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On  the Use of Windows for Harmonic  Analysis 
with the Discrete  Fourier  Transform 

FREDRIC J. HARRIS, MEMBER, IEEE 

Ahmw-This Pw!r mak= available a concise review of data win- compromise consists of applying windows to the sampled 
daws pad  the^ affect On the Of in the data set, or equivalently, smoothing  the spectral samples. '7 of aoise9 m the ptesence of sdroag bar- The two  operations to which we subject the  data are momc mterference. We dm call attention to a number of common -= in be rp~crh of windows den used with the fd F ~ -  sampling  and  windowing.  These operations can  be performed 
transform. This paper includes a comprehensive catdog of data win- in either order. Sampling is well understood, windowing is less 

related to sampled  windows for DFT's. 
I .  INTRODUCTION 

HERE IS MUCH signal  processing devoted to detection 
and estimation. Detection is the task  of determiningif 
a specific signal set is present in an observation, while 

estimation is the task of obtaining  the values  of the parameters 
describing the signal. Often the signal is complicated or is 
corrupted by interfering signals or noise. To facilitate the 
detection and estimation of  signal sets, the  observation is 
decomposed by a basis set which spans the signal  space [ 11. 
For many problems of  engineering interest, the class  of  signals 
being sought are periodic which  leads quite naturally to a 
decomposition  by a basis consisting of  simple periodic func- 
tions, the sines  and  cosines. The classic Fourier  transform is 
the mechanism  by  which we are able to perform this decom- 
position. 

By necessity, every  observed  signal we process must be  of 
finite extent. The extent may  be adjustable and selectable, 
but it must  be finite. Processing a finite-duration observation 
imposes interesting and interacting considerations on the har- 
monic  analysis.  These considerations  include detectability 
of tones in the presence  of nearby  strong tones, resolvability 
of similarstrength  nearby tones, resolvability  of shifting tones, 
and  biases in  estimating  the  parameters of any of the afore- 
mentioned signals. 

For practicality, the  data we process are N uniformly spaced 
samples  of the observed  signal. For convenience, N is highly 
composite, and we will assume N is even. The  harmonic 
estimates we obtain through the discrete Fourier  transform 
(DFT) are N uniformly spaced  samples of the associated 
periodic spectra. This approach is elegant  and attractive 
when the processing  scheme is cast as a spectral decomposition 
in an N-dimensional  orthogonal  vector space [ 21. Unfortu- 
nately, in many practical situations, to  obtain meaningful 
results this elegance  must  be compromised. One such 
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11. HARMONIC ANALYSIS OF FINITE-EXTENT 
DATA AND THE DFT 

Harmonic  analysis of finite-extent data entails the projection 
of the observed  signal on a basis set spanning the observation 
interval [ 1 I ,  [ 3 I .  Anticipating  the  next paragraph, we define 
T seconds as a  convenient  time interval and NT seconds as the 
observation interval. The sines  and  cosines with periods equal 
to an integer submultiple of NT seconds  form an orthogonal 
basis set for continuous signals extending over NT seconds. 
These  are  defined as 

sin [%kt] O < t < N T .  

We observe that by defining a basis set over an  ordered  index 
k, we are  defining the  spectrum over a line  (called the fre- 
quency axis) from which we draw the concepts of bandwidth 
and of frequencies close to  and far from a given frequency 
(which is related to resolution). 

For sampled signals, the basis set spanning the interval of NT 
seconds  is identical with  the  sequences  obtained by uniform 
samples  of the corresponding  continuous spanning set up to 
the index N / 2 ,  

sin [ 3 T ]  =sin [ 5 ]  J n = O , l , * . . ,  N -  1 

We note  here that  the trigonometric  functions are unique in 
that uniformly spaced  samples  (over  an integer number of 
periods) form  orthogonal sequences. Arbitrary  orthogonal 
functions, similarly sampled, do  not form  orthogonal se- 
quences. We also note  that  an interval of length NT seconds 
is not  the same as the interval covered by N samples separated 
by  intervals  of T seconds. This is easily understood when we 
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Nth T - ~ e c  Sample' 

Fig. 1 .  N samples of an even function taken over an NT second interval. 
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Fig. 2. Even sequence under DFT and periodic extension of sequence 
under DFT. 

realize that  the interval oveq which the samples are taken is 
closed on the left and is open  on the right  (i.e., [-)). Fig. 1 
demonstrates this by sampling a  function which is even about 
its midpoint and  of duration NT seconds. 

Since the  DFT essentially considers sequences to be periodic, 
we can consider  the missing end  point to be the beginning  of 
the  next period  of the periodic extension of this sequence. In 
fact, under  the periodic extension,  the  next sample (at 16 s in 
Fig. 1 .) is  indistinguishable from the sample at zero  seconds. 

This apparent lack of symmetry  due to the missing (but 
implied) end point is a  source of confusion in sampled  window 
design. This can  be traced to the early work  related to con- 
vergence factors for the partial sums  of the  Fourier series. The 
partial sums (or the finite Fourier  transform) always include 
an odd  number of points and exhibit even symmetry  about 
the origin.  Hence  much  of the literature and  many software 
libraries incorporate windows  designed with true even  sym- 
metry rather than  the implied symmetry  with the missing  end 
point ! 

We must remember  for  DFT processing  of  sampled data that 
even symmetry means that  the projection  upon  the sampled 
sine sequences is identically zero; it does  not mean a  matching 
left and  right data  point  about  the  midpoint.  To distinguish 
this symmetry  from  conventional evenness we will refer to  it 
as DFT-even  (i.e., a  conventional even sequence  with  the right- 
end point removed). Another  example of DFT-even  sym- 
metry is  presented in Fig. 2 as samples  of a periodically 
extended triangle  wave. 

If  we evaluate a DFT-even sequence via a finite Fourier 
transform  (by treating the + N / 2  point as a zero-value point), 
the resultant continuous periodic function exhibits a  non  zero 
imaginary component.  The  DFT of the same sequence is a set 
of  samples  of the finite Fourier  transform,  yet  these samples 
exhibit an imaginary component  equal to zero. Why the dis- 
parity? We must remember  that the missing  end point  under 
the DFT  symmetry  contributes  an imaginary sinusoidal 
component of  period 2n/(N/2)  to  the finite transform 
(corresponding to  the odd component at sequence position 
N / 2 ) .  The  sampling positions of the DFT are at  the multiples 
of 21r/N, which, of course, correspond to  the zeros  of the 
imaginary  sinusoidal component. An example of this for- 
tuitous sampling is shown in Fig. 3.  Notice  the  sequence f(n), 

4 - 3 - 2 . 1 0 1 2 3 '  

Fig. 3. DFT sampling of finite Fourier transform of a DFT even 
sequence. 

is decomposed into  its even  and odd parts, with.the odd  part 
supplying the imaginary sine component in the finite 
transform. 

111. SPECTRAL LEAKAGE 
The selection of a fi te-t ime interval of NT seconds and of 

the orthogonal  trigonometric basis (continuous or sampled) 
over this interval leads to an interesting peculiarity of the 
spectral expansion.  From  the  continuum of  possible fre- 
quencies,  only  those which coincide  with  the basis will project 
onto a single  basis vector; all other  frequencies will exhibit 
non zero projections on  the entire basis set. This is often 
referred to as spectral leakage  and is the result of  processing 
finite-duration records. Although the amount of  leakage is 
influenced by the sampling period, leakage is not caused  by 
the sampling. 

An intuitive approach to leakage  is the  understanding that 
signals with  frequencies other  than those of the basis set are 
not periodic in  the  observation window. The periodic exten- 
sion of a signal not commensurate  with  its natural period 
exhibits discontinuities at  the boundaries of the observation. 
The discontinuities are responsible for spectral contributions 
(or leakage)  over the entire basis set. The forms  of this dis- 
continuity are demonstrated  in Fig. 4. 

Windows are weighting functions applied to data to  reduce 
the spectral leakage  associated with finite observation inter- 
vals. From  one  viewpoint, the window is applied to  data 
(as a multiplicative weighting) to reduce  the  order of the dis- 
continuity at the  boundary of the periodic extension. This is 
accomplished  by matching as many  orders of  derivative (of 
the weighted data) as  possible at  the boundary.  The easiest 
way to achieve this matching is by setting the value of these 
derivatives to zero or  near to zero. Thus windowed data are 
smoothly  brought to zero at  the  boundaries so that  the 
periodic extension of the  data is continuous  in  many  orders 
of  derivative. 
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Fig. 4. Periodic extension of sinusoid not periodic in observation 
interval. 

From  another viewpoint, the window is multiplicatively 
applied to  the basis set so that a signal of arbitrary frequency 
will exhibit a significant projection only on those basis vectors 
having a frequency close to  the signal frequency. Of course 
both viewpoints lead to identical results. We can  gain  insight 
into window  design by occasionally  switching  between these 
viewpoints. 

IV. WINDOWS AND FIGURES OF MERIT 
Windows are used in  harmonic analysis to  reduce the unde- 

sirable effects related to spectral leakage.  Windows impact  on 
many attributes of a harmonic processor; these include detec- 
tability, resolution, dynamic range, confidence, and  ease  of 
implementation. We would like to identify  the major param- 
eters that will  allow performance comparisons between dif- 
ferent windows. We can best identify these parameters by 
examining the  effects on harmonic analysis  of a window. 

An essentially bandlimited signal f ( t )  with Fourier transform 
F ( u )  can be  described by  the uniformly sampled data  set 
f ( n T ) .  This data  set defies  the periodically extended spec- 
trum F T ( u )  by its Fourier series expansion as identified as 

F(o) = [-- f ( t )  exp  (-jut)  dt (34 

We recognize (4a) as the f i t e  Fourier  transform, a summa- 
tion addressed for  the convenience  of its even symmetry. 
Equation  (4b) is the f i t e  Fourier transform with the right- 
end  point  deleted, and (4c) is the  DFT sampling  of (4b). 
Of course for  actual processing,  we desire  (for counting pur- 
poses in algorithms) that  the  index  start  at zero. We accom- 
plish this by shifting the starting point of the data N/2 posi- 
tions, changing (4c)  to (4d). Equation  (4d) is the forward DFT. 
The  N/2 shift will affect only  the phase  angles  of the trans- 
form, so for  the convenience  of symmetry we will address the 
windows  as  being centered at  the origin. We also identify this 
convenience as a major source of  window misapplication. The 
shift of N/2  points and its resultant phase shift is often over- 
looked or is improperly handled in  the definition of the 
window  when  used with the DFT. This is particularly so when 
the windowing is performed as a spectral convolution. See the 
discussion on  the Hanning  window under  the cos(' ( X )  
windows. 

The question now  posed is, to what extent is the finite 
summation of (4b) a meaningful approximation of the infinite 
summation of (3b)? In fact, we address the question for a 
more  general  case  of an arbitrary window  applied to the time 
function  (or series) as presented in 

F,(u) = w ( n T ) f ( n ~ )  exp (-junT) (5 ) 
+- 

n=-m 

where 

N 
w ( n T )  = 0, In1 > 5, N even 

and 

*IT Let us  now  examine the effects of the window  on our 
F T ( ~ )  exp (+jut) du/2= (3c) spectral estimates. Equation (5) shows that  the transform 

F,(u) is the transform of a product. As indicated in  the 
following equation, this is equivalent to  the convolution of 
the  two corresponding transforms (see Appendix): 

= J - r / T  

IF(u)l = 0, I u I  2 3 [27r/TI 
and  where 

For (real-world)  machine  processing, the  data must  be of 
f i t e  extent, and the  summation of (3b) can only be  per- 
formed as a finite approximation as indicated as 

+ N l z  
Fa(u)= f ( n r )  exp  (-junT) , N even (4a) 

n = -N/2  

Fb(u)= f(nT)exp(-junT) , Neven  (4b) 
(NlZ1-l 

n= -N/2 

or 

F,(u) = F ( u )  W ( 0 ) .  

Equation ( 6 )  is the  key to  the effects of  processing finite- 
extent data. The  equation can be interpreted  in  two equiva- 
lent ways,  which will be  more easily  visualized with  the aid 
of an example. The example we choose is the sampled 
rectangle  window; w ( n T )  = 1.0. We know W ( u )  is the 
Dirichlet kernel 141 presented as 

F d ( w k )  = f(nn exp  (-juknT),  Neven (4d) 
N - 1  

n =O 
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k 
Fig. 5. Dirichlet  kernel for N point sequence. 

Except for  the linear phase shift  term (which will change due 
to the N / 2  point shift for realizability), a single period of the 
transform has the form indicated in Fig. 5 .  The observation 
concerning ( 6 )  is that  the value  of F,(w) at  a particular w ,  
say o = 00, is the sum of  all  of the spectral contributions  at 
each w weighted by the window centered at wo and measured 
at w (see  Fig. 6 ) .  

A .  Equivalent  Noise  Bandwidth 
From Fig. 6 ,  we observe that  the amplitude of the harmonic 

estimate at  a given frequency is biased by the accumulated 
broad-band noise included in  the bandwidth of the window. 
In this sense, the window  behaves  as a filter, gathering contri- 
butions  for  its estimate over its bandwidth. For  the harmonic 
detection problem, we desire to minimize this accumulated 
noise  signal,  and we accomplish this with small-bandwidth 
windows. A convenient measure of this bandwidth is the 
equivalent noise bandwidth (ENBW)  of the window. This is 
the width of a rectangle filter with the same  peak  power  gain 
that would accumulate the same  noise  power  (see  Fig. 7). 

The accumulated noise  power  of the window  is defied as 

+nlT 
Noise  Power = No I W ( 4 1 2  d w / 2 n  (8) 

where No is the noise power per unit bandwidth. ParseVal's 
theorem allows (8) to be computed by 

Noise Power = - w2  (n T).  NO 
T n  

The peak  power gain of the window occurs at w = 0, the zero 
frequency power gain, and is defied by 

Peak Signal Gain W ( 0 )  = w(nT) ( loa) 
n 

Peak Power Gain = W 2 ( 0 ) =  [F w(nT)] . (lob) 
2 

Thus  the ENBW (normalized by NOIT,  the noise power per 
bin) is given in the following equation and is tabulated for  the 
windows  of this report in Table I 

B. Processing  Gain 
A concept closely  allied to ENBW is processing  gain (PG) 

and processing  loss (PL) of a windowed transform. We can 

0 D W  
-0 

Fig. 6. Graphical interpretation of equation  (6). Window visualized as 
a spectral Nter. 

--AIL - - - + w  

Fig. 7 .  Equivalent noise bandwidth of window. 

fiter is matched to one of the complex sinusoidal sequences of 
the basis set [3]. From this perspective, we can examine the 
PG (sometimes called the coherent gain) of the fiter, and we 
can examine the PL due to the window having reduced the 
data to zero values near the boundaries. Let the  input sampled 
sequence be defined by (1 2 ) :  

f ( n T )  = A  exp (+ joknT)  + 4(nT) (12) 

where q(nT)  is a white-noise sequence with variance 0:. Then 
the signal component of the windowed spectrum (the matched 
filter output) is presented in 

F ( Q )  lsignal = w(nT) A exp (+joknT) exp ( - jwknT) 
n 

= A  w(nT).  (13) 

We see that  the noiseless measurement (the expected value  of 
the noisy measurement) is proportional to the  input amplitude 
A .  The proportionality  factor is the s u m  of the window terms, 
which is in  fact  the  dc signal  gain of the window. For a 
rectangle window this  factor is N ,  the number of terms  in  the 
window. For any other window, the gain is reduced due to  

n 

think of the DFT as a bank of matched fiters, where each the window smoothly going to zero near the boundaries. This 
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TABLE I 
WINDOWS AND FIGURES OF MERIT 

HIGHEST OVERLAP WORST SIDE- 
SIDE- CORRELATION 6 .WB CASE SCALLOP 3.WB EQUIV.  COHERENT LOBE 

WINDOW (PCNTI BW PROCESS LOSS BW NOISE  GAIN FALL. LOBE 
LEVEL 

Id61 
O F F  

(dBIOCT) 
BW 

W % O L  75%0L (dB) 
(BINS) LOSS (dB)  (BINS1 

(BINS) 

RECTANGLE 50.0 75.0 1.21 3.92 3.92 0.89 1 .oo 1 .oo -6 -13 

TRIANGLE 25.0 71.9 1.78 3.07 1 .82 1.28 1.33 0.50 -12 - 27 

DE  LA  VALLE- 
POUSSIN 

- 53 5.0 49.3 2.55 3.72 0.90 1 .82 1.92 0.38 - 24 

TUKEY U=0.25 

25.1 70.5 1 .80 3.07 1.73 1.31 1.26 0.63  -18  -19 U = 0.75 
36.4 72.7 1.57 3.1 1 2.24 1.15 1.22  0.75 - 18  -15 U=0.50 
44.4 74.1 1.38 3.39 2.96 1.01 1.10 0.88 -18 -14 

EOHMAN - 46 - 24 0.41 7.4 54.5 2.38 3.54 1.02 1.71 1.79 

POISSON a =  2.0 
15.1 54.8 2.08 3.64 1.46 1.45 1 . 6 5  0.32 -6 -24 a = 3.0 
27.8 69.9 1 .w 3.23 2.09 1.21 1.30 0.44 -6 -19 

U=4.0  7.4 40.4 2.58 4.21 1.03 1.75 2;08 0.25 -6 -31 

HANNING- U =  0.5 -35 

4.7 44.6 2.65 3.94 0.87  1.87 2.02 0.29 -18 NONE U=2.0  
9.2 56 .O 2.30 3.50 1.11 1.64 1.73 0.38  -18 -39  POISSON U = 1.0 

12.6 61.3 2.14 3.33 1 .x 1.54 1 6 1  0.43 -18 

CAUCHY a = x o  

9.0 38.3 2.53 4.28  1.13 1 .68  2.06 0.28 -6 -30 a = 5.0 
13.2 48.8 2.20 3.83 1.36 1.50 1.76 0.33 -6 -35 a = 4.0 
20.2 61.6  1.90  3.40 1.71 1.34  1.48 0.42 -6 -31 

GAUSSIAN a = 2 . 5  

4.9 47.2 2.52 3.73 0.94 1.79 1.90  0.37 -6 -69 U = 3.5 
57.5 2.18 3.40 1.25 1.55  1.64 0.43 -6 -55 U = 3.0 

20.0 67.7 1.86 3.14 1 .w 1.33 1.39 0.51 -6 -42 
10.6 

DOLPH- a = 2 . 5  -50 0 0.53 1.39 
0.48 0 

1 . 3 3  

8.7 55.9 2.31 3.48 1.10 1.65 1.73  0.42 0 -80 U = 4 . 0  

16.3 
11.9 60.2 2.1 7 3.35 1.25 1.55 1.62 

64.7 2.01 
0.45 0 -70 U =  3.5 

3.23 1.44 1.44 1.51 
22.3 69.6 1.85 3.1 2 1.70 

CHEEYSHEV a = 3.0 -60 

KAISER- a =  2.0 1 .w 3.20 1.46 1.43 1 50  0.49 -6 -46 
BESSEL U=2.5  -57 -6 

7.4 
4.8 48.8 2.57 3.74 0.89 1.83  1.93 

53.9 2.39 
0.37 -6 -82 u=3.5 

11.2 
1.80 

59.5 
0.40 

2.20 
3.56 1.02 1.71 -6 -69 U =  3.0 

16.9 65.7 
3.38 1 .m 1.57 1.65 0.44 

BARCILON- a =  3.0 -53 -6 0.47 1.56 1.49 1.34 3.27 2.07 63.0 14.2 
TEMES u =  3.5 -58 -6 

7.6 54.4 2.36 3.52 1.05  1.69 1.77 0.41 -6 -68 U = 4 . 0  
10.4 58.6 2.23 3.40 1.18 1.59 1.67 0.43 

EXACT  BLACKMAN 14.0 62.7 2.1 3 3.29 1.33 1.52 1.57 0.46 -6 -51 

BLACKMAN 

BLACKMAN-HARRIS 
9.6 57.2 1 .81 3.45 1.13 1.66 1.71 0.42 -6 -67 MINIMUM 3-SAMPLE 

9.0 56.7 2.35 3.47 1.10 1.68 1.73 0.42  -18 - 58 

' M I N I M U M  4-SAMPLE 3.8 46.0 2.72 3.85 0.83 1.90 2.00 0.36 -6 -92 
BLACKMAN-HARRIS 

'61 dE  3-SAMPLE 12.6 61 .O 2.19 3.34 1.27 1.56 1.61 0.45 -6 -61 
BLACKMAN-HARRIS 

74 dB 4-SAMPLE 

7.4 
KAISER-BESSEL 

53.9 2.44 3.56 1.02 1.74 1 .BO 0.40 -6 -69 4-SAMPLE a =  3.0 

BLACKMAN-HARRIS 
7.4 53.9 2.44 3.56 1.03 1.74 1.79 0.40 -6 - 74 

*REFERENCE  POINTS FOR DATA  ON  FIGURE 12 - NO  FIGURES TO MATCH  THESE  WINDOWS. 
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reduction in proportionality factor is important as it repre- 
sents a known bias on spectral amplitudes.  Coherent power 
gain, the squk of coherent gain, is occasionally the parameter 
listed in the literature. Coherent gain (the summation of (13)) 
normalized  by its maximum  value N is listed  in  Table 1. 

The  incoherent  component of the windowed transform is 
given  by 

F ( w k )  lnois  = w(nT)  q(nT) exp ( - jwknT)  (144  

and the  incoherent power (the  meansquare value  of this com- 
ponent where E { } is the  expectation  operator) is given  by 

n 

E {IF(Wk) Inois12} = w(nT) w ( m T ) E ( q ( n T )  q * ( m T ) }  
n m  

. exp ( - j w k n T )  exp (+jwkrnT) 

= ui w2(nT).  (14b) 

Notice the  incoherent power  gain is the sum of the  squares of 
the window terms, and the coherent power gain is the square 
of the sum of the window terms. 

Finally, PG,  which is defied as the  ratio of output signal- 
to-noise ratio  to  input signal-to-noise ratio, is given by 

n 

c ... , 

n 

Notice PG is the reciprocal of the normalized ENBW. Thus 
large ENBW suggests a  reduced processing gain. This is reason- 
able, since an increased noise  bandwidth  permits additional 
noise to contribute to a spectral estimate. 

C. Overlap  Correlation 
When the fast Fourier  transform (FFT) is used to process 

long-time sequences  a partition length N is first selected to 
establish the  required spectral resolution of the analysis. 
Spectral resolution of the  FFT is defined  in (1 6) where A f is 
the resolution, f ,  is the sample frequency selected to satisfy 
the Nyquist criterion, and fl  is the coefficient reflecting the 
bandwidth increase due to  the particular window selected. 
Note that [ f J N ]  is the minimum resolution of the  FFT which 
we denote as the  FFT bin width.  The coefficient fl  is usually 
selected to be the ENBW in bins as listed in Table I 

A f  = fl( 5). (16) 

If the window  and the  FFT are applied to nonoverlapping 
partitions of the  sequence, as shown in Fig. 8, a significant 
part of the series  is  ignored due to  the window's exhibiting 
small  values near  the  boundaries.  For instance, if the transform 
is  being  used to detect short-duration tone-like  signals, the non 
overlapped  analysis  could miss the event if it occurred  near 
the boundaries.  To avoid this loss  of data, the transforms are 
usually  applied to  the overlapped partition sequences as  shown 
in  Fig. 8. The overlap is almost  always 50 or  75 percent. This 
overlap  processing of course  increases the work  load to cover 
the  total sequence length, but  the rewards warrant  the  extra 
effort. 

! r _ _ - _ _  : : -  . ,  \ '  j +Original SequenTe" 

., c----.,! <Windowed Sequences 
I 

I, 'I 
: _---_. 1 .. (Non-Overlapped) 

l i " '  r n  
: _ - - - -  . . .  : i ?-Or ig ina l   s equence  
. I  .' I 

. 1 ,  ~ , . - - ~ - ; ~ ~ - ~  , I  Windowed Sequences 

:,- ~ . ,  (Overlapped) 

Fig. 8. Partition of sequences for nonoverlapped and for overlapped 
pro-g. 

Region of Overlap = rN 

, :  
0 ( l - r ) N  N-1 

I b rN-1  N-1 

Fig. 9. Relationship between indices on overlapped intervals. 

An important  question related to  overlapped  processing is 
what is the degree  of correlation of the  random  components 
in successive transforms? This correlation, as a  function  of 
fractional overlap r ,  is defied for a relatively flat noise  spec- 
trum over the window bandwidth by (17). Fig. 9 identifies 
how  the indices of (1  7) relate to  the overlap of the intervals. 
The correlation coefficient 

is computed and tabulated  in Table I.  for  each of the windows 
listed for 50- and 75-percent overlap. 

Often in a spectral analysis, the  squared  magnitude  of succes- 
sive transforms are averaged to reduce the variance of the mea- 
surements [ 5 ] .  We know of course that when we average K 
identically distributed independent  measurements, the vari- 
ance of the average is related to the individual variance of  the 
measurements by 

-- OAvg. 2 1  _ _  (18) 

Now  we can ask what is the  reduction in the variance  when we 
average measurements which are correlated as they are for 
overlapped transforms? Welch [ 5 1  has  supplied  an  answer to 
this question which we present here, for  the special  case of 50- 
and 75-percent overlap 

2- K' 

2 - =- 
K 

50 percent overlap 

= - [ 1 + 2c2(0.75) + 2c2(0.5) + 2c2(0 .25 ) ]  
1 
K 

- 7 [c2(0.75) + 2c2(0.5) + 3c2(0.25)1, 
2 
K 

75  percent overlap. (19) 

The negative terms  in (1 9) are the edge effects of the average 
and can be ignored if the number of terms K is larger than 
ten. For good  windows, ~ ~ ( 0 . 2 5 )  is small compared to 1.0, 
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Nan RerolvaLde PC&% Resolvable Peaks 

Fig. 10. Spectral  leakage effect of window. Fig. 11 .  Spectral resolution of nearby  kernels. 

and  can also be omitted  from (19) with negligible error. For 
this reason, c(0.25) was not listed in Table  I. Note, that.for 
good  windows  (see last paragraph of Section IV-F), transforms 
taken  with  50-percent overlap are essentially independent. 

D. Scalloping Loss 
An important  consideration related to minimum  detectable 

signal is called  scalloping  loss or picket-fence effect. We have 
considered the windowed DFT as a bank  of matched fdters 
and  have  examined the processing  gain  and the reduction of 
this gain  ascribable to thk  window for  tones  matched to the 
basis  vzctors. The basis vectors are tones  with  frequencies 
equal to multiples, of  f,/N (with f, being the sample fre- 
quency). These frequencies are  sample points  from  the 
spectrum, and are normally referred to as DFT output points 
or as DFT bins. We now address the  question, what is the 
additional loss in processing  gain for  a  tone of frequency mid- 
way between  two bin frequencies (that is, at frequencies 
(k + 1/2)f,/N)? 

Returning to  (1  3), with wlc replaced  by w(k+ 1 / 2  1, we deter- 
mine the processing  gain for this half-bin frequency shift as 
defined in 

~ ( ~ ( 1 1 2 ) )  /signal = A  w(nT) ~ X P  ( - i o ( l / z ) n ~ ) ,  
n 

where q l I 2 )  = - - = - 1 ws 7r 

2 N NT'  (204 

We also define the scalloping  loss as the  ratio of coherent gain 
for  a  tone  located half a  bin  from  a  DFT sample point to the 
coherent gain for a  tone  located at a  DFT sample point, as 
indicated in 

n 

(20b) 

Scalloping  loss represents the maximum  reduction in PG due 
to signal frequency. This loss  has  been computed  for  the win- 
dows of this report and  has  been included in Table I. 

E. Worst Case Processing Loss 
We now make  an interesting observation. We define worst 

case PL as the sum  of maximum scalloping  loss of a window 
and  of PL due to  that window (both in decibel). This number 
is the  reduction of output signal-to-noise ratio as a result of 
windowing  and  of  worst  case frequency location. This of 
course is related to  the minimum detectable  tone  in  broad- 
band noise. It is interesting to  note  that  the worst  case  loss is 
always between 3.0 and  4.3  dB.  Windows with worst  case 
PL exceeding  3.8 dB are  very poor windows and  should  not 

be  used. Additional  comments  on  poor windows will be 
found in Section  IV-G. We can conclude  from the combined 
loss f i e s  of  Table I and from Fig. 12 that  for  the detection 
of  single tones  in broad-band  noise, nearly  any window (other 
than the rectangle) is as good  as any  other.  The difference 
between  the various  windows is less than 1.0 dB  and for good 
windows is less than 0.7 dB. The  detection of tones in the 
presence  of other tones is, however, quite  another  problem. 
Here the window does have a marked affect, as will be demon- 
strated shortly. 

F. Spectral  Leakage  Revisited 
Returning to ( 6 )  and to Fig. 6 ,  we observe the spectral 

measurement is affected not  only  by  the  broadband noise 
spectrum,  but also by the narrow-band  spectrum which falls 
within  the  bandwidth of the window. In fact,  a given spectral 
component say at w = wo will contribute  output  (or will be 
observed) at  another  frequency, say at w = w, according to 
the gain of the window centered at 00 and measured at w,. 
This is the effect normally referred to as spectral leakage  and 
is demonstrated in Fig. 10  with  the  transform of a finite dura- 
tion tone of frequency wo 

This  leakage  causes a bias in the  amplitude and the position 
of a  harmonic estimate. Even for  the  cise of a single real 
harmonic line (not  at  a DFT sample point),  the leakage from 
the  kernel  on  the negative-frequency  axis  biases the  kernel  on 
the positive-frequency line. This bias  is  most  severe  and  most 
bothersome  for  the  detection of small signals in  the presence 
of nearby large signals. To  reduce  the effects of this bias, the 
window should exhibit low-amplitude sidelobes far from the 
central main lobe, and the transition to  the low sidelobes 
should be  very rapid. One indicator of how  well a window 
suppresses  leakage is the peak  sidelobe  level  (relative to  the 
main lobe):  another is the  asymptotic  rate of  falloff of these 
sidelobes.  These indicators are listed in Table I. 

G. Minimum  Resolution  Bandwidth 
Fig. 11 suggests another criterion with which we should be 

concerned  in the window selection process.  Since the window 
imposes an effective bandwidth  on the spectral line, we would 
be interested in  the minimum separation  between  two equal- 
strength lines such that  for arbitrary spectral locations their 
respective  main lobes can  be  resolved. The classic criterion for 
this resolution is the  width of the window at the half-power 
points  (the 3.0-dB bandwidth). This criterion reflects the fact 
that two  equalstrength main lobes  separated  in  frequency by 
less than their 3.0-dB bandwidths will exhibit  a single spectral 
peak  and wiU not be  resolved  as two distinct lines. The 
problem  with this criterion is that  it does not work for  the 
coherent  addition we find in the DFT.  The DFT output 
points are the coherent  addition of the spectral components 
weighted through  the window at  a given frequency. 



58 PROCEEDINGS OF THE  IEEE, VOL. 66, NO. 1 ,  JANUARY 1978 

If two kernels  are contributing to the  coherent  summation, 
the sum at the crossover point  (nominally half-way between 
them) must  be  smaller than the individual peaks if the two 
peaks are to be resolved. Thus at  the crossover points of the 
kernels, the gain from  each  kemel must  be  less than 0.5, or  the 
crossover points must occur  beyond the 6.0-dB points of the 
windows.  Table I lists the  6.0-dB  bandwidths of the various 
windows  examined in this report. From the table, we see that 
the 6.0-dB bandwidth varies from 1.2  bins to 2.6 bins,  where a 
bin is the  fundamental  frequency resolution wJN. The 
3 .O-dB bandwidth  does have utility as a performance indicator 
as  shown in  the  next  paragraph. Remember  however, it is the 
6.0-dB bandwidth which defies the resolution of the win- 
dowed  DFT. 

From Table I, we see that  the noise bandwidth always 
exceeds the 3.0-dB bandwidth. The difference between the 
two, referenced to  the 3.0-dB bandwidth,  appears to  be a 
sensitive indicator of overall  window performance. We have 
observed that  for all the good  windows on the table, this 
indicator was found to be in the range  of 4.0 to 5.5 percent. 
Those  windows for which this ratio is outside that range 
either have a wide main lobe or a high sidelobe structure  and, 
hence, are characterized by  high  processing  loss or by poor 
two-tone  detection capabilities. Those windows for which 
this ratio is inside the 4.0 to 5.5-percent  range are found  in 
the lower left comer of the  performance comparison chart 
(Fig.  121,  which is described next. 

While Table I does list the  common  performance param- 
eters of the windows examined in this report,  the mass  of 
numbers is not enlightening. We do realize that  the sidelobe 
level (to reduce  bias) and  the worst  case  processing  loss (to 
maximize detectability) are probably the most important 
parameters  on the table. Fig. 12 shows the relative position 
of the windows as a function of these parameters. Windows 
residing in the lower left comer of the figure are the good- 
performing  windows. They exhibit lowsidelobe levels and 
low  worst case processing  loss. We urge the reader to read 
Sections VI  and VII; Fig. 12 presents a lot of information, 
but  not  the full story. 

V. CLASSIC WINDOWS 
We will now catalog some  well-known (and some not well- 

known  windows. For  each window we will comment  on the 
justification for its use and identify its significant parameters. 
All the windows will be presented as even (about  the origin) 
sequences  with an odd  number of points. To convert the win- 
dow to DFTeven,  the right end  point will be  discarded  and 
the sequence will be shifted so that  the left end  point coin- 
cides with  the origin. We will use  normalized coordinates  with 
sample  period T = 1 .O, so that w is periodic in 2n and,  hence, 
will be identified as 8 .  A DFT bin will be  considered to 
extend  between DFT sample points (multiples of 2nlN) and 
have a width of 2nlN. 

A .  Rectangle (Dirichlet) Window 161 
The rectangle  window is unity over the observation interval, 

and  can  be thought of as a gating sequence  applied to  the  data 
so that they are  of finite extent.  The window for  a finite 
Fourier  transform is defined as 

N N w(n)  = 1.0, n = - -  - ; - . , - l , O , l ; - - , ~  (2la) 
L L 

and is shown in Fig. 13. The  same-window  for  a  DFT is 

WORST W E  PROCESSNG LOSS. dB 

Fig. 12. Comparisonof windows: sidelobe levelsand worst case process- 
ing loss. 

defined as 

w ( n ) =  1.0, n = 0 ,  l ; - - , N -   1 .  (21b) 

The spectral window for  the  DFT window  sequence is given in 

The  transform of this window is seen to be the Dirichlet 
kernel, which exhibits a DFT main-lobe width  (between  zero 
crossings) of 2  bins and a first sidelobe level approximately  13 
dB down from the main-lobe  peak. The sidelobes fall off at 
6.0  dB per octave, which is of course the expected  rate  for a 
function  with a discontinuity. The parameters of the DFT 
window are listed in Table  I. 

With the rectangle  window  now defmed, we can  answer the 
question posed earlier: in what sense does the finite sum of 
(22a)  approximate the infinite s u m  of (22b)? 

+N 12 

n=-N/2  
F(@ = f ( n )  exp (-in8) (224  

F(8)  = f ( n )  exp ( - i d ) .  (22b) 
+- 

n=-- 

We observe the finite s u m  is the rectangle-windowed  version of 
the M i t e  sum. We recognize that  the infinite s u m  is the 
Fourier series expansion of  some  periodic function for which 
the f(n)'s are the  Fourier series coefficients. We also recognize 
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Fig. 13. (a) Rectangle window. (b) Log-magnitude of transform. 

T 
1.25 

4 OdB 1 1 ,  -20 

(a) (b) 

Fig. 14. (a) Triangle window. (b) Log-magnitude of transform. 

that  the frnite sum is simply the partial sum of the series. 
From this viewpoint we can cast the  question in terms of the 
convergence properties of the partial s u m s  of Fourier series. 
From this work  we know the partial sum is the least  mean- 
square error  approximation to  the infinite s u m .  

We observe that mean square convergence is a convenient 
analytic concept,  but it is not attractive  for  finite estimates or 
for numerical approximations. Mean-square estimates tend to  
oscillate about  their means, and do  not exhibit uniform con- 
vergence. (The  approximation  in a neighborhood of a point of 
continuity may  get  worse if more terms are  added to the 
partial sum.) We normally observe this behavior near points of 
discontinuity as the ringing  we  call  Gibbs phenomenon. It is 
this oscillatory behavior we are trying to control by the use  of 
other windows. 

B. Triangle (Fejer,  Bartlet)  Window [7] 
The  triangle  window for a finite  Fourier transform is defined 

as 

In I N  N W(n)=l.O-- n = - -  
N/2'   2 '  

. * * , - l , O , l ; - - , -  (23a) 
2 

and is shown  in  Fig. 14. The  same  window for a DFT is 
defmed  as 

f 
N 

n = 0 ,  l ; . .  - ' 
W ( n )  = (23b) 

and the spectral window corresponding to  the  DFT sequence is 
given in 

The transform of this window  is  seen to  be the squared 
Dirichlet kernel. Its main-lobe width (between zero crossings) 
is twice that of the rectangle's  and the first  sidelobe  level  is 
approximately 26 dB  down  from the main-lobe peak, again, 
twice that of the rectangle's.  The sidelobes fall  off at - 12 dB 
per octave, reflecting the  discontinuity of the window  residing 
in the first  derivative (rather  than in the  function itself). The 
triangle is the simplest  window  which exhibits a nonnegative 
transform. This property can  be  realized by convolving any 
window (of half-extent) with itself. The resultant window's 
transform is the square of the original  window's transform. 

A window sequence derived by self-convolving a parent win- 
dow contains approximately twice the  number of samples as 
the parent window, hence corresponds to  a trigonometric 
polynomial (its Z-transform) of approximately twice the 
order. (Convolving two rectangles each of N / 2  points will 
result in a triangle  of N + 1 points when the zero end points 
are counted.) The transform of the window will now exhibit 
twice as many  zeros  as the parent transform (to account  for 
the increased order of the associated trigonometric poly- 
nomial). But  how  has the transform applied these extra zeros 
available from  the increased order polynomial? The  self- 
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Fig. 15 .  Two partial sums and their average. 

zf+ 1 
3 

convolved  window  simply  places repeated zeros at each loca- 
tion for which the  parent  transform had a zero. This, of 
course, not  only sets the transform to zero at  those points, but 
also sets the first  derivative to zero at those points. If the 
intent of the increased order of polynomial is to hold down 
the sidelobe  levels, then  doubling  up  on  the zeros is a  wasteful 
tactic. The additional zeros  might better be  placed between 
the existing  zeros (near  the local peaks  of the sidelobes) to 
hold ‘down  the sidelobes rather than  at locations for which 
the transform is already  equal to zero. In fact we will observe 
in subsequent windows that very  few  good  windows exhibit 
repeated roots. 

Backing  up for  a  moment, it is interesting to examine the 
triangle  window in  terms of  partial-sum  convergence of 
Fourier series. Fejer observed that  the partial sums of Fourier 
series  were poor numerical approximations [8 ] .  Fourier 
coefficients were  easy to generate however,  and he  questioned 
if some  simple modification of coefficients might  lead to a 
new  set with more  desirable  convergence properties. The 
oscillation of the partial sum, and the  contraction of those 
oscillations  as the order of the partial sum increased, suggested 
that an average  of the partial sums .would be a  smoother 
function. Fig. 15 presents an  expansion of two partial sums 
near a discontinuity. Notice the average  of the  two expansions 
is smoother  than .either. Continuing in this line of  reasoning, 
an  average expansion F N ( e )  might  be  defined by 

of the cosine function. These properties are particularly 
attractive under the DFT. The window for  a finite Fourier 
transform is defined as 

w(n)=cosQ [ i n ] ,  n = - -  
N  N 
2 ’  

* * * , - 1 , 0 , 1 ; . *  - 
’ 2  

and  for  a DFT as 

w(n)=sinQ [ i n ] ,  n = 0 , 1 , 2 ; * . , N -  1.  (25b) 

Notice the effect due to the change  of the origin. The most 
common values  of a are the integers 1  through 4, with  2 being 
the most  well known (as the Hanning  window). This window 
is identified for values  of a equal to 1 and 2 in (26a), (26b), 
(27a), and (27b),  (the  “a”  for  the finte transforms,  the “b” 
for the DFT): 

a = 1 .O (cosine lobe) 

w(n)=cos [ i n ] ,  n =  - -  * * . , - l , O , l ; * . , -  (26a) 
N  N 
2’  2 

a = 1 .O (sine lobe) 

w(n)=sin [in], n = 0 , 1 , 2 ; * . , N -  1 (26b) 

a = 2.0  (cosine squared, raised  cosine,  Hanning) 

a = 2.0  (sine squared, raised cosine, Hanning) 

= O S  1.0-cos -1 , n = 0 , 1 , 2 , . . - , N -  1. [ E l 1  
(27b) 

The windows are shown for a integer values of 1  through 4 in 
Figs. 16 through 19. Notice as a becomes larger, the windows 
become smoother and the  transform reflects this increased 
smoothness  in decreased  sidelobe  level  and faster falloff  of the 

where FM(6) is the M-term partial sum of the series. This is sidelobes, but with an increased width of the main lobe. 
easily  visualized in Table 11, which lists the nonzero coeffi- Of interest in this family, is the Harm window 
cients Of the first four sums and their (after  the  Austrian  meteorologist, Julius Von Hann)’ [ 71. Not 
tion. We see that  the Fejer convergence factors applied to  the only is this window continuous, but so is its first derivative. 
Fourier series coefficients is, in fact, a triangle  window. The since the discontinuity of this window resides in the second 

summability. octave. Let us closely examine the transform of this window. 
of Partial sums is known as the method Of cesko derivative, the  bansform falls off  at or at - 18 dB per 

C. CosQ(X) Windows  We will gain some iteresting insight  and learn of a clever 
This is actually a family of windows dependent  upon the 

application of the window under the DFT. 

parameter a, with a normally being  an integer. Attractions of 

generated, and the easily identified properties of the transform “Hann’d” is also widely used. 
the With which the terms Can be is used in this.report to reflect conventional usage. The derived term 

‘The correct name of this window is “Hann.” The term “Hanning” 
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16. (a) COS (nn/n? window. (b) Log-magnitude of transform. 
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Fig. 17.  (a) Cos2 (nn/N) win1 
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dow. (b) Log-magnitude of transform. 
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Fig. 18. (a) COS' (nn/N)  window. (b) Log-magnitude of transform. 
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Fig. 19. (a) Cos' W / N )  window. (b) Log-magnitude of transform. 
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The  sampled  Hanning  window  can  be written as the s u m  of 
the  sequences indicated in 

w(n) = 0.5 + 0.5 COS - n , [’,” I 
N  N 
2 ’  2 

n = - -  * * - , - l , O ,  1 , * . . , - -  1.  (28a) 

Each  sequence  has the easily  recognized DFT  indicated  in 

where 

Fii. 20. Transform of Hanning window as a sum of three Dirichlet 
kernels. 

We recognize the Dirichlet kernel at the origin as the transform 
of the constant 0.5  samples  and the pair  of translated kernels 
as the transform of the single  cycle  of  cosine  samples.  Note 
that the translated kernels are located on the f i t  zeros of the 
center kernel, and  are  half the size of the center kernel. Also 
the sidelobes of the translated kernel are about half the size 
and  are  of opposite phase  of the sidelobes of the central 
kernel. The summation of the three kernels’ sidelobes being in 
phase opposition,  tends to cancel  the sidelobe structure. This 
cancelling summation is demonstrated  in Fig .  20 which depicts 
the  summation of the Dirichlet kernels (without  the phase- 
shift terms). 

The partial cancelling  of the sidelobe structure suggests a 
constructive technique to define new  windows. The  most 
well-known  of these are the Hamming and the Blackman 
windows  which are presented  in the next  two sections. 

For  the special  case  of the  DFT,  the Hanning  window is 
sampled at multiples of 2n/N, which  of course are the loca- 
tions of the zeros of the central Dirichlet kernel. Thus  only 
three nonzero samples are taken in the sampling  process. The 
positions of these samples are at  -2n/N, 0, and +2n/N. The 
value of the samples obtained  from  (28b) (including the phase 
factor exp  (-j(N/2)0)  to account  for the  N/2  shift) are - $, 
+:, - $, respectively. Note  the minus signs. These results 
from the shift in the origin for  the window. Without the shift, 
the phase term is missing  and the coefficients are all positive 
$, 3, $. These  are incorrect for DFT processing, but  they 
find their way into much of the literature and practice. 

domain, we always  have the  option to apply it as a convolu- 
tion in the  frequency  domain.  The  attraction of the Hanning 
window for this application is twofold; f i t ,  the window 
spectra is nonzero at only three data points, and  second, the 
sample  values  are  binary fractions, which can be implemented 
as  right shifts. Thus  the Hanning-windowed spectral points 
obtained  from  the rectangle-windowed spectral points are 
obtained as indicated  in  the following equation as two real 
adds  and two  binary shifts (to multiply by 3): 

Rather  than  apply  the window as a product in the time w(n) = 

F ( k )  l H d n g  = 3 [ F ( k )  - 3 [ F ( k  - 1) 

+ F ( k  + 111 1 I R ~ .  (29) 

Thus a Harming window  applied to a real transform of length 
N can  be performed as N real multiplies on the time  sequence 

N  N 
2’ 

“ * , - 1 , 0 , 1 , * . .  - 
’ 2  

n = - -  

or as 2N real adds and 2N binary shifts on the spectral data. 
One other mildly important consideration, if the window is to 
be applied to  the time  data, is that  the samples  of the window 
must  be stored somewhere,  which normally means additional 
memory or hardware. It so happens that  the samples  of the 
cosine for  the Hanning window  are already stored in  the 
machine as the trig-table for  the F’FT; thus the Hanning 
window requires no additional storage. 

D. Hamming Window /7] 
The Hamming  .window  can be thought of ’as a  modified 

Hanning  window. (Note the potential source of confusion  in 
the similarities of the  two names.)  Referring  back to Figs. 17 
and 20, we note  the inexact cancellation of the sidelobes from 
the summation of the three kernels. We can construct a win- 
dow  by adjusting the relative  size  of the kernels as indicated  in 
the following to achieve a more  desirable form of cancellation: 

w ( n ) = a + ( l   - a ) c o s  [ $4 

(304  

Perfect cancellation of the f i t  sidelobe (at 0 = 2.5 [2n/N]) 
occurs when a = 25/46 (a G 0.543  478  261).  If a is selected as 
0.54  (an  approximation to  25/46),  the new zero  occurs at 
6 G 2.6 [ 2n/Nl and a marked improvement in sidelobe  level is 
realized. For this value  of a, the window is called the Ham- 
ming  window  and is identified by 

I 0.54 + 0.46 COS [ $n] , 

0.54 - 0.46  cos [ $ n ]  , 

I n=0, 1 ,2 ;* . ,N-  1. ( 3 0 ~  

The coefficients of the Hamming  window are nearly the set 
which  achieve minimum sidelobe levels. If a is selected to be 
0.53856  the sidelobe level is -43 dB and the resultant window 
is a special  case  of the Blackman-Harris  windows presented in 
Section V-E. The Hamming  window is shown in Fig. 21. 
Notice the deep  attenuation  at  the missing sidelobe position. 
Note also that  the small discontinuity at  the boundary of the 
window has resulted in  a l /w (6.0 dB  per octave)  rate of 
falloff. The  better sidelobe cancellation does result in a  much 
lower initial sidelobe  level  of -42 dB.  Table I lists the param- 
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Fig. 21. (a) Hamming window. (b) Log-magnitude of Fourier  transform. 

1.25 

(a) (b) 

Fig. 22. (a) Blackman window. (b) Log-magnitude of transform. 

eters of this window. Also note  the loss  of  binary  weighting; 
hence the need to  perform multiplication to apply the 
weighting factors of the spectral convolution. 

E. Blackman Window 171 
The Hamming and Hanning  windows  are  examples of win- 

dows constructed as the summation of shifted  Dirichlet  ker- 
nels.  This data window  is  defined for  the finite Fourier trans- 
form in (31a) and for  the DFT  in (3 1 b); equation (3  IC) is the 
resultant spectral  window for  the DFT  given  as a summation 
of the Dirichlet  kernels D ( 8 )  defined  by W ( 8 )  in (21c); 

(3  la) 

of this form with uo and u 1  being nonzero. We see that their 
spectral  windows  are summations of three-shifted  kernels. 

We can construct windows with any K nonzero coefficients 
and  achieve a  (2K- 1) summation of kernels. We recognize, 
however, that  one way to achieve  windows  with a narrow  main 
lobe is to restrict K to a small  integer.  Blackman  examined 
this  window for K = 3 and found the values  of the nonzero 
coefficients  which  place  zeros at 8 = 3.5 (2n/N) and at 8 = 4.5 
(2n/N),  the position of the third and the  fourth sidelobes, 
respectively, of the central  Dirichlet  kernel.  These  exact 
values and their  two place approximations are 

7938 
Q O  =-- 18608 

10.426 590 71 N- 0.42 

Q l = - -  18608 
9240 L 0.496 560  62 N 0.50 

Q z  =-- 18608 
1430 I 0.076  848  67 N 0.08. 

(31b) The window  which  uses these  two place approximations is 

Nl 2 
known as the Blackman  window.  When  we  describe this 
window with the "exact"  coefficients we  will refer to it as 
the exact Blackman  window. The Blackman  window  is  de- 
fined for  the finite transform in  the following equation and 

m=O 

(31c)  the window  is shown in Fig. 22: 
Subject to constraint 

Nf 2 

m=o N N 

W(n) = 0.42 + 0.50 cos 
Q, = 1.0. 

We can  see that  the Hanning and the Hamming  windows  are 
n=--; . . , - l ,O, 1;** - (32) 

2 ' 2'  
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(a) 0) 
Fig. 23. (a) Exact Blackman window. (b) Log-magnitude of  transform. 

(a) (b) 

Fig. 24. (a) Minimum  3-term  Blackman-Harris window. @) Log-magnitude of transform. 

(a) 0) 
Fig. 25. (a) 44- Blackman-Harris window. (b) Log-magnitude of transform. 

The exact Blackman  window  is  shown  in  Fig.  23. The sidelobe 
level is 51 dB down for  the exact Blackman  window and is 58 
dB down for  the Blackman  window. As an observation, note 
that  the coefficients of the Blackman  window sum to zero 
(0.42 -0.50 M.08) at  the boundaries while the exact coef- 
ficients do  not. Thus the Blackman  window is continuous 
with  a continuous first derivative at  the boundary and fal ls  off 
like l/w3 or  18 dB per  octave. The exact terms (Like the 
Hamming  window)  have  a discontinuity  at the boundary and 
falls  off like l /w or 6 dB  per  octave.  Table I lists the param- 
eters of these two windows. Note that  for  this class of win- 
dows, the a. coefficient is the coherent gain of the window. 

Using  a  gradient  search technique [9] ,  we  have found the 
windows  which for 3-  and 4-nonzero terms achieve  a  minimum 

sidelobe  level. We have also constructed families  of 3-  and 4-  
term windows  in  which  we trade main-lobe width for sidelobe 
level. We call this family the Blackman-Harris  window. We 
have found that  the minimum  3-term  window  can  achieve  a 
sidelobe level  of -67 dB and that  the minimum 4-term win- 
dow can  achieve  a  sidelobe  level of  -92 dB.  These  windows 
are defiied  for  the DFT  by 

w ( n ) = a o  - a1 cos --n +a2 cos -2n - a 3  cos -3n , (:) (: ) (: ) 
n = 0 , 1 , 2 ; * * , N -  1.  (33) 

The listed  coefficients correspond to the minimum  3-term 
window  which is presented in Fig. 24,  another 3-term window 
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(-67 dB) 
3-TellIl 

(-61 dB) 
3-Term 

(-92 dB) 
4 -Term 

(-74 dB) 
4-TUIQ 

a0 0.42323  0.44959  0.35875  0.40217 
a1 0.49755  0.49364  0.48829  0.49703 
a2 0.07922 0.05677  0.14128  0.09392 
a3 ___ --- 0.01168  0.00183 

(to establish another  data  point in Fig. 12), the minimum 4-  
term window (to also establish a  data point in F'ii. 12),  and 
another  4-term window which is presented in Fig. 25. The 
particular  4-term window shown is one which performs well 
in a  detection example described in Section VI (see Fig. 69). 
The  parameters of these windows are listed in Table I. Note in 
particular where the Blackman and the Blackman-Harris  win- 
dows reside in Fig. 12. They are surprisingly good windows 
for  the small number of terms  in  their  trigonometric series. 
Note, if we were to  extend  the  line  connecting the Blackman- 
Harris family it would intersect the Hamming window which, 
in Section V-D ,we noted is nearly the minimum sidelobe level 
2-term Blackman-Harris  window. 

We also mention  that  a good approximation to  the Blackman- 
Harris  3- and 4-term windows can be obtained as scaled 
samples of the Kaiser-Bessel  window's transform (see Section 
V-H). We have  used this  approximation to  construct  4-term 
windows for  adjustable  bandwidth  convolutional filters as 
reported  in [ 101. This approximation is defined as 

uo = - a ,  = 2 -, m = 1,2 ,  (3). 
bo bm 
C C 

(34) 

The 4  coefficients  for  this  approximation when Q = 3.0 are 
a. = 0.40243, u1 = 0.49804, a2 = 0.09831, and a3 = 0.00122. 
Notice how close these  terms are to  the selected 4-term 
Blackman-Harris (-74 dB) window. The window defined  by 
these  coefficients is shown in Fig. 26. Like the  prototype 
from which it came (the Kaiser-Bessel with CY = 3.0), this 
window exhibits sidelobes just  shy of -70 dB from the main 
lobe. On the scale shown, the  two are indistinguishable. 
The  parameters of this window are also listed in Table I and 
the window is entered  in Fig. 12 as the "4-sample  Kaiser- 
Bessel." It was these 3- and 4-sample Kaiser-Bessel prototype 

windows (parameterized on a) which  were the  starting condi- 
tions  for the gradient minimbation which leads to  the Black- 
--Harris windows. The opthization.-starhg with these 
coefficients  has virtually no effect on the main4obe character- 
istics but  does drive down the sidelobes approximately 5 dB. 

F. Constructed  Windows 
Numerous investigators have constructed windows as prod- 

ucts, as sums, as sections, or as convolutions of simple func- 
tions and of other simple windows.  These windows have  been 
constructed  for certain desirable features,  not the least of 
which is the  attraction of simple functions  for generating the 
window terms. In general, the constructed windows tend  not 
to be good windows, and occasionally are very  bad  windows. 
We have already examined some simple window constructions. 
The Fejer (Bartlett) window, for  instance, is the  convolution 
of two rectangle windows; the Hamming  window is the sum  of 
a rectangle and a Hanning window; and the  cos4(X) window 
is the  product of two Hanning windows. We will  now examine 
other  constructed windows that have appeared in the  litera- 
ture. We will present them so they are  available for compari- 
son. Later we will examine windows constructed in accord 
with some criteria of optimality,(see  Sections VG, H, I, and 
J). Each  window is identified  only  for the f i t e  Fourier  trans- 
form. A simple shift of N/2 points and right end-point dele- 
tion will supply the DIT version. The significant figures of 
performance  for  these windows are also found in Table I. 

I )  Riesz  (Bochner,  Panen)  Window [ I  1 j :  The Riesz win- 
dow, identified as 

is the simplest continuous polynomial window. It  exhibits  a 
discontinuous first derivative at  the  boundaries;  hence  its 
transform falls off like l / d .  The window is shown in Fig. 
27. The first sidelobe is -22 dB from  the main lobe. This 
window is similar to  the cosine lobe  (26) as can be demon- 
strated  by  examinhg its Taylor series expansion. 

2)  Riemunn  Window (121: The Riemann window, defined 
bY 

is the central  lobe of the SINC kernel. This window is con- 
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Fa. 27. (a) Riesz window. (b) Log-magnitude of transform. 

125 

Fa. 28. (a) Riemann  window. (b) Log-magnitude of transform. 

I 125 

Fig. 29. (a) The de la Vall6-Pouspin window. (b) Log-magnitude of transform. 

tinuous, with  a discontinuous first derivative at tile boundary. 
It is similar to the  Kesz and cosine lobe windows. The 
Riemann window is shownia Fig. 2.8. 

3) de la Vall&Poussin (Jackson,  Parzen)  Window ( I   I ]  : The 
de la VallB-Poussin window is a  piecewise  cubic  curve ob- 
tained  by self-convolving two triangles of half extent or  four 
rectangles of one-fourth extent.  It is defined  as 

1 1 . 0 -  6[d2 [1.0-%], O < I n l < -  N 4 

2 [LO - $$, 
N  N 
- < I n I < - .  
4 2 

(37) 

The window is continuous  up to  its third derivative so that  its 
sidelobes fal l  off like l/w4.  The window  is shown in Fig. 29. 
Notice the trade of€.of main-lobe wid&-fer-sidelobe level. 
Compare this with the rectangle and the triangle. It is  a non- 
negative  window  by  virtue of its self-convolution construction. 

4 )  Tukey  Window [13/: The Tukey window, often called 
the cosine-tapered  window, is best  imagined  as  a  cosine lobe of 
width ( a / 2 ) N  convolved with a  rectangle  window of width 
(1 .O - a / 2 )   N .  Of course the resultant transform is the product 
of the  two corresponding transforms. The window represents 
an attempt to smoothly set the  data to zero at  the boundaries 
while not significantly  reducing the processing  gain of the 
windowed transform. The window  evolves from the rectangle 
to the Hanning  window  as the parameter a varies from zero to  
unity. The family of windows exhibits a confusing array of 
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sidelobe levels  arising from the  product of the two component 
transforms. The window is defined by 

(38) 

The  window is shown in Figs. 30-32 for values of Q equal to 
0.25,0.50, and 0.75,respectively. 

5 )  Bohman Window [14]: The Bohman window is ob- 

tained  by the  convolution of two half-duration cosine lobes 
(26a), thus  its transform is the square of the cosine lobe's 
transform (see Fig. 16). In the  time domain the window can 
be described as a  product of a triangle window with a single 
cycle of a cosine with the same period and,  then, a corrective 
term  added to set the frrst derivative to zero at  the boundary. 
Thus the second derivative is continuous,  and  the disconti- 
nuity resides in the third derivative. The transform falls off like 
l/w4.  The window is defined in the following and is shown in 
Fig. 33: 

O Q l n l Q - .  (39) 
ff 
2 



68 PROCEEDINGS OF THE IEEE, VOL. 66, NO. 1 ,  JANUARY 1978 

(a) @) 

Fig. 33. (a) Bohman window. (b) Log-magnitude of transform. 
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(a) @) 
Fig. 34. (a) Poisson window. (b) Log-magnitude of transform (a = 2.0). 

T 1 2 5  T 

(a) (b) 

Fig. 35. (a) Poisson window. (b) Log-magnitude of transform (a = 3.0). 

6 )  Poisson Window [12]:  The Poisson  window is a two- observed in Table I as a large equivalent noise bandwidth  and 

7) Hanning-Poisson Window: The Hanning-Poisson  win- 
sided exponential def ied by as a large  worst  case  processing  loss. 

N , o g l n  I < -. (40) dow  is constructed as the product of the Hanning and the 
2 Poisson  windows. The family is def ied by 

This is actually a family  of  windows parameterized on  the 

the transform can fall off no faster than l /w. The window is 
shown in Figs. 34-36 for values  of a equal to 2.0,3.0, and 4.0,  (41) 
respectively. Notice as the discontinuity at  the boundaries 
becomes  smaller, the sidelobe structure merges into  the This window  is  similar to  the Poisson  window. The  rate of 
asymptote. Also note  the very  wide  main lobe; this will be  sidelobe  falloff is determined by the discontinuity in the  fist 

variable a. Since it exhibits a discontinuity at  the boundaries, w(n)  = 0.5 
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I 1.25 

(4 @) 
Fig. 36. (a) Poismewindow. (b) Logmagnitude of transform (u = 4.0). 

(4 (b) 

Fig. 37. (a) Hllming-Pobon  window. (b) Log-magnitude of transform (u = 0.5). 

(8) (b) 

Fig. 38. (a) Hanning-Poisson window. (b) Log-magnitude of transform (a = 1.0). 

derivative at  the on& and is I/&. Notice  as a increases, 
forcing more of the exponential into  the Hanning  window, 
the zeros of the sidelobe structure disappear and  the lobes 
merge into  the  asymptote. This window is  shown in Figs. 
37-39 for values of a equal to 0.5, 1 .O, and 2.0, respectively. 
Again note  the very  large  main-lobe width. 
8) Cauchy (Abel,  Poisson)  Window ( 1 S J :  The Cauchy win- 

dow is a  family  parameterized on a and defined by 

1 
w(n)  = 

N 
2 ,  O < l n l < - .  

2 
(42) 

1.0+ [.$-I 
The window is shown in Figs. 40-42 for values of a equal to 
3.0, 4.0, and 5.0, respectively. Note the transform of the 

Cauchy  window is a  two-sided exponential (see  Poisson win- 
dows),  which  when  presented on a  log-magnitude  scale is 
essentially an isosceles  triangle. This causes the window to 
exhibit a  very  wide  main lobe and to have  a  large ENBW. 

G. Gaussian or Weiersfrass  Window ( I S ]  
Windows are  smooth positive functions with tall thin (i.e., 

concentrated) Fourier transforms. From the generalized 
uncertainty principle,  we know we cannot simultaneously 
concentrate  both a signal and its Fourier transform. If our 
measure of concentration is the mean-square time  duration T 
and the mean-square bandwidth W ,  we know all functions 
satisfy the inequality of 

Tw>- 1 
4n (43 1 
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Fi. 40. (a) Chuchy window. (b) Log-magnitude of transform (a = 3.0). 

(8) 9) 
Fii. 41. (a) Cauchy window. (b) Log-magnitude of tr8nafom (a = 4.0). 

with equality being achieved only for the Gaussian pulse [ 161.  a Dirichlet kernel as indicated in 
Thus the Gaussian pulse, characterized by minimum time- 
bandwidth product, is a reasonable candidate  for  a window. 
When we use the Gaussian  pulse as a window we have to trun- 
a t e  or discard the tails. By restricting the pulse to be f i t e  
length, the window no longer is minimum time-bandwidth. 
If the  truncation  point is beyond the  threesigma point, the 
error should be small, and  the window should be a good 2 Q  
approximation to minimum time-bandwidth. 

2 Q  

The Gaussian window is defmed by (44b) 

This window is parameterized on a, the reciprocal of the 
standard deviation, a measure of the width of its  Fourier 
transform. Increased a will decrease  with the width of the 
window and reduce the severity of the discontinuity  at the 

The transform is the convolution of a Gaussian transform  with boundaries. This wiU result in an increased width  transform 
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Fig. 42. (a) Cauchy window. (b) Log-magnitude of transform (a = 5.0). 
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(a) (b) 
Fig. 43. (a) Gaussian window. (b) Log-magnitude of transform (a = 2.5). 
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(a) (b) 
Fig. 44. (a) Gaussianwiudow. (b) Log-magnitude of transform (a = 3.0). 

main lobe and decreased  sidelobe  levels. ~ The window _is 
presented in Figs. 43, 44, and 45 for values of a equal to 2.5, 
3.0, and 3.5, respectively. Note the rapid drop-off rate of 
sidelobe  level  in the exchange of sidelobe  level for main-lobe 
width. The figures of merit for  this window are listed  in 
Table I. 

H. Dolph-Chebyshev Window [ I  7J 
Following the reasoning of the previoussection, we  seek  a 

window  which, for a known finite  duration,  in some sense 
exhibits a narrow bandwidth. We now take a  lead from the 
antenna design people who have  faced and solved  a  similar 
problem. The problem is to  illuminate an  antenna of finite 

aperture to achieve  a n m a w  main-lobe-beam pattern while 
simultaneously  restricting  sidelobe  response. (The antenna 
designer  calls  his  weighting procedure shading.) The closed- 
form solution to the minimum  main-lobe width for a  given 
sidelobe  level is the Dolph-Chebyshev  window  (shading). 
The  continuous  solution to the problem exhibits impulses at 
the boundaries  which restricts  continuous realizations to 
approximations (the Taylor approximation). The discrete or 
sampled  window is not so restricted,  and the  sohtion can he 
implemented exactly. 

The  relation T,(X) = cos (ne) describes  a  mapping between 
the  nth-order Chebyshev  (algebraic)  polynomial and the  nth- 
order trigonometric polynomial. The Dolph-Chebyshev 
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Fe. 45. (a) Gaussisnwindow. (b) Log-rmgnitude of M m  (a = 3.5). 
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Fw. 46. (a) Dolph-Chebyslm  window. (b) Lmg-magrdude of transform (a = 2.5). 
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Fi. 47. (a) Dolph-Chebylev  window. (b) Log-magnitude of transform (a = 3.0). 

window is defined with this mapping in the following  equa- and 
tion, in terms of uniformly spaced  samples of  the window's 
Fourier transform, 1" - tan-' [ X / ~ E K F  I , I X I G 1 .O 

cos-1 (X) = 

cos [N cos-1 [o cos (*;)]I 
W(k) = (- 1)k 

cosh [N cosh-I @)I ' 
To obtain  the  corresponding window time samples w(n),  we 
simply perform  a DFT on the samples W(k)  and then scale 
for  unity peak amplitude.  The  parameter Q represents the log 

(4s) of the  ratio of main-lobe  level to  sidelobe level. Thus  a value 
where  of a equal to 3.0 represents sidelobes 3.0 decades  down  from 

the main lobe, or sidelobes 60.0 dB  below the main lobe. The 
(-l)& alternates the sign of  successive transform  samples to 
reflect the shifted origin in  the time  domain.  The window is 

I 'IV- 
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(a) (b) 

Fig. 48. (a) Dolph-Chebyshev window. (b) Log-mn.gnitude of transform (u = 3.5). 

Fig. 49. (a) Dolph-Chebyshev window. (b) Log-magnitade of M o m  (u = 4.0). 

presented in Figs. 46-49  for values  of a equal to 2.5, 3.0, 
3.5, and 4.0, respectively. Note the uniformity of the sidelobe 
structure; almost sinusoidal! It is this uniform oscillation 
which is responsible  for the impulses in the window. 

I.  Kaiser-Bessel Window [ l 8 ]  
Let us examine  for  a  moment the optimality criteria of the 

last two sections. In Section V-G  we sought  the  function 
with minimum time-bandwidth  product. We know this to be 
the Gaussian. In Section V-H  we sought the  function  with 
restricted time  duration, which  minimized the main-lobe 
width  for a given sidelobe level. We now consider  a similar 
problem.  For  a restricted energy,  determine the  function of 
restricted time  duration T which  maximizes the energy in the 
band  of frequencies W. Slepian, Pollak,  and  Landau [ 191 , 
[20] have determined this function as a  family  parameterized 
over the time-bandwidth  product, the prolate-spheroidal wave 
functions of order zero. Kaiser has discovered a simple  ap- 
proximation to these functions in terms of the zero-order 
modified Bessel function of the fiist kind. The Kaiser-Bessel 
window  is defined by 

The  parameter nu is half of the  timebandwidth product.  The 
transform is approximately that of 

N IdSP - (N6/il2 1. (46b) w(e) G - 
zo(m) Ja2n2 - ( ~ e / 2 ) 2  

This window is presented in Figs. 50-53 for values  of Q equal 
to 2.0, 2.5, 3.0, and 3.5, respectively. Note the  trade  off 
between sidelobe level and main-lobe width. 

J. hrcilon-Temes Window [21] 
We now  examine the last criterion of optimality  for  a win- 

dow. We have already described the Slepian, Pollak, and 
Landau criterion. Subject to  the constraints of fmed energy 
and fved duration,  determine the function which  maximizes 
the energy in the band  of frequencies W. A related criterion, 
subject to the constraints of fiied area and  fmed  duration, is 
to determine the function which  minimizes the energy (or 
the weighted energy)  outside the band  of frequencies W. This 
is a  reasonable criterion since we recognize that  the transform 
of a good  window should minimize the energy it gathers from 
frequencies removed from its center  frequency. Till now, we 
have  been responding to this goal  by  maximizing the concen- 
tration of the transform at its main lobe. 

A closed-form solution of the unweighted minimum-energy 
criterion has not been found. A solution  defined as an expan- 
sion  of prolate-spheroidal wave functions  does exist and  it is 
of the  form shown in 
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Fig. 50. (a) KPirer-Jhsd window. (b) Logmagnitude of transform (u = 2.0). 
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Fig. 51. (a) Kaiser-Bessel window. (b) Logmagnitude of transform (a = 2.5). 
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(a) Kaiser-Bessel window. (b) Log-magnitude of transform (a = 3.0). 
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Fig. 53. (a) Kaiser-Bessel window. (b) Log-magnitude of transform (u = 3.5). 
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Fa. 54. (a) B.r&n-Tma window. (b) Log-magnhde of transform (u = 3.0). 
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Fa. 55. (a) Barcilon-Temes window. (b) Log-magnitude of tr8asform (u = 3.5). 

Ti. 56. (a) Barcilon-Temes window. (b) Lag-nugnhde of transform (u = 4.0). 

Here the A,,, is the eigenvalue corresponding to  the associated Like the  Dolph4%ebyshev window, the Fourier  transform is 
prolate-spheroidal wave function I $42Jx, y )  I ,  and the tra is more easily defined, and the window timesamples are ob- 
the selected half time-bandwidth  product. The summation  tained by an inverse DFT and an  appropriate scale factor.  The 
converges quite  rapidly, and is often  approximated  by the first transform samples are defined by 
term  or by the first two  terms.  The  first  term  happens to  be 
the  solution of the Slepian, Pollak, and Landau problem, 
which we have already examined as the Kaiser-Bessel window. A cos y(k)l + B r$ sin ~ ( k ) , ]  

criterion,  presented in the following equation has been found [ C + A B l  [p?]' + 1-01 
by Barcilon and Temes: 

A closed-form solution of a weighted minimum-energy W(k) = (- 1)k 

P 

This criterion is one which is a compromise between the Dolph- 
Chebyshev and the Kaiser-Bessel window criteria. 

(49) 
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C = cosh-' ( 1 OQ) 

@ =  cosh [ i c ]  

y(k)=Ncos-' [ B  cos ( 4 1  . 
(See  also (45).) This window is presented in Figs.  54-56 for 
values  of equal to 3.0, 3.5, and 4.0, respectively. The main- 
lobe  structure is practically indistinguishable from the Kaiser- 
Bessel  main-lobe. The f i e s  of merit listed on  Table  I suggest 
that for the same  sidelobe  level, this window does  indeed 
reside between the Kaiser-Bessel and  the Dolph-Chebyshev 
windows. It is interesting to examine Fig. 12 and note where 
this window is located  with respect to  the Kaiier-Bessel 
window; striking similarity in  performance! 

VI. HARMONIC ANALYSIS 

We now describe a simple experiment which dramatically 
demonstrates the influence  a window exerts on  the detection 
of a weak spectral line in  the presence  of a  strong  nearby line. 
If two spectral lines reside in DFT bins, the rectangle window 
allows each to be identified with no interaction. ,To  demon- 
strate this, consider the signal  composed  of two  frequencies 
10 f , /N and 16 f , /N (corresponding to  the  tenth and the 
sixteenth DFT bins) and of amplitudes 1.0 and  0.01 (40.0 dB 
separation), respectively. The power spectrum of this signal 
obtained by a DFT is shown in Fig. 57 as a linear interpola- 
tion between the DFT output points. 

We now modify  the signal  slightly so that  the larger  signal 
resides  midway between  two DFT bins; in particular, at 10.5 
f s /N .  The smaller  signal s t i l l  resides in the  sixteenth bin. The 
power spectrum of this signal is shown in Fig. 58. We note 
that  the sidelobe structure of the larger  signal has  completely 
swamped the main lobe of the smaller  signal.  In fact, we know 
(see  Fig. 13)  that  the sidelobe amplitude of the rectangle win- 
dow at 5.5 bins from  the  center is only 25  dB down  from the 
peak. Thus the second  signal ( 5 . 5  bins away) could not be 
detected because it was more than 26 dB down, and hence, 
hidden by the sidelobe. (The 26 dB comes from the  25dB 
sidelobe  level minus the  3.9dB processing  loss  of the window 
plus  3.0  dB for a high confidence detection.) We also note 
the obvious asymmetry  around the main lobe  centered at 10.5 
bins. This is due to  the coherent  addition of the sidelobe 
structures of the pair of kernels located at  the plus and  minus 
10.5 bin positions. We are observing the self-leakage between 
the positive  and the negative frequencies. Fig. 59 is the power 
spectrum of the signal pair, modified so that  the large-amplitude 
signal  resides at the 10.25-bin position. Note the change in 
asymmetry of the main-lobe and the reduction  in the sidelobe 
level. We still can not observe the second signal located at 
bin position 16.0. 

We now  apply different windows to  the two-tone signal to 
demonstrate the difference in  second-tone detectability. For 
some of the windows, the poorer resolution occurs when the 
large  signal is at 10.0 bins rather  than  at 10.5  bins. We will 
always present the window with  the large  signal at  the loca- 
tion corresponding to worst-case resolution. 

The first window we apply is the triangle window  (see  Fig. 
60). The sidelobes  have  fallen  by a  factor of two over the 
rectangle windows'  lobes (e.g., the  -35dB level  has  fallen to 
-70 dB). The sidelobes of the larger  signal  have fallen to 
approximately -43 dB at the second signal so that  it is barely 
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Fig. 59.  Rectangle window. 
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Fii. 60. Triangle window. 

detectable. If there were  any noise in the signal, the second 
tone would probably  not have  been detected. 

The  next windows we apply are the cosa(x) family. For 
the cosine lobe, a = 1 .O, shown  in Fig. 6  1 we observe a phase 
cancellation in the sidelobe of the large  signal located at  the 
small  signal position. This cannot be considered a detection. 
We also  see the spectral leakage of the main lobe over the 
frequency axis.  Signals  below this leakage  level  would not be 
detected. With a = 2.0  we have the Hanning window, which is 
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Fig. 63. Cos’ (nf f /N)  window. 

Fig. 62. We detect the second signal and observe 
a 3.0-dB  null between the two lobes. This is still a marginal 
detection. For  the  cos3(x) window presented in Fig. 63, we 
detect the second signal and observe a  9.0dB null between 
the lobes. We also see the improved  sidelobe response. Finally 
for  the  cos4(x) window presented in Fig. 64, we detect the 
second  signal  and  observe a  7.0dB null between the lobes. 
Here we witness the reduced  return for  the  trade between 
sidelobe  level and  main-lobe  width. In obtaining  further 
reduction  in  sidelobe level we have  caused the increased  main- 
lobe  width to encroach  upon the second signal. 

We next  apply the Hamming  window and  present the result 
in Fig. 65. Here we observe the second signal some 35 dB 
down,  approximately 3.0  dB  over the sidelobe response  of 
the large signal. Here, too, we observe the phase cancellation 
and the leakage between the positive and the negative fre- 
quency  components. Signals more  than 50 dB down would 
not be detected in the presence  of the larger  signal. 

The Blackman  window is applied  next  and we see the results 
in Fig. 66.  The presence  of the smaller amplitude  kernel is 
now  very apparent.  There is a 17-dB null between the  two 
signals. The  artifact  at  the base of the large-signal kernel is 

‘“I n 

Fig. 64. Cos‘ (nn/N) window. 

jot l i  
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Fig. 66. Blockman window. 

Fig. 67. Exact Blackman window. 

the sidelobe structure of that kernel. Note the rapid rate of 
falloff of the sidelobe  leakage  has confined the artifacts to a 
small portion of the spectral line. 

We next  apply the exact Blackman coefficients and  witness 
the results in Fig. 67. Again the second signal is well defiied 
with a 24dB null between the two kernels. The sidelobe 
structure of the larger kernel now extends over the entire 
spectral range. This leakage is not terribly severe as it is nearly 
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6OdB down relative to  the peak. There is another. small 
artifact  at  5OdB  down on the low frequency side of the large 
kernel. This is definitely a single sidelobe of the large kernel. 
This artifact is essentially removed by the minimum 3-term 
Blackman-Harris  window  which we see in F i i  68.  The null 
between the two signal main lobes is slightly smaller, at ap- 
proximately 20 dB. 

Next the 4-term Blackman-Harris  window is applied to  the 
signal and we see the results in Fig. 69. The sidelobe struc- 
tures are more than 7OdB down and as such are not obserrred 
on this scale. The two signal lobes are well defined with 
approximately a 19dB null between them. Now  we apply  the 
4-sample Kaiser-Bessel  window to  the signal and see the re- 
sults in Fig. 70. We have essentially the same performance as 
with the  4-term  Blaclanan-Harris window. The only obser- 
vable difference on this scale is the small sidelobe  artifact 
68 dB down on the low frequency side of  the lnrge kernel. 
This group of Blackmanderived windows perform admiraMy 
wen for their simplicity. 

The Riesz window is the first of our constructed windows 
and is presented in Fig. 7 1. We have not  detected  the second 
signal but we do observe iis affect as a 20.- ndl due 

Fs. 71. Riesz window. 

Fa. 72. Riemmn window. 

- B  
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9 

to the phase 
kernel. 

Fa. 73. de t V&Poussin window. 

cancellation of a sidelobe in the large signal's 

The result of a Riemann  window is presented in Fig. 72. 
Here, too, we have no detection of the second signal. We do 
have a small null due to phase cancellation at  the,second sig- 
nal. We also have a large sidelobe response. 

The  next window, the  de la VaIli-Poussin or  the self- 
convolved triangle, is shown in Fig. 73. The second signal is 
easily found  and  the power spectrum exhibits a 16.0-dB null. 
An artifact of the window (its lower sidelobe) shows up, 
however, at  the Blh DFT bin as a signal approximately 53.0 
dB down. See Fig. 29. 

The result of applying the Tukey family of windows is 
presented in F i .  74-76. In Fig. 74  (the 25-percent taper) 
we see the lack of second-signal detection  due to  the high side- 
lobe structure of the  dominant rectangle window. In Fig. 75 
(the 50-percent taper) we obseme a lack of seconddgnal 
detection,  with the second signal actually filling in one of the 
nulls of the hfft signals' kernel. In Fig.  76  (the 76-percent 
taper) we witness a marginal detection in the st i l l  high side- 
lobes of the larger signal. This is still an unsatisfying window 
because of the artifacts. 
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Fig. 74. Tukey (25-percent cosine taper) window. 

Fig. 75. Tukey (50-percent cosine taper) window. 
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Fig. 76. Tukey (75-percent  cosine taper) window. 

The Bohman construction window is applied and presented 
in Fig. 77. The  second signal  has  been detected  and the null 
between the  two lobes is approximately 6.0  dB. This is not 
bad, but we can st i l l  do better. Note  where the Bohman win- 
dow resides in Fig. 12. 

The result of applying the Poisson-window family is pre- 
sented in Figs.  78-80.  The second signal is not detected  for 
any of the selected parameter values due t o  the highsidelobe 
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Fig. 78. Poisson window (a = 2.0). 
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Fig. 79. Poisson window (a = 3.0). 
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Fa. 80. Poisson window (a = 4.0). 

levels  of the larger  signal. We anticipated  this  poor perfor- 
mance in Table I by the large difference between the 3.0 dB 
and the ENBW. 

The result of applying the Hanning-Poisson family of win- 
dows is presented in Figs. 81-83.  Here, too,  the second signal 
is either not detected in the presence  of the  highsidelobe 
structure or  the detection is  bewildered  by the artifacts. 

The Cauchy-family  windows  have  been applied and the 
results are presented in Figs. 84-86. Here too we  have a lack 
of satisfactory detection of the second signal  and the poor 
sidelobe response. This was predicted by the large difference 
between the 3.0  dB and the equivalent noise bandwidths as 
listed in Table I. 

We now apply the Gaussian family of  windows  and present 
the results in Figs. 87-89. The second signal is detected in all 
three figures. We note as we further depress the sidelobe 
structure to  enhance second-signal detection, the null deepens 
to approximately 16.0 dB and  then becomes poorer as the 
main-lobe width increases  and starts to  overlap the lobe of 
the smaller  signal. 

The Dolph-Chebyshev family of  windows is presented in 
Figs. 90-94. We observe strong  detection of the second signal 
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ng. 84. Cauchy window (a = 3.0). Fii. 88. Gaussian window (a = 3.0). 

in all cases, but  it is distressing to  see the uniformly high side- 
lobe structure. Here, we again see the coherent  addition of 
the sidelobes from the positive and negative frequency kernels. 
Notice that  the smaller signal is not 4OdB  down now.  What 
we are seeing is the scalloping loss of the large signals' main- 
lobe being sampled  off  of the peak and beiug refereaced as 
zero dB. Figs. 90 and 91 demonstrate the sensitivity of the 
sidelobe coherent  addition to main-lobe position. In Fig. 90 
the larger signal is at bin 10.5; in Fig. 91  it is at bin 10.0. 

Note  the  difference in phase cancellation near the base of the 
large signal. Fig. 93, the  7MB-sidelobe window,  exhibits  an 
18-dB null between the  two main lobes but  the sidelobes have 
added constructivdy (along with the scalloping loss) to the 
-62.O-dB level. In Fig. 94, we see the 80-dB sidelobe window 
exhibited sidelobes below the 70-dB level  and still managed to 
hold  the null between the  two lobes to approximatley  18.0 
dB. 

The Kaiser-Bessel family is presented in Figs. 95-98. Here, 
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Fig. 89. Gaussian window (a = 3.5). Fig. 93. Dolph-Chebyshev window (a = 3.5). 

Fig. 90. Dolph-Chebyshev window (a = 2.5). Fig. 94. Dolph-Chebyshev window (a = 4.0). 
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Fig. 91.  Dolphzhebyshevwindow (a = 2.5). Fig. 95. Kaiser-Bessel window (a = 2.0). 
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Fig. 92. Dolph-Chebyshev window (a = 3.0). Fig. 96. Kaiser-Bessel window (a = 2.5). 

too, we have strong second-signal detection. Again, we see the 
effect  of trading increased  main-lobe width for decreased 
sidelobe  level. The null between the  two lobes reaches  a  maxi- 
mum of  22.0  dB  as the sidelobe structure falls and then be- 
comes poorer with further sidelobe  level improvement. Note 
that  this window  can maintain a  20.0-dB  null between the  two 
signal lobes and still hold the leakage to more than 70 dB 
down over the entire  spectrum. 

Figs. 99-101 present the performance of the Barcilon- 
Temes  window. Note the strong detection of the second signal. 

There are  slight  sidelobe artifacts. The window  can  maintain 
a 20.0dB null  between the two signal  lobes. The performance 
of this window is slightly  shy of that of the Kaiser-Bessel 
window, but  the  two  are remarkably similar. 

VII. CONCLUSIONS 

We have  examined  some  classic  windows and some  windows 
which  satisfy  some criteria of optimality.  In  particular, we 
Jmve dacribeil their  effects on  the problem of general  har- 
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Fig. 98. Kaiser-Bessel window (a = 3.5). 
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Fig. 99. Barcilon-Temes window (a = 3.0). 

monic analysis of tones in broadband noise and of tones  in 
the presence of other tones. We have  observed that when the 
DFT is used  as  a harmonic energy detector,  the worst  case 
processing  loss due to  the windows  appears to be lower 
bounded by  3.0  dB and (for good  windows) upper  bounded 
near 3.75  dB.  This  suggests that  the choice of particular 
windows  has  very little  effect on worst  case performance in 
DFT  energy detection. We have concluded that a  good  perfor- 
mance indicator  for the window  is the difference between the 
equivalent  noise bandwidth and the  3.0dB bandwidth nor- 
malized  by the 3.0-dB bandwidth. The windows  which  per- 
form well (as indicated in Fig. 12) exhibit values for  this 
ratio between  4.0 and 5.5  percent. The range of this  ratio 
for  the windows  listed in Table I is 3.2 to 22.9 percent. 

For multiple-tone detection via the DFT, the window 
employed does have  a  considerable effect. Maximum dynamic 
range of multitone detection requires the transform of the 
window to exhibit a  highly concentrated central  lobe with 
very-low  sidelobe structure. We have demonstrated that 
many classic  windows  satisfy this  criterion with varying 
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Fig. 100.  Bardon-Temes  window (a = 3.5). 
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Fig. 101. Barcilon-Temes window (a = 4.0). 

degrees of success and some not  at all. We have demonstrated 
the  optimal windows  (Kaiser-Bessel,  Dolph-Chebyshev, and 
Barcilon-Temes) and the Blackman-Hams  windows perform 
best in  detection of nearby tones of significantly different 
amplitudes. Also for  the same dynamic range, the  three opti- 
mal  windows and the Blackman-Harris  window are roughly 
equivalent with the Kaiser-Bessel and the Blackman-Harris, 
demonstrating minor performance advantages  over the others. 
We note  that while the Dolph-Chebyshev  window  appears to 
be the best  window  by virtue of its relative  position in Fig. 12, 
the coherent addition of its constant-level  sidelobes detracts 
from its performance in multi tone detection. Also the side- 
lobe structure of the Dolph-Chebyshev  window exhibits 
extreme sensitivity to coefficient  errors. This would affect 
its performance in machines operating with fixed-point  arith- 
metic. This suggests that  the Kaiser-Bessel or  the Blackman- 
Harris  window  be  declared the  top performer. My preference 
is the Kaiser-Bessel  window.  Among other reasons, the coef- 
ficients are easy to generate and the trade-off of sidelobe 
level  as  a function of time-bandwidth product is fairly simple. 
For many applications, the  author would recommend the  4- 
sample  Blackman-Hams (or  the 4-sample  Kaiser-Bessel) 
window.  These  have the distinction of being  defined by a  few 
easily  generated  coefficients and of being able to be  applied 
as a spectral convolution after  the DFT. 

We have  called attention to a  persistent 'error  in the applica- 
tion of windows  when  performing convolution in  the fre- 
quency domain, i.e., the omission of the alternating signs on 
the window  sample spectrum to account for  the shifted  time 
origin. We have  also identified and clarified  a source of 
confusion  concerning the evenness of windows under the DFT. 

Finally, we comment that all  of the conclusions presented 
about window performance in  spectral analysis are also ap- 
plicable to shading for array  processing of spatial sampled 
data, including FFT beamfonning. 
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APPENDIX 
THE EQUIVALENCE OF WINDOWING IN THE TIME 

DOMAIN TO CONVOLUTION I N  THE FREQUENCY DOMAIN 
Let 

f ( t )  =/ F ( a )  exp ( - j u t )   d a / 2 n  
+- 

-0 

and 

+Nf 2 

n=-Nf2 
W ( a )  = w(nT)  exp (+janT).  

Then 

+- 
~ , ( a )  = x w ( n T ) f ( n T )  exp ( + j a r ~ ~ )  

n=-- 

becomes 

F,(w) = x w(nT)/  F ( x )  exp ( - j x n T )  dx/2n 
+- +- 

nr-w -00 

exp (+ janT)  

+- 
F ( x )  x w(nT)  exp [ + j  (a - x ) n T ]   d x / 2 n  

or 
F,(a) = F ( a )  * W ( a ) .  
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