TE K INFORMATION SEPT/OCT
FOR TECHNOLOGISTS 1984

TECHNOLOGY

report

COMPANY CONFIDENTIAL

WITH THE HELP
OF ARTIFICIAL.
INTELLIGENCE

Circuit number: R155
A Tektronix Part Number:
y 315-0821-00

the triangle wave comparator has
4 failed, examine that next

Rules being examinedl‘

RULE 801: If V(N19) is high and
V(N28) is not +0.5v, then the

| triangle comparator bridge is

"] failed, replace CR245, CR246,
CR248, CR250

COMMITTED TO EXCELLENCE

CONTENTS

Volume 6, No. 7, September/October 1984.
Managing editor: Art Andersen, ext. MR-8934,
d.s. 53-077. Cover: Nancy Pearen; Graphic

Artificial Intelligence:

Troubleshooting With the Aid of an Expert System 3

Thermal Analysis Tools: '
Thermal Computations Detailed in New Book

TI’s TMS32010: Implementing
a Filter Using a Digital Signal Processor

ANSI/X3H4 Technical Committee (IRDS)
Meets at Tek

A Quick Look at CAD in the Soviet Union

Tek’s Stake In the Standards
Now Developing for Graphics

Multilevel Stimulation of Digital Systems
Using the Tektronix Simulation System

Tek Libraries Have Extensive Periodicals List

illustrator: Darla Olmscheid. Composition edi-
tor: Sharlet Foster. Published for the benefit
of the Tektronix engineering and scientific

community.
________ 6 Copyright© 1984, Tektronix, Inc. All rights
reserved.
...... 0 TR
Technology Report serves two purposes.
Long-range, it promotes the flow of technical
........ 15 information among the diverse segments of
16 the Tektronix engineering and scientific com-
-------- munity. Short-range, it publicizes current
events (new services available and notice of
achievements by members of the technical
........ 18 community).
........ 20
........ 24

HELP AVAILABLE FOR
PAPERS, ARTICLES,
AND PRESENTATIONS

If you're preparing a paper for publication or presentation out-
side Tektronix, the Technology Communications Support (TCS)
group of Corporate Marketing Communications can make your
job easier. TCS can provide editorial help with outlines, abstracts,
and manuscripts; prepare artwork for illustrations; and format
material to journal or conference requirements. They can also
help you “storyboard” your talk, and then produce professional,
attractive slides to go with it. In addition, they interface with
Patents and Trademarks to obtain confidentiality reviews and

to assure all necessary patent and copyright protection.

For more information, or for whatever assistance you may need,
contact Eleanor McElwee, ext. 642-8924. [

WRITING FOR
TECHNOLOGY REPORT

Technology Report can effectively convey ideas, innovations,
services, and background information to the Tektronix techno-
logical community.

How long does it take to see an article appear in print? That is a
function of many things (the completeness of the input, the re-
view cycle, and the timeliness of the content). But the minimum is
six weeks for simple announcements and as much as 14 weeks
for major technical articles.

The most important step for the contributor is to put the message
on paper so we will have something to work with. Don’t worry
about organization, spelling, and grammar. The editors will take
care of that when we put the article into shape for you.

Do you have an article to contribute or an announcement to
make? Contact the editor, Art Andersen, 642-8934 (Merlo Road)
or write to d.s. 53-077. O

TECHNOLOGY
REPORT

ARTIFICIAL INTELLIGENCE:
TROUBLESHOOTING WITH THE
HELP OF AN EXPERT SYSTEM

Jim Alexander is a Cognitive Scientist in the Com-
puter Research Laboratory. He joined Tek in 1983.
Prior to joining Tek, he was working on his PhD at
the University of Colorado in Boulder. His research
there focused upon the characteristics of human-
computer interaction. Before Boulder, Jim worked
at the Bell Telephone Laboratories doing system
analysis and requirements. Jim received his BS
from Syracuse University, and his MA from the
University of Colorado.

Michael Freiling coordinates the Troubleshooting
Technology Project in the Artificial Intelligence
Department, part of the Computer Research Lab.
Mike joined Tek in 1983 from Oregon State Univer-
sity where he was an assistant professor of com-
puter science. He has a PhD from the Massachu-
setts Institute of Technology (1977). He was a Luce
scholar at Kyoto University (Japan) from 1977 to
1978. His BS is from the University of San Francisco.

Good troubleshooters can’t be replaced by expert sys-
tems, but elements of their expert wisdom can be confided
to expert systems. With this wisdom, the expert system
can “sit in” with the junior technician, advising and sug-
gesting how to diagnose what’s wrong as the technician
faces a “broken” Tek product. This article describes the
Troubleshooting Assistant, a Tek-built system, and the ef-
fects expert-system technology might have on servicing
electronic products.

For Tek, electronic-systems troubleshooting is both a major source
of revenue and a major cost of doing business. Consequently,
when the Artificial Intelligence Department was formed last year,
we decided that we could improve revenues and costs most ef-
fectively by applying artifical intelligence to the challenge of di-
agnosing electronic equipment.

Expert System Technology

For more than a decade, researchers in artificial intelligence (Al)
have been developing specialized computer systems known as
expert systems. The technology is now emerging as a practical
tool for use in real-world applications. For example, MYCIN, one
of the first expert systems (Shortliffe, 1976), is now helping doc-
tors diagnose and treat meningitis, a serious and difficult to diag-
nose disease of the spinal fluid. The MYCIN system has proved
to be as accurate a diagnostician as most physicians. Conse-
quentally, many physicians use MYCIN as a source for second
opinions.

A system such as MYCIN would be virtually unthinkable if the
development followed traditional software methodologies built
around Pascal or FORTRAN. The innovation that made MYCIN
and other expert systems practical was the development of

knowledge engineering, a new software development technol-
ogy. Systems built with knowledge-engineering techniques take
the form of a large group of rules. The rules usually take the
form IF {observation) THEN {conclusion) (see Rule Base Ex-
amples). The only program, in the traditional sense, is a small
rule interpreter which processes the rules.

Rule Base Examples
IF {all waves bad) THEN (triangle generator bad)
IF {only sine wave bad) THEN {sine shaper bad)

Knowledge engineers construct an expert system by interview-
ing experts in a field, attempting to build a body of rules which
capture the expertise necessary for a task.

Expert-system technology, then, primarily differs from more tra-
ditional programming in two ways:

(One) Facts are represented in a rule base rather than in source
code.

Unlike most software systems, where source-code development
is a major part of the programming effort, the actual program-
ming for an expert system involves writing only a small rule pro-
cessor. The lion's share of the work of building an expert system
is in developing the rule base, a set of rules describing how to
solve the problem. Because a rule base may contain thousands
of rules, its behavior can be quite complex.

(Two) Decisions are based on the intuitition and experiences of
experts rather than on any formal theory.

Often, expert systems do not rely on the theoretical principles of
the problem under attack. Instead, current Al technology re-
quires us to build a system based upon the way experts think
about the problem. It is important to note that experts seldom
solve problems using a rigorous theoretical analysis; rather their
understanding has a more ad hoc character. Some excellent
troubleshooting technicians, for instance, use very little elec-
tronic theory. Yet, by using their own simpler conceptual mod-
els, they can troubleshoot a faulty device quite efficiently.

The Smalitalk Troubleshooting Assistant Project

We have built a prototype expert system engineered to assist in
the repair of Tektronix FG502 Function Generators. This system,
the Troubleshooting Advisor, runs in Smalltalk (Goldberg and
Robson, 1983) on the Tektronix 4404 Atrtificial Intelligence Sys-
tem. We spent about five man months researching the trouble-
shooting process within Tektronix and three man-months writing
code in Smalltalk and developing the rule base. Although this
effort focused on the very simple FG502, we were able to devel-
op a general framework for troubleshooting that we will eventu-
ally apply to more complex Tektronix equipment.

TECHNOLOGY
REPORT

The first stage of the Advisor project was to visit as many trouble-
shooting experts within Tek as we could find. With the experts’
help we began to characterize electronic troubleshooting within
Tek (Freiling and Alexander, 1984). This investigation was criti-
cal since knowledge engineering relies heavily upon the ex-
pert’s knowledge to be successful.

The need for expert knowledge obviously meant that we needed
to select a topic for which experts were available — but not too
available. We needed an area where expertise was also scarce
and therefore valuable. Equally important, we needed an expert
whose style of explaining things was effective and understandable.

Generally, there are four levels of troubleshooters at Tektronix;
technical responsibilities and abilities are divided accordingly.

When a problem instrument comes into the shop or off the as-
sembly line it is first given to a novice technician who attempts
to calibrate the instrument and identify problems. If this techni-
cian cannot identify the fault, he or she passes it to a more ex-
perienced technician. The pass-along chain continues until

either the instrument is fixed or determined to be unfixable by

the most experienced technician. (The technicians we spoke to
assured us that no Tektronix instrument has ever remained un-
fixable — every instrument is fixed!) It is the responsibility of each
technician who has handled an instrument to learn from the
more experienced technician how the instrument was fixed.
Thus, training by apprenticeship is melded with the trouble-
shooting process.

What an expert system can do

Early in our research, we became convinced that the role of an
expert troubleshooting system was not to replace, but to help the
technician. We saw more effectiveness in using expert systems
to increase the productivity of existing technicians - especially
in the early stages of their careers.

Troubleshooting is a complex and difficult task. A troubleshooter
must know the device under repair intimately. He or she must
also have a fair amount of electronic savvy: Al technology is not
robust enough to handle all of the factors that are involved in
troubleshooting. Current methods permit us to develop systems
with knowledge about only the most basis types of failure.

FG502 Schematic (Triangle Generator Section)

ENCY_Hz
3

+17V

(DCPL 1) +
+17V ©

(DCPL 1)

FG502 Component Notes

Circuit number: R155
Tektronix Part Number:

315-0821-00
Description: Resistor, Fixed,
Composition, 8200hm, 5%, 0.25 w,

Troubleshooting Advice

+17V
L 4y (DCPL 1) P
4

[4

the triangle wave comparator has
failed, examine that next

Rules being examinedl

RULE 801: If V(N19) is high and
V(N28) is not +0.5v, then the
triangle comparator bridge is
failed, replace CR245, CR246,
CR248, CR250

" wc&m}
 llIig 8
Uy .P'%nuo n

Figure 1. The Troubleshooting Assistant displays the schematic and circuit board for the FG502 during a diagnosic step.
Notice the “probes’ labeled 19 and 28 and the question about voltage at N19 (node 19). The technician has answered
“no.” The Advisor suggests, in the advice window, that the comparator has failed. Below this, in the rules window, the
advisor is conveying its “reasoning” and giving how-to-fix advice.

TECHNOLOGY
REPORT

+17V +17V
Expected Waveform é 1
=

Maximum: 500
Hertz: 843

1000 mV

+17V
(DCPL 1)

220 v 1000y 001 Second/Division

AT T 2 I

Figure 2. A simulated oscilloscope waveform shows the
correct waveform expected at a given node.

We discovered that novice troubleshooters spend most of their
time trying to figure out how an instrument works, and then try-
ing to figure out how to isolate problems within the instrument.
Usually, the novice is not successful with problems that he or
she has not seen before and has to go to a seasoned technician
for help. Thus, repairing the instrument commands the time of
two technicians, even if the problem is simple.

Early in our research, we became convinced that the role
of an expert troubleshooting system was not to replace the
technician.

Expert systems can save technicians a lot of time; they can lead
inexperienced troubleshooters towards diagnosing a faulty com-
ponent just as an experienced troubleshooter would. One role
of the expert system would be as a guide to the novice techni-
cian. Another role would be as a consultant to the junior techni-
cian trying to solve unfamiliar problems; this would allow senior
technicians to concentrate on the more difficult troubleshooting
tasks.

To the experienced troubleshooter, there are other benefits. A
complete troubleshooting system — one that would handle any
Tek-built equipment — would be invaluable to these technicians
because it would archive and make easily available the total
troubleshooting knowledge of all instruments.

This archiving would be particularly valuable with older prod-
ucts. Since Tektronix will service any Tek instrument built within
the last nine years, Service-Center technicians face a plethora of
instruments, more than 1500 different products. They often en-
counter “unknowns,” that is, instruments unfamiliar to anyone in
their shop. Technicians spent a lot of time on these unknowns
trying to figure out what the instrument is supposed to do. A
complete troubleshooting archive would tell them that. They
could immediately start fixing the product, without reading
manuals and other documentation.

In short, Troubleshooting Assistants can provide a whole set of
benefits for technicians ranging from training to memory
enhancement.

The Prototype Troubleshooting Assistant

We selected the FG502 Function Generator as our first target
because it is one of the simplest instruments that Tek builds, yet
it is representative of most of Tek’s analog products. Drawing on

the expertise of Jim Mauck (Field Service, Rockville, MD) and
Dennis Feucht (Electronic Systems Lab), we were able to build
a system which would demonstrate the potential of expert sys-
tem technology.

We built the Trobleshooting Assistant on the Magnolia Worksta-
tion, and programmed it in the Smalltalk language. The Magno-
lia has a bit-mapped display, which combined with the excellent
graphics of Smalltalk enabled us to build a very nice user inter-
face. The Advisor has been ported to the Tektronix 4404 Al
System.

Figure 1 is a laser copy of a typical display that a technician
would see on screen while trying to fix the FG502. Notice that
there is a drawing of the circuit board, a circuit schematic, and
three other windows; these windows present text.

The first feature of the Assistant is schematic-to-board cross
referencing. Using a mouse, the user moves a pointer to any
component on the schematic and clicks a mouse-button; this
selects the component pointed to. The selected component
reverses its color on the schematic, and on the drawing of the
circuit board. In addition, the component’s specifications will ap-
pear in the top right-hand corner window. Because no reference
to a printed manual is involved, the technician can focus on in-
terpreting the circuit; the computer takes care of finding the part
on the board.

The Assistant also allows the user to ask about how the circuit is
supposed to operate. Users can point to a node in the circuit
and select “waveform” from a menu. The system will then dis-
play a picture of the waveform expected at that location. Figure
2 shows how the system will present the correct waveform for a
given point. The technician can then put a probe on that spot in
the actual instrument and compare the measurement with the
one displayed.

Some excellent troubleshooting technicians use very little
electronic theory. Yet, by using their own narrower concep-
tual models, they can troubleshoot a faulty device quite
efficiently.

The technician can ask for assistance in troubleshooting by select-
ing an “assist me” item from a menu. The system will ask a
series of questions (left center in figure 1) the answers to which
will eventually identify the faulty component and highlight it on
the schematic and circuit-board representation. As the consulta-
tion progresses, the technician uses the other two windows
seen on the screen in figure 1. Troubleshooting advice is given
via the middle window; in the bottom window we show the cur-
rent rule being considered by the rule interpreter. When the
system requires a measurement, it displays a probe symbol at
the point on the schematic; this tells the user where to place an
actual scope probe in the faulty instrument.

Finally, the system generates a report characterizing the failure
and the steps taken to fix it. This report can be used to track the
failure rate of parts, and the accuracy of the diagnostic system
itself. Figure 3 shows the report generated at the end of a
consultation.

TECHNOLOGY
REPORT

+17V(DCPL 1)

] I I

INSTRUMENT FAILURE REPORT

Please check all information for accuracy, and correct errors
Wil be delivered to:

Clair A. Gruver
Service Operations Support Staff
Mail Stop 53/114

-20v

Instrument: FG502
Serial Number: B029481

Troubleshooter: Jim Alexander
Computer Research Lab

Was the Instrument automatically diagnosed? Yes.
| Was the Diagnosis accurate? Yes
If not describe problems below:

Figure 3. The Advisor automatically generates a report at
the end of the “consultation.” This report can be used in
reliability analysis and in evaluating the performance of
the expert system itself.

Is The System Complete?

The prototype system was built to handle about 80% of the most
frequent problems encountered by troubleshooters working on
FG502s. Although we have not tested it in the field, it appears the
techniques used will isolate component failures well enough to
assist junior technicians. We are now working on a Trouble-
shooting Assistant for the 2213 Oscilloscope. This Assistant will
be thoroughly field tested.

The FG502 Troubleshooting Assistant was built to handle pro-
blems specific to the FG502. Ultimately, expert-system technol-
ogy will not be effective until we can build tools that quickly
adapt an expert system to troubleshoot a variety of instruments.

We are looking at ways to generate a knowledge base with
more general rules of troubleshooting, and to allow expert tech-
nicians to input troubleshooting rules and facts directly, without
the help of a knowledge engineer.

When we have tools for developing troubleshooting systems rap-
idly, we will be able to build troubleshooting assistants to help
technicians repair most, if not all, Tek products. These systems
will:

e Significantly increase novice-technician productivity

e Help train both novice and junior technicians

e Store and make readily available knowledge about repairing
older Tek products

In short — these systems will further increase the efficiency of
Tek'’s top-notch service organizations.

For More Information

For more information, call Jim Alexander 627-6159 (50-662) or
Mike Freiling 627-2522 (50-662).

Acknowledgements

We would like to give special thanks to Dennis Feucht, Todd
Paulus, Dick Butler, Tim Kiser, Jim Mauck, and Ed Ohiman for
their generous assistance.

References

1. Freiling, M. and Alexander, J., Survey of Knowledge Engi-
neering Opportunities at Tektronix, 1983; Applied Research
Technical Report, CR-84-06; Tektronix, Inc., Beaverton, OR, 1984.

2. Goldberg, A. and Robson, D., Smalltalk-80: The language
and Its Implementation, Addison-Wesley, Reading, MA, 1983.

3. Shortliffe, E.H., Computer-Based Medical Consultations:
MYCIN, American Elevier, New York, NY, 1976.

THERMAL ANALYSIS TOOLS

THERMAL COMPUTATIONS DETAILED IN

NEW BOOK

Gordon Ellison, Applications, part of Computer Resources

My recent book, Thermal Computations for Electronic Equipment,
published by Van Nostrand Reinhold, Inc., is now available. You
can order this book using the MANUAL program on CYBER or
by calling Hazel Ade at 627-1771. The book costs $37.95.

Since the book also contains the program instructions for TAMS
(Thermal Analyzer for Multilayer Structures) and TNETFA (Time

Dependent Network and Flow Analyzer), individual manuals for
these programs will not be stocked. For program-access instruc-
tions, see HELP,TAMS and HELP,TNETFA.

| recommend that TAMS users also check into the TAMS inter-
active preprocessor TIP.

Thermal consulting services are available, as usual, by calling
Gordon Ellison at 627-6441 or Nancy Elliott, 627-6593. [

TECHNOLOGY
REPORT

TI’'s TMS32010:

IMPLEMENTING A FILTER USING
A DIGITAL SIGNAL PROCESSOR

Jim Fenton is an evaluation engineer in the Logic
Analyzer Division, part of the Design Automation
Group. Jim joined Tektronix in 1980 after receiv-
ing his BSEE from the University of Michigan. He
is currently working on his MSEE from Oregon
State University through the Tektronix Education
Program.

Many analog functions can now be implemented with readi-
ly available digital parts. Digital filtering, spectrum analy-
sis, fast fourier transforms, and speech processing are
just a few of the ‘““analog” applications for digital signal-
processing (DSP) hardware. This article describes how a
low-pass filter was implemented using the Texas Instru-
ment TMS32010 Digital Signal Processor.

There are two types of linear shift-invariant systems: finite-duration
impulse response (FIR) and infinite-duration impulse response (IIR).

Shift-lnvariant Systems
Shift-invariant systems are characterized by the property:

if y(n) is the response to x(n),
then y(n—k) is the response to x(n—Kk),

where k is a positive or negative integer.

When the index n is associated with time, shift-invariance
corresponds to time-invariance.

IIR systems are generally difficult to implement using the
convolution-sum expression to compute the output. There are,
however, systems that can be implemented using a recursive
algorithm to compute the output from the input sequence and
n previously computed output samples. These systems satisfy
a linear-constant coefficient difference equation of the form:

N M
E by X(N=K)
k=0

E a, y(n—k)+
k=1

The flow graph for the computational procedure for implement-

ing this type of difference equation is shown in figure 1.

y(n) =

This article describes how we implemented this type of linear
constant-coefficient difference equation using the TMS32010.

x(n) o P o > 0 P o B o y(n)
bo

S Pl 4 7 3

(o] = [o) B o
aq b1

a zZ'y a

0 <% o - 0
az by
: 1

oL L
1]

¢} & o - 0
a, bn

Figure 1. This flow graph shows the computational pro-
cedure used to implement the linear constant-coefficient
difference equation.

TMS32010 Chip Architecture

The TMS32010 is a 16/32-bit single-chip microcomputer that
can execute five-million instructions per second. For speed and
flexibility, the TMS32010 uses a modified Harvard architecture.
(Harvard architecture separates program memory from the data
memory.) The DSP chip’s structure allows it to transfer informa-
tion between program and data memory, giving the designer
more flexibility in implementing the multiplication of coefficients.
(See figure 2 for a diagram of the TMS32010.) Note: In this arti-
cle, “DSP,"” “chip,” and “TMS3210” are used interchangeably.

Because the chip uses a modified Harvard architecture, it does
not need data ROM. Data coefficients can be accessed from
program ROM and stored in data RAM. A 12-bit program counter
(PC) addresses the 1536 x 16-bit word program ROM and the

4 x 16-bit word stack. Registers ARO and AR (figure 2) are aux-
iliary registers that can be used as hardware-loop counters; an
auxiliary register pointer selects which auxiliary register is active.
Data memory is in a 144 x 16-bit on-chip RAM. Instruction oper-
ands are fetched from this RAM.

The chip contains a 32-bit ALU and accumulator that support
double-precision arithmetic. The ALU can perform a variety of
Boolean operations, providing high-speed bit manipulation.
Feeding into the ALU via a multiplexor is a O- to 15-bit barrel
shifter, which can shift data to the left before it is loaded into the
accumulator. Another shifter, located after the accumulator, can

TECHNOLOGY
REPORT

5 z
(o) X
o XN P
{* 116 12 LSB 1
E o b
DEN®— 1) 16
DEN -
MEN4- o i
Bo—» £ [Pca2) | [insTRUCTION
T 12 0
INT o & | PROGRAM
RS z| ROM
STACK 3| (1536x16)
At1a0) | [x|e 4x12 =

PA2-pA0 412

—,

PROGRAM BUS D15-DO
L
£1 6 16
Z
16 L, 16
7/ 161! 3
16
2RE ARO(16) m b T(16)
AR1(16) SHIFTER MULTIPLIER
s (0-15) (PARALLEL) [
y
48 P(32)
MUX 32
5 32
MUX
ADDRESS 32
DATA RAM
(144x16) ALU@2)
DATA A } a2

4

ACC(32)

SHIFTER (0, 1, 4)

16 L

& DATA BUS

L

Figure 2. The organization of the Texas Instrument TMS32010 Digital Signal Processor (DSP).

shift the data 0, 1, or 4 places to the left after the data is trans-
ferred out of the accumulator. A 16 x 16-bit multiplication can be
performed by the parallel multiplier in one 200-ns cycle. A 16-bit
T register holds the multiplicand and the P register stores the
32-bit result.

One of the nice features of the TMS32010 is its ability to execute
instructions from an off-chip ROM at full speed. The MC/MP pin
enables the user to tailor his or her system to the memory con-
figuration desired.

Data can be transferred to and from the TMS32010 via the 16-bit
parallel data bus. The chip can interface up to eight 16-bit multi-
plexed input ports and eight 16-bit multiplexed output ports.
(See figure 3 for an example of how to interface to an external
device.) In addition to the input/output ports, the BIO ~ pin on
the TMS32010 allows a polling input for bit test and jump opera-
tions. There is also an interrupt pin that allows the DSP to han-
dle multitasking operations.

DATA BUS (16) ﬂ

TMS32010 —— IN1
DEN

OUT1

A2-AO/ WE

| PORT
iaia ADDRESS

DECODER
(74L5138)

— IN2
DEN

DEN — ouT2
BEN :

WE

[

DEN

Figure 3. The external-device interface for the TMS32010
Digital Signal Processor.

TECHNOLOGY
REPORT

Instruction Set

The TMS32010’s comprehensive instruction set lends itself to
both numeric-intensive operations and general-purpose instruc-
tions. These instructions are broken down into these sets:

Accumulator instructions

Auxiliary registers and data-page pointer instructions
T register, P register, and multiply instructions
Branch instructions

Control instructions

I/0 and data memory operations

Tables 1 and 2 summarize the instruction sets.

The TMS32010 has three main addressing modes: direct, in-
direct, and immediate. In direct addressing, seven bits of the in-
struction word are concatenated with the data-page pointer to
form the data-memory address. Indirect addressing forms the
data-memory address from the least-significant eight bits of one
of the two auxiliary registers, ARO and AR1. In immediate ad-
dressing, data are derived from part of the instruction word
rather than from the RAM. A few very useful immediate instruc-
tions are multiply immediate (MPYK), load accumulator immedi-
ate (LACK), and load auxiliary register immediate (LARK).

Two special instructions of the TMS32010, TBLR (table read)
and TBLW (table write), take advantage of the modified Harvard
architecture. The TBLR instruction transfers words stored in pro-
gram memory to the data RAM. This eliminates the need for a
dedicated coefficient ROM. It also allows the user to choose
how much program ROM should be dedicated to coefficients
and how much to the program. The TBLW command transfers
internal data RAM to external RAM. Here is an example of the
use of the TBLR command:

TBLR DAT4 - This instruction transfers those items in program
memory pointed to by the program counter to the specified
data-memory location DAT4. (See “Implementation” for more
details of this memory-operation instruction.)

Here are other instruction examples:

LT X(N) - This instruction loads the 16-bit T register with the con-
tents of the specified data-memory location.

SACH TEMP,1 - This instruction stores the upper half of the ac-
cumulator’s contents into the specified data-memory location
after the data has been shifted left one-bit location.

MPY B3 - This instruction multiplies the contents of the T register
and B3, and puts the 32-bit result into the P register.

TABLE 1 — TMS32010 INSTRUCTION SUMMARY TABLE 2 — TMS32010 INSTRUCTION SUMMARY
ACCUMULATOR INSTRUCTIONS c(ﬁO"“"ued) o
BRANCH INSTRUCTIONS
i e CYGLs | Wonbs MNEMONIC DESCRIPTION D et
ADD Add to accumulator with shift 1 1 CYCLES | WORDS
SuB Subtract from accumulator with shift 1 1 BANZ Branch on auxiliary register not zero 2 2
LAC Load accumulator with shift 1 1 BV Branch on overflow 2 2
SACL Store low-order accumulator bits with shift 1 1 BIOZ Branch on BIO = O 2 2
SACH Store high-order accumulator bits with shift 1 1 B Branch unconditionally 2 2
ADDH Add to high-order accumulator bits 1 1 BLZ Branch if accumulator <0 2 2
ADDS Add to accumulator with no sign extension 1 1 BLEZ Branch if accumulator < 0 2 2
SUBH Subtract from high-order accumulator bits 1 1 BGZ Branch if accumulator >0 2 2
SUBS Subtract from accumulator with no 1 1 BGEZ Branch if accumulator > 0 2 2
sign extension BNZ Branch if accumulator , 0 2 2
SuBC Conditional subtract (for divide) 1 1 BZ Branch if accumulator = 0 2 2
ZALH Zero accumulator and load high-order bits 1 1 CALL Call subroutine immediate 2 2
ZALS Zero accumulator and load low-order bits 1 1 CALA Call subroutine from accumulator 2 1
LACK Load accumulator immediate 1 1 RET Return from subroutine 2 1
ABS Absolute value of accumulator 1 1 CONTROL INSTRUCTIONS
ZAC Ze1o/acoumulaion L i LST Load status register 1 1
XOR Exclusive OR with accumulator 1 1 SST Store status register 9 9
AND AND with accumulator 1 1 NOP No operation 1 4
OR OR with accumulator 1 1 DINT Disable interrupt 1 1
AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS EINT Enable interrupt 1 1
SAR Store auxiliary register 1 1 ROVM Reset overflow mode 1 1
LAR Load quxiliary register 1 SOVM Set overflow mode 1 1
MAR Modify auxiliary register and pointer 1 1 POP Pop stack to accumulator 2 1
LDPK :;g;degiaatgmemmy page pointer 1 1 PUSH Push stack from accumulator 2 1
LDP Load data memory page pointer 1 1 I/0 AND DATA MEMORY OPERATIONS
LARK Load auxiliary register immediate 1 1 IN Input data from port 2 2
LARP Load auxiliary register pointer immediate 1 1 ?l;JLTR ?”:m da;af to'port P j f
able read from program memory to data
T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS TBLW Table write ffom data RAM 16 program mamory 5 .
LT Load T Register ’ ! L DMOV Shift contents of data memory foward one 1l 1
LTA Load T Register and accumulate product 1 1 address
LTD Load T Register, accumulate product, and move 1 1
date in memory forward one address
MPY Multiply with T Register, store product in P
Register 1 1
PAC Load accumulator from P Register 1 1
APAC Add P Register to accumulator 1 1
SPAC Subtract P Register from accumulator 1 it
MPYK Multiply T Register with immediate operand, 1 1
store product in P Register
TECHNOLOGY

REPORT

Implementation: System Configuration

Figure 4 shows how we configured the digital filter. The 68000
and the DSP communicate by hand-shaking via interrupts. Be-
cause the 68000 microprocessor is not dedicated to only the
filter, it can do other tasks while the A/D and D/A converters and
the TMS32010 are crunching away on their tasks.

The program-flow diagrams (figures 5 and 6) detail how each
processor handles data flow. Note that in the system configura-
tion diagram (figure 4), the 20-kHz clock signal starts all filter pro-
cesses. The sample rate is also 20 kHz, so that on every falling
edge of the clock, the analog input is sampled. The data register
is the communication register for the processors. The TMS32010
is set to the microcomputer mode by pulling high on the
MC/MP ~ pin. We did this to fit the program instructions and
coefficients in on-chip ROM.

Nyquist Rate

Since the sampling rate in our filter is 20 kHz, the highest valid-
frequency component that can be sampled without aliasing is
10 kHz. As the block diagram in figure 4 indicates, an anti-
aliasing filter with a 10 kHz-cutoff frequency is used to prevent
aliased frequency samples.

Filter Specification

We implemented a third-order direct-form IIR filter. Traditionally,
IR filters are based on a transformation of an analog-filter ap-
proximation to a digital filter. We followed tradition, using a bi-
linear transformation. Bilinear transformation is primarily useful
for designing frequency-selective filters where response consists
of flat pass-bands and stop-bands. The pass-band and stop-
band cutoff frequencies of the analog filter must be prewarped,
so that the resulting digital filter meets its specifications. Because
bilinear transformation maps the entire jw-axis of the s-plane onto
the unit circle, the equiripple amplitude response of an elliptic
filter is preserved. Therefore, optimal-magnitude response can
be obtained for IIR filters by using the bilinear transformation of
analog elliptic filters.

Our design required these specifications:

Elliptic Filter

Sample input signal at 20 kHz
8,=106-0.005

20"Logy(6,)= —15dB

w,=0.2"PI (2 kHz) (pass-band frequency)
w,=0.3"PI (3 kHz) (stop-band frequency)
w,=0.25"PI (2.5 kHz) (cut off frequency)

DIVIDE
CIRCUITRY FILTER COMPLETE
CONTROL LOGIC SYSTEM
ADDREé\g %ECODE S
20KHZCLK (SAMPLE RATE) 20MHZ
L 4 4
MC68000 TMS32010
CLK
»|CLK RW, AS CONTROL BUS #00
SYSTEM [v o DEN
CLOCK PLo UDS, LDS .
10MHZ |NTERRUPT —_ m : —
ENCODER [} IPL1 DATA BUS DATA BUS”| INT
IPL2 DO- —F—p Ll DATA DO-
1 D15 16 9 REGI- “7e |Di5
STER
Al- 75 PA2-Pa0
A23 +5
10K t—» MCIMP
116
SAMPLE READY| CONVERT |ENABLE BUFFER
CONVERT
ANTI-ALIAS AID " L)) DIA
FILTER Lyl CONVERTER [BUFFER |—p 2 CONVERTER [— FILTERED ANALOG y(t)
s e (128 OUTPUT
CUTOFF)
ANALOG INPUT . INTERRUPT KEY: START CONVERSION INTERRUPT: LEVEL 7 (NON MASKABLE)
x(t) SAMPLE READY INTERRUPT: LEVEL 6
FILTER COMPLETE INTERRUPT: LEVEL 5

Figure 4. The hardware used to build the digital filter. See figures 5 and 6 for program flows.

1 TECHNOLOGY
REPORT

START
ISSUE COMMAND

TO BIO PIN OF
INITIALIZE INTERRUPT TMS32010
VECTOR TABLES l

l CONTINUE NORMAL

ENTER/CONTINUE NORMAL | OPERATION
OPERATION G

FILTER
COMPLETE
INTERRUPT?

READ DATA REGISTER
WRITE FILTER VALUE
ISSUE CONVERT SIGNAL TO D/A CONVERTER

TO A/D CONVERTER

A 4

CONTINUE NORMAL
OPERATION

SAMPLE
READY
INTERRUPT

ENABLE BUFFFER, READ
DATA, WRITE DATA
TO DATA BUS REGISTER

START

STORE COEFFICIENTS
INTO RAM

'y

BIO
PIN LOW? NO

YES

READ DATA REGISTER
WHICH CONTAINS VALUE
TO BE FILTERED

A 4

CALCULATE y(n)

|

UPDATE STORED
SAMPLES

v

WRITE y(n) TO
DATA REGISTER

|

WRITE TO CONTROL
LOGIC TO INDICATE
FILTER COMPLETE

L

Figure 5. The program flow for the 68000 microprocessor.

We require that the magnitude response within the pass-band
be constant to within 1 dB. Within the stop-band, attenuation
must be more than 15 dB from 3 kHz to 10 kHz.

If we fix 8, w,, and wg, we end up with N=3, and
20*Log44(8,) = —26.7 dB. This exceeds our specifications.

Prewarping the critical frequencies so that ,=2"tan(0.2*P1/2)
and Q,=2"tan(0.3*PI/2), we obtain the system function:

0.12460(s? + 1.3040)
~ (0.6498s +0.2448)(s2 +0.2521s +0.4313)

H (s)

Using the bilinear transformation:

21-z=1
§= ——— (With T=1)
T1+z7!

We arrive at the system function in the frequency domain:

0.05634(1+2z~ ')(1-1.0166z"+27?
 (1-0.6830z" ")(1 - 1.44612~ 1 +0.79572 9

Figure 6. The program flow for the Digital Signal Processor.

Analysis of pole-zero locations:

zeroatz= -1

zeroes at z=0.5083 + 0.8611j
pole at z=0.6830

poles at z=0.72305 + 0.5224

A Im Z-Plane
__<> Conjugate pair poles: magnitude = 0.8920

Re

= Conjugate pair zeroes

See figure 7 for the magnitude, gain, and phase plots of this
third-order elliptic filter transformed by bilinear transformation.

TRI08 11

TABLE 3 — FILTER COEFFICIENTS
N -
S 1 Coefficient Normalized Signed Hex
5 . Decimal Value Value
(O]
g - a0 0.5634 49D7
' P at 0.9400 7BFF
0 0.2n 0.4n 0.6n 0.8n n
a2 -0.9400 FBFF
0 [
a3 0.5634 49D7
20 -
@ b1 0.2129 1BFF
2 of
E b2 -0.1783 97FF
S 6ol =
3 0.5435 47FF
80 1 1 1 1] — . . .
0.2n 0.4n Coefficients are in twos’ complement binary form.
200
& Data Memory Address
i 100 =
€ RAM
w s
a o . x(n) 00
w
% -100 == x(n-1) 01
o
1 | | | 1 x(n-2) 02
200 0.2n 0.4n 0.6n 0.8n n
w x(n-3) 03
Figure 7. The frequency response of a third-order elliptic y(n) 04
filter transformed by bilinear transformation. yn-1) 05
Difference Equation Derivation y(n-2) 06
The following is the difference equation implemented with the y(n-3) 07
TMS32010: —
a0 08
X(2)
System response = H(z)= —— al 09
Y(2) a2 10
0.05634(1+z~")(1-1.01662" ' +27? a3 11
g (1-0.6830z")(1 - 14461z~ ' +0.79572"?) b1 12 After TBLR command, the
—— coefficients are moved into
b2 13
Solving for the difference equation we have: et B
b3 14
y(n)=2.129y(n— 1) — 1.7834y(n — 2) + 0.5435y(n - 3) +
0.05634x(n) — 0.00094x(n — 1) — 0.00094x(n — 2) + 0.05634x(n — 3) TEMP1 15
General form of the above equation: TEMP2 16
y(n) =a0x(n) +aix(n— 1)+ a2x(n—2)+a3x(n—3)+bly(n—1)+ Program Address
b2y(n—2)+ b3y(n—-23) ROM
Table 3 indicates the normalized coefficients used in the imple- = =
mentation of this filter. a 51
Figure 8 indicates the memory mapping of the coefficients and g2 52
the data for the filter. a3 53
b1 54
b2 55
b3 56

Figure 8. Memory map of the TMS32010 Digital Signal
Processor.

d| TECHNOLOGY
REPORT

Program Listing Note

To multiply correctly with two 15-bit fractional numbers, the re-
sult must be shifted to the left by one bit. This shifting is com-
mented on in the program listing (see “Comments” following
the listing). This program note shows how we used the 32-bit XX X | XXX X
multiplication result to implement the filter correctly.

This sequence of shifting the multiplication result to the left by
one was necessary every time a multiplication was done in the

32 BIT RESULT IN P REGISTER

XXX ...X | (THE FIRST TWO BITS ARE SIGN BITS)

16 BITS

x
22
X

MOVE RESULT TO THE ACCUMULATOR

16 BITS | 16 BITS

MOVE UPPER 16 BITS TO TEMP2

X XX XX XX | (SHIFT LEFT ONE BIT TO REMOVE EXTRA

program. 8 BITS | 8BITS SIGHRE)
X o [0 | 70 EORm FUNNING TOTAL
16 BITS 16 BITS
Program listing for the TMS32010
Location Instruction Comments
000 DINT (disable interrupts)
001 LACK 50 (load accumulator with address of first coefficient)
002 LARK ARO,7 (load auxiliary register with loop counter value)
003 LARK AR1,8 (load address of first coefficient into AR1)
004 RCONST LARP1 (point AR1)
005 TBLR * +,AR0 (load coefficient into data memory, increment AR1, point
to ARO)
008 ADD 1 (increment accumulator to next coefficient address)
009 BANZ RCONST (decrement ARO by one, check if zero)
011 ZAC (zero the accumulator)
012 SACH 00,0 (store 00 into RAM location zero, prepare to clear scratch
pad RAM)
013 LARK ARO0,8 (load auxiliary register with loop counter value)
014 LARK AR1,0 (load auxiliary register with beginning RAM location)
015 RCLEAR LARP 1 (point to AR1)
016 DMOV * +, ARO (move zeroes into next RAM location, point to ARO)
016 BANZ RCLEAR (decrement ARO by one, check if zero)
017
018 START BIOZ 100 (branch to 100 when BIO~ pin is low)
020 B START (wait for BIO~ = 0)
100 IN 00,PAO (BIO~=0, read x(n) value from port address 0)
102 LT x(n) (load x(n) into the T register)
103 ZAC (zero the accumulator)
104 MPY a0 (multiply x(n) by a0, store result in P register)
105 PAC (load accumulator with result)
106 SACH TEMP1,1 (shift result to the left one bit, store in TEMP1)
107 ADDH TEMP1 (move shifted result into higher order byte of accumulator)
108 LT x(n-1) (load x(n-1) into T register)
109 MPY a1 (multiply x(n-1) by a1, store in P register)
110 SACH TEMP1,0 (move running total to TEMP1)
111 PAC (load accumulator with second result)
112 SACH TEMP2,1 (shift result left by one, store in TEMP2)
113 ZAC (clear the accumulator)
114 ADDH TEMP1 (move running total into accumulator)

TECHNOLOGY
REPORT

13

115

ADDH TEMP2

(add second result)

116 LT x(n-2) (load x(n-2) into T register)
117 MPY a2 (multiply x(n-2) by a2, store in P register)
118 SACH TEMP1,0 (move running total to TEMP1)
119 PAC (load accumulator with third result)
120 SACH TEMP2,1 (shift result left by one, store in TEMP2)
121 ZAC (clear the accumulator)
122 ADDH TEMP1 (move running total into accumulator)
123 ADDH TEMP2 (add third result)
124 LT x(n-3) (load x(n-3) into T register)
125 MPY a3 (multiply x(n-3) by a3, store in P register)
126 SACH TEMP1,0 (move running total to TEMP1)
127 PAC (load accumulator with fourth result)
128 SACH TEMP2,1 (shift result left by one, store in TEMP2)
129 ZAC (clear the accumulator)
130 ADDH TEMP1 (move running total into accumulator)
131 ADDH TEMP2 (add fourth result)
132 LT y(n-1) (load y(n-1) into T register)
133 MPY b1 (multiply y(n-1) by b1, store in P register)
134 SACH TEMP1,0 (move running total to TEMP1)
135 PAC (load accumulator with fifth result)
136 SACH TEMP2,1 (shift result left by one, store in TEMP2)
137 ZAC (zero the accumulator)
138 ADDH TEMP1 (move running total into accumulator)
139 ADDH TEMP2 (add fifth result)
140 LT y(n-2) (load y(n-2) into T register)
141 MPY b2 (Multiply y(n-2) by b2, store in P register)
142 SACH TEMP1,0 (move running total to TEMP1)
143 PAC (load accumulator with sixth result)
144 SACH TEMP2,1 (shift result left by one, store in TEMP2)
145 ZAC (clear the accumulator)
146 ADDH TEMP1 (move running total into accumulator)
147 ADDH TEMP2 (add sixth result)
148 LT y(n-3) (load y (n-3) into T register)
149 MPY b3 (multiply y(n-3) by b3, store in P register)
150 SACH TEMP2,1 (move running total to TEMP1)
151 PAC (load accumulator with last result)
152 SACH TEMP2,1 (shift result left by one, store in TEMP2)
153 ZAC (clear the accumulator)
154 ADDH TEMP1 (move running total into accumulator)
155 ADDH TEMP2 (add last result, we now have y(n)!!)
156 SACH y(n),0 (move the result into memory)
157 DMOV y(n-2) (move y(n-2) into y(n-3))
158 DMOV y(n-1) (move y(n-1) into y(n-2)
159 DMOV y(n) (move y(n) into y(n-1))
160 DMOV x(n-2) (move x(n-2) into x(n-3))
161 DMOV x(n-1) (move x(n-1) into x(n-2))
162 DMOQV x(n) (move x(n) into x(n-1))
163 OUT y(n), PAO (send result to Data Register, causing an interrupt to the
68000)
164 EINT (enable interrupts)
165 B START (go back and wait for next x(n))
166
1 TECHNOLOGY
REPORT

Comments
Making the TMS32010 function as a filter was not difficult.

The filter was implemented in 87 clock cycles (17.4 micro-
seconds), with the critical loop being 66-steps long. This calcu-
lates out to 13.2 psec to execute the difference equation. The in-
struction set was complete with few exceptions; completeness
made the programming easier.

The LTD command would have been helpful, except in this filter
implementation the multiplication result had to be shifted to the
left by one.

It should be noted that quantization error is introduced into the
sample by the conversion of the sampled analog input into a
16-bit digital word. Another source of error comes from trun-
cating the 32-bit result of multiplication to 16 bits. Truncation in-
troduces a 0.003% error. This figure is arrived at by the follow-
ing relationship:

-2~ b<error<0

where b is the number of bits less one for the sign bit.

In this program we did not anticipate a possible overflow. If we
had anticipated the need, overflow capacity could have been
implemented by the BV command. This branch-on-overflow com-
mand could have been placed to jump to a routine for handling
overflow conditions after the accumulator computed a running
total.

Or we could have used saturation-mode operation as an alter-
nate overflow/underflow technique. The SOVM command sets
the accumulator to the highest positive/negative value. The ROVM
command removes the saturation mode operation.

Both techniques reduce filter calculation accuracy.

For More Information
For more information, call Jim Fenton 629-1394 (92-789). [

ANSI/X3H4 TECHNICAL COMMITTEE (IRDS)

MEETS AT TEK

Mike Meyer, Manager, CAX Data Management

The ANSI/X3H4 Technical Committee met July 23-26 in Beaver-
ton. Tek hosted this bimonthly meeting. The next meeting will be
held October 1-4 in Washington, DC, hosted by the Mitre
Corporation.

ANSI/X3H4 Meeting Schedule

Meeting Dates Location Sponsor

1-4 Oct 84(M-W) Washington, DC Mitre

15-17 Nov 84(W-F) Boston, MA MSP

21-23 Jan 85(M-W) Denver, CO Martin Marietta
18-20 Mar 85(M-W) Washington, DC CBEMA
20-22 May 85(M-W) Dallas, TX TBA

22-24 Jul 85(M-W) Boston, MA TBA

The significant working-group activities at the July meeting
follows:

Generalized Database Support — The Optional Module for Gen-
eralized Database Support is nearing completion. It will be pre-
sented to the full committee at the October meeting. It is avail-

able to Tektronix engineers through electronic or interplant mail.

N-ary versus Binary ER Model — Again, the N-ary versus Binary
Model for the dictionary schema was a major topic. The results
of the questionaire indicated vendors perceived the N-ary as
easy to implement, but users felt it would be hard to use.

This working group will now create a prototype of a N-ary Model
to show how it can be used in the IRDS.

Programming Language Support — This working group has ex-
panded its scope from just COBOL to include PL/I, Fortran, and
Pascal. The group accomplished much at the meeting: their
Recommended Support of Programming Languages will be an
optional model in the IRDS.

Level 0 Standard - The committee continues to finish up Base
Document/dpANS. Although they made several refinements to
the Base Document (Core)/dpANS, a letter ballot within the
committee before 1985 is unlikely.

The work reported above should not significantly affect Tektronix.
Call Mike Meyer, 627-2628 (50-560) for more information. [J

5

A QUICK LOOK AT CAD
IN THE SOVIET UNION

Dave Straayer is a senior engineer in IDG Systems
Engineering. Dave joined Tek in 1977. He worked
earlier at Texas Instruments. He has a BS and an

MS in math from Michigan Tech.

The reactions to the power failure in the machine room in Moscow
were familiar. The Soviet engineers had that same look of dis-
gust tempered with humor that I've seen more than once in Wil-
sonville. Dr. Klimow, head of the CAD laboratory at the Moscow
Power Institute, didn’t comment but, obviously, he couldn’'t demo
their PDP-11/40s. The Institute is a large electrical engineering
college with many Soviet and third-world students.

Although my visit wasn'’t official, | was in Moscow as a direct
result of my being Tek’s representative on ANSI's Computer
Graphics Committee (X3H3) and of ANSI’s work with its interna-
tional standards-setting partner ISO. I've been active in standards-
setting activities since 1978. (ANSI is the American National
Standards Institute; ISO is the International Standards Organiza-
tion. ANSI is a member of ISO.)

In March, Dr. V. Klimow of the Moscow Power Institute wrote me
asking about the computer graphics standards we were devel-
oping. He wrote a similar letter to Janet Chin of ANSI. Could we
tell him more about GKS, PMIG, PHIGS, and IGES.

GKS, or Graphical Kernel System, is a standard software inter-
face for computer graphics. ISO is adopting GKS as an interna-
tional standard. ANSI is making it an American National Stan-
dard. In his letter, Dr. Klimow suggested that the Moscow Power
Institute might implement GKS.

PMIG is an earlier proposal for a small-scale software interface
to graphics. It is now part of the ANSI proposal for GKS.

PHIGS is a sort of “super GKS” that we in X3H3 are developing.

IGES is a standard for formatting design files in computer-aided-
design systems. IGES facilitates the movement of design infor-
mation between CAD systems.

The requests worried me. What about the controls on technology
export to the Eastern Bloc? Could | respond freely? | was also
intrigued. What sort of computer graphics equipment did the
Soviets have? Was there embargoed equipment there?

| considered the requests for a few weeks and then called Mar-
tha Prinson, who is part of the secretariat of ANSI X3. She con-
firmed my understanding that all the documents requested by
Dr. Klimow are public, available to anyone who requests them.
This openness is essential to the process of developing stan-
dards by consensus; openness and consensus shield partici-
pants like myself from legal liability for the impact of the stan-

dards we develop. (For more on the standards-setting process,
see “Electro-Political Engineering” by Maris Graube in Technol-
ogy Report, July 1984.)

| also talked to Andrew Davis, Tek’s PLOT-10 marketing man-
ager. PLOT-10 software products include an implementation of
GKS. | was curious about whether it would be possible - or
desirable — for Tek to try to sell PLOT 10 to Dr, Klimow. Andy
Drew said this would not be permitted by U.S. technology-
export regulations.

Armed with this information, | wrote to Dr. Klimow, telling him
how to get the documents. As a courtesy, | also sent a copy of
each document.

Idea for a Visit

Since | was going to France to attend a standards meeting as a
part of my job, this was a chance for my wife, Jo Shapland, and
| to see Europe. | began to plan an extensive vacation following
the business meeting (June 13-20). Could we also visit Dr. Klimow
and his CAD laboratory?

In Early May, | wrote Dr. Klimow suggesting a visit to the Institute.
| applied for visas to enter the Soviet Union. Since Dr. Klimow
didn’t respond, | wrote again saying | would be in Moscow July
2 through 4. Would he and his colleagues like a presentation on
GKS? No response.

Our visas were not confirmed until June 30. Still no response to
my offer. Jo and | left Helsinki by train for Moscow July 1. The
next morning, from the Hotel Intourist, the marginally cooperative
hotel staff finally got my phone call placed to Dr. Klimow. | got
the feeling that he was waiting for my call. It was a school holi-
day, yet he was in his office. He struggled to converse in English,
offering to pick us up and show us Moscow. He proved to be a
willing host.

Meeting Dr. Klimow

He drove up at noon and smoothly handled the doorman’s re-
quest for registration cards, getting through that barrier to meet
us in the lobby. Between the monuments and vistas, he and |
talked computer graphics and computer-graphics standards.
He was delighted that | had 35mm slides for a presentation for a
colloquium the next day. That night he took us to a Caucasian
restaurant for dinner — excellent, not what | expected. Wine and
brandy were plentiful, but our host refrained. “Severe laws about
drinking and driving here,” he said.

The next morning, Jo surprised Dr. Klimow by taking a bus tour
rather than visiting the Institute. She could see computers any-
time. We got to his office at 10 am. By this time Dr. Klimow and |
would have been on a first-name basis — except | couldn’t say
Bsygecnas.

1 TECHNOLOGY
REPORT

The building was run-down. The elevator to his top-floor lab was
rickety and cramped. Even though it was a holiday, what | took
to be graduate students were around in the same proportions
as | would expect in a EE school in the US. There was evidence
that they had planned to demonstrate their CAD systems for me.
Then the power in the lab failed. Fear of file and disk damage
seemed to charge the atmosphere much as it had in the states
when the dated PDP-11s in the Institute’s lab were common-
place in university CAD. Then the whole building lost power and
we sat in the natural light pouring in from large windows.

It looked as if the demonstration and my 35-mm GKS show, as
well as the computer files, were in hazard. But full power was
restored within several hours and they were able to demonstrate
their CAD capability. In the interim, partial power allowed me to
give my slide show on developing graphics and GKS.

The Machine Room and a Glimpse of Soviet CAD

At this point | should describe the machine room a little. All their
graphics display hardware was directed-beam refresh technol-
ogy. No DVSTs or raster displays to be seen. The machines were
DEC PDP-11/40s, running RT and RSX. Klimow mentioned inter-
est in converting to UNIX later this year. | did not mention that
UNIX normally requires at least 11/44- or 11/70-sized machines;
I'm not sure it would even run on his machines.

There were the usual raised floors of any machine room. Air con-
ditioning was provided by 18 units stuck in high windows! There
were two or three digitizers in the room including one gantry-

style machine. Except for the air conditioners, all this was typical
in an American CAD lab in the early 70s.

The one touch of the 80s was a recently acquired display with a
LSl-based PDP 11/23 in it. Partially disassembled, it appeared to
be a basket case donated from somewhere.

No western brands were visible on any of the displays. | didn't
recognize the origin of any equipment other than the DEC mini-
computers. The two drum plotters in the machine room used
late 60s technology.

Several hours later, when the power was restored, | watched his
system in action. Its display quality was appalling - fuzzy lines
and line mismatches at corners — and line positioning was poor.
Displayed text and keyboards were all in the Cyrillic alphabet.

One of the graduate students (| think she was a graduate student)
demonstrated mechanical design with three-dimensional wire
frame displays of constructive solid geometry. There was no evi-
dence of circuit or IC design anywhere in the lab. As | expected,
the software was inhibited by the restricted memory (only 32K
words in that class of PDP 11).

Klimow suggested that he would get 11/70-class machines later
this year from sources within the Soviet Union. This matched his
stated intention to convert to UNIX, as UNIX is a popular operat-
ing system on that class of machine. He was always ambiguous
about whether he was talking about DEC or IBM machines, or
their USSR-built software equivalents, but | saw no evidence of
USSR-built clones, only DEC-original machines.

This wire-frame plot was made during a recent informal demonstration at the Computer Aided Design Laboratory of the
Moscow Power Institute. A two-color drum plotter was used. The quality and imperfect detail reflect the obsolescence of
much of the 60s-vintage equipment available in this engineering school. The system’s CRT displays employed directed-
beam technology. The host was a PDP 11/40. Other, less public, locations probably use more modern raster-beam dis-
plays, and more powerful hosts - even though both are embargoed for export to the USSR.

G 7

Klimow grumbled that the promised new machines would not
solve the address-memory limitations restricting his current pro-
jects. Memory-addressing limitations make full-range graphics
difficult on classical 16-bit minicomputers. Only 32-bit machines
are appropriate for modern CAD graphics, the VAX, IBM 43xx,
and Prime for example. | believe the US embargoes all such
machines. | think Dr. Klimow is acutely aware of how his work is
being restricted by our embargo.

Dr. Klimow told me he had approval to spend $20,000 for new,
raster-based hardware. He expressed frustration that everything
he wanted was embargoed. He suggested, indirectly, that it is
possible to acquire such equipment, but the presence of inter-
national students keep him from taking advantage of any such
purchases for his lab.

Dr. Klimow also told me of a possible purchase of a West-German
GKS package for his lab. He was in contact with Jose Encar-
nacao, chairman of the Eurographics association (FRG), about
this purchase.

My Demonstration and a Visit to a Well-Stocked
Bookstore

While waiting for computer room power, partial power enabled
me to make my presentation to Klimow’s colleagues and stu-
dents. It went smoothly. | told them what GKS would mean as a
standard. Klimow translated. Questions were knowledgeable.
We didn’t discuss political topics.

After the presentations, we picked up Jo at the hotel, and went,
at our request, to a large, popular bookstore. We saw many
texts on microprocessor design, UNIX, ADA, Pascal, and so
forth. The embargo on technical information doesn’t seem to
limit the quality and quantity of technical books, judging from
seeing just one book shop.

Dr. Klimow and his wife took us to dinner that night and the next
(the Fourth of July). We talked revolution - theirs and ours — with
appropriate toasts. Again, he was a good host. He refused our
offer to share the check. Although he consistently abstained, he
provided wine, brandy and vodka.

We took the famous Moscow Subway on our last night in Moscow.
At our destination, Dr. Klimow told us the subway station was the
Communist Party Headquarters’ bomb shelter during the Second
World War. It was very deep and well decorated. | noticed arcs
scratched on the floor. Were they made by the movement of blast
doors? As | was pointing them out to Jo, Dr. Klimow acknowl-
edged, “they are nuclear-blast doors.”

Conclusions

Soviet computer development depends heavily on western ma-
chines and literature. They are 10-15 years behind us. | base
these conclusions on a few days in Moscow and short look at a
laboratory that is too exposed to foreign students to use illicitly
acquired goods. By Dr. Klimow’s admission, such goods are
available and used elsewhere in the USSR. By his inference,
those uses are, at least in part, military.

Klimow at one point discussed military spending. “The USSR is
very poor,” he said. Since the USSR lacks computer technology,
this makes what it has to spend on arms particularly ineffective
in our modern world. This was confusing to me. | would have
expected him to argue strongly against technical embargo and
deny or minimize its impact on military uses.

In contrast to American sensistivity to the potential for improving
productivity through computer-aided design, Dr. Klimow seemed
disinterested. But perhaps | am overly sensitive to this, given my
participation in the American industry. O

TEK’S STAKE IN THE STANDARDS NOW
DEVELOPING FOR GRAPHICS

Dave Straayer, IDG Systems Engineering

A major part of my job at Tek is invested in helping develop and
set new national and international standards. These standards
are increasingly important to Tek and our computer graphics
product lines. Let’s look at these developing standards and
what they mean to us.

GKS - Graphical Kernel System

GKS is a standardized subroutine package for graphics. It's a
software standard rather than a hardware standard. It specifies
the functions needed to do 2-dimensional graphics; it also stan-
dardizes the names for these functions in Fortran, C, Pascal,
Basic, and Ada. Tek's Plot-10 GKS is an implementation of this
standard. GKS is available on DEC-20 computers in Wilsonville,
and plans are being laid to make it available on the Cyber
systems.

GKS is in the final stages of approval in both ISO, the Interna-
tional Standards Organization, and ANSI, the American National
Standards Institute.

Engineers frequently ask me how does a software standard like
GKS relate to hardware systems like Tek’s 4100 line of terminals?
The answer is not simple. 4100 Series terminals can be thought
of as a firmware implementation of SIGGRAPH’s moribund Core
proposal — GKS standardizes software. How and when GKS will
migrate into firmware is being studied today in Wilsonville, but
competitors like Chromatics, Sigmex, and Spectragraphics have
already put GKS functionality in hardware.

GKS is a fact, although it will not adopted finally until December
or January. No significant technical changes will be made, and
the marketplace has already widely accepted GKS.

1 TECHNOLOGY
REPORT

Core

The Core graphics system was proposed ACM-Siggraph in 1977
and 1979. Although numerous products have been based on

Core (including Tek’s Plot-10 IGL and 4100 terminal firmware),
Core will not become a formal standard. Neither ANSI nor ISO
are considering it.

PHIGS

ANSI subgroup X3H31 is working on a proposal called the Pro-
grammier’s Hierarchical Interactive Graphics System. (Four years
ago, this group was working on adopting Core as an American
National Standard.) The PHIGS proposal now looks a lot more
like GKS than Core. It adds functions, namely segment editing
and segment subroutining, that our marketplace clearly needs.
Tek, in response to these needs, recently extended the 4100
product line with Dragon, an enhancement that adds segment
editing and segment subroutines to 4115 software.

The big problem with the PHIGS proposal is that it is not com-
patible with the soon-to-be-adopted GKS standard - although it
could be. Unfortunately, the subgroup working on PHIGS is not
willing to change their work to the degree necessary.

The PHIGS schedule plans final adoption in 1987.

GKS Level 3 Proposal

Tek wrote this proposal anticipating some needs in ECS. lts very
much like PHIGS; yet it is one-hundred percent compatible with
GKS. It provides the same types of functions, namely segment

editing and segment subroutines. This proposal has been circu-
lated in ANSI and ISO, but as yet it hasn’t formal status. Several
Europeans on the ISO committee have suggested that they would
like to see the proposal become the basis of an ISO standard.

Virtual Device Interface (VDI)

Because VDI is intended to be a standard for graphics terminals,
VDI is more interesting to Tek than GKS. Unfortunately, the sched-
ule for VDI has not met the expectations of those most impatient
for such a hardware standard. Also, there is some confusion over
exactly what a Virtual Device Interface standard would be: some
think of it as a standard graphics terminal, some think of itasa
standard graphics chip, others think of it as a standard device
driver in software.

The current draft of VDI does not include segmentation, but
ANSC X3H3 voted overwhelmingly that the next draft should
include segments. VDI is very GKS-like in that it has the same
primitives and attributes.

The current VDI schedule plans final adoption in 1986.

Virtual Device Metafile (VDM)

VDM is a proposal for standard picture files. It's very GKS-like -
its probably fair to consider VDM as an interpretation of GKS in
a file-format context. VDM has had a public comment period in
ANSI, and will have another public comment period this fall. VDM
is a subject of ISO work too. ANSI will probably adopt this stan-
dard in mid to late 1985, 1SO will do so somewnhat earlier.

Character Coding for GKS

GKS is supposed to be a software standard, but ANSC X3L2,
the folks who brought us ASCII, are working on a coding for
GKS. Despite the fact that this coding directly conflicts with
some VDI goals, it is probably not a bad idea, especially to a
company like Tek that is likely to be putting GKS in a terminal. In
fact, most of the work on the proposal is being done by Tek’s
X3L2 rep, Jim Maynard.

Videotex Graphics: NAPLPS

NAPLPS is a joint ANSI/Canadian standard for videotex; it in-
cludes graphics. AT&T supports NAPLPS as a good standard
for general purpose graphics terminals. The graphics commit-
tee, X3H3, disagrees. NAPLPA does not support segmentation
or graphics input. Videotex always seems like an idea whose
time is almost here. So far, this is pretty much a watch-and-wait
thing for Tek.

CAD/CAM Database Exchange: IGES

IGES is a standard which allows users of one CAD/CAM system,
say Computervision, to exchange design data with users of an-
other CAD/CAM system, say CALMA. It affects a few Tek prod-
ucts like TekniCAD, which we offer as a an option to allow the
reading and writing of IGES files. The benefit of IGES to Tek
would be mostly internal. Its use in CAD systems would allow
different systems doing different work to exchange design data.
a

A0

MULTILEVEL SIMULATION OF
DIGITAL SYSTEMS USING THE
TEKTRONIX SIMULATION SYSTEM

The Tektronix Simulation System offers these major features:

Ellen Mickanin is an engineering manager in Logic ~ © Digital hardware modules can be specified at a high level or

Design Systems (LDS), part of the Design Auto- at the gate level. Thus, alternative approaches can be evalu-
mation Group. Ellen joined Tek in 1976. She has a ated and the design refined to greater and greater levels of
BA in physics from Reed College and an MS in complexity in a structured manner.

physics from Cornell University.

A
DESCRIBE EXTERNAL

The Tektronix Simulation System is a state-of-the-art multi- BEHAVIOR OF SYSTEM
level simulation system. Designed by the LDS Simulation

group, the system executes application software on simu- .

lated digital hardware. This hardware ranges from TTL

; : P
gates to advanced processors and peripheral chips. The ,,\f\fg ',_Tl,'\c,)vNAf”YDS;,W

simulation description follows a hierarchy from the func-
tional or register transfer level to the gate level.

y

e : . DESCRIBE HARDWARE
The Tektronix Simulation System enables users to easily gener- FUNC?,ONS ADWAR

ate code for virtually any processor device, from advanced micro-
processors to microcoded bit-slices. A retargetable assembler
and linker allows independent development and evaluation of

the software on the simulated hardware. The Tektronix Simulator 4
system runs on DEC VAX computers under the UNIX operating DO LOGIC DESIGN DESIGN
systems (BSD 4.1 or 4.2) OF HARDWARE SOFTWARE
Traditionally, digital systems are evaluated by running appropri-

ate software on prototype hardware. Based upon observed per- DO ELECTRICAL

formance, the design and prototype are modified and the soft- DESIGN OF H/W

ware rerun. The cumbersome process is repeated until the de-
sign is completed. This approach is shown in figure 1.

BUILD HARDWARE
We, the LDS Simulation group, developed the Tektronix Simula- PROTOTYPE

tion System to provide ways to evaluate both the design and the
interactions between the hardware and the software before pro-
totyping (see figure 2). Using the simulator, digital systems need l

be designed to only the detail necessary for their validation. s

The simulator enables designers to refine system architecture SYSTEN

and hardware efficiently, step by step. The subtasks may be

computer modeled first at a high functional level. Then, as the

architectural details are evaluated, the subtask models can be MAKE NO

refined until the system works with great precision. With the CHANGES e

Tektronix Simulation System, the designer works at the level

most appropriate to the design phase. YES

Using the simulator allows software to be designed and inte-

grated with the hardware early. Firmware and microcode de- Figure 1. The traditional design process for digital sys-
velopment and debugging proceed concurrently with the hard- tems is inefficient. The process requires a hardware pro-
ware design. The first hardware prototype is more likely to be totype to be built before hardware and software can be

correct, as its design is already validated. Fewer prototypes will tested as system.
be needed, speeding product availability and reducing devel-
opment costs.

2 TECHNOLOGY
REPORT

e Interconnection of hardware modules is simple. This simplici-
ty facilitates designing applications ranging from multiproces-
sor systems to complex VLSI chips.

e Software applications are supported extensively at both the
assembler and high-level-language levels.

e The interactive execution environment is similar to the hard-
ware execution environment of conventional emulators and
logic analyzers.

A

DECRIBE EXTERNAL
BEHAVIOR OF SYSTEM

A

PARTITION SYSTEM
INTO H/W AND S/W

—b
L
A

DESCRIBE HARDWARE
FUNCTIONS
USING “DESCRIPTOR”

>

A

DESIGN SOFTWARE
USING ASSEMBLER
PASCAL OR “C”

>

TEST SYSTEM IN
SIMULATION

NO

OK?

YES

BUILD HARDWARE
PROTOTYPE

Figure 2. Using the Tektronix Simulator System, designs
can be tested before prototyping. This is much more
efficient.

The Simulation System

Hardware operation at the functional level is described by pre-
defined library models or by a high-level language (the “De-
scriptor”). Gate-level descriptions and the interconnections be-
tween hardware modules are described by the “Connector”
component. Tektronix assemblers and Pascal and C compilers
can be used to generate software for the hardware models, thus
providing a consistent user interface for all applications. In addi-
tion, a retargettable assembler (the “Adaptor”) provides soft-
ware for custom chips. The execution environment “Simulator”
executes the software application program and provides de-

bugging facilities like those found in typical software and hard-
ware integration tools. These include breakpoints, program-flow
control, internal-state examination and modification, triggering,
tracing, etc. Figure 3 shows the simulator's components and
their relationships.

There are five major components in the Tektronix Simulator
System:

1. The Descriptor is a hardware description language for design-
ing functional or register-transfer-level descriptions of digital
systems. The Descriptor is a structured, high-level procedur-
al language that can model simultaneously executing tasks,
detailed operational timing, and electrical attributes.

2. The Connector (CON) for designing gate-level descriptions of
digital circuits in a structured, hierarchical manner. Connec-
tor also connects individual components into more complex
circuitry for simulation.

3. The Runtime Simulator (SIM) for interactive control of running
simulations. Runtime’s debugging capabilities are like most
hardware and software debugging environments, such as
emulators or logic analyzers:

Software description languages — Programs written in any
Tektronix assembler for microcroprocessors may be directly
used in a simulation. Such assembilers exist for most
MiCroprocessors.

Tektronix Pascal and C compilers are available for several
16-bit microprocessors. Programs in either Tek Pascal or C
may be used directly in simulations.

4. The Retargettable Assembler/Linking Loader (adaptor) per-
mits a custom assembler to be easily generated for virtually
any processor, ranging from microprocessors to bit-slice
machines with microcode widths up to 256 bits.

5. Chip libraries are provided for devices ranging from compo-
nent gates (NAND, NOR) to complex microprocessors (68000,
8086); these libraries include TTL and bit-slice model
descriptions.

Functional-Level Hardware Description

Individual hardware modules are described in the Descriptor
language. This lanquage generates descriptions at functional,
behavioral, or register-transfer levels. The Descriptor is a mod-
ification and extension of ISP’ (Straubs [1]). ISP’, in turn, is a
modification and extension of ISPS (Bell and Newell [2]).

The construct port allows communication and coordination among
other descriptor-defined hardware modules. Ports usually cor-
respond to pins of chips. Ports may have various attributes, in-
cluding word width (up to 256 bits), propagation delays, and
drive attributes.

Internal registers, memories, or variables are defined as registers.
Registers may also have attributes, such as word width (up to
256 bits), dimensions, and propagation delays.

Tasks are collections of executable structured C-like statements,
calls to functions or procedures or compound statements. Tasks
are executed at either specified changes in port or register values,
the simulation time, or combinations of these values and times.

e

Multiple tasks may execute at the same simulated time. Thus,
chips which simultaneously execute instructions, generate clock
pulses, monitor interrupts, execute pipe-lining of data, maintain
counters, timers, or data transmission or reception can be cor-
rectly modeled.

Correct operational timing is maintained by several methods.
Execution of a particular task, function, or procedure may be
suspended for a specified time, or until a specified condition oc-
curs, such as a change in any defined input, output, or internal
structure. Furthermore, assignments may be effective immedi-
ately or delayed by a propagation time, or may be effective con-
currently with other assignments at the same simulated time.

Gate-Level Hardware Description

Hardware modules may be also described in the Connector
language, generating gate-level submodels. The Connector can
interconnect various predefined and user-defined-gate modules
in a structured, hierarchical manner. Gates are connected via
nodes.

Combinations of gates may be declared a subcircuit, and refer-
enced later as an unique entity. In this case, only the input and
output nodes of the subcircuit can be accessed by other modules.
Figure 4 shows an arithmetic unit constructed in this manner.

Integration Of Hardware

Once hardware modules have been described (at the functional
level in the Descriptor or at the gate level in CON), they may be
interconnected. A connection file is generated; this file lists the
global nodes, the individual hardware modules and their pin con-
nections with the nodes, and - if desired - the initialization of
any internal registers, such as memories. This step is another
opportunity to modify the timing of any module.

Simulated Software

Any system using a programmable device (such as a micropro-
cessor or a ROM-based state machine) must be able to specify
the program for that device. This specifying is done by writing
the program either at the assembly level (using standard Tek-
tronix assemblers for common microprocessors) or at a high
language level in Pascal or C (for some microprocessors).

In addition, a retargettable assembiler is available for systems
without an available assembler, or for microcoded systems. In
this case, the instruction set for the target machine must be
defined and mapping between the instruction mnemonic and
the machine bit-format specified. Then the actual application
code can be written for the target machine. The retargettable
assembler supports horizontal as well as vertical machine
architecture.

USER-SUPPLIED “DESCRIPTOR”
RTL HARDWARE —| HARDWARE

CONNECTION
DESCRIPTION FILE

C PROGRAMS —p

DESCRIPTIONS COMPILER
CON
(CONNECTOR >
GRAM
LIBRARY-SUPPLIED: PROGRAM)
MICROPROCESSOR,
TTL CHIPS, ETC. SIM
(RUNTIME
SIMULATOR)
CUSTOM “ADAPTOR" LINKING
ASSEMBLER —{RETARGETTABLE —B LOADER i
PROGRAMS ASSEMBLER
CONFIGURATION
FILE
STANDARD MDP
ASSEMBLER —p| ASSEMBLERS |—
PROGRAMS
MDP
UNKNG |-
LOADER
PASCAL PASCAL
PROGRAMS—| COMPILER |—

g a
COMPILER

Figure 3. The Tektronix Simulator System.

2 TECHNOLOGY
REPORT

subckt 74181(Cn,M,S(4),A’(4),B'(4),F’'(4),AEQB,Cn4,P’,G")
node n1(4),n2(4),B(4)
vari;
connect M’ = INV(M)
/I Generate B signals from B’

fori=0to 3 do
connect B(i) = INV(B'(i))
endfor
/Il Generate internal signals n1 and n2
fori=0to 3 do

connect n2(i) = NOR(AND(A'(i),S(2),B(i)), AND(S(3),B'(i),A'(i)))
connect n1(i) = NOR(AND(A'(i)), AND(B'(i),S(0)), AND(S(1),B(i)))
endfor

/| Generate F outputs

connect F'(1) = XOR(AND(INV(n1(1)),n2(1)), NAND(Cn,M"))

connect F’(2) = XOR(AND(INV(n1(2)),n2(2)),
NOR(AND(Cn,M’,n2(0)),AND(M’,n1(0))))

connect F’(3) = XOR(AND(INV(n1(3)),n2(3)),
NOR(AND(Cn,M’,n2(0),n2(1)),AND(Cn,n1(0),n2(1)),AND(Cn,n1(1))))

connect F’(4) = XOR(AND(INV(n1(4)),n2(4)),
NOR(AND(Cn,M’,n2(0),n2(1),n2(2)),AND(Cn,n1(0),n2(1),n2(2)),
AND(Cn,n1(1),n2(2)),AND(Cn,n1(3))))

/I Generate AEQB output

connect AEQB = AND(F’(0),F’(1),F’(2),F’(3))

/I Generate P’, G’ outputs

connect P’ = NAND(n2(0),n2(1),n2(2),n2(3))

connect G’ = NOR(AND(n1(3)),AND(n1(2),n2(3)),AND(n1(1),n2(2),n2(3)),
AND(n1(0),n2(1),n2(2),n2(3)))

/I Generate Cn4 output

connect Cn4 = NAND(G’,NAND(Cn, n2(0), n2(1), n2(2), n2(3))

endsub 74181;

Figure 4. An arithmetic unit constructed, by the Connec-
tor, as a subcircuit implemented at the gate level.

Linking loaders are provided for all methods of code genera-
tion. This allows the user to link one or more files for relocation
into the address space specified. Most data segmentation
schemes are supported.

Simulation Execution

Once the hardware modules have been modeled, their inter-
conections described and the software developed, the simula-
tion is ready to run. The simulation runtime environment is in-
teractive. The user controls the initial state of the Tektronix Sim-
ulator System - timing parameters, flow of control, execution,
and dynamic monitoring of the results. The types of commands
provide the user with most of the operations available in typical
hardware debugging environments, such as emulators and
logic analyzers.

The user may specify combinations of triggers, breakpoints,
and timers on values of any defined registers, nodes, memories,
or system time. Diassembled traces are under complete user
control; this includes specifying which internal structures in
which chips are to be viewed. The contents of any register,
signal, or memory may be modified.

A graphic representation of the changing values of the struc-
tures is also available, producing timing diagrams that present
much, easily comprehended data.

The simulation can be stopped and restarted at any time, and
results sent to an output file for later processing and statistical
examination of data via a postprocessor.

Conclusions

The multilevel digital Tektronix Simulation System has proved in-
valuable in system design.

It facilitates top-down development of structured systems — using
hardware appropriate to the design phase - starting with func-
tional descriptions. As the system architecture becomes more
completely defined, the functional descriptions can be replaced
with more accurate gate-level descriptions.

The variety of means for describing software allows application
code to be developed quickly. And when the hardware proto-
type is built, this code will be completely compatible.

Because the execution environment is similar to what hardware
engineers are accustomed to using on prototypes, they will find
the simulator straightforward and easy to learn and use.

For More Information
For more information, call Ellen Mickanin, 629-1487 (92-826). [

References:

1. Straubs, R.V., “A Compiler for a Register Transfer Based
Simulation Language,” CWRU, 1978.

2. Bell O., and A. Newell, “The PMS and ISP Descriptive
System for Computer Systems,” Proc. AFIPS SJCC, 1970.

Technology Report
MAILING LIST COUPON

O ADD Name:

D.S.:

0 REMOVE

Not available to
field offices or
outside the U.S.

MAIL COUPON
TO 563-077

Payroll Code:
(Required for the mailing list)

For change of delivery station, use a directory
change form.

MO

TEK LIBRARIES HAVE EXTENSIVE
PERIODICALS LIST

The Tektronix Libraries have recently revised their Periodical Julianne Williams
Holdings List; copies are available upon request. The library sys- Corporate Library 627-5388 (50-210)
tem has an extensive collection of sciltech journals plus hold- UNIX: teklabsllibrary

ings in business and management. The list indicates holdings
for the Corporate, Walker Road, and Wilsonville Libraries, and is
especially useful when doing research.

Yan Soucie
Walker Road Library 629-1062 (94-501)
UNIX: tekmdplyans

Articles from the Libraries’ holdings may be requested by Tek Linda Appel
mail using the Photocopy Order Request Form (000-6937-00). Wilsonville Library 685-3986 (63-531)

This form is also on some UNIX systems under the name ‘libreq’. UNIX: iddicllindaa
Single copies of the Periodical Holdings List may be requested =
from the Libraries by Tek mail or via UNIX.

COMPANY CONFIDENTIAL

NOT AVAILABLE TO FIELD OFFICES
(YVHD) 1¥0d3Id A9 TINHI3L

TTIIMNE0D 3 O¥VHOI Y
GB8Z-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer.

