the graph.

The original data file is read again at line 450 to
obtain the waveforms to be plotted by lines 460-
590. Each point of each waveform is rotated and
tilted using the subroutine in 920-980. If the
hidden-line option was selected, each successive
waveform is tested for hidden lines as it is plotted
using the routine in lines 600-780 and the crossing
point subroutine in lines 990-1040. m

by P.J. Highmore and B.S. Gray,

United Kingdom Atomic Energy Authority,
Risley Nuclear Power Development Laboratories,
K11/RD3

Risley, Warrington WA3 6AT

England

This application is condensed from an
application report entitled “Graphical
Representations of Ultrasonic Data Using a
Digital Oscilloscope,” ND-R-411(R). Copies
of the report can be obtained by writing Dr.
Highmore at the above address.

HANDSHAKE, SPRING-SUMMER 1981

page 23

Four new programmable digiéizer

systems available

.

To meet varying needs in waveform digitizing
and processing, Tektronix has introduced four
new waveform processing systems—the WP2251,
WP2252, WP3201, and WP3202. These systems are
based on two different, but fully programmable,
waveform digitizers and a mix of controllers and
peripheral storage capacities.

State-of-the-art waveform capture

The WP2251 and WP2252 systems use the
7912AD Programmable Digitizer for waveform
capture. The 7912AD is a ten-bit digitizer
providing a waveform record length of 512
samples. It employs a scan converter for state-of-
the-art digitizing speed and is the choice for high-
bandwidth signal capture (500 MHz bandwidth
with a 7A19 plug-in, 200 MHz with a 7A16P plug-
in).

The WP3201 and WP3202 systems use the 7612D
Programmable Digitizer for maximum flexibility
in medium-speed signal capture. The 7612D is
actually two digitizers in one. It uses two electron-
bombarded-semiconductor (EBS) digitizer tubes
for dual-channel, eight-bit digitizing with a 90
MHz bandwidth. Dual-channel flexibility is

*DEC and PDP are registered trademarks of the Digital
Equipment Corporation.

page 24

further enhanced by long record lengths (2048
waveform samples per channel), pre- and post-
trigger capabilities, and the ability to switch
sample rates during digitizing.

Choice of controller power, storage
capacity

The 7912AD in the WP2251 system and the
7612D in the WP3201 system are interfaced to
identical signal processing systems. The proces-
sor is a TEKTRONIX CP1164X Option 31
Controller. This is a high-speed controller that is
virtually identical to the DEC PDP-11/34A
Minicomputer*. Beyond high speed, the primary
features are 64K words (128K bytes) of MOS
memory, memory management, bootstrap ROM,
automatic self-test diagnostics, extended instruc-
tion set, and a DL11W Interface for a TEK-
TRONIX 4010-family display terminal. Available
options for additional capabilities include another
64K of MOS memory, high-speed cache memory,
and a floating-point processor.

Peripheral storage for the WP2251 and WP3201
systems is provided by DEC RL11-AK and RLO1-
AK Disk Drives. These provide random-access
data storage using a high-density, single-disk
cartridge. Each drive carries one cartridge with
each being capable of storing five megabytes of
data.

The WP2252 (7912AD digitizer) and WP3202
(7612D digitizer) systems provide instrument
control and procecessing with a DEC PDP-
11/23AA Controller. This controller features 64K
words of MOS memory, memory management,
bootstrap ROM, automatic self-test diagnostics,
and the KEF11-AA Floating Point option. Also, a
DLV11-Finterfaceis provided for a TEKTRONIX
4010-family display terminal.

Peripheral storage for the WP2252 and WP3202
systems is provided by a DEC RX02 Double-
Density, Flexible Diskette Drive. This is a random
access dual diskette drive. Each diskette provides
storage and retrieval for 512K eight-bit bytes of
data.

GPIB compatibility plus

Each controller is complete with an IEEE 488
interface for control of up to 14 GPIBinstruments.

HANDSHAKE, SPRING-SUMMER 1981

Additionally, the CP1164X controller has the
potential capacity for three more IEEE 488
interfaces, allowing control of up to 56 bus-
interfaced instruments.

The system software, TEK SPS BASIC V02 for
7912AD systems and an extended memory version
(V02XM) for 7612D systems, enhances GPIB
compatibility as well as provides full signal
processing capabilities. The software includes a
GPIB driver and a specialized commands module
for the system digitizers (7912AD Driver for the
WP2251 and WP2252 or 7612D Driver for the
WP3201 and WP3202).

TEK Codes and Formats adds the final plus to
these systems. TEK Codes and Formats is a
Tektronix standard that ensures consistent IEEE
488 implementation, including standards for
device commands and statement syntax. This
makes instrument control programming easier,
whether you use just the basic 7912AD or 7612D
system or add on a full complement of GPIB
instruments from Tektronix.

For more information on these systems and
instruments, contact your local Tektronix Field
Office or Tektronix Sales Representative, or use
the reply card bound into this issue of HAND-

SHAKE. LT

1360P/T36OS provides GPIB
control of 129 signal paths

Whether you need to send test signals to a
number of test stations or monitor signals from
those stations, the TEKTRONIX 1360P/1360S
Programmable Signal Multiplexer offers an
economical approach to signal distribution. Its 50-
ohm coaxial switches have individual
bandwidths of 250 MHz and capacities of 250 volts
DC or 250 milliamperes (10 VA maximum). What’s
more, switching can be set up either manually or
under program control over the GPIB.

There are actually two distinct units involved—
the 1360P Switch Controller and the 1360S Switch
Matrix.

The microprocessor-based 1360P contains a
GPIBinterface (IEEE 488-1978) and allows switch
selection either manually or under program
control. Additionally, the 1360P can be manually
set to a scan mode, allowing the switches to be

progressively scanned at setable rates from 3
milliseconds to 10 seconds per switch.

The 1360S Switch Matrix unit provides 33
signal paths through four identical nine-pole
coaxial switch assemblies. Strapping in the 1360P
allows the matrix to be set for 1 output with 33
inputs, 2 ganged outputs with 17 inputs, or 4
ganged outputs with 8 inputs. Multiples of these
combinations are possible with additional
switching units. Each 1360P is capable of driving
up to four 1360S switchers for a total of 129 signal
paths that can be switched under program control.

For more information on this or any other
Tektronix product, contact your local Tektronix
Field Engineer or Sales Representative or use the
reply card bound into thisissue of HANDSHAKE.

HANDSHAKE, SPRING-SUMMER 1981

page 25

New Real Time Clock ROM Pack —

another measurement dimension for 4052

and 4054 systems

In automated test, the time when something
happens can be as important as the event or
measurement itself. That’s why Tektronix, Inc.,
has developed and made available the 4052R09
Real Time Clock ROM Pack for 4052 and 4054
Graphic Computing Systems. Now you can add
the dimensions of time and date, elapsed time, or
vectored time interrupts to your measurements.
Time and date ‘

A 4052 or 4054, augmented by the signal
processing ROM packs and any of several
Tektronix waveform digitizers, makes an extrem-
ely powerful test and measurement tool. One
popular application is in quality test. The system
acquires and measures product parameters in
order to make a pass-fail decision. Sometimes,
failure data is the only data kept and logged. In
other cases, it’s often- necessary to qualify
products by attaching test documentation to the
product. In almost every case, it’s atleast handy if
not an outright requirement to put the testing time
and date on the test data. This is where the
4052R09 Real Time Clock ROM Pack comes in.

When you turn on your system, call the SETIME
command to set the 4052R09 ROM clock to the
desired time and date. Time is set in a 24-hour
format in hours, minutes, and seconds.

Now, when you want to know the time, just call
the RDTIME command to read the date and time
into the string variable of your choice. This
variable can then be logged as part of stored
waveform or measurement data. Or you can print
the variable on the viewing screen along with the
associated test waveforms and data for hard

copying.

Elapsed time

Besides the time-and-date clock, the 4052R09
Real Time Clock ROM Pack also has an elapsed
time clock. This provides a stopwatch function
that counts in 0.1 second increments.

To start the stopwatch, just call the STARTW
command. The watch will start counting in tenths
of a second. When you want to read the elapsed
time, call the STOPIT command. The elapsed time
in seconds will be read into the variable you
specify with STOPIT.

If you want to measure the run time of one of
your programs, use STARTW in the firstline of the
program and STOPIT in the last line. But more
important applications occur in biophysical
stimulus-response measurements, physics, chem-
istry, or any place where elapsed time is an
important part of the data.

Vectored timed interrupts

Do you ever have to gather data on a timed
basis? If so, vectored timed interrupts will let you
do the job automatically.

The ONTIME command of the Real Time Clock
ROM Pack lets you set a timer for a vectored
interrupt. With the 4050 interrupt capability
enabled by SET KEY and the interrupt interval
set by “ONTIME”,T, your program will branch to
line 84 when the interval specified by T elapses. By
some simple looping or subroutining, the ON-
TIME can be reinitiated each time T elapses.
Thus, you have the capability of programming
periodic vectored timed interrupts.

For example, you can set T to 300 (300 seconds)
and set up your program to branch every T
seconds to an instrument control and data
collection routine for process monitoring. You can
even use your 4052 or 4054 for main-task
processing while waiting for the interrupt and
return automatically to main-task processing
after the process monitoring task completes.

In short, given the time—by a 4052R09 Real
Time Clock ROM Pack of course—you can now
schedule as well as automate your measurements.
To find out more about the 4052R09 contact your
local Tektronix Sales Engineer or Sales Rep-

resentative. JL oI

page 26

HANDSHAKE, SPRING-SUMMER 1981

7612D improves resolution on
low duty cycle pulse capture

Low duty cycle pulses crop up in a number of
application areas. What probably comes to mind
first are the traditional and well-developed areas
of SONAR and RADAR. However, there are a
variety of other areas where similar echo-ranging
and identification techniques can be valuable test
tools—tools for measuring distance, thickness,
buried strata composition and arrangement, void
size and location, and so on. The problem is that
these applications are often not widespread.
Indeed, some echo-return applications are still in
the feasibility or research stages. As a result,
instrumentation specialized for low duty cycle
pulse or echo capture is limited, and the
measurements often have to be made initially
with general purpose instruments.

For some coarse echo-return measurments,
standard oscilloscopes and counters can do the
job. But detailed information is often difficult to
get. As indicated in Fig. 1, low duty cycle pulses
have long “dead” times between pulses. Adjusting
an oscilloscope to view and measure these dead
times precludes detailed observation of pulse
structure. On the other hand, adjustment to
observe detail on a pulse precludes measurement
of the time between pulses. In someinstances, this
dichotomy can be eliminated by operating in a
dual-channel alternate or chopped sweep mode
with one channel adjusted for viewing pulse detail
and the other adjusted for measuring the time
between pulses. However, in some applications,
the acquisition problem is further compounded by
variation in the interpulse distance. There may
even be substantial variations in the pulses
themselves. In short, it’s no longer a repetitive
waveform situation, but a single-shot acquisition
requirement.

For such random pulse trains, where both pulse
detail and accurate interpulse time measurements
are important, the TEKTRONIX 7612D
Programmable Digitizer offers a simple
measurement solution. The 7612D has two
independent channels, each with its own
sequential digitizer. Additionally, each channel’s
2048-element record length can be partitioned into
eight records of 256 elements each. This means
that you can capture up to eight waveforms per
channel in a single-shot mode. You can store eight

AN n n

Fig. 1. Adifficult acquisition situation posed by a
pulse train with variations in individual pulses as
well as interpulse time.

NN

Fig. 2. A simple acquisition solution using the
dual-channel, multiple-record features of the
TEKTRONIX 7612D Programmable Digitizer.

pulses at high resolution in one channel and the
dead times at a lower resolution in the other
channel.

For example, let’s say you need five
nanoseconds per sample to get sufficient
resolution on the pulses in the train and around
100 nanoseconds per sample for the dead times.
Channel A can be set up for eight 256-element
records with a five nanosecond sampling interval
and triggering set for the positive slope. Channel
B is set for eight records, also, with 100
nanoseconds per sample and set to trigger on the
negative slope of each pulse.

This setup allows you to capture eight
successive pulses in Channel A and eight
successive dead times in Channel B as indicated
in Fig. 2. The 7612D gives you the resolution you
need for both the pulses and the dead times.

by Bob Ramirez,
HANDSHAKE Staff

Based on a memo from
Dean Turnbaugh,
Tektronix, Inc.,
Rockuille Field Office

HANDSHAKE, SPRING-SUMMER 1981

page 27

Literature available from Tektronix

The following literature can be ordered via the
reply card bound into the center of this issue of
HANDSHAKE.

Transducer Packages,

Catalog Page AX-3451-1.

This product sheet lists the various mechanical
motion transducer packages available from
Tektronix. Basic specifications are included. Also
listed are the various mounting kits, cable
assemblies, etc. for use with each transducer.

TEKTRONIX Codes and Formats

for GPIB Instruments,

Application Note 99AX-4607.

The various concepts and philosophies followed
by Tektronix in implementing the IEEE-488
standard instrument interface (GPIB) are dis-
cussed in this application note. Included is a
discussion of TEK Codes and Formats, the
additional standard used by Tektronix to assure
consistent and friendly communication between
Tektronix instruments and instrument control-
lers.

GPIB Communication with the 7854,
Application Note AX-4416.

This application note demonstrates interfacing of
the 7854 over the GPIB to a 4052 Graphic
Computing System and 4924 Tape Drive. The
discussion is supported by a variety of programs
for transferring data, waveforms, text, and
programs between devices.

Introduction to 7854 Oscilloscope
Measurement and Programming
Techniques, '
Application Note 42AX-4682.

The fundamentals of using the 7854 as a stand-
alone tool for waveform digitizing and processing
are introduced. Discussions include the basics of
waveform storage, cursor measurements, and
measurement programming with the Waveform
Calculator. Automation of pulse analysis is used
as the programming example.

Capture fast waveforms accurately
with a 2-channel programmable
digitizer,

Electronic Design reprint AX-4401.

This article reprint contains an in-depth discus-
sion of the new 7612D Programmable Digitizer
from Tektronix, Inc. The major features—dual-
channel operation, variable record length, sample
rate switching, and pre- and post-triggering—are
described in terms of both operation and use. A
full application example, testing a three-electrode
gas lightning arrester, is also presented.

HANDSHAKE Application

Library Catalog.

This catalog contains abstracts on a variety of
signal processing programs that are available free
as listings. Program listings are provided on an
“as is” basis and are documented by embedded
comments and available support literature.

HANDSHAKE

Group 157 (94-384)
Tektronix, Inc.

P.O. Box 500

Beaverton, Oregon 97077

Tektronix:

COMMITTED TO EXCELLENCE

page 28

BULK RATE
U.S. POSTAGE
PAID

Tektronix, Inc.

45A-4858

HANDSHAKE, SPRING-SUMMER 1981

