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The FFT

PREFACE

Fourier analysis is not a new subject. It has been around since the early 1800’s
when J.B.J. Fourier developed the initial concepts and theory. Since then, numerous
papers and books dealing with Fourier theory have been published. And the Fourier
series and integral have found their way into various college curricula.

So, why another book on Fourier theory?

In answer, Fourier analysis exists in a different context today. It used to be a
pencil-and-paper issue, an interesting mathematical approach to getting frequency-
domain information, but generally too difficult to apply in most practical cases. And
even with the arrival of the digital computer, useful Fourier analyses were too time
consuming and computer expensive for widespread use. Then in the 1960’s J.W. Cooley
and J.W. Tukey published “An Algorithm for the Machine Calculation of Complex
Fourier Series.” This algorithm became known as the Fast Fourier Transform, or FFT,
and has become the new context for Fourier analysis. This is not just a digital context,
but a new context that allows quick, economical application of Fourier techniques to a
wide variety of analyses.

Thus, the FFT is becoming a general analysis tool. FFT routines are found in most
comprehensive software libraries, and FFT analyzers are becoming a more frequently
encountered item. But even more than this, the FFT has taken its place, along with more
common operations, in general-purpose instrumentation. A good example of this is the
Tektronix Digital Processing Oscilloscope, which provides signal processing
operations such as waveform addition, multiplication, integration, convolution, correla-
tion, and fast Fourier transformation.

That is the FFT today. What does tomorrow hold? Perhaps, with shrinking
computer sizes, microprocessors, etc., ageneral-purpose FFT instrument will be sitting
on your workbench next to your ohmmeter.

Looking to using the FFT now and in the future, you need to be familiar with
Fourier theory, notonly in the classical context, butin the digital contexttoo. Youwon’t
have to know all the details of the equations and derivations, but you do need to know
the concepts they embody. You do need to know what to expect in the frequency
domain and how digital techniques affect the frequency domain.

For the most part, these things can be shown through simple diagrams and
pictures and can be discussed in simple terms. That is the approach that will be taken in
the following pages. PART | is an introduction to classical Fourier theory with a slant
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toward later discussions of digital theory. PART Il covers the digital approach to Fourier
analysis and uses the Tektronix Digital Processing Oscilloscope and DPO TEK BASIC
software to provide specific examples and cathode-ray-tube photos of FFT results.
Every attempt has been made throughout to fully illustrate each conceptand to discuss
each concept in easy-to-understand terms.

Why another book on Fourier theory?—to bridge the gap between classical theory
and practical use, and to do it in language that people of different backgrounds and
technical levels can understand.

vi @
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PART |
INTRODUCTION TO FOURIER
ANALYSIS

You will find two sections in PART |. The first is but a few pages—just enough to
start you thinking about time and frequency as two related concepts. Though the
relationship may not be intuitively obvious, an important relationship does exist. And
this relationship becomes more obvious in the second section, where the Fourier
transform is explored. A good grasp of the concepts in these two sections is necessary
for understanding the digital analysis techniques covered in PART II.

SECTION 1

TIME AND FREQUENCY:
TWO BASES OF DESCRIPTION

Time. That is one of the fundamental concerns of human beings. How many times
during the day do we look at a clock or check our watches? Since birth, our lives have
been geared to time. There is a time to wake up, a time to eat, a time to work, a time to
play, and a time to go to sleep. We measure each day of our lives in time and use it to
order the events that concern and affect us.

Time is universal. All people recognize its passage. All people live by it. Time in
itself is central to many philisophical questions: Does time flow by us, or do we
advance through time? And the measurement of time is an established science
(horology) with a long history.

As far back as 3500 BC, people were known to have erected poles and towers to
cast shadows. The length of the shadow being an indication of the time of day. By the
eighth century BC, the Egyptians had refined this shadow concept to a fairly accurate
sundial and had also developed water clocks as substitutes for night and on cloudy
days. Later, the Romans and Greeks refined these devices further, butitwasn’t until the
14th century that anything resembling a modern timepiece was developed. Then in
1582, Galileo observed the constancy of the pendulum, and Christiaan Huygens, in
1665, incorporated Galileo’s observations in the first pendulum clock. Until the advent
of electrically driven clocks, the pendulum clock was the most accurate timepiece

@ 1-1
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available. Now, by the 1967 agreement of the International Conference on Weightsand
Measures, the atomic clock is the ultimate standard.

Time Histories Need Time Bases

Today, one second is equal to 9,192,631,770 transitions between two specified
hyperfine levels of the Cesium-133 atom. But why so much precision in measuring the
passage of time? The answer: Science demands it. A great deal of scientific theory is
couched in terms of time histories. Furthermore, experimental proof of these theories

requires time-domain measurements. And the precision of these measurements
depends upon our ability to measure time.

As an example, Galileo reportedly used his own pulse as a timepiece in making his
original pendulum observations. Each complete swing of a large pendulum took so
many heart beats. With no greater precision than this, it is a natural experimental
conclusion to say thata pendulum always shows the same simple harmonic motion. But
theory tells us that this is not the case. In fact, for large displacements, the time for a
complete swing of a pendulum is greater than for small displacements (Fig. 1-1).

Proving this experimentally, however, requires a more precise timepiece than what
Galileo had access to.
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Fig. 1-1. The period of a pendulum, T, varies according to its angular displacement, O.
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An electronic oscillator is in many ways analogous to a mechanical pendulum.
The output of a sine-wave oscillator has a time history that closely resembles the time
history of angular displacement for a pendulum. Galileo’s concept of counting pulse
beats can also be applied to measure the time for a complete voltage swing from an
oscillator. The modern version of this concept is used in frequency counters and time
interval counters, where an electronic pulse is used instead of a human pulse. This is
shown in Fig. 1-2.
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Fig. 1-2. Electronic version of Galileo’s pendulum observations.
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There is a time base involved in all time-domain measurements. In the case of Fig.
1-2b, the time base is used directly to measure the period of the signal. In other types of
measurements, the time base is used to generate a time axis for an amplitude history.
The precisely controlled speed of the paper drive for a chart recorder is an example of
this later case. Another example is the oscilloscope, which uses a ramp voltage todrive
the Cathode Ray Tube trace at a constant horizontal rate. In both examples, the
measured quantity drives the pen or the CRT trace in a direction normal to the time
base. The result is a time history of amplitude variation, as shown in the CRT
photograph of Fig. 1-3.

The CRT photograph in Fig. 1-8 gives a complete time-domain description of a
sinusoid. It is complete because at least one full repetition of the waveform is displayed,
and from this we are assured that the waveform is sinusoidal. In general, we canonly be
sure of the description within the bounds of the display area. What happens outside of
the display is not recorded and is unknown. In the case of Fig. 1-3, however, experience
and common sense lead us to assume continuation of the waveform beyond the
confines of the display.

=V =

Amplitude 0 —
Variations

—1v -

| x
= time 1
S

1754-4

Fig. 1-3. Time history of sinusoidal amplitude variations obtained with an oscilloscope.
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CRT Photos

It is conventional in oscilloscope measurements, such as Fig. 1-3, to assign time
zero to the left side of the display. Then, according to the time-base setting, time
proceeds to the right. In Fig. 1-3, the CRT readout in the upper, right-hand portion
indicates the time increments for each major division of the graticule. Verticalamplitude
scaling is indicated by the readout in the upper, left-hand corner. Also, the zero
reference for the amplitude is given in the lower, right-hand corner. A 0 DIV indicates
the center graticule line as the reference. A3 DIV indicates the third graticule line above
center for the reference, and a —3 DIV indicates the third line below center.

This system of CRT readout is not a feature of oscilloscopes in general. Many
types of oscilloscopes force you to remember instrument settings and zero reference
locations. The Tektronix, Inc., instruments and software used to provide examples for
later discussion do, however, have the readout feature.
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Sinusoids Look Different from a Frequency Viewpoint

Once a sinusoid is completely described with respect to time, we can go on and
construct a description with respect to frequency. This is shown in Fig. 1-4.

Fig. 1-4 depicts a three dimensional waveform space, with amplitude as one axis
and time and frequency as the other two axes. The time and amplitude axes define
something that can be called a "time plane”. In the same manner, the frequency and
amplitude axes define a "frequency plane” normal to the time plane.

The time history of asinusoid, such as in Fig. 1-3, can be treated as a projection on
the time plane. In concept, the sinusoid can be thought of as actually existing at some
distance from the time plane. This distance is measured along the frequency axis and is
equal to the reciprocal of the waveform period. Similarly, the sinusoid also has a
projection on the frequency plane. This projection takes the form of an impluse with an
amplitude equal to the sinusoid’s amplitude. Because of symmetry, however, we need
only project half of the total amplitude swing. This is shown in Fig. 1-4 by the positive
amplitude impulse in the magnitude diagram. The position of this impulse on the
frequency axis coincides with the frequency of the sinusoid.

The single impulse in the magnitude diagram defines both the amplitude and
frequency of the sinusoid. With only this information, the waveform can be
reconstructed in the time domain. Some additional information is needed, however, to
fix the sinusoid’'s position with respect to the zero time reference. This additional
information is provided by a phase diagram, which also consists of an impulse located
on a frequency axis. The amplitude of this latter impulse indicates the phase.

Phase diagrams for sinusoids can be determined by looking at the positive peak
closest to time zero. For the case of Fig. 1-4, the positive peak occurs after time zero by
an amount equal to one fourth the period. There are 360 degrees in a cycle or period.
The peak is shifted from zero by one fourth of this; thus, the phase is 360°/4,0r90°. And
since the positive peak occurs after time zero, the sinusoid is said to be delayed. As a
matter of convention, delay is denoted by negative phase. If the closest positive peak
had been located before time zero, then the sinusoid would have been advanced. An
advance is denoted by positive phase. These conventions are further illustrated in Fig.
1-5, and more examples are provided in Fig. 1-6.

In looking at Fig. 1-6, it should be pointed out that the total range of shiftis —180°
to +180°, or 360° . With no reference fixed to the sinusoid, an actual shift out of the 360°
= 2 7 range corresponds to a shift within the 2 7 range. For example, a sinusoid
advanced by 360° + 90° = 450° is notgenerally distinguishable from the same sinusoid
advanced by just 90° and would be represented as having 90° shift. This system of
representing phase within a2  range is referred to as modulo 2 m phase. Ifareference
can be attached to the sinusoid, then shifts beyond the 2 7 range can be represented as
such. This latter approach is referred to as a continuous phase representation and is
detailed in PART II.
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Fig. 1-4. Time and frequency description of a sine wave.
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Fig. 1-5. Determining the phase of a sinusoid.
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Nonsinusoidal Waveforms are Composed of Sinusoids

By using the description conventions developed thus far, we can build non-
sinusoidal waveforms. For example, let's start with the frequency description of a
sinusoid having a frequency of F,and a phase of —90° (Fig. 1-7a). Now let’s take another
sinusoid with a frequency of 2F,. Also, for the sake of illustration, let’s say that the
amplitude of this sinusoid is one half that for F,. And to add some interest, let'salso give
the sinusoid at 2F, a phase of —45°. This second sinusoid is completely described by
Fig. 1-7b, and the frequency description for the sum of the two sinusoids is shown in Fig.
1-7c.

A A
90 2F, 90

A/2 A/2

1 B a5 2F,

. f f f f
F,
—45+ —45 +
—901 —90
a. Sinusoid of frequencyF,, b. Sinusoid of frequency 2F,,
amplitude A,and —90° phase. amplitude A/2 and —45° phase.

-
|

A
90
A2
45 <
F. 2F,
f l f
F. 2F, il
‘90 —

c. Nonsinusoidal waveform composed of a
and b.

1754-8

Fig. 1-7. Summing frequency descriptions of sinusoids.
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To complete the picture, let’s recast Fig. 1-7 in terms of three dimensions. This is
shown in Fig. 1-8, where the concepts of projecting onto a "time plane” and a
"frequency plane” are used. Additionally, the idea of summing multiple time-plane
projections is introduced. Projections onto the time plane (or into the time domain, if
you prefer) are shown by dotted lines, and their sum is indicated by a heavy solid line.

We could continue on in the manner of Figs. 1-7 and 1-8, and by adding various
sinusoids, variously shapped projections on the time plane are obtained. By judiciously
selecting each frequency component and adjusting its phase and amplitude, a wide

//\\ /v /\‘\
/ // \ ,/
U \V, N

SOAAAAAANN

1754-9

Fig. 1-8. Composing a nonsinusoidal waveform by summing sinusoids.
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variety of repetitive waveforms can be constructed. Each is characterized by a unique
combination of sinusoids. If any one of the sinusoids is changed in frequency,
amplitude, or phase, then the waveform’s time-plane projection changes. This latter
point can be illustrated by recomposing the waveform in Fig. 1-8 with the phase at 2F,
changed from —45° to +45° (see Fig. 1-9).

For the most part, waveforms are measured in the time domain. Time-based
measurements have historical precedence, and they are the most familiar data format.
But time histories tell only one side of the story.

Without a direct look at the frequency domain, waveshape changes are the only
indication that some frequency components have been modified. In many cases, rules
of thumb are enough for interpreting these changes. Passing the square wave in Fig. 1-
10a, for example, through a low-pass filter produces the predictable results in Fig. 1-
10b. We know that fast rise times imply high frequencies. And, by its nature, a low-pass

A =4
90
A2
45 1
FO
f
F, 2F, 2F, :
—45 + ¢
_90 T_

a. Frequency description

b. Sinusoidal cemponents in the time c. Sum of the sinusoids.
domain.

1754-10

Fig. 1-9. Changing any frequency component, in any way, changes the time-domain
description: The phase at 2F, is changed from —45° to +45°. The original condition is shown by
dotted lines and the new condition by solid lines.
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filter attenuates high frequencies; thus, the slowed rise time in Fig. 1-10b is expected.
But how specific can you be about Fig. 1-10b? Some frequency axes aregiveninFig.1-
10c. Can you decompose the waveform in Fig. 1-10b into its frequency components and
indicate their magnitudes and phases on these axes?

a. A square wave. b. A low-pass filtered square wave.

180 +

90

0 —+—+—T+—+—+—++—+ 0 H—+—+++++++—

—90 +

-180 +

c. Can you describe b on these frequency axes?
1754-11

Fig. 1-10. The time domain does not tell the whole story.

Something more than rules of thumb are needed to fill in Fig. 1-10c. If the
waveform in Fig. 1-10b is available for measurement, it can be applied to a frequency-
based oscilloscope. More often referred to as a spectrum analyzer, a frequency-based
oscilloscope uses a filtering system to decompose a time-domain waveform into a
magnitude diagram of its frequency components. A spectrum analyzer does not,
however, provide phase information. For many analyses, just knowing the frequencies
and their magnitudes is sufficient, but phase information can be just as important in
many other cases, as was shown by Fig. 1-9.

Another and more complete approach is to apply the rigorous mathematical
technique known as Fourier analysis. This allows you to describe a time-domain
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waveform in terms of frequency domain magnitude and phase. Or, if you prefer, Fourier
analysis also gives results in the form of real and imaginary parts of the complex
frequency domain. Unfortunately, the classic mathematical approach is frustrating for
all but the simplest waveforms. If the waveform cannot be mathematically formulated,
then classic Fourier techniques cannot be applied. A waveform can, however, be
sampled and digitized. Then the discrete Fourier transform (DFT) can be used to
Fourier transform the sampled and digitized waveform.

Since its general introduction in 1965, the fast Fourier transform (FFT) has been
the commonly used algorithm for evaluating the DFT. This algorithm can be
implemented through either computer software or hardware. Its major advantage is the
speed with which it analyzes large numbers of samples. And, combined with standard
measurement concepts, the FFT effectively converts a time-based instrument to a
frequency-based instrument.

Parts Il and 111 of this manual are devoted to digital techniques of Fourieranalysis
with the FFT algorithm. But before this subject can be approached, the continuous
Fourier theory that it emulates must be understood. This Fourier theory for continuous,
unsampled waveforms, embodied in the Fourier series and Fourier integral, is the
subject of the next section.

1-14 @
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SECTION 2

FOURIER TECHNIQUES DESCRIBE THE
FREQUENCY DOMAIN

Born the son of an Auxerre tailor in 1768, Jean-Baptiste-Joseph Fourier grew to
become one of France’s major 19th-century administrators, historians, and
mathematicians. His accomplishments began in 1798 when he went to Egypt with
Napoleon. While there, he acted as an advisor on engineering and diplomatic matters
and served as secretary of the Institut d’E'gypt (Cairo). Also, he undertook an intensive
study of Egyptian antiquities.

Fourier returned to France in 1801 and was appointed Prefect of the Isere
de'partement in 1802. He served at Grenoble in this capacity until 1814. During this time,
he was recognized as an able administrator, and Napoleon granted him the title of
Baron in 1809. This period also marked the beginning of Fourier's most important
scientific contributions.

Fourier contributed heavily to compiling the Description de I’E'gypte, which
covered the cultural and scientific results of Napoleon’s invasion of Egypt. This work,
issued in 21 volumes over the period from 1808 to 1825, contained much of the
information Fourier had gained from studying Egyptian antiquities. The attention these
volumes drew to the ancient Egyptian civilization resulted in Egyptology being
recognized as a new and separate discipline.

Between his administrative functions and his contibutions to Egyptology, it is
amazing that Fourier still found time to do pioneering work in mathematical physics. His
interest in heat conduction led him to begin work in 1807 on Theorie analytique de la
chaleur (English translation, 1878—The Analytical Theory of Heat). This initial work
was completed in Paris and published in 1822; it shows how a mathematical series of
sine and cosine terms can be used to analyze heat conduction in solid bodies. The
series that Fourier proposed, and which bears his name, is of the formy =1/2 a,+ (a:
Ccos X + by sin x) + (a2 cos 2x + b, sin 2x)... This Fourier series was probably the first
systematic application of a trigonometric series to a problem solution. Fourier spent the
rest of his life working on his concept and expanded it to include the Fourier integral
before his death in 1830. Both the Fourier series and the Fourier integral allow
transformation of physically realizable time-domain waveforms to the frequency
domain and vice versa. They are the mathematical tools forwhatis currently referred to
as Fourier analysis.

Today, application areas of the Fourier series and integral transcend the original
heat-conduction application. For example, a few of the many areas that benefit from
Fourier analysis are linear systems, antennas, mechanical vibration, optics,
biomedicine, and various random processes and boundary-value problems.

@ 2-1
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It is interesting that such a far-reaching technique did not gain acceptability
during Fourier’'s time. Various infinite series had been used prior to Fourier, most
notably by Leonard Euler who found them an acceptable analysis tool. Many
mathematicians, however, distrusted the use of series, and one influential mathemati-
cian wrote in 1828: "Divergent series are the invention of the devil, and it is shameful to
base on them any demonstration whatsoever.” Although Fourier's series is generally
convergent, its validity did not escape the questioning of that era. Later work by P.G.L.
Dirichlet (1805-1859), Bernhard Riemann (1826-1866), Henri Lebesgue (1875-1941),
and others finally resolved any doubts about the validity of the Fourier series and the
integral. For our part, let’'s accept the conclusions of these great mathematicians and
simply go on to understand the fundamentals and concepts involved in Fourier analysis.

FOURIER SERIES GIVES SPECTRA FOR PERIODIC
WAVEFORMS

If a Fourier series can be written fora waveform, then the components of the series
completely describe the frequency content of the waveform.

The Question of Existence

The first condition that must be met for constructing a Fourier series is that the
waveform be periodic. Precisely speaking, if the waveform is represented by x(t) and a
constant time, T, and it exists such that x(t) = x(t + T) holds for all time, t, then x(t) is
periodic with a period of T. In short, the waveform must repeat itself in time. Familiar
examples of this include sine waves, cosine waves, square waves, etc. The most
important thing to remember here, and for later discussions, is that periodicity is for all
time. That is, the waveform must begin at minus infinitiy and repeat itself out to plus
infinity.

The condition of periodicity is rarely, if ever, met in the physical world! No
oscillators or pendulums were in existence at time equal to minus infinity, and if they
were, it is doubtful their operation would continue until plus infinity. However, for the
sake of practicality, the rules can be benta little. Periodicity, for the purpose of writing a
Fourier series, can be defined over an observable interval. In otherwords, a square wave
generator can be considered to have a periodic output from the time itis turned on to the
time it is turned off. The Fourier series that is written, however, describes the square
wave as through it started at minus infinity and continued to plus infinity.

The remaining conditions for existence of a Fourier series are referred to as the
Dirichlet conditions. Briefly, these require that:

1. If the function has discontinuities, their number must be finite in any period.

2. The function must contain a finite number of maxima and minima during any
period.
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3. The function must be absolutely integrable in any period; that is,

T
S, [x(t)]dt<ee,

where x(t) describes the function.

These conditions, along with that of periodicity, establish the existence or nonexistence
of a Fourier series for any x(t).

There are some functions for which a Fourier series does not exist. For all
practical purposes, though, the Dirichlet conditions are met when a periodic function
accurately specifiesa physicaloccurrence. We can be confidentthat no oscillator exists
that does not have a frequency spectrum associated with its output.

Fourier Series Gives Discrete Spectra

If we look at the square wave in Fig. 2-1a, we can quickly satisfy ourselves thatitis
periodic. We can also see in b, ¢, and d that it also meets the Dirichletconditions. Thus,
the Fourier series for this waveform exists.

e T — €« T— e T—>fe —-
+v
T/4 | 3T/4
B o
_v R

a. Periodicity--x(t) = x(t + T).

r—T T
| |
oA \' o '
b. Finite number of discontinuities. c. Finite number of maxima and minima.
x(t) [x(t)!
- —— -

T
d. Integrable-- jlx(t)lde.
o

1754-12

Fig. 2-1. A square wave meets the conditions for the existence of its Fourier series.
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With the question of existence out of the way, the Fourier series for a square wave
can be written. It is not within the scope of this work to fully explore the writing of a
Fourier series. That subject is amply covered in most complete textbooks on network
analysis. Only a brief synopsis is given here for reference and as a matter of definition.
The greater interest is in the laying of a foundation for building up to the concepts of the
discrete Fourier transform (DFT) and fast Fourier transform algorithm (FFT).

The Fourier Series. The general form of the Fourier series is x(t) = a,+ a1cos wot+
a2C08 2 wot ...+ a,c0Ss Nwot +...+ bisin wot + basin 2wet +...4+ basin nwot +... , where w,=
27f,.

(==}
[Also frequently written as x(t) = a, + Z(a.C0s Nwot + by sin Nw,t)]
n=1

The Fourier series for a specific waveform is written by using salient features of
the waveform to find specific values for the coefficients in the above series. First of all,
w, is taken from the period of x(t) and is equal to 277/T (also, f,= 1/T). The a, coefficient
is the dc term and is equal to the average value of x(t) over one period. This is
determined by

1T
aof;fo x(t) dt

The remaining coefficients, a. and b,, are evaluated for n = 1,2,3,... by
2 T
a, = ;fo x(t)cos nw,t dt

and

2 T
bn :_F fo X(t)sin nwot dt.

For the particular case of the square wave in Fig. 2-1a, the Fourier coefficients
evaluate to give the following series. In this series, 4/ is a constant resulting from the
integration, and V is the peak voltage of the square wave. Also, notice that this series
contains only cosine terms. This is because of the square wave's symmetric
arrangement about time zero. (More on symmetry later.)

4V 1 1 1
X(t) = — (€08 wot ——c0s 3wt +—cos Sw.t ——cos 7Twot + ...),
m 3 5 7

where w, = 2f,.

This series is a complete description of the frequency content of the square wave.
From it, diagrams of both the magnitude spectrum and phase spectrum can be
constructed according to the conventions discussed in Section 1. These diagrams are

shown in Fig. 2-2.
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Fig. 2-2. Magnitude and phase spectra for the square wave in Fig. 2-1a.

Spectral Diagrams. For most people, Nature’s own rainbow is the firstexperience
with a spectral diagram. The rainbow, however, was never really thought of as a
"spectrum” until Newton adapted that term in his 1672 paper to the Royal Society
describing the continuous bands of color produced by passing light through a prism.
Later, Joseph Fraunhofer (1787-1826) used diffraction gratings to study light spectra.
What he saw were distinct lines instead of the continuous color spectra that Newton
observed with his prism. And he discovered that the sun and stars have distinct line
spectra associated with the light they emanate. Still later, in the mid-1800’s, Gustav
Kirchhoff and Robert W. Bunsen carried Fraunhofer's work further. (People in
electronics will recognize Kirchhoff for his fundamental circuit laws. And Bunsen? Well,
what chemistry or physics lab is complete without a Bunsen burner?) Kirchhoff and
Bunsen found that each chemical element, when heated to incandescence, radiates its
own distinct color of light. Hence, each chemical element is distinguishable by aunique
line spectrum. Kirchhoff used these findings to analyze the chemical composition of
various unknown substances. Thus, Bunsen and Kirchhoff launched the fundamentals
of spectrum analysis.

Fourier analysis is specturm analysis. Instead of light, though, Fourier analysis
operates on wave shapes. And like light from heated compositions, different wave
shapes have different spectra. For example, the square wave in Fig. 2-1a has the line
spectra shown in Fig. 2-2. The square wave is made up of sinusoids having-specific
frequencies with specific amplitudes and phases. No other wave shape has the same
component relationships!

The spectra in Fig. 2-2 are referred to as discrete or line spectra because each
spectral componentis discretely located on a frequency axis. Its location is indicated by
a tine. The length of the line indicates either magnitude or phase, depending upon
which quantity is being considered.

Line spectra are characteristic of periodic waveforms. This is because periodic
waveforms have discrete frequencies only. And when analyzed by the Fourier series,
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only those discrete frequencies that make up the periodic waveform appear in the
Fourier series.

In the case of Fig. 2-2a, the line spectrum for magnitude is constructed from the
Fourier series by first plotting the amplitude of the fundamental frequency. The
fundamental frequency (f, = w./2m) is the reciprocal of the waveform’s period and is
indicated in the Fourier series by w,. The magnitude of the fundamental is given by the
first trigonometric term in the series (n=1). For the square wave example discussed thus
far, the fundamental magnitude is 4V/7. The diagram of Fig. 2-2a is constructed by
placing the fundamental spectral line at f, and giving it an amplitude of 4V/7.

Subsequent Fourier terms are plotted in the same manner. Each term is some
integer multiple of the fundamental frequency and is referred to as a harmonic. The
fundamental is sometimes referred to as the first harmonic because f, is multiplied by
one, but integer multiples greater than one are always referred to as harmonics. In the
case of Fig. 2-2a, the square wave is made up of odd harmonics. These are shown with
spectral lines at 3f,, 5f,, 7f,,...,nf,. The harmonic magnitudes are given by the Fourier
coefficients in the series, and for the square wave, they are 1/3, 1/5, 1/7,..., 1/(2n-1) of
the fundamental magnitude.

The line spectrum for phase is constructed in nearly the same manner as that for
magnitude. There is a spectral line in the phase diagram for each component shown in
the magnitude diagram, and these are placed on a frequency axis in the same manner.
The difference is that the lengths of the lines in the phase spectrum indicate phase
instead of magnitude. In Fig. 2-2b, the fundamental and the fifth harmonic are positive
cosines and have zero phase. Their spectral line lengths are zero, so a heavy dotis used
to indicate the presence of these zero-phase components. The third and seventh
harmonics are negative cosines and therefore have phases of 180°. This is indicated by
the lengths of the spectral lines at 3f, and 7f..

Gibb’s Phenomenon. If you plot each cosine component from Fig. 2-2 against
time and add up the waveforms, the sum approximates the original square wave. This is
shown in Fig. 2-3a and b.

The exact square wave is not regained in Fig. 2-3b for two reasons. First, the total
number of frequency components are not added in. And second, something called
Gibb’s phenomenon is happening.

Let's look at the number of components used first. Only those components
indicated in Fig. 2-2 and 2-3a are used to get Fig. 2-3b. The Fourier series, however,
specifies that an ideal square wave contains odd harmonics out to infinity. Since it is
impossible to reconstruct an ideal waveform by physically adding an infinite number of
components, a lesser number is used in Fig. 2-3. This should not be too disconcerting,
though. The idea of cutting off or truncating a series is really not foreign at all. Few
would dispute 0.3333 as a legitimate approximation of 1/3. But we all know that the
decimal equivalent of 1/3 is really an "infinite series” of threes.
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If more accuracy is desired in representing 1/3, 0.3333333333 can be used. For
even more accuracy, even more threes can be added. This same idea is true for the
Fourier series. For more accuracy, more Fourier terms are used. Thisis shown in Fig. 2-
3c, where the first 20 odd harmonics are summed to get more accuracy in representing
the ideal square wave. But even at this, the deviation from ideal is obvious.

In short, the original waveform can never be regained exactly unless you add in all
of the terms from its Fourier series. And even at that, some waveforms still cannot be
regained exactly. Those that cannot be regained exactly are the types that contain
instantaneous transitions (discontinuities).

When discontinuities exist in the original waveform, adding up its Fourier terms
does provide the exact original at every point except the discontinuity. At the
discontinuity there will always be an overshoot. This overshoot is referred to as Gibb’s
phenomenon, and is always equal to 8.95% of the discontinuity amplitude.

Gibb’s phenomenon and the effects of truncating the Fourier series are quite
apparent in the square wave examples of Fig. 2-3. In both cases, the maximum

HARMONTCS
= =]

a. The fundamental and the third, fifth, and b. The sum of the fundamental, and the
seventh harmonics. third, fifth, and seventh harmonics.

c. The sum of the first 20 odd harmonics.
1754-14

Fig. 2:3. Truncated. Fourier series for a square wave: Truncating an infinite series results in some
error in representation.
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overshoot is constant at 8.95% of the discontinuity. The ringing that follows, however,
increases in frequency and decays quicker as more series terms are added. If all the
terms are added in, the picture looks like Fig. 2-4, the ringing disappears, but Gibb’s
phenomenon still occurs.

Like using 0.333 to represent 1/3, the key thing here is recognizing that anything
less than the full series is an approximation. If you know what to expect from truncating
a Fourier series, or at discontinuities, then you can act accordingly.

0.0895 V

T

0.0895 V

1754-15

Fig. 2-4. Gibb’s phenomenon in the limit. Overshoot is 8.95% of the discontinuity and never dis-
appears. :

Using the Fourier Series—Matters of Practicality

So far, a square wave is the only waveform that has been discussed. Its Fourier
series has been given, and if the period of any square wave of interest is know, this can
be used with the series to determine its exact spectral components. It's simply a matter
of taking the recibrooal of the period to get the fundamental, f,. Then this is used in the
series to find the frequency and magnitude of each component.

But the world is not made up exclusively of square waves. What about other
waveforms?

As long as you can mathematically describe a periodic waveform as a function of

“time, x(t), that meets the Dirichlet conditions, its Fourier series can be written. However,

this may not always be easy in practice. Fortunately, many textbooks contain Fourier

series for most common wave shapes, and much work and agony can be saved by
referring to them.

For your convenience, some common waveforms and their Fourier series are
given in Table 2-1. Real-life waveforms rarely fit these tabulated wave shapes exactly.
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Square waves with zero rise time cannot realistically be generated, and some
nonsymmetries and distortions from ideal invariably occur. But, if the actual waveform
approximates the ideal fairly closely, the Fourier series for the ideal waveform can give
some good estimates of the frequency spectrum.

TABLE 2-1
Some common Waveforms and Their Fourier Series

Wave Shape Fourier Series -- w, =27/T

Square Wave X

- v —

av 1 1
x{(t)= — t—= o —_ o
) ﬂ(cosw 3cos3wt+5cossm

f%cos7wot+ )

€T

Triangular Wave

-=-V
/ / AN x(t)= tﬂzl (cos wot+ lcos 3wt
t m 9
/ ) \\/ )
N L
v D +25c055wot+...)

Sawtooth Wave X

TV
P P _‘y . l . 1 .
/‘ R . - \ x(t)= o (sin wot o sin 2wt + 3sin 3wt
° 1
——sindw,t+...)
4 v 4
l«———T

1f-W ifi \'
Half-Wave Rectifier x(t):; “ .+75r cos wit +§ cos 2wt

X
\ v7\ /\ / ) 2 2

/ — =cosdw.t+ — N
\ [y 15 w 35cosswt
o !
\ /

n/2+ 2
N ...(—1)’2’mcosnwot...)
<—T—>‘ n even

Full-Wave Rectifiexr x(t)= g‘—1(1 +2 cos 2w.t — 2 cos dwt
~ Vv - ™ ' 3 15
. 35 €08 6ot —. ..
o / 2
\\:’I ifes (=) F_qCosnwdt. . .)
[«— T—-P‘ ‘ ) n even
Pulse Train X lat, ] x(t)=V[k +73r(sin k7 cos wot
- )
—I . i %sin 2k cos 2wt +. . .
i o 1
.. .+ =sinnkm cos nw.t +. . .)]
«<—T 4 '
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FOURIER INTEGRAL GIVES SPECTRA FOR NONPERIODIC
WAVEFORMS

The Fourier series is a useful tool for investigating the spectrum of a periodic
waveform, but the world is not made up exclusively of periodic waveforms. What about
nonperiodic waveforms—waveforms that don’t repeat themselves in a regular fashion?
Surely they too must have a frequency spectrum. After all, a bolt of lightning is
nonperiodic, and certainly you have heard the familiar splatter of its spectrum on a
common radio receiver.

Indeed, nonperiodic waveforms do have various frequency components. And the
Fourier integral is the tool used to investigate the frequency spectra of nonperiodic
waveforms.

The Fourier Integral is Related to the Fourier Series

The Fourier series and the Fourier integral, as analysis tools, are separate and
distinct. One is intended for use with periodic waveforms and the other for use with
nonperiodic waveforms. Thus, it is tempting to plunge directly into the Fourier integral.
But this would be a disservice, for a subtle relationship exists between the two that is
useful in interpreting later analysis concepts.

So, let’s not leave the Fourier series just yet. Instead, let's draw the integral out of
the series by considering a periodic waveform whose period is allowed to approach
infinity. Though this development may not be generally considered rigorous, it is
certainly enlightening. And enlightenment is the goal!

Getting the Integral out of the Series. This is going to take some math. But it’s
really not going to do any good to wander through a seemingly endless string of
equations. Actually, there are only four major steps or equations that you need to be
aware of. So those are clearly numbered below, and if you're pressed for time, you can
just look at these numbered equations before going on. However, if you're a little
curious about the transition between these steps, some of that informationis given also.
The full details are not given, but if you're interested in the complete exercise, it is
included in many text books—Network Analysis by M.E. Van Valkenburg (2nd. ed.,
Prentice-Hall, Inc.) and Basic Network Theory by Paul M. Chirlian (McGraw-Hill Book
Company), to name two good examples.

To begin, let's restate the general form of the Fourier series. This is

1 w

x(t) = a, + X (as.cos 2mnf.t + bysin 2mnfet).
n=1
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More appropriate to developing the integral, this should be reexpressed in exponential
form. This is done by expressing cos 2mnf.t as
jamrnfot  —j2mnfot jomrnfot —jemnft
(e +e }/2 and sin 2mwnf.t as (e —e )/2j,

where e is the base of the natural logarithm and j is the imaginary unit of the complex
number system (j = v/ —1). By some further manipulation and assignment of new
variables, the more-compact, exponential form of the Fourier series is reached. This is

2 oo j2mnf.t

x(t) = 2 cqe ,
where c, is evaluated for n=—o0,... —2,—1,0,1,2,...,%0 by
1 T/2 —j2mnfot
co=— [ x(t)e dt.
—T/2

For each n, ¢, is evaluated to give the magnitude and phase of the harmonic component
of x(t) having frequency nf..

With the Fourier series in exponential form, the nextstepisto recognize thateach
harmonic is separated by an amount Af = 1/T. Now, with some further manipulations
which again are omitted for the sake of getting on with the subject, the series can be
placed into a form that lets us look at the limit as T goes to infinity. This form is

3 1 o j2mnft

x(t) = lim —3X X(nf,)e

T—o0 n=—

but since Af = 1/T,

= j2mnfot
x(t) = lim X X(nf,)e Af.
Af—0 n=—o0
Now, as Af goes to zero (period, T, goes to infinity), the properties of the summation
approach those of an integral.

All of this simply says that when the period (T) goes to infinity, the Fourier series
reduces to

I j2mft

oo

x(t) = fX(fe df.

The "Fourier coefficients” here have become a function of a continuous frequency
variable, f, and are given by

o —jorrft
X(f) = fx(t)e dt
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Together, these two integrals are referred to as the Fourier transform pair. The
former is generally referred to as the inverse Fourier transform and the latter as either
the direct Fourier transform or simply the Fourier transform.

The Fourier Integral as a Transform. As implied by its development, the Fourier
integral is only applicable to nonperiodic waveforms—waveforms with infinite periods.
(An infinite period simply implies that the waveform does not repeat itself.)

A nonperiodic waveform, given by x(t) and subject to the Dirichlet conditions, can
be transformed to a function of frequency by using
oo —j2mrft
X(f) = fx(t)e dt.

When this is done, X(f) is generally referred to as "the Fourier transform of x(t).” And in
the same manner, using

o j2mrft
x(t) = fX(he  df,

the frequency-domain function, X(f), can be "inverse transformed” back to the time-
domain function, x(t).

Dirichlet Conditions for Transform Existence

In order for x(t) to be transformed by the Fourier integral, it must be nonperiodic.
In addition to this, the following Dirichlet conditions must be met for existence of the
transform.

1. For —oo << t < o0, x(t) must contain a finite number of maxima and minima.

2. If x(t) contains discontinuities, they must be finite in number over the range
—co K t < oo,

3. The function, x(t), must be integrable in the sense that

}o\x(t)| dt<oo,

For all practical purposes, these conditions are met by any nonperiodic x(t) that
can be physically generated.
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The transform action of the Fourier integral, as compared to the Fourier series, is
shown in Fig. 2-5. The major thing to notice there is that they both apply to different
classes of waveforms. Also, notice that their frequency-domain or spectral descriptions
are different. The Fourier series technique provides magnitudes and phases at specific,
discrete frequencies. The Fourier integral, on the other hand, evaluates to a continuous
function of frequency. To look into this a little further, let’s go back to the Fourier series
again and let the period go to infinity. But this time, let’s do it with just pictures—no
mathematics.

Time Domain Frequency Domain
Fourier pgr_iodic x(t)
Series (finite T)
A
Y
pr 3 s ao,ax,az,...01,02,...
= a, + X (a. cos n27f.t + b, sin n27f.t) B i by by, o By, B, e
n=1
Fourier nonperiodic  x(t) > X(f)
Integral (infinite T)

1754-17

Fig. 2-5. The Fourier series and the Fourier integral—two different paths between time and
frequency.

Infinite T Causes a Continuous Spectrum. To see how the Fourierintegral arrives
at a continuous frequency spectrum, let's start with the Fourier series and a periodic
waveform. In particular, let's use a train of square pulses arranged so that pulse width is
exactly one half the period. This is shown in Fig. 2-6a. The magnitude spectrum for this
pulse train, taken from its Fourier series, is also shown in Fig. 2-6a. Except for a dc
component, this magnitude spectrum is the same as those shown for previous square
wave examples.

Next, in Fig. 2-6b, the period of the pulse train is doubled while pulse width is held
constant. The effect on the magnitude spectrum is two additional frequencies around
each of the original components from Fig. 2-6a (excepting the dc component). Also,
notice that the amplitude of each component in Fig. 2-6b is decreased from Fig. 2-6a.
This comes from a reduced duty factor (pulse width over period), which causes a
reduction of average waveform energy over the period. Since the average waveform
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Fig. 2-6. As the period, T, goes to infinity, the discrete spectral lines become closer. When T
becomes infinity, the spacing between lines is zero and a continuous spectrum exists.
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energy is reduced, itis natural that a reduction be seen in the magnitude spectrum: The
frequency components needn’t contribute as much to the total waveform.

In Fig. 2-6¢, the period is increased again and the pulse width still held constant.
Do you see what's happening to the magnitude spectrum?

More components are packed into the magnitude spectrum, and theiramplitudes
are decreased. Further increases in the period cause even more spectral components to
occur with even closer spacing. As the period goes to infinity (Fig. 2-6d), the spacing
between components goes to zero. In other words, the series converges to the Fourier
integral. The resulting magnitude spectrum is called a continuous spectrum because it
is defined at every frequency—there is zero spacing between frequency components.
This implies that a single pulse is made up of an infinite number of sinusoidal
components.

A similar demonstration for the phase spectrum is trivial in the case of Fig. 2-6
since those pulse arrangements all have zero phase. However, the same idea applies,
and phase obtained by the Fourier transform is a continuous function of frequency, too.

Understanding Frequency-Domain Diagrams

Frequency-domain diagrams are the key to understanding Fourier analysis. They
are the means for exposing the subtle nuances of the mathematics; without them,
analysis is reduced to dreary comparisons of formulas and numbers.

Frequencies can be Negative or Positive. People are pretty comfortable in the time
domain, so the idea of negative time isn’t too unsettling. It's pretty easy to picture
yesterday as negative time, right now as time zero, and tomorrow as positive time. Our
language is very generous in supplying us with terms for supporting this concept, too.
Then, now, later; past, present, future—these are all familiar to us and picturable in a
variety of ways.

But negative frequency? That’s not quite as comfortable. There really aren’t any
other words for it,and "minus 40 Hz"” doesn’t conjure up any picture different than "plus
40 Hz.” Nevertheless, the mathematics of the Fourier integral require introduction of
negative frequencies. Look again at the transform pair.

Both X(f) and x(t) are defined over frequencies and times from minus infinity to plus
infinity.

Actually, the concept of negative frequency isn’'t any more difficult than that of
negative time, as long as a few basic ideas are keptin mind. These ideas can be explored
with the aid of Fig. 2-7.
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Fig. 2-7. Comparison of diagramming conventions in the series spectrum and the transform
frequency domain.

Fig. 2-7 shows a sine wave that is periodic in the time domain from minus infinity
to plus infinity. Also shown in Fig. 2-7 are several spectral diagrams for this sine wave.

Let’s look at the uppermost pair of these diagrams. This pair contains the
magnitude and phase information that would be obtained by writing the Fourier series
for the sine wave. Notice that the amplitude, V, of the time-domain sine wave is reflected
exactly in the magnitude spectrum. Also, the positioning of the time-domain sine wave,
relative to time zero, indicates a delay of —90°. This same delay is also shown in the
phase diagram. (Since it was covered thoroughly in Section 1, this format should be
familiar to you.)

Now let’s look at the lower pair of diagrams in Fig. 2-7. These, also, are spectral
diagrams; however, they describe the sine wave in the frequency domain of the Fourier
transform. In theory, a periodic waveform extending from minus infinity to plus infinity
cannot be transformed to the frequency domain by the Fourier integral. For the sake of
illustration, however, this restriction is ignored momentarily. The lower pair of diagrams
show what the frequency domain would look like if an infinite extent sine wave could be
Fourier transformed. Ifthis breach of theory bothers you, think of the sine wave as being
the only illustrated component of some arbitrary pulse. Then its transformation, as part
of the pulse, is in concert with theory.
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Setting aside any remaining hesitancy about theory, go ahead and look closely at
the lower pair of diagrams. Compare them with the diagrams of the series spectrum. The
first difference you'll probably notice is the presence of negative frequencies in the
frequency-domain diagrams. This should be expected since the transform integral
defines both positive and negative frequencies.

Now focus your attention solely on the frequency-domain magnitude diagram.
Notice that there are two spectral components there, one at the positive frequency of
the sine wave and one at its negative frequency. Also, notice that each magnitude is one
half that of the time-domain waveform (also, each one is half the magnitude oftheone in
the series spectrum). Since the spectrum is divided between positive and negative
frequencies, doesn’t it seem reasonable to divide the energy in the same manner?

Now let’s look at the frequency-domain phase diagram. The phase for positive
frequency duplicates the phase shown in the series spectrum;itis —90° at 1/T.Phasein
the negative frequency domain is simply an inverted image of the positive domain. For
this example, it is +90° at —1/T. Are you wondering why phase isn’'t halved like
magnitude? It's because phase is just a position indicator, not an energy indicator.

The frequency-domain diagrams in Fig. 2-7 embody most of the conventions of
magnitude and phase description for the Fourier transform’s frequency domain. In
review, these caonventions are:

1. The magnitudes in the positive and negative frequency domain exactly
duplicate each other. Except for the dc component, the magnitudes are
equally divided between the positive and negative frequency domain. For
every frequency indicated in the positive frequency domain, one of equal
magnitude is indicated at the same frequency in the negative domain. Their
sum equals the amplitude of the corresponding sinusoidal component in the
time domain. In the case of dc, its frequency is zero and there is no division of
magnitude.

There is one qualification here that should be noted. This convention is true
only for real-valued signals. In the case of complex signals, those of the form
x(t) = a(t) + jb(t), the negative frequency domain will not mirror the positive
frequency domain. However, the large majority of signals encountered in a
measurement situation are real. And then, the negative frequency domain
does mirror the positive frequency domain.

2. Phase in the positive frequency domain is duplicated in the negative frequency
domain, except the images are inverted. This simply entails a sign change
when passing between positive and negative frequencies. The amount of
phase in the time domain is reflected exactly in both the positive and negative
frequencies; unlike magnitude, it is not halved.

Even with all of these conventions in mind, you may still be wondering: “Just
exactly what does a negative-frequency sine wave look like?"
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Well, let’s look at a picture of one. Fig. 2-8 shows a three-dimensional space that
can be associated with the Fourier transform. This is an extension of the three-
dimensional pictorial aid presented with Figs. 1-4and 1-8 in Section 1. The difference in
Fig. 2-8 is that negative frequencies are shown and frequency-domain conventions are
used.

In keeping with frequency-domain conventions, two sinusoids are shown in Fig.
2-8. One is the negative frequency term of a time-domain component and the other is
the positive frequency term.

Each of these sinusoids is of equal amplitude, and each passes through the
frequency axis at points equal to plus and minus 1/T. Their positive amplitude
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Fig. 2-8. A 3-D look at positive and negative frequencies.
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projection onto the frequency-amplitude plane at these two points forms the frequency-
domain magnitude diagram. Also, their full projection onto the amplitude-time plane is
summed to equal the time-domain component they represent (shown by a dashed line).
In order for this to occur, both the positive and negative frequency components must
have the same phase, and in Fig. 2-8, they do. The positive frequency term is arranged
for —90° phase (a sine wave). The corresponding term in negative frequency has
exactly the same arrangement with time; however, it is said to have a +90° phase. This
sign change is in accordance with the conventions of frequency-domain description
and is shown in the phase diagram at the bottom of Fig. 2-8.

So! A negative-frequency sine wave looks exactly like a positive-frequency sine
wave! They're just located at different points on the frequency axis.

Now that some of the conventions for frequency-domain diagrams have been
covered, let's go back to Fig. 2-6d and redraw it for the Fourier integral’s frequency
domain. This redrawn version is shown in Fig. 2-8. Notice that the time-domain pulse
(Fig. 2-9a) is a more general version with an amplitude of V" and a width of 2T,. Also,
the pulse is centered about time zero; this is a zero phase positioning.
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—t - >+t
o
_To To
le—21.—>
a.Square pulse.
180°
90~ =t
~t <€ +f —f - —+f
1 1
w1 -5 ’ 2 4 :
2T, 2T, o 2T, 2T,
—90% =
=3 £EpIl = 3
2T, 27, 2T, 2T,
in 277fT =R
IX(f) = l2vT, S22 W
X" il 27fT,
phase
b. Frequency-domain magnitude. c. Frequency-domain puise:
1754-21

Fig. 2-9. A general square pulse and its frequency-domain magnitude and phase.
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The frequency-domain diagrams for the pulseare shown in Fig.2-9bandc. In Fig.
2-9b, the magnitude is shown as a continuous function of frequency, and the positive-
frequency magnitude is exactly mirrored by the negative frequencies. The phase is
shown in Fig. 2-9¢ as continuously zero for the same range of frequencies. This zero
phase indicates that the square pulse in Fig. 2-9a is made up entirely of cosine waves.
Their magnitudes correspond to Fig. 2-9b. Every frequency of cosine wave is presentin
the pulse except where the magnitude is zero at £1/2T,, £2/2T,, £3/2T,, £4/2T,,...

As a final note, Fig. 2-9 fits any square pulse that is centered at time zero. Just
substitute the amplitude of the pulse for V and the width for 2T..

Frequency-Domain Descriptions Can Be in Rectangular Form. Up to this point,
the frequency domain has been described only in terms of magnitude and phase. Thisis
probably the best introductory approach since sinusoids and phase angles are
generally familiar items. Also, introduction through magnitude and phase lends itself
well to various graphical explanations and descriptions.

But, there is more than one way to look at the frequency domain. In fact, the actual
computation involved in Fourier transformation doesn’t necessarily lead directly to
magnitude and phase results. It's often more convenient to obtain frequency-domain
results in a "rectangular form” such that

o —jomft
X(f) = fx(t)e dt = Re(f) + jIm(f).

In this relationship, the time-domain function being transformed is x(t). The frequency-
domain function for x(t) is given by Re(f) + jim(f).

In the above results, Re(f) is referred to as the "real part”, and Im(f) is referred to as
the "imaginary part.” Together, these two parts are referred to as a complex-valued
function in rectangular form—complex because the function is of more than one part
and rectangular because complex quantities are often portrayed as vectors in
rectangular coordinates. This really is no different than magnitude and phase, which is
a function with two parts—magnitude and phase—and is an equivalent system. Also,
magnitude and phase can be portrayed as a rotating vector in polar coordinates. Thus,
magnitude and phase results are often referred to as results in "polar form.” The
relationship between the rectangular and polar forms is shown by vectorsin Fig. 2-10. If
you are not at all excited by vectors (I’'m not), you might prefer to look at Fig. 2-11. The
same relationship is shown there through the time-domain and frequency-domain
functions for a single square pulse.
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a. Given a complex number: x = Re + jim = 4 + j4.
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Fig. 2-10. Complex number expressed in rectangular and polar form.
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IX(f) = +/Re(®)? + Im(f)?
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Fig. 2-11. A square pulse and its frequency domain functions.
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Functions are Even or Odd or the Sum of Even and Odd Functions

If you can identify even and odd time-domain functions, then you can predict
some frequency-domain features just by looking at the waveform. For example—

Even Functions are the Sum of Cosines Only. Fig. 2-11 is useful for pointing out
the relationship between the rectangular and polar form of the Fourier transform. The
real interest, however, arises when this square pulse is compared to the one in Fig. 2-9.
These two pulses really aren’t too different in the time domain, but look at their
frequency domains. One has zero phase and the other doesn't.

What's so different in the time domain that makes such a difference in the
frequency domain?

Well, first of all, you might notice that the pulse in Fig. 2-9 has twice the width of
that in Fig. 2-11.

Does this make the difference?
Not really.

Both of the square pulses are given in general enough form so that pulse width
doesn’t affect the shape of the frequency domain. In other words, we could shrink the
pulse in Fig. 2-9 to a width of T,, and there would still be zero phase when it is
transformed to the frequency domain.

So, if it isn’t pulse width, then what makes the difference?

Compare the two pulses again. In particular, look at each pulse's location relative
to time zero.

In Fig. 2-9, the square pulse starts at some negative time and ends at an equivalent
positive time. The left half of the pulse is the same as the right half. And if you think about
it, you can picture the two halves being folded about time zero to come together for an
exact match. The pulse is symmetric about time zero. Mathematically, this is stated by
the following equality.

x(t) = x(—t)

Any function, whether itis periodic or nonperiodic, that meets the x(t) = x(—t) condition
is said to be an even function of time. The same thing can be said for the frequency
domain. A function that meets the condition of X(f) = X(—f) is an even function of
frequency.

Table 2-1, back in the discussion of the Fourier series, contains several examples
of even functions of time. All of the waveforms there, except the sawtooth wave, are even
functions of time. They meet the x(t) = x(—t) requirements. If you look at the series for
each of these even functions, you should notice something else they have in common.
They are all composed of cosine terms. The same is true for the square pulse in Fig.2-9.

@ 2-23



The FFT

It is an even function and is composed entirely of cosine waves and therefore has zero
phase.

All even functions of time are made up entirely of cosine waves and have zero
phase. Or, if you prefer thinking in terms of the rectangular form, the Fourier transform
of an even function of time gives a real and even function of frequency. The imaginary
part of the transform is zero.

0Odd Functions Have Sines Only. Now, look at the sawtooth wave in Table 2-1. It
isn’t an even function, but it does appear to have some symmetry. In fact, it meets the
condition for an odd function of time, which is given by x(t) = —x(—t). In terms of
looking at the waveform, it is odd if the positive time portion can be sign reversed and
folded about time zero for an exact match. This idea of folding and matching to
determine evenness or oddness is shown in Fig. 2-12.

TEST FOR EVENNESS TEST FOR ODDNESS
x(t) = x(—t) x(t) = —x(-1)

The Function The Function

Fold/——\

: /‘ ///,l\‘ Pre
SRR | e \ ! 4 ~ t
~

——a

Fold on vertical axis Reverse positive-time portion

Match Fold and match
1754-24

Fig. 2-12. Visual test for even or odd function.
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Returning to the sawtooth wave in Table 2-1, notice that its Fourier series is made
up of sine terms only. This is characteristic of all odd functions of time. They are made
up entirely of sine waves and have 90° phase. Or, in terms of the rectangular form, odd
functions of time transform to odd and imaginary functions of frequency. The real part
of the frequency domain for any odd function is always zero.

So far, we haven’t looked at a pulse that is an odd function of time. So, let’s look at
one. Fig. 2-13a shows such a pulse, and you can prove its oddness for yourself by
mentally going through the process shown in Fig. 2-12. The rectangular and polar forms

-=V
__To
—t t
o T,
._V e
a. Odd function of time.
T 2VT,
= 3
2T, 22T, 4
2T, 2T,
= = f — = ) e gl
~4 —2
2T, =3 2T, 1
T 2T,
o = £ 1—cos 2 7fT,
Re(f) =0 Im (f) 2VT, it
b. Frequencydomaininrectangular form.
T 2VT,
R — 900
% o —f f
—1 =} = o e e e &
=4 —2 2 4
2T, =3 2T, =1 1 2T, 3 2T,
27, 27, 2T, 2T, —00° -
I X(f) | =/Re(f)> + Im(f)? o(f) = tan ' [Im(f)/Re(f)]
c. Frequency domain in polar form.
1754-25

Fig. 2-13. Pulse that is an odd function and its Fourier transform to the frequency domain.
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of this pulse’s frequency-domain functions are shown in Fig. 2-13b and ¢. Notice that
the real part of the rectangular form is zero, as it should be. The imaginary part contains
all of the frequency-amplitude information.

Look closely at the imaginary part in Fig. 2-13b. Is it even or odd?

Just like the time domain waveform it came from, the imaginary part is odd, also.
This is another feature of oddness and evenness. Odd functions in one domain
transform to odd, imaginary functions in the opposite domain, and even functions
transform to even, real functions.

Some Functions are Part Even and Part Odd. Let’s go back to the square pulse in
Fig. 2-11. If you test this pulse for evenness and oddness, you'll find that it fits neither
case. But, look at its frequency-domain in the rectangular form. Then look at the pulses
in Fig. 2-9 and Fig. 2-13. Do you see how their frequency domains, except for a
multiplying constant, might somehow be combined to equal the frequency domain of
the pulse in Fig. 2-11?

In fact, the square pulse in Fig. 2-11 is neither even or odd, but is the sum of an
even and an odd function. This summation is shown more clearly in Fig. 2-14. Notice

Time Domain Frequency Domain (rectangular)
EVEN |
''''' VT, ~ VT,
0.5V
:%, L S, T
A RA
'_To To
+ vT, +vT,
obD
0.5V
Wil L
T,
—0.5V
v 1 vt
NEITHER | | °~ | &~ VT,
EVEN
NOR ODD
i R ) Ao e —t A
1754-26

Fig. 2-14. Waveforms are either even or odd or the sum of even and odd parts.
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that the frequency-domain sum is done in rectangular form. This is because.sums
cannot be done directly in the polar form. So, one of the big advantages of rectangular
form is directness of addition and subtraction.

After looking at Fig.2-14, do you see how the even and odd parts sum to a function
that is neither even nor odd? The conclusion to be drawn from Fig. 2-14 is that an
arbitrary function can be classed as either even or odd or the sum of even and odd parts.

Actually, the square pulse in Fig. 2-14 can be made into an even function by
removing some time delay. To do this, simply move the square pulse to the leftuntil itis
centered on the time origin. Then, the square pulse is an even function. Its imaginary
part becomes zero, and its real part remains nonzero. In terms of the polar form, time
shifting a waveform has no effect on the frequency-domain magnitude and is only
reflected as a change in phase.

Shifting functions to take advantage of waveform symmetries is a standard
mathematical operation. If a function can be arranged to be even or odd, both Fourier
analysis and the results are simplified. There are still functions, however, thatcannotbe
shifted for evenness or oddness. One such function is shown in Fig. 2-15. There are
many others like this in real-life analyses.

AN

Fig. 2-15. Some functions cannot be shifted for evenness or oddness.

1754-27

Periodic or Nonperiodic?—It's Your Point of View

Up to this point, the discussions of the Fourier series and the Fourier integral have
taken two narrow points of view. Every waveform example has been defined to be either
periodic (repeating itself from —e to =) or nonperiodic (transient or pulse, occurring
only once over infinite time). Everything has been done in accord with the strict
theoretical definitions of periodic and nonperiodic. But, if we stick to these definitions in
practice, some conflicts are bound to occur.

Consider, for example, a “sine-wave” oscillator—an actual physical circuit. When
we turn on the oscillator and look at its output with an oscilloscope, we see something
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that certainly looks like a sine wave and keeps repeating in a periodic fashion. And when
we turn off the oscillator, the output ceases. Everything is working like it should. We
have a circuit that generates a periodic waveform, a sine wave. Right?

Wrong! Not if we are going to stay with the purely mathematical definition of
periodicity. We turned the oscillator on, watched the output repeat itself for awhile, then
turned it off. The oscillator’s outputdidn’t repeat over all time from minus infinity to plus
infinity. In fact, the oscillator wasn’t even built until quite sometime after minus infinity.
It generated a sinusoid for only a finite window in the infinite continuum of time. It's as if
a theoretical sine wave had been multiplied by a single square pulse in the manner of
Fig. 2-16.

"But”, you might say, "theoretical definitions aside, it's periodic as far as I'm
concerned—at least for the time | looked at it.” And that's a good point of view, a
practical point of view. For any physically generated waveform that repeats itself—
square waves, sawtooths, etc.—you’ll probably want to take the periodic point of view
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Fig. 2-16. Physically generated waveforms are either pulses (b) or windowed representations (c)
of theoretical waveforms.
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and use the Fourier series for any analyses. All you need for the Fourier-series approach
is one complete cycle of the waveform. But remember, using the Fourier series does
imply theoretical periodicity. You'll be treating the waveform as if it did extend forever
beyond the edges of the finite time window you are actually dealing with. The analysis
results will contain the discrete harmonics that make up the periodic waveform.

On the other hand, you might want to take a different point of view. For example,
let's say that you have a sine wave oscillator that you want to use in a remote-control
application. Maybe you want to send a very short burst of the sine wave for tone control
of an unmanned aircraft, or a robot, or to simply activate a switch remotely. Whatever
the case, you’'ll be interested in the effects of gating the sine wave on and off
(windowing). Then you’ll want to take a nonperiodic point of view and do youranalyses
with the Fourier integral.

To explore the nonperiodic point of view further, let's go ahead and see how the
Fourier integral is applied to a windowed waveform. And maybe more importantly, let's
find out what happens when a periodic waveform is windowed.

Fourier Transform of a Rectangular Window. The rectangular window thatwe are
going to use is shown in Fig. 2-17. You'll probably recognize it immediately as our old
friend the square pulse with different proportions.

1754-29

Fig. 2-17. A rectangular time window.

We already know what the frequency domain of the rectangular window looks like
(Fig. 2-9); that will be of even more interest shortly. Butfirst, let’'s look at how the Fourier
integral is used to get the window’s frequency domain.

As you may recall, the integral for transformation to the frequency domain is given
by

o0 —jamft
X(f) = fx(t)e dt.

For the case of the rectangular window, however, this can be simplified somewhat.

To do this, notice that the window has a value of zero everywhere except over the
interval from —T, to T,. In the nonzero interval, the window has a constant amplitude of
one. Since the Fourier transform of zero is zero, it doesn’t make much sense to apply the

@ 2-29



The FFT

Fourier integral over anything but the nonzero interval. So, the integral can be changed
to

To —j2mft
X(f) = fx(t)e dt.
—To

And since the rectangular window, x(t), has a constant value during the interval, the
integral is further reduced to

To —j2mft
X(f)y = fe dt.
—T,

This is a fairly innocuous expression for those who are familiar with calculus and
can be evaluated with standard textbook methods. But let’s notworry about mechanics
of evaluation. This particular integral evaluates to

sin 2mfT.
X(f)y = 2T, —— +j0,
2mfT,

which is the Fourier transform in rectangular coordinates (note that the imaginary part
is zero). It has exactly the same magnitude and phase as shown earlier in Fig. 2-9. So,a
rectangular window is the same in every respect as a square pulse.

Rectangularly Windowed Waveforms. If you recall the initial discussion of the
Fourier transform, you may remember that it doesn’t exist for periodic waveforms. But
that needn’t stop us!

To transform sine waves, square waves, sawtooth waves, and other periodic
waveforms, all you need to do is limit your view of the waveform. Inshort, just transform
a selected interval of the waveform instead of the whole thing. This is done in the same
manner as discussed for the rectangular window and is illustrated in Fig. 2-18. Butkeep
in mind that the spectra associated with a strictly periodic signal and a windowed
version of the same signal will necessarily be different. One will have a discrete
spectrum (periodic), and the other (nonperiodic) will have a continuous spectrum.

In Fig. 2-18a, an infinite extent waveform is shown—in this case, a cosine wave.
Since it cannot be transformed in its entirety, an interval for transformation has been
marked off in Fig. 2-18b. Notice that this interval, from —T, to T,, is the same as
indicated for the rectangular window in Fig. 2-17. The act of Fourier transforming over
this interval with the Fourier integral, however, implies a zero-valued waveform outside
of the interval. So what is really transformed is shown in Fig. 2-18c. It is as if the cosine
wave were actually multiplied by the rectangular window in Fig. 2-17. And in essence,
that is what happens whenever Fourier transformation is done over a finite interval.

But what does this mean in terms of the frequency domain? Obviously, Fig.2-18c
is not the same as Fig. 2-18a.

The actual process of windowing a waveform is shown in Fig. 2-19. The same
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Fig. 2-18. Transforming a selected interval can change the waveform.

cosine wave and rectangular window are used. Additionally, each step is shown in the
frequency domain so its effects there can be seen. In this particular case, both the
window and the waveform are purposely selected to be even functions. This way, phase
is zeroand we can concentrate on demonstrating the concept solely with the magnitude
spectrum. Using a more general case, with both magnitude and phase, would do
nothing more than complicate the basic idea.

In Fig.2-19a, an infinite extent cosine wave is shown in the time domain and as two
spectral components at frequencies £1/T. Following it, in Fig. 2-19b, is a rectangular
window in the time domain and its sin x/x magnitude in the frequency domain.
Multiplying the time-domain window and cosine wave results in the product shown in
Fig. 2-19c. This productis referred to as arectangularly windowed cosine wave, and the
magnitude of its Fourier transform is shown in Fig. 2-19d.

Notice that the transform magnitude of the windowed cosine wave is not the
product of the frequency-domain functions for the cosine wave and the window.
Multiplication in the time domain does not correspond to multiplication in the
frequency domain.

Yet, you may notice that Fig. 2-19d does exhibit some of the traits of both the

cosine wave and the rectangular window. The|sin x/x| of the window appears twice in
Fig. 2-19d, once in positive frequency and once in negative frequency. And the peaks of
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the double|sin x/x | occur at the frequency of the cosine wave (+1/T). It's as if the two
functions were somehow "rolled together” to give a new function having the major
features of its constituents. And, in fact, the two functions are rolled together by a
mathematical process called convolution. Fig. 2-19d is the result of convolving the
cosine wave’s frequency domain with the window’s frequency domain.

So, multiplication in the time domain is equal to convolution in the frequency
domain. And the transform of a windowed function is equal to the convolution of the
function’s frequency domain and the window’s frequency domain.

Time Domain Function Frequency Domain Magnitude
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o
=

a. Cosine wave.

2T,
=
-t t —f f
=4 - T.
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—t = t ~t t : f
\/ \/ -1 T
T T
c. Rectangularly windowed cosine d. Magnitude of r.ectangularly .
wave obtained by time-domain windowed cosine wave obtained
multiplication of a and b. by frequency-domain convolution
of a and b.
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Fig. 2-19. The process of rectangular windowing.
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The topics of windowing and convolution are covered again and in more detail in
Part Il. It is important at this time, however, to realize that:

1. Infinite extent waveforms (sinusoids, square waves, etc.) can be transformed
to the frequency domain by the Fourier integral.

2. Todo this, however, you must multiply the waveform by a finite time window.

3. And this multiplication in the time domain is equivalent to convolution in the
frequency domain, so the transform of awindowed signal is the convolution of
the transform of the window and the signal’s infinite extent counterpart.

As a final note, the converse of 3 is also true. Multiplication in the frequency domain is
equivalent to convolution in the time domain.

A Summary of Some Important Fourier Transform Properties

Thus far, several important properties of the Fourier transform have been covered.
For example, the idea that an arbitrary waveform is made up of odd and even parts has
been discussed to some extent. However, some properties have only been presented
subtly in discussing other aspects of the transform, and some important properties
haven’t been discussed at all. To remedy this, the more important properties of the
Fourier transform are:

1. The Fourier Transform Has an Inverse. Although most of our discussion and
examples have focused on transformation from the time domain to the frequency
domain, the opposite may also be done. That is, a frequency-domain function can be
transformed to obtain its corresponding time-domain function. This is the other half of
the Fourier integral pair and is illustrated below in Fig. 2-20.

( X(f)= J x(tye 127t gy }

x(t) X(f)

e T W N / a2y
\J vV

oV

i X(1) =jxu)ei2""df

Fig. 2-20. The Fourier transform has an inverse.

1754-32
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2. Even Functions Have Real Parts Only. If a real function given by x(t) satisfies
the relation x(t) = x(—t), then it transforms to the real part of the frequency domain only
and will be an even function of frequency. The imaginary part of the frequency domain
will be zero. This property has already been discussed to some length and is illustrated
in Figs. 2-12 and 2-14.

3. 0dd Functions Have Imaginary Parts Only. If a real function given by x(t)
satisfies the relation x(t) = —x(—t), then it transforms to the imaginary part of the
frequency domain only. It will also be an odd function of frequency. This property has
already been discussed and is illustrated by Figs. 2-12, 2-13, and 2-14.

4. Arbitrary Functions Are the Sum of Even and Odd Parts. Any function may be
expressed as the sum of even and odd parts. In an even function, the odd partiszero.In
an odd function, the even part is zero. Where a function is neither even nor odd, itis the
sum of nonzero even and odd parts, and its frequency domain has a real and an
imaginary part. This concept is summed up by Fig. 2-14.

5. A Component Added in Time Is a Component Added in Frequency (linearity).
Suppose you have two functions given by x(t) and y(t), and they Fourier transform to
X(f) and Y(f). Then, x(t) + y(t) transforms to X(f) + Y(f). This is most often referred to as
linearity.

The groundwork for this property was laid back in Section 1 andis illustrated with
Figs. 1-7 and 1-8. Also, this property is implied in the discussion of summing odd and
even parts and is further illustrated in Fig. 2-14.

6. Time Scaling Affects Frequency and Amplitude Scaling. Suppose you have a
function, given by x(t), that is Fourier transformable to an X(f). Now suppose you wish to
rescale x(t) in time by a factor "k”, where k is a nonzero constant. Then x(kt) Fourier
transforms to X(f/k)/ |k |.

In other words, a time-scale expansion corresponds to a frequency-scale
compression and increased frequency-domain amplitude. A time-scale compression
causes the opposite reaction in frequency—an expanded frequency scale and
decreased amplitude. This time-scaling property is more clearly demonstrated in Fig. 2-
21. There the scaling is constant, and the property is demonstrated through variation of
the pulse-width parameter.

7. Frequency Scaling Affects Time and Amplitude Scaling. This property is
comparable to time scaling. Suppose you have a function given by x(t),anditis Fourier
transformable to an X(f). Now suppose you wish to rescale X(f) in frequency by a factor
of "k”, where k is a nonzero constant. Then X(kf) inverse transforms to x(t/k)|k|. Thisis
more clearly demonstrated in Fig. 2-22.
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Fig. 2-21. Time expansion compresses frequency, increases amplitude.
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Fig. 2-22. Frequency expansion compresses time, increases amplitude.
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8. Time Shifting Only Affects Phase Angle. Suppose you have a function given by
x(t) that is Fourier transformable to an X(f). Now, what happens if you shift x(t) by a

constant time, T?

When you shift x(t) by a constant time, T, x(t) becomes x(t—T), which Fourier
transforms to X(f)e_jQ"fT. This is more clearly demonstrated in Fig. 2-23, where the
frequency-domain magnitude and phase are shown. Notice that time shifting affects

The FFT

phase only; magnitude remains constant throughout.

Time Domain

Frequency Domain--Magnitude and Phase

180° +

a. Pulse with T=—T, shift.
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| I | | | | } {

f o —f f

b. Pulse with T=0 shift.

2TV

f

c. Pulse with T=T, shift.

1754-35
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Fig. 2-23. Time shifting affects phase only.
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9. Frequency Shifting Causes Time-Domain Modulation. If X(f) is inverse
transformable to an x(t), then shifting X(f) by some constant frequency, F, results in an
X(f—F) that inverse transforms to x(t)ej2"“:. This corresponds to a cosinusoid in the
time domain being modulated by x(t).

Fig. 2-24 demonstrates this shifting property. Only the real part of the frequency
domain is dealtwith in Fig. 2-24, so the resulting time-domain functions are even. Notice
that the frequency of the cosine wave equals that of the frequency shift, F.

X(t) X(f)

a. Square pulse without frequency shift.

X(t)cos2mFt X(t—F)

JANANA
D)/ AAVARVER I

1
F

b. Square pulse with frequency shift of F.

1754-36

Fig. 2-24. Frequency shifting causes time-domain modulation. Notice the correspondence to
windowing in Fig. 2-19.

Using the Fourier Integral—Matters of Practicality

Though it may be more versatile than the Fourier series, the Fourier integral still
faces much the same matters of practicality. Chief among these is the requirement that
the waveform to be transformed must be mathematically describable. If the function
cannot be set to equation, then the Fourier integral cannot be directly applied.
Secondary to this is the complexity of a function’s description and the mental
investment required for transforming it. Insome cases, it is just not worth the effort to do
the transform analytically.
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For many common waveforms, you can refer to standard tables and charts in
engineering handbooks and texts to obtain Fourier transforms. But beyond the scope of
standard waveform tables, something else has to be done—real waveforms rarely match
idealized descriptions in tables. This is where digitized waveforms and digital
computation come in. This is where the Discrete Fourier Transform (DFT) comes in.
The digital approach to Fourier transformation is the subject of Parts Il and IlI of this
manual. There you will see how the DFT, evaluated by a Fast Fourier Transform
algorithm (FFT), closely approximates the analog transform and will be introduced to
the concepts necessary for practical Fourier analysis. More importantly, you will see
how the FFT reduces your analysis efforts to little more than a standard oscilloscope
measurement.
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PART Il
DIGITAL FOURIER ANALYSIS

The major concepts and properties of the Fourier transform were discussed in
PART |. PART | is theory, but theory is frequently difficult to apply directly, without
tools. The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) are
your tools for quick and easy application of Fourier theory.

In PART II, we explore digital Fourier analysis and discuss the application of
Fourier theory through the DFT. The effects of digitizing a waveform are looked at, and
Fourier analysis with the DFT is discussed. The bulk of this discussion, however,
centers on the FFT, which is simply an efficient algorithm for computing the DFT. The
major point to keep in mind throughout this discussion is that the DFT (and FFT) is
viewed as a discrete approximation of the Fourierintegral, the analog counterpart of the
DFT. The quality of this approximation depends upon your understanding of Fourier
theory and onr ability to apply it to acquiring and digitizing analog signals, your ability
to massage the data before transforming it, and your ability to interpret the discrete
results. PART Il gives you the background you’ll need for addressing these re-
quirements.

SECTION 3

INTRODUCTION TO THEDISCRETE AND
FAST FOURIER TRANSFORMS

The DFT and FFT operate on finite sequences—sets of data with each point
discretely and evenly spaced in time. However, the waveforms that we usually want to
transform—real-life waveforms—are analog in nature. They are continuous in time, and
they must be sampled at discrete points before the DFT or FFT can be applied. And, to
be processed by a digital computer, these sampled points must be digitized.
Understanding two basic concepts of the full analog-to-digital conversion, namely
windowing and sampling, will put you a long way down the road to appreciating the
power of the FFT and understanding its results.
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Windowing and Sampling are Old Ideas with New Names

If you have ever calculated the values of a waveform and plotted them on graph
paper, then you have done windowing and sampling.

To see how this works, let’s graph a cosine wave. For example, let's use a cosine
wave having a peak amplitude of 1 volt and a frequency of 12.5 Hz. In terms of
mathematics, this is represented by x(t) = cos 27 12.5t.

Now, think about graphing x(t) = cos 2712.5t.

When the graph is done, we want everyone to recognize it as a cosine wave. Four
repetitions of the waveform should be enough for that, so all we have to do is calculate
values over a time intervalofabout4/12.5 =0.32 seconds. And, so we can see the cosine
wave without too much interpolating between points, let’'s use 32 equally spaced points.
In other words, let's plot the cosine wave at every 0.01 seconds from 0.00 seconds
through 0.31 seconds. The values at each of these points are listed in Table 3-1 and are
plotted in Fig. 3-1. Notice that the beginning point of each cycle hasavalue of 1 and the
end point a value of 0.707. The last-point value on a cycle is not 1 because that is the
beginning value of the next cycle. Seeing this pattern is important for later discussions
of the FFT and is explained further there.

TABLE 3-1

Values of x(t) = cos 2m12.5t at every 0.01 second over the interval from 0.00 second through 0.31
second.

1754-37
t x(t) t x(1) t x(1) t x(t)
0.00 1.000 0.08 1.000 0.16 1.000 0.24 1.000
0.01 0.707 0.09 0.707 0.17 0.707 0.25 0.707
0.02 0.000 0.10 0.000 0.18 0.000 0.26 0.000
0.03 —0.707 0.1 -0.707 0.19 —0.707 0.27 —0.707
0.04 —1.000 0.12 —1.000 0.20 —1.000 0.28 ~1.000
0.05 —0.707 0.13 —0.707 0.21 —0.707 0.29 —0.707
0.06 0.000 0.14 0.000 0.22 0.000 0.30 0.000
0.07 0.707 0.15 0.707 0.23 0.707 0.31 0.707
1 * e ® °
Te o o o o o o ®

1754-38

Fig. 3-1. A windowed and sampled cosine wave.
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Look at Fig. 3-1 again.

Fig. 3-1is a plot of a windowed and sampled cosine wave. Itis windowed by virtue
of deciding to plot the waveform over a finite time interval, in this case 0.00 through 0.31
seconds. It is sampled by virtue of the decision to find and show its actual values atonly
32 discrete points in that interval. So you see, the fundamental concepts of windowing
and sampling date back at least to the concept of graph paper.

In terms of waveform processing, Fig. 3-1 can be thought of as being obtained
through the multiplications shown in Fig. 3-2. Fig. 3-2a is the waveform, in this case a
cosine wave, that is going to be windowed, and Fig. 3-2b is a rectangular window (a
square pulse). Their product, shown in Fig. 3-2c, is a rectangularly windowed cosine
wave. In Fig. 3-2b and c, notice the heavy dots at the window edges. These aren’t
actually part of the window, but are illustrative devices for signifying the values at the
window edges. The window in Fig. 3-2b is defined to begin at time zero with an
amplitude of one and continues up to 0.32 seconds with a constant amplitude of one.
The window ends at 0.32 seconds with an amplitude of zero. Such precise definition of
window edges becomes more important in later discussions of the periodicity assumed
by the FFT.

After windowing, sampling is done with the train of unity amplitude impulses
shown in Fig. 3-2d. Each impulse in this train rises from zero to infinity and returns to
zero, all instantaneously. Thus, each is nonzero at only a single, discrete time. Also,
each impulse encloses an area equal to one, and the train of impulses is graphically
represented by a train of spikes having height equal to their integral or area. When this
impulse train, or sampling train, is multiplied with the windowed cosine wave, the
product (Fig. 3-2e) is a windowed and sampled cosine wave. The train of impulses then
has an area equal to the corresponding cosine value. The time locations of the samples
correspond to the time locations of the impulses. And, since each impulse exists at a
single, discrete time, each sample exists at a single, discrete time. The discrete sample
times and sample values are indicated in Fig. 3-2e by the heavy dots.

Notice that the windowed and sampled cosine wave in Fig. 3-2e is exactly the
same as the graphed cosine wave in Fig. 3-1, except the impulses aren’tshown in Fig. 3-
1. Also, the values in Table 3-1 apply equally to Fig. 3-1 and Fig. 3-2e. So, Fig. 3-2is just
another way to get the results of Table 3-1 and Fig. 3-1.

In terms of physical processes, the results in Fig. 3-2e and Table 3-1 can be
obtained by using an analog-to-digital converter. This process does notactually involve
physical generation and multiplication of waveforms as shown in Fig. 3-2, but the
conversion is analogous and produces the same end result. For example, the window in
Fig. 3-2b corresponds to triggering the input of an analog-to-digital converter on and
off. When the converter is triggered on, the waveform to be digitized is allowed to pass;
when switched off, the waveform is blocked. The result is equivalent to multiplying the
waveform to be digitized by a square pulse. The window length or pulse width
corresponds to the length of time the analog-to-digital converter is on.

@ 3-3



The FFT

JIN NV

X a. Cosine wave.

0 0.32

b. Rectangular window.

N A _0
JVAVAVAVES

c. Windowed cosine wave.

-~
WINDOWING

1
1
Io i I ===
0.1 0.2 0.3

>< d. Sampling train. g

=]

s

14 <

%)
—0-0-0-0-
_1—

e. Windowed and sampled cosine wave.
1754-39

Fig. 3-2. Windowing and sampling equates to severa! waveform multiplications.

34



—

The FFT

in practice, sampling is done by the same means. The windowed waveform is
looked at through much smaller, closely spaced sampling windows. When the sampling
window is gated on, a capacitor or some other device is allowed to assume the value of
the waveform during the sample time. A single value is thus obtained at each sample
point on the waveform, as shown in Figs. 3-1 and 3-2e, and these values can be stored in
a memory corresponding to Table 3-1. In most cases, the sample values are converted
to digital data and stored in a memory compatible with acomputer. Thenacomputeror
some related digital device can be used to process the data.

There are a number of ways that windowing and sampling can be done. As was
just discussed, some analog-to-digital converters window firstand then sample. Others
sample first, then window the desired block of sampled data. In still others, windowing
and sampling occur at the same time. In any case, you will find that the end result is
always the same—a windowed and sampled waveform.

There are, however, different windowing shapes and sampling schemes that may
be used. Fig. 3-2 uses a square pulse for a window. A cosine squared pulse could have
been used instead, and the results would have been different. These various window
shapes are discussed later in Section 5.

As far as sampling is concerned, samples can be taken over equally spaced
intervals, logarithmically spaced intervals, or by any other spacing scheme. But the use
of equally spaced samples is probably more widespread than any other technique, and
further discussions are confined to cases using equal-spaced sampling. When the term
"sampling” is used in future discussions, it implies equal-spaced sampling.

The Discrete Fourier Transform Works on Sampled Data

Fig. 3-2e can be transformed to the frequency domain by applying the Fourier
integral, over the window interval, to the product of the waveform and impulse train
functions. In fact, if you sit down with pencil and paper and do the transform, paying
attention to notation and performing the correct manipulations, you'll come up with an
expression known as the discrete Fourier transform (DFT). It looks like this:

N—1 —jomkAfnAt
Xo(kAf) = At-T  x(nAt)e
n

This expression allows you to transform a time series of samples, like Table 3-1, to a
series of frequency-domain samples.

By some further manipulations, you can also develop the inverse DFT. Itlooks like
this:

N—1 j2rkAfnAt
x(nAt) = Af-Z Xq(kAf)e
k=0

This expression allows you to transform a series of frequency-domain samples,
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computed by the DFT, back to a series of time-domain samples.
Inboth of these discrete expressions, the variables have the following definitions:
N—N is the number of samples being considered.

At—At is the time between samples, referred to as the "sampling interval”.
From this, NAt gives the window length, often referred to as the "time
record length”.

Af—Afis the sample interval in the frequency domain and is equal to 1/NAt.
n—n is the time sample index. Its values are n=0, 1, 2, ..., N—1.

k—Kk is the index for the computed set of discrete frequency components. Its
values are k=0, 1, 2, ..., N—1.

x(nAt)—x(nAt) is the discrete set of time samples that define the waveform to be

transformed.
Xa(kAf)—Xa(kAf) is the set of Fourier coefficients obtained by the DFT of x(nAt).
e—e is the base of the natural logarithm.

j—j is the symbol of complex notation, indicating the imaginary part of a
complex quantity (j= v —1).

By continuing with some substitutions, letting At=1 so that Af=1/N, you can arrive at
the more common form of the DFT and the inverse DFT. These are:

N—1 —j2mkn/N
DFT—Xuak) =%  x(n)e
n

1 j2mrkn/N

N
2 Xak)e

’
and inverse DFT—x(n) =—
N k=0

Since the 1/N before the summation in x(n) issimply ascaling term, itcan be included in
either (not both) the direct or inverse expression. For the examples given here, 1/N is
shifted to the direct expression, Xa(k). This alternate formulation gives the dc term,
Xq4(0), as the arithmetic mean of the time samples.
+j0 .
For computational convenience, Euler’s identity (e =cosOjsin©)isusedto
change the complex exponential to give the DFT and inverse DFT as:

Xa(k) :N-Z x(n)cos 2mkn/N — jx(n)sin 2mkn/N
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and

x(n) =%  Xg(k)cos 2mkn/N + jXq(k)sin 2mkn/N

Now, with these expressions, it is a fairly straightforward set of operations to
compute the discrete Fourier transform for any string of waveform samples. For
example, you can compute the DFT of the cosine wave from the values listed in Table 3-
1. There are 32 samples there, so k and n take on values of 0, 1, 2, ..., N-1. The values of
x(n) are taken directly from the table—where x(0) corresponds to time zero and has a
value of 1.000, x(1) corresponds to 0.01 seconds and has a value of 0.707, and so on.
Each Fourier coefficient, Xa(k), is computed by summing x(n)cos 2mkn/N — jsin 2mkn/N
for all values of n at each k. For example, let k equal zero and sum x(n) cos 2wkn/N —
jsin 2mkn/N for n=0to N—1. Then let k equal one and do the summation again for all n.
This goes on until the summation for k=N—1 is reached and completed. When that is
done, you have the set of 32 Fourier coefficients for the 32 time-domain samples of the
cosine wave. These Fourier coefficients define the cosine wave’s complex frequency
domain at 32 discrete frequencies.

If you have taken up pencil and paper to try out the DFT on Table 3-1, itwon’t take
you long to realize that there are 32 terms to be summed for each of the 32 values of k.
That means there are 32 x 32 = 1024 major operations for doing a 32-point DFT.
Although each operation is in itself fairly easy, doing it 1024 times is not. There has to be
a better way!

A DFT Program Makes it Easier. Computing the DFT is essentially a repetitive
task. The major operations are the same, over and over again. The only things that
change are the index values, k and n, and the sample values, x(n). So, the DFT is well
suited to evaluation by computer program.

Put away your pencil and paper! Here is a program that generates the values in
Table 3-1 and computes the Fourier coefficients by straightforward evaluation of the

DPO TEK BASIC or WDI TEK BASIC Program for 32-point DFT

100 DIMENSION  X(31),XR(31) XI(31) } Define data arrays.
105 LET PI=3.1416:LET X=0:LET EM=1

119 FOR 1=0 TO 31 Generate values of
115 LET X(1)=COS(2*PI1*12.5*1/100 Table 3-1 in array X.
120 NEXT |

130 STOP

200 LET XR=Q:LET XI=0
205 FOR K=0 TO 31

210 FOR N=0 TO 31 Compute 32-point DFT of
215 LET AG=2*PI"K*N/32 array X into the real
220 LET XR(K)=XR(K)+X(N)*COS(AG)/32 array, XR, and the imaginary
225 LET XI(K)=XI(K)—X(N)*SIN(AG)/32 array, XI.
230 NEXT N
235 NEXT K
24p STOP
Print results. <
300 PRINT "A[AL"
305 PRINT "32-POINT DFT:";#2@;"COEFFICIENT":#40;" FOURIER COEFFICIENTS"
310 PRINT #20;" INDEX";#35;"REAL PART":#54;"IMAGINARY PART”

315 FOR I=0 TO 31:PRINT #23;1;#32;XR(1);#54;XI(1):NEXT |
320 STOP

1754-40
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DFT expression. It works with either Tektronix, Inc., DPO TEK BASIC software or WDI
TEK BASIC software. Just enter the program on your Tektronix Computer Display
Terminal, and then type GOTO 109 and press RETURN to generate the cosine data of
Table 3-1. Then enter GOTO 200 to evaluate the DFT (evaluation will take several
minutes). To print the DFT results, enter GOTO 309; the results for the data in Table 3-1
are shown in the left half of Table 3-2.

TABLE 3-2

32-point Fourier transformation of the data in Table 3-1.

DFT FFT
Index
Real Part Imaginary Part | Real Part Imaginary Part
0 DC <> —3.052E-5 0 0 0 &
1 0 —7.629E-6 3.052E-5 0 &
2 —3.052E-5 —7.629E-6 3.052E-5 0 =
3 0 2.289E-5 3.052E-5 0 > o©
4 > 0.5 —2.289E-5 0 3.052E-5 o A
5 £ 6.104E-5 —3.815E-5 —3.052E-5 6.104E-5 g @
6 o —3.052E-5 —7.629E-6 0 6.104E-5 o 3
7 o —3.052E-5 —3.815E-5 0 6.104E-5 f._’ >
8 o 4 0 —3.052E-5 0 0 s \Z
9 i 1.221E-4 —6.104E-5 0 0 =
10 = —6.104E-5 1.526E-5 0 0 o
11 = 0 3.052E-5 3.052E-5 0 )
12 7y 5 3.052E-5 0 0.5 —3.052E-5 c
13 o 6.104E-5 —3.815E-5 0 —3.052E-5
14 | 0 —6.867E-5 3.052E-5 —3.052E-5
15 2% —3.052E-5 6.867E-5 3.052E-5 —3.052E-5
16 = 0 1.526E-5 3.052E-5 0=——>»[DC
174 b7 0 4.578E-5 3.052E-5 3.052E-5
18 = / 3.052E-5 —4.578E-5 3.052E-5 3.052E-5
19 = 3.052E-5 2.289E-5 0 3.052E-5
20 e = 3.052E-5 —9.918E-5 0.5 3.052E-5 i
21 & 6.104E-5 5.341E-5 3.052E-5 0 &
22 o —1.631E-4 —9.918E-5 0 0 3
23 135 —1.221E-4 8.392E-5 0 0 2
24 & —1.221E-4 3.815E-5 0 0 =
25 o —6.104E-5 9.155E-5 0 —6.104E-5 o
26 = —1.526E-4 1.526E-5 0 —6.104E-5 =
27 o 6.104E-5 4.578E-5 —3.052E-5 —6.104E-5 &
28 o 0.5002 3.052E-5 0 —3.052E-5 a
29 1.221E-4 —1.144E-4 3.052E-5 0
30 4.273E-4 1.144E-4 3.052E-5 0
31 —2.136E-4 —1.068E-4 3.052E-5 0
-4 = = 16"~ ~ ~—aF- N n=0---- - 12-16-20- — - - 31
H 1 | I
| 1 1
0.5
1 ]
0.5 I : 1
1 i ]
I ] |
I 1 !
*—! QO — (- ® i
DC T T T oc 4
+12.5 Hz —12.5 Hz —12.5 Hz
*Nyquist *Nyquist
frequency frequency +12.5 Hz
1754-41

Frequency interval is given by Af=1/NAt. Bold type indicates frequency components for cosine
wave in Table 3-1; others are effectively zero.

*The Nyquist frequency is the highest frequency sinusoid that can be defined at a given sampling
rate. For equally spaced samples (At), the Nyquist frequency is 1/2At.
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Now enter FFT X,XR,X| from the terminal. The same Fourier coefficients are
computed by the FFT algorithm. Notice how much faster this is. To print these FFT
results, enter GOTO 300; these results are shown in the right half of Table 3-2. (Slight
variations between the DFT and FFT results in Table 3-2 are due to different round offs

in the two routines.)

With regard to this DFT—FFT program comparison, there are several things that
should be pointed out. First, the DFT program in lines 200 through 240 is a rather
inelegant, but straightforward, approach to evaluating the DFT. It is easy to follow, but
the results aren’t in an order corresponding to our frequency-domain diagraming
convention. Furthermore, for real signals, this approach uses twice as many iterations
as needed. Since the negative frequency domain duplicates the positive frequency
domain for real signals, it is only necessary to compute the coefficients for index 0
through 16. Doing this cuts the execution time in half, but it still doesn’t approach the
speed of the FFT statement. The second thing that should be pointed out is that the
example program is in a high-level language (TEK BASIC). It would execute faster if it
were implemented in low-level assembly language, like the algorithm for the FFT
statement. But even then, the direct evaluation of the DFT wouldn’t be as fastas the FFT
algorithm. In short, the FFT algorithm is to date the most elegant and time effective
approach to evaluating the discrete Fourier transform.

How the FFT Came About

When you consider the 32* major operations required for the 32-point DFT just
computed, it isn’t difficult to understand why discrete Fourier analysis was generally
avoided by scientists working before the development of the modern digital computer.
And for many applications 32 samples is not enough. The required N samples for
defining useful functions frequently runs into the hundreds. So the prospect of N?
operations by hand calculation was enough to discourage discrete Fourier techniques
as an analysis tool.

But some fields of study beg for Fourier analysis. In fact some information can
only be gained by Fourier analysis, and there is nothing to do but plunge forward with
the calculations.

Accordingly, it was standard in the days of hand calculation to be as concerned
with minimization as well as application possibilities. Scientists welcomed papers
describing means for reducing the number of calculations in an analysis technigue
almost as much as they welcomed the new analysis technique itself. It was in such a
minimization paper (for 12- and 24-point transforms) in 1903 that C. Runge described
the technique that later became known as the FFT. Later, in 1942, a more generalized
approach was advanced by Danielson and Lanczos. By recognizing certain symmetries
and periodicities, they reduced evaluation of the DFT for N=2" points to N log. N major
operations. The significant savings of N log, N operations versus N* operations is
apparent in Fig. 3-3. Evaluation by hand, however, is still a staggering task for
reasonable values of N. For example, using an efficient algorithm, L.H. Thomas of the
IBM Watson Laboratory reported spending three months in 1948 doing a transform with
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Fig. 3-3. How fastis fast? The more operations to be done, the longer it takes. The FFT reduces the
number of operations, and for large N, the time advantage is tremendous. For example, the FFT for
512 samples has a better than 50 to one advantage over the DFT.

the aid of an office accounting machine. It's no wonder people steered clear of Fourier
analysis whenever possible!

Then came the digital computer, but without widespread use, the techniques of
Danielson and Lanczos were generally unknown, and Fourier analysis was still done by
the direct approach, using N? operations. Even with a digital computer, N? operations
takes significant time for large N. The cost of doing Fourier analysis by discrete
methods was prohibitive in many cases.

Still, Fourier analysis is necessary to some research. In the early 1960’s, R.L.
Garwin was studying solid helium and had a great need for Fourier techniques. His need
caused him to contact a colleague, JW. Tukey, and ask for an efficient means of
evaluating the discrete Fourier transform. Tukey supplied him with the essence of what
was to become known as the fast Fourier transform. Then Garwin approached the
director of Mathematical Sciences at IBM with the problem of programming the
algorithm. As a result, J.W. Cooley became involved.
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In Cooley’s words: "Garwin came to the computing center at IBM Research in
Yorktown Heights to have the algorithm programmed. | was new at the computing
center and was doing some of my own research. Since | was the only one with nothing
important to do, they gave me this problem to work on. It looked interesting, but |
thought that what | was doing was more important; however, with a little prodding from
Garwin, | got the problem out in my spare time and gave itto him. Itwas his problem and
| thought | would hear no more about it and went back to doing some real work."!

But Cooley didn’t hear the last of it. Garwin saw a wide range of applications for
the program besides studying helium, and began contacting various scientists and
making the possibilities known. “As a result of his publicity,” Cooley relates, "I started
to get letters requesting programs and write-ups. Requests for a paper then started
arriving. | was asked to write a paper and did so, asking Tukey to co-author it. He did,
and the paper in Mathematics of Computation, in 1965, was the result.” This paper
describes the Cooley-Tukey algorithm for evaluating the discrete Fourier transform.

For the most part, the Cooley-Tukey algorithm is simply referred to as the FFT.
There are also a number of other algorithms, offshoots of the Cooley-Tukey algorithm,
that are also lumped under the term "FFT,” and any algorithm that provides the N log: N
advantage is generally referred to as an FFT.

Putting the Algorithm to Work—Hardware or Software FFT?

Garwin’s approach to the FFT was a software approach. General-purpose
computers were available to him, and he had already obtained by computersimulations
a very large amount of nuclear spin data for helium. All he needed was a program to
Fourier transform the data. A software implementation of the FFT was the natural
approach.

Software implementation of the FFT has some distinct advantages, too. The FFT
algorithm can be programmed in a general enough manner so that the number of points
to be transformed can be varied. If you have 512samples, the program does a 512-point
FFT; ifyou have 64 samples, a 64-point transform is done. With the flexibility offered by
software, the FFT algorithm can do any length transform you desire, within the limits of
the specific routine and computer memory size. (Quite often, though, the length is
restricted to a power of two—2, 4, 8, 16, 32, 64, 128, ... This offers algorithm simplicity
and additional execution speed.) Also, with general-purpose software, you can choose
to do a variety of further processing or analysis if you like, and you can put the results in
just about any form you want—tables, graphs, diagrams, etc. In short, you make the
software FFT fit the data instead of making the data fit the FFT.

There are some tradeoffs in a general-purpose software implementation, though.
The options that make it general purpose require decisions and interpretations by

'James W. Cooley’s keynote address at the 1968 Arden House Workshop on Fast Fourier Trans-
form Processing, [EEE Transactions on Audio and Electroacoustics,Vol. AU-17 No. 2, June 1969.
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software, and this takes additional time. Of course, execution can be speeded up by
tailoring the FFT routine to a specific need, but then the program may not be flexible
enough to handle other applications.

Another tradeoff is that a software FFT is, strictly speaking, an "off-line”
operation; the signal data is acquired, stored, and then processed. The results are not
"real-time"” results, but occur some finite time after the input signal. However, from a
practical viewpoint, real-time results often don’t have to be instantaneous results. If the
time between acquiring a signal and getting FFT results is milliseconds and signal
variations are on the order of seconds or more, then the FFT results mighteffectively be
considered real-time results. On the other hand, signal variations on the order of
microseconds would disqualify a millisecond return of results from being considered as
real-time results. But then, a large block of FFT applications do not require real-time
results.

As a final point, a software implementation of the FFT algorithm simply does not
execute as fast as the corresponding hardware implementation. Compared to a
software approach, where a general-purpose machine is directed in every step of the
task, a hardware FFT has the instructions built into it. It just goes ahead and does its
specific task—no questions asked, and usually very little flexibility offered. In fact, a
dedicated hardware FFT processor—designed for a specific, narrow application—can
be so fast as to be considered an “on-line” analyzer, providing results that are "real-
time"” for all intents and purposes. But you can'’t tell it to do anything else butthat one
specific task. You have to make your data fit that hardware FFT!

Regardless of the FFT implementation, the final results are the same for the same
algorithm. The algorithm itself is simply a method of evaluation. How you-choose to
implement the method—hardware, software, or pencil and paper—makes no difference
in the results. The hardware FFT of a waveform is the same as the software FFT of the
same waveform, and both of these are the same as the pencil-and-paper FFT for that
same waveform. The major consideration is how quickly you get the results. And this
depends upon the hardware design, or the software design and the computer’s
instruction speed, or how fast you are with pencil and paper.
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SECTION 4

UNDERSTANDING FFT RESULTS

In Section 2, continuous, periodic signals and their transformation to the
frequency domain by a Fourier series were discussed. Then continuous, nonperiodic
signals and their transformation by the Fourier integral were discussed. After that, the
idea of transforming windowed signals with the Fourier integral was introduced, and the
concept of interpreting results from a periodic or nonperiodic point of view was
introduced.

Then in Section 3, we went a step further. Windowed signals were sampled and
transformed by the discrete Fourier transform, and the FFT was introduced as an
efficient method of evaluating the DFT.

The DFT, or FFT, is a third type of Fourier transform. It is related to the Fourier
series and Fourier integral, but it is defined only for discrete values over a finite interval.
From a digital viewpoint, the FFT provides the exact transform for the discrete values
provided. A continuous, periodic, or nonperiodic signal can be windowed and sampled
to provide discrete values, and these discrete values can also be transformed by the
FFT. The results from transforming a windowed and sampled function with the FFT will
also be exactly as they should be as long as they are viewed from a digital viewpoint.
That is, the FFT provides the correct frequency domain information for the windowed
and sampled version of the waveform. If, however, you wish to interpret the FFT results
from a continuous viewpoint, as is usually the case, then the interpretation must be
done with care. An interpretation from the continuous viewpoint must always be
tempered with the realities of the windowed and sampled data.

This section, Section 4, looks at FFT results in general and then goes on to explore
the effects of windowing and sampling and how they influence FFT results from a
continuous viewpoint. For convenience, the examples in this section are built around
the Sande-Tukey FFT algorithm used in Tektronix, Inc., DPO TEK BASIC and WDI TEK
BASIC software. (Where the Cooley-Tukey algorithm uses a process called decimation
in time, the Sande-Tukey algorithm uses decimation in frequency. While the methods
differ, the two algorithms produce identical results.) Also, because of their convenient
size for publication, displayed results are taken from the cathode ray tube of a
Tektronix, Inc., Digital Processing Oscilloscope. Although these examples are obtained
via specific software and instrumentation, the concepts they illustrate are applicable to
FFT’s in general.
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TEK BASIC DATA FORMATS FOR THE FFT

For the most part, the examples in this section deal with 512-element data arrays.
These are the standard waveform arrays of DPO TEK BASIC and WDI TEK BASIC
software; however, arrays of other lengths can, in practice, be used with the FFT. For
example, a 32-element array was used in Section 3 to introduce the DFT and the FFT.

Providing Time-Domain Data for the FFT

In the most fundamental sense, there are two types of time-domain information
available for any type of analysis. There is information that is directly measurable or
observable, and there is theoretical information generated by mathematical formulas or
other means of speculation.

For the case of measurable information, like the waveform in Fig. 1-10 of Section 1
that was used to pointout the need for Fourier analysis, the information can be acquired
and sampled by standard measurement techniques. Then the samples from the
acquisition window can be digitized and stored in a data array for further processing. In
the case of DPO TEK BASIC and WDI TEK BASIC software, the length of a waveform
data array is 512 elements, and each array element corresponds to a waveform sample
from the acquisition window. Array element zero corresponds to time zero at the left
edge of the window, as indicated in Fig. 4-1, and array element 511 corresponds to 1
sample less than the maximum time at the right edge of the window. The remaining
elements, 1 through 510, correspond to equally spaced points between the window
edges. The digital values stored in each array element correspond to the sampled values
of the waveform at each element’s corresponding time point. In short, the waveform
array corresponds to the table of values you might construct from point-by-point
measurement of the waveform. The sampled waveform, shown in Fig. 4-1, would then
correspond to a graph you might draw from the table of point-by-point measurements.

For the case of theoretical data, the computed values are simply entered into the
data array in much the same manner that Table 3-1 in Section 3 was constructed.
However, in the case of Table 3-1, the array would be a 32-element array. To place the
same theoretical cosine wave, over the same time window, into a standard 512-element
array for TEK BASIC, you would need to compute samples at every 0.625 milliseconds
(0.32 seconds/512 time increments) from 0 seconds to 0.32 seconds. In either case, an
FFT of the theoretical data can be done. Inthe former,a 32-point FFT isdone,and a512-
point FFT is done for the latter. The major difference, of course, is that 512 samples over
the same interval provides better resolution.

The great majority of measured and theoretical time-domain data is real-valued
data. That s, it is real not in the sense that itis physical, but real in the sense thatitis not
complex-valued data. It doesn’t have an imaginary part, or at least the imaginary part
isn’t considered. Thus, you only need one waveform array to store real, time-domain
data. However, two additional arrays are required for storage of the corresponding
frequency-domain data. In DPO TEK BASIC and WDI TEK BASIC, for example, the real
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waveform could be stored in array A. Then the FFT statement can be entered as FFT
A,B,C. After the statement is executed, waveform arrays B and C contain the complex
frequency-domain results for the FFT of array A.

0s 25 mS 5 m$S
200 mv — oy HORIZONTAL
VERTICAL SCALE FACTOR
SCALE FACTOR

| VERTICAL ZERO
| REFERENCE

—200 mV— = | |
ARRAY
ELEMENTS QAR e vyo wen snvime b OB s n e el 1T s L 510,511
Waveform Array Format
Time = n At
At = 500 uS/51.2 Array Stored
Element, n Sample Value

0.0 uS 0 —5.299E-3

9.766 uS 1 4.599E-3

19.53 uS 2 1.422E-2

29.3 uS 3 2,298E-2

39.06 uS 4 3.010E-2

2.481 mS 254 1.927E-3

2.49 mS 255 9.655E-3

3.5 mS 256 —8.125E-4

251 mS 257 —1.052E-2

2.52 mS 258 —1.879E-2

4.951 mS 507 —5.434E-2

4.961 mS 508 —3.936E-2

4.971 mS 509 —2.608E-2

4.981 mS 510 —1.397E-2

4.99 mS 511 -—1.850E-3

1754-43

Fig. 4-1. Array format for time-domain waveforms.
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There are also instances where complex data may be acquired. Studying complex
demodulation, for example, might require you to consider time-domain signals having
both a real and an imaginary part. In order to transform complex signals by the FFT
statement, you'll need to acquire the real part into one waveform array and the
imaginary part into another waveform array. Then the complex form of the FFT, an
option provided in DPO TEK BASIC and WDI TEKBASIC, can be applied. Forexample,
the real part of the time-domain could be stored in array A and the imaginary part in
array B. Then the FFT statement can be entered as

FFT A,B,C,D

The complex frequency-domain resulting from transforming arrays A and B are placed
in arrays C and D.

FFT Results Are Normally in Rectangular Form

Let’s take the time-domain waveform in Fig. 4-1 and transform it to the frequency
domain with the FFT of DPO TEK BASIC. To begin, let’s say the waveform is stored in
array A. The cathode-ray-tube (CRT) display of this array is shown in Fig. 4-2a. This

b. Real part of frequency domain. c. Imaginary part of frequency domain.
1754-44

Fig. 4-2. The FFT of a time-domain waveform results in two arrays that represent the complex

frequency domain in rectangular form.
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waveform array can be transformed to the frequency domain by entering
FFT AB,C

from the Computer Display Terminal. The real part of the frequency domain is stored in
array B and shown in Fig. 4-2b, and the imaginary part is in array C and is shown in Fig.
4-2c.

Notice how these results closely resemble the line spectrum of a periodic
waveform. A periodic point of view follows naturally from Fig. 4-2a.

The arrangement of the Fourier coefficients in the two frequency-domain arrays is
such that zero Hertz occurs at array element 256. This corresponds very closely to the
center of the CRT display. The positive portion of the frequency domain extends over
the elements from 257 through 511; this corresponds to the right half of the display. The
negative frequency domain extends over the left half of the display and takes in array
elements 0 to 256. Element zero corresponds to the highest frequency defined by the
time-domain samples and is referred to as the Nyquist frequency. This arrangement is
general to FFT results, no matter what point of view is taken. It also corresponds directly
to the diagramming conventions in Section 2.

DPO TEK BASIC and WDI TEK BASIC also allow inverse transformation of
frequency-domain arrays in the format of Fig. 4-2 back to the time domain. This is done
by essentially the same FFT algorithm with only minor changes in the input and output
routines. As an example, consider the two arrays of complex Fourier coefficients
displayed in Fig. 4-2b and c. These arrays (B and C) can be transformed back to the time
domain by entering

IFT B,C,D

The result of this inverse transform is shown in Fig. 4-3a. The difference between itand
the original waveform in Fig. 4-2a is shown in Fig. 4-3b. Notice that this difference is
slight—effectively zero compared to the waveform magnitudes—and can be attributed
to arithmetic roundoff error.

a. IFT of Fig. 4-2b and c. b. Difference between original (Fig. 4-2a)
and IFT.

1754-45

Fig. 4-3. The IFT of the frequency domain in rectangular form returns the original, time-domain
waveform.
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FFT Results Can Be in Polar Form

The rectangular form is the most direct result for the FFT and is also more
appropriate to further processing. But most people are not entirely comfortable viewing
FFT results in rectangular form. Maybe it's because firstintroductions to Fourier theory
and the frequency domain are through magnitude and phase, the polar form.
Widespread use of spectrum analyzers may also account for this seeming preference
since they present frequency-domain information in the form of magnitude (spectrum
analyzers using analog techniques don’t provide phase information). Whatever the
reasons, people seem most comfortable viewing FFT results in polar form. And, if you
are simply interested in the magnitude of a specific component, then the polar form is
naturally desirable.

Converting FFT results from rectangular form to polar form is asimple operation.
Magnitude is obtained from the realand imaginary parts by taking the square root of the
sum of the squares (magnitude = v/ Re’ + Im?). Phase is the arctangent of the
imaginary part divided by the real part (phase = arctan Im/Re).

Modulo 27 Phase. For convenience, DPO TEKBASIC and WDI TEK BASIC have a
polar form for the FFT statement. For example, if you have time-domain data stored in
array A and wish to see frequency-domain magnitude in array B and phase in array C,
then enter the following statement from the Computer Display Terminal:

FFT A,B,C,POLAR

The FFT algorithm itself isn’t changed by the added POLAR argument. Intermediate
results are still in rectangular form, but the POLAR switch causes software to go ahead
and convert the results to polar form. For the example statement, magnitude is stored in
array B and phase inarray C. The format of these two-arrays is the same as described for
the rectangular form except vertical scaling is in terms of magnitude and phase. (It
should be noted here that the arctangent routine used by the POLAR switch returns
values in the range of 27 radians—+m to —m. Thus, the phase resulting from the POLAR
switch is referred to as modulo 27 phase. In WDI TEK BASIC, an additional argument
can be used after the POLAR switch to construct "continuous” phase. When this delay
argument is used, module 27 phase is converted to continuous phase, and the delay
specified by the argument is removed from the phase function.)

An example of FFT polar results is shown in Fig. 4-4. The time-domain waveform
in Fig. 4-4a is the same waveform used for the rectangular-form example. The polar-
form results from FFTing this waveform are shown in Fig. 4-4b and c. The magnitude
portion is fairly clear and is what would be expected for a low-pass filtered square wave.
It closely resembles a line spectrum; thus, it is appealing to the continuous, periodic
point of view. However, the phase portion in Fig. 4-4c does need some further
explanation.

First of all, phase can’t exist for a frequency component that doesn’t exist. Yet, if
we view Fig. 4-4a as a periodic waveform and interpret the FFT magnitude results in Fig.
4-4b as a line spectrum, Fig. 4-4c seems to say the opposite. There appears to be phase
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in Fig. 4-4c where magnitudes in Fig. 4-4b appear to be zero. In reality, though, the
magnitude spectrumin Fig. 4-4bis notdiscrete in the sense of the periodic point of view.
Also, the real and imaginary spectra (Fig. 4-2b and c), from which the magnitude and
phase were computed, are not line spectra either. All of these spectra have low-level
"noise” components residing between the higher-level harmonics. For interpreting the
results from a continuous, periodic point of view, the low-level components are low
enough to be considered zero. However, from a computing standpoint, these low-level
components still exist, and they are significant in terms of computing phase. For
example: A value of 107 might, for the purpose of interpretation, be considered zero
when compared to a value of one. But, for the purpose of computation, arctan 1/1 and
arctan 107/10° are the same—they both are equal to 45 degrees (0.7854 radians).

So even the smallest components can contribute significantly to phase com-
putations. This is desirable when you are looking for information that is contained in
low-level components, but for the present example, it may lead the uninformed to
confusion.

b. FFT magnitude. c. FFT phase.

1754-46

Fig. 4-4. FFT results can be expressed in polar form.
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How do low-level components come about? Well, in reality, Fig. 4-4a doesn’t show
an ideal, continuous, periodic waveform. The waveform used for this example was an
actual, physical waveform and was subject to distortions, noise, and all of the other
vagaries of reality. So some of the low-level components were actually present in the
waveform. Adding to this, the waveform was windowed and sampled and the samples
were digitized. Then the digitized samples were transformed by an FFT algorithm, and
this FFT algorithm was executed by a physical computing system with physical
limitations. In their own way, all of these things may contribute additional low-level
components.

As you can see, a lot of things separate the realities of measurement and analysis
from the nicities of theory. Most of these things will be discussed shortly in greater
detail, but for now, let’s just accept the fact that they all contibute to the FFT results.

Still, the filtered square wave in Fig. 4-4a is certainly appealing to a continuous,
periodic point of view. However, to take a periodic point of view for interpreting phase
results, you must consider phase to be valid only at the frequencies of interest. With that
in mind, the significant frequency components can be picked from the magnitude
spectrum. Then they can be placed in an array and given a value of one, while all other
array elements are given a value of zero. The resulting array looks like Fig. 4-5a. Then,
by multiplying Fig. 4-5a with the phase in Fig. 4-4c, a line spectrum for phase is
obtained. This line spectrum for phase in Fig. 4-5b and the magnitude spectrum in Fig.
4-4b are what you want to look at if you wish to interpret the frequency domain of the
filtered square wave from a periodic point of view, a point of view relating to the Fourier
series.

But, as has been pointed out in previous discussions, a nonperiodic point of view
may be appropriate for many analysis situations. Take Fig. 4-6a for example. The pulse
shown there certainly appeals to a nonperiodic point of view. You would probably want
to interpret its frequency domain in terms of what would be expected from the Fourier
integral.

a. Significant components are set to a b. Line spectrum for phase is the product
value of one. of Figs. 4-5a and 4-4c.

1754-47

Fig. 4-5. Interpreting phase from a periodic point of view requires looking only at the significant
frequency components.
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b. Frequency-domain magnitude. c. Frequency-domain phase.

1754-48

Fig. 4-6. A case where the nonperiodic point of view is a natural choice and agrees with the FFT
results.

The frequency domain of the band-limited pulse in Fig. 4-6a is shown in Fig. 4-6b
and c. In particular, notice the phase display in 4-6¢. It is well ordered, not like Fig. 4-4c,
and certainly appears to agree with what is expected from the nonperiodic point of view.
In fact, compare the frequency domain of Fig. 4-6 with the theoretical frequency domain
of the Fourier integral in Fig. 2-11c. Notice how closely they match.

This last example certainly supports the nonperiodic point of view forinterpreting
DFT and FFT results. And this should be expected since the DFT is derivable from the
Fourier integral. But remember that the Fourier integral is also derivable from the
Fourier series. So the periodic point of view of the Fourier series is also applicable to the
DFT and FFT as long as you take into account the signal modifications occurring
through the chain of derivation from the series, through the integral, to the DFT.

Continuous Phase. Up to this point, phase has only been discussed in terms of
modulo 27 phase; that is, phase has been restricted to a range of 7. This is sufficient
formostinterpretations, but phase can in theory and practice exceed the =7 range. This
is shown in Fig. 4-7.
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Fig. 4-7. Specifying phase depends upon your reference. If the reference is fixed to a specific
point on the shifted waveform, then phase related to time zero can exceed the 1 range.

In terms of analyzing waveforms made up of many sinusoids, the phase of each
frequency component is determined by the choice of zero time. In Fig. 4-8a, a pulse is
shown arranged with time zero so that the pulseisan even function of time. The pulse is
symmetric about time zero; therefore, it's made up solely of cosine terms. A heavy dot
marks a reference point fixed to the pulse. The same reference is marked on two
sinusoidal components in Fig. 4-8a that have arbitrarily been pulled from the pulse.

Now, as the pulse is shifted in time (Fig. 4-8b), each frequency component
undergoes the same time shift. The amplitude and time relationship of each component
to the others is unchanged, for they must all still add up in the same manner to form the
pulse. However, in terms of phase relation to time zero, each component must vary
individually. This is because each component is of a different period, but each is time
shifted by the same amount. And phase can be expressed as the ratio of time shift to the
component’s period (phase =—360° shift/period). As indicated by the two arbitrary
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b. The same square pulse and arbitrary components shifted in time. One component
has phase of about —270°; the other has phase of over —400°.

1754-50

Fig. 4-8. The same time shift corresponds to different phase shifts for different frequencies.

components in Fig. 4-8b, a higher frequency component, because of its shorter period,
gains phase at a greater rate than one of lower frequency.

The pulse shown previously in Fig. 4-6 provides a good example for illustrating the
difference between modulo 27 phase displays and continuous phase displays. This
pulse is shown again in Fig. 4-9a with its position shifted slightly in time. Since time zero
is atthe left edge of the display, the additional shift in Fig. 4-9ashould be reflected in the
frequency domain as an increase in each component’s phase.

Fig. 4-9b shows the frequency-domain magnitude and modulo 27 phase for the
pulse in Fig. 4-9a. This phase display is certainly different from that in Fig. 4-6, but
notice that it's still confined to a range of +n radians. Fig. 4-9c shows the same
frequency domain as Fig. 4-9b; however, notice that phase exceeds the =u range. Here,
phase is shown in a continuous format, not interrupted and repeated every =m. Even
more interesting is the fact that the phase in Fig. 4-6, even though it was computed
modulo 27, would look no different computed as continuous phase. That's because of
the pulse’s location relative to time zero in Fig. 4-6—the time shift, or delay, there is not
great enough to cause phase to exceed 7. However, with the increased time shift in
Fig. 4-9a, phase does exceed the £7 range. (Continuous phase displays can be
obtained with WDI TEK BASIC by entering an FFT statement of the form: FFT
A,B,C,POLAR,D.)
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c. The frequency domain in terms of magnitude and continuous phase.

1754-51

Fig. 4-9. Modulo 27 phase and continuous phase are two different ways of looking at the same thing.
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The important thing to realize here is that modulo 27 phase and continuous phase
are nothing more than two means of presenting the same information. Continuous
phase presents the effects of time shifting (advance or delay) directly—360° of phase is
represented as 360° of phase. On the other hand, modulo 27 phase views time shifting
in the sense that a sinusoid with 0° phase (acosine wave) appears no differentthan one
shifted 360°. Thus, phases of 360°,720°,...are all represented as 0° in modulo 27 phase.
This same idea applies to all phases in excess of = radians. They can be represented in
the +m range without changing the appearance of the sinusoid around time zero.

As a final note, there is another interesting thing that should be pointed outin Fig.
4-6 and 4-9. This isn’t something new, but rather something in the manner of reviewing
and reinforcing some theory covered in Section 2. Look at the pulses in Fig. 4-6a and 4-
9a. The only difference between them is their location in time. Now look at the
frequency-domain magnitudes and phases in Fig. 4-6b and ¢ and 4-9b. Notice that
there’s absolutely no difference in the two magnitude displays. The phase displays,
however, are markedly different! This points out again the Fourier transform property
that time shifting only affects phase angle.

RECOGNIZING THE REALITIES OF DIGITAL FOURIER
ANALYSIS

When an analysis technique is based heavily on theory, it is natural to let theory
bias interpretations of the results. This is exactly as it should be, as long as theory is
followed completely and applied precisely. Too often, though, results are interpreted in
light of only the more general concepts. A rush to fill in the big picture leaves the details
behind, and only a rough sketch is the result. And, too, there is often a tendency to
catagorize things—to place them under neat labels allowing easy prediction of results.
For example, a 10 ohm resistor is only a 10 ohm resistor for convenience. If fits neatly
into Ohm’s law, E=IxR, but in reality “I” may be a high-frequency current and “R" a
wire-wound resistor. Then the voltage drop, E, must be interpreted in light of the whole
theory of conduction—capacitances, inductances, and thermal effects must be
considered, too.

Failing to be thorough and precise in using theory to predict or interpret results
causes analysis errors. Sometimes the errors are actually in the results, but often the
errors are simply misinterpretations of the results.

In the case of the FFT algorithm, theory is applied thoroughly and precisely to the
analysis of digitized waveforms. For the data supplied, the results are what they should
be. And, when the results aren’t what we think they should be, it is most often a case of
incomplete interpretation. Some feature of the waveform, maybe even asubtle one, has
been overlooked. Or possibly some of the properties of windowing and digitizing have
been overlooked or their implications not fully understood. Whatever the case, most
FFT errors are easily explained or corrected by careful attention to detail.

@ 4-13



The FFT

There are two major classes of details that you should be aware of when you
interpret FFT results. The first class of details concern the waveform itself. What is being
transformed? The second class of details concern what happens to the waveform in
preparing it for transformation by the DFT or the FFT algorithm. What are the effects of
changing an analog waveform to digital data?

Let’s look at these two classes of details and explore their significance in terms of
the FFT.

What Is Being Transformed?

Square Waves May Not Be Square Waves. When we look at a real-life waveform,
we can often predict at least some of its frequency-domain features before actually
transforming it to the frequency domain. For example, if it's a repetitive waveform, its
period fixes the fundamental frequency. And, if it's nonsinusoidal, we know frequencies
other than the fundamental will be present. Many of these may be harmonics, multiples
of the fundamental.

Of course, if the waveform looks a good deal like a standard waveform, much more
can be predicted. For example, if it looks like a square wave, we can go to Table 2-1in
Section 2 and see what frequency-domain components the Fourier series defines. From
this, we should expect to see the fundamental and the odd harmonics when the
waveform is transformed. And, because we know the Fourier series for a square wave,
we can also say something about the expected amplitudes of these harmonics.

However, when the waveform is transformed, we shouldn’t be surprised if the
results don’t exactly match our predictions. In the case of a waveform that looks like a
square wave, predictions based on the Fourier series for an ideal square wave should
not be taken too seriously. There simply are no ideal square waves in real life.
Instantaneous rise and fall times, perfect symmetry, and absolutely steady amplitudes,
all of the things that make an ideal square wave, aren’t fully attainable in real-life
waveforms. The distortions of real life, no matter how small, do affect the frequency
domain.

Look at the waveform in Fig. 4-10a for example. It looks like a square wave. We
could make some predictions based on the Fourier series for an ideal square wave. But
look at the waveform again. How close does it really come to being an ideal square
wave?

If you look close enough, you can see that the waveform in Fig. 4-10a is really not
an ideal square wave. This is confirmed by looking at its frequency-domain magnitude,
obtained by the FFT, in Fig. 4-10b. There the fundamental frequency (closest to the
center and greatest in amplitude) has a frequency of about 12 kHz. With care, the third
harmornic can be picked out at 36 kHz, the fifth harmonic at 60 kHz, and so on. But, in
doing this, you'll notice that there are significant components between these odd
harmonics. And, in fact, these extracomponents are even harmonics. If the waveformiin
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c. Another real-life square wave. d. FFT magnitude of c.
1754-52

Fig. 4-10. Barely perceptible differences in time-domain waveforms can often be seen as
significant differences in the frequency domain.

Fig. 4-10a was an ideal square wave, these even harmonics wouldn’t exist. However,
they do exist because the waveform in Fig. 4-10a is not symmetric. The duration of the
positive-going portions is slightly longer than the duration of the negative-going
portions. '

Now look at the waveform in Fig. 4-10c. Except for a slight change in amplitude, it
really doesn’t look too much different than the waveform in Fig. 4-10a. But look at the
difference in the frequency-domain magnitude (Fig. 4-10d). The odd harmonics are
now much clearer; the even harmonics have dropped significantly. The even harmonics
are still visible, however, and their presence indicates that the waveform in Fig. 4-10c is
still not quite symmetric.

The whole thrust of Fig. 4-10is that real-life waveforms may look close to ideal, but
they still cannot always be considered ideal. For the purposes of general description, it
is convenient to call the waveforms in Fig. 4-10 square waves. For the purposes of
Fourier analysis, however, you must be very precise in how you define a waveform. If
you are not precise, if you predict results on the basis of the ideal instead of the real, you
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might be surprised by the FFT results. And if you are ever surprised by the frequency-
domain results, go back and look closely at the original time-domain waveform. Ask
yourself: "What, exactly, is being transformed?”

Time-Domain Noise Transforms to Frequency-Domain Noise. Noise is a con-
stantly present physical phenomenon. It has a multitude of sources that combine to
produce an ambient condition of interference. And, in the case of generating and
acquiring waveforms, the effects of additive noise cannot be discounted.

Quite often, proper shielding can reduce the effects of noise, but there are
practical limits to shielding. There is always a certain amount of leakage, and where
low-level signals are concerned, this leakage may contribute significantly to signal
degradation. Also, there are those cases where noise is added to the signal before
shielding can be applied. Consider radarand sonar transmissions. The transmitters and
receivers can be shielded, but little can be done to prevent noise addition over the
transmission path.

When a noisy signal is acquired for Fourier analysis, Fig. 4-11a for example, you
must consider the noise as part of the signal. Often, noise is additive, and the acquired
signal is the sum of the noise-free signal and the noise. In terms of the FFT, you should
expect to see the transform of the noise-free signal summed with the transform of the
noise (Fig.4-11b). This is in keeping with the linearity property of the Fourier transform.

What constitutes an intolerable level of noise depends upon what you're looking
for. If you’re only looking for the general shape of things, then quite a bit of noise can be
tolerated. In Fig. 4-11a and b, for example, the general shape of the time-domain
waveform and its frequency-domain magnitude is discernable. On the other hand, this
same level of noise is intolerable when more precise information is desired. Then
something like the waveforms in Fig. 4-11¢ and d are needed.

Noise is still present in Fig. 4-11c and d, but its level with respect to the signal is
certainly much more tolerable. In the case of transient events, such improvements in
signal-to-noise ratio must be achieved through shielding. However, when the signal is
repetitive and the noise is random, signal averaging can improve the signal-to-noise
ratio substantially. In the case of Fig. 4-11, the time-domain waveform is a single pulse
from a train of pulses, and the improvement shown in Fig. 4-11c was obtained by signal
averaging. When the averaged waveform is transformed to the frequency domain, the
same type of improvement is seen there (Fig. 4-11d).

The technique of signal averaging is quite straightforward. A repetitive signal is
acquired a number of times, and each acquisition is added to the last. Then the sumis
divided by the number of acquistions. The resultis an average of the acquired signals in
the manner indicated by Fig. 4-12.

Now, since ambient noise tends to be random and to have a zero mean, the

contribution of noise to the average is reduced. And, since the signal of interest is
repetitive, averaging strengthens its contribution. As more acquisitions are averaged,
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the noise contribution is further reduced and the signal further reinforced. For truly
mean-zero noise, the improvement in signal-to-noise ratio for M averages is VM .When
M is expressed as a power of two, the improvement corresponds to 3 dB per power of
two. For example, 2'=128 averages correponds toa 7x3 dB=21 dB improvementin the
signal-to-noise ratio. If more improvement is needed, the number of averages (M) is
increased.

c. 128 averages of a. d. FFT magnitude of c.

1754-53

Fig. 4-11. Noise adds uncertainty to both the time domain and frequency domain. This

uncertainty can be reduced by proper shielding and, in the case of repetitive signals, signal
averaging.
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Fig. 4-12. Signal averaging is a straightforward technique for pulling repetitive waveforms out of
random, mean-zero noise.
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What Are the Effects of Analog-to-Digital Conversion?

When an analog waveform is to be transformed to the frequency domain by the
FFT, it must first be converted to a digital representation. The steps in this conversion
include acquiring the waveform, sampling it through a data window, and finally
converting the samples to digital words representing the waveform. If the FFT results
are interpreted strictly from the viewpoint of the digitized samples, the results are exact.
However, it is more likely that you'll want to interpret the results from the viewpoint of
the analog waveform. Then the changes that the waveform undergoes in analog-to-
digital conversion must be considered in the interpretation.

Conversion Noise. For the most part, noise generated by the analog-to-digital
converter can be virtually eliminated through proper design procedures. There are two
major noise sources, however, that are more closely process related than hardware
related. These are time jitter during acquisition and quantizing error during digitizing.

The first of these two, time jitter, occurs when the analog waveform activates a
level trigger that gates the sampling window on. For various reasons, subsequent
windows of the same waveform may be triggered at slightly different points on the
waveform. This results in the waveform losing horizontal (time) stability in the window.
This jittering back and forth is sometimes seen on oscilloscope displays (Fig. 4-13a)
when the oscilloscope trigger level is set at an unstable point on the waveform or
waveform variations (noise for example) cause the trigger point to shift on the
waveform. )

For single-shot events or sampling techniques where the waveform is digitized in
asingle window, trigger jitter isn’'t generally a problem. A slight time shift in the window
simply translates to the same time shift in each sample location on the wavefrom.
However, if individual samples become jittered within the window, a problem does exist
for single-shot events. This is best handled through careful digitizer design.

Time jitter can also be a problem, when repetitive waveforms are being acquired
and digitized from samples taken over a number of windows. Then the effect of jitter is to
cause some samples to be shifted on the waveform with respect to other samples. This
causes the stored waveform to take on the appearance shown in Fig. 4-13b.

Notice in Fig. 4-13b how the sampling error from jitter resembles the random
noise shown in Fig. 4-11a. And, if Fig. 4-13b were transformed to the frequency domain,
the effect would be the same as that caused by additive noise. Although the amplitude of
variations due to jitter are related to signal slope (dv/dt), the variations are often random
in occurrence, like additive noise, and apt to have a zero mean. Because of these
characteristics, signal averaging can be used to reduce the effects of time jitter. This is
shown in Fig. 4-13b and c, where 512 averages were used to gain the signal-to-noise
improvement of Fig. 4-13c.

There is another type of conversion noise that you should know about, too. This is
quantizing noise, also referred to as quantizing error. Like general additive noise and
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a. A jittered signal. b. Sampled and digitized version of the
jittered signal.

c. Improvement offered by signal
averaging.

1754-55

Fig. 4-13. Time jitter often has a random, noise-like effect that can be reduced by signal
averaging.

time jitter, quantizing noise tends to be random and mean zero. Because of this, it too
can be reduced under certain circumstances by signal averaging.

To understand the source of quantizing noise, let's consider digitizing a ramp
portion from a waveform being acquired with the DPO. This is shown in Fig. 4-14.

The DPO takes 512 samples along the horizontal axis of the acquired waveform.
Only a few of these horizontal sample points are indicated in Fig. 4-14. The digitizer
used by the DPO is a 10-bit digitizer. That means that there are 2'°=1024 digital levels
available at each sample location for expressing the digitial value of the sample. These
vertical levels are also indicated in Fig. 4-14. They, along with the horizontal sample
points, can be considered to compose a grid work, the points of which represent the
allowable values for describing the waveform.

There are ramp portions from two waveforms shown on the digitizing grid in Fig.
4-14. Notice that the top ramp has values falling exactly on the available digital levels.
When this ramp is sampled and digitized, the digital representation exactly matches the
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Fig. 4-14. Quantizing error is inherent in digitizing. The top ramp lies on the digital levels. The
bottom ramp (dotted) lies between digital levels, and its digital description (solid line) suffers
quantizing error.

ramp. Now, look at the bottom ramp in Fig. 4-14 (dotted line). In a number of places, its
samples fall between the allowable digital levels. When it is digitized, the digital
representation of this ramp follows the erratic path shown by the solid line. The slight
deviations from the dotted line are quantizing error and are inherent in any digitizer of
finite word length. The amount of this error at any sample pointis no more than halfofa
digital level and occurs randomly over the block of waveform samples. In short,
quantizing error is noise-like and is therefore referred to in many instances as
"quantizing noise".

Since quantizing noise doesn’t exceed half a digital level, it is generally low-level
compared to other types of noise. However, it can become high-level noise. Consider
acquiring a waveform so it ranges over only 100 of the available 1024 digital levels of a
10-bit converter. The quantizing error is then half a digital level out of the 100 levels
used. Now consider acquiring the waveform so it ranges over all 1024 levels. Then the
error from quantizing noise becomes half a digital level out of the 1024 levels used. A
more than ten times reduction in the relative effect of quantizing noise is achieved in this
case by simply exercising the full range of the analog-to-digital converter. With the DPO
and R7912 Transient Digitizer, this is done by adjusting the sensitivity of the vertical
plug-in so the instrument display area is filled by the waveform. This causes a major
portion of the digitizer range to be used.
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Even if the full range of the analog-to-digital converter is used, there’s still a
possibility of half a digital level of quantizing noise. Increasing digitizer word length is
one way to further decrease the amplitude of this noise relative to the signal. For
example, a 16-bit digitizer is finer grained than a 10-bit digitizer, but there are practical
limits to digitizer word length.

Another effective way of reducing quantizing noise levels on repetitive waveforms
is to signal average, in the presence of two or more levels of noise, the output of the 10-
bit digitizer into a storage array made up of 16-bit words. (The mathematics are also
done with 16-bit words.) This averages random noise and quantizing error in the least
significant bits of the 10-bit converter output to random variations in the least
significant bits of the array’s 16-bit words. The resultis finer resolution than thatimplied
by the 10-bit limitation of the hardware.

You should expect noise to be present at some level in all cases of digital signal
processing. The noise may have become part of the signal before it was acquired
(ambient, additive noise) or it may become part of the signal during analog-to-digital
conversion (jitter, quantizing, and other sources). In most cases, the noise level can be
reduced significantly. But noise can never be completely removed. Therefore, noise is
always present in the FFT results, too. With care, the noise level with respect to other
components can by kept small enough to be considered zero. However, when further
processing is done (computing phase from the real and imaginary frequency domain
for example) don't forget that low-level noise components can make significant
contributions to the results. )

Windowing Can Cause Leakage. Let's begin talking about leakage by considering
a pure cosine wave and its FFT magnitude. We’ll consider a cosine wave because it has
zero phase (zero imaginary part), and we can concentrate on just the FFT magnitude for
what needs to be said about leakage.

This pure cosine wave isshown in Fig. 4-15a. Its array elements were generated by
a computer program rather than being obtained by acquiring and digitizing a waveform
from a signal generator. This mathematically generated waveform is preferred for this
demonstration because each waveform element can be precisely controlled, at least
within the computational limits of computer word length. In the case of Fig. 4-15a, the
cosine wave has been generated so that exactly 10 cycles appear over the 10 second
window length. Also, the cosine wave has an exact amplitude of one volt.

The FFT magnitude of the cosine wave is shown in Fig. 4-15b. Its major
parameters, taken from the array of computed Fourier coefficients, are printed out on
the CRT photo. Notice that they describe exactly what we would expect for the cosine
wave in Fig. 4-15a. The FFT magnitude indicates a cosine wave existing at exactly one
Hertz with an amplitude of one volt. (Remember, half the energy is in the positive
frequency domain and half in the negative frequency domain.)

Now let’s change the frequency of the cosine wave just a little. Let’s increase it so

exactly 10.5 cycles appear in the 10 second window (1.05 Hz). This new cosine wave is
shown in Fig. 4-15¢ and has an amplitude of exactly one volt. Its FFT magnitude is
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shown in Fig. 4-15d. Again, the major parameters of the FFT magnitude are printed out
at the bottom of the CRT photo. They indicate that the cosine wave has an amplitude of
0.6508 volts and a frequency of 1.1 Hertz. What happened to our one volt, 1.05 Hertz
cosine wave?

Leakage is what happended. Compare Figs. 4-15b and d. Fig. 4-15b is the line
spectrum we expect for a cosine wave, but Fig. 4-15d is not. Fig. 4-15d is more like
something you'd expect from transforming the cosine wave over ashort interval with the
Fourier integral. In fact, that is in essence what has been done in both cases. The effect
of the sin x/x frequency-domain function for the rectangular data window is, however,
very apparent in Fig. 4-15d. There the data window has caused noticeable widening at
the bases of the two spectral components. This widening of the primary component can
be thought of as leakage of primary power into adjacent components.

But why should Fig. 4-15d be any different than Fig. 4-15b? After all, both
magnitude spectra are for cosine waves of the same amplitude and very nearly the same
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a. An integer number of cycles in the b. Frequency-domain magnitude of 4-15a
window (10 cycles). shows no leakage.

c: aninteger number of cycles in the d. Frequency-domain magnitude of 4-15¢
window (10.5 cycles). shows significant leakage. 1754-57

Fig. 4-15. A look at leakage.
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frequency. Why should the discrete transform treat them differently? In answer, an
integer number of cosine cycles is acquired within the window in the one case; in the
other case, a noninteger number of cycles is acquired.

To understand the effect of this on leakage, let's look closely at what happens
when each cosine wave is prepared for transformation by the DFT via the FFT. This is
best done through Figs. 4-16 and 4-17. In both of these figures, cosine waves and
sampling rates of lower frequency are used for illustrative convenience. Positional
relationships to the window are maintained, however, so the same concepts apply.

Beginning in Fig. 4-16a, a cosine wave is shown in both the time domain and
frequency domain. This is the ideal. The cosine wave is exact, and its amplitude and
frequency are reflected exactly in the frequency-domain line spectrum. (Since phase is
zero, a phase diagram isn’t included.)

The rectangular window corresponding to the time-domain display areas in Fig.
4-15a and cis shown in Fig. 4-16b. It is defined in the time domain such that it is zero for
all negative time and goes to a value of unity at time zero. It remains at unity amplitude
from time zero out to 10 seconds. There it falls instantaneously so that its defined
amplitude at 10 seconds is zero. In the frequency domain, the magnitude of the
rectangular window is the familiarsin x/x of asquare pulse. Because of the time width of
the window, the magnitude diagram shows azero atevery 1/10 seconds =0.1 Hertz. The
phase for this particular window is nonzero; however, its combination with other zero
phase waveforms in this example make phase consideration unnecessary.

Thefirststep of analog-to-digital conversion, whetheritis done through hardware
acquisition or through mathematical waveform generation, is shown in Fig. 4-16¢. This
is a limiting of our view of the waveform to a finite time interval, a window. In the time
domain, this is mathematically equivalent to multiplying the rectangular window in Fig.
4-16b with the cosine wave in Fig. 4-16a. In the frequency domain, this time-domain
multiplication corresponds to convolving the frequency-domain magnitudes in Figs. 4-
16a and b. (Since the cosine wave has zero phase, its frequency domain convolution
with the window results in a zero phase function.) Notice that the maximums of the two
sin x/x major lobes in Fig. 4-16¢ reside directly over the 0.2 Hertz frequency of the
cosine wave. Because of the pulse nature of the window, however, the frequency
domain of the windowed cosine wave has now become a continuous spectrum instead
of a line spectrum.

The windowed cosine wave in Fig. 4-16c¢ still hasn’t been converted to a digital
form yet. It’s still an unsampled, analog waveform.

To finish the conversion, we must limit our view of the waveform to specific points
within the window's unity amplitude duration. This limiting to specific points is referred
to as sampling and canbe represented as atrain of impulses similar to that shown in Fig.
4-16d. The impulses in this train define the discrete time-domain points to be
considered in the transformation.
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Fig. 4-16. Process of transforming a cosine wave having an integer number of cycles in the
window.
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For ease of illustration, Fig. 4-16d shows only 16 samples occurring within the
time span of the rectangular window. Each of these samples is separated by a At of
0.625 seconds. This is substantially fewer samples than used in Fig. 4-15. The window
there included 512 samples at a spacing of At=0.0195312 seconds; however, this
example doesn’t require such resolution.

Fig. 4-16d also shows the frequency-domain magnitude corresponding to the
impulse train (phase is zero). Notice that there is an impulse at zero Hertzand impulses
occurring every =1/At Hertz from there. For the current discussion, the only impulse of
concern is the one occurring atzero Hertz. The other frequency-domain impulses play a
significant part in later discussion of the assumed periodicity of the DFT and FFT.

Time domain sampling of the windowed waveform corresponds mathematically
to multiplying the windowed waveformin Fig. 4-16c by the impulse train in Fig. 4-16d. In
the frequency domain, this corresponds to the convolution of the windowed waveform’s
frequency domain and the frequency domain of the impulse train. The results of this

sampling are shown in Fig. 4-16e, where the waveform envelopes are suggested by
dotted lines.

The time-domain samples in Fig. 4-16e are the waveform amplitudes that are
expressed digitally and transformed to the frequency domain by the FFT. There are 16
samples shown in the time-domain of Fig. 4-16e. The first valid sample is considered to
be attime zero since that is where the window becomes defined as having avalue of one.
The last valid sample is located 15 samples from this. The next sample, the 17th sample
including time zero, is not valid since it occurs at the right edge of the window, which is
zero by definition.

Transforming these 16 time-domain samples to the frequency domain results in
16 complex samples of the frequency domain. The arrangement of these samples on the
envelope of the frequency-domain magnitude is shown in Fig. 4-16e. They span a
frequency range of 1/At=1.6 Hertz including zero Hertz. Seven samples are shown in
the positive frequency domain, one is shown at zero Hertz, and eight are shown in the
negative frequency domain. The eighth sample in the negative frequency domain is
referred to as the Nyquist frequency (Fn) and is equal to 1/2At. The Nyquist frequency is
the highest frequency that can be defined by the 1/At sampling rate.

From the standpoint of leakage error, the location of the frequency-domain
samples relative to the envelope of the frequency-domain magnitude is most important.
Notice in Fig. 4-16e that the maximum of the two envelope peaks correspond exactly to
sample points at +0.2 Hertz. This is the exact frequency of the cosine wave in Fig. 4-16a.
Also, notice thatthe remaining samples fall on the zeros of the magnitude envelope. The
result is, in essence, the exact line spectrum for the cosine wave.

Leakage doesn’t appear in Fig. 4-16e because an integer number of cosine wave
cycles is enclosed in the sampling window. This means that the cosine wave in Fig. 4-16
is harmonically related to the window length. And, with the sample arrangement shown,
the cosine wave'’s frequency falls exactly on a sample point. All other sample points
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occur at zeros of the magnitude envelope. If the same things were illustrated with the
512 samples used in Fig. 4-15, the same effect would be seen. The only difference then
would be that the frequency range covered by the transform would be 51.2 Hertz. The
spacing of the frequency samples, however, would still be at 0.1 Hertz in either direction
from zero Hertz.

Okay. Now we know why leakage isn’'t seen in Fig. 4-15b. It's simply because the
repetitive waveform is harmonically related to the window length; that is, there’s an
integer number of cycles in the window.

But what about Fig. 4-15d? It represents a noninteger number of cycles in the
window. How does this bring leakage into the results? To answer this, think about what
would happen if the frequency of the repetitive waveform was such that it falls between
frequency-domain sample points. Can you imagine what happens then? Fig. 4-17 will
help you see this better.

Fig. 4-17 shows exactly the same steps shown in Fig. 4-16. This time, though, the
windowing, sampling, and transformation process is carried out on a cosine wave
having a frequency of 0.25 Hertz instead of 0.2 Hertz. This cosine wave and its
frequency-domain line spectrum are shown in Fig. 4-17a. Followingiit, in Fig. 4-17b, are
the time-domain window and its frequency-domain magnitude. Notice that it is the
same 10-second window used in Fig. 4-16. And, as was done in Fig. 4-16, the cosine
wave and the window are multiplied. The product of the two is shown in Fig. 4-17c.
Notice there that the window includes a noninteger number of cosine cycles (2.5
cycles). The same step in Fig. 4-16 included an integer number of cycles (2 cycles).

Following the product of the window and the cosine wave, the sampling train is
shown in Fig. 4-17d. Again, nothing has changed from Fig. 4-16. The sampling train has
exactly the same position and spacing between sample points. And it is applied to the
windowed waveform in the same manner as described for Fig. 4-16.

Fig. 4-17e is where the effect of changing the cosine wave’s frequency really
becomes obvious. In particular, notice the position of the magnitude envelope relative
to the samples. Notice how the two maximums of the magnitude envelope fall between
the 0.2 and 0.3 Hertz samples. This causes two samples to fall on either side of the major
lobe maximums. Also, notice that all of the remaining frequency-domain samples now
fall at the peaks of the side lobes instead of at the zeros of the magnitude envelope. This
is "leakage error.” Ittakes power from components existing in the continuous waveform
and gives power to frequency components that don’t exist in the continuous waveform.
Because of this leakage error, the discrete transform of the cosine wave is no longer the
expected line spectrum. However, it should be pointed out here that the discrete
transform is what it should be for the time-domain samples provided in Fig. 4-17e.

The same holds true for Fig. 4-15d. There is leakage error there, too, if you choose
to interpret the frequency domain in terms of the line spectrum for a periodic waveform.
But, if you interpret the results from a digital viewpoint, they are correct for the 512 time-
domain samples provided in Fig. 4-15c.

@ 4-27



The FFT

TIME DOMAIN l FREQUENCY DOMAIN
LO.S
1-——
\VANVA
— I — f
/o ! f R
/ / —0.25 0.25
7/
a. The cosine wave.
1
— — f
t 0 I ! f [ T T I TR B |
-5-3—-1.1 3 5
b. Therectangularwindow.
‘\ /\ /\10 sec
I
—t @ t — f
0 f
—0.25 0.25
c. The rectangularly windowed cosine wave.
""HHHHHHIH' |
| 5 | t —f J_slz {)(Y f
—)I '(— At = 0.625 sec '(——1/At —>r— 1/At —>I
d. Trainofimpuises for sampling.
‘ ~ 10 sec ; ‘ ‘ ] | T
L A1k ] I =I t gl [[» HEHE *“Tum 1
0" l_ ] l ] : | | .
—0.25 0.25
—Fn = —1/2A1% Fn = 1/2At
e. Windowed and sample cosine wave.
1754-59

Fig. 4-17. Process of transforming a cosine wave having a noninteger number of cycles in the
window.
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The leakage error seen in Fig. 4-15d and 4-17e comes about because the period of
the cosine wave is not harmonically related to the window. There is a noninteger
number of cycles acquired in the window. In both examples, the leakage can be
removed by adjusting the window length to include an integer number of cycles.

Figs. 4-16 and 4-17 point out some of the basic properties of leakage. There are
some other things that should be pointed out too.

First of all, leakage is not restricted to the frequency-domain magnitude. In
dealing with waveforms in general, leakage error, when it occurs, affects the imaginary
part and real part of the frequency domain to the same degree. And when converting to
the polar form, leakage is carried through the conversion to affect magnitude and
phase. Of course if phase is zero, then it is trivial to consider the effect of leakage on
phase.

Another thing you should realize is that leakage has the same relative effect on the
harmonics of a nonsinusoidal, repetitive waveform as it has on the fundamental of that

a. Rectangular window of 10.5 cycles of a
cosine wave.

c. Triangular window of 10.5 cycles of a d. The FFT magnitude of c.
cosine wave.

1754-60

Fig. 4-18. Window shape determines the degree of widening (main lobe) and rate of decay (side
lobe size) of a spectral component.
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waveform. This follows from the fact that the degree of leakage is related to the
harmonic relationship of the fundamental to the window length. And in turn, the
harmonics see the same relationship to the window through their relation to the
fundamental. For example, if the waveform is acquired so that an integer number of
cycles are in the window, then each of its harmoinics will also have an integer number of
cycles in the window.

With regard to nonrepetitive waveforms (pulses), leakage is nota problemas long
as the pulse is fully contained within the window. In other words, the pulse must rise
from zero and return to zero within the window. If you acquire the pulse so part of it is
outside the window, then you have failed to fully define the pulse and should expect
inconsistencies in the frequency domain.

As a final note on leakage, the form that leakage takes depends on the form of the
window. The leakage shown thus far has been of a form uniquely tied to a rectangular
data window. By changing the shape of the window, as shown in Fig. 4-18, you can
change the shape of leakage. The properties of various window shapes and some
guidelines for using them are given later in Section 5.

Assumed Periodicity—A Case of Even Becoming Odd. In order to demonstrate
the periodicity assumed by the FFT, let’s return to the cosine waves used to introduce
the topic of leakage. In one case, exactly 10 cycles of the cosine wave fill the window; in
the other case, the window is filled by 10.5 cycles.

Now let’s use the FFT to transform the 10 cycles of cosine wave to the frequency
domain. This is shown in Fig. 4-19a. Notice that this time, however, the frequency
domain is shown in rectangular form instead of the polar form used in discussing
leakage.

The frequency domain in Fig. 4-19a is what we should expect from theory. Since a
cosine wave is an even function, its frequency domain function is a real and even
function. This is shown in Fig. 4-19a by the nonzero real part and the effectively zero
imaginary part.

Now let’s use the FFT to transform the 10.5 cycles of Cos‘ine wave. Since we're still
dealing with a cosine wave—an even function in theory—som.e"th'i'ng ve‘ry similar to Fig.
4-19a might be expected. But this isn’t the case! In fact, the FFT results for 10.5 cycles
(Fig. 4-19b) come out exactly the opposite. The real part is effectively zero, and the
imaginary part is nonzero and an odd function. Instead of being the frequency domain
for an even function, Fig. 4-19b is the frequency domain for an odd function.

The paradox in Fig. 4-19 is easily explained if we think of the waveforms there as
being continued beyond the windowed edges. But we can’t totally ignore the window
either, so imagine the waveforms being continued by repeating the window. In other
words, duplicate tr;e windowed cosine waves in Fig. 4-19. Then lay these duplicates out
end to end from either side of the original window so that the information in each
window repeats with a period equal to the window length. This is illustrated more clearly
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a. 10 cycles of a cosine wave appear as an
even function—FFT frequency domain
has a nonzero real part and an effectively
zero imaginary part.

b. 10.5 cycles of a cosine wave appear as
an odd function—FFT frequency
domain has an effectively zero real part
and a nonzero imaginary part.

rti?\.c?i:ng' Because of assumed periodicity in the FFT, an even function can appear to be an odd
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in Fig. 4-20 where the original window is marked by solid lines. The repeated windows
are marked with dotted lines.

Notice in Fig. 4-20a how the windows containing exactly 10 cycles of the
waveform allow the waveform to continue on in a cosinusoidal fashion. This is because
the window edges fall at the same relative points on the waveform. Now notice how this
doesn’t happen for the 10.5 cycles of cosine wave (orany noninteger number of cycles).
The window edges in Fig. 4-20b don't fall on the same relative points. Therefore,
repeating the window results in an odd function of time for the case of 10.5 cycles. For
the case of any other noninteger number of cycles (10.25 cycles forexample), repeating
the window results in a function that is neither even nor odd but is the sum of even and
odd parts.

Fig. 4-20 illustrates the assumed periodicity of the FFT. This periodicity isn’t
necessarily related to the windowed waveform, but is instead directly related to the
window. The window of data is assumed to repeat periodically. Exactly how this comes
about is illustrated in Fig. 4-21.

0 10 sec

a. Repeated windows of 10 cycles of a cosine wave.

0 10 sec

b. Repeated windows of 10.5 cycles of a cosine wave.
1754-62

Fig. 4-20. The FFT assumes periodicity of the window.
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Fig. 4-21. FFT periodicity is tied in with sampling.
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Fig. 4-21 begins at a point corresponding to Fig. 4-17d. That is, a cosine wave has
been windowed so that 2.5 cycles are contained in the window. Fig. 4-21a shows the
time-domain impulse train used for sampling and the frequency-domain magnitude of
this sampling train. The At spaced impulses in the time domain and the corresponding
1/At impulses in the frequency domain extend in both directions to infinity.

In Fig. 4-21b, the effects of time-domain sampling are shown. In the time domain,
the windowed cosine wave of Fig. 4-17c¢ is multiplied by the sampling train. This
corresponds to convolution in the frequency domain. When the windowed cosine
wave’s frequency-domain magnitude is convolved with the 1/Atspaced impulses in the
frequency domain, the result is a repetition of the windowed cosine wave’s frequency-
domain magnitude at every 1/At Hertz.

Since the FFT computes only discrete frequency-domain points corresponding to
the time-domain samples, the FFT can be equated to frequency-domain sampling. Such
a sampling train, with an impulse spacing of Af=1/NAt=0.1 Hertz, is shown in the
frequency domain of Fig. 4-21c. The time-domain function corresponding to this
frequency-domain impulse train is also shown in Fig. 4-21c. It alsoisatrain of impulses
with a time spacing of 1/Af=10 seconds.

Fig. 4-21d shows the results of frequency-domain sampling. The sampling is done
by multiplying the frequency-domain sampling train of Fig. 4-21c with the frequency-
domain magnitude in Fig. 4-21b. This multiplication corresponds to convolution in the
time domain. Thus, the windowed and sampled cosine wave in Fig. 4-21b is convolved
with the 1/Afimpulses in Fig. 4-21c. The result of this is repetition of the windowed and
sampled cosine wave in the manner shown in Fig. 4-21d.

The actual data taken by windowing and sampling and the data computed by the
FFT are indicated in Fig. 4-21d by dotted lines. These data blocks are what actually fill
the software arrays and what make up the instrument displays. (In practice, however,
more samples are usually used for each array instead of the 16 shown.) The effective
repetition of these data blocks comes about through sampling the original waveforms.
How the assumed periodicity of the FFT affects the periodicity of the original waveform
depends upon how the samples are arranged on the original waveform. For the case
where an integer number of cycles are acquired in the window, the assumed periodicity
of the FFT is harmonically related to the waveform’s period. If a noninteger number of
cycles is acquired, the waveform period isn’'t harmonically related to the assumed
periodicity and the situation of Fig. 4-19b occurs. In either case, the FFT results are
correct, considering the effects of windowing and sampling. The error comes in when
digital results are interpreted strictly from an analog point of view.

As a final note, assumed periodicity is independent of the waveform being
acquired. Periodic repetition of the sampling window always occurs. Thus, an acquired
and sampled nonperiodic waveform (a pulse) is also subject to assumed periodicity in
the manner of Fig. 4-21. However, if the pulse is acquired so it is completely defined
within the sampling window, the actual time domain samples and computed Fourier
coefficients will be a correct representation of the pulse. The assumed periodicity
simply causes the information to appear duplicated beyond the window edges.

@ 4-35



The FFT

Aliasing—A Case of Incomplete Definition. Before any waveform can undergo
digital signal processing, the waveform must be windowed and sampled. The rate at
which the waveform is sampled determines how well it is defined, how accurate the
discrete representation is.

The rule governing proper sampling is referred to as the Nyquist sampling
theorem. This theorem states that the sampling rate must be at least twice the frequency
of the highest frequency component in the waveform being sampled. In other words,
there must be at least two samples per cycle for any frequency component you wish to
define. If there are less—if the sampling rate is less than twice the highest frequency
present—then aliasing occurs.

You can verify the Nyquist sampling theorem through avery simple experiment. It
consists of sampling sinusoids of increasing frequency while maintaining a constant
sampling rate. At some point, the sinusoid’s frequency becomes such that samples
occur at less than two per cycle. Then aliasing error can be seen. This is most easily
observed in the frequency domain, where the spectral components move out to the
edge of the display as frequency is increased. When the Nyquist frequency is reached
(the frequency where aliasing begins), the spectral components will have moved to the
edges of the display. As the waveform frequency is further increased, the components
fold around the edges of the FFT magnitude display and move back to lower frequency
areas. This is aliasing. It is the representation of a high-frequency component by a lower
frequency component. The key points of this experiment are shown in Fig. 4-22.

In Fig. 4-22a, 20 cycles of a cosine wave are included in the window. For 512
samples in the window, this gives about 25 samples per cycle, which is more than ample
for defining the cosine wave. The FFT magnitude for this 25-samples-per-cycle
condition is shown in Fig. 4-22a. It is what would normally be expected for the sampled
cosine wave.

Now, in Fig. 4-22b, the frequency is increased so that 200 cycles appear in the
window. This means there are a little over two samples per cycle. (In practice itis best to
use at least three cycles per sample on the highest frequency component to be certain
of avoiding aliasing.) As can be seen by the time-domain representation, it is a little
difficult to visualize the cosine wave when only 2.56 samples per cycle are used.
Nevertheless, the samples do define the cosine wave. It is correctly indicated by the
spectral components near the first and ninth divisions in the FFT magnitude display.

Another increase in frequency brings us, in Fig. 4-22c¢, to a condition of 2.016
samples per cycle. The spectral components in the FFT magnitude have moved nearly
to the edges of the display. We are near the limit stated by the Nyquist sampling
theorem.

A large jump in frequency from that in Fig. 4-22c¢ puts us well into the region of
aliasing. This is shown in Fig. 4-22d, where 500 cycles have been sampled 1.024 times
per cycle. Instead of seeing 500 cycles, though, the samples seem to have outlined
about 12 cycles of a lower frequency cosine wave. And in the frequency domain, the
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1754-64

Fig. 4-22. The sampling rate must provide at least two samples on each cycle of the highest
frequency component. Aliasing occurs if there are less than two samples per cycle.
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spectral components have moved back in from the display edges to indicate this low-
frequency alias.

Where did the high frequency in Fig. 4-22d go? Well, it really resides somewhere
beyond the edges of the magnitude display. How did its alias in the lower frequency
region come about? That can be answered by looking at Fig. 4-23.

1754-65

Fig. 4-23. Insufficient sampling of a high-frequency component results in a low-frequency alias.

In Fig. 4-23, ten cycles of a sinusoid are indicated by a solid line. Let’'s assume that
these ten cycles represent a high-frequency component, say 100 kHz, of a waveform
that is being sampled. Let's further assume that the heavy dots on the ten cycles
represent the amplitude samples relative to the analog-to-digital reference, shown as a
solid horizontal line. Notice that there are twelve samples for the ten cycles of the
sinusoid. Since it is a 100 kHz sinusoid and it is sampled 1.2 times per cycle, it follows
that the sampling frequency is 120 kHz. We know from past discussion that this
sampling rate is too low for the 100 kHz component. The Nyquist frequency is
120 kHz/2 or 60 kHz, and as a result we should expect aliasing.

The dotted sinusoidin Fig. 4-23 is the low-frequency alias resulting from sampling
the 100 kHz componentattoo low of arate. Notice how this alias passes through each of
the sample points. A little further inspection shows that, for the assumed sampling rate,
the dotted sine wave has a frequency of 20 kHz.

Let’s look at the frequencies associated with Fig. 4-23 again. There is a pattern
there associated with aliasing. First, we assumed a high-frequency component of
100 kHz. From the sample arrangement on this 100 kHz component, we determined
that the sampling rate is 120 kHz. And since the Nyquist frequency is one half the
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sampling rate, anything above 60 kHz becomes aliased. For our example, the Nyquist
frequency is 40 kHz below the 100 kHz component. We also noted that the sample
points describe a low-frequency sinusoid. This low-frequency sinusoid, the alias, hasa
frequency of 20 kHz—it occurs 40 kHz below the Nyquist frequency. Do you see the
pattern?

When a sampled waveform has frequency components above the Nyquist or
folding frequency, those components are folded about the Nyquist frequency into the
frequency domain below. To aid in visualizing this folding action, refer to Fig. 4-24.
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1754-66

Fig. 4-24. When the sampling rate is 60 kHz, a 100 kHz component is folded down to become a
20 kHz alias.

Another demonstration of aliasing is shown in Fig. 4-25. In this case, an ideal
square wave is constructed in a waveform array of the Digital Processing Oscilloscope.
This was done by the following DPO TEK BASIC program:

190 LET A=.6283

195 INTEGRATE A,PA

119 LET B=COS(N*A)

115 LET B=SGN(B):LET VB$="V":LET HB$="S"
120 LET SB=1E—3:LET PB=B:STOP

The value of N in line 105 determines the number of cycles generated in the data
window. If N is set to 20, then 20 cycles will be generated. The square wave is of unity
amplitude, but you can change its amplitude by multiplying the B array by a constant.
The hoerizontal scale factor is under the control of SB in line 120. In this example, SB is
set to one milli(second) per division, but you can set it to any value you wish. Fig. 4-25
was obtained by computing the FFT magnitude of the square wave generated by the
example program in lines 100-120.

In Fig. 4-25, the Nyquist frequency is at the left and right sides of the display. The
nonaliased components are marked with the numbers one through six. All of the other

@ 4-39



The FFT

182U 5.12KH2Z

+
il
 gn 20 2n 2n o e 2

I

<+
->
>
-
<+
L 3
L 4
L 3
<>
*
L 3
L 3
>
-
L 3
4

<

bl
-

=3 DIV
1754-67

Fig. 4-25. FFT magnitude of an ideal square wave. The fundamental (1) and the harmonics
numbered 2,3,4,5, and 6 are not aliases. All others are aliases.

components are aliases of higher frequencies, frequencies that actually exist beyond
the edges of the display area. They have been folded about the edges by aliasing and
proceed in lower frequencies to zero Hertz (center of the display). At zero Hertz, they
fold again and move out to the edges, where they fold again. This goes on as long as
there are aliases to be folded.

In general, you can distinguish aliases by knowing something about the waveform
you have sampled. If it is periodic, you know that it has harmonic content, and you can
find its fundamental from the period. Thus, you can predict where the harmonics should
be. And, in general, the aliased components will appear between those harmonics.
harmonics.

In the case of nonperiodic waveforms, where the frequency domain appears to
duplicate a continuous spectrum instead of a line spectrum, you can be assured that
aliasing has occurred if the spectrum hasn’t dropped to a low level before the frequency
display edées. Actually pointing out aliases, however, is difficult since all frequencies
are present in a pulse’'s spectrum.
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Aliasing is inevitable when analog waveforms are windowed and sampled.
Remember, the data window itself has a spectrum that is infinite in extent. It is
impossible to have a sampling rate that assures two samples per cycle of the highest
component. In most cases, however, the high-frequency portion of a waveform’s
spectrum drops to what can be considered to be an insignificant level. Then all you need
to do is select a sampling rate such that several samples per cycle occur for the highest
frequency of significance. Any aliasing that occurs then will be below the level of
consideration or at least will not be resolvable within the limits of computer word length
and the dynamic range of the acquistion instruments.

You will run into some cases where waveforms are not high-frequency limited.
The ideal square wave whose spectrum isshown in Fig. 4-25 is one example. Waveforms
with very fast rise times and responses from high-pass filters are not band limited, and it
is difficult to escape aliasing by adjusting sampling rate. In these cases, aliasing can be
prevented by filtering the waveform before it is sampled. Filters used for doing this are
referred to as antialiasing filters and are designed to limit the high-frequency content of
a waveform to a known and acceptable cutoff frequency.

For most FFT applications, aliasing isn't a problem. It can usually be avoided.
When it cannot be avoided, it is often sufficient to just recognize the aliased
components and either ignore them or deal with them on an individual basis. And, if this
is not acceptable, antialiasing filters can be used to band limit the signal to the desired
cutoff frequency.

Other Sources of Error

Noise, leakage, periodicity, and aliasing are all things that are related to
implementing the FFT in general. They really aren’t FFT errors, though, but are
truthfully errors associated with the analog waveform and how it is acquired and
sampled.

Besides these general types of errors, there are possiblilities for other errors
related to the specific hardware or techniques used to acquire data. For example,
sampling and digitizing can be done by hand from CRT photos of waveforms or by using
various video techniques. In such approaches, optical errors may become important.
The electron optics of the CRT and the lens optics of camera systems may add
geometric distortion to the acquired waveform. Natually this distortion becomes part of
the data that the FFT works on and may have a significant effect on the frequency
domain. There are, however, various software approaches that provide trace prediction
and geometry correction.

Each approach to acquisition and sampling has specific errors unique to that
approach. It is impossible to cover all of these approaches here and to list the possible
errors. And, for the most part, such an extensive listing is unnecessary. Complete and
comprehensive measurement systems do recognize these errors and attemptto reduce
them to insignificance through proper hardware design and correction algorithms in
the software.
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SECTION 5
A GUIDE TO USING THE FFT

Up to this point, a lot of Fourier theory has been covered and some general
principals for applying it have been pointed out along the way. Now is agood time to go
back and summarize this theory in terms of the FFT and to list some specific guidelines
for using the FFT. In addition to this recap, Section 5 ends by condensing some
windowing information into a foldout. This foldout is perforated for easy removal and
can be used as a quick-reference wall chart in your work area.

Some Important Properties of the FFT

For the most part, the important properties of the FFT are also the important
properties of the Fourier integral. Most of these are detailed in Section 2; however, it is
worthwhile to briefly list them again with some additions pertaining to the FFT. These
properties are:

1. The FFT Has an Inverse. Any sampled waveform that is transformed to the
frequency domain by the FFT algorithm can be transformed back to the time domain by
basically the same algorithm.

2. Even Functions Have Real Parts Only. If a function is windowed so that
repeated windows form a function that is a mirror image (symmetric such that
x(t)=x(—t)) about time zero, then the windowed function is an even function. Its
frequency domain is real and also even.

3. 0dd Functions Have Imaginary Parts Only. If a function is windowed so that
repeated windows form a function that is an inverted mirror image (x(t)=—x(—t)) about
the window edge (time zero), then the windowed function is an odd function. Its
frequency domain is imaginary and odd.

4. Arbitrary Functions Are the Sum of Even and Odd Parts. Any function may be
expressed as being even or odd or the sum of even and odd parts.

5. The FFT Is a Linear Transform. This is a property whereby two or more
waveforms can be summed in the time domain to give a third function, and the
frequency domain of this new function is the sum of the frequency domains of the
original functions.

6. Time Scaling Affects Frequency Scaling. A time-scale expansion corresponds
to a frequency-scale compression, and a time-scale compression corresponds to a
frequency-scale expansion. The effect of time scaling on the frequency-domain
amplitude depends upon the type of waveform acquired (periodic or nonperiodic) and
its relation to the window.
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7. Frequency Scaling Affects Time Scaling. A frequency-scale expansion
corresponds to a time-scale compression, and frequency-scale compression cor-
responds to a time-scale expansion.

8. Time Shifting Affects Phase Only. Shifting a waveform within the window
changes the real and imaginary parts of the frequency domain in such a manner that the
square root of the sum of the squares (the magnitude) remains constant. The ratio of the
imaginary part to the real part varies, however, and affects phase.

9. Frequency Shifting Causes Time-Domain Modulation. Shifting a frequency-
domain function by plus and minus F causes a sinusoid of frequency F to be modulated
in the time domain by the time-domain function corresponding to the frequency-
domain function before shifting.

10. The Convolution Property. Multiplication of two time-domain waveforms
corresponds to convolution of each waveform’s frequency-domain function. Converse-
ly, forming the complex product of two frequency-domain functions corresponds to
convolving the associated time-domain waveforms. Thus, time-domain convolution is
quickly performed with the FFT by transforming the waveforms to be convolved to the
frequency domain, forming the complex product of these FFT results, and inverse
transforming the product back to the time domain.

11. The Correlation Property. Correlating two time-domain waveforms cor-
responds to conjugating the frequency-domain function for one of the waveforms and
then multiplying this by the frequency-domain function of the other waveform.

12. The FFT Assumes Periodicity in All Cases. The FFT assumes that the
windowed data repeats with a period equal to the window time. Thus, there are many
assumed windows extending to either side of the physical window, and each is an exact
duplicate of the physical one.

Some Guidelines for Improving FFT Results

By themselves, the properties of the FFT may seem to make a rather dull list. Some
or all of them may, at first glance, seem academic and of little usefulness in actually
applying the FFT. Experience, however, will reveal exactly the opposite to be true. The
following list of guidelines for using the FFT is derived from FFT’s properties. Their
usefulness and validity depend directly on the properties of the FFT.

Signal Average to Remove Additive Noise. Noise by itself is a function. It, too, has
a frequency-domain counterpart. And by the property of linearity, noise thatis added to

a signal in the time domain is also added to the signal’s frequency-domain function.

It is another property of noise that it is generally random and, thus, has an average
value that tends to zero in the long term. Because of this, repetitive signals can be
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acquired a number of times and each acquisition can be summed and an average
formed that reduces the level of additive noise. The signal-to-noise ratio improvement
gained by this signal averaging is proportional to the square root of the number of
waveforms averaged. When the number of averages is expressed as a power of two, this
corresponds to a 3-dB improvement for each power of two averages. For example, 128
averages can be expressed as 2’ and corresponds to a 7x3 dB=21 dB improvement
where truly mean-zero noise is involved.

Whenever waveforms can be repetitively acquired, they should be signal
averaged. How many times they should be averaged isa queétion of how noisy they are.
As a general rule, you should signal average any repetitive signal at least 32 times. This
reduces low-level noise and any noise added by time jitter or quantizing error. If the
waveform is moderately noisy, 128 to 512 averages should provide sufficient
improvement. If the waveform is practically buried in noise, many more averages may
be required for the desired improvement.

Removing the Mean Often Improves Amplitude Resolution. Many waveforms are

such that their mean value is nonzero: they have a dc component. Sometimes
waveforms are purposely acquired with a dc bias or inadvertantly acquired with a dc

bias. The later case frequently occurs when ground reference information isn’t properly
supplied with the waveform. And finally, the average value of a waveform may be
nonzero simply because of the way it is windowed. For example, a pure sinewave has a
zero mean over its period. But if the sine wave is considered for a time not equal to its
period or not equal to an integer multiple of its period, its mean value is nonzero. Thus,
analog waveforms that are normally thought of as having a zero mean will not have a
zero mean if the acquisition window contains a noninteger number of cycles.

Whatever the source of the mean value of the waveform samples, the mean is an
added component of the waveform. By the linearity property, itis added in both the time
domain and the frequency domain. In some cases, it is so high in the frequency domain
that it overshadows other waveform components. (Such a case is shown in Fig. 5-1a.)
This can be avoided by computing the mean value of the stored waveform and then
subtracting that mean value from the waveform samples. Removing the mean from Fig.
5-1a provides the results shown in Fig. 5-1b.

In DPO TEK BASIC and WDI TEK BASIC software, removing the mean is done
very simply with one statement. For example, a waveform stored in array A will have its
mean removed by entering and executing the following statement.

LET A=A—MEA(A)
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a. The dc bias in a time-domain waveform frequently overshadows other components in
the frequency domain.

b. Removing the mean lets other components come through more clearly.

1754-68

Fig. |5-'1_. Removing the mean before transforming a waveform often improves frequency-domain
resolution.

Always Look at Waveforms from the FFT’s Point of View. No matter what type of
signal is acquired, the FFT assumes that the data is repeated at every window length.
The effect of this isshown in Fig. 5-2, where signals of several types are shown in analog
form and then shown with the assumed periodicity of the FFT. The actual segment
associated with the window is blocked in solid lines. The assumed repetitions are
blocked in dotted lines.

In Fig. 5-2a, the case of periodic signals is shown. Notice that assumed periodicity
doesn’t change the waveform when the window edges fall on the same relative points of
the waveform (integer number of cycles in the window). When the window edges fall at
different points on the waveform, however; the assumed periodicity doesn’t coincide
with the analog waveform. This is the case where a noninteger number of cycles occur
in the window, and leakage will smear the frequency-domain information.

Fig. 5-2b shows a nonperiodic waveform of a transient nature. Here, the assumed

periodicity causes the transient to appear to be repeated with a period equal to the
window length. |f we take this periodic point of view, the FFT results describe the
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a. Periodic signal—integer number of cycles and noninteger number of cycles in the
window.

b. Nonperiodic signal—transient.

RO l | A

c. Nonperiodic signal—random.
1754-69

Fig. 5-2. The type of waveform doesn’t change the FFT’s point of view. Periodicity is always
assumed. However, you can change your point of view, according to the type of signal, in
interpreting FFT results.
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discrete frequencies of the repeated pulse’s line spectrum. On the other hand, if we
choose the nonperiodic point of view, the FFT results represent estimates of a few
discrete points on the continuous envelope of the energy spectrum for the single pulse.
In either case, the FFT results themselves do not change. The numbers are the same.
The only thing that changes is our interpretation of these numbers.

Still another type of waveform is shown in Fig. 5-2¢. This is a random type of
waveform and is subject to assumed periodicity in the same manner as any other
waveform. Here again, we can take either point of view described for Fig. 5-2b. In both
cases, the FFT results for the acquired interval of random data are the same. Inno case,
however, can we say anything about the data not acquired in the window. We could
assume that it is zero outside the window (pulse), or that the same data exists outside
the window as exists inside the window (periodic), or we can make no assumptions atall
and just work on the data in the window. Again, these assumptions do not change the
results; they just bias our interpretation of the results.

Use Sample Rates Greater than Twice the Highest Frequency. The Nyquist
frequency, fn, determines the highest frequency component of a waveform that can be
defined by sampling. The Nyquist frequency is determined 'by the sampling rate and is
given by fyn=f/2=1/2At, where f, is the sampling rate and is equal to the reciprocal of the
sample interval, At. This works out so that a component at the Nyquist frequency is
sampled twice over its period. A component less than the Nyquist frequency is sampled
more than twice on each cycle, and one greater than the Nyquist frequency is sampled
less than twice per cycle.

Since it takes at least two points per cycle to uniquely define a sinusoid of given
amplitude and frequency, any components existing below or at the Nyquist frequency
are correctly defined. A componentabove the Nyquist frequency will have less than two
samples per cycle and will be redefined as a low-frequency alias. For example, sampling
a 100 kHz component when the Nyquist frequency is 60 kHz results in the 100 kHz
component being aliased. The alias falls below the Nyquist frequency by the amount
that the original component exceeds the Nyquist frequency. For the case of 100 kHz
component and 60 kHz Nyquist frequency, the alias falls 40 kHz below the Nyquist
frequency.

In practice, it is impossible to guarantee absolutely stable sampling intervals.
Therefore, a margin of safety is prudent. Generally, you should sample so that three or
more samples occur for each cycle of the highest expected frequency in a waveform.
Your sampling rate should be greater than twice the highest significant frequency
present in the waveform being sampled.

Sometimes, you won't know what the highest frequency in a waveform is. Or in
some cases, your sampling rate is constrained by other considerations and aliasing
can't be avoided. In these cases, aliases can often be identified and eliminated or
ignored. The following are some suggestions for determining if aliasing has occurred
and what components are aliases:
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1. If the frequency-domain display has significant components near the display
edges or does not appear to go to zero before the display edges and remain at
zero, then aliasing has probably occurred. These conditions are illustrated in

Fig. 5-3.

1754-70

Fig. 5-3.d Significant components at or near the display edges indicate that aliasing has probably
occurred.

2. If aliases can’t be identified and significant components are near theright side
of the display, it is possible that the aliases have folded back on top of and
added to valid components. In a line spectrum, this occurs when the display
edges fall on a harmonic or midway between harmonics. These possibilities
are illustrated in Fig. 5-4.

1754-71

Fig. 5-4. There are anumber of cases where aliases aren’t obvious because they are added to valid
components.
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3. If the frequency domain appears to be aline spectrum and harmonic spacing
isn’t even or some harmonics seem to increase in magnitude with increasing
frequency, then aliasing should be suspected. In Fig. 5-5, some uneven
spacings are indicated and the increasing envelope of aliases is shown by the
dotted line. All of the components below the dotted line are aliases.

1aamy 9. 12HZ

=3 DIV

1754-72

Fig. 5-5. Componentspacing and trends in component amplitudes often aid in identifying aliases.

4. Low-level spectral components residing between higher-level components in
aline spectrum are notalways aliases. If these components are located exactly
half way between adjacent, higher-level components, they may be valid
harmonics. In the case of a nonsymmetric square wave, the degree of
nonsymmetry is indicated by the amplitudes of the even harmonics. This is
shown in Fig. 5-6.
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1754-73

Fig. 5-6. Don’t mistake harmonic distortion for aliases. In the above CRT photo, aliases are atan
almost insignificant level. Even harmonics, however, are at very significant levels.

Phase is Only Valid for Existing Components. Phase is generally computed from
the ratio of the imaginary part to the real part of the frequency domain. Quite often, low-
level noise between existing components in the real and imaginary parts can give rise to
significant phase components where frequency components don’t effectively exist.

Ininterpreting computed phase diagrams, remember that they are only valid at the
points where magnitude components are considered to exist.

Remove Delay to Reduce Phase. From the time-shifting property of the Fourier
integral, we know what shifting a waveform relative to time zero affects frequency-
domain phase, but not magnitude. The amount that a waveform is shifted positively in
time is referred to as delay. And the more delay there is, the greater the phase.

The same thing holds true for the FFT. However, in terms of the FFT, it is more
direct to think of delay as affecting both the real and imaginary parts of the frequency
domain. Adding or removing delay causes thereal and imaginary parts to change. Their
change relative to each other is such that the magnitude (v/Im”> + Re’) remains
unchanged. On the other hand, the ratio of the imaginary to the real part does change
with delay; therefore, phase (arctan Im/Re) changes with delay.

By shifting a waveform in the window to reduce delay, the ratio of Im/Re can be
reduced. In some cases, symmetries can be taken advantage of so that the imaginary
part goes to zero. This corresponds to producing an even function of time and is
illustrated in Fig. 5-7.

Fig. 5-7a shows a band-limited square pulse that is delayed from time zero. The
nonzero real and imaginary parts of its frequency domain are also shown in Fig. 5-7a.
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The frequency-domain magnitude computed from these is the familiar sin x/x
magnitude function for a square pulse. Also, since the real and imaginary parts are
nonzero, their ratio will result in a nonzero phase function.

In Fig. 5-7b, the same pulse has had delay removed so that its midpoint coincides
with time zero. Half of the pulse is at the left window edge, and the other half is at the
right window edge. This is the data arrangement for an even function of time. It is made
possible by taking advantage of the assumed periodicity of the FFT so that repeating the
window in negative time completes the left half of the pulse.

As would be expected for an even function of time, the frequency domain in Fig. 5-
7b is areal and even function of frequency. The imaginary part, except for digital noise,
is zero.

The frequency-domain magnitude computed from the real and imaginary parts in
Fig. 5-7b will match that computed for Fig. 5-7a. The magnitude is not changed by time
shifting. Phase, however, does change. It will be zero if we consider the imaginary part
to be absolutely zero. But since the imaginary part is only effectively zero compared to
the real part, we should notexpect actual calculations to result in zero phase. The digital
noise will cause computed phase to be nonzero at some points.

Shifting a waveform in the window to reduce delay can be done during acquisition
by choosing an appropriate trigger level. It can also be done after acquisition by using a
program to shift data in the waveform array. In WDI TEK BASIC software, a delay
argument is provided as an option in the FFT statement. It lets you specify how many
sample intervals of delay are to be removed from the data array before the FFT algorithm
is executed.

Changing Sample Rates for Different Resolutions. Therate atwhich yousample a
waveform determines how well that waveform becomes defined in either the time or
frequency domain. And, in general, increasing definition in the time domain causes a
decrease in frequency-domain definition. This comes from the reciprocal relationship
between the time-domain sample spacing, At, and the corresponding frequency-
domain sample spacing, Af. If you decrease At for more time resolution, then Af
increases for less frequency resolution, assuming the number of samples in the time
window remains constant.

The effect of changing sample rates (1/At and 1/Af) is shown in Fig. 5-8. There,
the number of samples in each display is constant at 512. The sample rates, however,
are changed by distributing the 512 samples over differenttime and frequency intervals.

In Fig. 5-8a, a time-domain waveform is acquired in the window so that there are
many samples over each of its cycles. This is the kind of resolution you would like for
studying signals in the time domain. You can see the details of the waveform, and
because of a small At, you can accurately determine its time-domain parameters. But
this also causes the frequency-domain window, Fig. 5-8b, to span more area than
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b. The same square pulse with no delay.

1754-74

Fig. 5-7. Time shifting causes the imaginary and real parts of the frequency domain to vary.
Magnitude, however, remains constant while phase reflects the time shift.
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needed. As you can see in Fig. 5-8b, the useful frequency-domain information is
concentrated at the middle of the display. The rest of the display contains essentially
useless information.

The opposite situation is shown in Fig. 5-8c and d. In Fig. 5-8c, the same waveform
has been acquired so that there are fewer time samples per cycle. This sacrifices time
resolution, but look what happens to the frequency domain in Fig. 5-8d. The useful
frequency-domain information has spread out to cover most of the display area, and
you can easily pick out the different frequency components and their amplitudes. This
is what you want for studying signals in the frequency domain.

The choice of sample rate depends upon what you are looking for. If you are after
time-domain information only, you’llwant to sample for best definition of the waveform,
as shown in Fig. 5-8a. If your interest lies in the frequency domain, the approach of Fig.
5-8¢ is better—be careful of aliasing, though. Generally, your interest will lie in both
domains, and a compromise between these two extremes is necessary.

a. Good time resolution, At=0.0195 us. b. Poor frequency resolution, Af=0.1 MHz.

JummmmmmH4
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c. Poor time resolution, At=0.195 us. d. Good frequency resolution, Af=0.01
MHz. 1754-75
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Fig. 5-8. Changing the sample rate changes the resolution.
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Change Windows to Change Leakage. Leakage is nota universal problem. Itdoes
not affect transient data as long as the transient is fully contained in the window.
Leakage only occurs when the FFT is used to estimate the discrete line spectra
associated with periodic and almost periodic signals. (Almost periodic signals have line
spectra, but the components are not harmonically related.) The actual source of
leakage, as was described in Section 4, is the window used in acquiring the waveform.
The amount of leakage depends upon the window shape and how the waveform fits into
the window.

For the simplest case, let's consider a periodic waveform in a rectangular
acquisition window. If the waveform is acquired so that an integernumber of cycles are
in the window, leakage won’t occur.

It's difficult, however, to obtain an exact integer number of cycles in an acquisition
window. There are just too many variables involved in the physical process. So leakage
is inevitable where periodic waveforms are transformed just as they are acquired. But
leakage can be avoided or at least controlled by changing the window to fit the data or
modify it to a better form.

<€— 2 cycles —>| ’(—— 2 cycles —>|

9 409 511 0 409 511
) ' 1 sec \ N1 sec
1 ! ! L)
| | \
Y
y 4 A 511
0 409 0 511
0.8 sec 0.8 sec
a. Adjust by discarding samples. b. Adjust by interpolating new samples.
1754-76

Fig. 5-9. When possible, adjust window length to include an integer number of cycles.
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Forexample, ifabout 2.5 cycles of a waveform are acquired, then we can disregard
the samples on the offending half cycle and just transform the samples on the desired
two cycles. In effect, the data window (as opposed to the acquisition window) is
shortened in the manner of Fig. 5-9a. In thatillustration, the two cycles are covered by
the first410 out of 512 samples, and leakage can be avoided by doing a 410-point FFT on
just the two cycles. The usefulness of this technique, however, is limited if the FFT
routine is of a type constrained to specific numbers of samples. Forexample, a power of
two algorithm can only transform records of 2, 4, 8, 16, 32, 64, 128, 256, 512,..., 2"
samples. A 410-point FFT cannot be done with a power of two algorithm.

Fig. 5-9b shows a different approach to shortening the window. Although more
complex, ithas the advantage of retaining the number of samples needed by a particular
FFT algorithm. What is done is: The time span of the integer number of cycles is
determined first. This is shown at 0.8 seconds in Fig. 5-9b. Then you compute the
sample spacing needed to place just those cycles in the data window withoutchanging
the number of samples needed by the FFT algorithm. For Fig. 5-9b, this is At=0.8
seconds/512=1.56 milliseconds. These computed sample locations probably won’t
match the locations where waveform samples were actually taken. In Fig. 5-9b, the
actual samples are located at every At=1second/512=1.95 milliseconds as opposed to
the desired 1.56 milliseconds. So the next step is to use the actual sample values and
locations to interpolate what the sample values should be for the new sample locations.
Linear interpolation is the simplest way of doing this, but other methods may prove
more accurate. The interpolates you compute will fill the data window with exactly an
integer number of waveform cycles, and leakage is prevented in the transform to the
frequency domain.

Since almost periodic data doesn’t have a definable period, the techniques of Fig.
5-9 are not wholly applicable to almost periodic data. They can, however, be applied to
make the data at least begin and end at the same level (see Fig. 5-10). This prevents jump

b. Window edges intersecting the same data levels.

g [ S J__
a. Window edges intersecting different data levels.
et ————— e - 1--
I |
| I
\I/\,\/\_ l
I /\\/\\ /\_\__\//\I/
1 :
1 1
S [P SO JH

1754-77

Fig. 5-10. Remove jump discontinuities by making the data begin and end at the same level.
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discontinuities at the window edges. Doing this may not entirely eliminate leakage, but

it certainly helps to reduce it.

Another way to reduce discontinuities at the window edges and reduce leakage to
atolerable level, is to taper the rectangular window. In short, getrid of the abruptedges
of the rectangular window. Make them fall off smoothly to zero. You can do this by
multiplying the acquired data with a window function. Probably the simplest window
functionis the triangular pulse, and its effect on leakage has already been demonstrated
in Fig. 4-18 of Section 4. Some other window shapes that have varying effects on

leakage are shown in Table 5-1.

For the most part, the window shapes in Table 5-1 are explained by their names.
The rectangular window, for example, is a square pulse and corresponds to a standard
acquisition window. The triangular window is a triangular pulse, and the halfcycle sine
is the positive going portion of the sine wave. To get the cosine window and extended
cosine bell, a 0.5(1 — cos x) function is used in the manner of Fig. 5-11. The remaining
windows in Table 5-1 are combinations of other windows. For example, the Hamming
window is a 92% cosine added to an 8% pedestal, and the Parzen window is the rescaled

convolution of two triangular windows.

0.5(1—Cos X) 0.5(1—Cos 5X)

-

a. Cosine window. b. Extended cosine bell.
1754-78

Fig. 5-11. Generating the cosine and extended cosine bell windows.

To give you a basis for comparing leakage from various windows Table 5-1
contains the normalized frequency-domain magnitudes of each window. Some specific
parameters describing these magnitudes are also given in Table 5-1. These values were
computed from software generated windows and may vary slightly from theoretical
values.

In the first column of parameters listed in Table 5-1, the peak magnitude of each
window is compared to that of the rectangular window. In the second column, the
amplitude of the highest side lobe is given in decibels referenced to the major lobe peak.
The 3-dB bandwidth of the major lobe is given in the third column. These bandwidth
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TABLE 5-1

Some Common Data Windows and Their Frequency-Domain Parameters

. Highest
Unity Amplitude Shape Frequency Domain I\Iila:)or Side Band- | Theoretical
Window Equation Magnitude H ;gfﬂ Lobe width Roll-Off
(dB) (3dB) | (dB/Octave)
Rectangle - T
A=1
e T=1/8 —> fort=0to T ‘J\”‘/ T —132 | 0.86p 6
Extended Cosine Bell A=0.5(1—cos275t/T)
for t=0 to T/10
and t=9T/10to T 09T —135 0.954 18
A=1 (beyond 5p)
for t=T/10 to 9T/10
Half Cycle Sine
A=sin 270.5¢/T
/\ fort=0to T ( 0.64T | —224 | 11583 12
Triangle A=2t/T
for t=0 to T/2
05T —26.7 1.2783 12
A= —2¢/T + 2
fort=T/2to T
Cosine (Hanning)
A=0.5(1—cos 27t/T)
fort=0to T 05T —31.6 1.393 18
Half Cycle Sine’
A=sin’ 2770.5t/T
/\ o fepe \ 042T | —395 | 1618 24
Hamming
AZS)‘? ?:Jroo‘.gGTU—cos it 054T | —419 | 1.268 6
(Beyond 5p)
Cosine’
A=(0.5(1—cos 27t/T))’ B
A L R 036T 46.9 1.798 30
Parzen A=1-6(2t/T—1)* +6]2t/T—1]°
for t=T/4 to 3T/4
H 037T —53.2 1.8183 24

S

A=2(1— [2t/T — 1])°
fort=0to T/4
and t=3T/4to T

1754-79
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values are normalized to B, the reciprocal of the window’s time duration. The last
column of parameters gives the theoretical rate of decay (roll-off) of the side lobes.

In general, the lower the side lobes, the less leakage or skirts you will see in the
frequency-domain of the windowed data. However, lowering the side lobes also results
in more energy being concentrated into widening the major lobe. In Table 5-1, you'll
notice that the windows are listed in order of decreasing side-lobe level. As aresult, they
are also listed in order of increasing bandwidth. The exception to this is the Hamming
window, which has a comparatively narrow major lobe for its side-lobe level.

In terms of line spectra, resolution is decreased as bandwidth increases. In other
words, equal-amplitude, adjacent frequencies become more difficult to distinguish. On
the other hand, as the side lobes decrease, selectivity increases. This means you have
increased ability to distinguish adjacent frequency components of unequal amplitudes.
This is further demonstrated in Fig. 5-12.

Notice in Table 5-1 and Fig. 5-12 that the major lobe magnitude decreases
substantially for various window shapes. This is understandable since each of the unity
amplitude windows has less area (energy) than the unity amplitude rectangle. As a
result, the frequency-domain magnitude of a windowed waveform decreases according
to the window’s energy. You can compensate for this by using window amplitudes
greater than unity.

When should windowing be used or when should it not be use? If windowing is
needed, which windowing function should be used? The answers to these questions
depend upon what you are looking for. If a waveform has adjacent components of
nearly equal amplitude, you may want to leave the data in the rectangular window. The
increased major lobe width of another window shape may cause the two adjacent
components to leak into each other and appear as one. On the other hand, if there is a
small component near a large component, a low-side-lobe window will decrease
leakage around the large component and make the small component more visible.
Ultimately, selecting a window is a compromise between needed side lobe reduction
and the allowable increase in major lobe width.

The use of windowing and the choice of windows require some prior knowledge of
the signal to be windowed. You have to know what you want out of the frequency
domain. And to a degree, you must know what the frequency domain has to offer. It's
much like using light filters to improve the quality of photographs. There are some clear
cut cases where filters will improve the picture. Then, there are many other cases that
require experimentation before the fine details are arrived at.
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a. An almost periodic waveform in the Rectangular acquisition window. The FFT
magnitude (4x expanded for detail) shows closely adjacent, nearly equal components;
one has substantial leakage. Also, a small wrinkle at two divisions from center hints ata
possible third component.

b. Multiplying the waveform by a Hamming window reduces side-lobe leakage and
reveals a third low-level component in the FFT magnitude (4x expanded for detail).

c. A Parzen window offers more side lobe reduction, but the increased bandwidth of the
major lobe causes the two nearly equal components to merge completely into each
other.

1754-80

Fig. 5-12. Windowing is a tradeoff between major lobe bandwidth and side lobe reduction. For
this particular waveform, the Hamming window offers the best compromise.
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SECTION 6

A BRIEF LOOK AT SOME FFT
APPLICATIONS

Astronomy, physics, chemistry, statistics, biomedicine, electronics, mechanics,
and a host of other related and unrelated fields have areas of study that can and do
benefit from the FFT. This is because the FFT isnotadiscipline-related technique. Itisa
broad technique of mathematical analysis. Wherever things vibrate, pump, pulse,
bubble, burst, or in any other way change with time, there are possible applications for
the FFT.

If you are familiar with spectrum analyzers, think of all the places they are used
and the literature covering their uses. The FFT is applicable in all of these areas and
more—it is only limited by your ability to provide it with the proper data. Given a
phenomenon: if you can acquire and sampleit, youcan FFT it. Or, if you can’tacquireiit,
maybe you can simulate it. In either case, the FFT gives you the complex frequency
domain, a domain where many difficult time-domain techniques become greatly
simplified.

To even briefly discuss all of the application possiblities of the FFT would be a
considerable task. In lieu of this, let’s just look briefly at a few representative examples.
Perhaps these will suggest further applications in your specific field of interest.

Distortion Analysis

We have already discussed one type of distortion several times. This is the
distortion related to square wave symmetry, where amplitudes of even harmonics
indicate the degree of distortion. There are other types of distortion that are probably of
more widespread interest.

One of these is harmonic distortion. Percents of harmonic distortion for various
harmonics are often quoted when amplifiers and transmission systems are being
discussed. Total harmonic distortion, the sum of the harmonic distortions, is also often
quoted.

Testing for harmonic distortion is a relatively straightforward operation. A
sinusoid (a pure test tone) is fed into the network to be tested. Generally the level of this
sinusoid is set to produce the maximum rated output of the circuit. The frequency of the
tone depends on the particular system being tested, with 1000 Hertz being a common
test frequency for audio circuits.
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The output caused by the test tone will contain any harmonic distortion caused by
the network under test. If it is appreciable, the distortion can be seen by transforming
the output signal to the frequency domain and looking at the frequency-domain
magnitude. |f the network causes harmonic distortion, the frequency-domain
magnitude will have frequency components that are harmonically related to the test
tone. These harmonics are distortion; they are frequencies in the output that are not
present in the input. The percent of harmonic distortion can be determined in the
manner shown in Fig. 6-1.

Another type of distortion occurs when two test tones are fed simultaneously into
a network. Within the network, the signals tend to modulate each other and produce
sum and difference frequencies. The production of these sum and difference
frequencies (side bands) is called intermodulation distortion and is related to amplifier
linearity. Determining intermodulation distortion from the frequency-domain
magnitude of a network’s output is shown in Fig. 6-2.

Of course, any harmonic analysis made via the FFT must be made with due
consideration for leakage. You may need to preprocess the data to ensure an integral
number of cycles, or you may want to window the data to reduce frequency-domain

leakage.
Testf'll‘one »| Network »  Preprocess »1 FFT
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Fig. 6-1. Measuring harmonic distortion.
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Fig. 6-2. Measuring Intermodulation distortion.

Vibration and Mechanical Signature Analysis

Motors, pumps, compressors, rollers, and other assorted rotating machinery
vibrate when they are in operation. When a machine "vibrates too much,” it becomes
obvious that "the darn thing is shot.” This is the simplest type of vibration analysis. But
by the time the results are in, a worn ten-dollar bearing may have cost thousands of
dollars in further damage and unplanned down time.

A better approach is to monitor machinery vibrations through strategically placed
displacement, velocity, and acceleration transducers. Periodic readings of vibration
levels can then be taken, and foreboding trends can often be spotted long before the
vibrations reach a level that a machine operator would consider suspicious.

Still, vibration level alone cannot tell the whole story. A component can be
defective and failing or may have already failed without affecting vibration level. Yet,
those defect or failure vibrations are there, and they often become quite visible when the
machine’s total vibration waveshape is transformed to the frequency domain.
Imbalances, misalignments, and bearing instabilities all add their components to the
spectrum.

A vibration spectrum is referred to as a mechanical signature, and the

determination of information from it is referred to as signature analysis. Generally,
mechanical signatures are obtained when a machine is placed in operation or a
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standard signature is obtained from a known good machine. Then mechanical
signatures taken at later dates can be compared to the standard and significantchanges
in signature components noted. Often, too, specific signature components can be
matched to specific mechanical parts. Thus, not only can defects or impending failure
be predicted, but the defective part can also be pinpointed. Some examples of how
failures or defects might be spotted are illustrated in Fig. 6-3.
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Fig. 6-3. Signature analysis can point out mechanical deficiencies.
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Frequency Response Estimation (Transfer Functions)

A large part of scientific and engineering work centers around systems. These
systems can be simple or complicated. They can be mechnical, electrical, or biological.
But whatever they may be, the main issues usually are: "What does it do? How does it
react to this stimulus? What would happenif...?”

Often, these issues can be settled by actually testing the system. Just as often,
though, testing the system under the conditions in question may be impractical, or there
may be an element of danger involved. Then you would rather predict than test or at
least get some reassuring predictions before actual testing.

What you need is a means of completely characterizing the system. You need to
know how it will respond to each frequency component of an arbitrary input signal.

How a system reacts at every frequency is called the system frequency response.
This frequency response is often expressed as an amplitude-frequency plot and a
phase-frequency plotor, where possible, a set of equations describing these plots. Fora
linear, time-invariant system, the frequency response completely characterizes the
system. If the system is nonlinear or time varying, a frequency response plot can
characterize the system for some specific operating conditions.

There are a variety of methods for obtaining frequency responses. The simplest s
to feed sinusoids at various frequencies, one at a time, into the system; then the
amplitude and phase changes at the output are plotted. Swept frequency oscillators and
various detection schemes are common means of obtaining frequency response plots.
A spectrum analyzer with a tracking generator is another standard approach. Typically,
however, standard instrumentation is limited to providing only an amplitude-frequency
plot. Also, swept frequency oscillators and tracking generators have limited frequency
ranges. These limitations result in incomplete characterization of the system—only an
amplitude-frequency plot is obtained for a limited frequency band. Depending upon
your analysis job, you may need more than this.

Another point to consider is that sinusoids are not practical test signals for some
situtations. This is particularly true for many mechanical and geological systems.
Consider oil exploration for example. Geological surveys are routinely conducted by
exploding small charges on the earth’s surface. Responses, picked up by geophones
placed at strategic locations, can be used to characterize subsurface structure.

A sharp concentration of energy, such as a geologist’s test charge, is generally
referred to as an impulse. How a system reacts to an inpulse is termed the impulse
response, and the impulse response is the time-domain equivalent of the frequency
response.

If you Fourier transform or FFT a system’s impulse response, you get the system
frequency response. This is often referred to as the system'’s transfer function; however,
a transfer function is, strictly speaking, the Laplace transform of the impulse response.
The transfer function and frequency response can be considered to be the same,
though, as long as the system is assumed to be at steady state before time zero.
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In the theoretical sense, an impulse is a function of infinite amplitude, zero width,
and unity area. Its frequency domain has unity amplitude at every frequency. In
practical terms, an impulse has a finite amplitude (greatenough to elicit aresponse, but
small enough to avoid damaging the system) and a nonzero width. The width must be
much less than the expected response time of the system.

All of this can be likened to a Chinese gong—the strike of the mallet is the impulse,
and thevibration of the gong is the impulse response. If the gong is struck with too much
force, it is driven through the wall and destroyed. Ifit's struck too lightly, the response is
minimal and you hear nothing. If you strike it forcefully but let the mallet rest on the
gong, it sounds mushy. Only when it is struck sharply and with moderate force does it
respond with its clear, characteristic ringing.

There are also cases where an impulse is not an appropriate test signal. In testing
electronic networks, for example, it is often easier to apply a unit step function to the
input. Then the voltage atthe outputisreferred to as the step response. This is related to
the impulse response by the fact that the derivative of a step is an impulse. And, for a
linear, time-invariant system, the derivative of the step response gives the impulse
response. And again, the frequency response is the FFT of the impulse response.

There are some cases, too, where none of the standard test signals are
appropriate—sinusoids, swept frequencies, impulses, and steps are out of the question.
A communications network might be a good example of this.

Suppose the network has already been installed and is in use; you don’t want to
interrupt it for frequency response testing. For cases such as this, the operating signals
must be your test signals. Their relationship to the frequency response is shown in Fig.

x(t) h(t) y(t)

X(f) H(f) Y(f)

y(t)=J h(n)x(t—r)dr

Y(H=X()H(f)
1754-84

Fig. 6-4. The characterizing parameters of a linear, time-invarient system.
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6-4, where x(t) is the input signal, h(t) is the impulse response, and y(t) is the output
signal. The simplest relationship exists when these terms are looked atin the frequency
domain. Then the frequency domain of the output, Y(f), is equal to the product of the
frequency response, H(f), and the input frequency domain, X(f). The frequency
response can be determined by acquiring x(t) and the corresponding y(t) and fast
Fourier transforming both to the frequency domain. H(f) is then found by dividing Y (f)
by X(f). Caution is advised in this operation since there is a potential divide-by-zero
situation in computing Y(f)/X(f). A divide-by-zero situation can generally be avoided,
however, by placing data checks and branches in your program prior to the pointwhere
division takes place.

In fact, a general word of caution for finding frequency responses and using the
other analysis techniques discussed in this section is probably appropriate here. First of
all, it is best to say that the frequency response has been estimated. This is because
digital techniques are used to represent an analog phenomenon. Even if the digital
estimate is exact, it is only exact for the sample points. Anything that happens between
sample points must be speculated from the points to either side. Also, physical systems
do change. They change with time—they age—and they usually are only linear in their
normal operating regions, and then not always exactly linear. So, even with the best
data acquisition, the most accurate digitizing, and the most precise computations, you
should still treat your results as estimates. Maybe A.N. Whitehead, a prominent
mathematician and philosopher of the early 1900’s, said it best with:

"There is no more common error than to assume that, because prolonged
and accurate mathematical calculations have been made, the application of
the result to some fact of nature is absolutely certain.”

Convolution

Once you have obtained either the impulse response or the frequency response of
a system, you have the system completely characterized. Unfortunately, however, it's
usually difficult to tell exactly how a system is going to react to an input waveshape by
just looking at the impulse response or the frequency response.

In order to predict the system’s output waveshape for a given input waveshape,
you need to solve the convolution integral. Thisis the integral relationship shown in Fig.
6-4. It states that the system’s output signal, y(t), is the convolution of the impulse
response, h(t), and the input signal, x(t). The 7 used in the integral of Fig. 6-4 is just a
dummy time variable that facilitates time shifting in the convolution operation.

The integral, as shown in Fig. 6-4, can be evaluated in a fairly straightforward
manner by using digital techniques. This, however, can be time consuming. It's much
quicker to perform convolution by taking advantage of the fact that convolution in the
time domain corresponds to multiplication in the frequency domain. Thus, convolution
is performed by transforming the input signal to the frequency domain, via the FFT, to
get X(f). Then the impulse response is transformed to the frequency domain to get the
frequency response, H(f). The product of these two complex quantities is then formed
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to give Y(f)=X(f)H(f). Y(f) is the frequency-domain function for the system output
caused by inputting x(t). The time-domain function for the system output is simply
obtained by inverse Fourier transforming Y (f) to get y(t). By knowing the frequency
response of a system, the above technique can be used to predict the system’s output
waveshape for any input waveshape.

There are some cases, however, where you already know the output waveshape,
and you'd like to know what input waveshape caused it. This, too, can be estimated as
long as you know the H(f) of the system.

The input waveshape can be determined by evaluating X(f}=Y (f)/H(f) for X(f) and
then taking the inverse transform of X(f) to g2t x(t). This operation is often referred to as
deconvolution, and there is need for caution here. Specifically, the complex division of
the Y(f) data arrays by the H(f) data arrays may result in a divide-by-zero situation at
some data points. You'll need to take programming steps to avoid these divide-by-zero
possibilities. Also, the deconvolution procedure is sensitive to noise, and noise
components in the data being deconvolved may become greatly amplified. Usable
deconvolution results generally cannot be obtained without first applying systemtic
filtering.

As a final note regarding convolution and deconvolution with the FFT, there are
several standard definitions that may be used in the algorithms. These generally differ
only in scaling constants, so the results you get from convolution may differ from
expected results by a multiplicative constant. You might have to do some amplitude
rescaling. The waveshape, however, will be correct.

Correlation

These days, just about everyone has a feeling for what correlation means. Thanks
to news media, politicians, and various special interest groups, correlation has almost
become a household word. We're all probably familiar with headlines and statements
that go something like this: ”"Surgeon General Correlates Smoking and
Cancer”..."there is a high degree of correlation between education and income”... So
we've come to equate correlation with terms like association, cause and effect, and
similarity. These are our common usage definitions of correlation, and to a large
degree, they are good intuitive definitions for the mathematical operation of correlation.

The mathematical definition of correlation goes like this:

. T
r(r)=T1B §1T- £ x(Q)y(t+r)dt,
-7

where r(7) is the correlation function formed by summing the lagged products of two
waveforms, x(t) and y(t). 7 is the time lag between x(t) and y(t). Functionally, correlation
can be thought of as a matching up of waveform components or a similarity test
between waveforms. The equivalent hardware definition in Fig. 6-5 might make this
operation easier to visualize.
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Fig. 6-5. Hardware implementation of correlation.

In terms of digital signal processing, correlation is greatly simplified by using the
FFT. The twowaveforms to be correlated, x(t) and y(t), are transformed to the frequency
domain. Following this, one term is conjugated, and then the complex product is formed
to give R(f)=X(f)Y*(fy=(X*(f)Y(f))*. Here, * is used to denote conjugation. The final step
is inverse transforming R(f) back to the time domain to get r(7).

Depending on the waveforms used, two types of correlation can be done. If the
two waveforms are the same, x(t)=y(t), their correlation is referred to as autocorrela-
tion. If the two waveforms are different, x(t)#y(t), their correlation is referred to as cross
correlation. Let’'s take a brief look at each of these operations and some possible
applications.

Autocorrelation. It is useful to note that the autocorrelation function of a periodic
signal is periodic. Also, the autocorrelation function of a nonperiodic signal is
nonperiodic. These two things are demonstrated in Fig. 6-6aand b, where asine wave is
autocorrelated and random noise is autocorrelated.

The autocorrelation functions in Fig. 6-6 are arranged so that zero time lag is at
center screen. Positive time lag is to the right, and negative lag is to the left. In the case of
the sine wave’s autocorrelation function, maximum correlation occurs at lag zero
(center screen). This is where the sine wave is exactly overlaid by itself (a perfect
match). Maximum correlation also occurs for the sine wave at every lag equal to the sine
wave's period; however, the autocorrelation function in Fig. 6-6a appears triangularly
windowed. This apparent triangular windowing occurs because extra arrays of zero’s
are appended to the waveform arrays, in the manner of Fig. 6-7, before correlation.
These appended zeros prevent errors from cyclic correlation, but make the sine wave
appear to be pulsed instead of continuous. This pulsing causes a nearly triangular
envelope for the correlation function.

Notice in Fig. 6-6b that the autocorrelation function for noise is large at lag zero
and very small for all other lags. An exact match (perfect correlation) is obtained only
when the noise exactly overlays itself (lag zero). For other lags, there is little or no match
and the noise is said to be uncorrelated.

Fig. 6-6¢c shows the autocorrelation function for what appears to be random noise.
From the periodicity of the autocorrelation function, however, it is obvious that a
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periodic signal is buried in the noise. Thus, autocorrelation is a useful tool for detecting
the presence of periodic signals buried in noise. Biomedical studies, astronomy, and
tone control systems are a few possible application areas for autocorrelation detection
techniques.

lag=0
~lag <—|—’— +lag

SURImIE RN
ANAEARARANANI
E I

3l
AR

a. Sine wave and its autocorrelation function.

c. Periodic signal buried in noise and its autocorrelation function.

1754-86

Fig. 6-6. Autocorrelation detects periodic signals buried in noise.
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Fig. 6-7. Appending an array of zeros prevents cyclic correlation with the FFT. This, however,
gives the waveform the appearance of being gated and results in a nearly triangular envelope for
periodic correlation functions.

Cross Correlation. In autocorrelation, asignal is multiplied by delayed versions of
itself. The process of cross correlation differs only in that two signals are used; one is
multiplied by delayed verions of the other. The resulting cross-correlation function
contains only those frequency components common to both waveforms.

To see the usefulness of this, let's return to the example of detecting a signal
buried in noise. Suppose you're receiving signals that are obscured by noise, but you
know the type of signal you are looking for. This is often the case in radar, sonar, and
tone control, where the transmitted signal is well defined but the received signal is
buried in noise. This is demonstrated in Fig. 6-8, where a sine wave is buried in noise.
Notice in Fig. 6-8 that there are no noise components in the cross-correlation function—
this is because noise is not common to the signals being correlated.

Speaking of noise, noise is usually a nuisance in most measurement situations.
But, if you are interested in getting an approximation of a linear system's impulse
response, noise is a useful test signal. All you need to do isdrive the systeminputwith a
wideband noise source and cross correlate this input with the resulting system output. If
the test is conducted carefully, the cross-correlation results will approximate the shape
of the system impulse response.
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Besides detecting signals buried in noise and approximating impulse responses,
cross correlation finds many applications where delays must be measured. Time delay
is an important parameter in studying path diversity problems, using echo ranging
techniques, or characterizing transmission systems. With cross correlation, the best
match between a transmitted and received signal is found. This best match causes a
maximum in the cross-correlation function, and the distance from the maximum to the
lag zero point gives the delay between the two signals. The basics of this concept are
illustrated in Fig. 6-9.

c. Cross correlation says it is.

1754-88

Fig. 6-8. If you know the waveform you are looking for, cross correlation can help you find it.
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Lag zero
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Fig. 6-9. The location of maximum cross correlation indicates the time delay between waveforms.

Power Spectra

As a final note, it should be mentioned that the FFT of an autocorrelation function
results in what is called a power spectrum.

The FFT of an autocorrelation function gives what is generally referred to as the
auto spectrum. Also, referred to as power spectral density or PSD, auto spectra are
widely used in vibration analyses.

When a cross-correlation function is fast Fourier transformed to the frequency
domain, the result is referred to as a cross spectrum. Cross spectra contain the
magnitude products and phase differences of the frequency components that are
common to the signals involved in the cross correlation. Like auto spectra, cross
spectra are frequently used in vibration analyses too.
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PART lil
MATHEMATICS OF THE FFT

This part of the manual probably will neither add nor detract from your ability to
use the FFT.

So why bother with PART 111?

Well, first of all, many people have an intrinsic curiosity about what makes things
work. For those people, PART Il should satisfy some of that curiousity.

More importantly, however, PART Il gives you a basis for communicating with
others about the FFT. If you need to discuss various algorithms with a programmer, it
will be helpful to be familiar with signal flow diagrams. Also, knowing a little about at
least one FFT algorithm is helpful when reading literature on other algorithms and
techniques. And lastly, as you become more expert in using the FFT, you'll find more
people coming to you with questions about using the FFT and how the algorithm works.
PART III will help you answer some of those questions.

SECTION 7

AN ALGORITHM FOR COMPUTING THE
DFT

The FFT is not a single algorithm for computing the discrete Fourier transform.
There are several algorithms that provide a basic time advantage over the N* operations
required for straightforward evaluation of the DFT. But, because these algorithms are
faster than the N approach, they are all lumped under the heading of FFT.

Different FFT algorithms have been developed because different people would
like to operate on different types of data, with different types of machines, while
exploiting particular properties of the data or machine being used. One particular
property of data is the number of samples. There are algorithms for operating on N
samples where N is equal to two raised to an integer power. Others are designed to work
with N equal to the product of several integers. For this discussion, however, we'll pick
the class of algorithms designed for N=2, where x is an integer. The N=2"algorithms,
also known as "power of two algorithms,” are more straightforward and relatively faster
executing than the more general algorithms.
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Frequently encountered FFTs are typically based on either the Cooley-Tukey
algorithm or the Sande-Tukey algorithm. These two algorithms differ primarily in their
organizational approach. The Cooley-Tukey algorithm takes an approach referred to as
decimation in time, and the Sande-Tukey algorithm uses a decimation-in-frequency
approach. This latter approach, decimation in frequency, is the approach we’ll be
looking at with the power-of-two, Sande-Tukey algorithm for computing the DFT.

The Sande-Tukey Algorithm for Computing the DFT

To begin, let’s recall the expression for the DFT. This expression is discussed in
Section 3 and was given as

N—1 N
Xolk)= & 5o x(mye 127NN

For notational convenience, let's restate this as

for n=0,1,...,.N—1. The time-domain data is given by xo(0), Xo{1),...,Xs(N—1), and W is
equal to

j2m/N
e

Since the 1/N term preceding the summation sign in Xa(k) is simply a scaling term, it is
omitted for the sake of simplifying the expressions.

Computing the FFT of x.(t) consists of log,N=M stages. Each stage requires pairs

of computations of the form

xm_|_1(r)=xm(r)+xm(s)

and

X g q(8)=(X L (N=X ()W
for specified integers r,s,p, between 0 and N—1 and m between 0 and M—1. The results
attheend of the m" computational stage are denoted by xn(t), where t=0,1,...,N—1. Also,
the example algorithm is an in-place algorithm. This means that the current results
replace the previous results; thus, xm:1(t) overwrites xn(t) in going from stage m to stage
m-+1. The subscript 'm” merely defines a sequence of arrays that define the contents of
an associated storage location at the end of the m™ stage.

To gain an idea of how the computations take place, let'suse a 16-point FFT asan
example. A superficial look will be enough to see the essence of the algorithm. If you are
interested in actually implementing an FFT algorithm, several of the references listed in
the Bibliography offer more detailed explanations. The discussions here will giveyou a
general idea of the algorithm and some of the terms used in describing FFT algorithms.
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The organization of the FFT computations is shown in Fig. 7-1. Notice that the
data are gathered into groups at each stage, and as each stage is passed, the groups are
broken into smaller groups. This goes on until the transformation is complete, with one
datum per group. This total operation is referred to as decimation in frequency. A
decimation-in-time algorithm is organized in exactly the opposite manner: the
computations proceed into larger and larger groups.

The data elements within each group of the decimation-in-frequency algorithm
are computed from pairs of corresponding elements in the preceding groups. This is
indicated in Fig. 7-1 and shown with more detail in the flow diagram of Fig. 7-2.

Each of the heavy dots in Fig. 7-2 represents a point of computation. Although
these dots are spacially separated in Fig. 7-2, they are one and the same point or
memory location in an in-place computation.

Xo(t) A(n)
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Corresponding pair for computing the first element of the next group.
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Fig. 7-1. The general organization of a decimation-in-frequency algorithm.
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As was mentioned earlier, the computations take place in pairs and are of the form

xm+1(r)=xm(r)+xm(s)
and
X 4 4(&)=(X (=X _(s)W™
An example of such a computation pair is shown in Fig. 7-2 at the x, stage, There, xo(7)

and xo(15) are added to obtain x,(7). Also, at the next node, x¢(0) is multiplied by W°and
added to the product of xo(8) and —W° to obtain x,(8).

Notice in Fig. 7-2 that the operations are grouped at each stage according to
whether or not the elements must be multiplied by the W™ factor. This organization
efficiency is further augmented by taking advantage of sine and cosine symmetries to
obtain the “twiddle factors” indicated by W°,W™', etc. Depending on the particular FFT
algorithm, these twiddle factors may be individually generated at each stage, or they
may be called from a previously generated table.

After the final stage of the algorithm has been passed through, x.(t) will have been
transformed to A(n)—the time-domain data has been transformed to frequency-domain
data. As you can see from the final stage in Fig. 7-2, A(n) occurs in scrambled order. The
order of these Fourier coefficients can be unscrambled by a process referred to as bit
reversal. If we re-express A(0) through A(15) in binary code, the correctlocation of each

“frequency component can be determined by reversing or flipping the address bits. This
is shown in Table 7-1 and is the final step of the transformation.

Table 7-1

Bit Reversal Places the Fourier
Coefficients into Correct Order

A(0) = A(0000) bit A(0000) = A(0)
A(8) A(1000) reversal A(0001) A(1)
A(4) A(0100) A(0010) A(2)
A(12) A(1100) A(0011) A(3)
A(11) A(1011) A(1101) A(13)
A(7) A(0111) A(1110) A(14)
A(15) A(1111) A(1111) A(15

Admittedly, this discussion of the FFT algorithm has been brief. But then its
purpose is only to instill a small measure of familiarity with the algorithm. If you would
like to study the Sande-Turkey algorithm, or any other algorithm, in greater depth, the
following bibliography contains a number of good sources for algorithm information.
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On the Use of Windows for Harmonic Analysis
with the Discrete Fourier Transform

FREDRIC J. HARRIS, MEMBER, IEEE

Abstract—This paper makes available a concise review of data win-
dows and their affect on the detection of harmonic signals in the
presence of broad-band noise, and in the presence of nearby strong har-
monic interference. We also call attention to a number of common
errors in the application of windows when used with the fast Fourier
transform. This paper includes a comprehensive catalog of data win-
dows along with their significant performance parameters from which
the different windows can be compared. Finally, an example demon-
strates the use and value of windows to resolve closely spaced harmonic
signals characterized by large differences in amplitude.

I. INTRODUCTION

HERE IS MUCH signal processing devoted to detection

and estimation. Detection is the task of determining if

a specific signal set is present in an observation, while
estimation is the task of obtaining the values of the parameters
describing the signal. Often the signal is complicated or is
corrupted by interfering signals or noise. To facilitate the
detection and estimation of signal sets, the observation is
decomposed by a basis set which spans the signal space [1].
For many problems of engineering interest, the class of signals
being sought are periodic which leads quite naturally to a
decomposition by a basis consisting of simple periodic func-
tions, the sines and cosines. The classic Fourier transform is
the mechanism by which we are able to perform this decom-
position.

By necessity, every observed signal we process must be of
finite extent. The extent may be adjustable and selectable,
but it must be finite. Processing a finite-duration observation
imposes interesting and interacting considerations on the har-
monic analysis. These considerations include detectability
of tones in the presence of nearby strong tones, resolvability
of similar-strength nearby tones, resolvability of shifting tones,
and biases in estimating the parameters of any of the afore-
mentioned signals.

For practicality, the data we process are N uniformly spaced
samples of the observed signal. For convenience, N is highly
composite, and we will assume N is even. The harmonic
estimates we obtain through the discrete Fourier transform
(DFT) are N uniformly spaced samples of the associated
periodic spectra. This approach is elegant and attractive
when the processing scheme is cast as a spectral decomposition
in an N-dimensional orthogonal vector space [2]. Unfortu-
nately, in many practical situations, to obtain meaningful
results this elegance must be compromised. One such
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Center (now Naval Ocean Systems Center) Independent Exploratory
Development Funds.

The author is with the Naval Ocean Systems Center, San Diego, CA,
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compromise consists of applying windows to the sampled
data set, or equivalently, smoothing the spectral samples.

The two operations to which we subject the data are
sampling and windowing. These operations can be performed
in either order. Sampling is well understood, windowing is less
so, and sampled windows for DFT’s significantly less so! We
will address the interacting considerations of window selection
in harmonic analysis and examine the special considerations
related to sampled windows for DFT’s.

II. HARMONIC ANALYSIS OF FINITE-EXTENT
DATA AND THE DFT

Harmonic analysis of finite-extent data entails the projection
of the observed signal on a basis set spanning the observation
interval [1], [3]. Anticipating the next paragraph, we define
T seconds as a convenient time interval and N7 seconds as the
observation interval. The sines and cosines with periods equal
to an integer submultiple of NT seconds form an orthogonal
basis set for continuous signals extending over NT seconds.
These are defined as

27
cos [—kt] k=0,1," - ,N-I,N,N+1, "

NT

X [21r :l
sin | — kt
NT

We observe that by defining a basis set over an ordered index
k, we are defining the spectrum over a line (called the fre-
quency axis) from which we draw the concepts of bandwidth
and of frequencies close to and far from a given frequency
(which is related to resolution).

For sampled signals, the basis set spanning the interval of NT
seconds is identical with the sequences obtained by uniform
samples of the corresponding continuous spanning set up to
the index N/2,

0<:t<NT. 1)

2 27

cos | — knT| =cos | —kn k=0,1,---,N/2
NT N

. 2n | 2n

sin (— knT| =sin | —kn n=0,1,--,N-1
NT N

(2)

We note here that the trigonometric functions are unique in
that uniformly spaced samples (over an integer number of
periods) form orthogonal sequences. Arbitrary orthogonal
functions, similarly sampled, do not form orthogonal se-
quences. We also note that an interval of length NT seconds
is not the same as the interval covered by /N samples separated
by intervals of T seconds. This is easily understood when we

U.S. Government work not protected by U.S. copyright
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Fig. 2. Even sequence under DFT and periodic extension of sequence
under DFT.

realize that the interval over which the samples are taken is
closed on the left and is open on the right (i.e., [—)). Fig. 1
demonstrates this by sampling a function which is even about
its midpoint and of duration NT seconds.

Since the DFT essentially considers sequences to be periodic,
we can consider the missing end point to be the beginning of
the next period of the periodic extension of this sequence. In
fact, under the periodic extension, the next sample (at 16 s in
Fig. 1.) is indistinguishable from the sample at zero seconds.

This apparent lack of symmetry due to the missing (but
implied) end point is a source of confusion in sampled window
design. This can be traced to the early work related to con-
vergence factors for the partial sums of the Fourier series. The
partial sums (or the finite Fourier transform) always include
an odd number of points and exhibit even symmetry about
the origin. Hence much of the literature and many software
libraries incorporate windows designed with true even sym-
metry rather than the implied symmetry with the missing end
point!

We must remember for DFT processing of sampled data that
even symmetry means that the projection upon the sampled
sine sequences is identically zero; it does not mean a matching
left and right data point about the midpoint. To distinguish
this symmetry from conventional evenness we will refer to it
as DFT-even (i.e., a conventional even sequence with the right-
end point removed). Another example of DFT-even sym-
metry is presented in Fig. 2 as samples of a periodically
extended triangle wave.

If we evaluate a DFT-even sequence via a finite Fourier
transform (by treating the +N/2 point as a zero-value point),
the resultant continuous periodic function exhibits a non zero
imaginary component. The DFT of the same sequence is a set
of samples of the finite Fourier transform, yet these samples
exhibit an imaginary component equal to zero. Why the dis-
parity? We must remember that the missing end point under
the DFT symmetry contributes an imaginary sinusoidal
component of period 2m/(N/2) to the finite transform
(corresponding to the odd component at sequence position
N/2). The sampling positions of the DFT are at the multiples
of 2@/N, which, of course, correspond to the zeros of the
imaginary sinusoidal component. An example of this for-
tuitous sampling is shown in Fig. 3. Notice the sequence f(n),
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Fig. 3. DFT sampling of finite Fourier transform of a DFT even
sequence,

is decomposed into its even and odd parts, with the odd part
supplying the imaginary sine component in the finite
transform.

ITI. SPECTRAL LEAKAGE

The selection of a finite-time interval of N7 seconds and of
the orthogonal trigonometric basis (continuous or sampled)
over this interval leads to an interesting peculiarity of the
spectral expansion. From the continuum of possible fre-
quencies, only those which coincide with the basis will project
onto a single basis vector; all other frequencies will exhibit
non zero projections on the entire basis set. This is often
referred to as spectral leakage and is the result of processing
finite-duration records. Although the amount of leakage is
influenced by the sampling period, leakage is not caused by
the sampling.

An intuitive approach to leakage is the understanding that
signals with frequencies other than those of the basis set are
not periodic in the observation window. The periodic exten-
sion of a signal not commensurate with its natural period
exhibits discontinuities at the boundaries of the observation.
The discontinuities are responsible for spectral contributions
(or leakage) over the entire basis set. The forms of this dis-
continuity are demonstrated in Fig. 4.

Windows are weighting functions applied to data to reduce
the spectral leakage associated with finite observation inter-
vals. From one viewpoint, the window is applied to data
(as a multiplicative weighting) to reduce the order of the dis-
continuity at the boundary of the periodic extension. This is
accomplished by matching as many orders of derivative (of
the weighted data) as possible at the boundary. The easiest
way to achieve this matching is by setting the value of these
derivatives to zero or near to zero. Thus windowed data are
smoothly brought to zero at the boundaries so that the
periodic extension of the data is continuous in many orders
of derivative.
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From another viewpoint, the window is multiplicatively
applied to the basis set so that a signal of arbitrary frequency
will exhibit a significant projection only on those basis vectors
having a frequency close to the signal frequency. Of course
both viewpoints lead to identical results. We can gain insight
into window design by occasionally switching between these
viewpoints.

IV. WINDOWS AND FIGURES OF MERIT

Windows are used in harmonic analysis to reduce the unde-
sirable effects related to spectral leakage. Windows impact on
many attributes of a harmonic processor; these include detec-
tability, resolution, dynamic range, confidence, and ease of
implementation. We would like to identify the major param-
eters that will allow performance comparisons between dif-
ferent windows. We can best identify these parameters by
examining the effects on harmonic analysis of a window.

An essentially bandlimited signal f(z) with Fourier transform
F(w) can be described by the uniformly sampled data set
f(nT). This data set defines the periodically extended spec-
trum F T(w) by its Fourier series expansion as identified as

F(w) =f J(t) exp (~jewt) dt (3a)
+ oo
FT(w)= Y f(rT)exp (-jwnT) (3b)
+n/T
f)y= FT(w) exp (Hjwt) dw/2n (3¢c)
-n/T
= >1
and where |[F(w)l=0, |wl=>3[2m/T]
FT(w)=F(w), |wl<1iI2n/T].

For (real-world) machine processing, the data must be of
finite extent, and the summation of (3b) can only be per-
formed as a finite approximation as indicated as

+N/2
Fa(w)= Z f(nT)exp (-jwnT) , Neven (4a)
n=-N/2
(N/2)—-1
Fp(w)= Z f(nT)exp (-jwnT) , Neven (4b)
n=-N[2
(N/2)-1
Fo(wg)= Z f(nT) exp (-jwgnT), Neven (4c)
n=-Nj2
N-1
Fglwg) = Z f(nT) exp (-jwynT), Neven (4d)
n=0
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where

27
Wy = — k,

andk=0,1,--- ,N- 1.
NT

We recognize (4a) as the finite Fourier transform, a summa-
tion addressed for the convenience of its even symmetry.
Equation (4b) is the finite Fourier transform with the right-
end point deleted, and (4¢) is the DFT sampling of (4b).
Of course for actual processing, we desire (for counting pur-
poses in algorithms) that the index start at zero. We accom-
plish this by shifting the starting point of the data N/2 posi-
tions, changing (4c) to (4d). Equation (4d) is the forward DFT.
The N/2 shift will affect only the phase angles of the trans-
form, so for the convenience of symmetry we will address the
windows as being centered at the origin. We also identify this
convenience as a major source of window misapplication. The
shift of N/2 points and its resultant phase shift is often over-
looked or is improperly handled in the definition of the
window when used with the DFT. This is particularly so when
the windowing is performed as a spectral convolution. See the
discussion on the Hanning window under the cos® (X)
windows.

The question now posed is, to what extent is the finite
summation of (4b) a meaningful approximation of the infinite
summation of (3b)? In fact, we address the question for a
more general case of an arbitrary window applied to the time
function (or series) as presented in

+4 oo
Fy(w)= 3 w(nT)f(aT)exp (-jwnT) (5)
where
N
w(nT)=0, |n|>5, N even
and

' N N
wnT)=w(nT), nF—,w{—-T 0.
2 2

Let us now examine the effects of the window on our
spectral estimates. Equation (5) shows that the transform
F,(w) is the transform of a product. As indicated in the
following equation, this is equivalent to the convolution of
the two corresponding transforms (see Appendix):

F(w) =f F(x) W(w - x)dx[2n 6)

or
F,(w)=F(w) e W(w).

Equation (6) is the key to the effects of processing finite-
extent data. The equation can be interpreted in two equiva-
lent ways, which will be more easily visualized with the aid
of an example. The example we choose is the sampled
rectangle window; w(nT) = 1.0. We know W(w) is the
Dirichlet kernel [4] presented as

o]

—wT

2

sin
wT
W(w) =exp (+j—)

2 ‘ [1 ].
sin | — wT
2

@)
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Except for the linear phase shift term (which will change due
to the /2 point shift for realizability), a single period of the
transform has the form indicated in Fig. 5. The observation
concerning (6) is that the value of F,,(w) at a particular w,
say w = Wy, is the sum of all of the spectral contributions at
each w weighted by the window centered at w, and measured
at w (see Fig. 6).

A. Equivalent Noise Bandwidth

From Fig. 6, we observe that the amplitude of the harmonic
estimate at a given frequency is biased by the accumulated
broad-band noise included in the bandwidth of the window.
In this sense, the window behaves as a filter, gathering contri-
butions for its estimate over its bandwidth. For the harmonic
detection problem, we desire to minimize this accumulated
noise signal, and we accomplish this with small-bandwidth
windows. A convenient measure of this bandwidth is the
equivalent noise bandwidth (ENBW) of the window. This is
the width of a rectangle filter with the same peak power gain
that would accumulate the same noise power (see Fig. 7).

The accumulated noise power of the window is defined as

+n/T
Noise Power = N, f IW(w)|? dw/2m ®)
~-n/T
where N, is the noise power per unit bandwidth. Parseval’s
theorem allows (8) to be computed by

N
Noise Power = —7—(} > wi(nT). )
n

The peak power gain of the window occurs at w = 0, the zero
frequency power gain, and is defined by

Peak Signal Gain = W(0) = Z w(nT) (10a)

Peak Power Gain = W2(0) = [Z w(nT)] 2. (10b)

n

Thus the ENBW (normalized by N, /T, the noise power per
bin) is given in the following equation and is tabulated for the
windows of this report in Table I

Z w2(nT)

n

ENBW=——""—"=+

)

n

(11

B. Processing Gain

A concept closely allied to ENBW is processing gain (PG)
and processing loss (PL) of a windowed transform. We can
think of the DFT as a bank of matched filters, where each
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filter is matched to one of the complex sinusoidal sequences of
the basis set [3]. From this perspective, we can examine the
PG (sometimes called the coherent gain) of the filter, and we
can examine the PL due to the window having reduced the
data to zero values near the boundaries. Let the input sampled
sequence be defined by (12):

f(nT)=A4 exp (+jwinT) + q(nT) (12)

where g(nT) is a white-noise sequence with variance oz. Then
the signal component of the windowed spectrum (the matched
filter output) is presented in

F(wy) |signa1 = Z w(nT) A exp (+jwinT) exp (-jwynT)
n

=43 w(nT). (13)

We see that the noiseless measurement (the expected value of
the noisy measurement) is proportional to the input amplitude
A. The proportionality factor is the sum of the window terms,
which is in fact the dc signal gain of the window. For a
rectangle window this factor is &V, the number of terms in the
window. For any other window, the gain is reduced due to
the window smoothly going to zero near the boundaries. This
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TABLE 1
WINDOWS AND FIGURES OF MERIT
HIGHEST SIDE- WORST OVERLAP
SIDE- LOBE COHERENT EQUIV. 3.0dB SCALLOP CASE 6.0-dB CORRELATION
WINDOW LOBE FALL- GAIN NOISE BW LOSS PROCESS BW (PCNT)
LEVEL OFF BW (BINS) (dB) LOSS (BINS)
(dB) (dB/OCT} (BINS) {dB) 75% OL | 50% OL
RECTANGLE -13 -6 1.00 1.00 0.89 3.92 3.92 1.21 75.0 50.0
TRIANGLE -27 -12 0.50 1.33 1.28 1.82 3.07 1.78 71.9 25.0
oS x) a=10 -23 -12 0.64 1.23 1.20 2.10 3.01 1.65 75.5 31.8
HANNING a=20 -32 -18 0.50 1.50 1.44 1.42 3.18 2.00 65.9 16.7
a=30 -39 -24 0.42 1.73 1.66 1.08 3.47 2.32 56.7 8.5
a=40 -47 -30 0.38 1.94 1.86 0.86 3.76 2,59 48.6 43
HAMMING -43 -6 0.54 1.38 1.30 1.78 3.10 1.81 70.7 235
RIESZ -21 -12 0.67 1.20 1.16 2.22 3.01 1.59 76.5 34.4
RIEMANN -26 -12 0.59 1.30 1.26 1.89 3.03 1.74 73.4 27.4
DE LA VALLE- -53 -24 0.38 1.92 1.82 0.90 3.72 2.55 49,3 5.0
POUSSIN
TUKEY a=0.25 -14 -18 0.88 1.10 1.01 2.96 3.39 1.38 74.1 44.4
a=05%0 -16 -18 0.75 1.22 1.45 2.24 3.11 1.57 72.7 36.4
a=0.75 -19 -18 0.63 1.36 1.31 1.73 3.07 1.80 70.5 25.1
BOHMAN -46 ~-24 0.41 1.79 1.71 1.02 3.54 2.38 54.5 7.4
POISSON a=20 -19 -6 0.44 1.30 .21 2.09 3.23 1.69 69.9 27.8
a=30 -24 -6 0.32 1.85 1.45 1.46 3.64 2.08 54.8 15.1
a=40 -31 -6 0.25 2;08 1.75 1.03 4.21 2.58 40.4 7.4
HANNING- a=05 -35 -18 0.43 1.61 1.54 1.26 3.33 2.14 61.3 12,6
POISSON a=10 -39 -18 0.38 1.73 1.64 1.11 3.50 2.30 56.0 9.2
a=20 NONE -18 0.29 2.02 1.87 0.87 3.94 2.65 44.6 4.7
CAUCHY a=30 -31 -6 0.42 1.48 1.34 1.71 3.40 1.90 61.6 20.2
a=40 -35 -6 0.33 1.76 1.50 1.36 3.83 2.20 43.8 13.2
a=50 -30 -6 0.28 2.06 1.68 1.13 4.28 2.53 38.3 9.0
GAUSSIAN  a=25 -42 -6 0.51 1.39 1.33 1.69 3.14 1.86 67.7 20.0
a=30 -55 -6 0.43 1.64 1.55 1.25 3.40 2.18 57.5 10.6
a=35 -69 -6 0.37 1.90 1.79 0.94 3.73 2,52 47.2 4.9
DOLPH- a=25 -50 0 0.53 1.39 1.33 1.70 3.12 1.85 69.6 223
CHEBYSHEV a =30 ~60 0 0.48 1.51 1.44 1.44 3.23 2.01 64.7 16.3
a=35 -70 0 0.45 1.62 1.55 1.25 3.35 2.17 60.2 1.9
a=40 -80 0 0.42 1.73 1.65 1.10 3.48 2.31 55.9 8.7
KAISER- a=20 -46 -6 0.49 1.50 1.43 1.46 3.20 1.99 85.7 16.9
BESSEL a=25 ~-57 -6 0.44 1.65 1.57 1.20 3.38 2.20 59.5 11.2
a=30 -69 -6 0.40 1.80 1.71 1.02 3.56 2.39 53.9 7.4
a=35 -82 -6 0.37 1.93 1.83 0.89 3.74 2.57 48.8 48
BARCILON- a=3.0 -53 -6 047 1.56 149 1.34 3.27 2.07 63.0 14,2
TEMES a=35 -58 -6 0.43 1.67 1.59 1.18 3.40 2.23 - 58.6 10.4
a=40 -68 -6 0.41 1.77 1.69 1.05 3.52 2.36 54.4 76
EXACT BLACKMAN -51 -6 0.46 1.57 1.52 1.33 3.29 213 62.7 14.0
BLACKMAN -58 -18 0.42 1.73 168 1.10 3.47 2.35 56.7 9.0
MINIMUM 3-SAMPLE - -67 -6 0.42 1.71 1.66 1.13 3.45 1.81 57.2 9.6
BLACKMAN-HARRIS
* MINIMUM 4-SAMPLE -92 -6 0.36 2.00 1.90 0.83 3.85 2.72 46.0 38
BLACKMAN-HARRIS
*61 dB 3-SAMPLE -61 -6 0.45 1.61 156 1.27 3.34 2.19 61.0 126
BLACKMAN-HARRIS
74 dB 4-SAMPLE -74 -6 0.40 1.79 1.74 1.03 3.56 244 53.9 7.4
BLACKMAN-HARRIS
4.SAMPLE a=3.0 -69 -6 0.40 1.80 1.74 1.02 3.56 2.44 53.9 7.4
KAISER-BESSEL

*REFERENCE POINTS FOR DATA ON FIGURE 12 — NO FIGURES TO MATCH THESE WINDOWS.
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reduction in proportionality factor is important as it repre-
sents a known bias on spectral amplitudes. Coherent power
gain, the square of coherent gain, is occasionally the parameter
listed in the literature. Coherent gain (the summation of (13))
normalized by its maximum value N is listed in Table I.

The incoherent component of the windowed transform is
given by

F(wy) |noise =3 w(nT) q(nT) exp (-jwenT) (14a)

and the incoherent power (the mean-square value of this com-
ponent where E { } is the expectation operator) is given by

E{|F(wg) |noisel2} = 3 3° w(nT) w(mT) E {q(nT) q*(mT)}
n m

. exp (-jwgnT) exp (+jwymT)

=07 Y w (D). (14b)
n
Notice the incoherent power gain is the sum of the squares of
the window terms, and the coherent power gain is the square
of the sum of the window terms.
Finally, PG, which is defiped as the ratio of output signal-
to-noise ratio to input signal-to-noise ratio, is given by

A2 Z w(nT) 2 o2 Z w?(nT)
So/No n ? n
PG = = CFT)
Si/Ni 4 /oq
[Z w(nT)] :
. ——Z oD (15)

Notice PG is the reciprocal of the normalized ENBW. Thus
large ENBW suggests a reduced processing gain. This is reason-
able, since an increased noise bandwidth permits additional
noise to contribute to a spectral estimate.

C. Overlap Correlation

When the fast Fourier transform (FFT) is used to process
long-time sequences a partition length N is first selected to
establish the required spectral resolution of the analysis.
Spectral resolution of the FFT is defined in (16) where Af is
the resolution, f; is the sample frequency selected to satisfy
the Nyquist criterion, and f§ is the coefficient reflecting the
bandwidth increase due to the particular window selected.
Nate that [ f;/N] is the minimum resolution of the FFT which
we denote as the FFT bin width. The coefficient § is usually
selected to be the ENBW in bins as listed in Table I

ares(5)

If the window and the FFT are applied to nonoverlapping
partitions of the sequence, as shown in Fig. 8, a significant
part of the series is ignored due to the window’s exhibiting
small values near the boundaries. Forinstance, if the transform
is being used to detect short-duration tone-like signals, the non
overlapped analysis could miss the event if it occurred near
the boundaries. To avoid this loss of data, the transforms are
usually applied to the overlapped partition sequences as shown
in Fig. 8. The overlap is almost always 50 or 75 percent. This
overlap processing of course increases the work load to cover
the total sequence length, but the rewards warrant the extra
effort.

(16)
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Fig. 8. Partition of sequences for nonoverlapped and for overlapped
processing.
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Fig. 9. Relationship between indices on overlapped intervals.

An important question related to overlapped processing is
what is the degree of correlation of the random components
in successive transforms? This correlation, as a function of
fractional overlap r, is defined for a relatively flat noise spec-
trum over the window bandwidth by (17). Fig. 9 identifies
how the indices of (17) relate to the overlap of the intervals.
The correlation coefficient

rN -1
{ > (W)W +[1- r]N))}

n=0
N-1
&l
n=0

is computed and tabulated in Table I. for each of the windows
listed for 50- and 75-percent overlap.

Often in a spectral analysis, the squared magnitude of succes-
sive transforms are averaged to reduce the variance of the mea-
surements [5]. We know of course that when we average K
identically distributed independent measurements, the vari-
ance of the average is related to the individual variance of the
measurements by

c(r)= 17)

2
O'sz_ 1
==, (18)
UzMeas. K

Now we can ask what is the reduction in the variance when we
average measurements which are correlated as they are for
overlapped transforms? Welch [5] has supplied an answer to
this question which we present here, for the special case of 50-
and 75-percent overlap

a‘i‘!- _ 1 2 _1 2

Oﬁm X [1+2¢%(0.5)] X2 [c“(0.5)]1,

50 percent overlap

=11( [1+2¢2(0.75) +2¢2(0.5) + 2¢2(0.25)]

- K_22 [€2(0.75) + 2¢%(0.5) + 3¢?(0.25)1,

75 percent overlap. (19)

The negative terms in (19) are the edge effects of the average
and can be ignored if the number of terms X is larger than
ten. For good windows, c?(0.25) is small compared to 1.0,
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Fig. 10. Spectral leakage effect of window.

and can also be omitted from (19) with negligible error. For
this reason, ¢(0.25) was not listed in Table I. Note, that for
good windows (see last paragraph of Section IV-F), transforms
taken with 50-percent overlap are essentially independent.

D. Scalloping Loss

An important consideration related to minimum detectable
signal is called scalloping loss or picket-fence effect. We have
considered the windowed DFT as a bank of matched filters
and have examined the processing gain and the reduction of
this gain ascribable to the window for tones matched to the
basis vectors. The basis vectors are tones with frequencies
equal to muiltiples. of f/N (with f; being the sample fre-
quency). These frequencies are sample points from the
spectrum, and are normally referred to as DFT output points
or as DFT bins. We now address the question, what is the
additional loss in processing gain for a tone of frequency mid-
way between two bin frequencies (that is, at frequencies
(k +1/2)fo/N)?

Returning to (13), with wy replaced by W(x+12), we deter-
mine the processing gain for this half-bin frequency shift as
defined in

F(w(1/2)) |signa =4 Y. w(nT) exp (-jw(1y2ynT),
n

lws n

where w(y/2) = E ~ =W. (20a)

We also define the scalloping loss as the ratio of coherent gain
for a tone located half a bin from a DFT sample point to the
coherent gain for a tone located at a DFT sample point, as

indicated in
1 ws
W — —
G5

w(0)

; w(nT) exp (—j jlvn)
Scalloping Loss = Z WD) =

n

(20b)

Scalloping loss represents the maximum reduction in PG due
to signal frequency. This loss has been computed for the win-
dows of this report and has been included in Table I.

E. Worst Case Processing Loss

We now make an interesting observation. We define worst
case PL as the sum of maximum scalloping loss of a window
and of PL due to that window (both in decibel). This number
is the reduction of output signal-to-noise ratio as a result of
windowing and of worst case frequency location. This of
course is related to the minimum detectable tone in broad-
band noise. It is interesting to note that the worst case loss is
always between 3.0 and 4.3 dB. Windows with worst case
PL exceeding 3.8 dB are very poor windows and should not
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Fig. 11. Spectral resolution of nearby kernels.

be used. Additional comments on poor windows will be
found in Section IV-G. We can conclude from the combined
loss figures of Table I and from Fig. 12 that for the detection
of single tones in broad-band noise, nearly any window (other
than the rectangle) is as good as any other. The difference
between the various windows is less than 1.0 dB and for good
windows is less than 0.7 dB. The detection of tones in the
presence of other tones is, however, quite another problem.
Here the window does have a marked affect, as will be demon-
strated shortly.

F. Spectral Leakage Revisited

Returning to (6) and to Fig. 6, we observe the spectral
measurement is affected not only by the broadband noise
spectrum, but also by the narrow-band spectrum which falls
within the bandwidth of the window. In fact, a given spectral
component say at w = wqy will contribute output (or will be
observed) at another frequency, say at w = w, according to
the gain of the window centered at w, and measured at ;.
This is the effect normally referred to as spectral leakage and
is demonstrated in Fig. 10 with the transform of a finite dura-
tion tone of frequency wy

This leakage causes a bias in the amplitude and the position
of a harmonic estimate. Even for the case of a single real
harmonic line (not at a DFT sample point), the leakage from
the kernel on the negative-frequency axis biases the kernel on
the positive-frequency line. This bias is most severe and most
bothersome for the detection of small signals in the presence
of nearby large signals. To reduce the effects of this bias, the
window should exhibit low-amplitude sidelobes far from the
central main lobe, and the transition to the low sidelobes
should be very rapid. One indicator of how well a window
suppresses leakage is the peak sidelobe level (relative to the
main lobe): another is the asymptotic rate of falloff of these
sidelobes. These indicators are listed in Table I.

G. Minimum Resolution Bandwidth

Fig. 11 suggests another criterion with which we should be
concerned in the window selection process. Since the window
imposes an effective bandwidth on the spectral line, we would
be interested in the minimum separation between two equal-
strength lines such that for arbitrary spectral locations their
respective main lobes can be resolved. The classic criterion for
this resolution is the width of the window at the half-power
points (the 3.0-dB bandwidth). This criterion reflects the fact
that two equal-strength main lobes separated in frequency by
less than their 3.0-dB bandwidths will exhibit a single spectral
peak and will not be resolved as two distinct lines, The
problem with this criterion is that it does not work for the
coherent addition we find in the DFT. The DFT output
points are the coherent addition of the spectral components
weighted through the window at a given frequency.
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If two kernels are contributing to the coherent summation,
the sum at the crossover point (nominally half-way between
them) must be smaller than the individual peaks if the two
peaks are to be resolved. Thus at the crossover points of the
kernels, the gain from each kernel must be less than 0.5, or the
crossover points must occur beyond the 6.0-dB points of the
windows. Table I lists the 6.0-dB bandwidths of the various
windows examined in this report. From the table, we see that
the 6.0-dB bandwidth varies from 1.2 bins to 2.6 bins, where a
bin is the fundamental frequency resolution wy/N. The
3.0-dB bandwidth does have utility as a performance indicator
as shown in the next paragraph. Remember however, it is the
6.0-dB bandwidth which defines the resolution of the win-
dowed DFT.

From Table I, we see that the noise bandwidth always
exceeds the 3.0-dB bandwidth. The difference between the
two, referenced to the 3.0-dB bandwidth, appears to be a
sensitive indicator of overall window performance. We have
observed that for all the good windows on the table, this
indicator was found to be in the range of 4.0 to 5.5 percent.
Those windows for which this ratio is outside that range
either have a wide main lobe or a high sidelobe structure and,
hence, are characterized by high processing loss or by poor
two-tone detection capabilities. Those windows for which
this ratio is inside the 4.0 to 5.5-percent range are found in
the lower left corner of the performance comparison chart
(Fig. 12), which is described next.

While Table I does list the common performance param-
eters of the windows examined in this report, the mass of
numbers is not enlightening. We do realize that the sidelobe
level (to reduce bias) and the worst case processing loss (to
maximize detectability) are probably the most important
parameters on the table. Fig. 12 shows the relative position
of the windows as a function of these parameters. Windows
residing in the lower left corner of the figure are the good-
performing - windows. They exhibit low-sidelobe levels and
low worst case processing loss. We urge the reader to read
Sections VI and VII; Fig. 12 presents a lot of information,
but not the full story.

V. CLassic WINDOWS

We will now catalog some well-known (and some not weli-
known windows. For each window we will comment on the
justification for its use and identify its significant parameters.
All the windows will be presented as even (about the origin)
sequences with an odd number of points. To convert the win-
dow to DFT-even, the right end point will be discarded and
the sequence will be shifted so that the left end point coin-
cides with the origin. We will use normalized coordinates with
sample period T = 1.0, so that w is periodic in 27 and, hence,
will be identified as §. A DFT bin will be considered to
extend between DFT sample points (multiples of 27/N) and
have a width of 27/N.

A. Rectangle (Dirichlet) Window [6]

The rectangle window is unity over the observation interval,
and can be thought of as a gating sequence applied to the data
so that they are of finite extent. The window for a finite
Fourier transform is defined as

w(n)=1.0, (21a)

n=-—-

] ’

Lol N
3 ¥y 4> ’2

and is shown in Fig. 13. The same.window for a DFT is
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Fig. 12. Comparison of windows: sidelobe levels and worst case process-
ing loss.

defined as

w()=10, n=0,1,"--,N-1. (21b)

The spectral window for the DFT window sequence is given in
N
N=1 sin [; 9]
. 9) 21
sin [—0]
2

The transform of this window is seen to be the Dirichlet
kernel, which exhibits a DFT main-lobe width (between zero
crossings) of 2 bins and a first sidelobe level approximately 13
dB down from the main-lobe peak. The sidelobes fall off at
6.0 dB per octave, which is of course the expected rate for a
function with a discontinuity. The parameters of the DFT
window are listed in Table I.

With the rectangle window now defined, we can answer the
question posed earlier: in what sense does the finite sum of
(22a) approximate the infinite sum of (22b)?

W(0) = exp (—i (21¢)

+N/2

F@)= Y  f(n)exp(-jnd) (22a)
n=-N/[2
+ o0

F@)= 3 f(n)exp (-jnb). (22b)

We observe the finite sum is the rectangle-windowed version of
the infinite sum. We recognize that the infinite sum is the
Fourier series expansion of some periodic function for which
the f(n)’s are the Fourier series coefficients. We also recognize
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Fig. 14. (a) Triangle window.

that the finite sum is simply the partial sum of the series.
From this viewpoint we can cast the question in terms of the
convergence properties of the partial sums of Fourier series.
From this work we know the partial sum is the least mean-
square error approximation to the infinite sum.

We observe that mean square convergence is a convenient
analytic concept, but it is not attractive for finite estimates or
for numerical approximations. Mean-square estimates tend to
oscillate about their means, and do not exhibit uniform con-
vergence. (The approximation in a neighborhood of a point of
continuity may get worse if more terms are added to the
partial sum.) We normally observe this behavior near points of
discontinuity as the ringing we call Gibbs phenomenon. It is
this oscillatory behavior we are trying to control by the use of
other windows.

B. Triangle (Fejer, Bartlet) Window [7]

The triangle window for a finite Fourier transform is defined
as

Wn)=1.0 d N 1,0,1 N (23a)
=1. T A n=__,..',_); "‘.;_
" N/2 2 2
and is shown in Fig. 14. The same window for a DFT is
defined as

n N

N2 =0,1,--, >

w(n) = < V2 (23b)
N
W(N - n), n=;,"',N-l

i WN W]; l'q
T e
0.

WAL

f
| T i i
-r 0

(b) Log-magnitude of transform.

and the spectral window corresponding to the DFT sequence is

given in
N 2
sin (— 0)
_\4 /

2 N
W(0)=pexp [-j (;- l) 9] 1
sm(—e)
2

The transform of this window is seen to be the squared
Dirichlet kernel. Its main-lobe width (between zero crossings)
is twice that of the rectangie’s and the first sidelobe level is
approximately 26 dB down from the main-lobe peak, again,
twice that of the rectangle’s. The sidelobes fall off at -12 dB
per octave, reflecting the discontinuity of the window residing
in the first derivative (rather than in the function itself). The
triangle is the simplest window which exhibits a nonnegative
transform. This property can be realized by convolving any
window (of half-extent) with itself. The resultant window’s
transform is the square of the original window’s transform.

A window sequence derived by self-convolving a parent win-
dow contains approximately twice the number of samples as
the parent window, hence corresponds to a trigonometric
polynomial (its Z-transform) of approximately twice the
order. (Convolving two rectangles each of N/2 points will
result in a triangle of N + 1 points when the zero end points
are counted.) The transform of the window will now exhibit
twice as many zeros as the parent transform (to account for
the increased order of the associated trigonometric poly-
nomial). But how has the transform applied these extra zeros
available from the increased order polynomial? The self-

(23¢)
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convolved window simply places repeated zeros at each loca-
tion for which the parent transform had a zero. This, of
course, not only sets the transform to zero at those points, but
also sets the first derivative to zero at those points. If the
intent of the increased order of polynomial is to hold down
the sidelobe levels, then doubling up on the zeros is a wasteful
tactic. The additional zeros might better be placed between
the existing zeros (near the local peaks of the sidelobes) to
hold 'down the sidelobes rather than at locations for which
the transform is already equal to zero. In fact we will observe
in subsequent windows that very few good windows exhibit
repeated roots.

Backing up for a moment, it is interesting to examine the
triangle window in terms of partialsum convergence of
Fourier series. Fejer observed that the partial sums of Fourier
series were poor numerical approximations [8]. Fourier
coefficients were easy to generate however, and he questioned
if some simple modification of coefficients might lead to a
new set with -more desirable convergence properties. The
oscillation of the partial sum, and the contraction of those
oscillations as the order of the partial sum increased, suggested
that an average of the partial sums would be a smoother
function. Fig. 15 presents an expansion of two partial sums
near a discontinuity. Notice the average of the two expansions
is smoother than either. Continuing in this line of reasoning,
an average expansion FV () might be defined by

1
FN(0)=; (Fn-10)+Fn_2(8)+- -+ Fo(6)] (24)

where Fps(0) is the M-term partial sum of the series. This is
easily visualized in Table II, which lists the nonzero coeffi-
cients of the first four partial sums and their average summa-
tion. We see that the Fejer convergence factors applied to the
Fourier series coefficients is, in fact, a triangle window. The
averaging of partial sums is known as the method of Cesaro
summability.

C. Cos®*(X) Windows

This is actually a family of windows dependent upon the
parameter &, with & normally being an integer. Attractions of
this family include the ease with which the terms can be
generated, and the easily identified properties of the transform
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of the cosine function. These properties are particularly
attractive under the DFT. The window for a finite Fourier
transform is defined as

N N
w)=cos® | ~wl, m=-T e, o101,
N 2 2

(252)
and for a DFT as

w(n) = sin® [1%17] n=0,1,2,--,N-1. (25b)

Notice the effect due to the change of the origin. The most
common values of a are the integers 1 through 4, with 2 being
the most well known (as the Hanning window). This window
is identified for values of & equal to 1 and 2 in (26a), (26b),
(27a), and (27b), (the *““a” for the finite transforms, the “b”
for the DFT):

a = 1.0 (cosine lobe)

N
W(’l)=COS [[%ﬂ], "=‘_2_)“.a_1’0’1)”"— (263)
a = 1.0 (sine lobe)
n
w(n) =sin [I—V-n], n=0,1,2,-+ ,N-1 (26b)
a = 2.0 (cosine squared, raised cosine, Hanning)
=cos? | X
w(n) = cos [Nﬂ]
2
=0.5 [1.0+cos [—nﬂ]],
N
=_—9..'y_l,0,1)”'9_ 27
m=-- (27a)

a = 2.0 (sine squared, raised cosine, Hanning)

w(n) = sin? [ I-I—I-V‘rr]

2
=05 [I.O-cos [F"n” n=0,1,2,-*,N-1.

(27b)

The windows are shown for « integer values of 1 through 4 in
Figs. 16 through 19. Notice as @ becomes larger, the windows
become smoother and the transform reflects this increased
smoothness in decreased sidelobe level and faster falloff of the
sidelobes, but with an increased width of the main lobe.

Of particular interest in this family, is the Hann window
(after the Austrian meteorologist, Julius Von Hann)! [7]. Not
only is this window continuous, but so is its first derivative.
Since the discontinuity of this window resides in the second
derivative, the transform falls off at 1/(;03 or at -18 dB per
octave. Let us closely examine the transform of this window.
We will gain some interesting insight and learn of a clever
application of the window under the DFT.

IThe correct name of this window is “Hann.” The term “Hanning”
is used in this report to reflect conventional usage. The derived term
“Hann’d” is also widely used.
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The sampled Hanning window can be written as the sum of
the sequences indicated in

2
w(n)=0.5+ 0.5 cos [—'—1 ] ,
N

-1,0, l’...

n=-—,-,

]X—l (28a)
% 5 L a

Each sequence has the easily recognized DFT indicated in

27 2n
wW@)=0.5D(0)+0.25 [D (0 - }—) +D (9+ N)] (28b)

where

N
0 sin [;0]
D(@)=exp (+]—2-)——1—

We recognize the Dirichlet kernel at the origin as the transform
of the constant 0.5 samples and the pair of translated kernels
as the transform of the single cycle of cosine samples. Note
that the translated kernels are located on the first zeros of the
center kernel, and are half the size of the center kernel. Also
the sidelobes of the translated kernel are about half the size
and are of opposite phase of the sidelobes of the central
kernel. The summation of the three kernels’ sidelobes being in
phase opposition, tends to cancel the sidelobe structure. This
cancelling summation is demonstrated in Fig. 20 which depicts
the summation of the Dirichlet kernels (without the phase-
shift terms).

The partial cancelling of the sidelobe structure suggests a
constructive technique to define new windows. The most
well-known of these are the Hamming and the Blackman
windows which are presented in the next two sections.

For the special case of the DFT, the Hanning window is
sampled at multiples of 27/N, which of course are the loca-
tions of the zeros of the central Dirichlet kernel. Thus only
three nonzero samples are taken in the sampling process. The
positions of these samples are at -27/N, 0, and +2n7/N. The
value of the samples obtained from (28b) (including the phase
factor exp (-j(IN/2)8) to account for the N/2 shift) are -%,
+%, —;1,-, respectively. Note the minus signs. These results
from the shift in the origin for the window. Without the shift,
the phase term is missing and the coefficients are all positive
1, 1. % These are incorrect for DFT processing, but they
find their way into much of the literature and practice.

Rather than apply the window as a product in the time
domain, we always have the option to apply it as a convolu-
tion in the frequency domain. The attraction of the Hanning
window for this application is twofold; first, the window
spectra is nonzero at only three data points, and second, the
sample values are binary fractions, which can be implemented
as right shifts. Thus the Hanning-windowed spectral points
obtained from the rectangle-windowed spectral points are
obtained as indicated in the following equation as two real
adds and two binary shifts (to multiply by 3 ):

F(K) | tanning = + [F(k) - % [F(k- 1)
+F(kk+ 111 |Rw. 29)

Thus a Hanning window applied to a real transform of length
N can be performed as N real multiplies on the time sequence
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Fig. 20. Transform of Hanning window as a sum of three Dirichlet
kernels.

or as 2N real adds and 2N binary shifts on the spectral data.
One other mildly important consideration, if the window is to
be applied to the time data, is that the samples of the window
must be stored somewhere, which normally means additional
memory or hardware. It so happens that the samples of the
cosine for the Hanning window are already stored in the
machine as the trig-table for the FFT; thus the Hanning
window requires no additional storage.

D. Hamming Window [7]

The Hamming window can be thought of ‘as a modified
Hanning window. (Note the potential source of confusion in
the similarities of the two names.) Referring back to Figs. 17
and 20, we note the inexact cancellation of the sidelobes from
the summation of the three kernels. We can construct a win-
dow by adjusting the relative size of the kernels as indicated in
the following to achieve a more desirable form of cancellation:

w(n)=a+(1 - a)cos [zNEn]

2 2n
W@)=aD(@)+0.5(1 - a) [D( _F)+D(0 +-1_v_)]

(30a)

Perfect cancellation of the first sidelobe (at 6 = 2.5 [2n/N])
occurs when a = 25/46 (@ =0.543 478 261). If ais selected as
0.54 (an approximation to 25/46), the new zero occurs at
0 =2.6[2n/N] and a marked improvement in sidelobe level is
realized. For this value of a, the window is called the Ham-
ming window and is identified by

r

2

0.54 + 0.46 cos [—3 n] ,
N

w(n) =< n=-—,-1,0,1, ", =

2n

0.54 - 0.46 cos [-— n] )
N

L n=0,1,2," " ,N-1. (30b)

The coefficients of the Hamming window are nearly the set
which achieve minimum sidelobe levels. If @ is selected to be
0.53856 the sidelobe level is -43 dB and the resultant window
is a special case of the Blackman-Harris windows presented in
Section V-E. The Hamming window is shown in Fig. 21.
Notice the deep attenuation at the missing sidelobe position.
Note also that the small discontinuity at the boundary of the
window has resulted in a 1/w (6.0 dB per octave) rate of
falloff. The better sidelobe cancellation does result in a much
lower initial sidelobe level of ~42 dB. Table I lists the param-
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Fig. 21. (a) Hamming window. (b) Log-magnitude of Fourier transform.
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Fig. 22. (a) Blackman window. (b) Log-magnitude of transform.

eters of this window. Also note the loss of binary weighting;
hence the need to perform multiplication to apply the
weighting factors of the spectral convolution.

E. Blackman Window [7]

The Hamming and Hanning windows are examples of win-
dows constructed as the summation of shifted Dirichlet ker-
nels. This data window is defined for the finite Fourier trans-
form in (31a) and for the DFT in (31b); equation (31c) is the
resultant spectral window for the DFT given as a summation
of the Dirichlet kernels D(8) defined by W(8) in (21c¢);

N2 o ~ N
W)=Y aycos|—mn|, n=-—,+,-1,0,1," ", =
m=0 N 2 2
(31a)
Nz 2m
W(n)=z ('l)mam cos [“—mn], n=0,1,"--,N-1
m=o N
(31b)
N/2
2n 2
we =3 )" Ipl6-"m)+D (0+—m)].
m=0 2 N N
(31¢)
Subject to constraint
N/2
Z a, =1.0.
m=0

We can see that the Hanning and the Hamming windows are

of this form with @9 and a, being nonzero. We see that their
spectral windows are summations of three-shifted kernels.

We can construct windows with any X nonzero coefficients
and achieve a (2K- 1) summation of kernels. We recognize,
however, that one way to achieve windows with a narrow main
lobe is to restrict K to a small integer. Blackman examined
this window for K =3 and found the values of the nonzero
coefficients which place zerosat 8 = 3.5 (2n/N)and at 8 = 4.5
(27/N), the position of the third and the fourth sidelobes,
respectively, of the central Dirichlet kernel. These exact
values and their two place approximations are

7938

dp = ——— = 0.426 590 71 ~ 0.42
18608
9240

@y = ———=0.496 560 62 ~0.50
18608
1430

a5 = =0.076 848 67 =~ 0.08.
18608

The window which uses these two place approximations is
known as the Blackman window. When we describe this
window with the “exact” coefficients we will refer to it as
the exact Blackman window. The Blackman window is de-
fined for the finite transform in the following equation and
the window is shown in Fig. 22:

27 2n
W(n)=0.42+ 0.50 cos l:— ] +0.08 cos [— 2n] ,
N N

=__5“.5—13051"..7 32
n=- (32)

© |
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Fig. 23. (a) Exact Blackman window. (b) Log-magnitude of transform.
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Fig. 25. (a) 4-term Blackman-Harris window. (b) Log-magnitude of transform.

The exact Blackman window is shown in Fig. 23. The sidelobe
level is 51 dB down for the exact Blackman window and is 58
dB down for the Blackman window. As an observation, note
that the coefficients of the Blackman window sum to zero
(0.42 -0.50 +0.08) at the boundaries while the exact coef-
ficients do not. Thus the Blackman window is continuous
with a continuous first derivative at the boundary and falls off
like 1/w? or 18 dB per octave. The exact terms (like the
Hamming window) have a discontinuity at the boundary and
falls off like 1/w or 6 dB per octave. Table I lists the param-
eters of these two windows. Note that for this class of win-
dows, the aq coefficient is the coherent gain of the window.
Using a gradient search technique [9], we have found the
windows which for 3- and 4-nonzero terms achieve a minimum

sidelobe level. We have also constructed families of 3- and 4-
term windows in which we trade main-lobe width for sidelobe
level. We call this family the Blackman-Harris window. We
have found that the minimum 3-term window can achieve a
sidelobe level of -67 dB and that the minimum 4-term win-
dow can achieve a sidelobe level of -92 dB. These windows
are defined for the DFT by

) 27 + 21r2 21r3
w(n)=aqy - ay cos| — a, cos| — - a3 cos| —
0 1 N 2 N n 3 N nj,

n=0,1,2,---,N-1. (33)

The listed coefficients correspond to the minimum 3-term
window which is presented in Fig, 24, another 3-term window
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Fig. 26. (a) 4-sample Kaiser—Bessel window. (b) Log-magnitude of transform.
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3-Term 3-Term 4-Term 4-Term
(-67 dB) (-61 dB) (-92 dB) (-74 dB)
ag 0.42323 0.44959 0.35875 0.40217
a, 0.49755 0.49364 0.48829 0.49703
ay 0.07922 0.05677 0.14128 0.09392
az —_ —_— 0.01168 0.00183

(to establish another data point in Fig. 12), the minimum 4-
term window (to also establish a data point in Fig. 12), and
another 4-term window which is presented in Fig. 25. The
particular 4-term window shown is one which performs well
in a detection example described in Section VI (see Fig. 69).
The parameters of these windows are listed in Table I. Note in
particular where the Blackman and the Blackman-Harris win-
dows reside in Fig. 12. They are surprisingly good windows
for the small number of terms in their trigonometric series.
Note, if we were to extend the line connecting the Blackman-
Harris family it would intersect the Hamming window which,
in Section V-D , we noted is nearly the minimum sidelobe level
2-term Blackman-Harris window.

We also mention that a good approximation to the Blackman-
Harris 3- and 4-term windows can be obtained as scaled
samples of the Kaiser-Bessel window’s transform (see Section
V-H). We have used this approximation to construct 4-term
windows for adjustable bandwidth convolutional filters as
reported in [10]. This approximation is defined as

- sinh [71Ve? - m?]
m ava? -m*

c:bo +2bl +2b2'+(2b3)

m<a, 2<a<4

bo

do = ap =2 b:', m=1,2,(3). 34)
The 4 coefficients for this approximation when a= 3.0 are
ag = 0.40243, g, = 0.49804, a, = 0.09831, and a3 = 0.00122.
Notice how close these terms are to the selected 4-term
Blackman-Harris (-74 dB) window. The window defined by
these coefficients is shown in Fig. 26. Like the prototype
from which it came (the Kaiser-Bessel with a= 3.0), this
window exhibits sidelobes just shy of ~70 dB from the main
lobe. On the scale shown, the two are indistinguishable.
The parameters of this window are aiso listed in Table I and
the window is entered in Fig. 12 as the “4-sample Kaiser-

Bessel.” It was these 3- and 4-sample Kaiser-Bessel prototype

windows (parameterized on a) which were the starting condi-
tions for the gradient minimization which leads to the Black-
man-Harris windows. The optimization.starting with these
coefficients has virtually no effect on the maindobe character-
istics but does drive down the sidelobes approximately 5 dB.

F. Constructed Windows

Numerous investigators have constructed windows as prod-
ucts, as sums, as sections, or as convolutions of simple func-
tions and of other simple windows. These windows have been
constructed for certain desirable features, not the least of
which is the attraction of simple functions for generating the
window terms. In general, the constructed windows tend not
to be good windows, and occasionally are very bad windows.
We have already examined some simple window constructions.
The Fejer (Bartlett) window, for instance, is the convolution
of two rectangle windows; the Hamming window is the sum of
a rectangle and a Hanning window; and the cos*(X) window
is the product of two Hanning windows. We will now examine
other constructed windows that have appeared in the litera-
ture. We will present them so they are available for compari-
son. Later we will examine windows constructed in accord
with some criteria of optimality (see Sections V-G, H, I, and
J). Each window is identified only for the finite Fourier trans-
form. A simple shift of N/2 points and right end-point dele-
tion will supply the DFT version. The significant figures of
performance for these windows are also found in Table 1.

1) Riesz (Bochner, Parzen) Window [11]: The Riesz win-
dow, identified as

N
<ln|<— (35)

IN/Z ’ 2
is the simplest continuous polynomial window. It exhibits a
discontinuous first derivative at the boundaries; hence its
transform falls off like 1/w?. The window is shown in Fig.
27. The first sidelobe is -22 dB from the main lobe. This
window is similar to the cosine lobe (26) as can be demon-
strated by examining its Taylor series expansion.

2) Riemann Window [12]: The Riemann window, defined

by
n
sin [— 21r]
N

w(n)=—F——=-,
n
=27
N

is the central lobe of the SINC kernel. This window is con-

w(n)=1.0-

(36)

0 |Z
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Fig. 28. (a) Riemann window. (b) Log-magnitude of transform.
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Fig. 29. (a) The de la Vallé-Poussin window. (b) Log-magnitude of transform.

tinuous, with a discontinuous first derivative at tiie boundary.
It is similar to the Riesz and cosine lobe windows, The
Riemann window is shown in Fig. 28.

3) de la Valié-Poussin (Jackson, Parzen) Window [11]: The
de la Vallé-Poussin window is a piecewise cubic curve ob-
tained by self-convolving two triangles of half extent or four
rectangles of one-fourth extent. It is defined as

n |? [n| N
1.0—6[1% [1.0-N/2J, 0<Inl<7

2 (10 12If*
© ON/2]C

w(n) =

N N
—<|n|<—.
4 2

37

The window is continuous up to its third derivative so that its
sidelobes fall off like 1/w?. The window is shown in Fig. 29.
Notice the trade off -of main-lobe width-for-sidelobe level.
Compare this with the rectangle and the triangle. It is a non-
negative window by virtue of its self-convolution construction.

4) Tukey Window [13]: The Tukey window, often called
the cosine-tapered window, is best imagined as a cosine lobe of
width (@/2) N convolved with a rectangle window of width
(1.0 - a/2) N. Of course the resultant transform is the product
of the two corresponding transforms. The window represents
an attempt.to smoothly set. the data to zero at the boundaries
while not significantly reducing the processing gain of the
windowed transform. The window evolves from the rectangle
to the Hanning window as the parameter a varies from zero to
unity. The family of windows exhibits a confusing array of
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Fig. 32. (a) 75-percent cosine taper (Tukey) window. (b) Log-magnitude of transform.

sidelobe levels arising from the product of the two component
transforms. The window is defined by

N
1.0, 0<|n|<a;
w(n) = N
) N N
05|1.0+cos |x , oe—<|n|l<—
N 2 2
2(1 - a);

(38)

The window is shown in Figs. 30-32 for values of @ equal to
0.25,0.50, and 0.75, respectively.

5) Bohman Window [14]: The Bohman window is ob-
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tained by the convolution of two half-duration cosine lobes
(26a), thus its transform is the square of the cosine lobe’s
transform (see Fig. 16). In the time domain the window can
be described as a product of a triangle window with a single
cycle of a cosine with the same period and, then, a corrective
term added to set the first derivative to zero at the boundary.
Thus the second derivative is continuous, and the disconti-
nuity resides in the third derivative. The transform falls off like
1/w*. The window is defined in the following and is shown in

Fig. 33:
B APSEY) B ET) OO T
w(n)= [1.0 N/-z}cos [IN/2]+ - sin [ﬂle],
0<In|<%’. (39)
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Fig. 35. (a) Poisson window. (b) Log-magnitude of transform (a = 3.0).

6) Poisson Window [12]: The Poisson window is a two-
sided exponential defined by

Ini
aN/2)’ 0<in

This is actually a family of windows parameterized on the
variable a. Since it exhibits a discontinuity at the boundaries,
the transform can fall off no faster than 1/w. The window is
shown in Figs. 34-36 for values of @ equal to 2.0, 3.0, and 4.0,
respectively. Notice as the discontinuity at the boundaries
becomes smaller, the sidelobe structure merges into the
asymptote. Also note the very wide main lobe; this will be

w(n) = exp (— | Q‘%r. (40)

observed in Table I as a large equivalent noise bandwidth and
as a large worst case processing loss.

7) Hanning-Poisson Window: The Hanning~Poisson win-
dow is constructed as the product of the Hanning and the
Poisson windows. The family is defined by

w(n)=0.5 |:1 0+ cos [11 7]] exp (-a}l-\T/-lz-) 0<|n

This window is similar to the Poisson window. The rate of
sidelobe falloff is determined by the discontinuity in the first

<y
2

41)
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Fig. 36. (a) Poisson window. (b) Log-magnitude of transform (a = 4.0).

Fig. 38. (a) Hanning-Poisson window. (b) Log-magnitude of transform (a = 1.0).

derivative at the origin and is 1/w?. Notice as & increases,
forcing more of the exponential into the Hanning window,
the zeros of the sidelobe structure disappear and the lobes
merge into the asymptote. This window is shown in Figs.
37-39 for values of a equal to 0.5, 1.0, and 2.0, respectively.
Again note the very large main-lobe width.

8) Cauchy (Abel, Poisson) Window [15]: The Cauchy win-
dow is a family parameterized on « and defined by

1

10+ |Ja—
&7

The window is shown in Figs. 40-42 for values of & equal to
3.0, 4.0, and 5.0, respectively. Note the transform of the

wn)= o< |n|<— 42)

Cauchy window is a two-sided exponential (see Poisson win-
dows), which when presented on a log-magnitude scale is
essentially an isosceles triangle. This causes the window to
exhibit a very wide main lobe and to have a large ENBW.

G. Gaussian or Weierstrass Window [15]

Windows are smooth positive functions with tall thin (i.e.,
concentrated) Fourier transforms. From the generalized
uncertainty principle, we know we cannot simultaneously
concentrate both a signal and its Fourier transform., If our
measure of concentration is the mean-square time duration T
and the mean-square bandwidth W, we know all functions
satisfy the inequality of

1

TW =2 —

4T (43)
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Fig. 41. (a) Cauchy window. (b) Log-magnitude of transform (a = 4.0).

with equality being achieved only for the Gaussian pulse [16].
Thus the Gaussian pulse, characterized by minimum time-
bandwidth product, is a reasonable candidate for a window.
When we use the Gaussian pulse as a window we have to trun-
cate or discard the tails. By restricting the pulse to be finite
length, the window no longer is minimum time-bandwidth.
If the truncation point is beyond the three-sigma point, the
error should be small, and the window should be a good
approximation to minimum time-bandwidth.
The Gaussian window is defined by

2
w(n) = exp l:—%[ ﬁ]}

The transform is the convolution of a Gaussian transform with

(44a)

a Dirichlet kernel as indicated in

g [ 4[4 ] 0

W(0)=;Texp
N2 1l |3
— —wexp [——[——0]] , fora>2.5,and @ small.
2 a 2|a

R

(44b)

This window is parameterized on a, the reciprocal of the
standard deviation, a measure of the width of its Fourier
transform. Increased a will decrease with the width of the
window and reduce the severity of the discontinuity at the
boundaries. This will result in an increased width transform
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Fig. 42. (a) Cauchy window. (b) Log-magnitude of transform (a = 5.0).
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Fig. 44. (a) Gaussian window. (b) Log-magnitude of transform (a = 3.0).

main lobe and decreased sidelobe levels.. The. window..is
presented in Figs. 43, 44, and 45 for values of o equal to 2.5,
3.0, and 3.5, respectively. Note the rapid drop-off rate of
sidelobe level in the exchange of sidelobe level for main-lobe
width. The figures of merit for this window are listed in
Table L.

H. Dolph-Chebyshev Window [17]

Following the reasoning of the previous section, we seek a
window which, for a known finite duration, in some sense
exhibits a narrow bandwidth. We now take a lead from the
antenna design people who have faced and solved a similar
problem. The problem is to illuminate an antenna of finite

aperture .to achieve a narrow. main-lobe _beam pattern while
simultaneously restricting sidelobe response. (The antenna
designer calls his weighting procedure shading.) The closed-
form solution to the minimum main-lobe width for a given
sidelobe level is the Dolph-Chebyshev window (shading).
The continuous solution to the problem exhibits impulses at
the boundaries which restricts continuous realizations to
approximations (the Taylor approximation). The discrete or
sampled window is not so restricted, and the solution can be
implemented exactly.

The relation T,(X )= cos (nf) describes a mapping between
the nth-order Chebyshev (algebraic) polynomial and the nth-
order trigonometric polynomial. The Dolph~-Chebyshev
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Fig. 46. (a) Dolph~Chebyshev window. (b) Log-magnitude of transform (a = 2.5).

Fig. 47. (a) Doiph-Chebyshev window. (b) Log-magnitude of transform (a = 3.0).

window is defined with this mapping in the following equa-
tion, in terms of uniformly spaced samples of the window’s

Fourier transform,

o]

cosh [N cosh™! (8)] ’
OL|kI<SN-1 (45

w(k) = (~1)*

where

B = cosh [N cosh™ (loa)]

and
E—tan"[X/\/I.O—le, I1X|<1.0
os1(X)=1 2
In[X+v/X%2-10], IX1=1.0

To obtain the corresponding window time samples w(n), we
simply perform a DFT on the samples W(k) and then scale
for unity peak amplitude. The parameter a represents the log
of the ratio of main-lobe level to sidelobe level. Thus a value
of a equal to 3.0 represents sidelobes 3.0 decades down from
the main lobe, or sidelobes 60.0 dB below the main lobe. The
(—1)" alternates the sign of successive transform samples to
reflect the shifted origin in the time domain. The window is
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Fig. 49. (a) Dolph-Chebyshev window. (b) Log-magnitude of transform (g = 4.0).

presented in Figs. 46-49 for values of & equal to 2.5, 3.0,
3.5, and 4.0, respectively. Note the uniformity of the sidelobe
structure; almost sinusoidal! It is this uniform oscillation
which is responsible for the impulses in the window.

1. Kaiser-Bessel Window [18]

Let us examine for a moment the optimality criteria of the
last two sections. In Section V-G we sought the function
with minimum time-bandwidth product. We know this to be
the Gaussian. In Section V-H we sought the function with
restricted time duration, which minimized the main-lobe
width for a given sidelobe level. We now consider a similar
problem. For a restricted energy, determine the function of
restricted time duration T which maximizes the energy in the
band of frequencies W. Slepian, Pollak, and Landau [19],
[20] have determined this function as a family parameterized
over the time-bandwidth product, the prolate-spheroidal wave
functions of order zero. Kaiser has discovered a simple ap-
proximation to these functions in terms of the zero-order
modified Bessel function of the first kind. The Kaiser-Bessel
window is defined by

n 2
Iy [na 1.0—(1\/_/2_) N

= o<|ni<~ (46
w(n) T [mal , In| 5 (46a)
where
= \2
LXO=2 [ -
k=0 :

The parameter nwa is half of the time-bandwidth product. The
transform is approximately that of

N sinh [\o?n? - (N6/2)? ]
Ip(am) \o2#?2 - (NO[2)2
This window is presented in Figs. 50-53 for values of a equal

to 2.0, 2.5, 3.0, and 3.5, respectively. Note the trade off
between sidelobe level and mainJobe width.

W(8) = (46b)

J. Barcilon-Temes Window [21]

We now examine the last criterion of optimality for a win-
dow. We have already described the Slepian, Pollak, and
Landau criterion. Subject to the constraints of fixed energy
and fixed duration, determine the function which maximizes
the energy in the band of frequencies W. A related criterion,
subject to the constraints of fixed area and fixed duration, is
to determine the function which minimizes the energy (or
the weighted energy) outside the band of frequencies W. This
is a reasonable criterion since we recognize that the transform
of a good window should minimize the energy it gathers from
frequencies removed from its center frequency. Till now, we
have been responding to this goal by maximizing the concen-
tration of the transform at its main lobe.

A closed-form solution of the unweighted minimum-energy
criterion has not been found. A solution defined as an expan-
sion of prolate-spheroidal wave functions does exist and it is
of the form shown in

w Y2, (ma, 0) ol
H(W)= 20 Aan Van (1ra, W)'

47)
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Fig. 50. (a) Kaiser-Bessel window. (b) Log-magnitude of transform (a

2.0).
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Fig. 51. (a) Kaiser-Bessel window. (b) Log-magnitude of transform (a

2.5).
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Fig. 52. (a) Kaiser-Bessel window. (b) Log-magnitude of transform (a

3.0).
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Fig. 53. (a) Kaiser-Bessel window. (b) Log-magnitude of transform (a = 3.5).
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Here the A, is the eigenvalue corresponding to the associated
prolate-spheroidal wave function | Y2 ,(x, )|, and the 7a is
the selected half time-bandwidth product. The summation
converges quite rapidly, and is often approximated by the first
term or by the first two terms. The first term happens to be
the solution of the Slepian, Pollak, and Landau problem,
which we have already examined as the Kaiser-Bessel window.

A closed-form solution of a weighted minimum-energy
criterion, presented in the following equation has been found
by Barcilon and Temes:

. 2 w
Mmlmlzej:lH(w)l \/——de.

This criterion is one which is a compromise between the Dolph-
Chebyshev and the Kaiser-Bessel window criteria.

(48)

Like the Dolph-Chebyshev window, the Fourier transform is
more easily defined, and the window time-samples are ob-
tained by an inverse DFT and an appropriate scale factor. The
transform samples are defined by

®)
A cos [y(K)] +B [y—c— sin [y(k)]]

w(k) = (-1)¥
k)=(1) [[y(k)], ]
[C+AB] ||—| +1.0
c
(49)
where
A =sinh (C) =102 - 1

B = cosh (C) =10%
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C = cosh™1(10%)
1
8= cosh [;, C]

y(k)= N cos™! [B cos (1r 1%)] .

(See also (45).) This window is presented in Figs. 54-56 for
values of a equal to 3.0, 3.5, and 4.0, respectively. The main-
lobe structure is practically indistinguishable from the Kaiser-
Bessel main-lobe. The figures of merit listed on Table I suggest
that for the same sidelobe level, this window does indeed
reside between the Kaiser-Bessel and the Dolph-Chebyshev
windows. It is interesting to examine Fig. 12 and note where
this window is located with respect to the Kaiser-Bessel
window; striking similarity in performance!

VI. HARMONIC ANALYSIS

We now describe a simple experiment which dramatically
demonstrates the influence a window exerts on the detection
of a weak spectral line in the presence of a strong nearby line.
If two spectral lines reside in DFT bins, the rectangle window
allows each to be identified with no interaction. .To demon-
strate this, consider the signal composed of two frequencies
10 f¢/N and 16 f;/N (corresponding to the tenth and the
sixteenth DFT bins) and of amplitudes 1.0 and 0.01 (40.0 dB
separation), respectively. The power spectrum of this signal
obtained by a DFT is shown in Fig. 57 as a linear interpola-
" tion between the DFT output points.

We now modify the signal slightly so that the larger signal
resides midway between two DFT bins; in particular, at 10.5
fs/N. The smaller signal still resides in the sixteenth bin. The
power spectrum of this signal is shown in Fig. 58. We note
that the sidelobe structure of the larger signal has completely
swamped the main lobe of the smaller signal. In fact, we know
(see Fig. 13) that the sidelobe amplitude of the rectangle win-
dow at 5.5 bins from the center is only 25 dB down from the
peak. Thus the second signal (5.5 bins away) could not be
detected because it was more than 26 dB down, and hence,
hidden by the sidelobe. (The 26 dB comes from the 25-dB
sidelobe level minus the 3.9-dB processing loss of the window
plus 3.0 dB for a high confidence detection.) We also note
the obvious asymmetry around the main lobe centered at 10.5
bins, This is due to the coherent addition of the sidelobe
structures of the pair of kernels located at the plus and minus
10.5 bin positions. We are observing the self-leakage between
the positive and the negative frequencies. Fig. 59 is the power
spectrum of the signal pair, modified so that the large-amplitude
signal resides at the 10.25-bin position. Note the change in
asymmetry of the main-lobe and the reduction in the sidelobe
level. We still can not observe the second signal located at
bin position 16.0.

We now apply different windows to the two-tone signal to
demonstrate the difference in second-tone detectability. For
some of the windows, the poorer resolution occurs when the
large signal is at 10.0 bins rather than at 10.5 bins. We will
always present the window with the large signal at the loca-
tion corresponding to worst-case resolution.

The first window we apply is the triangle window (see Fig.
60). The sidelobes have fallen by a factor of two over the
rectangle windows’ lobes (e.g., the —-35-dB level has fallen to
-70 dB). The sidelobes of the larger signal have fallen to
approximately -43 dB at the second signal so that it is barely
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detectable. If there were any noise in the signal, the second

tone would probably not have been detected.

The next windows we apply are the cos®(x) family. For
the cosine lobe, @ = 1.0, shown in Fig. 61 we observe a phase
cancellation in the sidelobe of the large signal located at the
small signal position. This cannot be considered a detection.
We also see the spectral leakage of the main lobe over the
frequency axis. Signals below this leakage level would not be
detected. With o= 2.0 we have the Hanning window, which is
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presented in Fig. 62. We detect the second signal and observe
a 3.0-dB null between the two lobes. This is still a marginal
detection. For the cos®(x) window presented in Fig. 63, we
detect the second signal and observe a 9.0-dB null between
the lobes. We also see the improved sidelobe response. Finally
for the cos‘(x) window presented in Fig. 64, we detect the
second signal and observe a 7.0-dB null between the lobes.
Here we witness the reduced return for the trade between
sidelobe level and main-lobe width. In obtaining further
reduction in sidelobe level we have caused the increased main-
lobe width to encroach upon the second signal.

We next apply the Hamming window and present the result
in Fig. 65. Here we observe the second signal some 35 dB
down, approximately 3.0 dB over the sidelobe response of
the large signal. Here, too, we observe the phase cancellation
and the leakage between the positive and the negative fre-
quency components. Signals more than 50 dB down would
not be detected in the presence of the larger signal.

The Blackman window is applied next and we see the results
in Fig. 66. The presence of the smaller amplitude kernel is
now very apparent. There is a 17-dB null between the two
signals. The artifact at the base of the large-signal kernel is
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the sidelobe structure of that kernel. Note the rapid rate of
falloff of the sidelobe leakage has confined the artifacts to a
small portion of the spectral line.

We next apply the exact Blackman coefficients and witness
the results in Fig. 67. Again the second signal is well defined
with a 24-dB null between the two kernels. The sidelobe
structure of the larger kernel now extends over the entire
spectral range. This leakage is not terribly severe as it is nearly
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60-dB down relative to the peak. There is another small
artifact at 50-dB down on the low frequency side of the large
kernel. This is definitely a single sidelobe of the larpe kernel.
This artifact is essentially removed by the minimum 3-term
Blackman-Harris window which we see in Fig. 68. The null
between the two signal main lobes is slightly smaller, at ap-
proximately 20 dB.

Next the 4-term Blackman-Harris window is applied to the
signal and we see the results in Fig. 69. The sidelobe struc-
tures are more than 70-dB down and as such are not observed
on this scale. The two signal lobes are well defined with
approximately a 19-dB null between them. Now we apply the
4-sample Kaiser-Bessel window to the signal and see the re-
sults in Fig. 70. We have essentially the same performance as
with the 4-term Blackman-Harris window. The only obser-
vable difference on this scale is the small sidelobe artifact
68 dB down on the low frequency side of the large kernel.
This group of Blackman-derived windows perform admirably
well for their simplicity.

The Riesz window is the first of our constructed windows
and is presented in Fig. 71. We have not detected the second
signal but we do observe its affect as a 20.0-dB null due
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to the phase cancellation of a sidelobe in the large signal’s
kernel.

The result of a Riemann window is presented in Fig. 72.
Here, too, we have no detection of the second signal. We do
have a small null due to phase cancellation at the second sig-
nal. We also have a large sidelobe response.

The next window, the de la Vallé-Poussin or the self-
convolved triangle, is shown in Fig. 73. The second signal is
easily found and the power spectrum exhibits a 16.0-dB null.
An artifact of the window (its lower sidelobe) shows up,
however, at the fifth DFT bin as a signal approximately 53.0
dB down. See Fig. 29.

The result of applying the Tukey family of windows is
presented in Figs. 74-76. In Fig. 74 (the 25-percent taper)
we see the lack of second-signal detection due to the high side-
lobe structure of the dominant rectangle window. In Fig. 75
(the 50-percent taper) we observe a lack of second-signal
detection, with the second signal actually filling in one of the
nulls of the first signals’ kernel. In Fig. 76 (the 76-percent
taper) we witness a marginal detection in the still high side-
lobes of the larger signal, This is still an unsatisfying window
because of the artifacts.
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The Bohman construction window is applied and presented
in Fig. 77. The second signal has been detected and the null
between the two lobes is approximately 6.0 dB. This is not
bad, but we can still do better. Note where the Bohman win-
dow resides in Fig. 12.

The result of applying the Poisson-window family is pre-
sented in Figs. 78-80. The second signal is not detected for
any of the selected parameter values due to the high-sidelobe
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levels of the larger signal. We anticipated this poor perfor-
mance in Table I by the large difference between the 3.0 dB
and the ENBW.

The result of applying the Hanning-Poisson family of win-
dows is presented in Figs. 81~-83. Here, too, the second signal
is either not detected in the presence of the high-sidelobe
structure or the detection is bewildered by the artifacts.

The Cauchy-family windows have been applied and the
results are presented in Figs. 84-86. Here too we have a lack
of satisfactory detection of the second signal and the poor
sidelobe response. This was predicted by the large difference
between the 3.0 dB and the equivalent noise bandwidths as
listed in Table I.

We now apply the Gaussian family of windows and present
the results in Figs. 87-89. The second signal is detected in all
three figures. We note as we further depress the sidelobe
structure to enhance second-signal detection, the null deepens
to approximately 16.0 dB and then becomes poorer as the
main-lobe width increases and starts to overlap the lobe of
the smaller signal.

The Dolph-Chebyshev family of windows is presented in
Figs. 90-94. We observe strong detection of the second signal
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in all cases, but it is distressing to see the uniformly high side-
lobe structure. Here, we again see the coherent addition of
the sidelobes from the positive and negative frequency kernels.
Notice that the smaller signal is not 40-dB down now. What
we are seeing is the scalloping loss of the large signals” main-
lobe being sampled off of the peak and being referemnced as
zero dB. Figs. 90 and 91 demonstrate the sensitivity of the
sidelobe coherent addition to mainlobe position. In Fig. 90
the larger signal is at bin 10.5; in Fig. 91 it is at bin 10.0.
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Note the difference in phase cancellation near the base of the
large signal. Fig. 93, the 70-dB-sidelobe window, exhibits an
18-dB null between the two main lobes but the sidelobes have
added constructively (along with the scalloping loss) to the
-62.0-dB level. In Fig. 94, we see the 80-dB sidelobe window
exhibited sidelobes below the 70-dB level and still managed to
hold the null between the two lobes to approximatley 18.0
dB.

The Kaiser-Bessel family is presented in Figs. 95-98. Here,
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too, we have strong second-signal detection. Again, we see the
effect of trading increased main-lobe width for decreased
sidelobe level. The null between the two lobes reaches a maxi-
mum of 22.0 dB as the sidelobe structure falls and then be-
comes poorer with further sidelobe level improvement. Note
that this window can maintain a 20.0-dB null between the two
signal lobes and still hold the leakage to more than 70 dB
down over the entire spectrum,

Figs. 99-101 present the performance of the Barcilon-
Temes window. Note the strong detection of the second signal.
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There are slight sidelobe artifacts. The window can maintain
a 20.0-dB null between the two signal lobes. The performance
of this window is slightly shy of that of the Kaiser-Bessel
window, but the two are remarkably similar.

VII. CONCLUSIONS

We have examined some classic windows and some windows
which satisfy some criteria of optimality. In particular, we
have dexcribed their effects on the problem of general har-
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monic analysis of tones in broadband noise and of tones in
the presence of other tones. We have observed that when the
DFT is used as a harmonic energy detector, the worst case
processing loss due to the windows appears to be lower
bounded by 3.0 dB and (for good windows) upper bounded
near 3.75 dB. This suggests that the choice of particular
windows has very little effect on worst case performance in
DFT energy detection. We have concluded that a good perfor-
mance indicator for the window is the difference between the
equivalent noise bandwidth and the 3.0-dB bandwidth nor-
malized by the 3.0-dB bandwidth. The windows which per-
form well (as indicated in Fig. 12) exhibit values for this
ratio between 4.0 and 5.5 percent. The range of this ratio
for the windows listed in Table I is 3.2 to 22.9 percent.

For multiple-tone detection via the DFT, the window
employed does have a considerable effect. Maximum dynamic
range of multitone detection requires the transform of the
window to exhibit a highly concentrated central lobe with
very-low sidelobe structure, We have demonstrated that
many classic windows satisfy this criterion with varying
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degrees of success and some not at all. We have demonstrated
the optimal windows (Kaiser-Bessel, Dolph-Chebyshev, and
Barcilon-Temes) and the Blackman-Harris windows perform
best in detection of nearby tones of significantly different
amplitudes. Also for the same dynamic range, the three opti-
mal windows and the Blackman-Harris window are roughly
equivalent with the Kaiser-Bessel and the Blackman-Harris,
demonstrating minor performance advantages over the others.
We note that while the Dolph-Chebyshev window appears to
be the best window by virtue of its relative position in Fig. 12,
the coherent addition of its constant-level sidelobes detracts
from its performance in multi tone detection. Also the side-
lobe structure of the Dolph-Chebyshev window exhibits
extreme sensitivity to coefficient errors. This would affect
its performance in machines operating with fixed-point arith-
metic. This suggests that the Kaiser—Bessel or the Blackman-
Harris window be declared the top performer. My preference
is the Kaiser-Bessel window. Among other reasons, the coef-
ficients are easy to generate and the trade-off of sidelobe
level as a function of time-bandwidth product is fairly simple.
For many applications, the author would recommend the 4-
sample Blackman-Harris (or the 4-sample Kaiser-Bessel)
window. These have the distinction of being defined by a few
easily generated coefficients and of being able to be applied
as a spectral convolution after the DFT.

We have called attention to a persistent ‘error in the applica-
tion of windows when performing convolution in the fre-
quency domain, i.e., the omission of the alternating signs on
the window sample spectrum to account for the shifted time
origin. We have also identified and clarified a source of
confusion concerning the evenness of windows under the DFT.

Finally, we comment that all of the conclusions presented
about window performance in spectral analysis are also ap-
plicable to shading for array processing of spatial sampled
data, including FFT beamforming.
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APPENDIX
THE EQUIVALENCE OF WINDOWING IN THE TiME
DoMAIN To CONVOLUTION IN THE FREQUENCY DOMAIN

Let

£ =f+“ F(w) exp (-jwt) dw/2w

and
+Nj2
W(w)= w(nT) exp (+jwnT).
n=-N/2
Then
Fo(w)= E wnT)f(nT) exp (+jwnT)
becomes
F(w)= i w(nT)f F(x)exp (-jxnT) dx/2n
n=—o -0
. exp (+jwnT)
=f F(x) E wnT) exp [+j (w - x)nT] dx/27
-0 n=-oe
hoo +N/2
=f F(x) Z w(nT) exp [+j (w - x)nT] dx/2n
e n=-Nf2
=f | F(x)W(w - x)dx/2n
or

Fy(w)=F(w) * W(w).
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