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PREFACE

This book is primarily concerned with the problem of
measurements in the frequency domain by means of Spectrum
Analyzers. Thus circuit design or construction details are not
considered. Basic system parameters are, however, discussed in
some detail since these have a direct bearing on the
interpretation of measurement data. Two types of signals are
treated in detail: Those composed of discrete or line spectra
and those composed of continuous or dense spectra.

Continuous wave (CW) or sinusoidal amplitude modulation (AM)
is an example of the former, while pulsed-RF is treated as the
latter. The third class of signals comprising random variables and
requiring statistical methods are excluded from the detailed
discussion, though some applications are included.

The discussion follows a dual approach: Part I is a mathematical-
process-oriented approach while Part IT applies the theory of
Part I to specific measurement problems.

Those desiring to avoid mathmatical complexities can go directly
to Part Il where the basic relationships are stated without proof or
explanation. Those who wish a somewhat deeper understanding
should read selectively in Part I where the more abstruse material
has been relegated to the appendices. Finally, those who need a
thorough grounding in the subject, and this is unavoidable for
those who wish to use Spectrum Analyzers in new and as yet
untried areas, will hopefully find the proofs and references of
interest.



PART I

MEASUREMENT THEORY



SPECTRUM ANALYZERS

All electronic signals, indeed all natural phenomena, can be
described either as a function of time or of frequency. When a

frequency phenomenon is cyclical, having a definite periodicity, the basic
VErsus relationship between frequency and time interval is fairly simple,
time one being essentially the inverse of the other. In the case of

random phenomena, one has to use statistical methods, but the
coneept of the duality of time and frequency is still useful. The
concept of frequency as considered here presupposes time
duration' — where time is a basic property of the universe we
live in and frequency is related to time through the cyclical or
periodic nature of the phenomena under discussion

Just as the oscilloscope is an instrument whose basic function is to

spectrum display the time characteristics of phenomena, so is the spectrum
ana_lvzer analyzer an instrument whose function is to display the frequency
defined characteristics of phenomena. The basic definition of a spectrum

analyzer as found in Chapter 11 is: “A device which displays a
graph of relative power distribution as a function of frequency,
typically on a cathode-ray tube or chart recorder.”

'One could consider frequency in more general terms — i.e., one
could say that a topographical distribution of hills is cyclical with
x hills per mile. Time need not enter such a discussion.
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frequency
domain
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It should be recognized that the two descriptions of the same
phenomena — time domain for the oscilloscope and frequency
domain for the spectrum analyzer — are not independent. If one
of the two is known, the appropriate mathematical rules or
equations lead to the other. The question of which description,
time or frequency domain, is the more basic is difficult to answer.
One can argue that time is the basic natural phenomenon and that
the frequency concept is derived from it since a universe without
time duration is inconceivable to us. It can, however, also be
argued that it is the periodicity of natural phenomena that makes
for the thing we call time. Certainly in modern physics, such as
relativity theory, it is considered that time stems from the existence
of matter and hence movement and periodicity and that time
without matter (Newton’s absolute time) has no meaning.

For the purposes of this discussion it is convenient to consider
time as the basic concept and frequency derived from it. This is
because oscilloscopes are constructed to display an enhanced
(amplified, and/or sampled) version of the incoming signal, whereas
spectrum analyzers are constructed to obtain the frequency-domain
characteristics of the incoming signal by computation or other
analog operation performed on a time-domain input. Thus, while
an oscilloscope is generally recognizable as such from its block
diagram, a spectrum analyzer may be difficult to recognize, since
the computation function or analog operation can be performed by
diverse means.

Some of the methods that can be used to obtain a frequency-
domain presentation are described in the following.

CONSTRUCTING A SPECTRUM ANALYZER

computer
analysis

One method of performing spectrum analysis is to program a
computer to perform the appropriate computation for going from
the time to the frequency domain. With the recent advent of the
time-saving Fast Fourier Transform technique, this method of
spectrum analysis can be quite attractive. Nevertheless, the
computer programmed as a spectrum analyzer is still a rarity which
is used for specialized applications only.
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Besides the computer method, the frequency composition of a
complex signal can also be obtained by separating the several
components in a contiguous bank of filters. Such a system of
contiguous-filter passhands can be constructed from real
physically existing filters. Figs. 1-1A and 1-1B are the block
diagram and frequency characteristics of such a system. The
composite time-domain signal is fed to the multicoupler which
distributes it equally between the several filters. Each filter will
respond only to inputs within its passband. Hence, by observing
the amplitudes of the outputs of the various filters one can
determine which frequencies and what amplitude levels are
present in the composite input signal.



resolution

dispersion

The narrower the filter bandwidth B, the better our ability to
determine the precise frequencies of the signal components. This
discrimination between signals having closely spaced frequencies
is called resolution. The narrower B, the better is our resolution.
This is analogous to the resolution of a microscope, where an
improvement in resolution refers to an increased ability to
separate visually several small particles. The range of frequencies
that can be analyzed is of course the total frequency band
covered by the set of contiguous filters. If there are a total of n
filters each having a bandwidth B, then the total frequency range
is simply the product nB. This is sometimes referred to as the
dispersion, a word borrowed from optics. As the filter bandwidth
is decreased in order to improve resolution, it becomes necessary
to increase the number of filters (1) correspondingly if the
dispersion is not to decrease. Thus, the number of filters and
indicators in such a system can get very large. One way to reduce
the cost of such a system is to use one recorder, or indicator,
which is commutated between the various filters, as depicted in
Fig. 1-2. Here, instead of determining frequency by which
indicator shows an output, we determine frequency by
correlating the time of the output with the sequence of the
commutator. For example, if the commutator is connected to
each filter for half a second and it takes a half-second travel time
to go from filter to filter; an output at 10 to 10.5 seconds after
start means a signal corresponding to the frequency of the tenth
filter. With appropriate recorder speed, for example one inch per
second, we can transform the recorder time axis into a frequency
axis. In the previous example a signal indication positioned

10 inches from the start means a signal at the frequency of the
tenth filter.

Superficially, the systems shown in Fig. 1-1A and Fig. 1-2 seem
to accomplish the same thing. There is, however, one major
difference between them. Whereas the first system will, at least
in theory, show all signals no matter how short their duration,
the second system is limited in this respect by the speed of the
commutator and the time constants or memory associated with
the system. Thus, the convenience of a reduction in system
complexity is paid for by the loss of some capability.

tuned
filter
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Fig. 1-2. Filter bank system using commutator.
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Fig. 1-3. Tuned-filter spectrum analyzer.

The system shown in Fig. 1-2 is still quite cumbersome since it
may require hundreds of filters to obtain the desired resolution and
dispersion. However, since we no longer utilize our filters on a
continuous basis, why not use a single filter whose center frequency
is switched or tuned in lieu of the commutator. This results in the
system depicted in Fig. 1-3. The sharacteristics of such a system
are best understood by considering the relationships shown in

Fig. 1-4. Here a filter having a bandwidth B is assumed to tune
over the frequency range f to f3 during the time interval 7.



sweeping
signal

FILTER SIGNAL

A

FREQUENCY ———
wy, o
0w
_—%__

B
I

T IME——— [
| |
I 13

e []

lt— 0 TO 10— ptg— 0 TO 10— pteg—— 0 TO 10—

POSIT ION

Fig. 1-4. Frequency/time-position relationships
for tuned-filter system.

During the same time interval, the indicator (paper chart recorder

or CRT) changes position from zero to ten divisions. For example,
zero position corresponds to f1, 10 divisions corresponds to f3 and
5 divisions corresponds to the center frequency between f1 and f3,

+
namely Léll In addition, Fig. 1-4 also shows a signal at

frequency f2. The signal is shown as a straight line in the time-
frequency diagram, meaning that it has constant frequency as a
function of time. The effect of the tuning or sweeping filter
intercepting the signal is indicated by the pulses on the horizontal
position scale. The width of the pulses traced by the indicator is

T= f31_; 1 T . namely, the time that the signal frequency is within
the passband of the filter.

This system is relatively simple and compact, but there are
practical difficulties. Problems stem from the present state of the
art in electronically tuneable-filter construction. These generally
have much wider bandwidths than is desired for most applications.
Thus, spectrum analyzers of this type have somewhat limited
utility. This brings us to our final configuration, the sweeping
superheterodyne system.

A major point to be recognized in the system of Fig. 1-4 is that
the transformation from time domain to frequency domain is
accomplished by the relative translation or movement in frequency
between the filter and the signal. The emphasis should be on the
word relative, meaning that it does not matter whether it is the
filter or the signal frequency that is changing or translating. Thus,
one should be able to obtain the same end result as that of

Fig. 1-4 by using a stationary filter and a translating, or to use

the more common name sweeping, signal. The time/frequency-
position relationships for such a system are shown in Fig. 1-5.
Here the filter is shown as having a passband (B) and a constant
unchanging center frequency (f3). When we have a signal whose
frequency falls within the passband of the filter, there is an output,
The result is the pulse on the position scale whose position
corresponds to a frequency, /5, and where the pulse width

B ; ;
7=——7T is a measure of system resolution,
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THE SWEEPING-SIGNAL SYSTEM?

The superheterodyne or sweeping-signal system is based on the
use of a mixer. For the present we shall consider the mixer as an
idealized three-terminal black box. The three terminals provide
for a signal input, local oscillator input and IF output. Our
idealized mixer produces an IF output which has the amplitude
characteristics of the signal input and whose frequency
characteristics consist of an algebraic combination (sum or
difference) of the frequency characteristics of both inputs. We
produce what amounts to signal sweeping by sweeping the local-
oscillator frequency which produces a swept IF output. Fig. 1-6
is a block diagram and frequency-time display showing the effect
of multiple signal frequencies. Here we observe that for each
signal frequency we generate a separate IF frequency sawtooth
through one of the relationships:

fLo t/rF
fie ={fLo - frF
RF - fLO

Fig. 1-6B is drawn for the fip = fy o—frF relationship. As the

IF frequency sawtooth passes by the filter, consisting of the
narrowband IF amplifier of bandwidth B and center frequency fp,
we generate a pulse of width 7, as previously discussed. One such
pulse is generated for every signal frequency present, with pulse
height proportional to signal amplitude. In Fig. 1-6B, it was
assumed that the amplitude of the signal at f5 is larger than that
at f] .

?Detailed characteristics are described in Chapter 5.



TYPES OF SIGNALS

continuous
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pulsed
RF

line
spectra

continuous
spectrum

numerical
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The examples considered thus far are based on the assumption
that the input can be considered as consisting of several sinewaves.
If we know the response of our system to a continuous-wave (CW)
signal, we know all that’s needed since the rest follows from
simple superposition. This assumption is not always warranted. A
case in point is pulsed RF. Here we obviously cannot obtain the
output pulse shown in Fig. 1-6B if the input-pulse duration is less
than the width 7 and the response of the system to pulsed inputs
is much more complicated than that for CW type inputs. In the
CW case, the result is a pulse of width 7 which is dependent on the
resolution bandwidth, the dispersion and the sweep time, while in
the pulsed-RF case we have a pulse considerably narrower than 7,
where the pulse width is determined by the signal characteristics
rather than the spectrum-analyzer parameters. The former type of
signal is considered as consisting of line spectra — discrete CW
components; the latter type of signal is described by a continuous
spectrum or a dense spectrum. For the moment it is helpful to
recognize one basic difference: In the CW case, the final result is
a pulse tracing out the shape of the resolution filter which can be
considered as the steady-state response of the narrowband IF
amplifier; in the continuous-spectrum case, the narrowband
amplifier has to respond to a fairly narrow pulse resulting in a
transient rather than steady-state response. The significance of this
and other differences between these two classes of signals is
considered in Chapter 5.

Now that the reader has an idea of what we mean by the words
“Spectrum Analyzer” and how the device operates, we shall put
aside the hardware and proceed with a theoretical discussion on
the frequency-domain characteristics of signals. The practical
aspects of measurements will be considered in Part II of this
volume,

Referring to Fig. 1-6A, assume that the following numbers apply:

1) The narrowband IF

To
B

75 MHz
100 kHz

2) The swept local oscillator
f3 =270 MHz
J4 = 280 MHz
Sweeptime 7 = 10 ms

Consider the response to a CW signal at 200 MHz.

The signal can combine with the local oscillator as follows:

Lo * IRF
fir = {/Lo ~/rF
RF -fLO

In our case, we are only interested in the results where

J1F = fo = 75 MHz. This means that we are interested in the
relationship f1 o-fk ¢ = fiF, since 275 - 200 = 75. This happens
when the local oscillator is 275 MHz, which is the center of its
sweep, 5 ms from sweep start. Actually we get an output not
only at 75 MHz but at 75 MHz £50 kHz since the bandwidth is

100 kHz. Hence the result is a pulse of width 7 =%T =
0.1

280 =270 10 = 0.1 ms centered at 5 ms from the start of the

sweep. Assuming that this pulse were displayed on a CRT having
10 horizontal divisions at 1 ms/div (same as the sweeping LO), we
would have a pulse occupying 0.1 divisions. It is interesting to
note that the pulse continues to occupy 0.1 divisions regardless of
what the sweeptime T is. so long as the sweeping oscillator and
the time base of the CRT are identical. Thus, if T is made 100 ms
7 becomes 1 ms and at 10 ms/div still occupies 0.1 divisions.

]

Consider now that the signal consists of two components — one
at 200 MHz and the other at 202 MHz. The result is two output
pulses, one at 5 ms from the start and the second at 7 ms from
the start. These would appear on the CRT at 5 and 7 divisions
respectively. The relative amplitudes of these pulses would be in
the same proportion as the relative amplitudes of the signal
components. Proceeding in similar fashion, we see that the
horizontal CRT scale can be considered as a frequency scale where
the left-hand edge represents 195 MHz and the right-hand edge
represents 205 MHz.



spurious
response

image

Consider now that the signal has a third component at 350 MHz.
This too will appear on the CRT via the relationship

frF -fLo = fip = 350 - 275 = 75. Yet the CRT has not been
calibrated for it, since we've assumed that our frequency base is
195-205 MHz. Such a signal, which does not conform to the
frequency calibration of the CRT, is called a spurious response.
There are many types of spurious responses. This particular
spurious response is called the image. Let us now go back to our
original signal at 200 MHz and see what happens to it as a function
of the spectrum-analyzer control settings. As previously determined,
this signal appears on the CRT as a response 0.1-div wide located in
the center of the CRT with an amplitude which is proportional to
the input level.

1) Changing the sweeptime: As previously determined, this
should have no effect on the appearance of the pulse.
Thus, the width of the signal pulse is a true measure of
relative resolution since it is, at least in theory, dependent
only on resolution and dispersion. In actuality, if the
sweeptime is reduced too much, there will be major
changes in what appears on the CRT. This aspect will be
discussed in the section on spectrum-analyzer limitations.

2) Changing the local-oscillator center frequency: Let the
sweeping local oscillator operate from 271-281 MHz.
Thus, 275 MHz occurs four-tenths from the beginning and
our signal pulse will move from the fifth to the fourth
graticule line on the CRT. This is because the CRT
frequency base has now changed from 195-205 MHz to
196-206 MHz.

3) Changing the sweeping-oscillator sweep width or dispersion:
Let the sweeping oscillator operate from 272.5-277.5 MHz
for a total excursion of 5 MHz. The pulse width is
T =—%T = 9‘5'-1*’1“ seconds which occupies a physical distance

of%r seconds X 10 CRT divisions = 0.2 div, or twice

the previous width. The frequency base of the CRT has
likewise been changed from 195-205 MHz to 197.5-202.5 MHz,

4) Changing the resolution bandwidth: Let the resolution
bandwidth B = 50 kHz. The only effect is to reduce the

0'1%5 T seconds or 0.05 divisions

signal pulse width to 7 =

wide on screen.

SPECTRUM THEORY

TIME AND FREQUENCY DOMAIN

definitions

Any motion, or to use the electronic term waveform, which
repeats itself as a function of time, is called cyclical.

When the waveform repeats in equal intervals of time, it is
considered periodic.

When a waveform is generated by the retracing of the same path,
such as the back-and-forth motion of a pendulum or the back-
and-forth transfer of charge in an LC circuit, it is called
oscillatory.

One complete oscillation means that a round trip is completed;
e.g., from A to B and back to A again.

The period (T) of the oscillation is the time required to complete
one oscillation.

The frequency (f) is the number of oscillations per unit time,
e, =%, T=fl.
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Fig. 2-2. Periodic waveform, frequency domain.

With the basic definitions behind us, let us now consider a
periodic waveform such as the squarewave shown in Fig. 2-1. This
waveform can be described as having a period T or a frequency

f = 1/T; either of these statements combined with the statement
that the amplitude is A gives us a complete description of the
squarewave. However, when comparing our description with the
graphical representation, it is observed that the description in
terms of the period T is easier to use since the description in terms
of frequency is not applicable to the coordinate system of the
graph without mathematical computation. Yet it is often more
meaningful to describe a phenomenon in terms of frequency rather
than time duration. This leads to the desirability of producing a
graphical representation of the squarewave as a function of
frequency rather than time. Such a graphical representation is
Fig. 2-2. Fig. 2-2, however, only conveys the appropriate
information to those who know the conventions used. Thus, we
must specify that our basic waveform is a squarewave, not a
triangle or trapezoid or sinusoid. We must also be aware that by
showing the frequency domain representation as positive it is
meant that the squarewave starts out with a positive rather than
negative excursion.

Knowing the conventions, it is possible to represent all kinds of
waveforms in the frequency domain by breaking these up into
squarewaves, Such a representation is shown in Fig, 2-3. Here the
complex pulse shape of Fig. 2-3C is represented as the sum of the
two squarewaves shown in Fig. 2-3A and 2-3B. These squarewaves
are in turn represented in the frequency domain by Fig. 2-3D. As
far as information content is concerned, Figs. 2-3C and 2-3D are
completely equivalent, each being derivable from the other.
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Fig. 2-3. Time- and frequency-domain representation using
squarewave as basic frequency function.



Now, it should be recognized that there is nothing sacred about
using squarewaves as the basic waveform. For all we know,

triangles or trapezoids or sinusoids might be much more convenient.

The next order of business is to consider which properties are
desirable for the basic waveform.

ORTHOGONAL FUNCTIONS

functions
orthogonality

The most important requirement of the basic waveform is that as
many as possible (preferably all) other waveforms should be
disassociable into a combination of basic waveforms. Though many
types of waveforms, or to use the proper mathematical terminology
functions, can be used as the basic function, it can be shown?

that sets of functions which possess the property of orthogonality
fulfill the above requirement best. Let us now consider the
meaning of the word orthogonal.

The word orthogonal comes from the words orthos meaning right
and gonia meaning angle. In ordinary usage the word is defined
as pertaining to right angles. The mathematical meaning is more
precise but based on the same classical roots. It is based on the
fact that when two lines or planes are at right angles to each
other, the projection of one onto the other is zero, as illustrated
in Fig. 2-4. Specifically, a set of functions is orthogonal when
the integral between specified limits of the product of any two
functions is zero.

In mathematical notation when:

Lbfm(x) f(x) dx = 0, when m # n,

then f1(x), f2(x)...fy(x), f(x) form an orthogonal set of
functions.

! See, for example, Whittaker & Watson’s Modern Analysis for a
detailed mathematical exposition on the expansion of functions
in infinite series using both orthogonal and nonorthogonal
functions.

One can interpret orthogonality as a geometrical condition by
considering that the result of an integration is the area under the
curve bounded by the function being integrated. Thus, when a
set of functions is orthogonal, what we mean is that the area
under the curve generated by the product of any two functions,
except the function times itself, is zero.

A physical example of orthogonal functions is a set of three
mutually perpendicular vectors. For this case, according to the
equation, the projection of any one vector upon any other
vector is always zero.

There are many sets of orthogonal functions. For example:
Sinewaves, Bessel functions, and the series composed of 1, x,

xz-g%, xs—éix, ... taken between the limits of %1, are all
orthogonal.

(B)

Fig. 2-4. Projection is € when o # 90°; projection f(x) is
zero when o= 90°.



A geometrical interpretation of this series is shown in Fig, 2-5.

As previously indicated, a series of orthogonal functions serves
our purposes best. This is because almost any function® defined
over a specific interval, such as +7 to —m, can be expanded in
almost any set of orthogonal functions. Thus, from the point of
view of what can be done theoretically, Bessel functions, which
we shall discuss in connection with frequency modulation, are
just as good as sines and cosines. The question of which
orthogonal set of functions to use must, therefore, be settled on
the merits of practicality rather than theory. This is considered
in the next section.

THE PROPERTIES OF SINEWAVES
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Fig. 2-5. Geometrical interpretation of the orthogonal series:
I,x, %% = %, .... the integral between the limits of

the product of any two terms is zero as demonstrated
in (A), (B) and (C), while the integral of the product
of any term times itself is not zero, as illustrated in (D).

Among the various sets of orthogonal functions, that consisting
of sines and cosines comes closest to describing the behavior of
physical systems and is one of the easiest to manipulate
mathematically as well.

The sine functions have the following important properties:

1) The sine function is generated in connection with motion
around a circle, as will be demonstrated later. Since
much of our machinery is based on circular motion, the
sine function can be used to describe physically existing
situations.

2) Most physical processes which are undulatory are also
periodic. Unlike the orthogonal Bessel functions, for
example, which are undulatory but not with a constant
period, the sine functions are periodic.

2There are some unimportant exceptions.



sinewave
properties

3) Many diverse phenomena such as the oscillation of a
weight on a spring, the swing of a pendulum, or the
oscillation of current in an LC circuit are basically
sinusoidal. In particular, the fact that the natural
behavior of electrical circuits is sinusoidal is of the
greatest importance in our choice of sinewaves as our
basic waveform?.

4) Sinewaves possess the remarkable mathematical property:
The basic description remains invariant under various
mathematical transformations. For example, except for
a change in phase, a sinewave remains a sinewave with
integration or differentiation.

Based on reasoning such as above, one comes to the conclusion
that, among the various sets of orthogonal functions, sinewaves
are both easier to manipulate and come closer to describing
physical processes than any other type of function. Hence, when
describing complex waveforms by breaking these up into a sum
of more elementary waveforms, the sinewave is chosen as the
basic waveform.

Let us now consider some of the terminology and properties
associated with sinewaves.

The behavior of many physical systems is described by a
differential equation of the form

2
K v "

dr2 wzy = O:

a solution of which is

y =A cos wt + B sin wt.

3 Actually, the damped rather than the constant-amplitude
sinusoidal oscillation is the natural response of real networks,
since all physical networks contain some losses. However, the
undamped sinewave is so much easier to manipulate that it
has become the universal choice as the basic waveform.

terminology

In electronics such an equation is basic to LC circuits
dZ Q 1 2
+——} 0 =0,
dr? (JLC) ¢
where L, C and Q are inductance, capacitance and charge
respectively.

The solution is in the form of a sinusoidal oscillation at angular

frequency w =‘JLI_ .

The functions ¥ = 4 cos wf or ¥ = B sin wt are often referred

to as circular trigonometric or just circular functions. These are
also sometimes connected with the words simple harmonic motion,
since these functions describe the simple harmonic motion of a
point around a circle, as well as other physical phenomena. We
shall simply use the words sinewave or sinusoidal whenever
possible. It should be understood that the general word sinewave
refers to both sin 8 and cos 6.

The general expression for a sinewave is

y=Asin 8.
A represents the amplitude while @ represents the angle. In
electrical problems, 6 is usually replaced by the time-dependent
expression

wt+ o,

where  is the radian frequency or angular velocity, the combined
quantity (wt + &) is the phase, while the fixed angle o is the
initial phase. t is time duration, usually counted in seconds.

The angular velocity is usually broken up into the expression
w = 2af
where f is the frequency, namely how many cycles of the

phenomenon occur in one second. The period, which is the
inverse of frequency, is

=1
=



The generation of sinewaves is most easily visualized in connection
with motion around a circle as discussed in the following.

o

Fig. 2-6 represents a point (P) moving around a circle (radius A4)
in a counterclockwise direction with angular velocity w radians
per second. The figure also shows the curves generated by the |
projection of the moving point on the horizontal x axis and the
vertical y axis. These curves trace the cosine and sine respectively.
In the construction we have assumed that the initial position of

P is that marked 0, if this were not the case, we would add the
starting angle « as an initial phase angle.

sinewave
generation

Such a diagram is very useful since one can deduce many of the i
characteristics of sinewaves directly from it. For example, when
the angle () is zero the horizontal projection is A while the ;
vertical is zero. Likewise, when the angle is 7/2 radians (90°), ;
the horizontal projection is zero while the vertical is 4. Going |
further one observes that the two projected lengths of the

radius 4 are equal when the point P is midway between zero

and 7/2. At this time the x and y projections are 4/42 . In such -
a way one can construct a table of values for the sine and cosine ‘

such as that in Table 2-1. The table shows the angle § in degrees,

of course we could just as well have used radians since one full

circle is 2 radians or 360°.

A——

From Fig. 2-6 we observe that at 270° the point (P) is at
position 3. This position can also be reached by moving 90° ! Fig. 2-6. Generating sinewaves by circular motion.
clockwise. So, if we designate counterclockwise rotation as
positive and clockwise rotation as negative, we see that 270° is
equivalent to -90° and vice versa. Using this type of notation,
we can conclude with the help of Table 2-1 that the following
relationships should hold:

sin @ = -sin {_8) ¥ Be==| |0 45° a0° 135% 180° 225° 270° 315 360°
cos § = cos (9) sine ol | wz | o a0 | as 9
Many other relationships can be developed in a similar manner. |
! cos 8 N7 0 -1VZ | - -1/VZ 0 1Yz 1

i Table 2-1. Sine and cosine values.



The rotating point (P) starts at position zero at time ¢ = 0 and

starts moving counterclockwise. Eventually, (P) returns to its £

starting point (position 4); at this instant the elapsed time is some A

number, call it 7. This time (7) is what we previously defined as

the period. Likewise, the point (P) completes f = 1/T complete o (el tor t @

trips around the circle every second. Since there are 2m radians S,

in a circle, the angle that is covered in one second is 27f (the \w L

angle per circle times circles per second). The angle swept to any ¥, S

arbitrary time ¢ is merely the angle per second times the time in a\ i i ;\

seconds or @ = 2mft. Thus our basic equations are - ! — >
¥ = A sin 2nft, s
x = cos 2nft ok ¥ ¥

~
n

where 2nf = <, the angular velocity, and f is the frequency as %
previously defined. *

Besides the familiar notation, such as x = cos (wt + &), used above,
it is possible to represent sinewaves in diverse ways. One way,

\r/gz‘?grn 0 which was used above, is by means of the rotating vector® which

is the radius of the circle in Fig. 2-6. The cosine function is Fig. 2-7. Representing the cosine function by two counter-

represented by the projection of the rotating vector on the rotating vectors on complex plane.

horizontal axis. The vector idea can be useful when dealing with

the superposition® of several sinusoids. Thus, if we wish to find

the sum of A cos wpt and B cos (wqt + &), all we have to do is Such vectors can be represented in complex notation and

to construct a vector triangle with two vectors size 4 and B manipulated in accordance with the rules of complex

forming the angle . The resultant vector (or phasor), rotating mathematics. Thus, in the complex plane, the horizontal axis

at angular velocity g, is the solution to the problem. is considered to represent real numbers while the vertical axis,

labeled j, is considered to represent imaginary numbers. The

Strictly speaking, the single vector method is not quite correct word imaginary arises .fromj ='\('_1= which was once cgnsxlered
two since the rotating vector generates both a sine and a cosine function. comp_[ex not to ha‘fe afly - meaning fmd IS JURL gumane ERpIescHLINg 4
vectors In order to represent only one of these, it is necessary to use two notation mathematical expression; it has nothing to do with existence

or nonexistence. Complex notation provides a simple
mathematical expression for a complex combination of sines
and cosines. Such notation is frequently used in Fourier series,
hence our interest. In complex notation, a rotating vector is
represented by the product of the amplitude and epsilon (the
base of natural logarithms) raised to the power of the angle
times j. In Fig. 2-7 the two counter rotating vectors are
represented in complex notation by

vectors rotating in opposite directions as illustrated in Fig. 2-7.
Here the two vectors have equal projections on the horizontal axis
which represents the cosine, but equal and opposite projections on
the vertical axis which represents the sine. Thus, if these vectors
are half the amplitude of the single vector representation, we get,
by addition, the same cosine function as before, but the amplitude
of the sine is zero since the two vectors cancel each other.

*#Such a vector is sometimes termed a phasor. ) .
% Superposition is discussed more fully in the next chapter. For ( ' ) 6"’](003 +a) and( _A;) E'J(wf + )
the moment it is sufficient to equate superposition with addition. 2 2

:



trigopnometric
notation

where the minus in front of the exponent on the second vector

represents clockwise rotation, since counterclockwise is taken as

the positive direction. The fact that such notation involves the

use of negative frequencies should cause no concern. Remember

that we are dealing with a mathematical notation and it is not |
necessary to ascribe physical reality to all the parts. Another way

of looking at it is that the positive and negative aspects are just

different notation standing for the same thing, since, as shown

before, sin (0) = -sin (-8) and cos (§) = cos (-0)°.

The relationships between the complex notation and standard
trigonometric notation can be derived from the rules governing
the use of complex numbers. We shall skip a rigorous derivation,
referring those interested to the references. The truth of the

basic relationships can also be surmised with the help of a
geometrical construction such as Fig, 2-7. Here it was shown that
the sum of the two counter rotating vectors is the cosine function.
Thus, ) )

—’;1— € Jhesit # B) + ej(w[ o =4 cos (wt + a).
From geometrical reasoning such as this come the following
results:

i -if
€ +
1) = = ¢cos 0
6_i0 E—_iﬁ
2 _j—l =sin 0
i0

3) € =cos0 +jsind

These are not independent expressions, we can for example derive
(1) from (3) thus:

ELJO =cos(-0) +jsin(-8)= cosh -jsind
ejg = cos@ +jsind |
0 ‘
e + EJG =2 cos |

®For a more detailed discussion see, R. B. Marcus, “The
Significance of Negative Frequencies in Spectrum Analysis”
[EEE Transactions, EMC. Dec 1967,

sinusoid
parameters

A sinusoid contains three basic parameters: amplitude,
frequency and initial phase. Since a graphical representation in
the frequency domain is essentially a two-dimensional process.
only two parameters can be represented per graph. Thus it takes
two graphs to define all three of the parameters. This can be
done in two ways. One is to present a graph of frequency and
initial phase, while the other way is to use the two-vector
representation showing a negative as well as positive frequency.
The trigonometric expression can be reconstructed from eithes
graph. Fig. 2-8 shows both graphical representations. Though
we shall use the complex notation. representing the two-vectoi
technique, for analytical purposes, our graphical methods will be
strictly of the single positive-frequency type. This is because in
the majority of spectrum analyzer problems. phase is of no
interest. We are thus able to represent all that is of inteiest in

a single simple frequency-amplitude diagram. Hecre we have gone
full circle back to Fig. 2-2, except that instead of squarewaves we
shall utilize sinewaves as the basic function.

NG FREQUENC T ———

{4} FRECUINCY-PHASE SEPRESENTATION

AMPLITUDE
cos 4 cos
L I EQUAL COSINE TERM:
— I N A
-y 0 Uy =
AMPL I TUDE

AMPLITUDE
as + sin
—-
=y ] g
FREQUENCY ——
(8} TwG COUNTER-ROTATING VETTCORS REPRESENTATION

Fig. 2-8. Frequency-domain representations of sinusoid.
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WHY FOURIER SERIES

Fourier
expansion
conditions

Fourier
Series

Sines and cosines can be combined in many different ways to
produce a final waveshape. Obviously, we have to settle on one
particular method, and that is the Fourier series. Other
mathematicians had used this series prior to Fourjer. But it was
Fourier who, in a series of papers starting in 1822, showed the
universal applicability of the series that now bears his name.

The Fourier series is based upon the fact that any function,
which meets the three conditions stated below, can be expanded
in a series of sines and cosines. The so-called Dirichlet conditions,
that a function should meet in order to be Fourier expandable,
are:

1) The function f(¢) must have only a finite number of
maxima and minima for the interval of definition.

2) The function must have only a finite number of finite
discontinuities.

3) If the function has infinite discontinuities, its integral
must be convergent — i.e.,

+oa
f |£(x) | dx < N (a finite number)

These conditions are easily met in practice, since no physical
circuit can produce an infinite discontinuity. Even when such
discontinuities are approached, such as in an approximate impulse
function, the third condition is always met. Thus the Fourier
series is highly suitable to the solution of practical problems.

The basic Fourier series is of the form:
f(x) = %—ao + (@) cos x + by sin x) + (2-1)

(23 cos 2x + by sin 2x) +

(a3 cos 3x + by sin 3x) ...

least
squared
errar

It will be observed that equation (1) consists of a set of
harmonically related terms where the lowest frequency terms
(cos x, sin x) are considered the fundamental and all other terms
are called the harmonics. A harmonic relationship means that all
frequencies are integral multiples of the fundamental. Thus, if
the fundamental is cos x, it is impossible to have a term of

cos (% ) . This makes computation easier since once the

fundamental frequency is known all others become obvious.
There is, however, a drawback in that more terms than might
otherwise be necessary have to be used to describe adequately a
particular function. For example, a function consists of

cos t + 2 cos 1.5f. Since in Fourier series notation all terms have
to be harmonics of some fundamental, the function would have
to be expressed as 0 cos (.5¢) + 1 cos 2(.5¢) + 2 cos 3(.57). Thus,
even though the result is the same, since the first term is zero, it
is nevertheless necessary to deal with three rather than two terms.

Though there are disadvantages, such as in the example above

and the Gibbs phenomenon for discontinuous functions discussed
in Chapter 3, the Fourier series provides the closest approximation
to an arbitrary functions f(¢).

In actual practice we cannot deal with an infinite number of
terms, so we must ask what will provide the best fit. It turns out
that the Fourier series will give the least squared error
approximation. A demonstration of this appears at the end of this
chapter. Thus, even though in some instances this series has some
disadvantages, it is the best general solution to practical problems.
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Fig. 2-9. Frequency-domain representations (phase not shown).

DO SPECTRAL LINES EXIST

spectral
lines

According to Fourier theory, a squarewave consists of a
fundamental sinewave, having the same period as the squarcwave,
and odd harmonics whose amplitudes decrease in proportion to
harmonic number. Mathematically, a squarewave is said to consist

2 ; i :
o ‘_z_.V_fi.L (i +=cos 6 - —2—.;05 38 ) as discussed in more detail
T 27 3m _
in the next chapter. The frequency-domain representation along
with that of a single sinusoid, cos @, is shown in Fig. 2-9. Few
people have difficulty in visualizing the physical existence of the
sinusoid represented in Fig. 2-9A. On the other hand, many of us

have difficulty in visualizing the physical existence of the sinusoids,’

or spectral lines as these are often called, represented in Fig. 2-9B.
“I know,” the statement often goes, “‘that a squarewave can be
treated as if it were made up of sinewaves, but do the sinewaves
really exist?” This is a difficult philosophical question, which
fortunately need not be resolved for the practical utilization of
Fourier techniques. This is because linear time-invariant circuits,
which we are talking about, behave as if these sinewaves did in
faer exist.

.‘R. W. Cushman, “Spectrum Analyzer Myths,” Report
No. NADC-EL-6452.

The fact that many time-variable circuits behave as if spectral
lines did not exist is used as “proof™ by those who choose not

to believe in their existence. The believers, on the other hand.
argue that all the above proves is that time-variable circuits are
poor “detectors™ of spectral lines. The fact that a man cannot
detect light does not necessarily mean that there is no light. We
get the same result il the man has poor detectors, that is — he's
blind. What the question comes down to is the ancient one of
primary and secondary qualities. The primary qualities are those
that really exist in an object or phenomenon, while the secondary
qualities are those which only seem to exist by virtue of
interaction with the detector. This question has acquired modern
impertance in the area ol quantum mechanics where the role of
the observer is of the greatest significance.

The resolution of the question — “Does thunder make a sound
when there is no one there to hear it?” -— may have important
philosophical implications, but it contributes very little to a
practical discussion on spectrum analysis. The same may be said
regarding the question on the real existence of spectral
components. Rather, the question that should be asked is:

“Do real circuits behave as if spectral components exist?” This
is taken up in the next section.

RESPONSE OF CIRCUITS TO SIGNALS

lingar
time-
Invariant
circuits

steady
state

transient

First it is necessary to emphasize that by circuits is meant /linear
time-invariant circuits. Fourier theory does not necessarily apply
to nonlinear or time-variable circuits. Though all c¢ircuit elements
eventually become nonlinear, and no physical resistor will obey
Ohm’s law at infinitely large voltages, it is fortunate that for the
range of signals of interest a majority of circuits are linear. What
is of interest then is how linear time-invariant circuits will behave
under the stimulus of an arbitrary signal input.

Generally a circuit which is excited by an arbitrary input will
respond in two distinet ways. One is called the steady-srare
response, while the other is the transient response. Most people,
when confronted by the words steady state and transient think of
a long time interval and a short time interval respectively. Though
it is true that the transient state is usually characterized by a short



time interval, this type of classification can be misleading since
there can be conditions where a steady state is never reached. Of
greater importance to our discussion, is the fact that transient
behavior is determined by the so-called force-free solution;
meaning essentially that the basic characteristics of the transient
response are determined completely by the circuit parameters.
Thus, if a current pulse is injected into an R, L, C circuit formed
into a loop, damped oscillations at radian frequency

2
W= -J-T%— will result when (ZR;L) < % . The shape and
amplitude of the current pulse will help determine the amplitude
of the oscillations, but the oscillating frequency is independent
of the forcing function. This is a very important point because it
leads to the following results. In order to test for the existence of
spectral lines, we perform an experiment in which a set of very
narrowband contiguous filters is subjected to various inputs. What
should be the result? Based on the previous discussion on the
transient response, the output of each filter will be either nothing
or a damped sinusoid at filter frequency; nothing else is possible.
If the filter bandwidths are sufficiently narrow, the damping will
be very slight and for all intents and purposes it will appear as if
we are dealing with a continuous wave. Actually, the result could
have been anticipated without any knowledge of transient
behavior. Obviously, a filter can only have an output within its
passband, that is what is meant by the word filter. But one can go
further. Computing the output amplitude distribution as a function
of the type of input, one finds the remarkable result that the
transient response for an arbitrary input is identical to the steady-
state response when the steady-state response is computed for an
input composed of the Fourier components of the original
arbitrary input®. Hence — real, linear, time-invarignt circuits
behave as if spectral lines did in fact exist,

8See Weber, Linear Transient Analysis, Vol 11, for a discussion
on the response of ideal filters to pulses.

spectrum
analyzer

If one chooses to believe in the real existence of spectral lines,
then a Fourier analysis is simply a computation of some of the
parameters of a signal. These parameters are eventually used in
the practical business of determining the steady-state response of
some network. If, on the other hand, one chooses not to believe
in the real existence of spectral lines, then a Fourier analysis is
simply a mathematical procedure that has no counterpart in
physical reality. [t is just a convenient technique for solving
problems similar, for example, to the laying out of an orderly
array of numbers in determinants when solving simultaneous
equations. The solution of the equations may correspond to
something physical, but it certainly is not necessary to validate
the technique of solution by finding some entity which is
physically spread out in an orderly array similar to the determinant.

The great utility of the Fourier technique is that it permits the
solution of complicated transient problems by relatively simple
steady-state techniques. This alone is sufficient justification for
its use. If, in addition, one believes in the existence of spectral
lines, then the advantages of Fourier techniques are obvious.

All the arguments advanced for the use of Fourier techniques also
hold true for the use of the instrument called a spectrum analyzer.
Again one can look at this in two ways. One is that the display
shows the spectral or energy distribution of the signal. The second
view is that the display is the transient response of the spectrum
analyzer circuits in response to the stimulus of the signal. Both
views lead to the same final result: We can use the spectrum
analyzer display to compute or predict the response of various
linear time-invariant circuits under the same stimulus. This is the
only justification necessary for the use of this instrument.



APPENDIX

1) ORTHOGONAL FUNCTIONS

; 1 3 : :
The series 1, x, x? - ET x* - SX ... is a series of orthogonal

functions between the limits £1.

For any series of orthogonal functions:

b
.[ fng(x) f”(x) dx =0, m#*n

For the above series we have:
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(1) 1) dx :{x] | =2
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S
j_‘]ﬂ(x)(x) dx = [%ﬂr_-i]
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+1
x’+~é—x] = -5

e o] @5

Na]

showing that the integral of the product of different terms is zero
while the integral of a term times itself is not zero. Hence, the
series is composed of a set of orthogonal functions.

2) COMPLEX NOTATION
The Euler identity

] -
€ =cosf+jsind

can be used to compute the values of various complex expressions,
Thus:

jm
GJ =cosm+jsinm=-1+j0=-1

Similarly, the reader can verify that:

S _

) _
§(3m/2) _
¢ =

f:‘jz7T = +1

Besides the trigonometric form, complex quantities can also be
expressed in algebraic form. Thus £ = a + jb is a complex quantity,
Z%=gq - jb is called the conjugare of Z.

A complex quantity and its conjugate have a specific relationship
to each other. For example:

Lt Z*=(atjb)+(a-]jb)=2a
Likewise, keeping in mind that j = /=1, the reader can verify that

ZeEE=g +ht



3) PROOF THAT THE TRUNCATED FOURIER SERIES PROVIDES
A LEAST SQUARED ERROR FIT

Let f(r) be an arbitrary function of time which is to be expanded
in an infinite series of sines and cosines. If we take only a finite
number of terms, then the series is only approximately equal to
(). Thus:

n
f() = mEO la,, cos m wt + b, sinm wt],

where the terms being summed is an arbitrary collection of

sines and cosines, and not necessarily a Fourier series. We wish to
show that in order to have the least squared error between f(r)
and the noninfinite series, which stops at m = n, approximating
(1), it is necessary that the series be a Fourier series. Thus, the
squared error is

1 +L
p=T _%2 16 - 21* ar

where the sigma (X) is a shorthand notation for the truncated
series. We wish the error () to be minimum, which means that
the differential of the error should be zero. Thus, finding the
minimum error with respect to the coefficients of the cosine
terms (a,,)

T
O _1 T3 8 2

= f() - Z]° dr
o, T-[% 3a,, JO

4 T
2'%[12 2[f(r) - ZH(~cos m ct)dt = 0
2

Separating the terms, we have

+L + L
Tzf(f) cos m wt dt = T2 (Z) cos m it dt
I "2

The summation sign, of course, stands for

n
L [a,, cosm wt+ b, sinm wt]
m=0

Now the definite integral, taken over one period, of a sine-cosine
product is zero. Likewise, by virtue of orthogonality, are all
cosine-cosine products except those where the two terms are the
same. Hence

+‘%“ +L & F
< f(t) cos m wt dt = T2 a,, cos’ m wt dt = 'g i
—3 7

+ L
_[T2 f(£) cos m wt dt.
"2

Likewise, it can be shown that

f

which are the same as the Fourier coefficients, hence the Fourier
series gives the best fit?.

Solving for a,, , we have

=
e
Il
l\Jl'-&|~-

T
2 f(r) sin m wt dt,

ey

b =

Nl-3|~
[3e]

? A proof showing indentity between individual terms will be
found in Weber, Linear Transient Analysis, Vol. 1, pages 258-259.
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Fig. 2-10. Time-variable network.

4) EXAMPLE OF TIME-VARIABLE NETWORK

Consider the system illustrated in Fig. 2-10. Suppose the input is
a single continuous sinewave at a frequency within the passband of
the filter and the switch is closed. Obviously. the indicator shows
a response. Now we leave the switch open for a short period of
time during each cycle. The indicator may read something
different than before, but all will agree that the indicator continues
to show an output.

Now let the input be changed to a train of narrow pulses having
the same period as the sinewave. According to Fourjer theory, the
pulse train can be considered as the sum of an infinite number of
sinewaves. One of these Fourier sinewaves, which has the special
name of fundamental, should be at the same frequency as the
original sinewave since the pulse train has the same period as the
original sinewave,

The switch is closed and we look at the indicator. Sure enough,
there is a response, which means that the fundamental is there.
Now we leave the switch open for a short period of time (#))
during each cycle, so arranged that the switch opening coincides
with the occurrence of a pulse. Unlike the case of the single
sinewave, the indicator now shows nothing. Obviously, we don’t
get the same results for both inputs. The reason for this is that
the switch makes this a time-variable network for which Fourier
theory does not apply.

CAY

FOURIER ANALYSIS

All practical functions defined over an interval, such as - to +,
can be expanded in a Fourier series. This holds true even when the
waveform represented by the function is nonvepetitive and exists
only during the defined interval. The interpretation of the Fourier
series of these isolated pulses has no meaning outside the defined
interval, Single pulses can also be treated from the continuous
spectrum Fourier integral point of view, and this is the approach
that will be taken here. Thus, Fourier series will be considered for
repetitive functions only.

FOURIER SERIES

Practical, physically realizable, functions having a period 27 can be
expanded in a series of trigonometric functions such that the
function

flx) =f-79-+ (@) cos x + by sin x)

t (@, cos 2x + b, sin 2x)

...t (g, cos nx + b, sin nx), (3-1)



phase
angle

which can be represented in summation form

co
a
fx) ='§Q + X (a, cos nx + b, sin nx),
n=1

where x is an angle in radians.

The series defined by equation (3-1) is known as a Fourier series.
The coefficients, ,, and b,,, are constants which are determined by
the form of the original function f(x). The two summations, sine
and cosine, can be combined into a single series by the addition of
a phase angle. Thus:

) = %Q + 21 C, cos (nx + ), (3-2)
n:

where:

C0=a03

Cﬂ = "'ana + bn2 B

¢, = tzm“1 (f—n).

n

Expression (3-2) is the more useful for spectrum analyzer work
since the spectrum analyzer displays the combined amplitude, C,,,
rather than the separate sine and cosine amplitudes. Furthermore,
spectrum analyzers of the type under discussion do not display any
phase characteristics. Therefore, except in special cases such as the
combination of several complicated spectra, the phase angle, ¢, will
be ignored.

As is demonstrated at the end of this chapter, the coefficients
a, and b, are related to the original function f(x) through the
following integrals.

B 1 +7 _ 1 27
a9 =7 - f(x) dx = o ! fx) dx
1 +r 1 2n
@y = - f(x) cos nx dx == " f(x) cos nx dx  (3-3)

| +r . 1 2m i
bn = = f(x) sin nx d =-fr~ 0 f(x) sin nx dx

=T

As indicated in (3-3) above, the integration can be carried out
between +7 and - or between 0 and 27. The choice depends on
how the original function f(x), is defined and on which integration
involves less work, In any event, the final result is the same,

period regardless of which integration is used. Very often the period is
some arbitrary time interval T rather than 27, The Fourier series
still applies except that all expressions have to be scaled by the
factor 2x/T, thus:

oo
f(x) :%—0 + ’3—31 (an cos 2n %x + brz sin 2n %) (3-4)

and the coefficients are given by

T
+ —z—f(x) - 2nnx - i) Tf( ) 2nmx .
[ T T 7Jo x) cos =g ;

B
(3-5)

T

b =_2_ +jf( . 2nmx _l r . 2nmx

n=T T x)sm—T dx = T Jo S(x) sin 7 dx.
2

a, =

~ o




Again @, and b, can be combined into a single amplitude factor

G, =1/ a,* + b,?, which is the factor displayed on the spectrum
analyzer.

When using the C,, representation it is still necessary to solve two
separate equations, one for the g,, terms and the other for the b,
terms. These two equations can be combined into one by the use
of complex notation.

Thus in complex notation:

s jnx
fix)= X d,e 7, (3-6)
n=-oco
where the coefficient d,, is obtained from
+1 =7
dy =5 F00) e ax G-7)

and n takes on all positive and negative values as well as zero.
Thus, except for the case where n = Q, there are still two terms
for every n, namely d,, and d_,, with one being the conjugate of
the other. The two complex coefficients, when combined in
accordance with the rules for complex numbers (as discussed in
Chapter 2), leads back to the more familiar trigonometric
expression

d,e 5 3

n

¥4 %
(3-8)
=a, cos nx * b, sin nx.

The complex notation presents some conceptual difficulty because

of the appearance of what seems to be negative frequencies, since

the summation goes over negative as well as positive numbers. Some
ideas on the interpretation of negative #n’s will be found in Chapter 2.
On the other hand, the complex expressions (3-6) and (3-7) are much
more compact than their trigonometric counterpart. The complex
notation is particularly useful in the Fourier integral representation
which is needed for the analysis of continuous spectra.

FOURIER APPLICATIONS

sinusoid

In a Fourier series representation, the fundamental waveform is the
sinusoid. Hence, it is of interest to determine the frequency-domain
representation, by way of Fourier series, for a sinusoid. The time-
domain function is:

f(#) = A4 cos wpt

The frequency-domain function is the Fourier series previously
defined. Using the trigonometric representation, equation (3-5) is
used to determine the Fourier coefficients ¢, and b,,. Equation (3-5)
reproduced here as equation (3-10) is:

, [+T
a5 =% [; ™ ey (39)

+T
a, =_%_ j; (x) cos 2"71”‘ dx

T
bn=%£ f(x) sin Z’TTLX dx,

(3-10)



impulse
function

The coefficient a is just the average value of the function f(x).

In engineering language we could say that a; is the DC level of the
waveform. Thus by inspection, a3=0 since the average value ofa
sinusoid is zero. Just as the solution for a; is simple, so is the
solution for the other coefficients difficult. This is because we are
dealing not with a cosine pulse but a continuous cosine wave. In
engineering language, this is called a CW signal and is assumed to
exist forever. This leads to integration of sinusoids with infinite
limits which cannot be performed directly. Actually, the solution
is easier to obtain using the complex notation; equation (3-10) was
only used to show the simple nature of ;. In any event, without
going through the complicated solution, we shall simply state the
result: The frequency-domain representation for a sinusoid is an
impulse function:

J(r) = A cos wyt
wy = 27 fiyt

F(w) = % [B(f +fo) +6(F - fo)] (3-11)

The function §(x) is called a Dirac, delta, or impulse function,
where 5(f) is a frequency impulse and 8(¢) is a time impulse. The
reason for the two parts in the Fourier representation is that in the
solution of problems by the complex notation method we get two
coefficients, these are d,, and d_,, or in this case d+f0 and d-fo-
Since in practical applications one is interested in the composite
amplitude, one might as well use the notation 4 8(f - f;;), meaning
an impulse at frequency f = f;; and of strength 4. An impulse has
a finite area, in this case equal to 4, and zero width, thus requiring

infinite amplitude. Obviously, the impulse is only a theoretical
function since infinite amplitudes cannot be generated. This does
not mean that the impulse does not have validity. The impulse
function is just as valid for analysis and theoretical representation
purposes as the sinusoid of infinite time duration whose frequency
representation it is. Certainly infinite-duration sinusoids do not
exist in practice, but that doesn’t prevent using these to represent
practical signals. Some properties of impulse functions will be
found in the appendix for this chapter.

The graphical representation of the impulse is symbolic rather than
exact. This is because there is no way to faithfully graph a function
that calls for infinite amplitude. A symbolic rather than exact
graphical representation may disturb some people, but actually this
is often done. The infinite-duration sinewave, for example, is
represented symbolically by a finite number of cycles rather than
the infinite number of cycles that it is supposed to have. In any
event, what is of interest in the case of the impulse is not its
amplitude, which is always considered infinite, but rather the area
or strength, which is representative of the amplitude of its time-
domain sinewave equivalent. Fig. 3-1 shows the time and
frequency-domain representations of a simple CW signal, namely
the sinewave and impulse. Fig. 3-1C represents a spectrum analyzer
display. Note the identity between the Fourier series derived

Fig. 3-1C and the desired representation shown in Fig. 2-9A.
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Fig. 3-1. Time- and frequency-domain representations for
sinusoid.



rectangular
pulse
train

Let us consider now the important case of a rectangular pulse
train of arbitrary pulse width (#;) and arbitrary period (T') as
shown in Fig. 3-2A.

The function f(x) is defined by the amplitude A for

7 i
—TO <r <+ é.l and zero everwhere else.

2

Using the scale factor T in equation (3-7), we have
T -1 4
1 + = -jh—
d, = T_/:zz foye T (3-12)
2

which is the complex notation equivalent of equation (3-5),

. " ¢
Since the pulse only exists between the limits of +20 ywe only
need to integrate between these limits, thus:

t
~ to _am g 1 o 20 +—2Q

N e -in 7
dﬁ‘ffﬁf*” T‘”'Tjnzne _ho
-2 e 2

substituting the limits:

.o2m lo 2m o

Al T T T
n %7\ Y
_Jn T

Rearranging terms and bringing the minus sign from the
denominator to the numerator:
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Fig. 3-2. Time- and frequency-domain representations of
a pulse train.



interpreting
results

The part in the brackets is the sine function as discussed in the
appendix to Chapter 2. Hence:
A nmrQ

d, =-=—=sin
n am T

The same result is obtained for the d_,, components.

What is of interest is the overall amplitude term C,,, which is
obtained by summing d,, and d_,. Thus after adding and
rearranging terms, the final result is:

o = 24t sinn—?-o-
o T nwty
T

(3-13)

This is the origin of the so-called sine x over x (S]?C x) distribution

which will be used extensively in connection with continuous
spectra.

The interpretation of (3-13) is that the pulse train is made up of a
DC component Cy and a set of sinusoids with amplitudes Cy,

Cy *** C,,. The term Cy is usually ignored in graphical
representations, certainly it does not show up on the spectrum
analyzer. Therefore, a graph of a frequency distribution such as
(3-13) would consist of a representation of a train of sinusoids.

A sinusoid, as indicated in the previous example, is represented in
the frequency domain by an impulse. However, it is the area
rather than the amplitude of the impulse which is equivalent to the
amplitude of the sinusoid.

A graphical display of a Fourier series, such as (3-13), therefore
consists of a set of vertical lines which are symbolic impulses. One
impulse is used per sinusoid in the series. As an example, let

T = 2t;, making the pulse train into a squarewave as shown in

Fig. 3-2B. Substituting T = 2t into (3-13) we get:

sin 2%
2

C,= A (3-14)

T
2

as the equation for the amplitudes of the sinusoids which when
combined make up the squarewave. The individual amplitudes are
obtained by substituting for #. Thus, for the fundamental,

n =1, we get

T
sin =
_ 2 _ 24 , T
C; =4 e (since sin 5 = 1).
7

For the second harmonic, amplitude n = 2 is substituted, leading to:

Cy = Aﬂ;—ﬁ— =0 (since sin 7 = 0).

When a similar procedure is followed for the other harmonics, it

is observed that all the even harmonics are zero, while the
amplitude of the odd harmonics progresses as 1/n, so that the

fifth harmonic is one-fifth as large as the fundamental while the
ninth harmonic amplitude is one ninth as large as the fundamental,
etc. In addition, there is also the DC or average term at n = 0.
This term is difficult to obtain directly from equation (3-14),
since substitution of n = 0 leads to the indeterminant zero over
zero. However, this term is easily obtained by observation of

Fig. 3-2B, it is simply /T or 1/2 for a squarewave.

The complete frequency-domain representation for a squarewave,
therefore, is:

fH=A4 (% +%cos wpt - 32_1r cos 3wyt ) (3-1%5)

where 2r

OJO—T

It should be kept in mind that although (3-15) shows a DC term,
the spectrum analyzer will not show this. Although (3-14) shows
alternating 180° phase reversals as indicated by the alternating plus
and minus signs, the spectrum analyzer will not show this either.
Fig. 3-2C shows the frequency-domain characteristics of the
squarewave.



super-
position

One of the most important concepts that is applicable to Fourier
analysis is that of superposition. Superposition essentially means
the simultaneous existence of signals, where the combined effect or
composite signal is obtained by the addition of the several
components. When the individual components are expressible
mathematically by ordinary algebraic functions, simple addition

is all that is needed. When the signal components are vectors
represented by complex notation, then the rules for vectorial

addition, which take into account phase relationships, must be used.

Superposition is actually tacitly assumed in the formulation of
Fourier series. This is because the statement that a complex
waveform can be represented by a sum of sinewaves cannot be
made unless superposition holds so that the sinewaves can be added.
A more significant use of superposition is in the relationship of
cause and effect. Thus, in using Fourier series in the solution of
network response problems, the solution is frequently obtained by
performing a Fourier analysis of the input signal and then summing
the network responses obtained by considering each of the Fourier
sinewave components as being applied to the network singly. Of
more importance in spectrum analysis is the fact that the spectra
of complex waveforms can be obtained by superposition. Thus, if
the Fourier representation for a time-domain function f(¢) is £(f)
and for another time-domain function g(z) it is G(f), then the
Fourier representation for the combined time-domain function
f(t) + g(¢) is just F(f) + G(f). This, when combined with the fact
that a time delay introduces a phase shift but otherwise leaves the
spectrum unaffected, permits the computation of complex spectra
simply by the addition of simpler spectra. Thus, for example, the
frequency-domain characteristics of a trapezoid can be found by
the addition of the spectra of two triangular pulses and one
rectangular pulse.

As a specific example, consider a squarewave as constructed by the
addition of two sawtooth waves shown in Fig. 3-3. This squarewave
is identical to that of Fig. 3-2B except for the elimination of the
DC term. The Fourier coefficients for a sawtooth, which can be
obtained by the standard method of integration, are given by:

where 4 is the maximum height (shown as 2 in Fig. 3-3).
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Fig. 3-3. Squarewave as sum of two sawtooth waves.

The sum of the two Fourier series is:
f0)=2 [%- sin (6 - ) - 5sin 2(0 - m) - % sin 3(0 - m) ]

_%(%-sint? -%sin 26-——;sin 30 ) (3-16)

The DC terms of the sawtooth waves are equal and opposite and
hence cancel. The bottom sawtooth has a half-cycle phase shift
with respect to the top one, hence the (f - 7) term.

The two sinewave series in (3-16) can be combined into a single
series with the help of the trigonometric identity:

sin n (x = @) = (-1)" sin (nx) (3-17)

Using (3-17), equation (3-16) becomes:

f(9)=% (sin&' 4 §in 20 sin 30 )

1 2 3 (3-18)
2( sinf sin20 _sin 36 )
T 1 2 3 '
The series in (3-18) can be added term by term resulting in
7(0) =%(sinl g, sin336' % sinSSG ) (3-19)

Except for the loss of the DC term because of the vertical shift of
the squarewave, the use of 8 instead of wi to simplify the notation,
and the phase shift resulting from considering zero time at the

start rather than in the middle of a cycle as in Fig. 3-2, equations
(3-15) and (3-19) are the same. Actually, the analysis could have
easily been arranged so that (3-15) and (3-19) would be identical.



Gibbs
phenomenon

However, besides illustrating the use of the principle of
superposition, it is the intent to illustrate that regardless of how
the analysis is performed the essential features, which are those
that are displayed on a spectrum analyzer, remain the same. The
spectrum analyzer does not display the DC term, nor is the
spectrum analyzer sensitive to phase, so that the switch from
cosine to sine has no effect. The important part of the analysis
is that a squarewave is represented by an infinite series of
sinusoids consisting of a fundamental and odd harmonics, with
harmonic amplitude decreasing as the inverse of the harmonic
number. This is precisely the information that can be obtained by
means of the spectrum analyzer.

Based on the previous discussion, one gets the impression that one
should be able to reconstruct any waveform simply by adding the
sinusoids forming the Fourier series. Of course, since most Fourier
series call for an infinite number of terms, such a reconstruction

is not practical.

Nevertheless, this can be considered theoretically. Such a study
helps in establishing the validity of the Fourier approach and is
useful in establishing guidelines on how many terms of the series
can be considered a sufficiently close approximation. When this
is done for a discontinuous function, such as a squarewave, the
result is not Fig. 3-2B but rather that shown in Fig. 34.

As the number of harmonics in the summation is increased the
resultant waveform is seen to oscillate around the discontinuities
at the corners as shown in Fig. 34A. This occurs because in the
vicinity of a finite discontinuity the sum of the Fourier terms
converge to the average value as the discontinuity is approached
from both sides. As the number of terms in the series is increased
the oscillations squeeze closer and closer together, and as the
number of terms approaches infinity the oscillation is squeezed
into a straight line as shown in Fig. 34B. This oscillating overshoot
phenomenon is known as the Gibbs phenomenon in Fourier series.
There is no way to get away from this overshoot when summing a
Fourier series, except by modifying the coefficients; in which case
it is of course no longer a straightforward Fourier series’.

! A discussion on this and other aspects of the Gibbs phenomenon
will be found in Guillemin’s The Mathematics of Circuit Analysis.
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Fig. 3-4. Squarewave reconstructed from Fourier components.

The size of the overshoot, as the limit in the number of terms in
the series is increased without bound, has been computed by many
people including Weber, Linear Transient Analysis, vol. I. Under
the best circumstances, the overshoot is about 18% as shown in
Fig. 3-4B.

The fact that the sum of the Fourier terms does not seem to lead
back to the original function appears, at first glance, to be a serious
blow to Fourier theory. Actually from an energy point of view
there is no discrepancy. This is because the overshoot is an
infinitely thin line of finite amplitude and, hence, has zero area and
no energy. It can of course be argued that infinitely thin lines do
not exist in practice, but then neither do the infinitely steep slopes
of perfect squarewaves. What it eventually comes down to is the
question of how real physically realizable circuits behave, which is
discussed in Chapter 2. It might be well to repeat from there the
major point on which all spectrum analyzer work is based:
Physically realizable, linear, time-invariant networks behave as if
Fourier spectral components exist. The function of the spectrum
analyzer is to provide information on the behavior of such circuits.
Therefore, it is not necessary to believe in the “real” existence of
Fourier spectral lines in order to accept the validity of the spectrum
analyzer display.



continuous
dense
spectrum

narrow
pulses

While the concept of a frequency spectrum for a pulse train is at
least intuitively acceptable, the concept of a frequency spectrum for
a single pulse is much more difficult to comprehend. Indeed the
frequency distributions cannot be treated in the same manner, since
the former is a discrete or line-type spectrum while the latter is a
continuous dense type of spectrum. The mathematical treatment
for these two types of spectra is also different, since the Fourier

o . ) ) spectrum
series is not directly applicable to the continous spectrum.

null

The continuous spectrum is handled easiest when considered as the
limiting case of a discrete spectrum. Let us, therefore, start with
the frequency-domain representation of a pulse train such as shown
in Fig. 3-2A. The Fourier coefficients are given by equation (3-13),
which is reproduced below:

nwin

sin
_ 24t T
G=TT Tamg (3-20)

T

Disregarding the DC term, which will not be displayed on the
spectrum analyzer anyway, one obtains the amplitude of the
fundamental and the various harmonics by substituting
n=1,2 3 <+ into (3-20). Thus, the amplitude of the
fundamental is:

. Ty

C _2At0 SHE =

1TTT Tag (3-21)
T

The second harmonic amplitude is:

din 27Tf0 T/to
C A r ratio
2 T 2wty
T

and so forth. The important and interesting case occurs when #/T
is small; in other words, when we are dealing with a train of narrow
pulses rather than squarewaves. Under such conditions the angle
(mt/T) is small and (3-21) reduces to

24t
By=—pl (3-22)

since the sine of a small angle is essentially equal to the angle. This
approximation only holds true in the vicinity of the fundamental,
obviously the angle (nmtg/T) eventually gets large as the harmonic
number () increases. As the harmonic number is increased, the
quantity in the numerator of (3-20) decreases while the denominator
increases, so that the amplitude C,, decreases. Eventually, a point is
reached where n = T/t so that the angle becomes nntg/T = 7. Since
sin = 0, the amplitude of that particular harmonic is zero. This is
called a spectrum null, or simply a null. Asn is increased further,
the harmonic amplitude increases, goes through a peak, and decreases
until at n = 2T/tg, when the angle is equal to 27, there is again a
spectrum null. This process of peaks of decreasing amplitude and
nulls continues ad infinitum. A plot of (3-20) for /7 = 0.1 is given
in Fig. 3-5A. Just as for the spectrum of the squarewave train shown
in Fig. 3-2C, each of the vertical lines in Fig. 3-5A represents the
amplitude of a sinusoid.

Except for the Gibbs phenomenon, we get back the original pulse
train when these sinusoids are added in appropriate phase. It
should again be emphasized that the spectrum analyzer does not
show phase, so phase information was not shown in Fig. 3-5. As
expected, the 10th, 20th, 30th -+ harmonics, corresponding to an
angle equal to multiples of m, go to zero. If the ratio of pulse
width to interpulse period (f/T) were other than ten to one, other
harmonics than numbers 10 or 20 would go to zero, but this would
still occur when the angle is equal to a multiple of 7. Thus, the
total angle (nmt/T) rather than the harmonic number () is the
fundamental parameter. Therefore, as we contemplate the effect on
the spectrum of changes in the ratio #y/7, the horizontal scale will
remain in units of total angle, representing radian frequency rather
than harmonic number.

Consider now the effect on equation (3-20) of an increase in the
interpulse spacing T. Suppose, for example, T is tripled so that
to/T = 1/30 rather than 1/10. Since all the harmonics are
multiplied by the factor #,/T, all amplitudes will decrease to one-
third their original size. The basic shape of the spectral distribution
will remain the same (sin x)/x shape. Nulls will again appear
where x is a multiple of 7, which happens when the harmonic
number (n) is a multiple of T/¢y. As the ratio T/t is increased,
the number of components between nulls will also increase. In

the above example, T/to is increased to 30, so there are now

thirty rather than ten harmonics between nulls. Or, looked at in
another way, there are now three times as many signal components
per unit frequency as there were before. Fig. 3-5B is a plot of the
spectrum of a rectangular pulse train with T/ty = 30.
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dense
spectrum

As one proceeds to increase the ratio T/t by increasing the
interpulse spacing (T'), three important things happen. As
T —> oo, these are: 1) the amplitude of the individual
components approaches zero; 2) the number of harmonics
between nulls increases without bound; and 3) the shape of
the curve is unchanged, remaining the same (sin x)/x.

Ignoring, for the moment, the apparent disappearance of everything
as the amplitudes go to zero, let us concentrate on the meaning of
the last two conclusions. As the number of harmonics increases
without bound, a state is reached where it becomes impossible to
distinguish between individual harmonics. Also, it would not make
much sense to talk about individual harmonics as there are
essentially an infinite number of these in any frequency interval,
no matter how small. Yet, one parameter has remained unchanged
as T was increased, this is the curve generated by the locus of the
end points of the harmonic amplitudes. The shape of the curve is
the previously discussed (sin x)/x. Obviously the meaning of

x = nmty/T as T —> <o will have to be reinterpreted, otherwise x
appears to approach zero. Ignoring this problem for the moment,
we end with the graph of Fig. 3-5C.

Fig. 3-5C is the frequency-domain representation of a dense,
continuous spectrum. The spectrum is dense and continuous in
the sense that, excepting the null points, no frequency can be
found where there is no energy. Contrast this with the spectra of
Figs. 3-5A and 3-5B where there is energy only at specified
frequencies, as indicated by the harmonics, and zero everywhere
else. The usual procedure in establishing a description of dense
spectra is to first establish the mathematical validity of the Fourier
integral equations which are then used in analyzing the spectra of
single pulses. The procedure followed here is the opposite. First,
using physical reasoning, we will develop an interpretation of the
dense spectrum which can then be used to justify the use of
Fourier integrals. This method, while not mathematically rigorous,
is helpful in establishing how a spectrum analyzer works. Those
interested in a rigorous derivation are referred to the references.



There are two basic points that need to be considered when
establishing a physical interpretation of Fig. 3-5C: How to handle
the angle nmty/T and what to do with the apparent disappearance
of the spectrum since the ratio (/T seems to approach zero as T
gets infinitely large. First the matter of the angle. It should be
recognized that as the interpulse spacing (T') increases, so does the
number of harmonics (#) occurring over any arbitrary frequency
range. For example, the number of harmonics between two null

points, which occur at angular differences of 7, is n = T/ry. Thus, spectral
as T goes toward infinity so does n and the ratio (n/T) remains density
constant.

In order to get rid of the bothersome infinities it is, therefore,

only necessary to treat the ratio (1/T) as a unit. This unit has the

dimensions of inverse time interval which is frequency, hence n/T

is designated by the symbol f. It should be recognized that the use

of the symbol f has greater significance than simple dimensional

correctness. The frequency (f) is actually the frequency at which

the harmonic (1) occurs. For example, suppose T = 1 ms, then

the fundamental is at 1/7° = 1 kHz, the second harmonic is at

2 kHz, the tenth harmonic at 10 kHz, etc., with the frequency of

the nth harmonic at n/7. 1f, in addition, 7, happened to be one-

tenth the size of T, or 100 us, then the tenth harmonic at 10 kHz

would have zero amplitude according to Fig. 3-5A. Note that the

frequency of the tenth harmonic is not affected by ¢, only n/T Fourier
has to do with frequency, while f; determines amplitude. Based integral
on the above reasoning, the angle nmy/T is replaced by mfty, thus

eliminating all problems with infinite T

The amplitude coefficient of (3-20) is 24¢y/T. Since A is pulse
amplitude and 7, is pulse width, the product Ar is pulse area.
The division by the interpulse period 7T is an averaging process, so
that what is involved is the average pulse area. The factor 2
arises because theoretically the spectrum is symmetrical about the
main lobe with center at » = 0. This point was discussed before
in connection with the complex form of the Fourier series where
for every coefficient of positive frequency d,, there is a
corresponding conjugate of d_,. Since, in practical spectrum
analysis, negative frequencies have no meaning, the factors d,, and
d_, were combined to avoid confusion. For the rectangular pulse
train d_,, and d,, are equal, which leads to an overall amplitude
C, = 2d,. In any event the conceptual difficulty is not with the
factor 2 but with 1/7. The reason everything seems to go to zero

is that equation (3-20) deals with the amplitude of individual
harmonics, but, as previously discussed, individual harmonics have
no meaning when dealing with a continuous spectrum. This is
because there are apparently an infinite number of these.
Obviously, if individual harmonics contained a finite amount of
energy, no matter how small, the total energy of all the harmonics
would become infinite, and that is physically impossible. Instead
of dealing with individual harmonics it is necessary to deal with a
spectral density or energy per unit bandwidth. This problem is
analogous to that of the impulse function where the parameters are
essentially zero width, infinite amplitude and finite area. Similarly,
here the parameters are essentially zero amplitude, an infinite
number of harmonics and finite total energy. When using the
spectral-density concept, the bothersome 1/T, actually frequency,
is set equal to unity to represent a per-unit-bandwidth operation.

Based on the above, the discrete spectral components of (3-20)
are transformed to the continuous spectral-density distribution
given below:

sin (wtof)
= oLk 3-22
F(w) = 24t — (3-22)
where F(w) stands for a Fourier integral representation.

The relationships for the complex form of the Fourier series are
given in equations (3-6) and (3-7) and reproduced below:

n=+oo :
fy= = aq, ™ (3-23)
=—c0
a =L 77 ro) 7 ax (3-24)
R 2n § o

These equations are applicable when dealing with a discrete
spectrum generated by a waveform having a finite period. This
permits equation (3-23) to be the sum of a discrete series of
sinusoids, one for each n as n takes on all the positive and
negative integer numbers. The series is infinite in that there

are an infinite number of integers, but the spectrum is not
continuous since all except very specific values of n are forbidden.



Fourier
transform
pair

The finite period is clearly evident from (3-24) where the limits
of integration are +m and -m. Here the period is assumed to be
not only finite, but specifically 2n. The equation can, of course,
be modified for an arbitrary period T rather than 2, as shown
in equation (3-12).

These equations have to be modified when dealing with isolated
pulses, whose period is essentially infinite and which have
continuous rather than discrete spectra. The continuous nature of
the spectrum requires integration rather than summation, while the
limits have to be extended to include a time function which never
seems to end. The two integral equations replacing (3-23) and
(3-24) are called a Fourier transform pair. These are the

direct transform:

F(w) = f e £06) €79 gy (3-25)

and the inverse transform:

o) =5 _:O Pl & dos (3-26)

Equations (3-25) and (3-26) are the complex notation versions of
the Fourier integral. Though equivalent noncomplex notation
equations, corresponding to similar equations for the Fourier series,
can be developed, we shall not do so as the complex notation is the
easier to use.

Complex notation is helpful in Fourier transform useage because it
leads to a pair of symmetrical equations. Thus, except for the

factor % which comes from using the variable (w = 2af) and the

change of sign in the (jwx) exponent, the two equations are
identical. This means that except for a change of scale, functions

and their transform are interchangeable. The fact that the frequency-

domain representation of a rectangular pulse (direct transform) is
(sin x)/x indicates that to get a rectangular spectral distribution one
has to start with a (sin x)/x time-domain function.

As an example in using Fourier transforms, let us consider a
rectangular pulse of width 7 and amplitude A, such as one of the
pulses shown in Fig. 3-2A.

The time-domain function is:
=4,

t t
-—29— << +—20-, and zero everywhere else.

The direct Fourier transform equation is:

F(w) = f " 10 3 ar,

t -£
Substituting for f(¢) the value 4 between the limits of 70 and —20-,
we have:

to ]
F(w)=A4 102 Y ar
B
Iy
= 4 (-I) E_jwt * 2
Jw _fo
2
. ho .t
=41 158 _ V7
Rl ™ € - €

Substituting Euler’s identity as discussed in Chapter 2, the result is:

sin 7 f1g

— (3-27)

where

w = 27f.
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Fig. 3-6. Fourier transform of rectangular pulse.

Except for the multiplication factor of 2, expression (3-27) is
identical to (3-22) which was developed through physical reasoning.
As previously indicated, the factor of 2 was introduced while
eliminating the energy distribution at negative frequencies, which is
difficult to handle in a physically meaningful way. Equation (3-27)
is plotted in Fig. 3-6. Comparison of Figs. 3-5C and 3-6 shows that
the major difference between theory and practice is that in theory
alternate lobes are of opposite phase, whereas in practice no such
distinction is made.

A table of some common transform pairs and properties of
Fourier transforms appears at the end of this chapter. Of major
significance is the center-frequency-shift property as a function

of complex modulation. Basically, when a time function is
multiplied by a carrier at frequency wy, the spectrum of that
function is shifted by wg. Thus, for the rectangular pulse, whose
spectral distribution is shown in Fig. 3-6, the main lobe centered
at mfty = 0 moves from DC to w( when the pulse is produced by
turning on and off a sinusoidal carrier at w,. The frequency f

in the angle mft, becomes the difference frequency between the
carrier at fiy and the frequency of interest. This eliminates
negative frequencies so long as f; - f > 0. Therefore, for a pulsed
RF wave the spectral distribution as shown on a spectrum analyzer
is symmetrical about the main lobe as in Fig. 3-6 rather than
unidirectional as in Fig. 3-5C. This frequency shift also eliminates
the factor of 2 from equation (3-22), correlating practice and
theory.

An interesting and useful characteristic of Fourier integral
analysis is that the results are valid not only for single pulse or
transient phenomena but for pulse trains as well. Note that the
shape of the curve generated by connecting the end points of
the harmonic amplitudes in Fig. 3-5A and B is the same

(sin x)/x as that of Fig. 3-5C. Therefore, all that is needed to
reconstruct the harmonic amplitudes for a pulse train is a
knowledge of how frequently to sample the continuous curve
obtained by taking the Fourier transform of the pulse.

APPENDIX

1) EVALUATING FOURIER COEFFICIENTS

The basic Fourier series given by equation (3-1) is:

a
F(x) ?50* +(ay cos x + by sin x) + (a5 cos 2x + b, sin 2x)
***+ + (a, cos nx + b, sin nx)
(3-28)

To determine the three coefficients @, a,,, and b,,, it is necessary
to evaluate the following three integrals:

f(x) ax,
-7

+
f f(x) cos nx dx, (3-29)
-7

+ir
f J(x) sin nx dx.
-



The evaluation of the integrals in (3-29) is performed by
substituting the series (3-28) for f(x) and integrating term by
term. At first this appears to be an impossible task since (3-28)
is an infinite series. However, in each of the three integrals, all
the terms except one yield zero. This stems from the following
basic integral relationships for sinusoids:

+r
f cos nx cos mx dx =0, m ¥ n;
-

+7
f sin nx sin mx dx = 0, m¥n; (3-30)

i

+ﬂ'
sin nx cos mx dx = 0.
-1

The relationships in (3-30) are simply an expression of the fact that
sines and cosines form an orthogonal set of functions,

Two special cases of the above are:

+m
cosmx dx =0
-

(3-31)
+m
sin mx dx =0
-1
Using (3-30) and (3-31), the integrals in (3-29) are easily
evaluated as follows:
+r +1 +7
f f(x)dx=f g—zo—dx+f @y cos x dx
-7 - -m
+n
+ by sin x dx +
-7
(3-32)

+r
##e a, cos nx dx
-
+
+ b, sin nx dx.
-1

But from (3-30) and (3-31) all the terms except the first are zero,

SO:
+ +17
f ") dx = f 20 dx = nay. (3-33)
- =

which is the same as equation (3-3) given as

I
a9 =4 . fix) dx.

To determine @, we evaluate

+ gy
f(x) cos nx dx = 5 €OS nX dx +
- -

+7
@ COS X COS nx dx +
=T
+r
by sin x cos nx dx +
-1
+m
- a, cos nx cos nx dx +
-1
+
b,, sin nx cos nx dx
-1

Based on (3-30) and (3-31), all the terms in (3-34) are zero except
one, which leaves:

+r +m
f(x) cos nx dx = @, cos nX cOs nx dx,
- -m

which when evaluated leads to the result

+r +
f f0x) cos nx dx = f a, cos* nx dx =ma,.  (3-35)
- -7

(3-34)



Equation (3-35) is identical with that of equation (3-3):

i
ay = — . f(x) cos nx dx.

Similar reasoning leads to the result that:
1 [t ;
b= T [ Sf(x) sin nx dx (3-36)

Equations (3-33), (3-35) and (3-36) are used in evaluating the
coefficients in the Fourier series expansion.

2) THE IMPULSE FUNCTION

The time-domain unit impulse, designated delta of ¢, §(¢), is a
function having infinitely narrow pulse width and unity area,

so that its amplitude approaches infinity. Mathematically a unit
impulse at time ¢ = 0 has the property that:

8(1)=0,t#0 i
f s dt =1 (3-37)
5(f) >oe,t=0 .

where epsilon is an arbitrarily small time interval.

The area of the impulse is called its strength, so that a unit
impulse has a strength of one. Naturally, it is not mandatory
that all impulses have unit strength, any strength at all is
possible. The unit impulse is, however, a convenient quantity
to manipulate, so that other impulses are defined in terms of
the unit impuise.

The impulse is not a practically realizable function, because real
circuits cannot generate infinitely narrow arbitrarily large pulses.
From a more fundamental point of view, the impulse is not
realizable because the energy content of an impulse is infinite.
This is because energy is proportional to the square of the
impulse function. Thus the area of an impulse is

f "s(e) dt

and is finite, but the energy is given by

+o0
_[ [6(5)]? at,

which is infinite. This matter of infinite energy becomes clearer
when the impulse is considered in the frequency domain. Thus,
taking the Fourier transform of the unit impulse

F(w)=fm6(t)e_jwt dr=1.

The fact that the spectral distribution of an impulse is a
constant means that the impulse has a constant energy per unit
bandwidth at all frequencies. Hence, as we go to higher and
higher frequencies, the energy increases without bound. What
happens in real life is that the spectral density starts falling off
at some arbitrarily high frequency, so that the total energy
remains finite.



AMPL I TUDE

Fig. 3-7. E i i :
ig xponential prototype of impulse. reciprocal

spreading

Since mathematical impulses do not exist in nature, it is of
interest to investigate various approximations. The impulse can
be approximated by any pulse such that the area remains constant
as the width is decreased. A rectangular pulse of width 7 and
height 1/7 has a constant unity area for all 7, and is therefore an

acceptable representation of the unit impulse. The exponential
!

. 1 -=
function i & shown graphically in Fig. 3-7, is frequently used

to represent an impulse. The area under this curve, as o goes to
Zero, is:

L] _t x
lim —ea] = lim e ¥ . lim e ®=1. (3-38)

The exponential curve is, therefore, a good beginning shape for
the unit impulse. The shape of the starting pulse really doesn’t
matter so long as the area remains constant as the pulse width
is reduced.

As previously indicated, the pulse width can never be reduced to
zero. However, when the pulse width is reduced to the point
where the spectral distribution is constant over the frequency
range of the circuits used, we have, for all practical purposes,
generated an impulse.

The flat frequency distribution of the impulse is connected with
a property of the Fourier transform pair which is sometimes
called reciprocal spreading: When one member of the transform
pair is made narrower, the other spreads out and vice versa.
Thus, for the case of the rectangular pulse, the first null occurs
when the angle nfty = m, which happens at the frequency
f=1/ty. As the pulse width (¢y) is made narrower, the
frequency width occupied by the main lobe in Fig. 3-6 gets
wider and wider until, as the pulse width goes to zero, the peak
of the main lobe is spread out over all frequencies.

Conversely, as the pulse width (¢,) is made wider, all of the
energy gets more and more concentrated at the center frequency
of the main lobe until, as the pulse width approaches infinity,
the complete frequency distribution gets concentrated in an
infinitesimally thin frequency band. This is, of course, a
frequency impulse as discussed in connection with the Fourier
transform of an infinitely long sinusoid. The frequency

impulse is quite similar in its properties to the time impulse.

All of the mathematics are almost identical except for the change
of variable from # to f. This should not be surprising in view of
the symmetry of the Fourier transform pair. Like its time-
domain counterpart, true frequency-domain impulses do not
exist in nature, since an infinitely long sinusoid is obviously
impossible to generate. However, so long as the sinusoid exists
for a long time, compared to the time constants of the circuits
involved, it can be treated as if it were of infinite duration.
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SPECTRUM PULSE TRAIN FOURIER COEFFICIENTS
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Table 3-2. Fourier transforms.

3) PROPERTIES OF FOURIER TRANSFORMS

A knowledge of some of the properties of Fourier transforms
can be very helpful in spectrum analysis. Thus, for example,
the fact that superposition holds for Fourier analysis can be
helpful when interpreting complex spectra. Table 3-1 is a list
of the more significant Fourier transform properties as found
in spectrum analysis. No proofs are included. Some of these
properties, such as convolution, have well-established names,
while others may be found under different names in different
tables.

4) TABLE OF FOURIER TRANSFORMS
Table 3-2 gives both graphical and mathematical relationships

for time-domain to frequency-domain conversion.

5) EXAMPLES

A) USING ONE SPECTRUM TO DERIVE ANOTHER

Frequently, the spectral distribution of one waveform can be
obtained by using the spectral distribution of another waveform.
As an example, consider the half-cycle cosine pulse and the
pulsed-RF rectangular pulse, numbers 3 and 5 respectively in
Table 3-2.

The spectrum for a rectangular RF pulse of unity amplitude is
from number 5 in Table 3-2:

- | -
_ tofsing(w - wp) 4 ) sinz(w + wg) £

F(f) =5

: (3-39)
Slw - wy)ty “2-(03 + wg)



The product wyt is the radian angle through which the carrier
at w advances during the time 7;. For a half-cycle pulse,

wytg = 7, since a full cycle is 27 radians. Substituting m = wgiy
and cancelling terms results in:

1 1
sin i(wto—vr) L Sin 2(wt0+17) . (340)

F(f) =

W - Wy wt wy

The factor £ is eliminated by substituting #; = 7/, which
leads to:

= 1 L Tw w 1 LW, T
F(f)”msm(———)+w+wo S‘“(zwo + 2). (3-41)

Equation (3-41) can be further simplified by using the basic
trigonometric identities:

sin (4 + B) =sin 4 cos B + cos 4 sin B,

) (3-42)
sin (4 - B) =sin 4 cos B - cos 4 sin B.

Using expression (3-42) in (3-41) we have:
= 1 . W oo T . T
F(f) = Ty (sm 2wg cos -y - cos T sin 2)
(3-43)

T W .. T
= 1+ C0s 5— Bl =
cOos ) i 20.)0 ) )

+

1 ( w
wt Wy Sl 20.?0

But, sin% =1 and cos—g- = (, hence (3-43) reduces to:

_ 1 MW 1 Tw i
F(f)—~w_w0 cos pTEN + @ F wg cos~—2w0 (3-44)

Combining terms we have:

= 1 1 TwW
F(f) ‘“((JJ Yoy  w- wO)COS 2oy (3-45)

Combining the terms in the parenthesis by means of the common
denominator, w? - w02 , results in:

- —2wo T
M= W? - wy? cos 2w, (3-46)

Normalizing with respect to w by letting w/wq = x, and
substituting 7/t for w, we get:

29 1
n 1-x

T COS 127- x (3-47)

F(f) =
This is the same expression as that given in number 3, Table 3-2
with the amplitude 4 set equal to unity.

While it took a bit-of algebra and trigonometry, this exercise
demonstrates the fact that knowing a few key transforms it is
possible to obtain others without going through a solution of the
(sometimes difficult) integral equations.

B) THE SINE INTEGRAL, Si(x)

When dealing with continuous spectra, it is inappropriate to
operate in terms of individual harmonics. The proper way to
consider the spectral distribution is in terms of spectral density,
which is a per-unit frequency difference, or bandwidth, quantity.
Thus, in actual measurements, the wider the bandwidth of the
measuring apparatus the more energy should be intercepted and
the greater should be the output indication. But, most spectra
do not have a flat frequency spectrum, so the output depends
on where the apparatus passband intercepts the spectral
distribution. For the rectangular pulse, for example, there would
be considerable output when the measuring filter is tuned to the
center of the main lobe and very little output when the filter
frequency is at a null point. This variation in spectral density is
of course determined by the area under any small portion of the
spectral distribution curve, such as in Fig. 3-6.



To obtain an area it is necessary to integrate. This leads to
the importance of the sine integral Si(x), where

a f F sinx ;
Si(x) ./(; S B (3-48)

At x =0, Si(x) = 0, since no area is intercepted at zero
bandwidth. This is in agreement with previous reasoning which
led to the conclusion that the amplitude of an individual spectral
line, which has zero frequency width, is zero. As x increases
toward the first zero crossing at w, Si(x) keeps increasing until,
at x =, Si(x) = 1.85. As x goes greater than m, Si(x) starts
decreasing because the curve (sin x)/x is now negative. At

x = 2m, Si(x) starts to increase again, oscillating back and forth
every time x increases by w. In order to treat negative-going
areas equally with positive-going areas, one needs either to take

the integral of ( Si; t

the difference between two sine integrals. Thus, if one is dealing
with an instrument bandwidth AF and one wishes to know the
output around frequency f, one needs to determine the value

of Si(x;) - Si(xy) where:

2
) or, as is more common, to determine

Af)
xz = 'H'fo(f‘}"'z"" >
Af
x =my (1-F)
A Silx)
- I
R T e T
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Fig. 3-8. A plot of the sine-integral of x.

The availability of sine integral tables can, therefore, be quite
useful. Fortunately, this integral occurs in many communication
problems so that tables are readily available. Fig. 3-8 is a plot
of this integral.

C) RECTANGULAR PULSE ANALYSIS
Given a rectangular pulse, determine for its spectrum the

position and amplitude of the first side lobe relative to the
main lobe. The spectral distribution is given by the

formula F(f) = Sl; X where x = nfty. A plot is given in

Fig. 3-6. To determine the position of the various maxima,
we differentiate and set equal to zero. Thus:

F(f) = =35,

d _ X cosx —sinXx
i Fit] n s s

which means that maxima occur when

X = tan x. (3-49)

Observing the graph of % (Fig. 3-6), the maximum of the
first side lobe occurs in the vicinity of x = % By trial-and-error

comparison of the value of tan x with x, the actual angle is
found to be close to

x = 4.5 radians, (3-50)

which is 1.43m rather than the 1.5 estimated from Fig. 3-6.
The relative amplitude is determined by substituting the
appropriate value of x into the (sin x)/x equation. Thus, for
the peak of the main lobe, x = 0. At small angles the sine of
an angle is equal to the angle, so that

51; X -1

lim
x—>0



The amplitude of the first side lobe is 322 = 02175, The
relative amplitude between the main lobe and first side lobe is

03175 - 4.6, or 20 log 4.6 = 13.2 dB. (3-51)

Very often this number is approximated as 13.4 or 13.5 dB. This
comes from the approximation that the peak occurs at x = 1.57
radians. For most applications this is well within the measurement
accuracy. However, in precision measurements 13.2 dB should

be used.

If the pulse width is 7y = 1 ps, what is the frequency width
of the spectrum lobes?

The spectrum nulls occur at a spacing of x = 7. Since x = nft,
this happens at frequency multiples of f = 1/z,. Hence, the lobe
width is 1/1 us = 1 MHz.

What if the pulse width is increased to 10 us? The lobe spacing
then becomes 1/10 us = 100 kHz. This is an example of
reciprocal spreading, where, as the pulse width gets wider, the
spectral width gets narrower.

What happens if the pulse consists of a 1-us burst of a 1-GHz
sinusoid? By the frequency shift theorem, number 8 in
Table 3-1, the center frequency of the main lobe is shifted to
1 GHz. The spectral shape remains a (sin x)/x as before.

What are the characteristics of a 1-us burst of a 500-kHz
sinusoid? The first tendency is to say that the result is a

(sin x)/x centered at 500 kHz. However, 1 us is not sufficient
time to establish the pulse shape of the gating oscillator when
gating a 500-kHz carrier. As a matter of fact, we pass only a
half cycle of 500 kHz during 1 ps. The result is the cosine
pulse discussed previously in Example (A) and transform number
3 in Table 3-2.

SINUSOID AT j‘o

(A)

As<f0>

(B} SPECTRUM

Fig. 3-9. Pulsed-RF with poor on/off ratio.

How is the spectrum of a burst of a 1-GHz sinusoid modified
if the sinusoid does not turn off completely, as shown in
Fig. 3-9?

If the 1-us pulse width is a substantial part of the waveform
cycle, we need to consider Fig. 3-9A as composed of two
pulses, one short and large in amplitude and the other long and
small in amplitude. If, as is usually the case, the burst accupies
only a small part of the waveform period and is very much
larger in amplitude than the remaining sinusoid, the sinusoid
appears for all practical purposes as an uninterrupted CW signal.
In either case, superposition applies, so that the waveform can
be considered to be composed of two components. In the
prevalent case of a large narrow pulse, the spectrum consists of
the superposition of the (sin x)/x for the pulse and an impulse
for the sinusoid, as shown in Fig. 3-9B.



T

MODULATION THEORY

In electronic communications, the message is usually not in a
form suitable for transmission over the medium intervening
between transmitter and receiver. The process whereby the
original message is modified into an information-bearing
transmittable signal is called modulation. Modulation theory

is a vast subject that properly belongs as part of information
theory. It is certainly not the intent, nor within the scope, of
this volume to treat a subject of such complexity. Fortunately,
the two forms of modulation (AM and FM), most often
described in the frequency domain by measurement with
spectrum analyzers, are also the most amenable to relatively
simple mathematical analysis. Such important topics as pulse-
code modulation (PCM) or time or frequency multiplexing will
not be considered. Within the information-theory meaning of
the word “modulation,” we shall only consider amplitude
modulation (AM) and angle modulation in the form of frequency
modulation (FM).

To discuss modulation, it is necessary to state three definitions:
1) Carrier: the wave to which modulation is applied.

2} Modulating wave: the signal which contains the original
message and is used to control some parameter of the
carrier.

3) Modulated wave (modulated carrier): the final result of
the modulation process after the modulating wave has
affected the carrier. This is the wave, or signal, that is
sent by the transmitter to the receiver.



amplitude
modulation

None of these three waves, or signals, need be sinusoidal. For
example, in pulse modulation, the carrier consists of a train of
pulses some parameter of which, such as pulse height or pulse
position, is controlled by the modulating wave. The modulating
wave, generated by speech, is certainly far from sinusoidal.
Finally the modulated wave, consisting of some complex
combination of the two above, can be quite complicated.
Nevertheless, the analysis that follows is based on sinusocidal
waveforms. This is justified on the basis that in AM and FM
the carrier is a sinusoid and that any modulating wave can be
broken into an equivalent series of sinusoids by means of Fourier
analysis. The ultimate reason for doing things this way is, of
course, the tremendous simplification in the analysis.

A sinusoid, 4 sin @, has two basic parameters that can be varied:
the amplitude 4 and the angle 8. Let us begin by analyzing the
effect of a changing amplitude.

The carrier in amplitude modulation (AM) is usually a sinusoid
of the form

A sin 2nFt + ), (4-1)

where A is the carrier amplitude, F' is the carrier frequency and
o is the initial phase or just phase. We will assume that the
information desired to be transmitted is also sinusoidal in nature
and represented mathematically by the modulating wave:

B cos 2nft (4-2)

What is meant by AM is that the amplitude of the carrier is made
to vary in proportion to the modulating wave, generating a
modulated wave of the form:

a=A(1+mcos 2nft) sin (2nFr + @), (4-3)

where m is called the degree of modulation, or 100m is the
percentage modulation, f is the modulation frequency and a is
the instantaneous amplitude. Usually the word amplitude refers
to a constant such as 4 in equation (4-1). A more correct name
for ¢ might be instantaneous value. However, 2 is an amplitude

in the sense that its square is proportional to instantaneous power.

Fig. 4-1 is a graphical representation of equation (4-3).

SIGNAL 15

ENVELOPE IS {(2nfED
4 sin (25Ft + o) R

[}

I )
Y

Ll__
B

SIGNAL 1S
A (1 + mcos Zaft) sin (2aFE + o)

Fig. 4-1. Time-domain appearance of amplitude
modulation.



sidebands

In order to obtain the frequency-domain representation of an
amplitude-modulated wave, it is necessary to disassociate the
complex expression (4-3) into a sum of individual sinusoids.
This is easily accomplished with the help of the trigonometric
identity

sin A cos B = %[sin (A4 +B)+sin(4- B)J . (4-4)

Letting 2nFt + o = 4 and 2nft = B and substituting (4-4) into
(4-3), we obtain

a=A [1 + m cos (27 Ft) sin 2nft + a)]
=4 sin (2nFt + 0 +—AZﬂ sin [2W(F+f)r + a]

N, v -~
carrier upper sideband (4-5)

+’—42ﬂ sin [21‘T(F‘f)t * a]'_

R
lower sideband

From (4-5) it will be observed that an AM wave can be
considered as consisting of the original carrier and two new
components called sidebands. The sidebands are spaced on
either side of the carrier with a frequency spacing equal to the
modulating frequency f. The amplitude of the sidebands, relative
to that of the carrier, is equal to half the percentage modulation,
m/2. The frequency-domain representation of an AM wave is
shown in Fig. 4-2.

A
CARRIER
-~
LOWER UPPER
Am  SIDEBAND SIDEBAND
2 t— f — e [ 4>‘
F-f 7 P+ F FREQUENCY

Fig. 4-2. Frequency-domain appearance of amplitude
modulation.

energy

degree
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modulation

From equation (4-5) it is apparent that the carrier component of
the AM spectrum is independent of the degree of modulation.
Hence, an amplitude-modulated wave always contains more energy
than the unmodulated carrier. At 100% modulation the sidebands
are half as large as the carrier. This is the maximum relative
amplitude that the sidebands can attain without overmodulation.
Since energy is proportional to voltage amplitude squared, it
follows that at 100% modulation each sideband contains one-
quarter as much energy as the carrier. Thus, at maximum
modulation the AM wave contains 50% more energy than the
unmodulated carrier.

What is of interest in determining amplitude modulation is the
carrier frequency F, the modulating frequency f and the degree
or percent modulation m. The frequencies are usually known
beforehand, so the degree of modulation is the most frequent
measurement. All three of the above parameters can
theoretically be determined by use of either a time-domain
oscilloscope or a frequency-domain spectrum analyzer.

In the time domain, illustrated in Fig. 4-1, the frequencies F
and f are easily determined as the inverse of two simple time
measurements, while the degree of modulation m is computed
from a knowledge of the peak and null waveform amplitudes.
Thus, the peak waveform amplitude is Epa = (1+m)4, while
the null amplitude is Fpyin = (1-m)A. Calling the ratio of these
some constant, K, we have

Enax _ (Itm)d _ _ K-l
Enin (1-m)A4 =K, M=kl (4-6)

3 =1
3+1

In Fig. 4-1, K = 3, hence m = = (.5, or we have 50% of

amplitude modulation.

While all the parameters can be obtained from time-domain
measurements in theory, there are practical difficulties. Problems
with time-domain measurements are:

1) Too high a carrier frequency for time-domain measurement.
Sampling oscilloscopes have greatly reduced this problem.

2) Too small an amplitude level to be observed on an
oscilloscope.
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3) The complicated nature of the signal when more than one single-

modulating frequency is involved. sideband
AM
4) Difficulty in determining the ratio of Eyax/Emin at low
percentages of modulation.
To alleviate problems such as those above, it is customary to
make AM measurements by means of the frequency-domain
spectrum analyzer. Here the carrier frequency F is obtained vestigial-
from the calibrated RF center frequency dial, the modulation sideband

frequency f is determined by measuring the frequency difference AM
between the carrier and the sidebands, while the degree of

modulation is determined by measuring the relative amplitude

between carrier and sidebands and computing from

2 Ay
% modulation = m + 100 = —— 42804 100 (4.7)
carrier

angle

In the case of Fig. 4-2, modulation

% modulation = 2 -% - 100 = 50%.

Besides the standard carrier with double sideband AM, systems
which eliminate the carrier, or the carrier and one sideband, are
also utilized. These are:

1) Reduced- or suppressed-carrier AM.
2) Single-sideband (SSB) AM.
3) Vestigial-sideband AM.

The rationale for use of these systems stems from a desire to
reduce transmitter power requirements and to utilize more
efficiently the available frequency space.

The suppressed-carrier signal, as the name implies, consists of
two sidebands with a greatly reduced or attenuated carrier.
Normally the carrier contains at least two-thirds of the
transmitted power. The suppressed-carrier technique permits

a reduction in transmitted power without reducing the size of
the intelligence-bearing sidebands. The technique, while reducing
transmitter power requirements, calls for a more complicated
receiver design since the carrier has to be reinserted to avoid
distortion.

In single-sideband transmission, the usual practice is to eliminate
one sideband and the carrier, though elimination of only the
sideband is also called single sideband. Eliminating one sideband
cuts the transmitted spectral width in half, thus conserving
frequency space. As in suppressed carrier, SSB requires a more
complex receiver since the missing sideband has to be reinserted
by generating a mirror image of the transmitted sideband.

Sometimes, to ease network complexity, one sideband is merely
reduced in amplitude rather than eliminated. This is particularly
true when the information contains extremely low frequencies.
Such an arrangement is called vestigial sideband. The best

known example of vestigial-sideband transmission is in television.
Here the vestigial sideband occupies about one-sixth the frequency
space of the unattenuated sideband, thus conserving broadcast
power and frequency space.

As in amplitude modulation, it is not necessary that the signals
be sinusoidal for angle modulation. However, for ease of
analysis we shall confine the analysis to sinusoids.

As the name implies, in angle modulation it is the angle rather
than the amplitude of the sinusoidal carrier, A sin (2nFr + o),
that is varied. There are essentially an infinite number of ways
in which the angle of the carrier, 2w Ft + &, can be made to
vary by the modulating wave, B cos 2nft. The two prevalent
systems are phase modulation (PM) and frequency modulation
(FM). In the former, the phase of the carrier is made to vary
linearly with the modulating signal, while in the latter it is the
frequency of the carrier which is made to vary in accordance
with the modulating wave. For sinusoidal modulation, FM and
PM are not much different since instantaneous frequency is the
derivative of phase and the derivative of a sinusoid is a
sinusoid, thus:

Instantaneous frequency = —21? %?— (4-8)

When dealing with a single sinusoid of the form A sin 2nFt, the
angle 6 = 2 Ft and

= Fr~mo 5 2nFt=F (49)
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This shows that the definition of instantaneous frequency, (4-8),
is in agreement with the conventional understanding of the word.

Let us now consider PM and FM in more detail. For phase
modulation, let the carrier be a sinusoid of the form

a = A sin (2nFt + ) and let the modulating wave be represented
by B cos 2nft. Phase modulation means that the phase of the
carrier, which in unmodulated form is given by «, is modified

by the modulating wave, resulting in a new phase of

(0 + A cos 2mft). The complete expression is

a=A sin [2nFt + (0o + A cos 27ft) (4-10)

The quantity, Ac cos 2mft, is called the phase deviation and is
expressed in radians. To reiterate — in PM the phase of the
carrier is made to vary in accordance with the instantaneous
amplitude of the modulating waveform resulting in a modulated
waveform as given by expression (4-10).

Let us now consider FM, which differs little from PM as will be
shown. Since FM is more commonly used, it will be examined
in much greater detail.

Let the carrier be of the form a = 4 sin (2nFt + «) and the
modulating waveform B cos 27nft. Frequency modulation

means that the instantaneous frequency of the carrier is modified
in accordance with the instantaneous amplitude of the modulating
waveform.

Combining the definition of instantancous frequency from (4-9)
with the frequency of the carrier /" and the form of the
modulating waveform cos 2wft, we have for the frequency of the
modulated waveform:

IS

1 =
o = F + AF cos 2aft. (4-11)
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Equation (4-11) simply states that the instantaneous frequency
of an FM signal is the sum of the carrier frequency and a term
which has the form of the instantaneous amplitude of the
modulating waveform, where 8 stands for the phasé of the
modulated waveform which is given by ¢ = 4 sin #. To get the
final equation for an FM signal, it is necessary to solve for 6.
Integrating (4-11) we have

'/6.19 =j;WF dt +/;7TAF cos (2nfr)dt,
or

6 =2nkt +% sin 2mft + 0.

(4-12)

The final result is that the FM wave is of the form

i

The factor AF is called the peak frequency deviation while
AF cos 2nft is the frequency deviation. Frequency deviation
means deviation with respect to the carrier frequency F.

a=Asin 8 =4 sin (Zerr + AF sin 27 ft + 30) . {4-13)

It will be observed that equations (4-13) for FM and (4-10) for
PM are of the same form except for the factor 1/f in (4-13).
The major difference between FM and PM, therefore, is that PM
has greater deviations, at relatively high modulation frequencies,
than FM. The difference between FM and PM is particularly
noticeable for multitone modulation where the ratios of the
deviations at different frequencies is different for FM and PM.



Fig. 4-3 shows the time-domain appearance of FM and PM.
Note that the phase-modulated waveform has the appearance of
frequency modulation of the integrated modulating waveform.
This follows from the fact that instantaneous frequency is the
differential of phase or, conversely, phase is the integral of
instantaneous frequency. Since, for sinusoids, integration and
differentiation merely involve a phase shift, it follows that,
except for a change in deviation, FM and PM are the same for
a sinusoidal modulating wave.
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Fig. 4-3. Time-domain appearance of angle modulation.
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At this point, we digress for a discussion of Bessel functions
which are necessary for the frequency-domain description of FM.

As discussed in Chapter 2, the circular trigonometric functions,
sin ¢ and cos 0 are the solution to the differential equation:

d?y
dr?

+wly =0 (4-14)

Similarly, Bessel functions are the solution of the differential
equation:

dEy lgx p2 _
—aF d:*(l‘?)y 0 (4-15)

where p is a constant. While sinusoids, because of their long
usage, appear simple and obvious, Bessel functions appear
mysterious and forbidding. This need not be so. While we shall
not derive the various Bessel-function relationships', just a
discussion of the meaning of terminology can be tremendously
helpful.

Just as the solution of the circular equation (4-14) consists of two
functions, a sine and a cosine, so the solution of Bessel equation
(4-15) consists of two functions called Bessel functions of the
first kind and Bessel functions of the second kind. We are mainly
interested in Bessel functions of the first kind which are designated
by the letter J. An equivalent statement for the circular
trigonometric functions would be: We are only interested in
cosines. There are two parameters, w and ¢, associated with the
cosine. Likewise, there are two parameters, called the order and
argument, associated with Bessel functions. In Bessel-function
language, cos wt would be called a circular trigonometric function
of the first kind of order w and argument ¢. Sin wt would be a
circular trigonometric function of the second kind of order w

and argument ¢. While in circular trigonometric functions the
order and argument appear as a product, in Bessel functions they
are separated as follows: Jp(r) means Bessel function of the

first kind of order p and argument 7. Just as for the circular
functions, there is no restriction on how large the order or
argument of Bessel functions can get. These are also not
restricted to integral values, though for FM applications the
interest is in integer multiples of the order p.

ISee, for example, Whittaker & Watson, Modern Analysis.
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Bessel functions are undulatory. But unlike the circular functions,
the period, as measured between zero crossings, is not constant.
Fig. 4-4A is a graph of the first eight orders of Bessel functions
of the first kind. By contrast, cos wt, Fig. 4-4B, has constant
period and constant peak amplitudes.

The value of a Bessel function is much more difficult to calculate
than that for a circular function. The result is usually obtained
from an infinite series such as

(1) = L P 2 T .. for positive
P( ¥ 27p! 22p+2) 2 - 4(2pt2)(2pt4) integers of p

(4-16)
For the bessel function of the first kind, order zero, (4-16)

becomes:

_i B AN
Jo@=1-7*573 (4-17)

Fortunately, there are available many fine tables of Bessel
functions?, so that these can now be used almost as routinely
as the circular trigonometric functions.

Bessel functions and the circular trigonometric functions are
related. For example, at very large values of the argument ¢,

(0= Y& cos(r - 25 - 1), (4-18)

That is, the larger the argument the closer does the Bessel
function resemble a circular function. Bessel functions and the
circular trigonometric functions are even more fundamentally
related to each other, since it can be shown that:

cos ¢ = Jo(f) - 2 [Jz(“) - J4(0) + Jg (1) ] s (4-19)
sin t = 2[J1(t) - J3(0) + J5(2) ] (4-20)

The fact that a sinusoid can be expanded as a series of Bessel
functions should cause no surprise. Bessel functions are
orthogonal, hence, as discussed in Chapter 2, other functions
including sinusoids are expandable as a series of Bessel functions.

2For example, see Jahnke and Emde, Tables of Functions.
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Of major importance in FM theory is that a sinusoid with a
sinusoidal modulation angle is expandable as a series of sinusoids
with Bessel function coefficients. The formulas which are related
to (4-19) and (4-20) are:

cos (¢ sin 0) = Jy(¢) + 2{J,5(f) cos 20 + J4(2) cos 46 ] (4-21)

sin (¢ sin 8) = 2[]1(1‘) sin 6 + J3(7) sin 30 ] (4-22)

cos (£ cos 0) = Jy(1) - 2|J,(¢) cos 20 - J,4(¢) cos 40

+ J¢(f) cos 60 ] (4-23)
sin (¢ cos f) = 2[]1(1‘) cos 8 - J3(¢) cos 36

+ J5(¢) cos 50 } (4-24)

Finally, an approximation useful in narrowband FM calculations
is, for small arguments (r < 0.5), the zero order and first order

Bessel functions of the first kind are related to the argument as
follows:

Jot) = 1,

; for t < 0.5. (4-25)

Let us now return to frequency modulation.

The previously derived form of the FM wave is:

a=A sin (27rFt + -%E sin 2mft + 60)’ (4-26)

where: F is the carrier frequency,
f is the modulation frequency,
A is the carrier amplitude,
AF is the peak deviation, and

oF is called the modulation index.

g

Using the identities (4-21) through (4-24), it can be shown that
the FM wave (4-26) is equivalent to an infinite series of sinusoids
with Bessel coefficients as follows:

a=A sin (217Fr + I‘}—F sin 2nft + 80)

=a {1, (-A?F) sin (2nF¢ + 0) + 1y (ATF) sin

(—‘%1) sin [ZW(F-f)t + BOJ + 1 (%TF) sin{Zw(F+2f): + 90]
(A—F si

f
= Jx (%;E) sin [217(F—3f)t + 60] + }

2n(F+f)t + 60]

+1, n [Zw(F-zj}t + BOJ + Jy (éff)sin[hr(}?ﬂf)t + 60]

(4-27)

Equation (4-27) gives the frequency distribution, or spectrum,

of a frequency-modulated wave. There are several important
conclusions regarding the FM spectrum which can be drawn from
(4-27):

1) The FM spectrum consists of a set of discrete sinusoids.

2) These sinusoids appear at carrier frequency F and
sidebands on either side of the carrier spaced the
modulating frequency f apart.

3) There is no end to the sindebands; theoretically, the
FM spectrum has infinite frequency distribution.

4) The amplitudes of the carrier component and the
various sidebands are determined by the product of
the original carrier amplitude 4 and the value of a
Bessel function. The order of the Bessel function
corresponds to the sideband number counting the

carrier as number zero. The argument of the Bessel

functions is the modulation index AF :

f



5) Since the amplitude of the carrier component is
modified by the factor J, (%) , it follows that the

carrier component of the modulated wave is smaller
in amplitude than the unmodulated carrier. As a
matter of fact, the carrier component can actually
go to zero. This is called a carrier null and happens

when J (éfi) = (. The first carrier null occurs at

a modulation index of 2.4, as can be seen by the
zero crossing of the J(¢) curve in Fig. 4-4A. These
Bessel zeros are used in determining the frequency
deviation as discussed in the section on measurements.
FM is a constant-energy process where energy is
removed from the carrier and supplied to the
sidebands. Thus, the energy of an FM wave is
constant regardless of the degree of modulation. This
is in contrast to AM, where the carrier amplitude is
constant and the modulation process adds energy to
the wave.

Fig. 4-5 shows a typical FM spectrum. There are two important
points that should be indicated. One is that while a spectrum
analyzer, being insensitive to phase, will show the FM spectrum
as in Fig. 4-5B, the actual spectrum is as shown in Fig. 4-5A.
Here is shown the fact that the odd upper and lower sidebands
are 180° out of phase with respect to each other. This is
demonstrated in equation (4-27) by the alternating positive and
negative signs associated with the odd numbered sidebands.
This out-of-phase characteristic will be used in deriving the
spectrum of combined AM and FM, and later in the section on
applications as a means for differentiating between AM and
narrowband FM. The second point is that, while theoretically
the FM spectrum does go on ed infinitum, most of the energy
is confined to a frequency band (plus and minus AF') around
the carrier. This follows Bessel function theory where it can be
shown that J, (t) diminishes rapidly when the order p is greater
than the argument ¢, Since the order p is equal to harmonic
number #, it follows that as the modulating frequency f gets
smaller it takes more harmonics to cover the frequency range AF.
Hence, as f — 0 the frequency spectrum acquires sharp
demarcation lines at plus and minus AF around F as shown in
Fig. 4-5C.
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Fig. 4-5. FM spectrum.
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In multitone AM, each modulating frequency can be treated
individually as if the others were not there. Hence, the spectrum
of multitone AM is just the sum of the individual single-tone
spectra. In multitone FM, there is an interaction between the
several modulating signal frequencies, creating additional sidebands
than is apparent by treating each tone individually. The
mathematics for multitone FM? can get quite complicated and
will not be reproduced here. A major difference between the
spectra of single-tone and multitone FM is that while in the
former the sideband distribution is symmetrical about the carrier,
in the latter it need not be. While an absolute rule is difficult to
formulate, because of the complexity of the situation, it has
generally been found that symmetrical modulating waveshapes
create symmetrical spectra while unsymmetrical modulating
waveshapes create unsymmetrical spectra. Thus, unless the
modulating waveform is a pure sinusoid it is possible to get an
unsymmetrical spectrum in FM. In multitone, as in singletone
FM, the total energy is constant regardless of the degree of
modulation. Hence, in multitone FM, as the number of sidebands
is increased the carrier component is decreased.

Simultaneous AM and FM is usually an accidental, or incidental,
phenomenon rather than a deliberate form of modulation. This
form of modulation usually occurs when it is desired to obtain
AM. Somehow the carrier oscillator frequency is pulled by the
modulating signal, introducing a small amount of incidental FM
along with the AM. The result is AM along with narrowband
(low-modulation-index) FM at the same modulating frequency
as the AM. Let us, therefore, consider the theoretical spectrum
of AM combined with narrowband FM.

The AM spectrum consists of a carrier and two sidebands, as
given by equation (4-5). The FM spectrum consists of a carrier
and an infinity of sidebands, as given by equation (4-27).
However, as previously indicated, the amplitude of the FM
sidebands falls off very rapidly outside of the peak deviation
interval *AF. In narrowband FM, where AF is considerably
less than the modulating frequency f, higher order sidebands
fall off so rapidly that all but the first sideband can be ignored.

3Gee, for example, Giacoletto, “Generalized Theory of
Multitone AM and FM,” Proc IRE, July, 1947.

superposition

Thus, the spectrum is given by

a=4 {Jﬂ (%F)sm (2nFt + 0) + 1, (éff)sin [211’(F+f)t +0,

- Jl(%‘)sin[Zﬁ(F—f)t + 8, }

(4-28)

which is simply equation (4-27), ignoring all but the first
sideband. While narrowband FM differs from AM in that one
sideband is 180° out of phase with respect to the other sideband,
these are difficult to distinguish on a spectrum analyzer since the
spectrum analyzer is insensitive to phase. A technique for
distinguishing between narrowband FM and AM is discussed in the
section on applications. Combined AM and narrowband FM,
however, has a distinctive spectrum which is easily identified.
Consider, for example, the case illustrated in Fig. 4-6. Here are
shown the spectra of AM, narrowband FM and a combination of
the two. While it is true that the spectrum analyzer is insensitive
to phase, the displayed combined spectrum has to be considered
in accordance with the principle of superposition where phase

has to be accounted for. The result, shown in Fig. 4-6C, is a
distinctive spectrum where one sideband is larger than the other.
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Fig. 4-6. Combining AM and narrowband FM.
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One point that needs clarification is that while the sidebands are
added the carrier is shown as constant amplitude. This is because
the AM and FM spectra actually share the same carrier. In the
FM spectrum, the carrier is shown dotted, because in narrowband
FM there is so little energy in the sidebands that the carrier may
be assumed unaffected, and of course in AM, the carrier is
unaffected regardless of the percentage modulation. It is
conceivable that the equipment is so constructed that the carrier
level is affected by the incidental FM. This can only be
determined from a knowledge of the actual equipment. In the
absence of such knowledge we will assume that the carrier
remains unaffected, which is the prevalent case.

Many people have difficulty in accepting the validity of spectrum-
analyzer derived results because many of these results seem
contrary to common sense. While this problem was already
considered in a general way in Chapter 2, it is worth while to
resolve the specific case of FM. FM is of special interest because
nowhere is the paradox between the spectral distribution and
common sense more obvious than in this case.

Consider linear frequency modulation such as obtained from a
sinusoidal carrier modulated with a sawtooth signal. The time-
frequency relationship for the FM wave is shown in Fig. 4-7A.
The carrier at a frequency F is made to vary its frequency in

a linear fashion from F - AF to F + AF, where AF is what we
normally call the peak deviation. This process is repeated every
T seconds or the FM rate is f = 1/T. It does not require any
knowledge of FM theory to conclude that during the time
interval T the FM signal goes through every frequency between
F - AF and F + AF. Furthermore, it is apparent from

Fig. 4-7A that there are no frequency components outside the
F - AF to F + AF interval. This rationale is behind the highly
popular sweep-testing technique. In sweep testing the transfer
characteristics of circuits, such as filters, are obtained by feeding
a constant-amplitude FM signal into the circuit under test and
observing the detected output. Since it is assumed that all
frequency components are equally present at the circuit input
within the limits of FM deviation, it follows that any variation
in output amplitude is due to the circuit. Hence, the circuit
characteristic is easily obtained.
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Consider now a standard frequency-domain analysis of the FM
signal. This result is shown in Fig. 4-7B. Here, the theory
indicates that the FM wave consists of specific frequency
components and nothing in between. These sinusoids, that

appear to compose the FM wave, consist of a carrier component
and sidebands spaced on either side of the carrier with a frequency
spacing of f= 1/T. The two descriptions of the FM wave given

in Figs. 4-7A and 4-7B appear to be in conflict in two areas —

1) Whereas Fig. 4-7A indicates that all frequencies
between F - AF and F' + AF are present, Fig. 4-7B
indicates that there is only energy at very specific
frequencies and nothing everywhere else.

2) While it is clear from Fig. 4-7A that no energy
exists outside the frequency range F - AF to
F + AF, it is equally obvious from standard FM
theory that there is no end to the sidebands.



So we have the paradox that the spectrum analyzer seems to
indicate that there is nothing where logic says there should be
something and, conversely, the spectrum analyzer indicates
energy at frequencies where logically there should be nothing.
Actually, both interpretations are correct because they apply to
different circumstances.

First it should be recognized that for a meaningful, practical
discussion it is necessary to consider the behavior of circuits
because, in the final analysis, there is only one way to determine
whether there is or isn’t energy at a specific frequency — this

is by means of a measurement using real equipment made up of
circuits. We shall, therefore, consider the question — What is

the difference between the circuits implied in the two approaches
shown in Figs. 4-7A and 4-7B, and why do these different
circuits give different frequency-domain results for FM?

As discussed elsewhere, there is only one way in which a
spectrum analyzer is made to resolve or display individually the
separate frequency components of a signal — this is by making
the resolution bandwidth narrower than the frequency
separation between signals. Hence, the difference is that

Fig. 4-7A implies a relatively wideband circuit while Fig. 4-7B
implies a relatively narrowband circuit. These circuits give
different results because in one case the transient response is
negligible while in the other case much of the output is due
solely to the transient.

As discussed in Chapter 2, “Response of Circuits to Signals,” a
transient response need not be of short time duration. When
dealing with high-Q narrowband circuits, the transient can be
quite long. Hence, it is logical that the transient response of a
narrowband filter should contribute more to the total output
than is the case for a wideband filter. Now, consider the fact
that the stimulus to the filter is repeated once every T seconds.
This means that the transient response, whatever its
characteristics, is repeated at intervals of T seconds. If the

filter has a time constant such that the transient response does
not die down too much in T seconds, it follows that the
transient output never disappears since it is regenerated in a
shorter time interval than it takes to die out. Time constants of
filters are basically proportional to the inverse of the bandwidth.
Hence, if the filter bandwidth is narrow enough to separate the

several frequency components, meaning that the bandwidth is
less than the FM rate f, it follows that the time constant is on
the order of T and the transient is reconstituted faster than it
dies out.

We shall not go through the derivation® of the network response
leading to the remarkable fact that the total output of a
narrowband filter with an FM input has energy only at discrete
frequencies. While the input consists of a time-variable signal
going through all the frequencies between F - AF and F + AF
the output of a narrowband filter, consisting of the combined
transient and steady-state response and averaged over one FM
cycle of interval T, contains no energy except at the frequencies
indicated by accepted FM theory. At all frequencies, except the
very special ones, currents flow in the filter in such a way that
on the average there is no energy transfer. Furthermore, if the
narrowband filter is outside the frequency range of the input it
is still possible to get an output. This is because a filter will
respond with a transient to an input outside its frequency range.
Normally, the transient dies down very quickly and can be
ignored. However, if the stimulus is repeated at a fast enough
rate and in appropriate synchronism with the filter frequency,
one gets what looks like a continuous input. This is analogous
to a swing pushed at a rate in synchronism with its natural
frequency, resulting in continuous large oscillations.

When the filter bandwidth is large, as compared to the FM rate,
the transient response is negligible so that the output has the same
frequency characteristics as the input.

As was amply discussed in Chapter 2, it is not our intention to
resolve the question of whether the spectral components are a
part of the signal or are generated by the circuit. The important
thing to remember is that real, physically realizable, linear, time-
invariant circuits behave as if spectral components exist, and this
is what we wish the spectrum analyzer to show.

4See Harvey, et al., “The Component Theory of Calculating
Radio Spectra with Special Reference to FM,” Proc IRE,
June, 1951.



EXAMPLES

1)

2)

3)

4)

An amplitude modulated wave has a spectrum consisting of
a carrier and two sidebands which are one one-hundredth the
size of the carrier — What is the percentage modulation?
From equation (4-7),

5. L

2 " Asideband |50 - 1

% modulation =
Acarrier

Would this be a routine measurement on an oscilloscope?
_K-1_ 2

From equation (4-6), m = 1~ 00 resulting in
K = 1.04. An amplitude ratio of 1.04 is very difficult to
measure on an oscilloscope.

Given a wave which is frequency modulated at a 10-kHz rate.
The spectrum shows the first carrier null. What is the
deviation? The first carrier null occurs at a modulation index

of 2.4: %,—F =24, AF=2.4"-10=24 kHz.

An FM spectrum shows a 10-kHz sideband spacing and the
following relative amplitudes of its components: Carrier, one;
first sideband, zero; second sideband, one; third sideband, one;
fourth sideband, six tenths. What is the deviation? From
Fig. 4-4A, J;(r) has zeros at an argument of about 3.8, 7,

10.2 === . At only one of these does J(z), J,() and J3(¢) have

the same magnitude — at a modulation index of 3.8. Here the
various magnitudes are:

1,(38) = -0.4,
1,38) =0,
1,(38) = 0.4,
J,(38) = 0.4,

T;(38) = 25;

these are in the ratios of TTTT 1

3)

Hence, the modulation index is 3.8 and the deviation is
3.8 - 10 = 38 kHz.

Given narrowband FM at a 10kHz rate, the sidebands are
one-fiftieth the amplitude of the carrier. What is the
deviation? From equation (4-25),

Jo(®) =1,

t 1 1
Jl(t)gf=.§6’andt=f

The deviation is

1

55 10 kHz = 400 Hz.
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THE SWEEPING-SIGNAL

SPECTRUM ANALYZER

COMPUTED
AMPLITUDE

As discussed in Chapter 1, the superheterodyne, or sweeping-

signal spectrum analyzer, operates on the principle of the

relative movement in frequency between the signal and a filter.

The important parameter is the relative frequency movement.
=0 It does not matter whether the signal is stationary and the

filter changes frequency nor whether the filter is stationary and
Ghaly ‘ the signal is made to change frequency.

(A) SIGNAL SPECTRUM

frequency Fig. 5-1 shows the spectral representation obtained in such a
translation system. Fig. 5-1A represents a spectrum composed of three
discrete-frequency CW signals and a continuous dense spectrum
in the middle. This spectrum is passed through a filter having
the gain characteristic shown in Fig. 5-1B. The filter and
spectrum have a relative frequency translation as indicated by
the arrows of opposite sense. The resultant display, shown in
Fig. 5-1C, has the units of frequency, w, but takes a real time,
sy ‘ t, to occur. Some of the fine detail of the theoretical spectrum,
t - | shown in 5-1A as a Fourier transform F(w), is lost in 5-1C
because of the finite frequency width and, hence, resolution of
the filter. As the resolution filter gets narrower, the ideal and
actual spectral representations get more alike until, when the
filter has zero bandwidth (in effect, an impulse function), the
ideal and actual representations become the same. The
transformation of the ideal spectrum into the actual spectral
representation by the relative frequency translation between
convolution filter and signal is known as convolution. Convolution was
- previously discussed in Chapter 3, and a further discussion will
(C) SPECTRUM ANALYZER DISPLAY ‘ be found in the appendix to this chapter.

GAIN

Y

{B) FILTER GAIN CHARACTERISTIC

DISPLAY
AMPL | TUDE

While the basic operation of the system is apparent from Fig. 5-1,
there are many ramifications, particularly with regard to the

speed of relative-frequency translation, which are not at all obvious.
Let us now consider some of the details of the sweeping-signal
spectrum-analyzer system.

Fig. 5-1. Sweeping-signal spectrum-analyzer spectrum
representation.
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CW RESPONSE

pulse
width

While there are many possible configurations (e.g., swept IF or
swept front end) as discussed in another chapter, all spectrum
analyzers of the type under discussion contain a mixer, sweeping
oscillator, and resolution filter. The simplest arrangement, which
is sufficient for the purpose of theoretical discussion, is shown

in Fig. 5-2. The time/frequency diagram for this system is shown
in Fig. 5-3. Here it was assumed that system operation is based
on a mixer output composed of the difference frequency
between local oscillator and signal. Likewise, it was assumed

that the signal is composed of two discrete frequency components.
The signal components at frequencies f] and f; are shown as
straight lines having infinitesimal frequency width and infinite
time duration.

A constant-frequency signal is converted to a frequency sawtooth
by combining it in a mixer with a frequency sawtooth from the
swept local oscillator, In our example, it was assumed that the
mixer output consists of the difference frequency between the
local-oscillator frequency sawtooth and the input. Other
combinations, such as the sum of the frequencies, lead to similar
diagrams. The display consists of pulses whose time position is
determined by the time of intersection of the filter passband and
the sweeping signal, and whose width is equal to the time interval
during which the sweeping-signal frequency is within the filter
passband. The bursts or pulses generated by the relative translation
of signal and filter are pseudo impulses representing the frequency-
domain characteristics of the signal. While the time position of
these pulses represents the input signal frequency and is determined
by the incoming signal, the width 7 of these pulses is determined
solely by the spectrum-analyzer parameters. The width 7 is equal
to the time that the sweeping-signal frequency is within the
passband of the filter, and from simple geometrical considerations
is:

T (5-1)

T =

oo

)

£

FREQUENCY —— =

FREQUENCY ———

FREQUENCY—»—

NN 1 AN

SIGNAL O—— ]  MIXER RESOLUT I ON

FILTER

MWV

SWEPT
LOCAL
ASCILLATOR

Fig. 5-2. Basic spectrum-analyzer block diagram.
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Fig. 5-3. Time/frequency diagram, sweeping-signal spectrum
analyzer.
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The sweep time T is the time it takes the electron beam to
traverse the horizontal width of the CRT. Hence the physical
width of 7 in inches or centimeters does not change with
changing T. The actual time duration of 7, however, given by
equation (5-1), is directly determined by the sweep time 7. At
low sweep time T, or with narrow resolution-filter bandwidth B,
or with large dispersion D, the pulse width r can become quite
small. For example, a full-screen sweep time of 1 ms
(100 ps/div), a resolution bandwidth of 10 kHz and a dispersion
of 10 MHz result in a burst at the filter output which is only
1 us wide. Such a narrow pulse cannot be passed by a
10-kHz-wide filter without distortion. As with any pulse that
is passed through a filter of insufficient bandwidth, the output
is of lesser amplitude and greater time duration than the input,
as illustrated in Fig. 5-4. Since the distorted response is what
appears on the CRT screen, the loss in amplitude shows a loss
in sensitivity, and the apparent widening of the resolution
bandwidth shows a loss in resolution. Analytical expressions,
relating the amount of loss to the sweep time 7, to actual
resolution bandwidth B and to dispersion D, have been developed
by many people. Some of the results are based on convolution
1

techniques using the € 4 bandwidth as the standard! , while
others calculate the transient response using a 3-dB standard
bandwidth along the lines discussed in Section 4.6, Volume XI
of the Radiation Laboratory Series®. When the differences in
bandwidth are accounted for, the final results are essentially the
same for both methods. The ratio of apparent resolution
bandwidth R to actual bandwidth B is:

gL
R D 2 ;
i [1 +0.195 (TB“) ] : (5-2)
where B is the 3-dB bandwidth.
i phase
Batten, et al., “The Response of a Panoramic Receiver to CW response

and Pulsed Signals,” Proc. IRE, June, 1954,

Chang, “On the Filter Problem of the Power Spectrum Analyzer,”
Proc. IRE, August, 1954.

2Spectrum Analyzer Techniques Handbook, Polarad Electronics
Corp.

“Spectrum Analysis,” Application Note 63, Hewlett Packard.

LONG SWEEF TIME

SHORT SWEEP TIME

TIME

Fig. 5-4. Resolution distortion for short sweep time.
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Fig. 5-5. Loss in sensitivity and resolution as a function
of sweep rate.

The amplitude loss factor, o, is

a=[1+0.195( = )] 4, (5-3)

TR?
where B is the 3-dB bandwidth.

Fig. 5-5 is a plot of equations (5-2) and (5-3). While these
equations are theoretically correct, they do not necessarily
correspond to the behavior of actual equipment. The discrepancy
between theory and practice arises because the theoretical results
are based on a filter having a gaussian amplitude response and
linear phase response which in practice is not necessarily the case.
Differences between theoretical and actual phase response can be
particularly important. As a matter of fact, with appropriate
phase response one can achieve pulse compression, such as
utilized in chirp radar, so that resolution need not be degraded

at high sweep rates®.

3W. R. Kicheloe, Jr., “The Measurement of Frequency with
Scanning Spectrum Analyzers,” Report SEL-62-098, Stanford
Electronics Laboratories.
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While pulse-compression spectrum analyzers are presently
economically unfeasible, the theory is nevertheless sound.
Thus, while equations (5-2) and (5-3) are useful as a general
guide to spectrum-analyzer performance, there is no substitute
for experimental data on the actual equipment in question.

In operating a spectrum analyzer, it is usually the practice to
increase the sweep time T until the display is no longer distorted.
There are, however, situations when this is not possible. Such a
situation might arise when the signal under investigation has a
limited time duration so the complete analysis must be performed
in less than a specified time interval. Under such circumstances,
sweep time T and dispersion D are usually fixed by the signal
parameters and the only variable is the resolution bandwidth B.

Which value of actual bandwidth B results in minimum displayed
resolution R? This is easily obtained* by differentiating (5-2)

and Eetting% equal zero. Thus:

ARy

] =0. (5-4)
From which it follows that:
1 D
Bo 37T > (5-5)

where B, is the optimum bandwidth which, at a given setting
of T and D, results in minimum (or optimum) displayed
resolution bandwidth R,.

When B, is substituted back into equation (5-2), the result is
that R =42 - B, . Theoretically, then,

Ro =y s (5-6)

“Engelson & Long, “Optimizing Spectrum Analyzer Resolution,”
Microwaves, December, 1965.

any other value of B results in a larger R. R, and B, are
generally known as optimum resolution and optimum resolution
bandwidth respectively. While the optimum resolution is generally
proportional to the square root of the ratio of dispersion to
sweep time, the proportionality constant need not necessarily be
unity as given by (5-6). Equation (5-6) is based on a gaussian,
linear phase response filter which is not usually the case in
practice.

PULSED SIGNALS

sin x

%
energy
distribution
in
frequency
spectrum

In Chapter 3 it was shown that the theoretical spectrum of a

train of pulses has a :sl)r;_x shape as shown in Fig. 5-6. This

sin x
X
is that the

curve can be interpreted in two ways. One interpretation
sin x

is the envelope formed by the locus of the end

points of the fundamental and harmonic sinusoids which combine
to produce the pulse train. The display consists of a set of
vertical lines each representing a sinusoid. If the spectrum-
analyzer dispersion were so adjusted as to show only one of these
lines on the CRT, the observer would have no way of knowing
that the input to the analyzer is not a single sinusoidal CW signal.

i/

AMPLITUDE

TIME
—

gl

(AY PULSE TRAIN IN TIME OOMAIN

AMPL | TUGE

L AF J FREGUENCY

(8) PULSE TRAIN IN FREQUENCY. DOMA N

Fig. 5-6. Pulsed-signal analysis.
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sin x

X
the energy distribution of a single pulse. Here the curve is not
an envelope or locus curve, but is the actual shape of the spectral
distribution. The spectrum is dense and continuous, and one no
longer speaks of individual harmonics or CW responses. The
detailed reasoning involved in these two interpretations will be
found in Chapter 3. What is of interest here is the processes in
the analyzer that lead to one or the other type of display.

Another way of looking at the shape is that this represents

Let us consider the dense spectrum first. Here the object is to
obtain the spectral distribution of a single pulse. Unfortunately,
this cannot be done with the type of spectrum analyzer under
discussion. This is because the speed of relative frequency
translation between the filter and signal is limited, so only a small
range of the frequencies of interest can be checked during the
short time that the pulse exists. One way out of this dilemma is
to use many analyzers operating in parallel and look simultaneously
at the different frequency portions of the same pulse. Another
way is to have many identical pulses at which a single analyzer
can look sequentially. Here many systems working a short time
with one pulse have been traded for one system working a long
time with many pulses. As long as the many pulses are identical
and each succeeding measurement is independent of all previous
measurements, the results of the two configurations will be
identical. In considering dense spectra, we use the many-pulses,
single-analyzer system. While the requirement that all pulses in
the pulse train have the same characteristics can only be controlled
by the source of the signal, the need for each successive
measurement to be independent of all previous measurements is
under the control of the spectrum-analyzer user. All that is
needed to make each measurement independent of all others is
that all traces (e.g., electron beam deflections) of the previous
measurements be dissipated in the interval between measurements.
Since measurements are performed one per pulse, the measurement
interval is the interpulse interval. Also, the memory of a circuit
is essentially proportional to its time constant, so the shorter the
time constant the less trace is left from previous measurements in
a given time interval. Finally, time constants are inversely
proportional to bandwidths and interpulse intervals are inversely
proportional to repetition rates. Hence, for each measurement to
be independent of all others, it is necessary that the resolution
bandwidth be greater than the pulse-train repetition rate. Let us
now consider what actually happens in circuits.

pulse

train

B>

wifrs

Fig. 5-7 shows a time/frequency diagram similar to Fig. 5-3,

only the input consists of a pulse train. Each of the pulses,
theoretically, has a broad spectrum so the signal exists at many
frequencies simultaneously. However, the signal is not continuous
in time, occurring in narrow bursts, ¢y seconds in duration every
T seconds. The distributed spectrum of each pulse is in turn
moved in frequency by mixing with the sweeping local oscillator,
resulting in the mixer output as shown in Fig. 5-7. Every
intersection between the mixed sweeping spectrum and the
stationary filter results in an output. As long as the pulse rate
(1/T) is less than filter bandwidth B, each input pulse produces
an output which is independent of all the other pulses so the
resultant display has the shape of the theoretical single-pulse
dense spectrum.
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Fig. 5-7. Time-frequency diagram for pulsed-signal analysis.
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Each time a pulse occurs there is an output. Hence, the
composite output consists of lines, one line per pulse. This means
that the total number of lines is equal to the number of pulses
per sweep. As the sweep time is changed, the number of lines
will change. These lines are not Fourier or spectral lines, but are
strictly determined by the number of pulses per sweep and are
usually termed rep-rate lines. Since the number of lines forming
the spectrum depends on the sweep time, it is necessary that the
sweep time be sufficiently long to generate enough pulse
intercepts to define adequately the shape of the spectrum. It
has been found experimentally that 10 lines per main lobe and

5 lines per side lobe is about the minimum that one can use.

Besides the requirement that resolution bandwidth be greater
than the pulse repetition rate, there is also a constraint on the
resolution bandwidth as a function of pulse width. The
involvement with pulse width cannot be avoided, since, in truth,
there are no CW signals, only short pulses and long pulses. We
must answer the question of when a long pulse (seconds, minutes,
hours or days in duration) can be treated as a CW signal. The
matter can be considered from a time-domain or frequency-
domain point of view, and both analyses lead to the same result.
From a time-domain point of view, a long pulse might as well
be a continuous wave if it exists long enough to trace the shape
of the resolution filter. From Fig. 5-3 this means that the
spectrum analyzer cannot distinguish between a CW signal and

a pulse whose time duration is greater than 7 = % T, as given by

equation (5-1). Offhand one might think that 7 would be made
as small as desired simply by decreasing the sweep time 7. But
there is an optimum beyond which one runs into trouble as given
D
2.27B% °

by equation (5-5). T = Substituting for T, one gets:

B D

B ._D _ 1 ;
T=D 2278 3278 - (5-7)

This means that, from a time-domain point of view, the
demarcation line, between a pulse looking like a pulse or like

a CW signal, is a pulse width about one-half of the inverse of
resolution bandwidth. From a frequency-domain point of view,

a long pulse looks like a CW signal when the resolution bandwidth
is sufficiently wide to encompass most of the spectrum energy.

to Vs B
for detail

Most of the pulse energy is in the main lobe, which has a
frequency width of % , where £ is pulse width. Hence, we come

to the conclusion that 7B ~ 2 is the demarcation line between
a pulse-like spectrum and a CW-like spectrum. Naturally, a
resolution bandwidth which is just on the border line will not
permit the display of the fine detail of a pulsed spectrum. It has
been found experimentally that for adequate detail the pulse-
width bandwidth product should be less than one-tenth, thus:

tyB < 0.1 (5-8)

A major difference between a pulse-type response and a CW-type
response is in the width of the pulse that the final amplifier has
to pass. In the CW case, we are dealing with the relatively wide,
7, pulse due to the steady-state response of the resolution
amplifier, while, in the pulse case, we are dealing with the much
narrower pulse, ¢, resulting in a transient response of the
resolution amplifier. While the continuous-type spectrum is of
major interest in pulsed RF, one can obtain either type of display
by simply changing the resolution bandwidth of the spectrum
analyzer. Table 5-1 details the major differences between the
two types of display.

CW-TYPE SPECTRUM CONT INUOUS-TYPE SPECTRUM

LINES OM SCREEN ARE FOURIER SPECTRAL LINES ON SCREEN ARE REPETITION-RATE

COMPONENTS LINES

LINE SPAC |NG DEPENDS ON D|SPERS|ON LINE SPACING 1S DETERMINED BY SWEER
SETTING AND 1S |NDEPENDENT OF SWEEF TIME ANO |5 INDEPENDENT OF DISPERSION
TIME SETTING

MATHEMAT ICAL DESCRIPTION |S FOUR|ER MATHEMAT ICAL DESCRIPTION |S FOURIER
SERIES INTEGRAL

RESOLUTION SETT|NG 15 B < REP RATE RESOLUTION SETTING |S B > REF RATE
THE CRT DISPLAY SHOWS THE AMPLIFIER THE CRT D|SPLAY SHOWS THE AMPLIFIER

STEADY-STATE RESPONSE TRANS|ENT RESPONSE

THERE IS STILL ENERGY I[N THE CIRCUIT ALL THE ENERGY IN THE CIRCUIT FROM
FROM PREV|QUS PULSES WHEN THE NEXT THE PREVIOUS PULSE HAS DECAYED TO
PULSE OCCURS ZERQ WHEN THE NEXT PULSE OCCURS

BANDWI DTH-PULSEWIDTH PRODUCT 1§ BANDWIDTH-PULSEWI DTH PRODUCT 15

Bto @] Bto <1

Table 5-1.



A el iuoe

(VOLTS)

92 specTRUM

THEGRETICAL DENSE >

ENERGY = (AREA)Z

A= 3iff?l = SilJ‘.‘]

\/ ; ‘r \/ e
Iy ¥

Fig. 5-8. Continuous-spectrum energy distribution.

SENSITIVITY

noise

noise
Vs
bandwidth

Sensitivity is defined as a rating factor of the ability of the
spectrum analyzer to display signals. Sensitivity is usually
specified as the signal power which is equal to the analyzer noise
power at a particular bandwidth; this is known as the “signal-
plus-noise is equal to twice-noise” method. Spectrum analyzer
noise level determines the sensitivity — less noise means better
sensitivity. A/ amplifiers generate noise. Even an ideal amplifier
would generate thermal noise, because of random current
fluctuations in the input impedance. Thermal noise power can
be computed from

N =kTB,
where,
k = Boltzmann’s constant
= 1.37 - 10?? watt-seconds/degree,
T = absolute temperature

(measured from absolute zero, i.e., =273° Celsius —
usually assumed to be 290° Absolute)

The thermal noise power and, hence, the sensitivity is directly
proportional to the bandwidth. A wider bandwidth means a
poorer sensitivity. For example, an ideal amplifier having a 1-MHz
bandwidth has a theoretical sensitivity of -114 dBm, while the
same amplifier with a 100-kHz bandwidth has theoretical
sensitivity of -124 dBm. Such calculations lead to the conclusion
that for best sensitivity the spectrum analyzer should be operated
at narrow resolution bandwidths. The conclusion is correct for
discrete CW signals but not for pulse signals. This is because a
discrete signal has a spectrum which, at least in theory, has zero
frequency width. A reduction in bandwidth reduces the noise but
should have no effect on the signal. On the other hand, a pulse
signal, which generates a continuous dense type of spectrum is
affected by the resolution bandwidth. This is because the power
level of a continuous spectrum is defined on a per-unit-bandwidth
basis, as discussed in Chapter 3. This point is graphically
illustrated in Fig. 5-8. Here is shown the continuous ﬂ%
spectral distribution, typical of a rectangular pulse; energy is
proportional to area squared, so the wider the resolution
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bandwidth the greater is the intercepted area and the larger the
output. Eventually, when the bandwidth is so large that it
intercepts most of the area, there is no further increase in output
with an increase in bandwidth. However, the resolution
bandwidth cannot be increased to this point without losing the
fine details of the spectrum. As discussed previously, for proper
definition of spectrum details the bandwidth should be about
one-tenth of the inverse of the pulse width, Bfy < 0.1. Thus,
for the same peak amplitude in time domain, a continuous
spectrum for a pulsed signal will have a smaller amplitude than
the discrete spectrum of a CW signal. This is intuitively apparent
from the observation that equal peak amplitudes mean equal
instantaneous power, which in one case is concentrated at one
frequency and in the other case is distributed over a range of
frequencies. Thus, there is a loss in sensitivity for pulsed

signals as compared to CW signals.

The formula from which the loss in pulsed-signal sensitivity can
be computed was first reported in Volume XI of the Radiation
Laboratory Series® . This was later shown to be a simplified
version of a more complicated expression®. The simplified
expression, which is sufficiently accurate for our purposes, is:

_ 3
= 'itOB
CK(iB =20 1()g]_0 é%tt}l; (5'{;)

where ¢ is pulse width and B is 3-dB bandwidth. Fig. 59 isa
graph of this relationship. Therefore, for discrete spectra the best
sensitivity is obtained at narrow resolution bandwidths while, for
continuous spectra, best sensitivity occurs at wide resolution
bandwidths.

SMontgomery, “Technique of Microwave Measurements,”
Radiation Laboratory Series, Vol. XI, Sec. 7-2.

5Metcalf, et al., “Investigation of Spectrum Signature
Instrumentation,” [EEE Trans, EMC, June, 1965.
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Fig. 5-9. Loss in sensitivity, pulsed-RF versus CW.

APPENDIX

The convolution theorem is given in the Fourier transform
section of Chapter 3. There it is indicated that the convolution
of two time functions, f; (¢) and £, (1), leads to a frequency-
domain description which is the product of the two frequency-
domain functions, £ («) and I, (w):

+co
‘/;) [1(0) fr(t=1) dr < Fi(w) Fy(w) (5-10)
Convolution is of special interest because it is a mathematical
description of the relative translation of two functions, f(r) and

f5 (), where the variable (7) indicates the relative movement of

the functions. Convolution, therefore, describes the process

taking place in the sweeping-signal spectrum analyzer, where f,(7)

is the stationary filter and f,(z-7) is the moving signal. Since the
integral of a unit impulse is unity, it follows that convolution with

an impulse leads back to the original function:

+oo
L fr) 6(t-r) dr = f(2) (5-11)
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This means that the narrower the resolution bandwidth, the

closer is the displayed spectrum to the theoretical input spectrum.
Of course, there are constraints, such as sweep speed and dispersion
on how narrow the resolution bandwidth can be made.
Nevertheless, for theoretically ideal spectrum analysis the resolution
bandwidth has to be infinitely narrow.

3

The effect of the width of the sampling function, which in

our case is determined by the resolution filter, is best illustrated
graphically (see Fig. 5-10). We assume a triangular function
fo(2) sliding past a stationary rectangular sampling function f; (7),
as shown in Fig. 5-10A. We get the graphs in Fig. 5-10C which
are the functions to be multiplied and integrated by the
intermediate step, shown in Fig. 5-10B, which is just a change of
variable.

Fig. 5-10D illustrates the actual integration, which is just a
determination of the area under the multiplied function as shown
by the shaded area. Fig. 5-10E is the final result, a distorted
version of f,(#). As the width of the sampling function f;(#) gets
narrower, the final result looks more and more like the input
f5(8). In the limiting case, when the resolution filter has an
infinitesimal bandwidth, the output function becomes identical

to the input function. As a practical matter, it has been found

that for a 30X

spectral distribution, a filter bandwidth less than

one-tenth of lobe width reproduces the original function with
sufficient fidelity.

1) A spectrum analyzer is specified as having a certain sensitivity
at a 100-kHz resolution bandwidth. The unit seems not to
meet its specifications by 5 dB. The measurement conditions
are:

Resolution bandwidth = 100 kHz

L}

Dispersion = 1 MHz/div or 10 MHz full screen

Sweeptime = 10 us/div or 100 us full screen



What is wrong? From equation (5-3), the loss in sensitivity due
to too fast a sweep rate is:

2173
a= [1 ¥ 0.195(71—‘32) ]

Substituting we have

1 1

21 4 ——
107 _ & _ 1
azll + 0.195(10,4 ; 1010) ] = (I + 19,5) =513

or a loss of 20 logyy 2.13 = 6.6 dB.

This accounts for the loss in sensitivity. Note that we cannot
use precise numbers: Bandwidth B in equation (5-3) is the
3-dB bandwidth, while the resolution bandwidth is frequently
defined as the 6-dB bandwidth. However, because of errors
caused by differences between the actual and assumed phase
responses, it is impossible to get an accurate number no
matter what bandwidth is used. All that the above calculation
can tell us is that the discrepancy of 5 dB is not unreasonable.

2) It is desired to observe the spectrum of an FM modulated
signal. The approximate deviation is 100 kHz and the
approximate FM rate is 5 kHz with a 100-MHz carrier. These
numbers are well within the capability of many spectrum
analyzers, including the Tektronix 491. However, the FM
signal is initiated by an explosion and is expected to last no
more than 1 ms. Is the measurement still possible?

We calculate the optimum resolution bandwidth which,
from (5-5), is:

B, = 0.66y2

105
0.66 m = 6.6 kHz.

The actual resolution is R, = ﬁBO =~ 93 kHz.

B,

Conclusion: The FM sidebands cannot be resolved.

3) It is desired to check a radar set operating at the rate of
10 pulses per second; what is the fastest reasonable sweep
time for the analyzer? Assuming that we will observe
the main lobe and one side lobe on either side, we need
at least 20 rep-rate lines for appropriate definition of the
spectrum envelope. Thus, we have to sweep at two seconds
per screen diameter or slower.

4) The radar set in example 3 uses 1-us pulses; what
dispersion should we use? The width of a side lobe is %0
and the width of the main lobe is —% . To observe the
main lobe and two side lobes we need a full screen
dispersion of % =4 MHz or 400 kHz/div.

5) For proper spectral envelope definition, what is the widest

permitted resolution bandwidth? The relationship is

t0B < 0.1, resulting in B = Ot—-ol = 100 kHz.

6) What is the loss in sensitivity compared to CW under these

conditions? The formula is & = % ty B; therefore,

o =

rafus

6 . 105 = 3 1071
10 10 5 10

oy = 20 logy 3 107 = -16.5 dB,

or a loss in sensitivity of 16.5 dB.

7) Suppose the pulse rate is increased from 10 Hz to 200 kHz.
Can the spectral distribution still be obtained? The answer
is NO! We need a resolution bandwidth greater than the
pulse repetition rate of 200 kHz in order to get a distributed
spectrum display, but a resolution bandwidth which does not
meet the requirements of ry 8 < 0.1 does not give adequate
definition of the spectrum shape.
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THE MEASUREMENT PROBLEM

There are four basic types of measurements that are desirable:
Absolute frequency, relative frequency, absolute amplitude
and relative amplitude. Not all spectrum analyzers have the
sophisticated circuits which permit the absolute measurement
of amplitude, however, most measurements do not require this.
The most frequent need is for the determination of relative
amplitude and relative frequency. Though there are, at most,
four different types of measurements, some spectrum
determinations can get quite complex. This is because in most
instances it is not just a matter of making a single relative-
amplitude measurement or a relative-frequency measurement.
Most measurement problems call for a succession of several
measurements, the sequence of which is important; these
measurements may each call for different spectrum-analyzer
control settings; and finally the measured data may have to be
correlated or modified by computation before the final results
are obtained. These aspects of measurements, which might be
termed signal interpretation, are considered in subsequent
chapters. In this chapter we will consider the four basic
parameters:

Relative frequency
Absolute frequency
Relative amplitude
Absolute amplitude



FREQUENCY

frequency
measurement

Most spectrum analyzers have two frequency-related controls,
CENTER FREQUENCY and DISPERSION. The CENTER
FREQUENCY is an absolute-frequency control while the
DISPERSION is a relative-frequency control. Of course, changes
in the CENTER FREQUENCY setting give relative or frequency
difference numbers. Thus, if a signal component is at the center
of the CRT when the CENTER FREQUENCY dial reads

100 MHz and a different signal component tunes to the CRT
center when the CENTER FREQUENCY dial reads 150 MHz,
we conclude that the frequency difference between these signal
components is 50 MHz. Here we have determined the relative
frequency by taking the difference between two absolute-
frequency readings. The problem with this method of relative-
frequency measurement is poor accuracy. This is particularly
true at high center frequencies. Thus, a 50-MHz frequency
difference can be reasonably measured at a center frequency of
100 MHz but is difficult to determine accurately at a center
frequency of 10 GHz. Because of these problems, it is
recommended that, whenever possible, frequency differences be
determined by using the DISPERSION rather than the CENTER
FREQUENCY controls. When a frequency difference greater
than the full-screen dispersion range is involved, the only way to
make the measurement is to use the CENTER FREQUENCY
control, otherwise the measurement is made by use of the
DISPERSION control.

The DISPERSION control is calibrated directly in terms of
frequency difference. Thus, for the Tektronix Type 491, for
example, the DISPERSION control is calibrated in a sequence of
numbers from 1 kHz/div to 10 MHz/div. Suppose the operator
wishes to determine the frequency difference between two

signal components which appear on the CRT separated by

3.8 divisions and the dispersion setting is 5 MHz/div. The answer
is 3.8 div -+ 5 MHz/div = 19 MHz. The accuracy of this method
is independent of center frequency, permitting the determination
of quite small frequency differences, such as 1 kHz, at very high
frequencies, such as 40 GHz.

AMPLITUDE

measurement

by
attenuator

by
graticule

Some of the newer spectrum analyzers have amplitude controls
which are calibrated in terms of the absolute level of the

spectral components. For example, the Tektronix Type 1L5

has a front-end attenuator that is calibrated for the deflection
factor in units of RMS V/div. This permits the measurement of
the absolute level of the various spectral components which
comprise the input signal. Some spectrum analyzers are also
calibrated in dBm when operating in the logarithmic vertical mode.
In addition, all spectrum analyzers contain an attenuator, either
at the input or further back in the system, which can be used
for accurate relative-amplitude measurements. The measurement
is performed by using the calibrated attenuator to reduce the
display amplitude of the larger signal component to the former
level of the smaller signal component. The amount of inserted
attenuation is the ratio, or difference in dB, between the two
signal components. Relative-amplitude measurements can also be
performed by comparing the display height in divisions between
the various signals with the spectrum analyzer in the linear
vertical mode of operation. Direct measurement off the graticule
is also possible in the logarithmic vertical mode, provided the
graticule is calibrated in dB per division. Among these techniques,
the most accurate is usually that involving the use of a calibrated
attenuator, because amplifier nonlinearity does not affect the
measurement.

MEASUREMENT LIMITATIONS

While the basic technique of frequency or amplitude measurement
is simple, there are many points to be aware of when performing
these measurements. These points pertain to generally good
measurement practice and an awareness of the spectrum-analyzer
limitations. Thus, a relative-amplitude difference of 100 dB
cannot be measured with any presently available spectrum
analyzer, a point which is easily determined from the maximum
dynamic-range specifications. A more subtle point might be the
fact that, although the specifications for the Tektronix Type 491
indicate a resolution bandwidth of less than 1 kHz and an on-
screen dynamic range of at least 40 dB, it is impossible to observe
a small signal 40 dB down from a larger signal removed by only

1 kHz. This is because the 1-kHz specification pertains to the
6-dB bandwidth, while the 40-dB bandwidth is much wider. Let



us, therefore, consider some of the spectrum-analyzer measurement
limitations and some of the methods, or tricks of the trade, that
can be used to improve a spectrum analyzer’s measurement range.

ABSOLUTE FREQUENCY

spurious
response,
3 types

All spectrum analyzers have a dial or other type of readout
device that indicates the frequency that is supposed to correspond
to the center of the CRT. Unfortunately, spectrum analyzers
have spurious responses, so the readout does not always represent
a true indication of an incoming signal. The major problem in
absolute-frequency measurement is, therefore, to differentiate
between the true response and the spurious responses. There are
many types of spurious responses and these affect the spectrum
analyzer to a different degree.

Three types of spurious responses affect the center-frequency
readout capability. These are: [F feedthrough, image and
harmonic conversions. These have different effects and are
identified in a different manner, depending on whether the
spectrum analyzer is swept front-end or of the swept IF variety.
Let us consider the swept IF first.

Fig. 6-1 is a block diagram of a basic swept IF system. A
portion of the input frequency spectrum, having a maximum
frequency width equal to the bandwidth of the first amplifier,

is translated in frequency and applied to the second mixer where
it is treated the same as an input to a swept front-end system.
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Fig. 6-1. Swept IF spectrum analyzer, basic block diagram.

In a properly designed system, the second conversion should not
generate any spurious responses because the wideband amplifier
controls the frequency width applied to the second mixer.
Hence, our interest is in the first frequency conversion, which

is described by equation (6-1).

?ﬂfLO x nfR]’-‘ =.f.mo5 (6 1)

”fRF E meO =fmo,

where:

local oscillator frequency

fLo

1l

frE = signal input frequency

fino = mixer output frequency

m, n = positive integers including zero

The CENTER FREQUENCY dial, or readout, is normally
calibrated to indicate the local-oscillator frequency f1 g, or a
harmonic of f, g, in combination with the IF-amplifier center
frequency f;. From equation (6-1) the possible combinations
are:

fd =me0 +f0,
fa =mfLo - fo (6-2)
fa=1fo-miLo-

When the mixer output frequency (f, o) is equal to the IF center
frequency (fy), there is a spectrum-analyzer response. The dial
frequency (fy) may or may not be the same as the signal input
frequency (fgrp) at that time. If the dial and signal frequencies
are the same, we are dealing with a true response, otherwise the
response is spurious.



IF
feedthrough

image

Consider, for example, the IF feedthrough. This occurs when the
input signal frequency is equal to the IF-amplifier center frequency,
thus frr = fo. The local-oscillator frequency (f1 o) has nothing

to do with this response, hence from (6-2), it is clear that the

dial indication (f3) has no validity for this response. The IF-
feedthrough spurious response can only occur for the narrow range
of input frequencies that fall within the passband of the first IF
amplifier. This frequency range is indicated as fj to f, in Fig. 6-1.
The IF-feedthrough spurious response is recognized by the fact

that the setting of the RF-frequency tuning dial has no effect on it.

Another bothersome spurious response is the image. The
image occurs when the signal frequency satisfies one of the
mixer equations, but the dial is calibrated for one of the other
two possible conversions. For example, suppose the dial is
calibrated for f] g - fg = fg. An input signal of frequency
JRE =fg would satisfy this equation and be a true response.
However, an input signal whose frequency satisfies the equation
fi- fLo =fo, where fj # f4, will also appear on the screen.
This second response is the image. The image frequency (f;)
and that of the true response, corresponding to the dial

setting (f4), are separated by twice the IF center frequency
(fp). This can be shown as follows:

fLo -fa=fo true response

-fLo +fi =fy image response

sum, fi-fa=2f (6-3)

In a swept IF system, the image is recognized by the fact that
the signal display will move across the screen in the opposite
direction to the true response. This will be recognized from
equation (6-1), where for one conversion the output frequency
increases with increasing local-oscillator frequency, while for the
other conversion the output frequency decreases with increasing
local-oscillator frequency. This is illustrated below.

TfLO ‘fd =fm0Ts
B TfLO = fmo¥

where 1T means increasing frequency and | means decreasing
frequency.

Of course, in order to determine which of the two responses is
the image, one has to know which of the three possible
conversions corresponds to the dial calibration. When it is
discovered that the on-screen response is the image, it is necessary
that the dial setting be changed by twice the wideband IF center
frequency in order to obtain the true response. Whether the dial
numbers have to be increased or decreased depends on which
conversion the dial is calibrated for.

The last of the spurious responses that can cause ambiguity in
absolute-frequency measurements is the harmonic conversion

response. This is due to the signal combining with a harmonic
of the local oscillator to produce an IF frequency output at a
dial setting which does not correspond to the signal frequency.



harmaonic
conversions

dial
change

Vs
frequency
change

Not all harmonic conversions are spurious responses. Many
spectrum analyzers utilize harmonic conversions to increase
frequency coverage. Thus, in the Tektronix Type 491, the
fundamental, second, third, fifth, and tenth local-oscillator
harmonic conversions are used. The other harmonic conversions
such as fourth or sixth are considered spurious responses,
Harmonic spurious responses are identified by the rate of
movement across the CRT as a function of RF center-frequency
tuning. This is because the rate at which the mixer output
frequency (fi o) changes is determined by mf1 o, while the
number on the dial changes at the rate of mgf1 . Unless the
two harmonic numbers, my and my, are the same, the rate of
frequency change on the dial will not agree with the rate of
frequency change on the CRT. In practice, the test is to make
a frequency difference measurement using the RF center-
frequency dial and to compare the numbers obtained with a
frequency difference determined from the dispersion. If the
response on the screen is a harmonic spurious response, the two
numbers will disagree by an integer fraction such as 1/2, 2/3,
4/3, etc. If, for example, the dial is calibrated for my = 1,
while the signal frequency is such that to get the IF center
frequency (fp) it must combine with m; = 2, tuning the signal
across the full dispersion of the screen will result in a dial
number change which is one-half that of the dispersion.

SWEPT FRONT END

So far, we have considered how to verify the center-frequency
reading for a swept IF system. Similar problems exist, though
not to the same extent, for the swept front-end system. Fig. 6-2
is a basic block diagram of a swept front-end unit. The spurious
response problem is much alleviated in this system because the
first [F amplifier, being of the narrowband variety, can be
constructed at a much higher frequency than the wideband unit
in a swept IF system. A higher IF amplifier frequency means
greater frequency separation between the true response and the
spurious responses and, hence, fewer difficulties. Of course, one
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Fig. 6-2. Swept front-end spectrum analyzer, basic block
diagram.

pays for this with greater sweeper-system complexity — hence,
more weight, size and cost. While this type of system has the
same type of spurious responses as the swept IF unit, the
appearance and identification of these responses are different
and sometimes more difficult. Let us consider these spurious
responses in turn.

The IF feedthrough response is caused by an input signal whose
frequency is within the passband of the first IF amplifier, and
which does not enter into a conversion or mixing with the first
local oscillator. In the swept front-end unit, the first local
oscillator is the sweeping local oscillator. Hence, the IF
feedthrough is not a swept signal. This means that a continuous-
wave input is not converted into its frequency-domain equivalent
of a narrow pulse. The continuous-wave input exists at all

times within the passband of the IF amplifier, causing the whole
baseline to deflect or rise. The IF feedthrough spurious response
is, therefore, recognized by a shift in the baseline level.



As in the swept-IF system, the image frequency is separated
from the true response frequency by twice the IF amplifier center
frequency. However, unlike the swept-IF system, the image
response does not move on the screen in an opposite direction to
the true response as the center-frequency dial is tuned. These
responses will move in opposite directions with input-signal
frequency change but will behave the same with local-oscillator
frequency change. This point is demonstrated in the
time/frequency diagram, Fig. 6-3. Two CW signals are applied

to the spectrum analyzer at frequencies frry and frga,
respectively. One uses the fi g - fRE1 = fino response, while
the other corresponds to the fRr2 - /Lo = fmo response. One
of these responses is the image, while the other is the true
response — for our purposes it does not matter which is which.
As the sweeping local-oscillator center frequency is changed, the
frequency sawtooth moves from the curve labeled f1 o to the
one labeled f102.
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Fig. 6-3. Time/frequency diagram of image response tuning
in swept front-end spectrum analyzer.

The corresponding mixer outputs are fj g1 - frr1 and

fLo2 - frEp1 for one response and frp2 - fLo and

frE2 - fLo? for the other response. From Fig. 6-3 it will be
observed that regardless of which conversion is utilized the
response on the CRT screen moves the same way. Hence, there
is no way to distinguish the image from the true response simply
by operating the spectum-analyzer controls in a swept front-end
system. The only way to observe a different effect on the CRT
display for these two responses is to change the frequency of
the actual input signal.

In the case of harmonic conversions, the swept front end behaves
the same as the swept IF system. These spurious responses are
identified in both systems by noting differences in signal tuning
rate as compared to RF center-frequency dial indications.

AMPLITUDE MEASUREMENTS

Amplitude measurements are of two types — relative and
absolute. All spectrum analyzers can be used for relative-
amplitude measurements, but only some have the capability of
absolute-amplitude measurements without resorting to external
signal generators for amplitude calibration. While many
spectrum-analyzer parameters, such as conversion flatness, gain
stability, etc., help determine whether the unit is capable of
absolute-amplitude measurements, the user need not be aware
of the details. The user can determine whether his instrument
is or is not capable of absolute-amplitude measurements by
simply referring to the specifications. The establishment of the
instrument limitations for relative-amplitude measurements is,
however, not a simple matter. This aspect of amplitude
measurements will now be considered.

Relative-amplitude measurements are of three types:

I.  Measurement of the relative amplitude between a large
signal and a nonharmonically related small signal.

II. Measurement of harmonic distortion, which means
finding the relative amplitude between a large signal
and a harmonically related small signal.



relative
amplitude

III. Intermodulation distortion, which means the
measurement of the relative amplitude between small
and large signals in the presence of more than one
large signal.

I. Nonharmonically Related Small Signal In The Presence Of Large Signal

maximum
useful
dynamic
range

The spectrum analyzer has an on-screen dynamic-range

specification which implies that one can measure the amplitude

difference between a small signal and a large signal up to the

difference specified. This is not strictly correct. There are many
situations where a larger amplitude difference can be measured.

There are also situations where the specified range cannot be

achieved. These ramifications are best illustrated for a specific
case. For example, the Tektronix Type 491 Spectrum Analyzer
is specified to have an on-screen dynamic range of 40 dB in the

LOG vertical mode. First we will consider the limitations on

the measurement and then the technique for making larger than

40-dB difference measurements.

A) Limitations on amplitude difference measurements.

There are three limitations on amplitude difference
measurements. These are:

1) The maximum useful dynamic range is defined as the
amplitude difference between the analyzer sensitivity
and the maximum input power that the analyzer can
accommodate in a linear fashion. The sensitivity is
specified for each instrument as a function of both
frequency and resolution bandwidth. The maximum
input power is also specified for each instrument, and
is -30 dBm for the Type 491. Thus, for the Type 491,
for example, in the 275-t0-900-MHz frequency range
at 100-kHz resolution, the sensitivity is -90 dBm and
the maximum useful dynamic range is 90 - 30 = 60 dB.
The maximum input power can sometimes be increased
to -20 dBm, getting a 10-dB improvement in dynamic
range. This, however, depends on many parameters and
each case must be considered separately. When in doubt,
go by the specification which is -30 dBm.

skirt

of
response
curve

gain
suppression

2) Skirt selectivity is a measure of resolution bandwidth

at more than 6 dB down. The skirt selectivity limits
how close, in frequency, the small signal can be to the
large signal and still be resolved as a separate signal.

This is a function of the variable-resolution amplifier

and is different for different units. Using the Tektronix
Type 491 as our example, the skirt-selectivity shape is
illustrated in Fig. 6-4, where one division above the
baseline is 60 dB down, dispersion is 100 kHz/div and
resolution bandwidth is about 3 kHz at 6 dB down. The
60-dB down bandwidth is about 250 kHz, indicating that
a small signal, 60 dB down from a large signal, has to be
separated by at least 125 kHz to be resolvable. Cutting
the resolution bandwidth improves the sensitivity and
hence the maximum useful dynamic range. However,
this has very little effect on the limitation of the
frequency separation between the large and small signal.

3} Analyzer gain suppression — when the spectrum-analyzer

circuits are overdriven by a large signal, the gain becomes
suppressed or reduced in the vicinity of the large signal.
A small signal in the gain-suppressed region will also be
suppressed and will not show up on the analyzer. Hence,
besides the skirt-selectivity requirement, it is necessary
that the small signal be sufficiently separated from the
large signal in frequency, so as not to be in the gain-
suppressed region.

The amplitude of the large signal has a major effect on the
frequency width of the gain-suppressed region. The larger
the signal the worse the suppression. Hence, it is
advantageous to operate at the narrowest resolution,
therefore, best sensitivity and, therefore, lowest signal level
possible.

Since signal level is the major parameter in establishing
the suppression characteristics, it is important that the
analyzer gain be set as low as possible commensurate with
optimum sensitivity. This means that the gain should be
set for less than half of a division of noise. Any increase
in gain will degrade the suppression characteristics.

Fig. 6-4 illustrates the above points:
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Fig. 6-4. Skirt-selectivity and gain suppression shapes.

Fig. 6-4A shows a small signal 60 dB down with respect
to a large signal. Signal separation is 200 kHz. The
separation characteristics are determined by skirt
selectivity only, no gain suppression is observed. Good
gain suppression characteristics were obtained by
operating at 3-kHz resolution, permitting a -97 dBm
small signal to be easily observed and the large signal at
-37 dBm is well below the -30 dBm input limit. Further,
the vertical mode is LOG and the gain is set just high
enough to see some noise.

Fig. 6-4B shows the effect of increased analyzer gain.

All parameters are the same as for Fig. 6-4A but the gain
has been increased so that the noise level has increased

by about a factor of ten. Note that the gain is suppressed
for about 300 kHz from the skirt of the large signal. The
small signal situated about 50 kHz from the skirt of the
large signal is barely recognizable.

Fig. 6-4C shows the effect of operating in the LIN mode.
Here we have a gain-suppressed region about 800 kHz
wide. The small signal has been moved to 1.2 MHz from
the large signal.

Fig. 6-4D shows two -83 dBm signals at about 600 kHz
separation in LIN mode.

Fig. 6-4E has one of the signals of Fig. 6-4D increased
in amplitude by 60 dB to -23 dBm. There is gain
suppression for about 500 kHz. However, for signal
separations greater than 500 kHz, we have no difficulty
in making a 60-dB dynamic range measurement, in spite
of the fact that the large signal is -23 dBm, 7 dB greater
than the specified limit of -30 dBm.

Fig. 6-4F settings are the same as Fig. 6-4E, except
that the vertical is in LOG mode. Note that there is no
gain suppression.



A second problem is the harmonic-distortion characteristics of
the spectrum analyzer itself. The smaller the input level, the
better the distortion properties of the analyzer.

B) Measurement technique for large dynamic range measurements.

The major limitations in relative-amplitude measurements

are sensitivity and signal separation. The ultimate limit on
signal separation is skirt selectivity, so, unless the signals are
sufficiently separated, even measurements within the specified
dynamic range may not be possible.

There are two ways of determining whether the observed
harmonics are part of the signal or generated by the analyzer:

A) By means of filters — If the distortion is in the signal,
filter the then a low-pass filter should eliminate the harmonics
from the analyzer CRT. Likewise, a high-pass filter will
eliminate the fundamental but the harmonics should still
be displayed. Similar reasoning applies to bandpass and
band-reject filters.

The recommended measurement procedure follows. Adjust .
the resolution and gain for about a quarter to one-half of a Input
division of noise in the LOG mode. Using attenuators, not

the gain control, reduce the level of the input signal so the

small signal is about 1 division high. Care should also be

taken to maintain the large signal below about -30 dBm. Now

insert either external or IF attenuators to reduce the level of B) By amplitude effects — If appropriate filters are not
measurement the large signal to that of the former level of the small signal. available, it is still possible to tell where the distortion is
procedure Sometimes there is not sufficient attenuator range to make coming from. The method is based on the fact that the
the measurement. For example, in the Tektronix Type 491, distortion generated by the analyzer occurs only when a
the IF attenuator has a 51-dB range. If the amplitude circuit is operating in a nonlinear mode. Thus, the ratio
difference is less than 51 dB, then the IF attenuators will of fundamental to harmonic is a function of input level.
suffice. If the difference is greater than 51 dB, proceed as amplitude Therefore, if the analyzer has sufficient dynamic range at
follows: Insert 51 dB of IF attenuation and observe the level ratio the frequency in question, the input level should be either
of the large signal (e.g., 3.5 div). Remove 10 dB or some VS increased or decreased (say by 6 dB) and the harmonic
other amount of IF attenuation; the signal will get larger. Now gain change level relative to the fundamental remeasured. If there is no
reduce the signal to its former level, 3.5 div in our example, change, then the harmonics are part of the original signal;
by means of the gain control. The signal level has now been if there is a small change (e.g., less than a dB), then most
reduced by 51 dB and there is still some IF attenuation left to of the measured distortion is part of the signal. If there is

a substantial change (e.g., 3 dB), then the distortion is
coming from the analyzer and the measurement is not
valid.

reduce the signal further to the former level of the small signal.

II. Harmonic Distortion

Again using the Tektronix Type 491 as an example, the III. Intermodulation
maximum dispersion is 100 MHz. This means that, except for
signals at less than 50 MHz, harmonics cannot be observed
together with the fundamental. At higher frequencies it is quite

Intermodulation distortion (IM) occurs when two or more large
input signals mix with each other to produce additional signals

likely that the second harmonic will fall within a different dial not in the original input. These intermodulation products

scale than the fundamental. appear as additional signals separated in frequency from the
original signals by the frequency separation of the original

Since large changes in sensitivity occur from scale to scale, it signals. As with other nonlinear effects, one can determine

is generally impractical to make reasonably accurate harmonic- whether the intermodulation is due to the spectrum analyzer or

level measurements without using a signal generator for is part of the signal by repeating the measurement at a different

calibration purposes. signal level. This technique is described in detail in the previous

section on harmonic distortion.



The size of the IM products depends on the amplitude level
and frequency separation of the input signals. Instrument
performance gets worse as the signal level is increased and signal
separation is decreased. Again using the Tektronix Type 491 as
a specific example, the effect of separation is most noticeable
at signal separations between 50 kHz and 500 kHz. Very little
improvement is obtained by separating the signals more than
500 kHz and very little degradation is observed when the
separation is decreased to less than 50 kHz.

The ultimate limit on signal separation is determined by skirt
selectivity, since the two signals must be separated (should not
blend into each other) at the baseline. The input levels should
be kept at less than ~30 dBm, since performance degrades
drastically at larger inputs.

The photographs in Fig. 6-5 illustrate the above.

Fig. 6-5A shows two signals at -30 dBm each, separated 50 kHz.

The vertical is linear and the IM products are 25 dB down.

Fig. 6-5B illustrates the effect of signal level on IM. The input
levels have been decreased to -36 dBm. The IM products are
now 30 dB below the input.

Fig. 6-5C shows the effect of signal separation. Here the signals
are separated by 500 kHz and the IM is 40 dB down.

(A) VERTICAL DISPLAY - LIN (B) VERTICAL DISPLAY - LIN
DISPERSION - 50kHz/DIV DISPERSION - 50kHz/DIV
M - 25dB DOWN IM - 30dB DOWN
INPUT LEVELS AT -30dBm INPUT LEVELS AT -36dBm

(C) VERTICAL DISPLAY - LIN
DISPERSIOM ~ 500kHz/DIV
IM - 40dB DOWN
SIGNAL LEVELS AT -30dBm

Fig. 6-5.
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Fig. 6-6. Identification of image response.

SIGNAL FREQUENCY IDENTIFICATION PROBLEMS

1) Refer to Fig. 6-6 which represents the CRT display of a
swept-IF spectrum analyzer at two dial settings, 200 MHz
and 205 MHz; the dispersion is 5 MHz/div. Which of the
responses are true and which are spurious? Clearly there is
at least one spurious response, since, of the three responses,
one moved to the right while two moved to the left as the
center frequency was changed from 200 MHz to 205 MHz.
However, before we can tell which of the responses is the
true one, it is necessary to know for which mixer-conversion
equation the dial is calibrated. For the Tektronix microwave
swept-IF spectrum analyzers (1L20, 491, etc.), the true
response is due to fLo - fRF = fmo- Hence, as the dial is
tuned to higher numbers, which means the locak-oscillator
frequency is increased, the output frequency should increase
and the true signal should move from left to right.

An image response would at the same time move from right
to left. This analysis leads to the identification of the signals
as shown in Fig. 6-6.

Besides identifying the true response, we can also identify
the frequency of the signal causing this response. Ata
dispersion of 5 MHz/div, we would have to tune the dial five
more megahertz, or to 210 MHz, in order to get the true
response in the center of the screen, so the true response is
caused by a 210-MHz signal. The image-response frequencies
cannot be determined without a knowledge of the IF center
frequency. Assuming that this is 200 MHz, such as for the
Tektronix Type 491, we reason as follows: One image signal
is at the center of the screen when the dial reads 205 MHz;
hence, the local-oscillator frequency is computed from

fLo - fa =fo, or fLo = 205 + 200 = 405 MHz. The image
conversion is fi - fLo = fo, or fi = 405 + 200 = 605 MHz.
At a dispersion of 5 MHz/div, the other image signal is at a
frequency 15 MHz above the first one, or 620 MHz.




frn = 295MHz

= SMHz/DIV

Fig. 6-7. Frequency of several true responses.

2) Refer to Fig. 6-7; assume that you have determined that
both responses are true. Without changing the center-
frequency setting, determine the input frequencies. The
smaller of the two responses is at the center of the screen,
hence, its frequency corresponds to the center-frequency dial
setting which is 295 MHz. The second signal is removed from
the first one by four graticule divisions and, at a dispersion of
5 MHz/div, this corresponds to a frequency difference of
20 MHz. However, do we add this 20 MHz to 295 MHz or
do we subtract it? The answer is that for Tektronix
instruments we subtract it. The reasoning is as follows: The
true conversion equation is fi o - fR¥ = fino- Hence, a larger
input frequency (fr ) means a smaller mixer output frequency
(fmo) and vice versa. Since it is the mixer output that is
ultimately displayed, we must go by what f,,, does rather than
what fry does, even though it is fr that we wish to identify.
The screen corresponds to low frequency on the left and high
frequency on the right, but the frequency we are talking about
is fmo- At a fixed local-oscillator setting, a larger fy,, , means a
smaller fg i3 hence, we subtract 20 MHz from 295 MHz to get
275 MHz as the second frequency. Note that as far as the input
signal frf is concerned, in @ swept-IF system, using the local-
oscillator frequency above the signal frequency conversion, the
higher input frequency signal is on the left.

3) Refer to Fig. 6-8 which shows a CRT display involving five
signals. Which of the responses are true, which are spurious
and what are the input frequencies?

finding
true
Tesponse

For a swept-IF system with local-oscillator frequency above
signal frequency, a true response will move from left to

right as the dial frequency is increased. Response g is the
only one that moves from left to right with increasing dial
frequency, all the other responses either move from right to
left or stand still. Hence, g is either a true response or a
harmonic conversion and all the other responses are spurious.
To determine whether @ is a true response, we note that, at
a dispersion of 5 MHz/div, ¢ has moved four divisions as the
center frequency dial has moved from 300 MHz to 320 MHz.
Since 320 - 300 = 4 - 5, the dispersion and the tuning dial
agree; therefore, ¢ is a true response. The input frequency
causing this response is 305 MHz because: When the center
of the CRT corresponds to 300 MHz, ¢ is one division, or

5 MHz, to the left of center — for a converted signal, left
means higher frequency, hence, 305 MHz,

I
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Fig. 6-8. Complex spurious display.



second
harmonic
image

Let us now take the spurious responses in alphabetical order.
Response b is in the center of the screen and has not moved.
It is an IF-amplifier feedthrough response, which makes it
200 MHz. Response ¢ is also an IF feedthrough because it
has not moved. This response is two divisions away from
center so the signal is 2 -+ 5 = 10 MHz from 200 MHz. This
signal is at 210 MHz because, for an unconverted signal, the
screen represents increasing frequency going left to right.

Consider now response ¢. This response moves in the wrong
direction, so it is an image. Response d moves 20 MHz when
the dial moves 20 MHz, so it represents a prime conversion.
Hence, when the dial reads 300 MHz, the local-oscillator
frequency is fi. o = fg + fip = 300 + 200 = 500 MHz. For
the image, frRr - fLo = fiF: fRF = 200 + 500 = 700 MHz
for the center of the screen. But, when the dial reads

300 MHz, response d is three divisions to the right of center.
While, for a true response, the screen represents increasing
frequency left to right; for the image, it is right to left.
Hence, response d is 3 + 5 = 15 MHz above screen center, or
700 + 15 = 715 MHz.

Finally, response e is an image since it moves from right to
left with increasing dial reading. This image is, however, not a
fundamental conversion but a second harmonic conversion,
since the response moves eight divisions, representing 40 MHz
according to the dispersion, when the dial has moved only

20 MHz. Again, when the dial is 300 MHz, the local

oscillator is 500 MHz. The second harmonic-image spurious
response is based on the conversion frp - 2fLo = fip. Hence,

JrRF =200+ 2 - 500 = 1200 MHz for the center of the screen.

The response is, however, five divisions to the right of center,
which for an image means higher in frequency. Hence, at

5 MHz/div, response ¢ is due to a signal at a frequency of
1200+ 5 - 5 = 1225 MHz.

AMPLITUDE MODULATION

The following fundamental relationships apply to normal double-
sideband amplitude-modulation (AM) measurements:

1) In the time domain, the percent modulation is computed
from:

.- K-1.
K+ 1 @1
Emax

Kz_..._...-.-
Emin’

Eqax and Epin as in Fig. 7-1.

CARRIER —_ MODULAT 108

ET
AT i ¥
." ME ———3=

Fig. 7-1. Time-domain AM.



FREQUENCY

I

Fig. 7-2. Frequency-domain AM.

2) In the frequency domain, the percent modulation is computed
from:

_ 24,
m = L (7-2)
. As .
where A¢ and A4, are per Fig. 7-2; 5 isa voltage ratio.
C

3) The spectrum consists of a carrier and two equal amplitude
sidebands for each modulating frequency. The sideband
spacing with respect to the carrier frequency is equal to the
modulating frequency.

4) In AM the carrier spectral component is of constant amplitude
regardless of the degree of modulation.

The following figures illustrate normal AM measurements,

Fig. 7-3A shows the time-domain (oscilloscope) appearance of
a 10-MHz carrier, modulated by a 10-kHz signal. At a sweep
time of 50 us/cm the period of the modulating wave is 100 s,
or a frequency of 10 kHz. The 10-MHz carrier frequency
could also be determined by operating at a faster sweep. To
determine the percentage modulation, we observe that

Emax 2
K= = — =25
Fmin 0.8
and
= K—l—im
m= el 35 =Bk

Fig. 7-3B shows the same signal in the frequency domain
(spectrum analyzer). From the center-frequency setting we
observe that the carrier is at 10 MHz. The modulating
frequency is 10 kHz, since the sidebands are spaced 2 cm
from the carrier at a dispersion of 5 kHz/em. The percentage
modulation is

- = e
= AC - 4.8 =42%

Besides yielding the same data as the oscilloscope, the
spectrum analyzer also shows that the modulating signal has
some second harmonic distortion as indicated by the additional
set of small sidebands 20 kHz from the carrier.

(A) TIME DOMAIN, 50us/cm

{B) FREQUENCY DOMAIN, ‘,3I<.V'rr-<z/r:rg,
10MHz CF, LIN

Fig. 7-3. Single-tone AM.



multitone
modulation

(A} FREQUENCY DOMAIN, SkHz/cm,
10MHz CF, LOG. SIDEBANDS
ARE 30dB DOWN.

e e e e

{B) TIME DOMAIN, 50us/cm

Fig. 7-4. Low-level single-tone AM.

For relatively high levels of modulation (e.g., over 10%), the
oscilloscope and spectrum analyzer yield basically the same
information. However, for small levels of modulation the
spectrum analyzer is definitely superior, as illustrated in

Fig. 7-4. Both measurements indicate the frequencies, but
the spectrum-analyzer determination of percentage modulation
is much easier. Here the sidebands are 30 dB down, obtained
by reducing the carrier to the former level of the sidebands
by means of the spectrum analyzer’s internal attenuator.
Since 30 dB represent a voltage ratio of 0.0317, the percentage
modulation is about 6%.

Another case where data is easier to obtain from the spectrum
is that of multitone modulation. This is illustrated in Fig. 7-5.
Fig. 7-5A is the time-domain appearance of a multitone AM
wave. Not only is it difficult to ascertain the degree of
modulation, but it is virtually impossible to determine the
frequencies involved. Fig. 7-5B is the frequency-domain
appearance of the same waveform. From this it is apparent that
there are two modulating frequencies, one 10 kHz and the other
about 16 kHz. The percentage modulation at 10 kHz is about
2/7.8 = 26% and, at 16 kHz, it is about 2(0.5)/7.8 = 13%. The
reason for the unequal amplitude between the lower and upper
sidebands is incidental frequency modulation. Combined AM
and FM is discussed in more detail in Chapter 8.

(A) TIME DOMAIN, 50us/cm

(B) FREQUENCY DOMAIN, SkHz/om,
10MHz CF, LIN

Fig. 7-5. Multitone AM.



OTHER FORMS OF AM

suppressed
carrier

or
sideband

A form of AM that saves power is double-sideband suppressed-
carrier modulation. Here the interest centers on the degree of
carrier suppression rather than on the degree of modulation.

The amplitude of the carrier is measured relative to the sidebands,
usually with the transmitter operating at the rated peak envelope
power (PEP). Fig. 7-6 is a spectrum analyzer display of a
double-sideband suppressed-carrier amplitude-modulated wave.
The carrier amplitude is one-sixth of each sideband; or in dB

the carrier-to-sideband ratio is 20 logjg 1/6 = -15.5 dB. The
time-domain appearance of double-sideband suppressed-carrier
AM is similar to that of standard AM at 100% modulation. With
some care these can, however, be distinguished. Fig. 7-7
illustrates the difference in the time-domain appearance of these
two forms of modulation.

Another frequently utilized form of AM is single sideband.

Here only one sideband is transmitted, while the other sideband
and the carrier are suppressed. This saves power and conserves
frequency space. The sideband suppression is measured in the
same manner as the carrier suppression ratio previously discussed.

Fig. 7-6. Double-sideband suppressed-carrier AM
in frequency domain. Vertical display
is LIN.

SINUSQID

SINUSCID

(A) ORDINARY AM 100% MODULATION, SINUSOIDS DO
NOT INTERSECT

SINUSOID

SINUSOID
{B) DOUBLE-SIDEBAND SUPPRESSED-CARRIER AM,
SINUSOIDS INTERSECT

Fig. 7-7. Time-domain difference between ordinary 100% AM
and double-sideband suppressed-carrier AM.
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Fig. 79. Measurement of intermodulation rejection.

inter-
maodulation
distortion

A measurement which is of particular interest in single sideband
is that of intermodulation distortion. The measurement is
performed by modulating the single-sideband transmitter with
two audio tones and checking the output with a spectrum
analyzer for additional sidebands. Frequently, the small frequency
separation between the audio tones (e.g., | kHz and 1.6 kHz)
and the high degree of intermodulation suppression that it is
desired to measure (e.g., 50 dB) preclude the use of standard
radio-frequency spectrum analyzers. One, then, has the choice
of going to a specialized single-sideband test set or of
heterodyning the signal down in frequency so that a standard
audio-frequency spectrum analyzer, such as the Tektronix

Type 1L5 or 3L5, may be used. Fig. 7-8 shows such a test
setup. When the heterodyne method is used, it is important that
the signal source, used as the local oscillator, be highly stable. A
frequency synthesizer makes an excellent signal source for this
application. Fig. 749 is a frequency-domain display of such a
measurement.



FREQUENCY MODULATION

The following basic relationships apply to frequency
modulation (FM).

1) Frequency modulation is a constant-energy process. The
total energy of the modulated wave does not change as the
degree of modulation changes.

2) The frequency-domain representation of an FM wave
consists of a carrier and sidebands spaced in frequency
around the carrier. The spacing between frequency
components is equal to the modulating frequency (/).

3) Theoretically, the FM wave contains an infinite number
of sidebands. The sideband energy, however, falls off
very rapidly outside the peak frequency deviation.
Deviation is measured with respect to the carrier frequency.

4) The amplitudes of the various frequency components,
including the carrier component, change as the deviation
changes. This is a consequence of the requirement that
the total energy remain constant regardless of the deviation.

5) The relative amplitudes of the frequency components are
in the same relationship as the relative amplitudes of Bessel
functions of the first kind. Bessel functions of the first
kind are designated by the letter “J.” The complete
characterization of the frequency component amplitudes is

Ip (%)?

where p is called the order and represents the frequency
component number (p = 0 for the carrier, p = 1 for the

first sideband, etc.), and Aff'— is called the argument and

represents the modulation index. The modulation index



(sometimes designated as m, ¢, or §) is defined as the ratio

peak frequency deviation AF divided by the modulating
frequency f.

6) Bessel functions are the solution to a certain differential
equation, just as the standard trigonometric functions
(sine and cosine) are the solution to a specific differential
equation. Graphs and the tables of Bessel functions of the
first kind are readily available. Fig. 8-1 is such a graph.

7) The information of interest in FM is: the carrier
frequency (F), the modulating frequency (f), and the
deviation (AF'). The carrier frequency F is obtained by
reading the spectrum-analyzer center-frequency dial and
the modulating frequency f is obtained by calculating the
frequency spacing between two adjacent components by
use of the calibrated dispersion. The deviation (AF) can,
however, not be determined directly. First, one obtains
the modulation index from which the deviation is then
calculated. Most of what follows pertains to the
calculation of the deviation. A detailed theoretical
discussion of FM will be found in Chapter 4.

Methods of determining the deviation differ, depending on the
modulation index. Techniques that work well at fractional
indices (e.g., AF/f < 1) will not yield any useful data for
relatively large indices (e.g., AF/f > 10). While no standard
designation exists, it is convenient, for the purposes of this book,
to separate FM into three deviation regions. We shall call these
narrowband, wideband and ultrawideband FM. It is emphasized
that these are not standard designations and should not be
confused with similar names found elsewhere. For the purposes
of our discussion, narrowband FM means a modulation index
less than unity, wideband FM will refer to modulation indices
from about one to about ten, and ultrawideband FM will refer
to modulation indices greater than ten.

Let us consider each of these in turn.
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A,8,C,0,E - - - SUCCESSIVE CENTER FREQUENCY OF FM SIGNAL AS
SPECTRUM-ANALYZER CENTER FREQUENCY 1S TUNED

Fig. 8-2. Slope detecting an FM signal.

NARROWBAND FM

slope
detection

Because sideband energy falls off very rapidly outside the peak
frequency deviation, narrowband FM is characterized by only
two significant sidebands. This is especially true at modulation
indices less than about 0.5, where it is difficult to distinguish,
from a spectrum-analyzer display, whether the signal is AM or
FM. If one knows that the signal is FM, one can proceed
directly to the problem of determining the various modulation
parameters. If, however, the basic nature of the signal is not
known, it is necessary first to determine whether it is AM or
FM. With spectrum analyzers that have a zero dispersion
position, it is possible to do this for modulation rates up to
about one-half the widest resolution bandwidth of the spectrum
analyzer.

AM is distinguished from FM by the basic difference in the
methods used in detecting them. Amplitude modulation can be
detected by an ordinary diode peak detector, whereas to detect
frequency modulation it is necessary to use a discriminator.
While spectrum analyzers do not usually contain a discriminator
for detecting FM, this can be done by slope detecting the FM
signal on the skirts or slopes of the resolution amplifier curve.
This is illustrated in Fig. 8-2. The heavy horizontal lines
represent the successive center frequencies of the frequency-
modulated signal as it is tuned through the range of the
resolution amplifier resonance curve by means of the spectrum-
analyzer fine center-frequency control. With the spectrum

analyzer set for zero-hertz-per-division dispersion (i.e., not
sweeping), the detected modulating signal appears directly on

the CRT. The amplitude of this detected signal depends on the
slope of the resonance curve and the deviation of the frequency-
modulated signal. At positions A and E the slope of the
resonance curve is small, resulting in very little signal output.

At position B the output voltage is (+V) + (+V2) = (V1 + V3).
At position D the output voltage is (-Vs) + (-Vg) = V5 + V),
where the minus sign denotes the change in slope between
positions B and D. At position C the output is V'3 - V4, which
is very small if the curve is reasonably symmetrical. The result
is that for an FM signal we have two positions of maximum
output voltage occurring around the middle of the resonance
curve. The edges and peak of the resonance curve yield very
little output. Fig. 8-3 shows the actual spectrum-analyzer display
for such a measurement. For amplitude modulation, there is
only one position of maximum output — at the peak of the
resonance curve. Having established, from prior knowledge

or through the above procedure, that the signal in question is

narrowband FM, we can now proceed with the basic measurement.

(A) POSITION A OR B (B) POSITION B GR D

{CY POSITION ©

Fig. 8-3. Detecting FM with a Spectrum Analyzer as
illustrated in Fig. 8-2.
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DISPERSION - 20kHz/cm
VERTICAL - LIN

Fig. 8-4. Narrowband FM in frequency domain.

Fig. 8-4 is a frequency-domain representation of a narrowband
FM signal. The carrier frequency of 275 MHz is determined
from the spectrum-analyzer center-frequency dial. The
modulating frequency is equal to the frequency spacing between
the carrier and either of the first sidebands. At a dispersion of
20 kHz/cm and a sideband spacing of 2.5 c¢m, the modulating
frequency is 50 kHz. To determine the deviation AF, we utilize
the fact that the amplitude of the carrier is represented by the
magnitude of the Bessel function of the first kind, zero order,
with modulation index equal to argument; while the amplitude
of either of the first sidebands is represented by the magnitude
of the Bessel function of the first kind, first order and
modulation index equal to the argument. Mathematically,

o)

Agp = 1y (%)

In order to make an actual calculation, we need an equality
rather than a proportional relationship. This is obtained by
taking the ratio between the two amplitudes, thus:

7. (AE
ziscl - %&j:_f_;’ (8-1)

where the ratio is of voltages rather than powers. The easiest
way to determine the deviation is now to use the fact that for
small modulation ratios the following relationship holds:

il(iF) = &F, (82)
weH) ¥

A variation of this is given in equation 4-25. From Fig. 8-4,
the voltage ratio of the amplitudes is 0.9/7.2 = 0.125. Hence,

] (/_\F) AF
—L—JD(A_F) =? =0.125,

f

and the modulation index is

AF
——=0.25.
f

Since the modulation frequency f = 50 kHz, the deviation

AF = 0.25(50) = 12.5 kHz. If one does not recall the formula,
or if it is desired to try for a more accurate result because the
formula becomes inaccurate above modulation indices of about
0.5, the procedure is to use tables of Bessel functions. Here,



the first step is to let the Jg (—A-fﬁ) term equal unity, an obviously

reasonable assumption for small values of argument, as
demonstrated by the graph of Fig. 8-1. One then finds in the
table the value of J; (%) which is equal to the measured
ratio of sideband to carrier. With this as a first approximation,
the calculation can be refined by checking for a closer match of

AF 5 e
the T)value in the vicinity of the first approximation. For

cxample, suppose the voltage ratio of first sideband amplitude to
carrier amplitude, as determined from the spectrum-analyzer
display, is 0.375'. Assuming that Jo ([}_F) 2 1, we have

A

F . 3 ;
f—% 0.8, as illustrated in the partial table of Bessel functions,

Fig. 8-5. Checking actual ratios of

ulr),

0

in the vicinity of %? = 0.8, we find that at ‘%C—F =07,

BB

J11(0.7) _ 329 _
Ta00) - Eel T

The modulation index is, therefore, much closer to 0.7 than
to 0.8.

] .

These numbers were chosen to illustrate the method. A ratio
measurement to an accuracy of three significant figures is
beyond the accuracy of most spectrum analyzers.

WIDEBAND FM

carrier-
null
method

=3
ry

= 0.6 0.7 0.8 0.9
BF ‘
JO( f] 0.912 0.881 0.846 0.808
) (-Ai) 0.287 0.329 0.369 0.406
\F
r 0.5

Fig. 8-5. Partial table of Bessel functions.

Most FM measurements are for modulation indices of about

one to ten, which for purposes of this discussion has been
designated wideband. As for small modulation indices, the
method of measurement depends on the determination of ratios.
This creates difficulties because in many instances it is important
to determine the deviation to a very high degree of accuracy,
whereas the performance of most spectrum analyzers precludes
the measurement of relative amplitude to better than two
significant figures. There is only one relative-amplitude
determination which can be obtained to a high degree of
accuracy; this is where one of the components is zero. The
technique where one of the amplitude components, usually the
carrier, is made to go to zero is known as the carrier-nuil method
or the Crosby null method — after Murray G. Crosby who did
much of the basic work on FM measurements.

The carrier-null method of FM deviation measurement is the
most used and also the most accurate of all methods. However,
it is only applicable in cases where the FM signal can be changed
during the measurement. Where the signal to be measured is
fixed, it is necessary to use other, more complicated and less
accurate, measurement techniques.



Most people have no problem with the fact that for a sinusoid,
such as cos @, there are specific values of the angle 6, where the
magnitude of the sinusoid goes to zero. For cos # this occurs
when the angle theta is an odd multiple of 7/2, that is,

0 =90°, 270°, etc. A similar relationship occurs for Bessel
functions, where the magnitude of the function goes to zero at
certain specific values of modulation index. These points of
zero amplitude are called nulls and, when referring specifically
to the carrier component, the term carrier nuil is used. Carrier
nulls occur at those modulation indices where the zero-order
Bessel function of the first kind goes through zero. These points
of zero carrier amplitude can be seen in Fig. 8-1, where the
Jo(7) curve crosses the zero axis.

Fig. 8-6 is a table of the first ten modulation indices at which
the carrier goes through a null. The actual measurement
procedure will now be illustrated by means of examples,

F_;;;ngn NULL X MODULAT ION  INDEX (%5)
FIRST 2.4048
SECOND 5.5201
THIRD 8.6537
FOURTH 11.7915
FIFTH 14.9309
SIXTH 18.0711
SEVENTH 21,2116
EIGHTH 24.3525
NINTH 27.4935

L, TENTH 30.6346 Agﬁ

Fig. 8-6. Table of carrier nulls.

DISPERSION ~ 10kHz/DIV
VERTICAL = LIN

Fig. 8-7. FM deviation measurement.

EXAMPLE 1

Fig. 8-7 shows a spectrum-analyzer display of a wideband FM
signal. The sidebands are three-quarters of a graticule division
apart and, at 10 kHz/div, this corresponds to a modulation

frequency f of 7.5 kHz. The object is to determine the deviation.

This will be accomplished by changing the modulation frequency f

such that the modulation index % corresponds to one of the

carrier nulls. The deviation will then be computed from the known

values of f and ATF
mistaking one carrier null for another. Thus, one might think
that the display corresponds to the first carrier null at a
modulation index of 2.4, whereas the actual modulation index
is 5.5, corresponding to the second carrier null. The following
procedure will guard against such an error.

. One of the dangers in this procedure is



carrier
disappears
at the null

First we guess at the possible limits of the deviation. From
Fig. 8-7 it is observed that the sideband amplitudes start falling
off at about 30 kHz from the carrier, which is at the center of
the display; and there are virtually no sidebands beyond 40 kHz
from the carrier. Qur guess, therefore, is that the modulation

index is probably around L - 71% = 4, but it might be as

f
high as %C—F = % = 5.33. Both our best and maximum-limit
guess place us between the first and second carrier nulls which
are at a modulation index of 2.4 and 5.5 respectively. If we
are correct, we should be able to get to the first carrier null by
increasing the modulating frequency f while maintaining the
modulating signal amplitude constant®. As the modulating
frequency is increased, the carrier amplitude is seen to decrease
until it goes to zero, as shown in Fig. 8-8. In our example this
occurs at a modulating frequency of 10 kHz. Since the first
carrier null occurs at a modulation index of 2.4, we compute
the deviation as:

M:
!

AF =24+ 10 = 24 kHz.

24,

DISPERSION - 10kHz/cm
VERTICAL - LIN

Fig. 8-8. Deviation measurement illustrating carrier null.

*For a linear modulator, the deviation is dependent only on
the amplitude of the modulating signal.

vary
amplitude

Just to make sure that there is no mistake, we could also
decrease the modulating frequency and, so, check the deviation
at the second carrier null. The two results should of course
agree, otherwise there is an error in the measurement. This is
the most accurate method of determining an unknown deviation,
since the modulation frequency can be measured to a very high
degree of accuracy with a counter.

EXAMPLE 2

Another method of getting a carrier null is to change the
amplitude of the modulating signal source. The deviation is
directly proportional to the modulating voltage amplitude when
operating within the linear range of the modulator. Voltages,
however, cannot be measured as accurately as frequencies, so
this method is less accurate than that based on frequency
measurement.

Frequently the object is not to determine what the deviation

is but, rather, to establish a particular deviation. Such a case
might be found in the broadcast industry where the Federal .
Communication Commission specifies 200-kHz channel separation
with a maximum frequency deviation of 75 kHz with respect to
the carrier and at a maximum modulating frequency of 15 kHz.
It would be of interest to adjust such a transmission system so
that the modulating voltage would not exceed the level
corresponding to a 75kHz deviation. The simplest way of
establishing the level of the maximum voltage not to be exceeded,
is to set the modulating frequency such that a deviation of
75-kHz will correspond to a carrier null; and then adjust for the
null by changing the modulating voltage amplitude. Thus, at a
deviation of 75 kHz, the first carrier null corresponds to a
modulating frequency of

B

-_— 5 fa3
o 03 bl

This is greater than the maximum permitted modulating
frequency of 15 kHz, so the first carrier null cannot be used_
here. The second carrier null results in a computed modulating

= 13.586 kHz, which can be used. The

75
5.5201 i
sequence of photographs in Fig. 8-9 illustrates the procedure.

frequency of



(A) UNMODULATED CARRIER

(C) APPROACHING FIRST CARRIER NULL (D) BETWEEN FIRST AND SECOND
CARRIER NULL

DISPERSIOM - 50kHz/DIV
VERTICAL = LIN

5 s pie 4 =
(E) APPROACHING SECOND CARRIER NULL

Fig. 8-9. Carrier-null method of deviation adjustment
in FM using variable amplitude modulating signal.

measuring
deviation
linearity

With the modulating frequency set to 13,586 Hz by means of
a counter, the modulating voltage is increased to obtain the
second carrier null. This corresponds to a deviation of 75 kHz.
Fig. 8-9A shows the unmodulated carrier corresponding to zero
modulating voltage. As the modulating voltage is increased, the
carrier amplitude decreases and sidebands appear as shown in
Fig. 8-9B. As the modulating voltage is increased further, we
reach the first carrier null corresponding to a modulation index
of 2.4 and a deviation of 32.5 kHz. This is shown in Fig. 8-9C.
As the modulating voltage is increased even further, the carrier
amplitude increases again and more sidebands appear, as shown
in Fig. 8-9D. Finally, in Fig. 8-9E with the modulating voltage
increased yet again, the second null is reached corresponding to
a frequency deviation of 75 kHz. As long as the final voltage
setting is not exceeded, the transmitter will operate within the
permitted limit of 75-kHz deviation.

EXAMPLE 3

Deviation linearity is a measure of the nonlinearity, existing in

an FM transmitter or signal generator, between the carrier
frequency deviation and the voltage amplitude of the modulating
frequency causing the deviation. It is described graphically as the
ratio of the modulating-frequency voltage divided by the
modulation index to the modulation index, as shown in Fig. 8-10.

The measurement consists of measuring the voltage amplitude
of the modulating frequency for successive carrier and sideband
nulls for as many values of modulation index as desired. A

ACTUAL LINEARITY

PERFECT LINEARITY

h5]
i
L
e}

Fig. 8-10. Graphic display of deviation linearity.
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LOW-FREQUENCY
OSCILLOSCOPE OR
DIGITAL VOLTMETER
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FM TRANSMITTER D SPECTRUM

10 OR FM 5 IGNAL ANALYZER

FREGUENGY GENERATOR TUNED TO THE
GENERATOR > ° (] arrenuator FM SIGNAL

Fig. 8-11. FM-deviation linearity measurement.

spectrum analyzer capable of high resolution and low incidental
FM is used to display the signal nulls, while the amplitude of the
modulating frequency may be measured accurately with a low-
frequency oscilloscope or digital AC voltmeter. See Fig. 8-11.

Ratios of modulating-frequency voltage divided by modulation
index are plotted vertically and the values of modulation index
are plotted horizontally to graphically display the degree of
nonlinearity which may be present. Ideally, the curve should
represent a horizontal straight line for the complete range of
modulation index values.

Fig. 8-10 shows a graphical representation of the nonlinearity
measured on a typical klystron high-frequency FM oscillator.
The amount of nonlinearity is not affected by changing
modulation frequencies.

Sometimes it is either inconvenient or impossible to obtain a
carrier null. The method, then, is to nuil one of the sidebands,
preferably the first sideband. The procedures are identical to
those already described except that the modulation indices
associated with the first sideband are used. Fig. 8-12 is a table
of first-sideband nulls, and Fig. 8-13 is a spectrum-analyzer
display showing the first first-sideband null at a modulation
index of 3.83.

FIRST-SIDERAND

NULL FIRST | SECOWD { THIRD [ FOURTH | FIFTH | S1XTH | SEVENTH | EIGHTH NTHTH

MCEI)LJ”L):\;WN% 3:85| 7.02 | 1007 12.32 [ 16.47|19.62/| 22.76 | 25.90 | 29.05

Fig. 8-12. Table of first-sideband nulls.

Fig. 8-13. FM-deviation measurement using null of
first sideband.

ULTRAWIDEBAND FM

There are special problems in determining the frequency deviation
of ultrawideband FM. These are:

1) Inability to resolve the separate frequency components of
the signal because the modulation frequency is less than
the narrowest spectrum-analyzer resolution bandwidth.

2) Even when the sidebands can be resolved, there is still
difficulty in identifying the carrier among the many
(sometimes hundreds) of displayed sidebands.

3) Even when the carrier is identified, it is almost impossible
to count through more than about ten nulls without a
large measure of uncertainty about the accuracy of the
count.

The simplest method is to consider that the deviation is one
half of the total occupied signal bandwidth as measured on
the spectrum analyzer. This is based on the fact that the
sideband energy falls off quite fast outside the frequency
deviation. An approximate formula derived by Charest

is "f’f =20+ %, where B is the 40-dB down bandwidth
and § is the modulation index. Ignoring the %term at

modulation indices greater than 50 introduces less than a 5%
error in the measurement. A more accurate simple formula

. B 4
7 i di = B
for modulation indices less than 50 is 7 2k B
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Fig. 8-14. Ultrawideband FM signal in frequency domain.

Fig. 8-14 shows a spectrum-analyzer display of an
ultrawideband FM signal. Assuming that the deviation is
one half the total 40-dB-down signal bandwidth, we obtain
7 div + 50 kHz/div = 350 kHz and the deviation is

AF =175 kHz. The modulating frequency is 100 Hz, which
was determined from a different measurement as discussed
later in this chapter. Here the modulation index is 1750, so

. . 4 :
that ignoring the E term introduces negligible error. For a
smaller modulation index, a correction factor computed from
4
the B term could be added to the original computation. More

accurate calculations can be made by using more elaborate
formulas. A detailed discussion on such measurements,
including graphs, formulas, and sample calculations will be
found in an article by C. N. Charest3 .

A note of caution on the signal bandwidth measurement:
The accuracy of the 40-dB-down signal-width measurement
depends on the resolution-bandwidth skirt selectivity. The
wider the 40-dB-down resolution bandwidth, the greater the
error. Unless the signal bandwidth is considerably greater
than (e.g., 10 times) the resolution bandwidth, the effect of
the resolution skirt selectivity should be considered.

3C. N. Charest, “Measuring Wide-Bandwidth FM Deviation,”
EDN, March 1, 1969.

DETERMINING MODULATION RATE FOR UNRESOLVED SIGNAL

Sometimes the modulation rate of a signal, either AM or FM, is
less than the narrowest resolution bandwidth of the spectrum
analyzer. This means that the modulating frequency cannot be
obtained by the usual means of measuring the frequency
difference between resolved adjacent signal components. In
order to determine the modulating frequency, it is necessary to
operate the spectrum analyzer as a time-domain superheterodyne
radio receiver with a CRT indicator. This means that the
sweeping oscillator is stopped by tuning to the zero-Hz/cm
dispersion position. The modulation is now detected and
displayed on the CRT. When the signal is AM, detection occurs
at the peak of the resolution-amplifier resonance curve. When
the signal is FM, detection occurs on the slope of the resolution-
amplifier resonance curve as illustrated previously by Fig. 8-2.
The modulation frequency is computed from the measured
period of the displayed waveform. Fig. 8-15 shows the detected
modulating waveform used in the ultrawideband FM signal of
Fig. 8-14. Since the period of the waveform is 10 ms, the
modulating frequency is 1/10 ms = 100 Hz.

DISPERSION - ZERD Hz/cm
VERTICAL - LIN
TIME BASE - 10ms/cm

Fig. 8-15. Measuring modulating frequency at zero dispersion.



COMBINED AM AND FM

Combined AM and FM is usually an accidental, or incidental,
occurrence. The desired modulation is usually AM, with the
FM modulation an incidental by-product of an imperfect AM
modulator. Combined AM and FM is characterized by two
sidebands of unequal amplitude. This is because the AM
sidebands are of the same phase while the FM sidebands are

of opposite phase; for a detailed discussion see Chapter 4.

Fig. 8-16 illustrates the measurement technique for combined
AM and FM. Figs. 8-16A and 8-16B show the individual AM
and FM spectra which, when generated simultaneously, result
in the combined spectrum of Fig. 8-16C. Usually, only the
combined spectrum, as shown in Fig. 8-16C, is available. From
the unequal sideband amplitudes we conclude that the signal
contains both AM and FM. Next, since the signal is supposed
to be purely AM, we assume that the AM sidebands are larger
than the FM sidebands. Except in very unusual circumstances
this will always be the case. A further verification of the small
size of the FM sidebands is the fact that the combined signal
has only one significant sideband. We now compute the
amplitudes of the individual AM and FM sidebands, using the
fact that, in the combined spectrum, one sideband consists of
the sum of an AM and FM sideband while the other sideband
consists of the difference between an AM and FM sideband.
From Fig. 8-16C, one sideband is about 2.3 cm high while the
other is about 1.7 cm high. This leads to the conclusion that
the AM sidebands are 2 ¢cm high and the FM sidebands are

0.3 c¢m high. This is very close to the actual case as demonstrated
in Figs. 8-16A and 8-16B. From the above we now compute:

Percentage AM = % 100 =71.5%

2(0.3)

FM Modulation Index = 56

=0.107 .

(A) SPECTRUM-ANALYZER DISPLAY {B) SPECTRUM-ANALYZER DISPLAY
OF AM OF NARROWBAND FM

VERTICAL - LIN

(C) SPECTRUM-ANALYZER DISPLAY
OF COMBINED AM AND FM

Fig. 8-16. Combined AM and FM in the frequency domain.
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Fig. 8-17. Multitone FM in the frequency domain.

MULTITONE FM

Unlike AM, where there is no interaction between individual
terms, the spectra of multitone FM are complex. These are
usually not symmetrical, also additional sidebands at the sum and
difference frequencies of the modulating signals may appear. The
frequency-domain appearance of multitone FM is shown in

Fig. 8-17. Observe that the spectrum is not symmetrical about
the carrier component, which is at the center of the screen. Also
note that there are additional sidebands besides those due to the
2%kHz and 3-kHz modulating frequencies. A detailed discussion
of multitone FM will be found in Giacoletto’s “Generalized
Theory of Multitone Amplitude and Frequency Modulation.”*

Fig. 8-18. Ultrawideband FM showing intensified
portion in the center.

4Giacoletto, “Generalized Theory of Multitone Amplitude and
Frequency Modulation,” Proc IRE, July, 1947.

INTENSIFICATION EFFECTS

Frequently, ultrawideband FM spectra will have an intensified,

or brighter, portion in the middle of the spectrum. Such a
display is illustrated in Fig. 8-18. This intensification effect is
due to the performance parameters of the spectrum analyzer, and
is not indicative of anything about the signal. The effect is
generated by the sweeping across the CRT screen of the resolution
curve of the spectrum analyzer. As the FM signal frequency
sweeps back and forth, so does the resolution curve of the
spectrum analyzer. This back and forth sweeping movement
causes two frequency interceptions to occur per FM peak-to-peak
deviation. There are, however, two small frequency intervals at
the ends of the deviation, where, because of the finite resolution
bandwidth, there is only one interception. Consequently, the
line density at the ends of the display is half as much as in the
middle, causing a difference in brightness. Fig. 8-19 is a double
exposure of two CW signals showing how the shape of the
brightened portion of the spectrum is generated as the FM signal
sweeps the resolution curve back and forth.
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Fig. 8-19. As the resolution curve sweeps from 4 to 5
and back from B to A, the middle portion
gets twice as many lines as the edges.



PULSED RF

The following basic relationships apply to the measurement of
pulsed-RF signals.

1) Pulsed-RF measurements are usually based on the assumption
of a dense rather than discrete type of spectrum. Accordingly,
the discussion in this chapter applies only to dense spectra.
Discrete spectra of pulsed signals will be considered under
the heading of Waveform Analysis in Chapter 10.

2) In order to obtain a proper dense spectrum display, it is
necessary that the resolution bandwidth B of the spectrum
analyzer be greater than the pulse-train repetition rate.
Mathematically:

B > PRR. (9-1)

3) With condition (2) above established, the spectrum shape is
traced by a series of vertical lines. These lines are not
dispersion-dependent spectral lines. The vertical lines are
sweep-speed-dependent repetition-rate lines. Each line
represents one sample of the incoming signal. The number
of lines on the CRT is equal to the number of pulses
occurring during one spectrum-analyzer sweep.

4) In order to get sufficient definition of the spectrum shape,
it is necessary to have a minimum of 5 sample, or rep-rate,
lines per minor lobe and 10 lines for the major lobe. For
a spectral display consisting of one major lobe and two
minor lobes, this means twenty input pulses per spectrum-
analyzer sweep. Hence, for proper definition of the
spectrum shape:

20

< ime/di :
PRR 10 (time/div) (9-2)



5) The resolution of the fine details of the pulsed-RF spectrum
depends on the resolution bandwidth used. The narrower
the resolution bandwidth, the finer the details that can be
observed. It has been found that the necessary fine details
will be observed when:

toB < 0.1, (9-3)
where
to = pulse width,
B = resolution bandwidth.

6) The spectrum-analyzer sensitivity is poorer for a pulsed-RF
signal than for a continuous-wave signal having the same
peak amplitude. The ratio in deflection height, on a linear
voltage scale, between a pulsed-RF signal and a CW signal
of equal peak amplitude is denoted by «.

a= % ty B,
(9-4)

3
g = 20 logyp 35 fo B,

where

tg = pulse width,
B = 3-dB bandwidth

Since the pulsewidth-bandwidth product needs to be less than
unity (see equation 9-3), it follows that « is invariably less than
one, denoting a loss in sensitivity for pulsed signals.

7) Most pulsed-RF signals are of rectangular pulse shape.
Examples of basic measurement techniques will, therefore, be
based on rectangular pulses.

8) A detailed theoretical discussion of pulsed-RF will be found
in Chapters 3 and 5. Fig. 9-1 shows the time-domain
appearance of a pulsed-RF signal. From Fig. 9-1A, we
observe that the period of the pulse train is 2(50) = 100 us.

100ps
PER|CD

0.2

3
CARRIED PERIOD, 111
15MHz CARR|ER e ke e

FREQUENCY

TR =

L—Iui WIDTH

(B) 0.2ps/DIV

Fig. 9-1. Time-domain appearance of pulsed RF.

MAIN LOBE/ - H
SIDE LOBE RATID, SN S
13.248 FOR IDEAL

RECTANGULAR PULSE

YERTICAL - LIN
500kHz/DI1V CARRIER FREQUENCY
500ps/D 1Y READ FROM CF DIAL

Fig. 9-2. Frequency-domain appearance of pulsed RF.

From Fig. 9-1B, we observe that the pulse width is
5(0.2) = 1 us, the carrier frequency is 0—23;1; = 15 MHz, and

the pulse shape is rectangular. Fig. 9-2 shows the frequency-
domain, spectrum-analyzer, appearance of the same pulsed-RF
signal. This display contains the following information:



radar
performance

A) From the spectrum-analyzer center-frequency dial setting
(not shown in Fig. 9-2), we ascertain that the carrier
frequency is 15 MHz.

B) From the frequency width of the sidelobes,
(2 div)(500 kHz/div) = 1 MHz, we compute that the
pulse width is 7y = 1/1 MHz = 1 us.

C) From the time spacing between sample lines, we compute
the pulse-train repetition rate or period. At 500 us/div and
5 samples per division, the pulse-train period is 100 us.

D) From the amplitude ratio of the mainlobe to first sidelobe,
which is about 4.6/0.9, or 20 log;g 4.6/0.9 = 14 dB, we
conclude that the pulse shape is essentially rectangular.
While 14 dB is greater than the theoretical 13.2 dB for a
perfectly rectangular pulse, the difference is well within the
measurement accuracy. Furthermore, a rectangular pulse
gives the closest fit; for example, the ratio for a triangular
pulse is over 26 dB.

Based on the above example, it is apparent that the same basic
information can be obtained from both time-domain oscilloscope
measurements and frequency-domain spectrum-analyzer
measurements. The reason why spectrum analyzers predominate
in this area is that, except in special cases, the oscilloscope is not
able to display the signals in question. The limitations are
frequency range (pulsed-RF signals in the gigahertz region are
quite common) and sensitivity (many signals are in the picowatt
region). Another difficulty with oscilloscope measurements is
that frequently the desired information is the occupied frequency
width or spectrum shape, rather than the time-domain pulse
width or pulse shape. While it is theoretically possible to convert
from one to the other by means of the Fourier mathematics,

the task can be quite difficuit.

Most pulsed-RF measurements occur in radar systems. These
involve both the determination of what a radar set is putting out,
and the adjustment or calibration of the radar set so that it gives
the required output. Spectrum analyzers are also frequently used
in testing components such as pulsed magnetrons. The data of
interest usually involves the following:

radar
attenuation

1) Carrier frequency (F),

2) Pulse width (zq),

3) Pulse repetition rate (PRR), interpulse interval (7)),
4) Pulse shape,

5) Occupied signal bandwidth,

6) Percentage missing pulses,

7) Carrier on/off ratio,

8) Presence of FM.

Since radar sets usually put out much more power than the
spectrum analyzer can accommodate, the signal connection is
typically made through a directional coupler. Even then it may
be necessary to add attenuation to the signal path to maintain
spectrum-analyzer operation within the linear region. A typical
test setup is shown in Fig. 9-3A. An alternate procedure,
especially helpful in radar set tests as opposed to alignment, is
to pick the transmitted signal off the air by a second antenna.
Such an arrangement calls for a field transportable spectrum
analyzer such as the portable Tektronix Type 491. Fig. 9-3B
shows this alternate test arrangement.

ANTEMNMHA

RADAR SPECTRUM
TRANSMITTER AMALYZER

DIRECT IONAL
COUPLER

e ATTENUATOR

ATTENUATION IN 9B REQUIRED
FOR LINEAR DISPLAY

(A} TYPICAL

TRANSMITTING RECFIVING
ANTEHNA ANTENMA

4

RADAR

TRANSMITTER

(B} ALTERNATE (FIELD TESTING)

Fig. 9-3. Methods of measuring characteristics of a pulsed-RF
spectrum generated by a radar transmitter.
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Fig. 9-4. Analyzing trapezoidal pulse.

EFFECT OF PULSE SHAPE

trapezoid

One of the more difficult characterizations of pulsed-RF in the
frequency domain is that involving pulse shape. While it is
theoretically possible to compute mathematically a time-domain
shape from the frequency-domain spectrum, it is much easier to
match the unknown spectrum against a previously established
standard. The graphs of theoretical spectra as a function of
pulse shape appearing at the end of Chapter 3 are quite useful
for this purpose. While these graphs are based on theory, they
are in close agreement with actual observations on a spectrum
analyzer. This is illustrated by the following photographs.

Fig. 9-4A shows the time-domain shape of a trapezoidal pulse.
It could also be described as a rectangular pulse having
appreciable rise and fall time. Fig. 9-4B is the spectrum of this
pulse. The ratio of mainlobe to first sidelobe in Fig. 9-4B is
6/0.6 or 20 log 10 = 20 dB. This is considerably more than the
13-14 dB expected for a rectangular pulse shape, but is short of
the 26 dB expected for a triangular pulse. Thus, the pulse shape

triangle

is somewhere between these two extremes. The choice of the
precise shape, such as trapezoidal versus cosine-squared, cannot
be made on the basis of Fig. 9-4B. For one thing, the spectrum
analyzer does not indicate the spectrum phase characteristics.
Fortunately, the user usually has an idea of what to expect.
Once the user decides that he is dealing with a symmetrical
trapezoid, the numbers are easy to compute. From Fig. 9-4B,
the average pulse width (£g) is the inverse of one-half the

mainlobe width. Thus, ¢y = —0—?32@ = 3.1 us. From Fig. 9-4A,

the average width is 2 + 2/2 = 3 us, in good agreement with the
computation.

Fig. 9-5 shows the time- and frequency-domain characteristics of
a triangular pulse. Since the vertical display is logarithmic, the
mainlobe to sidelobe ratio cannot be determined directly from
the uncalibrated graticule. This number was determined to be
27 dB by inserting IF attenuation until the mainlobe deflection
height was reduced to the former level of first-sidelobe deflection
height. A sidelobe width of 300 kHz corresponds to the roughly
3-us average pulse width. These numbers are in good agreement
with theory.

(A)  TIME-DOMAIN PULSE
Tus/DIV

300kHz

(B} FREQUENCY-DOMAIN PULSE
200kHz/DIV, VERTICAL - LOG

Fig. 9-5. Analyzing triangular pulse.



sine-
squared

A somewhat different pulse-shape analysis problem is exemplified
in Fig. 9-6. Fig. 9-6 is a double-exposure photograph showing
the time- and frequency-domain characteristics of a sine-squared
pulse. Such pulses are frequently used in the testing of
television systems. One of the problems that arises is to
ascertain how closely the pulse comes to being perfectly sine-
squared. This is difficult to determine from time-domain testing.
Small variations in pulse shape are, however, fairly obvious in
the frequency domain, since these can have substantial effects
on the spectrum. A graph of the theoretical spectrum of a sine-
squared, or cosine-squared, pulse is shown in Table 3-2. Fig. 9-6
is in good agreement with the theoretically derived spectrum.

EFFECT OF FM

Pulsed-RF signals frequently contain a substantial amount of
frequency modulation. The FM can be either intentional, such
as in pulse compression radar, or, more usually, an unintentional
byproduct of pulsing a magnetron or a klystron. In either case,
the resulting spectra are different than those for non-FM’ing
pulsed-RF signals. There are three major effects by which one
can recognize the spectra of pulsed-RF of an FM signal from the
spectra of pulsed-RF without FM:

A) Spectra of pulsed-RF signals without FM are always
symmetrical, have distinct nulls, and the minor lobes
are always smaller than the major lobe.

B) Spectra due to pulsed-RF of an FM’ing signal do not
have distinct nulls; the sidelobes are larger than for
non-FM’ing signals; for nonsymmetrical pulse shapes,
such as a sawtooth, the spectrum is usually
unsymmetrical.

The effect of FM on pulsed-RF was first described in

Radiation Laboratory Series'. Recent experiments indicate
that the amount of sidelobe lift-up is dependent on the product
of pulse width and FM deviation. The greater this product

the more the sidelobe lift-up.

"Montgomery, “Technique of Microwave Measurements,”
Radiation Laboratory Series, McGraw-Hill or Boston
Technical Publishers, Vol. XI, Sec. 7.15.

pulsed-RF
with
FM

TIME DOMAIN = 0.2us/DIV
FREQ DOMAIN - 1MHz/DIV
VERTICAL — LOG

Fig. 9-6. Analysis of sine-squared pulse.

0.2MHz/em

VERTICAL - LIN

5us PULSE

E6MHz PEAK-TO-PEAK FM

Fig. 9-7. Spectrum of rectangular pulsed-RF with FM.

The following figures illustrate the frequency-domain appearance
of pulsed-RF with FM. Fig. 9-7 is the spectrum of an FM’ing
carrier having 6-MHz peak-to-peak FM deviation which is pulsed
on in 5-us intervals. Note that the inverse of the pulse width

still determines the sidelobe width. Namely, 1/(5 us) = 0.2 MHz.
Similarly, carrier frequency and pulse repetition rate are
determined the same way as for pulsed-RF without FM. However,
the ratio of mainlobe-to-sidelobe size is much less, and the nulls
between lobes no longer go down to zero. The pulse-width
peak-to-peak FM-deviation product is:

tgAF =5 us - 6 MHz = 30.



Fig. 9-8 is a more extreme example of FM’ing pulsed-RF. Here
the sidelobes are actually greater than the mainlobe. At a

S.-us pulse width and 10-MHz peak-to-peak FM deviation, the
pulse-width peak-to-peak deviation product is 50.

0.2MHz/cm
e ot = Ll A plot of the data from Figs. 9-7 and 9-8, and data from
1O0MHz PEAK-TO-PEAK FM recently published experiments?, results in a close approximation
to a straight-line relationship between sidelobe lift-up and pulse-
Fig. 9-8. Spectrum of rectangular pulsed-RF with FM. width deviation product. Fig. 9-9 is such a graph where

mainlobe-to-sidelobe ratio, normalized with respect to this ratio

in the absence of FM, is plotted as a function of the pulse-width
Jr peak-to-peak FM-deviation product. The straight-line relationship
is approximate, as it is based on insufficient data. This is,
however, the best fit available at the present time. The purpose
of the graph is to permit an estimate of the amount of FM
present. The pulse width is determined in the normal manner
from the inverse of the sidelobe width. The normalized
mainlobe-to-sidelobe ratio is then determined by measuring the
actual ratio and comparing it to the theoretical ratio of 4.6
(13.2 dB) for a rectangular pulse. The peak-to-peak FM
deviation is then computed from the 7y AF product read on
Fig. 9-9. For example, the output of a pulsed-RF magnetron,
using rectangular modulation pulses, yields a spectrum having a
3.5-to-one mainlobe-to-sidelobe ratio. The pulse width is 2 us.
What is the peak-to-peak FM deviation? The normalized
mainlobe-to-sidelobe ratio is 3.5/4.6 = 0.76. From Fig. 99, this
corresponds to a pulse-width total deviation product of about
14, which corresponds to a peak-to-peak FM deviation of 7 MHz
for a 2-us pulse width.

SIDELOBE-TO-MA INLOBE RATIG
OF FM'ING PULSED-RF
COMPARED TO
S|DELOBE-MA|NLOBE RATIQ
OF NON-FM'ING PULSED-RF

RATIO (WITH FM)
RATIO (NO FM}

; : ; ot 2Engelson & Breaker, “Spectrum Analysis of FM’ing Pulses,”
020 30 40 50 &0 Microwave Journal, June, 1969.

PULSE-WIDTH PEAK-TO-PEAK FM-DEV|ATION PRODUCT

Fig. 9-9. Approximate experimental relationship between
sidelobe-mainlobe ratio and peak-to-peak
FM-deviation in FM’ing pulsed-RF.



The percentage of missing repetition-rate lines is, therefore, the
same as the percentage of magnetron misfirings. Fig. 9-11
simulates the output of a misfiring oscillator. The deliberate
misfirings shown in Fig. 9-11 are of a repetitive nature while in
| actual field situations these would be random, otherwise the two
situations are the same. Fig. 9-11A shows the spectrum of a
rectangular-pulse-shape pulsed-RF. It will be observed that
periodically the signal disappears: these are misfirings. The
percentage misfirings is determined by counting the repetition-
f rate lines. These lines are expanded across the CRT screen by

(A) FREQUENCY DOMAIN 2 s Q &4

VERTICAL = LIN going to a narrow, preferably zero-hertz, dispersion position and
a sweep time which permits counting individual lines. This is
shown in Fig. 9-11B. Here it will be observed that one out of
every eight lines is missing. The percentage misfirings, therefore,
is 1/8 - 100 = 12.5%. In a real situation, the misfirings would
be random. Hence, several photos would have to be taken in
order to get a statistically significant number of misfirings.

(B) TIME DOMAIN

Fig. 9-10. Spectrum of FM’ing asymmetrical pulse.

Fig. 9-10 shows the effect of FM on pulsed-RF having an
asymmetrical pulse shape. The spectra of pulsed-RF, no matter
what the pulse shape may be, is generally symmetrical. However, (A OVERALL SEECTRM
in the presence of FM, the spectra of pulsed-RF of asymmetric
pulses are usually asymmetric. Fig. 9-10A shows the effect of
FM on the spectrum of the asymmetrical triangular pulse of

Fig. 9-10B. Note that not only have the minima been raised

but the spectrum is highly asymmetrical.

PERCENTAGE OF MISSING PULSES DETERMINATION

One of the points of interest in pulsed-RF radar measurements VR i
is to determine the percentage of misfirings of the oscillator, (8) EXPANDED REPETITION-RATE LINES
usually a magnetron. The simplest way of doing this is by

observation on a spectrum analyzer, where each of the vertical

repetition-rate lines corresponds to an oscillator output pulse. Fig. 9-11. Measuring percentage of oscillator misfirings.



Fig. 9-12. Pulsed-RF, poor on/off ratio in time domain,
2 us/div.

Fig. 9-13. Pulsed-RF, poor on/off ratio in frequency
domain, 200 kHz/div, vertical — LIN.

MEASURING MODULATOR ON/OFF RATIO

Frequently the modulator or oscillator generating the pulsed-RF
waveform will not turn off completely and there continues to
be a small amount of output during the interpulse interval. This
leads to the need for determining the on/off ratio of the
equipment. Fig. 9-12 shows the time-domain appearance of a
pulsed signal with a poor on-to-off ratio. The on amplitude

is close to 6 divisions while the off amplitude gives a deflection
of 0.4 divisions; hence, the on/off ratio is 6/0.4 = 15, or

20 log 15 = 23.5 dB. To determine the on/off ratio from
frequency-domain measurements, we proceed as follows:

1) Fig. 9-13 is a frequency-domain display of the spectrum
corresponding to Fig. 9-12. The spectrum consists of
the superposition of two parts; one is basically a typical

pulsed-RF spectrum while the other part is an ordinary
CW spectrum?®. We observe that in Fig. 9-13 the CW
part of the spectrum consists of a two-division deflection.
The CW response shows up twice: once as a standard
resolution curve (the hole in the middle) and again as an
addition on top of the pulsed-RF spectrum. Subtracting
the effect of the CW response from the overall display,
we find that the mainlobe of the pulsed-RF spectrum has
a three-division deflection.

2) Having determined the deflection amplitudes of the CW

and pulsed-RF parts of the spectrum, their ratio can be
determined; in our example this is 3/2 or 3.5 dB. Note
that what is significant is the ratio of the deflection
amplitudes rather than the actual deflection amplitudes.
For large on/off ratios, it may be necessary to make this
measurement in the LOG mode. Under these

conditions the ratio, or difference in dB, is determined
either from a calibrated graticule or by using the calibrated
IF attenuator.

3) The computation of part two is only part of the answer.

This is because the frequency-domain display does not
show the true relative amplitude difference between the
CW and pulsed part of the signal. For pulsed-RF, there
is a loss in sensitivity relative to CW signals. This loss in
sensitivity is given by equation (9-4), it is:

o =% toB,
where
o = pulse width,

B = 3-dB bandwidth.

It is therefore necessary to determine the pulse width
and the 3-dB bandwidth before proceeding further.

3For poor on/off ratios we cannot use the idea of simple
superposition. This is because the part of the signal causing
the CW spectrum makes the actual pulse height smaller.
For on/off ratios greater than about 20 dB, the error due
to this effect is negligibly small.



4) From Fig. 9-13, the sidelobe width is 2.5 - 200 = 500 kHz.
The pulse width is computed:

1
t0=m-=2us.

5) If the spectrum analyzer in use has calibrated resolution

bandwidths, this number is read directly from the front ,
panel, otherwise it has to be measured as follows: { Fig. 9-14. Measuring the 3-dB-down resolution-amplifier
Without changing the resolution bandwidth setting, apply | bandwidth, 50 kHz/div, vertical — LIN.

a CW signal to the spectrum analyzer. The center
frequency or dispersion setting has no effect on this
measurement so any frequency CW signal may be used.
If a CW signal is not available, the CW feedthrough part

compute the loss in pulse sensitivity
of the original signal may be used, though this makes 6) We can now p

a more difficult measurement. Fig. 9-14 illustrates how which is:

the 3-dB bandwidth is measured. After obtaining a 3%2 - 1076
=201 1.5)(32.5 - 10°)2 - 107°)

convenient deflection height, the signal amplitude is ogp = 20 log (1.5)(

increased by 3 dB and the display width is measured at - 20 log 0.0975 = 202 dB,

the deflection height of the original reference point. To
perform this measurement, it is not necessary to have a

the minus sign denotes a loss,
calibrated signal generator. The 3-dB amplitude change where the mi g

can be.made by using the calibrated attenuator which is 7) The total on/off ratio is the sum of the two computations;
fc.>und in every Tnodern épectmm analyzer. From namely, on/off ratio = 20.2 + 3.5 = 23.7 dB. This is in
Fig. 9-14, the display width at the 3-dB-down point is good agreement with the 23.5 dB computed from time-

0.65 divisions. At 50 kHz/div, the 3-dB bandwidth is
(50)(0.65) = 32.5 kHz.

domain data.

Note that when we added the two numbers, we added
two losses to find the total loss in sensitivity.



(B)  1ms/cm

(CY 3ms/cm

Fig. 9-15. Effect of sweeptime on spectrum definition.

Rectangular pulsed-RF, 5-kHz rate.

EFFECT OF CONTROL SETTINGS

REPETITION RATE

Before any measurements can be undertaken, it is necessary to
have enough repetition-rate samples to define the overall shape
of the spectrum. Fig. 9-15 illustrates this. Fig. 9-15A has
insufficient rep-rate lines for shape definition. In Fig. 9-15B,
the overall shape of the spectrum is just becoming apparent,
while the shape in Fig. 9-15C is very clearly defined. A count
of repetition-rate lines in Fig. 9-15B will show 5 sample lines
per minor lobe and 10 lines for the major lobe. This is
usually considered the demarcation line between a defined and
undefined spectrum shape. Since the number of lines on the
screen is equal to the number of pulses intercepted during one
sweep, it is necessary to sweep slower (more time per cm) if
there are insufficient lines to define the spectrum shape.



DENSE VERSUS LINE SPECTRUM

Pulsed-RF spectrum analyzer measurements are usually based
on a dense-spectrum rather than line-spectrum interpretation.
To achieve a dense-spectrum type of display, it is necessary

that the spectrum-analyzer resolution setting be greater than the
pulse repetition rate. This matter is discussed in considerable
detail in Chapter 5. Fig. 9-16 illustrates what happens to the
appearance of the spectrum as the relationship between
resolution bandwidth and pulse repetition rate changes.

Fig. 9-16A shows a standard pulsed-RF spectrum. To obtain
this display it was necessary that the resolution bandwidth be
greater than the pulse repetition frequency. As the pulse :
repetition rate is increased, we reach a point where it becomes ‘
equal to the resolution bandwidth. This is shown in Fig. 9-16B. i
This is the transitional spectrum between the dense display of

Fig. 9-16A and the line, or CW, display of Fig. 9-16C. In

Fig. 9-16C, the pulse repetition rate has been increased to

several times the resolution bandwidth.

The following evolution in the spectrum is observed as the

pulse repetition rate is increased. At first, more sample lines
appear on the screen but the spectral shape remains unchanged.
The spacing of the lines depends only on the time-per-division
setting and is independent of the dispersion setting. This is the
normally desired mode of operation. As the pulse repetition

rate becomes equal to, and then exceeds, the resolution bandwidth
setting, the spectrum amplitude increases and the lines no longer
go down to the baseline. This is the transitional stage.
Eventually, new lines going down to the baseline appear. These
look like and behave like ordinary CW signal displays. This shape
is easily recognized by the fact that spacing between lines is
independent of the sweep time and is determined solely by the
dispersion setting. In Fig. 9-16, the spectrum-analyzer gain was
progressively reduced, in going from (A) to (C), so as to

maintain the display on the screen.

(A) PRR = B, DENSE SPECTRUM

(B} PRR = B, TRANSITIONAL SPECTRUM

(C) PRR » B, LINE SPECTRUM

Fig. 9-16. Effect of the pulse-repetition-rate resolution-
bandwidth relationship on the type of spectrum.



cy tOB < 0.1

Fig. 9-17. Effect of pulsewidth-bandwidth product on
spectral display.

FINE DETAIL

In order to display the fine detail of a pulsed-RF spectrum, it is
necessary that the pulsewidth-resolution-bandwidth product be
less than one tenth. Mathematically: 9B < 0.1. The effect of
not meeting this requirement is illustrated in Fig. 9-17. In

Fig. 9-17A, the pulsewidth-bandwidth product is considerably
greater than one tenth. Note that the sidelobes are almost
completely obscured and there are no nulls. In Fig. 9-17B, the
pulsewidth-bandwidth product is slightly greater than one tenth.
Here the sidelobes are clearly outlined and the position of the
nulls is definite. This permits the unambiguous determination
of pulse width. The nulls are, however, not very deep. This
makes it difficult to ascertain the degree of incidental FM present.
In Fig. 9-17C, where the pulsewidth-bandwidth product is
slightly below one tenth, the nulls are sharp and clear. This not
only indicates that the spectrum is properly resolved but also
that no incidental FM is present.

EFFECT OF SENSITIVITY AND DYNAMIC RANGE

As previously indicated, the sensitivity for pulsed-RF signals is
less than for CW signals. The ratio of display height on a linear
scale, or ratio of sensitivities, between pulsed signals and CW
signals of equal peak amplitude is given by the formula:

o= % tgB.

Since, for appropriate display of fine spectrum detail, it is
necessary that tg8 < 0.1, it follows that for a properly displayed
pulsed-RF signal o < 0.15. An alpha of 0.15 represents a
16.5-dB loss in sensitivity. This is the minimum possible loss in
pulsed-RF versus CW sensitivity that will still permit a correct
display of the spectrum. This decrease in sensitivity would not
cause much difficulty except that it also degrades the instrument
dynamic range. The loss in dynamic range occurs because the
peak input power level for linear operation is little affected by
pulse width. This fundamental relationship limits how narrow
of a pulse may produce an analyzable spectrum. The narrowest
pulse width is determined by the widest resolution bandwidth
available. For example, for the Tektronix Type 1L20 Spectrum



Analyzer, the widest resolution bandwidth is 100 kHz. All pulse
widths less than 1 us (£p B8 < 0.1) will produce sensitivity losses
greater than the theoretical minimum of 16.5 dB. Eventually,
the loss in sensitivity, and accompanying loss in dynamic range,
will preclude the display of a measureable spectrum.

This measurement limitation is illustrated in Fig. 9-18.

Fig. 9-18A shows the spectrum of a 0.2-us pulse using a
100-kHz resolution bandwidth. In spite of the o =

1.5+-02 - 10° « 10° = 30.5-dB loss in sensitivity and
dynamic range, the spectrum can still be displayed over the
full 40-dB LOG dynamic range of the spectrum analyzer.

Fig. 9-18B shows the spectrum of an 80-ns pulse. Here only
two centimeters of vertical drive could be achieved, indicating
that pulse widths narrower than about 0.1 ys cause too much
loss in dynamic range.

g {

(AY  2MHz/cm
100kHz BANDWIDTH
0.2us PULSE WIDTH
VERTICAL - LOG

(B) 5MHz/cm
100kHz BANDWIDTH
80ns PULSE WIDTH
VERT ICAL - LOG

Fig. 9-18. Illustrating the loss in dynamic range for
narrow pulses.

(A) PULSED-RF

VERTICAL - LOG

{B) PULSED-RF
ZERQ Hz/cm
VERTICAL - LOG

Fig. 9-19. Pulsed-RF illustrating bands of intensification
across spectrum.

DISPLAY INTENSIFICATION EFFECTS

Sometimes the spectral display may have extraneous features

that are not readily accounted for. Frequently, the peculiarity

is in the form of a brightening or intensification of a portion of
the spectrum. These intensification effects are almost always

due to the operating parameters of the spectrum analyzer. The
phenomenon gives no information about the signal, and so should
be ignored. Two such effects will now be illustrated and causes
explained.

Fig. 9-19A is the spectrum of a pulsed-RF signal. Note the
several bands of intensification, the most prominent being two
centimeters from the top. This intensification is caused by the
transient response of the variable resolution amplifier.



(A)

PULSED-RF
50kHz/cm
VERTICAL = LIN

(B) RESOLUTION AMPLIFIER RESPONSE
FOR (A)
S5kHz/cm
VERTICAL - LIN

Fig. 9-20. Effect of gradual-resolution-filters skirt selectivity

VERTICAL - LIN

Fig. 9-21.

on pulsed-RF spectrum.

(8) VERTICAL - LIN

Sharp skirt selectivity leads to well defined nulls.

Fig. 9-19B is an expanded version of Fig. 9-19A. We see that
each of the repetition-rate sample lines, which are due to the
variable-resolution-amplifier transient response as explained in
Chapter 5, has an overshoot two centimeters from the top of the
display. These overshoots, which cannot be resolved individually
in Fig. 9-19A, give the effect of a more intense trace.

A different type of intensification effect is illustrated by

Fig. 9-20A and appears to be two spectra. One, quite bright,
appears to be a standard (sin x)/x, representative of a rectangular
pulsed RF. The other, somewhat less intense spectrum, has no
sidelobes or minima. This effect is due to gradual rather than
abrupt skirts on the variable resolution filter as illustrated in

Fig. 9-20B. From Fig. 9-20A, we calculate that the pulse width
is roughly 11 ps. In order to have adequate fine-detail definition,
it is necessary to meet the requirement that o8 < 0.1. With

tg = 11 ps, the bandwidth has to be less than 9.1 kHz. The
resolution curve is quite adequate at the 3-dB or even 6-dB down
point. But, at the amplitude level of the spectrum nulls, the
resolution curve is about 20 kHz wide. This leads to the
combination spectrum of Fig. 9-20A. When the resolution curve
shape is more rectangular, Fig. 9-21A, the nulls are clearly defined,
as shown in Fig. 9-21B. Once the cause of the double spectrum
in Fig. 9-20A is understood, the filled-in sidelobes can be ignored
and all necessary data obtained.



Fig. 10-1.

HORIZONTAL - 20us/cm
YERTICAL - D.2V/cm

Time-domain appearance of squarewave.

10

MISCELLANEOUS APPLICATIONS

WAVEFORM ANALYSIS

squarewave

Fourier-series theory, as discussed in Chapter 3, provides a
mathematical relationship between the time-domain and frequency-
domain characteristics of various waveforms. This means that

one can compute the time-domain characteristics of a wave train
from frequency-domain measurements and vice versa. The
measurement and computational technique is illustrated by the
following examples.

Fig. 10-1 shows the time-domain appearance of a squarewave.
The period of the squarewave is Scm - 20us/cm = 100 us and
the peak-to-peak amplitude is 4cm * 02V/em = 0.8 V.
According to Fourier theory (see Table 3-2), the squarewave is
composed of sinewaves whose amplitudes are given by

. kTl

2410 sin. —

T nmtg i
¥

Cy = (10-1)

where C,, is the zero-to-peak (y2 RMS) amplitude of the nth
harmonic of the sinewaves whose superposition makes up the
squarewave. The fundamental sinewave frequency (n = 1) has
the same period as the squarewave. Hence,

N 1
fo="r 100 ps

= 10 kHz.

For a symmetrical squarewave, the ratio of pulse width to period
is tg/T = 1/2. Hence, the amplitude of the fundamental is:

sin =

24 2

Cr= 5 Tm
Z



For our example, we get
Cr= @w =051 V zero to peak,

s 5 @gnﬂ = (, since sin 7 = 0,

Cy = % =0.17 V zero to peak.

Continuing in like manner, we observe that all even harmonics
are zero, while the odd harmonics decrease in amplitude in
proportion to the harmonic number.

The qualitative information on the shape of the time-domain
waveform can be determined by observing the spectrum on

a spectrum analyzer having an appropriate frequency range.
Thus, the absence of even harmonics and the fact that the third
harmonic is one third as large as the fundamental, the fifth
harmonic being one fifth of the fundamental, etc., indicates that
we are dealing with a squarewave. The quantitative information
dealing with frequencies and amplitudes requires a fully
calibrated spectrum analyzer, such as the Tektronix Type 1L5.
Fig. 10-2 shows the frequency-domain appearance of the
squarewave as resolved by a Type 1L5 Spectrum Analyzer. The
frequency spacing of the fundamental and harmonics shows that
the repetition rate of the original waveform is about 10 kHz.

HORTZONTAL = 10kHz/cm
CENTER - 50kHz
VERTICAL - LIN;, 0.1¥/cm RMS

Fig. 10-2. Frequency-domain appearance of squarewave.

Missing even harmonics and the relative amplitude of the
remaining harmonics indicate a squarewave. The amplitude
of the fundamental comprising the squarewave is

3.6cm * 0.1V/em = 0.36 V RMS, or 0.36¥2 = 0.51 V zero to
peak. Conversely, the time-domain peak-to-peak value can be
computed from:

Cy = -%T—A zero to peak

or

- —Q(z_"‘s—”- V peak to peak (102)

Substituting for ¢y from Fig. 10-2 we get

A

D.36m
A= = (0.8 V peak to peak,
2 R SR

as measured from Fig, 10-1.

In actual practice, one would normally not use a spectrum
analyzer to evaluate characteristics of a squarewave. The job is
more easily accomplished in the time-domain with an oscilloscope.
There are, however, some rare cases where the spectrum analyzer
is better. Such a situation might arise where the squarewave
amplitude is insufficient to show up on the oscilloscope but can
be observed on the more sensitive spectrum analyzer. The
major spectrum-analyzer application in this area is as a tool
illustrating the physical meaning of the theoretical Fourier series
analysis. The spectrum analyzer can also be used as a device for
the direct determination of the Fourier series of waveforms in
lieu of a complicated computation.



A highly useful spectrum-analyzer application in the area of
waveform analysis is that of symmetry adjustment. Fig. 10-3
shows an oscilloscope display of a slightly asymmetrical
squarewave. The asymmetry is hardly noticeable. Fig. 10-4
shows the same squarewave in the frequency domain. Here, the
presence of even harmonics is a clear indication of asymmetry.
The signal source could be tuned for best symmetry by
adjusting for minimum even-harmonic generation.

Fig. 10-3. Slightly asymmetric squarewave in time domain.

Fig. 10-4. Slightly asymmetric squarewave in frequency
domain. Note even harmonics.

When making computations in waveform analysis, it is
important to keep in mind the calibration factors of the
instruments and the units of the formulas. Thus, oscilloscopes
usually yield peak-to-peak values, spectrum analyzers are usually
calibrated in RMS, and the Fourier series formulas are based

on zero-to-peak levels. Neglecting to convert to a common set
of units will result in an error of either 242 or V2.

RANDOM NOISE MEASUREMENT

The subject of random noise is quite complex. A complete
discussion of this subject requires probability mathematics — a
subject which is beyond the scope of this volume. Those
interested will find many references in this area'. The frequency-
domain description of noise is expressed by a power spectrum
where the basic element is spectral density in units of power per
unit bandwidth. Besides the need to express noise in units of
power per bandwidth, the absolute level indicated by a measuring
device is also affected by the detector time constant.

The effect on the output of various detector time constants and
a summary of useful formulas will be found in the cited
references?.

However, the above complications do not arise if one is willing
to settle for a partial, relative-distribution, expression of the
signal. A relative-amplitude-distribution characterization is all
that is needed for many applications. This can be easily
obtained with any spectrum analyzer.

1See, for example, Davenport & Root, An Infroduction to
the Theory of Random Signals and Noise, McGraw-Hill,
1958 also, Blackman & Tukey, The Measurement of Power
Spectra, Dover Publications, 1958.

2Peterson, “Response of Peak Volt-Meters to Random Noise,”
GR Experimenter, Vol. 31, No. 7, December, 1956; also,
“Useful Formulas, Tables, and Curves for Random Noise,”
GR Instrument Notes, IN-103, 1967.



Figs. 10-5 and 10-6 illustrate such a measurement. The illustrated
problem was to adjust the bias on a zener noise source for the
flattest output frequency distribution. The two oscilloscope
presentations, Figs. 10-5A and 10-6A, show relative output
amplitude, but the frequency distribution cannot be ascertained.
The spectrum-analyzer displays, Figs. 10-5B and 10-6B, clearly B : il : _
show that the bias adjusted for Fig. 10-6 results in the flatter A - s—————
output frequency distribution.

| Fig. 10-5. Zener noise source. Bias setting gives unflat

DISTORTION MEASUREMENT l frequency distribution.

A frequent spectrum-analyzer application is to determine the ‘
degree of distortion in what is supposed to be a sinusoidal ‘
waveform. The method consists of measuring the relative
amplitudes between the fundamental and the various harmonics |
and computing the percentage of harmonic content. When
there is more than one significant harmonic, the percentages are {
usually combined by the RMS-sum method — that is, by taking |
the square root of the sum of the squares. Fig. 10-7 illustrates

a typical percentage distortion measurement. Fig. 10-7A is the
oscilloscope presentation of a signal source output; the

waveform is obviously not a perfect sinewave. The degree of
distortion is, however, very difficult to ascertain from this
presentation. Fig. 10-7B is a spectrum-analyzer display for the
same waveform. From the spectrum-analyzer display, we observe
that the several harmonics are 25 dB, 28 dB, 26 dB, and 36 dB
below the fundamental. Converting from dB to voltage ratios,
we get: 1/17.8, 1/25.2, 1/20, and 1/63.3 as the amplitudes of
the harmonics with respect to the fundamental.

(A) TIME DOMAIN (B) FREQUENCY DOMAIN

Fig. 10-6. Zener noise source. Bias setting gives flat
frequency distribution.

The percentage harmonic content is obtained by multiplying

each ratio by 100. Thus, the respective harmonic percentages
are: 5.6%, 4.0%, 5.0%, 1.6%. The total harmonic distortion

(HD), computed by the RMS-sum method, is:

HD =\/ (5.6)* + (4.00? + (5.0 + (1.6)* =8.7%.

{B) FREQUENCY DOMAIN
VERTICAL - LOG, 10dB/cm

Fig. 10-7. Distortion measurement.
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Fig. 10-8. Test setups.

HORIZONTAL - 10MHz/cm
CENTER - 2GHz
VERTICAL = LIN

Fig. 10-9. Filter bandpass characteristic.

COMPONENT TRANSFER-CHARACTERISTIC MEASUREMENTS

filter
characteristic

Basically, a spectrum analyzer is a receiver. As such, it can be
used in all applications where a receiver is called for. Thus,
the spectrum analyzer can be used as the indicator in VSWR
measurements, attenuator-insertion-loss determination, antenna
pattern monitoring, filter bandpass and @ determination, etc.

The basic test setup consists of a signal generator, a spectrum
analyzer and the component under test. Typical test setups are
shown in Fig. 10-8. Fig. 10-9 illustrates a filter bandpass
characteristic and O measurement. The display was generated
by tuning the signal generator frequency through the spectrum-
analyzer dispersion, with the spectrum-analyzer plug-in in a
storage oscilloscope. The filter response was thus stored on the
CRT and then photographed. When storage is not available, the
filter response can be obtained by controlling the shutter speed
manually while the signal generator is tuned. The filter
characteristic can also be obtained by connecting the spectrum-
analyzer recorder output to a paper chart recorder, The filter,
in this measurement, has a sufficiently high Q to permit the
display of the complete response curve within one dispersion
frequency width. When this is not possible, the filter
characteristic is obtained by tuning the spectrum-analyzer center
frequency to maintain the signal on-screen as the signal
generator is tuned. The deflection amplitudes and frequencies
are recorded for manual plotting of the filter response.

Fig. 10-9 shows the filter characteristic taken with the spectrum-
analyzer vertical control in the linear mode. The 3-dB bandwidth
is measured at the 0.707 points, which at 10 MHz/cm corresponds
to 30 MHz. Since Q = fy/Af, the loaded @ of this filter is
2000/30 = 67.



SYNCHRONIZED SWEEPER TECHNIQUES

In a swept front-end spectrum analyzer, such as Tektronix | |
Type 1L5 or Type 3L3, the sweeping-oscillator frequency setting
not only controls the dispersion but also uniquely determines
the center frequency. By heterodyning, filtering, and amplitude | 1
leveling the sweeping-oscillator output, it is possible to generate
a signal whose frequency is equal to the instantaneous frequency
to which the spectrum analyzer is tuned. Such a device is the
Tektronix Swept Frequency Converter (SFC) for use with the
Type 1L5 and Type 3L5 Spectrum Analyzer Plug-in Units.
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Fig. 10-10 shows a basic block diagram of the SFC and how it
relates to the block diagram of the spectrum analyzer. This
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characteristics of all types of components. The test methods are
the same as that used in the standard sweeper-detector-
oscilloscope system. The only difference is that the spectrum
analyzer acts as a synchronous detector, thereby providing

several advantages over the ordinary peak-detector method. These
advantages are:
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1) The spectrum analyzer has very high sensitivity, thereby
permitting the testing of components that cannot stand
the relatively high (over 100 mV) voltages needed in the
detector-oscilloscope system.

FREQUENCY
CONVERTER

2) Synchronous detection filters out the effect of sweeper
harmonics, hence, making it easy to accurately characterize
components having multiple passbands.

Fig. 10-10. Frequency-converter/spectrum-analyzer test

3) The frequency converter is a relatively inexpensive system.
component when compared to a complete sweeper. ‘
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(A} HORIZONTAL - 100kHz/cm
CENTER - 500kHz
VERTICAL - LIN

{(B) HORIZONTAL - 10kHz/cm
VERTICAL - LIN

Fig. 10-11. Filter response displayed on Type 1L5 using
swept frequency converter.

HORIZONTAL - 10kHz/cm
VERTICAL = LOG, 10dB/em

Fig. 10-12. Portable-tape-recorder frequency response.

tape-
recorder
performance

The major application of the frequency-converter/spectrum-
analyzer system is in the testing of filters. Fig. 10-11 shows the
results of such a measurement. Fig. 10-11A shows the complete
filter characteristic. From this display we observe that the loss
in signal transfer when the filter is inserted between the SFC
and the spectrum analyzer is 5.2 cm/5.4 cm, or about a 0.4-dB
insertion loss.

The bandwidth at the 3-dB-down points is approximately 40 kHz.
This is more accurately determined from an expanded display
such as shown in Fig. 10-11B. The loaded Q of the filter can be
computed as Q = fo/Af = 500/40 = 12.5. More detailed skirt
selectivity data can be obtained by operating the spectrum
analyzer in its logarithmic vertical mode. In short, as with any
other sweeper-detector system, this method permits the complete
characterization of a filter. One important precaution is the
necessity for adequate impedance matching. Some spectrum
analyzers, such as Tektronix Type 1L5 or Type 3L5, have a high
impedance input. It is, therefore, necessary to use appropriate
terminations or minimum loss pads to assure an impedance
match between the Swept Frequency Converter, filter and
spectrum analyzer.

Besides the standard filter measurement applications, the
analyzer/frequency-converter system can be used in many other
areas. One illustration is in the testing of tape recorders. In this
application, the output of the SFC is connected to the recorder
instead of the microphone output, and the playback goes to the
spectrum analyzer. This permits the measurement of such things
as recorder frequency response and distortion. Fig. 10-12 shows
the frequency response of a portable tape recorder at the two
extremes of the tone adjustment settings. The upper trace shows
a 3-dB-down point of about 30 kHz while the lower trace, at a
different tone control setting, shows a 3-dB-down point of about
20 kHz. The “birdie” at about 70 kHz is caused by a bias
oscillator inside the tape recorder.



Fig. 10-13 illustrates the measurement of the distortion
{ characteristics of the tape recorder. Here, a 2-kHz tone was
' checked for harmonic content straight out of the signal generator
RTERY o Silielion L (Fig. 10-12A) and as a playback from the tape recorder
VERTICAL - L0G it AL Ll (Fig. 10-12B). It will be observed that going through the recorder
has increased the third harmonic by about 10-dB.

(A) SIGNAL SOURCE (B) RECORDER PLAYBACK

Fig. 10-13. Portable-tape-recorder distortion measurement.
EMI MEASUREMENTS

Spectrum analyzers make excellent electromagnetic-interference
monitoring tools. Workers in the field have found good

f correlation in the measurements of absolute levels of
interference using spectrum analyzers® . The determination of
absolute levels of RFI and spectrum signature emanations is a
complex subject requiring a discussion of the various existing
specifications and standards. This is beyond the scope of this
volume. There are also many applications which simply require
a relative amplitude determination. This is illustrated in

Fig. 10-14. Fig. 10-14A shows the line frequency interference
generated by a power transformer as picked up by a single-turn
magnetic loop antenna and displayed on a Tektronix Type 1L5
Spectrum Analyzer. The object is to investigate various shielding
I configurations. Clearly, the shielding configuration resulting in
' Fig. 10-14C is best. The level of interference voltage has been
reduced by a factor of 5.5 cm/2 cm = 2.75 times, or 8.8 dB.

(A)  UNSHIELDED TRANSFORMER (B) FIRST SHIELDING CONF IGURAT |ON

3Metcalf, et al., “Investigation of Spectrum Signature
i Instrumentation,” [EEE Trans, EMC-7, No. 2, June, 1965.

{C) SECOND SHIELDING CONF|GURAT |ON

Fig. 10-14. Shielding-effectiveness test on power transformer. ?
Horizontal — 200 Hz/cm, center — 1 kHz, and
vertical - LIN.
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Many sets of telemetry data are usually transmitted together 1’ 'K;z

by modulating a set of subcarriers which are then used to * 8 5000
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modulate the main carrier by multiplexing. Subcarrier bands i
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can have either a constant frequency ‘spacing or a proportional l » =55
I
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frequency spacing. In the proportionally spaced system, the
lower-frequency bands are spaced closer in frequency than the

upper-frequency bands. The proportional spacing scheme is | li )Ojf
illustrated by the table of center frequencies, Table 10-1. 15 46000
52500

8 70000

Frequently it is desired to check on the frequency spacing, ‘
amplitude, and presence or absence of these subcarriers. The
spectrum analyzer does an excellent job here, except for the
difficulty caused by the crowding of the lower-frequency

channels. One solution is to use a specialized logarithmically i
sweeping spectrum analyzer to spread out the CRT spacing of

Table 10-1. IRIG proportional subcarrier bands.

the lower-frequency bands. Another solution is to observe the \nggagz\
complete set of bands and then expand the region of interest s
across the full CRT. The latter technique is described in the g

following.

Fig. 10-15A shows bands 6, 7 & 8 and 16, 17 & 18 as

displayed using a Tektronix Type 3L5 Spectrum Analyzer,

Type 3B3 delayed-sweep Time Base and Type 564B Storage
Oscilloscope. Note that the frequency spacing between the carly
bands is very close so that a detailed examination is difficult.
Fig. 10-15B was taken under identical spectrum-analyzer settings
but the time base was operated in the intensified mode with the
intensification delay time adjusted to cover only the desired early
bands. In Fig. 10-15C, the spectrum analyzer settings remain
unchanged but the time base has been switched into the delayed
mode of operation. This expands the intensified portion of the
trace across the full width of the CRT so that a detailed
examination can be easily made.

il g 1
e N kM . Ab

(B) BANDS 6, 7, AND ‘8 INTENSIF|ED (C) INTENSIFIED PORTION EXPANDED

Fig. 10-15. Checking proportional-spacing telemetry
subcarriers by expansion method.



SIGNAL PURITY MEASUREMENTS

drift

A multitude of sins having names such as stability, drift,
incidental FM, noise sidebands, etc., can be lumped under the
general heading of signal purity. Many of these names simply
reflect a different way of looking at or measuring the same thing.
Here, it is not the intent to give a lengthy treatise on this
subject. Those interested are referred to the Bibliography. The
use of spectrum analyzers to make signal-purity, or stability,
measurements is illustrated by the following specific examples.

Drift is essentially a long-term phenomenon. How long a time
interval is needed for “long term” is a difficult question to
answer — the reader is referred to the literature for various
interpretations® .

For our purposes, long term means basically a longer interval
than the measurement time of the spectrum analyzer.

Drift simply means a frequency change. The amount of change
as a function of time or oscillator temperature, or some other
parameter, is easily recorded by checking periodically on a
spectrum analyzer. Of course, it goes without saying, that the
spectrum-analyzer drift performance must be considerably better
than the amount to be measured.

Fig. 10-16 shows a drift measurement. Oscillator basic frequency
is 100 kHz, the spectrum analyzer was set at a dispersion of

| kHz/cm. The spectrum analyzer was actuated on single sweep
in one minute intervals and the resulting spectra recorded on a
storage CRT. From the photograph, we observe that the total
drift was about 4 kHz, initial drift was about 2 kHz/min, and the
oscillator settled down after five or six minutes. Depending on
the cause of this drift, we can now specify parts per million,
change per degree temperature or change per volt in the power-
supply voltage or whatever.

4Kauffman & Engelson, “Frequency Domain Stability
Measurements,” The Microwave Journal, May, 1967.

incidental
FM

HORIZONTAL - TkHz/cm
CENTER - 100kHz
VERTICAL - LIN

Fig. 10-16. Frequency drift measurement.

HORIZONTAL - SkHz/cm
CENTER - 4GHz
VERTICAL - LIN

Fig. 10-17. Unresolved incidental frequency modulation.

Incidental frequency modulation is basically a short-term
phenomenon, where the frequency change of interest occurs
in less than the measurement time. Incidental FM can be at a
random rate, such as caused by power-supply noise, random
vibration or other random phenomena; or it can be coherent,
such as caused by power-supply ripple at line frequency. Both
random and coherent FM look basically alike on the spectrum
analyzer when the spectrum-analyzer resolution bandwidth is
wider than the FM rate. Under these conditions, the FM
sidebands are not resolved and the spectrum analyzer shows a
“smearing” of the response characteristic as illustrated in

Fig. 10-17. Here the FM was caused by 120-Hz power-supply
ripple, but this is not apparent from the display. What is
apparent is that the peak-to-peak FM deviation is about 7 kHz.



From this one can compute the desired stability data in parts
per million as:

peak-to-peak deviation . o 7
center frequency 4000

10% = 1750 P/M

Sometimes the incidental-FM rate is such that the individual
sidebands can be resolved by the spectrum analyzer. This type
of display was already discussed in Chapter 8 under Narrowband
FM. Refer to that discussion for details.

Sometimes the signal impurity is due to AM rather than FM
modulation. This can be described in terms of the standard AM
sidebands. Describing the instability in terms of standard
sidebands, whether AM or FM, becomes difficult when the
modulation is random, such as due to noise. A useful technique,
here, is to designate that the noise sideband power is so many
dB down from the carrier, when measured with a stated-noise-
bandwidth amplifier at a given frequency distance removed from
the carrier. Fig. 10-18 illustrates this type of measurement.

30dB

—»I 100kHz L—

HORIZONTAL = 50kHz/cm
BANDWIDTH - 1kHz
VERTICAL - LOG

Fig. 10-18. AM noise modulation measurement.

Here one could, for example, specify that the noise sideband
power, in a 1-kHz bandwidth, is 30 dB below the carrier power,
100 kHz removed from the carrier frequency. Since spectrum
analyzers do not usually have specified resolution noise
bandwidths, this generally has to be either calculated or measured.
The determination simply consists of calculating the average width
of the resolution bandwidth power (square law) curve.

DOPPLER VELOCITY MEASUREMENT

The Doppler principle permits the measurement of velocity by
bouncing electromagnetic energy off a moving target and
measuring the frequency difference between the transmitted and
reflected radiation. The best known Doppler velocity measuring
system is Doppler radar. For a CW system, the Doppler
difference frequency (fpy) is related to the transmitted frequency

(f1). the target velocity (v) and the speed of electromagnetic
radiation (¢), by:

IR

33
o |t

o fr.

For a 100-MHz radar frequency, this represents a Doppler
frequency of 29.3 Hz for a 100-mile-per-hour target. These
representative numbers indicate that low-frequency spectrum
analyzers, such as the Tektronix Type 1L5 or Type 3L5, are
well suited to this application. Depending on the basic radar
frequency, the horizontal scale of the analyzer can be calibrated
directly in miles per hour. The target velocity is then read from
the horizontal position of the signal on the screen.

A more complex Doppler velocity measurement is illustrated by
Fig. 10-18. Here, the spectrum analyzer is used to measure the
Doppler frequency of laser radiation scattered by a moving fluid.



The coherent light of a laser beam is split into two beams of
equal path length. The beam directions are so arranged that one

beam impinges directly onto a photomultiplier tube while the
other beam is pointed away from the photomultiplier, as shown
in Fig. 10-19. Some of the light from the main beam, which is
pointed away from the photomultiplier, is scattered by the
moving fluid and enters the photomultiplier along with the light

from the other beam. The photomultiplier acts as a mixer, | BEAN / S,
combining the two light beams and producing an electrical signal SHETHTER % ANALYZER
at the difference frequency. This difference frequency is

:
STORAGE

OSCILLOSCOPE

LASER

determined by the velocity of the fluid, which is, thus, indirectly
measurable by the spectrum analyzer.

PHOTOMULT IPLIER

Fig. 10-19. Doppler method of fluid velocity measurement.
USING TRANSDUCERS

Spectrum analyzers can be used as frequency-selective
instruments for signals involving transducers. These can involve
such diverse applications as cyclical temperature effects,
resonant-frequency determination for vibrating bodies, frequency
and amount of displacement for various structures, pressure ‘
gradients or changes of moving fluids, ete. !

Following photographs illustrate the kind of results that one can

{AY TIME DOMAIN
et | T R
Fig. 10-20A is a time-domain display of the vibration of the !
floor in a large industrial building under normal usage. The |
pickup is a velocity transducer having a sensitivity of 600 mV for !
every inch per second of velocity. From this display, we observe |
that the basic frequency is about 1/0.1 = 10 Hz and that the
peak-to-peak velocity excursion is 200 + 10°/600 - 107 =
333 uin/s. Fig. 10-20B shows the frequency-domain
characteristics associated with Fig. 10-20A. The frequency of
greatest velocity is clearly closer to 7 Hz than the 10 Hz
estimated from time-domain data. The transducer output at this
frequency is 400 mV RMS. The floor velocity at the 7-Hz
resonant frequency is 400/600 - 103 = 667 pin/s RMS, or

ZERO
Hz

(B) FREQUENCY DOMAIN

(667)(2.8) = 1870 uin/s P-P. The spectrum-analyzer data shows | D ZOTAL ¢ JORRER e
that, at the resonant frequency, the floor is moving a great deal J
_ ; - - }
more than the average time-domain data indicates. : Fig. 10-20. Floor movement — velocity transducer, 600 mV
1

for 1-in/s velocity.



HORIZONTAL - 10kHz/cm
CENTER - 50kHz
ERTICAL - LOG

Fig. 10-21. Resonance effects of small mechanical structure as
picked up by vibration transducer and displayed
on Tektronix Type 3L5 Spectrum Analyzer.

1L5 MANUAL MA | NFRAME
SWEEP
ouT EXT
osc Q@ i’w@wmwu
ouT IN
FREQUENCY
COUNTER
Fig. 10-22. Equip t arrang t for manual-sweep

operation.

Fig. 10-21 shows another transducer application. Here, a small
mechanical structure is made to vibrate by excitation from a
loudspeaker type of exciter which was in turn driven by a low-
frequency squarewave. The pickup is a velocity transducer.
Clearly, most of the output is at low frequencies. This should
be expected, since the driving source (squarewave) has most of
its output at the low end of the spectrum. While the low-
frequency effects are mainly due to the driving waveform, the
peaks at 20 kHz, 30 kHz, and 45 kHz are resonance effects in
the structure under test.

USING MANUAL SWEEP

Some swept front-end spectrum analyzers have a manual-sweep
position, where the frequency of the swept local oscillator can
be manually controlled by the operator. This, when combined
with a local-oscillator front-panel output for external
measurement, permits highly accurate absolute and relative
frequency measurements. The basic equipment arrangement for
such a measurement, using the Tektronix Type 1LS, is shown in
Fig. 10-22. The local oscillator is manually tuned to the peak
of the displayed signal components at which time the local-
oscillator frequency is measured on the counter. The absolute
frequency of each signal component can be computed by
subtracting the measured local-oscillator frequency from the
known IF-amplifier center frequency. Accurate frequency
differences between various components are obtained by
computing the difference frequencies between the various
counter readings. Fig. 10-23 illustrates a typical measurement.



(A) STANDARD SPECTRUM-ANALYZER DISPLAY

(B) MANUAL SWEEP TUNED TO EACH 5IGNAL

Fig. 10-23. Measuring frequency in manual sweep.
Horizontal is 1 kHz/cm.

Fig. 10-23A is a standard spectrum-analyzer display of two
sinusoids. Based on the spectrum-analyzer dispersion setting,
the frequency difference between the two signals is 4 kHz.
However, this number is only known within the accuracy of the
dispersion setting, which is on the order of 5% — that is, a
possible error of 200 Hz. Fig. 10-23B is a double exposure as
the trace is moved to the peak of the response due to each
signal. The local-oscillator output frequency was measured as
2,537,21X and 2,533,12X (the last digit is shown as X since the
accuracy of the measurement makes this figure meaningless).
The more accurate difference frequency is 4090 =10 Hz rather
than 4000 +200 Hz.

The utility of the manual sweep is that the frequency of complex
signals or vary low-amplitude signals, which cannot be directly
measured by a counter, can be accurately determined.

11

DEFINITIONS OF TERMS

In spectrum analyzers, as in other technical areas, there are a
great many specialized technical terms. Many people are
unfamiliar with the meaning of some of these terms, thus,
creating a communications problem. The problem is compounded
by the fact that different manufacturers sometimes use different
terms to denote the same parameters and, conversely, the same
word may have a different meaning. This problem has been
recognized by the IEEE, which has established a committee
whose purpose is to develop a unified set of terms and definitions.
However, the task of this group will not be finished for several
years.

This chapter is divided into three sections. The first section gives
the terms and definitions presently used by Tektronix, Inc. The
second section details the terms and definitions so far considered
by the IEEE subcommittee on spectrum analyzers. The purpose
of the last section is to illustrate and explain some of the more
difficult terms and to indicate some of the measurement
techniques used.

TEKTRONIX DEFINITIONS

Spectrum Analyzer — A device which displays a graph of relative
power distribution as a function of frequency, typically on a
cathode-ray tube or chart recorder.

1) Real Time — A spectrum analyzer that performs a
continuous analysis of the incoming signal with the time
sequence of events preserved between input and output.

2) Nonreal Time — A spectrum analyzer that performs an
analysis of a repetitive event by a sampling process.
a) swept front-end spectrum analyzer — A superheterodyne
spectrum analyzer in which the first local oscillator is
swept.



b) swept intermediate-frequency spectrum analyzer — A
superheterodyne spectrum analyzer in which a local
oscillator other than the first is swept.

Center Frequency (radio frequency or intermediate
frequency) — That frequency which corresponds to the center
of the reference coordinate (in units of Hz).

Center-frequency Range (radio frequency) — That range of
frequency that can be displayed at the center of the reference
coordinate. When referred to a control (e.g., Intermediate-
frequency Center-frequency Range), the term indicates the
amount of frequency change available with the control (in units
of Hz).

Deflection Factor — The ratio of the input signal amplitude to

the resultant displacement of the indicating spot (e.g., RMS V/div).

Dispersion (sweep width) — The frequency sweep excursion over
the frequency axis of the display. Can be expressed as

frequency/full frequency axis or frequency/div in a linear display.

Display Flatness — Uniformity of amplitude response over the
rated maximum dispersion (usually in units of dB).

Drift (frequency drift) (stability) — Long-term frequency changes
or instabilities caused by frequency changes in the spectrum-
analyzer local oscillators. Drift limits the time interval that a
spectrum analyzer can be used without retuning or resetting the
front-panel controls (units may be Hz/s, Hz°C, etc)).

Dynamic Range (on screen) — The maximum ratio of signal
amplitudes that can be simultaneously observed within the
graticule (usually in units of dB).

Dynamic Range, Maximum Useful — The ratio between the
maximum input power and the spectrum-analyzer sensitivity
(usually in units of dB).

Frequency Band — A range of frequencies that can be covered
without switching (in units of Hz).

Frequency Scale — The range of frequencies that can be read
on one line of the frequency indicating dial (in units of Hz).

Incidental Frequency Modulation (residual frequency
modulation) — Short-term frequency jitter or undesired
frequency deviation caused by instabilities in the spectrum-
analyzer local oscillators. Incidental frequency modulation
limits the usable resolution and dispersion (in units of Hz).

Incremental Linearity — A term used to describe local
aberrations seen as nonlinearities for narrow dispersions.

Linearity (dispersion linearity ) ~ Measure of the comparison

of frequency across the dispersion to a straight-line frequency
change. Measured by displaying a quantity of equally spaced
(in frequency) frequency markers across the dispersion and
observing the positional deviation of the markers from an
idealized sweep as measured against a linear graticule. Linearity

is within -Awl * 100%, where Aw is maximum positional
deviation and w is the full graticule width.

Maximum Input Power — The upper level of input power that
the spectrum analyzer can accommodate without degradation
in performance (e.g., spurious responses and signal compression)
(usually in units of dBm).

Maximum Sensitivity —

1) Signal equals noise — That input signal level (usually in
dBm) which results in a display where the signal level
above the residual noise is equal to the residual noise
level above the baseline; expressed as: signal + noise =
twice the noise.

2) Minimum discernible signal — That input signal level
(usually in dBm) which results in a display where the
signal is just distinguishable from the noise.

Minimum Usable Dispersion — The narrowest dispersion
obtainable for meaningful analysis. Defined as ten times the
incidental frequency modulation when limited by “incidental
frequency modulation™ (in units of Hz).

Optimum Resolution — The best resolution obtainable for a
given dispersion and a given sweep time (in units of Hz).
Theoretically,

dispersion (in Hz)
sweep time (in seconds)

Optimum Resolution = V



Optimum Resolution (bandwidth) — The bandwidth at which
best resolution is obtained for a given dispersion and a given
sweep time (in units of Hz):

Optimum Resolution (bandwidth) = 0.66'\’m
sweep time

Resolution — The ability of the spectrum analyzer to discretely
display adjacent signal frequencies. The measure of resolution is
the frequency separation of two equal amplitude signals, the
displays of which merge at the 3-dB-down points (in units of Hz).
The resolution of a given display depends on three factors:
sweep time, dispersion and the bandwidth of the most selective
amplifier. The 6-dB bandwidth of the most selective amplifier
(when Gaussian) is called resolution bandwidth and is the
narrowest bandwidth that can be displayed as dispersion and
sweep time are varied. At very long sweep times, resolution and
resolution bandwidth are synonymous.

Resolution (bandwidth) — Refer to resolution.

Safe Power Level — The upper level of input power that the
spectrum analyzer can accommodate without physical damage
(usually in units of dBm).

Scanning Velocity — Product of dispersion and sweep
repetition rate (in units of Hz/unit time).

Sensitivity — Rating factor of spectrum analyzer’s ability to
display weak signals.

Skirt Selectivity — A measure of the resolution capability of
the spectrum analyzer when displaying signals of unequal
amplitude. A unit of measure would be the bandwidth at
some level below the 6-dB-down points, (e.g., 10, 20, 40-dB
down)(in units of Hz).

Spurious Response (spurii, spur) — A characteristic of a spectrum
analyzer wherein displays appear which do not conform to the
calibration of the radio frequency dial. Spurii and spur are the
colloquialisms used to mean spurious responses (plural) and
spurious response (singular) respectively. Spurious responses are
of the following types:

1) Intermediate-frequency feedthrough — Wherein signals
within the intermediate-frequency passband of the
spectrum analyzer reach the intermediate-frequency

amplifier and produce displays on the cathode-ray tube
that are not tunable with the radio-frequency center-
frequency controls. These signals do not enter into a
conversion process in the first mixer and are not affected
by the first local-oscillator frequency.

2) Image responses — When the input signal is above or below
the local-oscillator frequency by the intermediate frequency,
the superheterodyne process results in two major responses
separated from each other by twice the intermediate
frequency. The spectrum analyzer is usually calibrated for
only one of these responses. The other is called the jmage.

3) Harmonic conversion — The spectrum analyzer will respond
to signals that mix with harmonics of the local oscillator
and produce the intermediate frequency. Most spectrum
analyzers have dials calibrated for some of these higher-
order conversions. The uncalibrated conversions are spurious
responses.

4) Intermodulation — In the case of more than one input
signal, the myriad of combinations of the sums and
differences of these signals between themselves and their
multiples creates extraneous responses known as
intermodulation. The most harmful intermodulation is
third order, caused by the second harmonic of one signal
combining with the fundamental of another.

5) Video detection — The first mixer will act as a video
detector if sufficient input signal is applied. A narrow pulse
may have sufficient energy at the intermediate frequency
to show up as intermediate frequency feedthrough.

6) Interngl — A display shown on the cathode-ray tube caused
by a source or sources within the spectrum analyzer itself
and with no external input signal. Zero frequency
feedthrough is an example of such a spurious response.

7) Anamalous IF responses — The filter characteristic of the
resolution-determining amplifier may exhibit extraneous
passbands. This results in extraneous spectrum-analyzer
responses when a signal is being analyzed.

Sweep Repetition Rate — The number of sweep excursions per
unit of time, sometimes approximated as the inverse of sweep
time for a free-running sweep.



Frequency Span — The magnitude of the frequency segment

Sweep Time — The time required for the spot in the reference displaved [Hz, Hajdiv)
isplaye ; iv).

coordinate (frequency in spectrum analyzers) to move across the

full graticule width (can be expressed as time/div in a linear Intesifier (Baseline Clipper) — A means for changing the relative
system). ‘ brightness between the signal and baseline portions of the display.
Zero-frequency Feedthrough (zero pip) — The response of a ' Resolution (R) — The ability to display adjacent responses
spectrum analyzer which appears when frequency of the first , discretely (Hz dB down). The measure of resolution is the
local oscillator is equal to the intermediate frequency. This frequency separation of two responses which merge with a 3-dB
corresponds to zero input frequency and is sometimes notch.
deliberately not suppressed so as to act as a zero-freque

3 e 1) Equal-amplitude signals — As a minimum, instruments will

marker.
be specified and controls labeled on the basis of two equal

amplitude responses under the best operating conditions.

2) Unequal-amplitude signals — The frequency difference
between two signals of specified unequal amplitude when
the notch formed between them is 3 dB down from the
smaller signal shall be termed Skirt Resolution.

IEEE DEFINITIONS

Center Freguency — That frequency which corresponds to a

linear frequency span (Hz).

3) Optimum resolution — For every combination of frequency
span and sweep time there exists a minimum obtainable
value of resolution (R). This is the optimum resolution
(Ro), which is defined theoretically as:

Deflection Factor — The ratio of the input signal amplitude to
the resultant output indication. The ratio may be in terms of
volts (RMS) per division, dBm per division, watts per division

or any other specified factor.

Frequency Span

Sweep Time

Display Flatness — The peak-to-peak variation in amplitude over
a specified frequency span (dB). R, = K\/
o

Display Law — The mathematical law that defines the input-
output function of the instrument.

1) Linear — A display in which the scale divisions are a linear The factor “K* shall be unity unless otherwise specified.

function of the input voltage.
B 5 Sensitivity — Measure of a spectrum analyzer’s ability to display

2) Square. (power) — A display in which the scale divisions minimum-level signals (volts, dBm). IF bandwidth, display law,
are a linear function of input power. and any other influencing factors must be given.
3) Logan't_hmz'c_' - A di.splay in Wf_lich th? scale divisions are : 1) Equivalent input noise — The average level of a spectrum
a logarithmic function of the input signal. analyzer’s internally generated noise referenced to the
' input.

Frequency Range — That range of frequencies over which the
instrument performance is specified (Hz to Hz). 2) Input signal level — The input signal level that produces an
output equal to twice the value of the average noise alone.
This may be a power or voltage relationship, but must be
so stated.

Frequency Response — The peak-to-peak variation of the displayed
amplitude over a specified center-frequency range, measured at
the center frequency (dB).



(A} INPUT MARKERS AT 10kHz FREQUENCY
SPAC ING

{(8) INPUT MARKERS AT T100kHz FREQUENCY
SPACING

Fig. 11-1. Tllustrating two ways of defining frequency span.
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Fig. 11-2. Measuring display flatness.

EXPLANATION, MEASUREMENT METHODS

Dispersion (Frequency Span) - Fig. 11-1 illustrates the meaning
and determination of the frequency span. From Fig. 11-1A we
would say that the frequency span is 10 kHz/cm, while from
Fig. 11-1B it follows that the frequency span is 100 kHz. With
a 10-cm graticule width, the two statements are of course
equivalent.

Display Flatness — Fig. 11-2 illustrates a display-flatness
measurement. A constant-amplitude input signal is tuned across
the dispersion with the spectrum analyzer set to the center
frequency of interest. The measurement consists of noting the
maximum and minimum display heights and computing the ratio
in dB. For the case of Fig. 11-2, the display flatness exhibits a

variation of 20 log 2SI = 2.9 dB.

Besides specifying the dispersion or center [requency, it is
sometimes important to specify the output impedance or VSWR
of the generator used. Most spectrum analyzers will exhibit a
degradation in display flatness when checked with a signal source
of poor VSWR. When in doubt, it is best to insert a pad (about
10 dB will do) between spectrum analyzer and signal generator.

A complete statement of the results of a display-flatness
measurement might be something like this: Display flatness —
2.9 dB peak-to-peak over 50-MHz dispersion at 100-MHz center
frequency with a 10-dB 50-€2 pad between spectrum analyzer
and signal generator.

Dynamic Range (on screen) — Among the several dynamic

ranges, the on-screen dynamic range is the most frequently
referred to by the user. As the definition stated, this is a number
in dB indicating the ratio of the largest to the smallest input
signal levels that can be observed on the CRT screen.



Fig. 11-3 illustrates this measurement. The basic technique calls
for the simultaneous introduction of two CW signals into the
spectrum analyzer. One signal amplitude is adjusted to give a
full-screen deflection while the other signal amplitude is adjusted
for the minimum signal level of interest. The minimum signal
level may be a given number of centimeters deflection, or the
sensitivity level of the instrument or some other specified level.
The ratio between these two signal levels is the dynamic range
on screen. This technique is illustrated by Fig. 11-3A.

When two independent signal sources are not available, the
measurement is made by reducing the level of a single signal
source from that which yields a full-screen deflection to the
minimum desired level. The ratio of the two levels is the
dynamic range on screen. This method is illustrated by the
difference in the deflection levels of the large signal in

Fig. 11-3A and the reduced level of the same signal shown in
Fig. 11-3B.

The two-signal method is preferred since it takes into account
the effect of the presence of the large signal on the deflection
of the small signal. Effects such as desensitization or gain
compression are accounted for in the two-signal method but
not in the one-signal method.

Since different display laws give a different dynamic range on
screen, it is important that the display law be clearly indicated.
In Fig. 11-3, the display law is logarithmic. This is the setting
that corresponds to the largest dynamic range on screen. The
intent of the measurements shown in Fig. 11-3 was to verify

the specified 60-dB dynamic range on screen in the LOG display
setting. Fig. 11-3 shows that, for the spectrum analyzer in
question, a signal 60 dB below that yielding a full-screen
deflection is clearly observable. This means that the instrument
meets the specified performance,

Incidental FM and Drift — It is sometimes difficult to distinguish
between incidental FM and drift. The former is basically a
short-term phenomenon, while the latter takes considerably more
time. The basic difference between drift and incidental FM is
illustrated in the time-frequency diagram of Fig. 11-4. For an
accurate measurement of incidental FM, it is necessary that the
measurement time be greater than the period of the incidental
FM excursion, but not so great that the measurement accuracy
is affected by the drift.

{(AY VERTICAL - LOG

(B} VERTICAL - LCG

Fig. 11-3. Dynamic-range on-screen measurement
illustrating a 60-dB signal ratio,

b FREGUENCY

INCIDENTAL

Fig. 11-4. Difference in excursion period between drift
and incidental FM.



HORIZONTAL ~ TkHz/cm
VERTIGAL - LIN HORIZONTAL - TkHz/em
VERTICAL - LIN

(A)  FAST MEASUREMENT

¢ 20ms /om} (B} CORRECT MEASUREMENT TIME

(0.2s/em, 0.55/cm, 1s/cm)

HORIZONTAL - 1kHz/cm
VERTICAL - LIN

(C)  SLOW MEASUREMENT
(10s/cm)

Fig. 11-5. Effect of measurement time on incidental-FM
determination.

The effect of measurement time is shown in Fig. 11-5. The-
incidental FM in question is caused by power-supply ripple at
60 and 120 Hz. The period of the incidental FM is, therefore,
on the order of 10 ms. A sweep of 20 ms/cm, as shown in
Fig. 11-5A, is clearly insufficient to capture the full frequency
excursion of the incidental FM. At sweeps of 200 ms/cm to

1 s/em, as shown in Fig. 11-5B, the full frequency excursion
of the incidental FM is observed. The average broadening of
the trace is about 0.3 em. This corresponds to 300 Hz of
incidental FM, since the dispersion is 1 kHz/em. Fig. 11-5C
shows an incidental FM of only about 200 Hz. The apparent
reduction of 100 Hz is due to the cancelling effect of the drift
during the long measurement time of 10 s/cm. If the drift were
in the opposite direction, the incidental FM would appear to
have increased.

The drift measurement is illusirated in Fig. 11-6. Here, the
signal frequency was checked at two-minute intervals. It took
six such intervals for the signal to drift across the 10-kHz screen
width. The average drift rate is, therefore, about 10 kHz/12
min = 834 Hz/min.

There is one important precaution when making these
measurements. The stability of the signal must be considerably
better than that of the spectrum analyzer. If this condition is
not met, the results will show the combined effects of signal and
spectrum analyzer rather than the spectrum analyzer alone.

HORIZONTAL - TkHz/cm
VERTICAL - LIN

Fig. 11-6. Measuring frequency drift (single sweep every
2 minutes).



Linearity — The measurement technique is of considerable
importance when specifying frequency linearity; this is because
different assumptions of where the ideal straight line should be
lead to results that may differ by several orders of magnitude.
Fig. 11-7 illustrates several ways of drawing the hypothetical
ideal straight line. As will be observed, the largest error is
about twice the magnitude of the smallest.

The most popular measurement technique involves the use of
ten equally spaced frequency markers. The marker spacing and
center frequency are so adjusted that the second and tenth
markers fall on top of a graticule line for a linear ten-division
graticule. The frequency linearity error is then determined by
observing the maximum positional deviation (Aw) of the other
markers and comparing this to the full graticule width. This
measurement technique is illustrated in Fig. 11-8. Fig. 11-8A
shows a display of eleven markers covering ten equal frequency
intervals. The second marker is on the second graticule line and
the tenth marker is on the tenth graticule line which is nine
intervals from the graticule beginning. It will be observed that
the middle marker has the maximum positional deviation. To
measure this deviation more accurately, the horizontal trace may
be expanded, as shown in Fig. 11-8B. Here, the central marker
is off by 0.5 cm at a 5 times expansion. The maximum
positional deviation on the unexpanded sweep is, therefore,

0.1 ecm. The linearity error can now be computed as
A, go0m QL ton 18

= 100 o ° 100 = 1%.

Sensifivity — When measuring sensitivity, it is important that
the spectrum analyzer be properly optimized. This includes:
optimization of mixer peaking, not sweeping too fast, setting
the analyzer for the appropriate display mode, having the
specified resolution bandwidth and setting the gain for a
reasonable amount of vertical noise.

FREQUENCY

DIFFERENT STRAIGHT-LINE
ASSUMPT |ONS LEAD TO
DIFFERENT ERRORS

-

POSITION

Fig. 11-7. Different ways of specifying frequency-
linearity error.

(A) ELEVEN MARKERS, TEN FREQUENCY INTERVALS, (B) HORIZONTAL EXPANSION QF (A) BY A FACTOR
MARKERS ON SECOND AND TENTH GRATICULE LINES OF FIVE

Fig. 11-8. Measuring frequency linearity.



At Tektronix, sensitivity is specified as the signal input level that
results in a signal-plus-noise deflection which is equal to twice
the deflection due to noise alone, with the vertical mode in LIN,
at a stated resolution bandwidth and all other factors optimized.
Fig. 11-9 shows an § + N = 2N deflection setting.

Resolution — The basic definition of resolution involves two

equal-amplitude signals whose responses merge with a 3-dB notch.

This definition is illustrated in Fig. 11-10A. Two equal-
amplitude signals can be obtained in two ways. One is to use
two separate signal generators with their outputs added in a
resistive network. Another method is to use a balanced
modulator to produce suppressed carrier AM where the two
sidebands form the two equal-amplitude signals. Fig. 11-10A
was obtained by use of a balanced modulator. Here, the two
responses are 0.75 cm apart. At a dispersion of 20 kHz/cm, we
have a resolution of 15 kHz.

Sometimes it is inconvenient to produce two equal-amplitude
signals. One can then use the derived relationship that, for a
Gaussian response shape, the 6-dB-down bandwidth gives a close
approximation to the previously defined resolution. This is
illustrated in Fig. 11-10B. Here, the 6-dB-down response width
is about 0.65 c¢m, corresponding to a resolution of 13 kHz.

VERTICAL = LIN S+ N=2N

Fig. 11-9. Signal-plus-noise-equals-twice-noise type of
sensitivity measurement.

HORIZONTAL - 20kHz/cm
VERTICAL - LIN

(A)  TWO-EQUAL-AMPLITUDE-SIGNALS METHOD

—»{ |e—o0.65n

HORIZONTAL - 20kHz/em
VERTICAL - LIN

{B) SINGLE-5IGMNAL 6dB-BANDWIDTH METHOD

Fig. 11-10. Measuring resolution.



WIDEST AMPLIFIER
BANDWIDTH

NARRCWEST RESPONSE
WIDTH ON SCREEN

NARROWEST
AMPLIFIER
BANDW I DTH

HORIZONTAL - 1kHz/cm
2Zms/em
VERTICAL - LIN

Fig. 11-11. [lustrating optimum resolution.

For every setting of sweep time and dispersion, there is some
particular value of minimum obtainable resolution. Making

the resolution amplifier bandwidth narrower only serves to
increase the display width (resolution) observed on the screen.
This minimum obtainable resolution is called the optimum
resolution (R,). The fact that an R, exists is illustrated in
Fig. 11-11. This is a multiexposure showing the changes in the
display as the amplifier resolution bandwidth is changed at
constant dispersion and sweep time. As the resolution
bandwidth is decreased, the display amplitude decreases and the
trace broadens out somewhat. Note that the narrowest and
widest bandwidth settings give a wider response width than one
of the intermediate settings.

The theoretical optimum resolution can be computed from
dispersion
Re=\{— .
sweep time

For Fig. 11-11,

1000
R, = \/——— = 1/50- 10* = 700 Hz.
8 2. 1073

This is in fairly good agreement with the experimentally
determined 6-dB bandwidth for the narrowest response, which
is about 800 Hz.

dB, dBm

APPENDIX

The logarithmic expression of ratios is quite common in
spectrum-analyzer usage. The following is a brief review of the
exponential function and, its inverse, the logarithmic function,
notation in bels and decibels and finally a set of tables of
decibel relationships.

An exponential is a relationship of the form ¢™ = P. Some
of the rules for the manipulation of exponentials are:

@ ¥e") = alernd (A-1)
a™ (
g S (A-2)
= ]
@ = (A-3)

m

a 7?‘: n ot (!\'4J
ad =] (A-5)

The inverse of an exponential function is a logarithmic function.
Thus, the relationship @™ = P can also be written as

log, P=m, (A-6)

where ¢ is the base and m is the logarithm of P to the base 4.
Our interest is in a base of 2 = 10. This is called the System
of Common Logarithms. Common logarithms are usually
abbreviated as ““log” — this abbreviation is supposed to indicate
that the base is 10. Thus, log 100 = 2, since 10* = 100.



The advantage of handling ratios in terms of logarithms is that
multiplication and division are eliminated and are replaced by
addition and subtraction. This follows from the relationship
between exponents of exponential functions as given in
equations (A-1) through (A-5). Our interest is in ratios of power.

In logarithmic notation, a power ratio is given as log P—? = N bels.

The bel is a dimensionless unit, simply indicating a power ratio
expressed in logarithms to the base 10. The bel is a fairly large
ratio, a more convenient unit is one tenth of a bel or a decibel
(dB). There are 10 dB in every bel. A power ratio expressed in
dB’s is

10 log ?—f =N dB. (A-T)

That is — the basic power ratio in bels is multiplied by ten to

get the number of decibels. In equation (A-7), Py is the

reference power to which Py is compared. The result is in the
P

form of a ratio. Thus, for -ﬁ = 100, Nypeis = 2, and

Ngp = 20. Whether P; = 1 W with Py = 100 W, or P; = 10 W

P
with P, = 1 kW makes no difference, A is 20 dB if Tf: 100.

The relationship in equation (A-7) is the basic definition for
decibels, all other relationships are derived from this. Sometimes
a derivation is based on assumptions or approximations that will
not always hold. When in doubt, the user should go back to
equation (A-7). An example is when dealing with voltage ratios
across equal resistances. Thus,

o B*
P].— R
V‘Z
p2=_.2_’

and

= 10 log (_VV%) - N dB

£
10 log Py
since the resistances cancel. Following the rules for manipulating
exponents and logarithms, we get

0l (Z—f)z = 20 log (%) = N dB (A-8)

Equation (A-8) is only valid when dealing with a constant
impedance, otherwise it is incorrect.

Sometimes expressing a specific amount of power using the dB
notation is desired. This requires that the reference level P; be
fixed. When the units are given as dBm, it means that Py = 1
milliwatt. Thus, 20 dBm means 100 mW. Frequently, a power
level less than 1 mW needs to be expressed logarithmically.

Here, the ratios are inverted and a minus sign added before the
dBm, in accordance with the rules for exponentials, equation (A-3).
Thus,

001 =i I 1000
1 mW g 1 mW

10 log = -30 dBm.

The following is a table of voltage and power ratios versus the
equivalent number of dB’s. The user should keep in mind that
that voltage- or current-ratio method only holds true across equal
impedances.



Table A-2. Carrier nulls, J;(¢) = 0.

Table A-3. First-sideband nulls,

Ji(®)=0.

VOLTAGE = OLTAGE
6B OR CURRENT Qgﬁfg 48 OR CURRENT :g?fﬁ
RATI 0 ' RATIO ¥
0.0 1.000 1.000 | | 2s. 19.95 398,
0.1 1.012 1.023 | | 27. 22.39 501.2
0.2 1.073 1.047 | | 28. 25.12 631.0
9.3 1.035 1.072 | | 29. 28.18 794.3
0.4 1.047 1.095 | | 30. 31.62 1000.
0.5 1.059 T.122 | [ 31. 35.48 1259.
0.6 1.072 1148 | | 2. 39.81 1585.
0.8 1.096 1.202 | | 33. 44.67 1995,
1.0 1.122 1.259 | | 34. 50.12 2512.
1.5 1.189 1.413 | | 35. 56.23 3162,
7.0 T.259 1.585 | [ 25. 63.10 5081,
2.5 1.334 1.778 | | 37, 70.79 5012.
3.0 1.413 1.995 | | 3a. 79.43 6310,
4. 1.585 2.512 | | ze. 89.13 7943
5. 1.778 3,162 | | 40. 100.0 10000.
5. 1.995 3.981 | [ 41. 112.2 12590.
7, 2.239 s.012 | | 42. 125.9 15850.
8. 2.512 6.310 | | 43. 141.3 19950.
3. 2,818 7.943 | | 44. 158.5 25120,
10. 3.162 10.000 | | 45. 177.8 31620,
Tl. 3,548 12.59 46. 199.5 30810.
12. 3,981 15.85 47. 223.9 50120.
i3 4,467 19.95 48, 251.2 53100.
14. 5.012 25.12 49, 281.8 79430.
15, 5.623 31.62 50. 316.2 100000,
16. 5.310 3681 51. 354.8 125900,
17. 7.079 50.12 52, 393. 1 158500,
18. 7.943 63.10 53. 446.7 199500,
19, 5.913 79.43 54, 501.2 251200,
20. 10.000 100.00 55. 562.3 316200,
21. .22 125.9 56, 631.0 T98100.
22. 12.59 158.5 57. 707.9 501200,
23. 14.13 1935 58. 794.3 631000,
24, 15.85 251.2 59. 591.3 794300,
25. 17.78 316.2 60.  1000.0 1000000
Table A-1. Decibels.
NULL g AP NULL . OF
NUMBER f MUMBER TP
Ist 2.4048 Ist 3.83
2nd 5.5201 2nd 7.02
3rd 5.6531 3rd 10.17
4th 11.7915 ath 13,52
Sth 14.93009 5th 16.47
6th 18.0711 ath 19.62
Tth 21.2116 7+h 22.76
8th 24,3525 8th 25.90
ath 27.4935 9th 29.05
10th 30.6346

BESSEL FUNCTIONS

Bessel functions are used extensively in frequency modulation,

as discussed in Chapter 4. Our interest is restricted to Bessel
functions of the first kind, integer order, and positive argument.
The notation is J,(¢), where: J means Bessel function of the
first kind, p is the order, and ¢ is the argument. In frequency
modulation theory, the order indicates the sideband number and
the argument is the modulation index (AF/f). For more detailed
tables and graphs of Bessel functions, see the references. For
example, British Association for the Advancement of Science
Mathematical Tables, University Press, Cambridge, vols. VI & X.

ARGUMENT FIRST SECOND THIRD
— AF C?RTLER SIDEBAND SIDEEATD S |DEBAND
+

s 0 Jw(vl Jz(t, Jjﬂt)
0.0 1.000 0.000 0.000 0.000
0.2 0.990 0.100 0.005 Q. 0002
0.4 0.960 0.196 0.020 0.001
0.6 0.912 0.287 0.044 0.004
0.8 0.846 0.369 0.076 0.010
1.0 0.765 0.440 €115 0.020
1.2 0.671 0,498 0.159 0.033
1.4 0.567 0.542 0.207 0.051
1.6 0.455 0.570 0.257 0.073
1.8 0.340 0.582 0.306 0.089
2.0 0.224 Q.577 0. 555 0.12%
Za 0.110 0.556 0.395 0.162
2.4 ¢.003 0.520 0.431 Q.. 198
2.6 -0.097 0.47 0.459 0.235
2.8 -0.185 0.410 0.478 Q273
5.0 -0.260 0.339 0.486 0.30%
3.2 -0.320 0.261 0.484 0.343
3.4 -0.364 0.179 0.470 0.373
3.6 -0.392 0.096 0.445 0.399
3.8 -0.403 0.013 0.409 0.418
4.0 -0.397 -0.066 0.364 0.430

Table A-4. Bessel function values.
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PULSED-RF RECTANGULAR PULSE

Table A-5. Fourier transforms.



FOURIER ANALYSIS

Table A-5 gives both graphical and mathematical relationships

EEmapaRE FRFefnusyaggay s spaypue ey pue TR T T T T T o e e T e
for time-domain to frequency-domain conversion. ' i U 4__ o i AR, il ':‘# T
BEsERduRiNAES L H B
CW SENSITIVITY g i : e
The noise power generated by a resistance is NV = kTB, where N % SESEARARIRCRRNNECEE e e e i AEREY sl
; . R . O Spain Runhn - peinesls gy ftaas e A s i
is noise power, k is Boltzman’s constant, T is absolute = 30 i R i d bl o g 4 K,v‘;v{ ~ -
temperature in degrees Kelvin, and B is the noise bandwidth. At i £ A § HAA A
an absolute temperature of 290°K, this is equivalent to a noise g 20 Bas s Easup apLdin i ’ 1 |
power of —114 dBm for a 1-MHz bandwidth, as discussed in = £ o A y; A P A
Chapter 5. The actual sensitivity of an amplifier is always worse SEsssmpess dnsas: T A A - 5' 7 HE
than this because of higher noise due to the active elements and 10 B Zaaiansbef , At et Spaay e &=
because of signal losses in matching attenuators, filters or other ¥ A ! , : RS 45 i fantas i
front-end devices. The amount by which the actual sensitivity 5 E; e il ! A A =isiie
is degraded compared to the ideal sensitivity is called the noise -160 =150 =140 =130 =120 =110 =100 -9 =~80 =-70 -60

figure. Thus, the CW sensitivity, as measured by the signal-equals-
noise method, is a function of both noise figure and noise
bandwidth — the temperature is usually assumed to be fixed at
290°K = 17°C.

SENSITIVITY (8 + ¥ = 2N), dBm

Fig. A-2. Sensitivity as a function of bandwidth and

ise figure.
Fig. A-2 is a graphical representation of the sensitivity, bandwidth, IHREREE

noise figure relationship.
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Fig. A-3. Loss in CW sensitivity as a function of normalized
sweep rate. D = dispersion (Hz), B = 3 dB
bandwidth (Hz), T = time (s). Based on assumption
of Gaussian amplitude response.
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As was indicated in Chapter 5, the CW sensitivity degrades as
sweep time and/or resolution bandwidth is decreased. The
equation connecting these parameters for a Gaussian resolution
shape is:

2
io = (x:[l +0.195 (ng) ] : (A-9)

where S, and § are the sensitivity in volts, corresponding to no
degradation and degraded performance respectively. Alpha is the
sensitivity ratio, a number less than unity. Thus, if

So -
2
nondegraded (S,) input voltage to overcome the spectrum-

analyzer noise under the conditions in question. A convenient
way of indicating this loss in sensitivity is in dB, which is
computed:

0.1 and §, = 0.18, we mean that it takes ten times the

Ogp = 20 log . (A-10)

Since & is less than unity, ctgp is a negative number. However,
when plotting on a graph, the negative sign is usually replaced by
the word “loss,” which is what the negative sign meant in the
first place. Fig. A-3 is a graph of sensitivity loss as a function of
full-screen dispersion D, resolution bandwidth B and full-screen
sweep time 7.



RESOLUTION BANDWIDTH

In Chapter 5, it was indicated that there are two terms associated
with the resolution capability of the spectrum analyzer. One
term is resolution bandwidth (B); this is the actual bandwidth
of the narrowest bandwidth amplifier. A second term is
resolution (R), which refers to the display on the CRT screen.
At long sweep times, the display on the CRT is a tracing of the
response characteristic of the spectrum-analyzer passband and the
two terms become synonymous. At short sweep times, the
display on the screen indicates a wider bandwidth than the
amplifier actually has. The ratio of the screen display (R) and
the true bandwidth can be computed from the relationship:

1
- 217z
i {1 + 0‘195(7*32) ]2 (A-11)

This equation is plotted in Fig. A-4.
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Fig. A-4. Loss in resolution as a function of normalized
sweep rate. D = dispersion (Hz), R = resolution
(Hz), B = bandwidth (Hz), T = time (s). Based
on a Gaussian amplitude response.
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Fig. A-5. Optimum resolution setting for spectrum analyzers.
Read values of Byptimum for a given dispersion
and sweep time.

The concepts of optimum resolution and optimum resolution
bandwidth are discussed in Chapter 5. Basically, at a fixed
dispersion and sweep time there is one resolution-bandwidth
setting which yields the narrowest resolution shape on the CRT
display. These are called optimum resolution bandwidth and
resolution respectively. Fig. A-5 is a graph showing the optimum
resolution bandwidth (B,) as a function of sweep time (7T") and
dispersion (D). The optimum resolution (R), which is the
closest spacing of two signals that can be separated on the CRT
screen, is related to optimum resolution bandwidth by

Ro =28, (A-12)

It should be noted that Fig. A-5 is based on the assumption of
a Gaussian amplitude response for the resolution amplifier.
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PULSED RF

The details on pulsed-RF measurements are discussed in Chapter 9.

In order to display the fine details of the spectrum, it is necessary
that:

1B <0.1, (A-13)

where £q is pulse width and B is resolution bandwidth. This
relationship is plotted in Fig. A-6. When the pulsewidth-
bandwidth product is greater than one tenth, spectrum shape
details may be lost. As the pulsewidth-bandwidth product gets
smaller, there is a progressive loss in sensitivity compared to a
CW signal. Thus, 7gB = 0.1 is the ideal setting for pulsed RF.

The loss in sensitivity for pulsed RF compared to CW can be
computed from:

agg =20 log 5 1B (A-14)
The loss in sensitivity occurs because, as the pulse width gets
narrower, the energy spreads out over a wider frequency range.
This is implied in the relationship between pulse width (zg) and
the frequency width of spectrum nulls (AF), namely,

AF = — (A-15)

Fig. A-7 is a three-dimensional representation of the pulse width,
sidelobe-frequency width and display-amplitude relationship.

Fig. A-8 is a graph of equation (A-14), showing pulsed-RF loss
in sensitivity as compared to a CW signal.
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Fig. A-8. Loss in sensitivity, pulsed RF versus CW,

SYMBOLS

a

instantaneous amplitude

ag, aj ... 4m, n Fourier-series amplitude constants

A

amplitude of waveform

bi.. b, n Fourier-series amplitude constants

B

fa
fo
fi
fir
fLo
me
IRF
Tt
fo

70)
F

amplitude of waveform,
filter bandwidth (Hz)

optimum resolution bandwidth (Hz)
speed of electromagnetic radiation
capacitance (F)

combined amplitude of nth harmonic in
Fourier series

symbol for differentiation

amplitude of nth harmonic in complex
notation of Fourier series

dispersion (Hz)

frequency (Hz),
modulation frequency (Hz)

dial frequency (Hz)

Doppler difference frequency
image input frequency (Hz)

IF amplifier center frequency (Hz)
local-oscillator frequency (Hz)
mixer output frequency (Hz)
signal input frequency (Hz)
transmitted frequency (Hz)

center frequency (Hz)

function of ()

carrier frequency

F(w) Fourier transform

j

ST

first appears
in chapter

4

i = NN

10

8]

N Ro—= W

10

N W = W = O = O



Jp () Bessel function of the first kind of

k

~

BV o R

X
o

Si(x)

)

order p and argument ¢
Boltzman’s constant
amplitude ratio in AM
inductance (H)

degree of modulation,
harmonic number

harmonic number
noise power (W)
charge (C)

resistance (£2),
resolution observed on CRT (Hz)

optimum resolution observed on CRT (Hz)
sine integral of x

time duration (s)

pulse width (s)

absolute temperature (°K),
period of waveform (s),
sweep time per full CRT width (s)

velocity

unknown variable,
variable angle (rad)

unknown variable
complex number
conjugate of Z

constant phase angle (rad),
loss factor

modulation index
impulse function
symbol for partial derivative

bandwidth,
frequency deviation
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base of natural logarithms, 2.718...
variable phase angle (rad)
3.141....

amount of error
summation between the limits n to m

system response pulse-width for CW input (s),
time shift interval (s)

phase of nth harmonic in Fourier series (rad)
radian or angular frequency, angular velocity
equals

is not equal to

is approximately equal to

is greater than

is greater than or equal to

is less than

is less than or equal to

approaches,
leads to, results in

is equivalent by transformation
increase

decrease

square root

infinity

absolute value of quantity within the bars

indicating the limit of a term as x approaches 0.

definite integral between limits ¢ and b
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Absolute frequency, 134
AM/FM measurement, 186
AM/FM spectrum, 102
Amplitude loss factor, 115
Amplitude measurement, 135, 143
Amplitude modulation, 157
Angle modulation, 91
Angular velocity, 25
Area of impulse, 49, 70
Attenuator, calibrated, 135
Bandwidth relationships, 114
Baseline shift, 141
Bessell functions, 23, 95, 167, 169,
175, 267
graph, 169
partial table, 175
tables, 267
theory, 95
Bibliography, 285
Carrier null method, FM, 175
Carrier null table, 176
Center frequency shift by
modulation, 66
Circular function, 25
Complex notation, 29, 39
Conjugate, 46
Conjugates, complex, 39
Continuous spectrum, 14, 58, 61
Convolution, 114, 125
graphic illustration, 126
theorem, 75
CW sensitivity vs sweep rate, graph,
(Appendix), 272
Cyclical (definition), 17
dB relationships, (Appendix), 263

Definition of terms, 245
Degree of modulation, 89
Dense spectra, 14, 61, 118, 191
Dense vs line spectrum, 210
Deviation, FM, 168
Deviation linearity measurement, 181
Dispersion, 8
Display, 159, 177, 208-209, 225-226,
230, 262
definition, 209
filter bandpass characteristics, 226
frequency response, 230
optimum resolution, 262
single-tone AM, 159
sweep time vs spectrum
(definition), 208
wideband FM deviation, 177
zener noise, 225
Distortion measurements, 224
Doppler velocity measurement, 239
Drift measurements, 236
Dynamic range, useful, 144
Effect of control settings, 209
Effect of measurement time, 257
Effect of pulse shape, 196
EMI measurements, 233
Energy distribution, 117, 121, 122
Energy per unit bandwidth, 63
Energy, sideband, 89
Example: carrier null, 176
Example: derive one spectrum from
another, 77
Example: deviation linearity, 181
Example: deviation measurement, 108
Example: percent AM modulation, 108



Example: rectangular pulse
analysis, 81
Example: Spectrum Analyzer frequency
relationships, 15
f(w), F(w), frequency domain, 74
(1), F(2), time domain, 74
Feedthrough, IF, 138, 141
Filter characteristics, display, 227
First-sideband null, 182
FM energy distribution, 105
FM spectrum, generation, 104
Fourier analysis, 43, 67
Fourier applications, 47
Fourier coefficients, 41, 45, 67
Fourier expansion, 32
Fourier integral, 63
Fourier Series, 32
truncated, 40
Fourier transform, 64-65, 269
chart, (Appendix), 269
examples, 77
pair, 64
table, 74
Frequency, absolute, 134
Frequency axis, 8
Frequency conversion, 137
Frequency deviation, 93
Frequency domain, 5, 34, 71, 88,
134, 158
AM, 88, 158
illustration, 34
impulse, 71
measurement, 134
Frequency linearity, 258
Frequency modulation, 97, 98-100,
102, 105, 167
energy, 100
sidebands, 102
spectrum, 99, 105
Frequency scale, 15
Frequency separation, 7
Frequency/time-position, 10
Frequency translation, 111

Gain suppression, 145

Gaussian response, 115, 117
Gibbs phenomenon, 56
Harmonic amplitudes, 67
Harmonic conversions, 140
Harmonic distortion, 148
Harmonic zeros, 59, 62
Harmonics in squarewave, 53
IEEE definition, 250

IF feedthrough, 141

Image, 16

Image frequency response, 142
Image identification, 153

Image response, 138

Imaginary numbers, 29

Impulse approximations, 72
Impulse energy distribution, 73
Impulse, frequency domain, 71
Impulse function, 48, 70
Impulse, spectral distribution, 71
Impulse strength, 49, 70
Incidental FM, 102, 237
Infinite harmonics, 61

Initial phase, 86

Instantaneous frequency, 91
Instantaneous power, 86
Intensification effects, 187, 189
Intermodulation distortion, 149, 164
Least squared error, 33

Linear time-invariant, 34

Line spectra, 14

Lobe, main, 66, 81, 120

Lobe spacing, 82

Lobe width, 82

Long pulse; CW, 120

Low-level modulation, 160
Magnetic shielding test, 233
Manual sweep, 243
Measurement interval, 118
Measurement limitations, 135
Measurement methods, explanation, 253
Miscellaneous applications, 219
Missing pulses determination, 202

Modulation, 85
Modulation index, 99, 168, 173
Modulation percent, AM, 158
Modulation rate, determining, 185
Modulator on/off ratio, 204
Multitone FM measurement, 188
Multitone modulation, 161
Narrowband FM, 169, 170
Network response, 107
Network responses, sum, 54
Networks, physically realizable, 57
Noise power, thermal, 123
Noise vs bandwidth, 123
Optimum resolution, 116, 124
Optimum resolution setting, graph,
(Appendix), 276
Orthogonal functions, 20
set, 68
table, 38
Overshoot, 56
Period, 17, 28
Periodic (definition), 17
Periodic waveform illustration, 18
Phase angle, initial, 28
Phase deviation, 92
Phase-frequency relations, 94
Phase modulation, 92
Phase response, 115
Power, sideband, 89
Pulsed RF, 14, 83, 191, 193, 198,
213, 215, 278
display intensification, 215
displays, 193
effects of FM, 198
fine detail, 213
resolution bandwidth graph, 278
sensitivity and dynamic range, 213
Pulsed RF vs CW, loss in sensitivity, 280
Pulsed-RF wave, 66
Pulsed signals, 117
Pulsed signal sensitivity, 124
Pulsed signal time-frequency diagram, 119
Pulse shape, effect of, 196

Pulse train, 50, 119
Pulse train, narrow, 58
Pulse train, rectangular, 60
Pulse vs CW, 120, 121
Pulse width, 10, 13, 112
Pulse width parameters, 114
0, determination, 227
Radar performance, 194
Radian frequency, 25
Random-noise measurement, 223
Reciprocal spreading, 73
Rectangular pulse analysis, 81
Relative amplitude, 143, 146
Relative frequency, 134
Repetition rate lines, 120, 191
Resolution, 8
Resolution bandwidth, 106, 116, 191,
275

dense spectrum, 191

graph of, 275
Resolution calculation, 128
Resolution distortion, 115
Response, CW, 112
Response, DC and phase, 44, 56
Response skirts, 217
Response, true, 155
Sensitivity, 123
Sensitivity, calculation, 127
Sensitivity for pulsed RF, 192
Sensitivity vs bandwidth and noise, 271
Sidebands, 88
Signal frequency identification, 153
Signal interpretation, 133
Signal purity measurements, 236
Signal types, 14
Sine function, 23
Sine integral, 79
Sine-squared pulse, 76, 198
Sinewave generation, 26
Sinewave properties, 23
Sinewaves, infinite duration, 49
Single sideband, 91
Single sideband AM, 162



Sinusoid, 86
Sin x/x, 52, 61, 67, 81
Si, sine integral, 79
Skirt selectivity, 145-148
Skirt selectivity effects, 216
Slope detection, 170
Small signal in presence of large,
144, 146
Spectral density, 63
Spectral lines, 36
Spectrum analyzer as an indicator, 227
basic, 113
configurations, 7
(defined), 5
Spectrum, continuous, 58
Spectrum null, 59
Spectrum shape, 191
Spurious display, 155
Spurious response, 16, 137, 141
Squarewave configurations, 19
Squarewave synthesis calculations, 219
Sum of two sawtooth waves, 55
Superposition, 83, 103
Superposition in Fourier, 54
Suppressed carrier, 90
Suppressed carrier AM, 162
Sweeping signal, 13
Sweeping-signal spectrum, 110
Swept-frequency converter, 228
Swept local oscillator, 13
Symbols used in text, (Appendix), 281
Synchronized sweeper, 228
System resolution, 11
Tftg, 59, 62
Telemetry subcarrier tests, 234

Time axis, 8

Time domain, 5

Time domain, AM, 87, 157
Time-domain unit impulse, 70
Time-frequency concept, 5
Time-frequency diagram, 10, 113, 142
Time position, 112
Time-variable network, 42
Transducers, 240

Transient response, 35, 106
Trapezoid pulse, 196
Triangular pulse, 197
Trigonometric functions, 30
Trigonometric notation, 30
Ultrawideband FM, 183
Useful dynamic range, 144
Vector, rotating, 28

Vestigial sideband, 91
Vibration measurements, 240
Waveform analysis, 219
Wideband FM, 175

Zener noise, 224
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