INSTRUCTION
 MANUAL

Tekironix, Inc.

S.W. Millikan Way P. O. Box 500 - Beaverton, Oregon Phone MI 4-0161 Cables: Tektronix

Tektronix International A. G.

Terrassenweg 1A Zug, Switzerland \qquad - Cable: Tekintag, Zug Switzerland

General Description

The Tektronix Type 517 and 517A Oscilloscopes are wideband high-voltage cathode-ray oscilloscopes designed primarily for observing and photographically recording waveforms having extremely short rise times.
The use of a $24-\mathrm{kv}$ accelerating potential on a metallized cathode-ray tube permits photographic recording of single sweps amplifier and sweep circuits. Distributed vertical amplifiers provide a risetime of 7 nanoseconds and sensitivity of $.05 \mathrm{volts} / \mathrm{cm}$. Both amplitude and time calibrations are provided. Sufficient time delay is incop amplifier to permit viewing the leading edge of the waveform which triggers the sweep.
The Type 517 and 517A consist of two units, indicator and power supply, mounted on a Scopemobile, thus making a convenient mobile unit. If desired, the units may be lifted off the Scopemobile for bench use.

SPECIFICATIONS

Vertical Amplifier System

Type-5 stages of distributed amplification; 4th and 5th stages push-pull.

Transient Response
Risetime-7 nanoseconds. Free of ringing and over-

Sensitivity
Vertical amplifier without probe- $.05 \mathrm{v} / \mathrm{cm}$.
With Cathode Follower probe- $1 \mathrm{v} / \mathrm{cm}$
Attenuator
A continuous control with a range of attenuation from 1X to 2 X is provided in the vertical amplifier. Three screwon attenuators are provided for use in coniunction with a
cathode-follower probe. A step attenuator with a characteristic impedance of 170 ohms is also provided.

SPECIFICATIONS

Input Impedance
Direct- 170Ω resistive
Looking into probe- 12 megohm resistor paralleled by $5 \mu \mu \mathrm{f}$ capacitor.
Higher impedance values depend upon capacitive at
tenuator used ahead of probe. enuator used ahead of probe.

Signal Delay

Delay Line (RG63U coaxial cable)- 65 nsec delay
Inherent delay of distributed amplifiers- 55 nse
Total Delay time- 120 nsec.
Amplitude Calibrator
Pulse generator output of about 25 kc available at scale. Accuracy within 4 percent of full scale.

Sweep Circuit

Type
Triggered, hard-tube bootstrap sweep circuit with inverter to produce balanced deflection

Rates
11-position switch selects $10,20,50,100,200$ or 500 $M \mu \mathrm{SEC} / \mathrm{CM}$ and $1,2,5,10$ or $20 \mu \mathrm{SEC} / \mathrm{CM}$.
Maximum displacement error- 2% for 7 cm sweep length.

Sweep Starting Time
Approximately 90 nsec for the average instrument. Total signal delay of approx. 120 nsec permits sweep o be triggered and underway before signal is applied to vertical deflection plates.

Duty Cycle Limitation
Duty cycle of sweep system automatically limited to about 30% to avoid exceeding dissipation limits of some
of circuit components. The limiting system serves purely of circuit components. The limiting system serves purely dividing operation.

MAXIMUM REPETITION RATES	
Sweep Time	Max. Repetition Rate
$20 \mu \mathrm{sec} / \mathrm{cm}$	1.5 kc
$10 \mu \mathrm{sec} / \mathrm{cm}$	3 kc
$5 \mu \mathrm{sec} / \mathrm{cm}$	6 kc
$2 \mu \mathrm{sec} / \mathrm{cm}$	10 kc
$1 \mu \mathrm{sec} / \mathrm{cm}$	20 kc
$500 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50 kc
$200 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50 kc
$100 \mathrm{~m} \mu \mathrm{ce} / \mathrm{cm}$	50 kc
$50 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50 kc
$20 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	50 kc
$10 \mathrm{~m} \mu \mathrm{sec} / \mathrm{cm}$	80 kc

Triggering
A trigger amplifier in conjunction with a selector switch A trigger amplifier the sweep circuit to be triggered from:
(a) an external source of either polarity
(b) internal trigger rate generator
(c) the observed signa

The trigger amplifier is connected ahead of a signal delay cable which permits complete observation of the signal at the highest sweep speed. Any signal giving
0.5 cm deflection, or an external 0.3 v peak signal, will trigger the sweep.

Horizontal Position Vernier
In addition to the normal horizontal positioning control a vernier control calibrated in millimeters provides accur ate measurements over a range of 1 cm for use in mea suring rise time, etc.
Trigger Rate Generator
A trigger selector switch permits the sweep to be triggered from the rate generator which also

Polarity	positive
Length	$0.4 \mu \mathrm{sec}$
Risetime	$0.15 \mu \mathrm{sec}$
Outpot	

Output Level 60 v with 200Ω internal impedance
Repetition 15 v with 50Ω internal impedance

Gate Out
Twenty-five volt positive pulse with duration approxi mately equal to time of the sweep, and rise time $0.03 \mu \mathrm{sec}$ from a cathode-follower source-impedance of 200 ohms .

Power Supplies

CRT Accelerating Voltage
An oil-sealed supply of the a-f oscillator type provides
24 kv (+20 kv and -4 kv) for the normal accelerating
potentials. A rront-panel selector switch gives an alternate
choice of $12 \mathrm{kv}(+10 \mathrm{kv}$ and $-2 \mathrm{kv})$ which doubles the choice of $12 \mathrm{kv}(+10 \mathrm{kv}$ and $-2 \mathrm{kv})$ which doubles the is regulated to compensate for local changes and supply age changes.

Low Voltage Supply
A separate power unit provides all dc voltages of 750 volts and less for the indicator unit. All heater voltages in the indicator unit are regulated by a saturable reactor to compensate for line voltage changes.

Power Requirements
1250 watts at 117 volts. Voltage range $105-125$ or 210 250,60 cycle single phase ac. Three primary circuit fuses are provided for protection against sustained overload conditions.

Cathode-Ray Tube
A metallized type T54P cathode-ray tube with Pl 1
phosphor is furnished with the Type 517A (Type 5XP with Type 517) unless a P1 or P2 phosphor is specified as the optional choice.

Construction

Contained in two separate unts of convenient size, norm Illy mounted on a Tektronix Scopemobile. Cabinets and Photo-etched panels are employed.

Dimensions

Indicator unit: $12 \frac{1}{2} 2^{\prime \prime}$ wide, $181 / 2^{\prime \prime}$ high, $25 \frac{1}{2^{\prime \prime}}$ deep. Power unit: $16^{\prime \prime}$ wide, $10^{\prime \prime}$ high, $18^{\prime \prime}$ deep.

Weight

Indicator unit	76 pounds
Power unit	72 pounds
Scopemobile	42 pounds

Accessories

1-P170CF Probe, 010-101 -B170A Attenuator, 011-017 1-P170 Output cable, 012-006 1-Interconnecting cable, $012-032$ -BE510 Bezel, 014-011
-H510 Viewing hood assembly, 016-00
$1-3$ to 2 wire adapter, 103-013 1-3-conductor power cord, 161-010
1-3-conductor power cord, 20", 161-01 1-3-conductor power
1-Blue filter, $378-515$
-Blue filter, 378-515
1- 500 A Scopemobile, 016-018
-Tektip, hook M5302, 206-107
2-Tektip, straight, M5302, 206-106

Functions of Controls and Connectors

$6.3 \vee 1 \mathrm{~A}$
Phone-tip jack connection from main heater bus. Useful for checking heater-bus heater voltage on a rectifier type of voltmeter.)
SCALE Variable resistor controlling brightness of lamps illuminating plastic graticule over face of cr.

VERT. Potentiometer varying grid bias on first
AMPL. and second vertical amplifier stages, per-
ATTEN.

SIGNAL UHF connector to grid line of first stage
VERT. Twin differentially-connected potentiometer controlling average potential of
cathode-ray tube vertical deflection plates and thereby adjusting vertical position of trace.
PROBE Connector providing heater and plate voltage for cathode-follower probe power

Twin differentially-connected potentio meter controlling average potential of cr merizontal deflection plates and thereby adjusting horizontal position of sweep.
HORIZONTAL Twin differentially-connected potentioPOSITIONING meter performing same function as above, meter limited to one centimeter of positioning, and fitted with a dial calibrated in

FOCUS
Potentiometer controlling the voltage applied to the focusing anode (No. 1) of the crt for focusing the trace.

INTENSITY Potentiometer controlling dc grid voltage of the crt and thereby the brightness of the trace.

ASTIGMATISM
Potentiometer controlling the grid bias of Potentiometer controlling the grid bias of
cathode-follower V134B to provide adiustable low-impedance source of voltage for anode (No. 2) of crt. Proper setting of the voltage of this anode with respect to
the deflection plates permits the spot to the deflection plates permits the spot to
be focused sharply in both dimensions simultaneously.

NORMAL

SINGLE
SWEEP
(S/N 1691 up only) Two-position switch to or single-sweep opera-

A six-position step attenuator constructed to give six full-scale amplitudes of the
calibrating pulse, $0.15,0.5,1.5,5,15$ and calibrat
50
volts.

OUTPUT
RATE GEN
light across negative 250 -volt

Potentiometer controlling grid bias of negative multivibrator tube. Determines optimum point of triggering.

Potentiometer controlling grid bias on trigger-amplifier second distributed amplitude of trigger signal applied to succeeding stage. arm the sweep circuit.
(S/N 1691 up only) Neon light indicate when sweep circuit is armed

Binding post connected to positive multivibrator tube via cathode follower V124 to make available externally a positiv
pulse of the same duration as the sweep

Two-position switch to select either 24 -k or 12 -kv accelerating voltage, and to oltage, and to
onding crt bias and unblanking voltages.

Variable timing resistor for phantastron frigger-frequency generator.

UHF connector to arm of CAL. VOLTAGE potentiometer.

UHF connector from cathode follower V130 providing 50 -ohm output from trig ger-rate generato

UHF connector from cathode follower V129 providing approximately 200 -ohm output from trigger-rate generato

Switch for selecting timing capacitors for phantastron trigger-frequency generator.

Switch selecting source and polarity of sweep-triggering voltage.

UHF connector to -EXT. and + EXT. positions of TRIGGER SELECTOR switch, Neon pilot light across negative 250 -

Gang switch controlling sweep duration and sweep rate.

Specifications -Type 517/517A

Genera

The Type 517 or 517A Oscilloscope may be operated at any normal indoor location or in the open if it is protected any norma indoor location or in the open if it is protected ness, it should be left in a warm room until it is throughly dry before it is placed in operation.

Ventilation

Both units require forced air cooling so that care mus be exercised to avoid obstructing the air intakes to the circulating fans.
WARNING

The Type 517 or 517 A should not be operated un-
less the fans are running. The interior will reach dangerous temperatures in five to ten minutes of such

operation.

First-Time Operation

To place the oscilloscope in operation for the first time,
the following procedure is suggested
Set front-panel controls as follows:
POWER SUPPLY AC OF

POWER SUPPLY DC
OWE POPITION OFF
VERT. POSITION center
HORIZONTAL POSITIONING, center
fll Ras center
FOCUS center
NORMAL-SINGLE SWEEP (S/N 1691 up only)
TRIGGER RATE GENERATOR 50
trigger rate gen. mult.
100
SWEEP TIME/CM
500 MILLI $_{\mu}$ SEC PER CM
TRIGGER SELECTOR
SWEEP STABILITY
rate gen.

TRIGGER AMPL.
full cow
Install the interunit power cable and the line-voltage cable. The source of power must be capable of supplying

The AC POWER switch may now be furned ON.
Allow about 30 seconds for the tube heaters to come up oo operating temperature, then the DC switch may be turned on.
Advance the INTENSITY control almost fully clockwise until a spot appears near left center of the screen, then re-
turn counterclockwise until the spot just disappears.

CAUTION

Do not allow this spot to be excessively bright or al Do not allow this spot to be excessively bright or al-
low it to remain long in one position as the screen will be damaged in a few seconds.

Advance the SWEEP STABILITY control clockwise until a horizontal sweep appears across the screen, then return counterclockwise until the sweep just disappears.
Advance the TRIGGER AMPL. control until the sweep just reappears. The sweep is now being triggered by the TRIG
Return the INTENSITY control counterclockwise to reduce he beam intensity.
Observe a sample signal. RATE GEN. OUTPUT A, after about 50 db of attenuation, will provide a satisfactory sig nal of the correct amplitude. Turn the TRIGGER SELECTOR swich to + SIG.
Adjust the INTENSITY, FOCUS, and ASTIGMATISM controls until a sharp trace with adequate intensity is obtained. slight repeated readjustment to obtain the best trace.
Readiust the SWEEP STABLITY and TRIGGER AMAL
rols to obtain a stable trace.
NOTE
If the SWEEP STABILITY control is advanced too far
causing the sweep to run in the self-excited causing the sweep to run in the self-excited mode the
sweep length will be shortened sweep length will be shortened. Check this by turning trace should disapear.
Adiust the signal amplitude by means of the VERT. AMP. ATTEN. control, or with external attenuators until the vertical deflection amplitude does not exceed 1 centimeter above or below center corresponding to an input of about 0.1 volts,
and adjust the VERT POSITION and HORIZONAL POSI and adjust the VERT. POSITION and HORIZONTAL POSI IION control for a satisfactory position of the trace.
The instrument should now be ready for application of
external signals.

170 Ohm Attenuator

This attenuator can be used externally when it is desired o observe signal voltages higher than about 0.2 volts, peak to peak. Both input and output impedances are 170 ms to match the scope input, and the arfenvation cal bration is accur ue 64 db in one-db steps can be selected. selected.

Cathode Follower Probe

The probe power plug must be plugged into the PROB The probe power plug must be plugged into the
OOWER receptacle near the SIGNAL INPUT connector, and he male UHF coaxial fitting must be plugged into the SIG NAL INPUT panel coaxial connector. Three screw-on at tenuators are provided
The screw-on attenuators, used with the cathode follower probe, provide attenuation at high impedance

Signal Amplitude Calibration

Calibrating voltage is supplied by means of a 25 -kilo. cycle 10% duty-cycle square-wave generator to the CAL each CAL. RANGE setting is shown on the front panel. The calibration is accurate on open circuit at the generator and will be affected by the external load to which it is con nected. The frequency of the calibrator circuit is not in Instead, the sweep should be tripped by the TRIGGER RAT GENERATOR and the CAL. OUTPUT should be substituted or the source of the signal being measured. The indication is a pair of horizontal lines displayed across the face of the CRT. The output voltage is capacitor coupled to the de
flection plates so that the positions of both the base and the top of the wave vary as the amplitude controls are adiusted. Calibrations are in peak-to-peak volts, and the calibrating wave must therefore be positioned properly when a measurement is made.

Time Calibration

Calibrations for the sweep circuit are in time $/ \mathrm{cm}$ of horizontal deflections, which, with the one-centimeter horizontal
graduations of the graticule and the calibrated 1-CENTI METER HORIZONTAL POSITIONING control, permits med-
surement of the time dimensions of the displayed pulse to be made to a fraction of a centimeter by interpolation

Trigger Rate Generator

Calibrations of the trigger rate generator are in cycles/ econd times a multiplier. To select a desired trigger cyes set the CYCLES/SEC dial to the significant figures, and the RIGGER RATE GEN. MULT. dial to multiply by 1,10 o 100 times. Any frequency between 15 cycles and 15 kilo

Use of Type 517/517A as a Synchroscope

Two output connectors from the trigger rate generato are available on the front panel. To use the oscilloscope as a synchroscope output from one of these output connector can trigger the function to be observed, and the other ou put can be delayed and applied to the RLGGER INPUT con
nector throught an external delay circuit to start the horizontal sweep. No variable delay is incorporated in the rigger circuit.

+ Gate

This output is approximately 40 volts at 270 ohms.

Direct Connection to Vertical Deflection Plates

An access hole on the left side of the indicator unit case near the top permits direct connection to the vertical deflection plates. First, remove the clip leads running from the vertical amplifier output stage and replace them with a
pair of small wire leads. The leads can be held in place by grooves in the supporting plexiglass plate so as to have low capacitance to each other and to the case. The nominal deflection plate sentitivities are 14.17 volts $/ \mathrm{cm}$

Scale Illumination

The intensity of the graticule illumination can be adiusted by means of a variable resistor in series with the graticule intensity, and to permit the graticule lines to be photographed.

INDICATOR UNIT

Horizontal Deflection System

A linear, triggered sweep is available with eleven fixed accurately timed sweeps ranging from 0.01 microseconds $/ \mathrm{cm}$ to 20 microseconds $/ \mathrm{cm}$ when a 24 -kilovolt accelerating
potential is used. When the 12 -kilovolt accelerating potent potential is used. When the 12 -kilovolt accelerating potent-
ial is used, each of these Sweep Time/ $C M$ figures is halved
The basic waveform is generated by a pentode clamp with a cathode-follower bootstrap linearity corrector. Push pull deflection is accomplished at output level by-addition of a plate-output unit-gain phase-inverter stage.

Trigger Phase Changer

A trigger selector switch selects the source of trigger sig nal and V101 reverses the phase, if necessary, to provid

Distributed Trigger Amplifie

A broad-band trigger amplifier, capable of passing a steep wave-front pulse, is used in order to reduce to a minmum the delay betwen the start of the trigger pulse and
the start of the sweep. This amplifier consists of two dis he start of the sweep. This amplifier consists of two dis grids of the second stage, V105 to V107, are driven in the ositive direction and the negative-pulse output amplifud control which sets

Trigger Limiter
The trigger limiter stage operates with zero bias. Th negative pulse from the trigger amplifier drives this tube to plate-current cutoff. Choice of the proper value of quiescen
plate-current and use of shunt-compensated plate-load re sistance of low value resulis in a very steep positive pulse mited in amplitude to about 10 volts. Thus limited, this pulse does not drive the grid of V109 into the grid-curren conducting region.

CIRCUIT DESCRIPTION

Trigger Switch Tube

The resulting negative pulse at the plate of V 109 , coupled hrough coupling diode V ho to the piate of minus multiv

Trigger Coupling, Diode

The trigger-coupling diode serves to disconnect the plate of trigger switch tube, V109, from the plate of negative dops below that of V109.

Sweep Lockout Circuit (S/N 1691 and up only)

With the NORMAL-SINGLE SWEEP switch, SW90, in the SINGLE SWEEP position, the thyratron, V90, is initially in a nonconducting state. The operating voltages on V 255 and Hou are normal and the READY light, B90, is ignited hrovgn the control fube, VB3A. Under these conditions, the initiate a sweep.
At the completion of the sweep initiated by the triggering signal, a positive pulse is delivered to the grid of V90. The positive pulse ignites V90, dropping the plate voltage and extinguishing B90. The drop in plate voltage is used to
render the sweep circuits inoperative through $V 255$ and to render the sweep circtits inoperative through Vrog and to
drive the screen voltage on V109 negative through V83B. The negative screen voltage effectively blocks any furth trigger pulses from reaching V11O. By pressing the RESE the non-conducting stage.

Multivibrato

V111 and V119 operate as a plate-to-grid coupled mono stable multivibrator for the purpose of converting a trig gering pulse into a pulse of controllable duration, suitabThe SWEEP STABILTY control, by varying the bias on the grid of V111, determines the optimum point of triggering On Type 517 instruments below $S / \mathrm{N} 926$, if there is insu ficient bias, the multivibrator will begin to operate self
excited at a duty cycle such that the allowable dissipation of the 6 J 6 cathode followers may be exceeded. Car should be taken, therefore, not to leave this control at setting which results in self-excited operation for extended

Duty Cycle Limiter (S / N 926 up only)

A portion of the +GATE output is used to charge C258 hrough R258. When C258 has charged to a sufficiently high voltage the current in the triode section of V255 is switched to the pentode section. This pulls the grid of
down and holds the multivibrator in the quiescent state. The artion of the +GATE signal used to charge C258 is of about 20 volts amplitude but the discharge voltage is only fraction of a volt so the discharge time is many times onger than the charge time. This ratio of charge to dis charge time determines the duty cycle of the sweep. A Sow sweep speeds the switching action of V255 will rever he multivibrator and thus determine the duration of the
sweep. At fast sweep speeds several cycles of the +GAT are required to charge C258 sufficiently therefore the swee will occur in bursts of several cycles and then remain quie ent during the discharge time of C258.

Sweep Generator Clamp Circuit

 In the quiescent state, the parallee clamp tubes, V 112and V 113 , conduct heavily. The negative pulse from the plate of V111 to their grids interrupts the flow of plate current very rapidly, and the plate voltage then begins to rise at a rate determined by the values of capacitance and re-
sistance in the charging circuits, both of which are selected by the SWEEP TIME/CM selector switch, SW103, for the varlous sweep times. The series inductor in the grid circuit of the clamp tubes provides a 10 nanosecond delay to enable voltage starts.

Bootstrap Cathode Follower

The voltage rise across the charging capacitor in the oregoing circuit would be exponential if no provisions, were made to keep the charging current from varying during the sweep. The charging current is kept V116, and sweep cathode follower V117, which tends to keep the voltage constant across the charging resistor for the duration of the sweep.

Decoupling Diode

A decoupling diode, V114, a 6×4 in series with the plus 475 -volt supply to the clamp tubes, offers low resistance to the passage of the quiescent-state current to the clamp tubes, but disconnects the positive end of the charging re-
sistor from the 475 -volt supply when bootstrap action raises sistor from he 4 Ivo bope 475 volts.

Plus-Sweep Cathode Follower

V117, a cathode follower, provides the positive sweep voltage to the cathode-ray tube, as well as to the grids of ve bootstrap tubes and to the sweep-inverter stage.

Sweep Inverter

A unit-gain amplifier is used as a phase inverter to provide the negative portion of the sweep voltage. This stage consists of V118, a 6AG7, with gain maintained near unity use of frequency-compensated feedback.

Bias and Screen Adjust

V137 (designated V118.1 S/N 101-495) a 12AU7, provides low-impedance bias voltage and screen voltage for the sweep inverter stage V118.

DC Restorer

V133, a 6AL5 dual diode, removes the accumulated charge from the sweep-coupling capacitors, permitting the sweep to start at the same position on the cathode-ray tube

Unblanking Amplifier

During the waiting periods between sweeps, the bias on he cathode-ray tubes is such that the beam current is con pletely cut off. As soon os a trigger pulse appears and the sweep starts, a positive pulse of approximately 100 volts required on the cathode-ray tube grid to turn the beam back on. This pulse must have a very fast rise fime and a very flat top to insure fast unblanking andished by means of the u ness. Bing amplifier, V120 and V121, two 6AG7's in parallel, and associated output cathode follower V123. For the 10 $\mathrm{MLLLL} \mu \mathrm{SEC/CM}$ setfing, an inductance ringing circuit is inserted at the grid
ficiently sharp unblanking pulse. This circuir consists of a 300 -microhenry inductance from the grids of the unblanking amplifier tubes to ground through a 100 -ohm resistor. The negative pulse of the multivibrator starts the che oscillation is a satisfactory period of unblanking. Grid current damps out further oscillation during the positive half cycle since the unblanking amplifier tubes operate at zero bias.

Unblanking Cathode Follower Output

V123 provide to the unblanking amplifier

Plus Gate Cathode Follower

V124 is a 6 J 6 cathode follower whose grid is coupled to the plate of the positive multivibrator tube V110. The out put of the cathode follower connected to a front-panel binding post provides a p
duration as the sweep.
$V 122$ is a cathode follower supplying the screen voltage to the unblanking amplifiers. The use of this circuit permits the unblanking voltage to be reduced to half when the
crt is operated at a 12 -kv accelerating potential. The grid crt is operated at a 12 -kV accelerating potential. The
voltage of V 122 is controlled by the SENSITVVITY switch.

Trigger Rate Generato

EXTERNAL POWER SUPPLY

All voltages of 750 and less are provided by an external power supply. Distribution of the voltages, and the nominal load current at each voltage are as follows
Negative 250 volts, regulated ($\mathbf{5 0} \mathbf{~ m a}$
a. bias voltages
b. negative positioning voltage
c. voltage reference supply for other voltage regulators

Positive 150 volts, regulated (550 ma
a. plate voltage for distributed trigger amplifier
b. plate and screen voltage for all vertical amplifiers except plates of output stage.

Posifive 180 volis, unregulated (250 ma
a. plate voltage only for vertical output amplifier

Positive $\mathbf{2 2 5}$ volts, regulated ($\mathbf{4 5 0} \mathbf{~ m a}$)
a. trigger phase changer
b. trigger limiter and switch tube
c. unblanking amplifier
d. positive multivibrator
e. negative multivibrator and clamp tube, screens only
f. calibrator circuit voltages
g. trigger rate generator voltage
h filament oscillator tube for CRT high-voltage supply
i. positive vertical positioning voltage
i. probe voltage supply via a cathode follower
k. plate voltages for plus gate tube

Positive 365 volts, unregulated (111 ma) plate and screen supply for CRT high voltage supply oscillator

Positive 475 volts, regulated (150 ma)
a. plate voltage for minus multivibrator
b. plate voltage for clamp tubes via 6X4 decoupling diode
c. plate voltage for unblanking cathode follower
d. screen voltage for sweep inverter via cathode follower
e. positive vertical positioning voltage

Positive $\mathbf{7 5 0}$ volts, regulated (50 ma)
a. plate voltage for positive sweep output cathode fol. lower
b. plate voltage for bootstrap cathode followe
c. plate voltage for sweep inverter tube

Filament Voltage Regulator

Heater voltages of all tubes located in the indicator unit are regulated by automatically controlling the primary voltare regulated by automatically controling the primary volt-
age of the filament transformer, T901, located in the inage of the filament transformer, traty located is in woltage is controlled at a nominal 80 volts by a variable-reactance saturable reactor, located in the external power supply unit, connected in series with the line-voltage source and the transtormer
primary. Reactance of the saturable reactor is controlled by varying the direct current through an auxiliary winding in accordance with line-voltage variatons of direct current by means of an emission-sensitive diode whose filament is supplied from the regulated transtormer, Ty01. In ithe sche-
matic, V419, a Sorenson Type 2AS-15, is the emission-sensitive diode. The plate resistance of this tube varies rapidly with filament voltage, and in the opposite sense, so that the directly-connected grid of V420, a 6AU5, drops in voltage when, for example, the filament voltage increases. This
results in a reduction of current through the auxiliary winding of the saturable reactor, which is a part of the plate load of V420. The resulting increase in reactance of the saturable reactor reduces the ac voltage available to the transformer primary and tends to maintain the diode filament voltage at a constant evel. Capacitor
sistor R477 (added $\mathrm{S} / \mathrm{N} 994$) connected between grid and plate of V420, form a feedback network which compensates for the 120 -cycle modulation of filament temperature of
V419. It should be noted that filament-winding terminals 5 V419. It should be noted that filament-winding terminals 5
and 6 on T901 are at minus 250 volts dc. This is necessary and 6 on 1901 are at minus 250 volts dc . This is necessary
because the dc coupled plate of V 419 is at approximately ground potential and its directly-heated filament is therefore depressed to provide the required cathode-to-plate potential difference.

Negative 250-volt Regulated Supply

 This supply voltage is regulated by comparing the voltageof V418, a type 5651 gas diode, to that of a orlage divider connected across the regulated output, through
comparator tube $V 417$ a $6 A U 6$. The difference voltage is comparator tube V417, a 6 AU6. The difference voltage is
amplified in $V 417$, and applied to the grid of V416, a 6 AU5 series regulator tube in the positive lead. V415 is a type 6×4 connected as a full-wave rectifier.

Positive 150-volt Regulated Supply

This supply voltage is regulated by comparing to ground the voltage of a point negr ground cotential on a voltage the voltage of a point near ground potential on a voltage
divider connected between the positive 150 -volt bus and reg. divider connected between the positive 150 -volt bus and reg-
ulated negative 250 volts, through comparator tube V422,
a 12AX7. The difference voltage is further amplified in V414, a 6AU6, and applied to the grids of series regulator
tubes $V 412$, $V 413$ and $V 421$, three $6 A S 7$'s in parallel. The additional gain provided by V_{422} is necessary to reduce the output ripple voltage to a satisfactorily low level. Four tenplate selenium rectifiers are used in a bridge circuit. A tap, taken off ahead of the series regulator tubes, supplies a rectifier.

Positive 225-Volt Regulated Supply

This supply voltage is regulated by comparing to ground potential a point near ground potential on a voltage divider potential a point near ground potential on a voltage divider
connected between the positive 225 -volt bus and regulated negative 250 volts, through comparator tube V411, a $6 \mathrm{AU6}$. The difference voltage is amplified in this tube, whose plate is directly connected to the grids of V409 and V410, two 6AS7 series regulator tubes in paraliel. Four ten-plare
selenium rectifiers are used in a bridge circuit. An unregulated tap at plus 330 volts is taken off ahead of the regulator to supply dc saturation current for the saturable reactor in the filament voltage regulator

Positive 365-Volt Unregulated Supply

This unregulated supply uses V407 and V408, two 6X4's in parallel, in a full-wave rectifier circuit with capacitor input. The ac voltage for this supply is obtained from taps
on the transformer that supplies ac for the positive 475 -volt regulated supply.

Positive 475-Volt Regulated Supply

This supply is regulated by comparing to ground potential a point near ground potential on a voltage divider connected between the 475 -volt bus and regulated negative 250 volts through comparator tube V 406 , a $6 \mathrm{AU6}$. The difference voltage is amplified in V406, whose plate is directly connected to the grids of 405 , two halves of a 6AS7 series
regulator tube in parallel. V404, a $5 R 4 G Y$ rectifier, is conregulator tube in parallel. V404, a 5 R4GY rectifiter, is con-
nected in a full-wave circuit, the ac voltage for this supply nected in a ful-wave circuif, the ac voltage for mis supply that supplies the 365 -volt unregulated supply. At S / N
496 and up R $476,7.5 \mathrm{k}$ shunting the regulator tube increases 496 and up, R476, 7.5 k shunting the regulator tube increase the available current.

Positive 750-volt Regulated Supply

This supply is regulated by comparing to the previously described 475 -volt supply, the voltage near 475 volits of a divider connected between the 750 -volt bus and ground
hrough comparator tube V403, a 6AU6. The difference oltage is amplified in $\vee 403$, and applied to the grid \circ V402, a triode-connected 6AU5 series-regulator tube. V401, a 6×4 rectifier, is connected in a full-wave circuit. The un-
regulated output of this portion of the circuit is approxi egulated output of this portion of the circuit is approxi
mately 425 volts, which, added to the unregulated 580 -vol portion of the 475 -volts supply, results in a potential of ap proximately 900 volts to ground at the plate of V 402

NOTE

The capacitance between the regulated bus and the grid of the reference tube in each of these supplies is for circuit loop.

Cathode-Ray Tube Circuit

The NE2 neon glow lamps across the INTENSITY control potentiometer and Max. Intensity Adj. variable resistor maintain the INTENSITY, potentiometer terminal voltage con-
stant regardless of cathode-ray tube cathode curent stant regardless of cathode-ray tube cathode current, there-
by stabilizing the intensity adjustment. Two of the four neon glow lamps are shorted out by the SENSITIVITY switch ghen it is turned to the 12 -kv position. This reduces the
wher maximum cathode-ray tube bias available by a factor of two at the lower accelerating voltage. The purpose of the grid bias setting available by the INTENSITY control to a safe value thus preventing damage to the cathode-ray tube screen in case the INTENSITY control is advanced too far. The ASTIGMATISM control potentiometer controls the grid bias of cathode follower VI35B to provide an adjustable
low-impedance source of voltage for anode No. 2 of the cathode-ray tube.

Type 420/420A High Voltage Power Supply

All the accelerating potentials for the cathode-ray tube are provided by a high-voltage supply employing an audio
oscillator operating at a frequency of approximately 1.8 oscillator operating at a frequency of approximately 1.8
kilocycles. Four type IX2 high-voltage rectifier tubes in a voltage quadrupling circuit provide positive 20 kilovolts. In type 420 High Voltage Power Supplies, with Type 517
oscilloscopes $\mathrm{S} / \mathrm{N} 101$ through 993 , voltage divider resistors oscilloscopes S N 101 through 993 , voltage e divider resistors
provide 13.3 kilovolts and 6.6 kilovolts positive. This feature is not found in Type 420A High Voltage Power Supplies with Type 517A Oscilloscopes, S/N 994 and up. The highvoltage rectifiers, capacitors, resistors and transformers are
all oil-immersed.

High-Voltage Oscillator and Regulator

The high-voltage oscillator plate voltage is regulated to maintain a constant negative 4 kilovolts of rectified output so that deflection sensitivity of the cathode-r
be affected by line-voltage or load changes.
A tap on the negative 4 -kilovolt portion of the power A tap on the negative 4-kilovolt portion of the power
supply is referred to a regulated negative 250 -volt source through V302A, one section of a 12AUT. The other section of this tube, V302B, amplifies the difference voltage and ap-
plies it to the grids of the series regulator tubes, V301 and plies it to the grids of the series regulator tubes, V301 and lator $V 303, a 6 A \cup 5$.
In Type 517 Oscilloscopes, serial numbers 187 and higher, V305, a 6C4, provided with an R-C network in its grid circuit, depresses the grids of the series regulator tubes, V301
and V 306 when power is first applied, and then soly lows the grids to assume their applied, and then slowly alpending on the time constant of the R-C network. This cir-
cuit delays application of full accelerating voltage to the cathode-ray tube, thus oreventing "flare" when the instru-
ment is turned on with the INTENSITY control at normal seffing. In earile wispe Oscilloscopes, serial numbers 186 and lower, flare protection is incorporated in the fila-ment-voltage oscillator supplying filament voltage to the IX2 high-voltage rectifiers.

Filament-Voltage Oscillator

Filament voltage for the five 1×2 high-voltage rectifiers is supplied by means of a separate oscillator circuit with V304, a 6AQ5. In Type 517 Oscilloscopes, serial numbers
186 and lower, a 6 C 4 cathode follower V305, supplies the screen voltage of oscillator tube V304. An R-C network in screen voltage of oscilator tube V304. An R-C network in
the grid circuit of V 305 causes the screen voltage of V304 to rise slowly when power is first applied, thus prolonging the filament-heating time of the 1×2 high-voltage rectifiers. The corresponding gradual rise of voltage of the high-volt-
age supply prevents flare on the cathode-ray tube when the instrument is turned on with the INTENSITY control at normal
setting. setting.

Calibrator

The signal-amplitude calibrating unit consists of a selfexcited unsymmetrical multivibrator operating at a frequency of about 25 kilocycles. The positive pulse, about 3μ seconds
long, is clipped in diode V135A at a level determined by the long, is clipped in diode VI35A at a level determined by the
setting of the grid voltage of cathode follower V135B on the Cal. Adjust potentiomenter. The negative portion of the pulse is clamped at ground potential by a crystal diode.
A potentiometer labeled CAL. VOLTAGE in the A potentiometer labeled cal. VOLTAGE in the cathode circuit of carnode follower Vat 32 provides a continuously-vari-
able pulse amplitude to cathode follower V131. A six-position step attenuator in the cathode circuit of V131, labeled CAL. RANGE provides six voltage range steps.

170-Ohm Attenuator (Type B170-V)

This device consists of a series of resistor pi pads which can be selected by means of frequency-compensated toggle
switches. The nominal impedance of the box is 170Ω to switch. The nominal impedance of the box is 170Ω to
match the impedance of the scope input and of the probe cable.
The inductors between switches compensate for switch capacitance to approximately 150 mc . Additional rise time,
contributed by the use of the attenuator to the overall step contributed by the use of the attenuator to the overall step
response of the Type $517 / 517 \mathrm{~A}$, is of the order of 3 nsec. Input and output connectors are chassis-mounted female UHF coaxial fittings.

Cathode Follower Probe

The Type P-170-CF Probe provides high-impedance input to the Type 517/517A. The probe consists of a type 5718 minature triode enclosed in a brass housing, connected to
the oscilloscope by means of a 40 -inch flexible cable Caththe oscilloscope by means of a 40 -inch flexible cable. Cath-
ode output from the cathode follower is fed through 170Ω
coaxial cable to the 170Ω input of the oscilloscope. The athode resistor for the cathode follower consists of the 70Ω grid line termination of the distributed preampifiel The cable is also provided with a four-prong power plug
which plugs into a socket near the 170Ω coaxial input of which plugs into a socket near volts dc at 9.5 milliamps and 6.5 volts ac at 150 milliamps, for plate and heater power for the Type 5718 tube.
Three screw-on capacitive attenvators, I, II, and III, each adjustable over a ten-to-one range in coniunction with the available the following voltage sensitivities and attenuation ranges:

Type 517A S/N 926 up

	Voltage Sensitivity	Attenuation
Direct Input	$=0.05$ to $0.1 \mathrm{v} / \mathrm{cm}$	0 to $2: 1$
Probe alone	0.1 to $0.2 \mathrm{v} / \mathrm{cm}$	$2: 1$ to $4: 1$
Attenuator I	0.2 to $4 \mathrm{v}+\mathrm{cm}$	$4: 1$ to $80: 1$
Attenuator II	2 to $40 \mathrm{v} / \mathrm{cm}$	$40: 1$ to $800: 1$
Attenuator III	20 to $400 \mathrm{v} / \mathrm{cm}$	$400: 1$ to $8000: 1$

The input admittance of the probe alone consists of a
capacitance of $5 \mu \mu \mathrm{f}$ shunted by a 12 megohm, $1 / 2$ watt

Allen Bradley resistor. The minimum input capacitance o he aftenuators is of the order of $1 \mu \mu \mathrm{f}$.
Input capacitance of the capacitive attenuators when at tached to the probe are shown in the following table. The
sensitivities listed are for a full-right setting sensitivities listed are for a full-right setting of the VERT
AMPL. ATTEN. control of the Type $517 / 517 \mathrm{~A}$. The capacitance values were measured using actual production at enuators, but capacitance of individual attenuators may depart somewhat from the values listed.

Type 517 S/N 101 through 925

Attenuator Number	Attenuator Sensitivity Setting	Input Capacitance
I	$0.4 \mathrm{v} / \mathrm{cm}$	$5.0 \mu \mu \mathrm{f}$
II	4.1	1.2
III	40	5.0
	40	1.2
	400	3.0

Type 517A S/N 926 up

Attenuator Number	Atenuator Sensitivity Setting	Input Capacitance
1	$0.2 \mathrm{v} / \mathrm{cm}$	$5.0 \mu \mu \mathrm{f}$
$2 \mathrm{v} / \mathrm{m}$	$1.2 \mu \mu \mathrm{f}$	
II	$2 \mathrm{v} / \mathrm{cm}$	$5.0 \mu \mu \mathrm{f}$
$20 \mathrm{v} / \mathrm{cm}$	$1.2 \mu \mu \mathrm{f}$	
III	$20 \mathrm{v} / \mathrm{cm}$	$3.0 \mu \mu \mathrm{f}$
	$200 \mathrm{v} / \mathrm{cm}$	$1.1 \mu \mu \mathrm{f}$

listed will result in intermediate values of input capacitance

MAINTENANCE

Preventive Maintenanc

When the Type 517/517A is being operated, it is extremely important that adequate ventilation be provided some of the components in both units are operated at dis sipation levels such that excessive temperatures and consequent component damage might occur without adequate air circulation.
To assure free passage of air, the units should be placed so that the air intakes are not blocked by other apparatus the filters should be kept clean.
Washable Lumaloy Air Filters are used at the air intake to both units The following filter cleaning instructions are given by the filter manufacturer:
"To Clean:
(1) If grease or dirt load is light, remove filter from in stallation and flush dirt or grease out of filter with a water or steam.
(2) If load is too heavy for treatment in (1) above, pre pare mild soap or detergent solution in pan or sink, deep
enough to cover filter when laid flat. Agitate filter up and down in this solution until grease or dirt is loosened and carried off filter
(3) Rinse filter and let dry.
(4) Dip or spray filter with fresh Filter Coat, or other ap (4) Dip or spray filter with fresh Filter Coat, or other ap
proved adhesive. Filter Coat is available from the local proved adhesive. Filter Coat is available from the local
representative of RESEARCH PRODUCTS CORP. in the one-pint Handi-Koter with spray attachment or one-gallon and five-gallon containers.
Unless they are specifically ordered otherwise, Type $517 /$
517 A Oscilloscopes are shipped connected for operation at 517A Oscilloscopes are shipped connected for operation a 105 to 25 volts, 50 to 60 cycles ac. However, provisions
are made for easy conversion to operation at 210 to 250 volts, 50 to 60 cycles. In instruments with serial numbers 280 and higher, three transformers, T401, T402 and T901, with one series reactor, L402, are provided with split input windings which are normally connected in parallel for 115 . for 230 -volt operation. Each of these split windings terminates in a nest of four terminal lugs arranged in a squar on a bakelite terminal board, and numbered 1,2,3 and in clockwise rotation.
Terminals numbered 1 and 3 are connected to one wind
ing and terminals numbered ing and terminals numbered 2 and 4 are connected to the
second winding. The ac input leads are connected to terminals 1 and 4 whether for 115 -volt or for 230 -volt opera-
tion, so that these leads do not need to be moved when conversion is made from one to the other operating input-volt age level.
When wired for 115 -volt operation, terminals 1 and 2 ar ioined by a bare bus wire, and terminals 3 and 4 are similaryoined. To convert to 230 -volt operation, remove the bare bus wires between these terminals and substitute a singlo onnecting wire between terminals 2 and 3 .
Transformer 1901 terminal board is located on the undear when the indicator unit, readily accessible at the righ emaining three terminal boards are located on the underside of the external power-supply unit. When the powersopply unit is turned upside down L402 is on the right fron of the chassis, T401 is located at the left rear and T402 at the right rear
The three fuses mounted at the front of the power supply should be changed to accommodate the reduction in inpu
current. Three tables are silkscreened on the back pane of the power supply. These tables give the correct rating of fuses to be used for either 117 -volt or 220 -volt operation.

ANALYZING TROUBLE

Tube Replacemen

A good percentage of the troubles that occur are likely o be found in the tubes and it is therefore advisable to heck tubes before extensive tests are made on other com ponents. Tube checks can be made by substitution in man cases. Tube failures may result in failure of other com onents so that it is advisable to examine all components a sociated with an offending tube
Selected tubes are used in several positions in the Typ
$517 / 517 \mathrm{~A}$ as follows:
6AK5-V501 thru V512 preamplifier
V102 thru V107 $\begin{aligned} & \text { preampifier } \\ & \text { preamplifier }\end{aligned}$
6CB6-V501 thru V519 preamplifier V521 thru V523
V520
H6 V126
preamplifier
preamplifier
trigger pickof
6 BH 6 V 126
trigger rate generator
$6 \mathrm{~J} 6101 \quad$ trigger selector
NE-2 Neon Glow Lamps CRT Bias

6AK5: Selected for normal or better Gm and for low microphonics for all tube positions.
6CB6 Selected for low grid current and for normal plate crid lines of the distributed amplifier and disturbs the line impedance. Tubes which ex hibit plate current above or below normal are potentially unstable.
6BH6
The trigger rate generator phantastron, V126, must have suppressor grid characteristics withi lose limits. A good percentage of these tube are satisfactory, however.

666 The trigger selector phase changer, V101, re quires equal sections so that both positive and negative pulses will receive equal amplification within about 20 percent

NE-2 The type NE-2 neon glow lamps determine the bias on the CRT. The bias must be reduced to half when the SENSITIVITY switch is furned from NORMAL (24 KV) operation, four lamps are used and for $\mathrm{X} 2(12 \mathrm{KV})$ operation, two are used so that each should have similar voltage-curren characteristics.

CAUTION
Voltages high enough to be dangerous are present a several places in this instrument, and inasmuch as mainten-
ance must be performed with the power circuits energized ance must be performed with the power circuits energized
the utmost caution should be observed. Both the 750volf and 475 -volf leads are potentially more dangerous and 475 -volt supplies have much lower internal impedancs. Use only insulated tools. Stand on dry floor and do not lean with bare arms on the framework of the instrumen

Removal of the Case

To remove the case, place the oscilloscope face downward on a padded flat surface, remove the two screws in the bot removed in a similar manner.

Fuses

Three fuses, located on the front panel of the power sup ply, provide over-current protection. These are labeled as D SUPLEs, 6

DC SUPPLES, 6-amp, Fast-Blo, in primary of dc supply ,
Regulated heaters, 5 -amp, Fast-Blo, in primary circuit of heater transformer, T901, supplying heaters of all tubes in indicafor uni. Transformer is located on underside of indicator unit.
POWER SUPPLY HEATERS, 4 -amp, Fast-Blo, in primary o filament Transformer. T402 supplying heater and filame voltage to all tubes located in power supply unit

If the 6 -ampere fuse blows, the first step in locating th trouble should be to find out whether the trouble is in the power unit or the indicator unit. This can be defermined by
disconnecting the inter-unit power cable. If a new 6 -amper fuse blows with the cable disconnected the a new 6 -ampere power unit, and the usual types of checks for caple is in the power unit, and the usual types of checks for capacitor fail isolated.
If the 6 -ampere fuse does not blow except when the inter unit cable is connected, the trouble is likely to be found in解 o ground at each dc voltage jack to learn if any are
below 9000 ohms. If no low resistance circuits are found it is possible there is a type of tube short which occuurs only when both heater and plate voltage are applied. Reconnect inter-unit cable and set controls as follows:

SENSITIVITY	NORMAL (24 KV)
SWEEP TIME/CM	10 or 20 MILLI μ SEC
VERT. AMPL. ATTEN	FULL CLOCKWISE
TRIGGER AMPL	FULL CLOCKWISE
SWEEP STABILITY	FULL CCW

FULI CCW
After these control settings have been made, voltage and currents to the various units can be determined at a panel on the underside of the indicator unit. 10 -ohm resisthe supply voltages. The supply voltage and nominal current is silk-screened next to the proper resistor. The voltage of the minus 250 -volt supply and the plus 225 -volt supply should be within 1 percent. The other regulated supplie should be within 3 percent. Unregulated voltages will
follow line voltage but should be within 10 percent at 117 volts line.
Find out the various currents by measuring the voltage drops across the series resistors. The currents stated are nominal and might vary as much as 10 percent between instru ments. Also, the voltage measurement will be made across esistors of 10% tolerance. If you feel the need for more
accurate measurement, break the circuit at the panel and insert a milliameter.

SUPPLY	CURRENT	VOLTAGE DROP
-250 v regulated	50 ma	0.5 v
+150 v regulated	550 ma	2.75 v
+180 v unregulated	250 ma	2.5 v
+225 v regulated	450 ma	2.25 v
+350 v unregulated	100 ma	1 v
+475 v regulated	150 ma	1.5 v
+750 v regulated	50 ma	0.5 v

If currents at the test panel are abnormal, determine what terminal boards are involved by reference to the Power Dis-
tribution Diagram. By lifting individual leads from the board, tribution Diagram. By lifting indiv
When circuit trouble is found, look for charred or dis colored resistors in associated circuits, particularly the dis. tributed amplifier line terminations.
If voltages at the test panel are not within tolerances look for troubles in the power supply.

If all voltages are off in value, check the negative 250 volt supply, which all other regulated supplies are compared
to. If all yoltages are low, V415 may be low in emision, to. If all voltages are low, $V 415$ may be low in emission, or
V418 should indicate -250 volts or less. If all voltages are high V418 may be shorted and the - 250 volt jack should indicat about - 350 volts.
If individual voltages are off, check the voltage at the
plate of the series regulator fube involved for evidence of plate of the series regulator tube involved for evidence of
low cathode emission. Check resistance and voltage at low cathode emission. Check resistance and voltage at
the grid of the reference tube for evidence of failure in the voltage divider.

CAUTION

To measure heater voltage, use an rms voltmeter, not a rectifier type of meter.
Heater voltage low to about 5 volts as measured at the
6.3 V 1 A pin jack on failure of $V 419$ iack on the indicator unit indicates filamen failure of 4419 , loss of emission, open circuit at
open circuit on +350 -volt lead to saturable reactor.
Heater voltage above 6.3 v indicates a possible short in V420.

Sweep

If a spot can be made to appear at left center by follow ing the procedure shown in Operating Instructions, but no sweep occurs, advance the SWEEP STABILITY control full
clockwise. If a sweep occurs with this control adiustment clockwise. If a sweep occurs with this control adiustment,
the difficulty may be in the trigger circuit. Turn the TRIG. GER SELECTOR switch to RATE GEN. and advance the TRIGGER AMPL. control full clockwise. If no sweep occurs observe the output at one of the RATE GEN. OUTPUT con-
nectors on another oscilloscope. There should be approxinectors on another oscilloscope. There should be approxi
mately 20 volts peak to peak at RATE GEN. OUTPUT A or mately 20 volts peak to peak at RATE GEN. OUTPUT A o
60 volts at RATE GEN. OUTPUT B connectors. If enough 60 vorts a rate
output is available, look for low gain in the trigger amplifier. The gain may be checked by coupling the RATE GEN The gain may be checked by coupling the RATE GEN
OUTPUT A or B, through a voltage divider to give abou 0.1 volt peak to peak into the trigger amplifier circuit via he TRIGGER INPUT UHF connector. Place the trigger selec-
tor in the + EXT. position. Make sure the voltage at this tor in the +EXT. position. Make sure the voltage at this
point is about 0.1 volts and turn the TRIGGER AMPL. control full clockwise. Then with a suitable oscilloscope, such as Tektronix Type 530 - or 540 -Series, check the gain in the various trigger amplifier stages, which should be as follows 0.7 ; between 4 and 6 for the first distributed trigger amp lifier stage consisting of V102 or V104; and between 4 and 6 for the second distributed trigger stage, V105 to V107 Output of this stage is negative and goes to the grid of
V108, a $6 \mathrm{AG7}$, which acts as a limiting amplifer This tube V108, a 6AG7, which acts as a limiting amplifier. This tube
should have a gain of about 4 , making a total gain of trigger input to plate output at V108 of 80 to 100 . Gain less than 80 indicates low Gm tubes, especially the 6AK5's. As in checking trouble in the trigger amplifier circuit, the following point-to-point voltages are listed. These are typical
voltages, checked on a production model. Variations of 10 to 15% may be expected. Measurements were made with a $20,000 \Omega / \mathrm{volt}$ voltmeter and with the trigger amplitude control in the full clockwise position with no
signal fed into the system. For a quick first test, check
creen voltages of the 6 AK 5 's, V102 v103 and V104 Hig creen voltages of the 6AK5's, V102, V103 and V104. High screen voltage is around 80 volts.

NORMAL VOLTAGES

Tube	Check Point	Voltage Reading
V101	cathode plate	$\begin{aligned} & +1.6 \mathrm{v} \\ & +150 \mathrm{v} \text { each } \end{aligned}$
V102	plate screen	$\begin{aligned} & +100 \mathrm{v} \\ & \text { approx } 90 \mathrm{v} \end{aligned}$
V103	$\begin{aligned} & \text { plate } \\ & \text { screen } \\ & \hline \end{aligned}$	$\begin{aligned} & +100 \mathrm{v} \\ & \text { approx } 90 \mathrm{~V} \end{aligned}$
V104	plate screen	$\begin{aligned} & +100 \mathrm{v} \\ & \text { approx } 90 \mathrm{v} \end{aligned}$
V105	plate screen	$\begin{aligned} & 95 \mathrm{v} \\ & 145 \mathrm{v} \end{aligned}$
V106	plate screen	$\begin{aligned} & 95 \mathrm{v} \\ & 145 \mathrm{v} \end{aligned}$
V107	plate screen	$\begin{aligned} & 95 \mathrm{v} \\ & 145 \mathrm{v} \end{aligned}$
V108	plate screen	$\begin{aligned} & \text { approx } 200 \mathrm{v}^{*} \\ & \text { approx } 100 \mathrm{v} \end{aligned}$
V109	plate screen cathode	$\begin{aligned} & +205 \mathrm{v} \\ & \text { approx } 200 \mathrm{v} \\ & +8.5 \mathrm{v} \end{aligned}$

* Depending upon $+225 v$ source. In any event, the drop across
VI 108 plate load, $\mathrm{R1} 26$, should be about 8 v at 30 ma.

CRT Power Supply

In case of failure of the $20-\mathrm{ky}$ power supply, find out first whether the oscillators supplying ac input voltage to the high-voltage supply and filament supply transformers are functioning satisfactorily. This can be determined by
measuring the dc grid voltages of the two tubes using a 20.000Ω /volt meter. The voltage at the grid, pin 1 o 303 , a 6 AU5, should be about 27 volts. The voltage a he grid, pin 7 of V304, a 6AQ5, should be about 19.5 540 -Series instrument can be used for reading' the ac volt ages.
If thse tests show that failure has occurred in the oscil lator circuit, it is recommended that a new Type 420 power supply be ordered from the factory. The factory will ship a replacement power unit, shipping charges prepaid, by ir if desired, immediately on receipt of notification o or this purpose. Do not return the defective unit, unless asked to do so by the factory.

Vertical Amplifier

Overall gain of the Vertical Amplifier can be checked by using a calibrated pulse from the CAL. OUTPUT terminal With the VERT. AMPL. ATTEN. turned full clockwise and the put should give about one centimeter of vertical deflection.

If gain is appreciably low, first check voltages and curents at the test panel on the underside of the indicator unit and check the power supply if indicated. Low gain of one or more 6AK5 is a possible cause of low gain, and if suggested that the twelve 6AK5 s, 50 ,
Individual stage gains can be checked by means of a test oscilloscope to observe the pulse amplitude at the input an
sutput of each stage. The proper gain of each stage is indicated on the simplified schematic diagrams of the vertical amplifier system. Gain about twice normal may indicate an open line termination, either the direct termination or the reverse termination. 005 af grid-coupling capacitors or short may indicate leaky $.005 \mu \mathrm{f}$ grid-coupling capacitors or short-
ed $150 \mu \mathrm{f}$ cathode bypass capacitors. By biasing off indivied dual tubes or by measuring voltages, the offending capacitor can be isolated.
If, after preliminary tests have been made for amplifier gain and satisfactory operation of components, aberration of the pulse shape is suspected, recommended test pro-time-at the most, 3 nanoseconds. The pulse duration should be 5 seconds or more, and repetifion rate should be above 60 cycles. Both positive and negative pulses are needed for the procedure, and the pulse must be produced across 170Ω at a variable level up to about 0.2 volts, peak to
peak. If an attenuator is required to adjust the pulse leve o needed amplitude, do NOT use the 170Ω step attenuato supplied with the oscilloscope.
Connect the pulses to the Type 517/517A SIGNAL INPUT connector and watch the displayed pulse at various level of both polarities, and at different sweep times per centiference in gain for positive and negative pulses, it is rec ommended that the following steps first be read and under stood, and that the indicated tuning procedure then be ollowed
Display on the CRT a positive pulse with 1 cm amplitud and repeat, using a negative pulse.

1. If aberration of the front corner of the pulse occurs within the first 50 nanoseconds of the rise, consisting either rounding, or overshoot or spiking, correction can prob ably be made by tuning the trimmer capacitors on the plate
line of the output distributed amplifiers C713A to L and line of the output distributed amplitiers C7as to L . An upward deflection of the trace results from positive grid drive on the half of the output amplifier nearest the front panel, V713 to V724. Tuning the trimmers his haff of the amplyie, CM14A to L, herefore compensares for aberration ocarring tace
A downward deflection of the trace is the result of posi tive grid drive on the half of the amplifier farthest from the panel, 701 to V712. Tuning the trimmers of this half of the amplifier, C713A to L therefore compensates for ab
occurring during a downward deflection of the trace.
2. A much longer aberration having the shape of an RC charge or discharge curve of duration 100 to 500 nanoseconds results from the variation with voltage and time of the impedance characteristics of the $150 \mu \mathrm{f}$ cathode bypass to ground at the plate-line terminations. Compensation for
hese sources of aberration is produced by means of two RL networks in the reverse-termination networks of the first Wo stages of the preamplifier, R503, L509 and R515B, L510, by shorting out the inductance. Amplitude of the compensation depends on the value of R and the duration, or time constant, depends on the value of L . In a few instruments, has been found necessary to replace one of the RL net works with a parallel RC network of 10 to 20Ω and 0.01 to
3. A small sharp notch or spike occurring 30 to 35 nano plate and grid line of the output stage near the reverse terminations, especially following retuning. These aberrations can be corrected by means of C735 and C736 located a he output-stage plate-line reverse terminations. With a esitive pulse displayed, adjust 736 at the plate line nea 735 at the plate line farthest from the panel, and repea the procedure once or twice for the best adjustment
4. Under normal operating conditions, a small wrinkle of about 0.5 mm peak to peak amplitude occurs on the race about 100 nanoseconds after the start of the sweep xcept for this wrinkle, a properly tuned amplifier will hav no ringing
5. The tuning capacitors of the vertical amplifier are pre set at the factory to the following approximate adiustment
in terms of the depth the inner concentric cyclinder is en gaged into the outer cyclinder.

Stage	Depth
1st Stage	$1 / 16$ inch
2nd Stage	$1 / 8$ inch
3rd Stage	$3 / 16$ inch
Inverter	$3 / 16$ inch
Driver	adiusted by ob- servation for best response charactis- tics
Output	

6. The following list of delay times may be useful in a usting the amplifier and in determining the effects of

Stage	Delay Time
1st \& 2nd preamplifier	
stages and driver, each	
88 nsec, total	24 nsec
Inverter Stage	4 nsec
3 3rd Stage	11 nsec
Output	16 nsec
Delay Line	65 nsec
Total Overall Amplifier Delay	120 nsec
Sweep-starting time, INT. triggering	90 nsec
Sweep-starting time, EXT. triggering	60 nsec

Noise and hum occurring elsewhere than in the vertical Nelifier or in the sweep cilcuits can be seen by shoring voltage still persists on the trace.

The following equipment or its equivalent is necessary for a full recalibration of the Types 517 and 517A Oscilloscopes. Differences existing in requireme
ment befween the 517 and 517 A

1. DC voltmeter with at least 20,000 ohms per volt sensitivity. To satisfy the accuracy requirements, corrected readings must be known for the following voltages: 150, 180, $225,250,365,475,750,1950$, and 4,000 volts.
2. DC milliameter with ranges from 25 to 500 milliamperes
3. Oscilloscope with a minimum of a 10 mc bandpass such as the Tektronix Type 316 and a 10 X probe
4. $A C$ voltmeter with a range of zero to 10 volts rms of the iron vane or dynamometer type.
5. Time-mark generator such as the Tektronix Type 180 or 180A. If neither of these instruments are available, it will be necessary to substitute a time-mark generator having 1 , of 5,10 , and 50 megacycles, with an accuracy of at least
6. Earphones with 4000 ohms or more impedance.
7. Variable autotransformer with a 1.5 KVA minimum rating.
8. Short rise time pulser such as the Tektronix Type 108. If Type 108 is not available, it will be necessary to substitute

- AC

10. AC Voltmeter with a range of at least 105 to 125 volts.
11. Miscellaneous cables, terminating resistors, attenuators, and pads as determined by the particular requirements of the test equipment used.
12. Adjustment tools.

Preliminary Procedure

Place the oscilloscope face downward on a padded flat surface, remove the two screws in the bottom, and lift off the case. Repeat this procedure for the power supply. Set pows:

CALIBRATION PROCEDURE

AC POWE
DC POWER
OFF

INTENSITY
NTENS STABITY
HORIZONTAL POSITIONING
SENSITIVITY (24 KV)
fully cow
NORMAL
Connect the power cord and an voltmeter to the output of transtormer for a meter reading of 117 volts. Check this meter reading frequently during recalibration and maintain the autotransformer output af 117 volts unless instructed otherwise. If the power transformer in your instrument is transformer for a meter reading of 234 volts.

i. Low Voltage Power Supply

Proper operation of your instrument is dependent upon correct power supply voltages. The negative 250 -volt power
supply is used as a reference voltage for regulation of the other dc power supplies and consequently must be set accurately. Any error in the output of the negative 250 -volt power supply will cause corresponding errors in the outputs of all other regulated power supplies and resulting improper

Fig. 5-1. Suggested alignment tools
negative 250 -volt power supply is set at exactly 250 -volts, outputs of one or more of the other regulated supplies are bring all voltages within tolerances by readjusting the negative 250 -volt supply slightly within its voltage tolerances. If it is impossible to bring all power supplies simultaneously within tolerances, this indicates trouble in we inslimed to locate the cause.

Fig. 5-2. Type 517 Oscilloscope power supply test points.
With the power off, check the resistance at the output of each power supply to ground. Resistance readings obtained
should be checked against the values given in Table 1. If should be cherked against the values given in Table 1. If any of these readings are lower than the values given in
Table 1, the power must not be turned on until the cause of the abnormal resistance reading has been determined and corrected.

Fig. 5-3. Type 517A Power supply test points
Place AC POWER and DC POWER switches at ON and allow several minutes for instrument warm-up. Connect the
dc voltmeter between the appropriate - 250 volt test point (shown in Figures 5-2 for Type 517 Oscilloscopes and Figure
$5-3$ for Type 517A Oscilloscopes) and ground. Set the ADJ TO -250 V control on the power supply chassis for a cor rected meter reading of -250 volts. Measure output voltages of other low voltage power supplies at test points
shown in Figure 5-2 or 5-3 and compare voltage readings with the tolerances listed in Table 1. Using the variable autotransformer, vary the input voltage to the instrument between 105 and 125 volts while checking that all regulated low voltage power supply output voltages remain within the tolerances listed in Table 1.

Fig. 5-4. Top view of the power supply unit showing the location
On the test oscilloscope, place the TIME/DIV control at 5 MILLISEC and the TRIGGER SELECTOR controls at + of each power supply. Approximate ripple voltages for each power supply are given in Table 1.

TABLE 1			
Power Supply Characteristics			
Supply	Ripple Voltage	Output Voltage	Minimum R to Ground With load
-250	50 mv	-248 to -252	18 kilohms
+150	40 mv	+147 to +153	8 kilohms
+180*	4 volts	+179 to +189	40 kilohms
+225	50 mv	+220 to +229	15 kilohms
+350*	6 volts	+347 to +385	150 kilohms
+475	100 mv	+465 to +485	40 kilohms
+750	150 mv	+735 to +765	40 kilohms

For Type 517 power supply current measurements, connect the test leads of a milliameter to a phone plug. Place the milliameter in series with each power supply output by connecting the phone plug to appropriate phone acks provided
on the botom of the indicator unit. (See Fig. $5-2$). Current readings should be approximately equal to those listed in Table 2.
${ }^{*}$ Onlregulated +180 and +350 outpur voltages are nominat

Fig. 5-5. Location of Type 517A current measuring resistors. The voltage drops across the resistors are used to measure the load
currents drawn from the power supplies.

TABLE 2

Power Supply Current Requirements

Supply	Current (Type 517)	Voltage (Type 517 A$)$
-250	30 ma	0.3 volt
+150	500 ma	2.8 to 3 volts
+180	250 ma	2.5 volts
+225	200 to 400 ma	1 to 2.25 volts
+350	80 ma	0.8 volt
+475	50 ma	0.5 volt
+750	20 ma	0.2 volt

2. Reg Heater Adj.

Connect a rms reading ac voltmeter between the 6.3 V IA jack on the indicator front panel and ground. Rotate the REG HEATER ADJ control (See Fig 5-4) on the power supply
chassis for a reading of 6.2 volts. Using the variable autotransformer, vary the voltage applied to the instrument between 105 and 125 volts while observing the regulated
heater voltage. The voltage should remain at 6.2 volts.
Connect a 10 amp ac ammeter in parallel with the REG-
ULATED HEATERS power supply front panel. Remove the REGULATED HEAT. ERS fuse. Regulated heaters current indicated by the ammeter should then be approximately 3 amperes. Replace the regulated heaters fuse.
meter conection the Regulated Heaters fuseholder. An am-

Trigger rate generator frequency adiustments require the Trigger rate generator frequency adjustments require the speeds. Be sure that your oscilloscope is accurate.
Adjustments and checks made on the trigger rate generator in this section all produce identical indications on the test oscilloscope. The proper indication for each of these checks and adjustent played on the screen of the test oscilloscope behind the
10 divisions of the graticule. The first trigger pulse should be under the first vertical line of the graticule, and the fourth trigger pulse should be under the last vertical line of the graticule (See Fig. 5-7). It will be necessary to adiust
the HORIZONTAL POSITIONING control on the test oscil. los lope as well as the indicated adjustment in order to obtain the correct indication.

Fig. 5-7. Typical waveform obtained while adiusting and checking
the Trigger Rate Generator.

Place a cable from the RATE GEN OUTPUT A to the tes oscilloscope input. On the test oscilloscope, set the VOLTS
DIV control to 20 and the TIME/DIV control to 2 MILISEC On the instrument under test, set the TRIGGER RATE GEN ERATOR control at 150 and the TRIGGER RATE GEN MUL control at X10. Adjust the HF TRIG RATE control for the號 spikes.)
Set the TRIGGER RATE GENERATOR control at 15 and he test oscilloscope TIME/DIV control at 2 MILIISEC. Ad just the LF TRIG RATE control for the indication described previously. Set the TRIGGER RATE GEN MULT control a 150 and the TRIGGER RATE GEN MULT control at XI. The adjustments.
Set the TRIGGER RATE GENERATOR control at 150 and the TRIGGER RATE GEN MULT switch at X100. Place the est oscilloscope TIME/DV control at $20 \mu \mathrm{SEC}$. Adjust 801 A for the indication described previously. Set the RIGGER RATE GENERAOR oscilloscope indication should be the same as those obtained previously.
Using the test oscilloscope, check that the trigger pulse the RATE GEN OUTPUT A receptacle have a peak amplilvde of at least 20 volts. Connect the test oscilloscope in riger pulses have a pat pilud of at leat 60 obse

4. Trigger Amplifie

Check tubes V105, V106, and V 107 for gas by measuring he voltage drop across their respective grid resistors, R116A esistors is RHbC . If the voltage across any of the grid probably gassy and should be replaced
 whes V105, V106 and V107 respectivel

The gain of the Trigger Amplifier circuit can be checke dividing down the RATE GEN OUTPUT A output spik and applying a portion of the spike to the TRIGGER INPU receptacle. The circuit shown in Figure $5-9$ may be used for his purpose. To check the gain of the Trigger Amplifie circuit place the RRGGER SELECTOR switch in the +EXT position and, Using the fest oscilloscope, adjust the potentio-
meter of the circuit shown in Fig. $5-9$ for .1 volt spikes at the RIGGER INPUT receptacle. Then connect the input of the lest oscilloscope to pin 4 of V109 through a 10X probe gain is correct, the spike at pin 4 of CW , if the amplifie gain is correct, the spike at pin 4 of V109 should be a
least 10 volts in amplitude indicating that the amplifier has a gain of at least 100. If the gain of the amplifier is less han 100, replace the tubes V101 through V108 as necessary oobtain the correct gain.

NOTE: RI IS ADIUSTED TO PROVIDE .1 VOLT SPIKES TO THE TRIGGER INPUT CONNECTOR

fig. 5-9. Circuit used to check the gain of the tigger Amprian

5. Check + GATE Waveform

Set the TRIGGER RATE GENERATOR for 1 kc , place the TRIGGER SELECTOR switch in the RATE GEN position, and set the SWEEP TME/CM switch in the 20μ SEC/CM position. Adjust the SWEEP STABILITY and TRIGGER AMPL. controls until the sweep triggers. Using the test oscilloscope
and a $10 X$ probe, check the waveform at the + GATE con nector. The +GATE waveform should have a peak ampli tude of more than 40 volts and a duration of from 250 to 300μ seconds (See Fig. 5-10). As the SWEEP TIME/CM switch is rotated position by position from the $20 \mu \mathrm{SEC} / \mathrm{CM}$ position waveform in each position should be approximately halved from the previous position.
With the SWEEP TIME/CM switch in the $50 \mathrm{M} / \mathrm{SEC} / \mathrm{CM}$ oosition, set the TRIGGER RATE GENERATOR for 10 kc . Ad ust the test oscilloscope so that the +GATE covers 10 divi sions horizontally (See Fig. 5-11A). Then place the SWEEP TIME/CM swith in the $20 \mathrm{M} \mu \mathrm{SEC/CM}$ position and adius horizontally (See Fig. 5-1)B). Place the SWEEP TIME/CM switch in the $10 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position and adjust C128K so that the +GATE waveform covers 8 divisions horizontally
(See Fig 5 -11C.

Fig. 5-10. Typical + Gate waveform obtained when the sweep Fig. 5 5-10. Typical +Gate waveform obtained
TIME/CM swith is in the $20 \mu \mathrm{SEC} / \mathrm{CM}$ position.

6. UNBLANK

Set the SENSITIVITY switch at NORMAL (24 KV), the SWEEP TMME/CM switch at $200 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$, and the SWEEP wise. Adjust the UNBLANK control for a 100 -volt drop across R173, the plate load resistor for tubes V120 and V121. (See Fig. 5-12.)

7. Check Probe Power

 To check the probe power, it is necessary to place a loadat the PROBE POWER receptacle. A suitable load can be
obtained by using the circuit shown in Fig. 5 -13. With this obtained by using the circuit shown in Fig. 5-13. With this
load applied, the lamp should be at normal brilliance and load applied, the lamp should be at normal brilliance and
the voltage at pin 3 of the PROBE POWER receptacle should measure 120 ± 3 volts.

8. Check the Calibrator Waveform

After making sure that the test oscilloscope attenuator and probe are properly compensated, connect the input of the test oscilloscope to the CAL OUUTPUT connector
through a 10 X probe. Adjust the calibrator voltage to about

Fig. 5-12. Bottom view of the indicator unit showing the location of R173. The UN
drop across R173.

CONNECTS TO RECEPTACLE

Fig. 5-13. Circuit used to check Probe Powe
40 volts with the CAL VOLTAGE control and check the Calibrator waveform for distortion and for peaks or over-
shoot on the baseline of the waveform. The normal Calibrator waveform is shown in Fig. 5-14. If the waveform has more overshoot on the baseline than is shown in the illustration, check the 1 N34 diode in the grid circuit of V132.

Set the test oscilloscope for automatic triggering and place the VOLTS/DIV control in the 01 position. Connect the test oscilloscope to the CAL OUTPUT. connector and of the CAL VOLTAGE dial can be checked by observing the test oscilloscope when the dial is set at zero. With the dial set at zero, no output from the calibrator should be displayed on the test scope. However the calibrator voltage she dial is incorrectly set, loosen the knob and rotate the the dial is incorrectly set,
dial to the proper settings.

Eig. 5-14. Normal Calibrator waveform.
10. CAL ADJ.

Set the test oscilloscope for 10 volts per division and con nect the test oscilloscope input to the CAL OUTPUT con ector. Set the CAL VOttAGE contro for 40 volts of calibrator signal and adjust the CAL ADJ control for 4 divisions of vertical deflection on the test oscilloscope. Then spot
check the calibration voltage displayed on the test oscillosoope against the setting of the CAL VOLTAGE dial from arious settings on each of the ranges of the CAL RANG switch

11. CRT Alignment

NOTE

The first portion of the instructions for this adjustmen pertain only to the Type 517A and modified Type 517 pertain only to the Type 517A and modified Type
instruments. The remainder of the instructions apply to both Type 517A and Type 517 instruments.
For Type 517A and modified Type 517 instruments only, preset the VERT SCAN ADJ and GEOM ADJ controls so -30 volts. For all instruments, trigger the sweep with the Trigger Rate Generator and loosen the crt clamp. Press he crt forward against the graticule and align the crt so hat the trace is parallel to the graticule lines. Retighte he crt clamp.

12. L.F. COMP

Connect a 50 mc sine wave signal to the SIGNAL INPUT connector and trigger the sweep at a 1 kc rate with the Trigger Rate Generator. Adiust the signal amplitude and
VERT AMPL ATTEN control to for 5XP CRT) of vertical deflection. Adjust the L.F. COMP. control to eliminate any wedge-shaped appearance of the brightened portion of the screen. When the L.F. COMP control is adjusted properly, the vertical amplitude of the
brightened portion of the screen should be the same at each point across the screen.

3. DUTY CYCLE LIMITER ADJ. (Types 517A and Modi fied 517 only)

Place the SWEEP TIME/CM switch in the $20 \mu \mathrm{SEC} / \mathrm{CM}$ position, set the TRIGGER RATE GENERATOR control for 1.25 kc , and place the TRIGGER SELECTOR switch in the RATE GEN position. Rotate the TRIGGER AMPL control fully counterclockwise and adiust the SWEEP STABILITY free-runs. Then rotate the TRIGGER AMPL and DUTY CYCLE tree-runs. Then rontat fiter ADJ controls fully clockwise. Under these conditions, there should be no sweep.
Turn up the intensity slightly and rotate the DUTY CYCLE LIMITER ADJ control until the sweep is 7.5 centimeters long and is unstable at the right end. As an addifitional check on the control setting, increase and decrease the triggering the triggering rate and increase as you decrease the triggering rate. Check that the sweep will free-run in all sweep speeds when the SWEEP STABILITY control is fully clockwis and the TRIGGER AMPI control is fully counterclockwise.
14. VERT SCAN ADJ and GEOM ADJ. (Types 517A and Modified 517 only.)
Rotate the ASTIGMATISM, SWEEP STABILITY, and TRIG. GER AMPL controls fully countercockwise and FOCUS conGER AMPL controls fully countercockwise and rignal to the SIGNAL INPUT connector and rotate the INTENSITY conrol clockwise until a vertical trace appears. Adjust the signal amplitude and the VERT AMPL ATTEN control to ob ain 3 centimeters of vertical deflection. Ssing the
ZONTAL POSITIONING controls, move the display unde ZONTAL POSITIONING controls, move the display Under SCAN ADJ to obtain a vertical retangular trace of constant width. (See Fig. 5-15).
Using the HORIZONTAL POSITIONING controls, move the display to the left side of the screen. Adjust the GEOM ADJ control for minimum bowing of the vertical trace. Position the trace to the center of the scre
setting of the VERT SCAN ADJ. control.

WARNING

Because of the high voltages involved, the DC POWER witch should be placed in the OFF position when the lads of the de voltmeter are connected or discon15 and 16 .

Fig. 5-15. Typical displays obtained with different settings of the VERT SCAN AD ontrol. The VERT SCAN ADJ control should be set to obtain the dar SCAN AD the bottom illustration.

Fig. 5-16. Typical displays obtained with different settings of the GEOM ADJ con-
trol. The GEOM ADJ control should be set to obtain the display shown in the ol. The GEOM
oitlom illustration.
lly counterclockwise and the SENSITIVITY switch in the NORMAL (24 KV) position, slowly rotate the INTENSITY control until a low intensity spot appears on the screen. Use the FOCUS and ASTIGMATISM controls to bring the spot into sharp focus. Rotate first the MAX INTENSITY ADJ control then the INTENSITY CONTROL to their fully
clockwise positions. Slowly furn the MAX INTENSITY ADJ control counterclockwise until the spot reappears and a halo forms around it. Then furn the MAX INTENSITY ADJ contro lockwise until the halo just disappears.
18. Check Horizontal and Vertical Deflection Sensitivity.

Position the spot approximately at the center of the scree and connect the dc voltmeter from the junction of R182 and R184 to the junction of R185 and R186. (See Fig. 5-18) Record the voltage reading obtained. Using the HORIZONTAL
POSITIONING controls, move the spot exactly 2 centimeters POSITIONING controls, move the spot exactly 2 centimeter tained. The difference between the two voltage reading should be between 184 and 204 volts for Type 517 Oscillo copes and between 100 ad 140 volts for Type 517A Modified Type 517 Oscilloscopes.

Fig. 5-18. Right side view of the indicator unit showing the location of the tes:
the instrument.

Again position the spot approximately to the center of Again position the spot approximacely the cenction of the screen. Connect the dc voltmeter from the juncition R713
R706 and the wiper arm of R716A to the iunction of 7 . and the wiper arm of R716B (See Fig. 5-19) and record the voltage reading obtained. Using the VERT POSITION control, move the spot exactly 2 centimeters in either direction and again record the voltage reading obtained.
ference between the two voltage readings should be between 62 and 72 volts for Type 517 Oscilloscopes and between 26 and 36 volts for Type 517A and Modified Type 517 Oscilloscopes.
5. HOR POS VERN ADJ, 2 KV ADJ, and 4 KV ADJ. (Type 517 only).

Place the DC POWER switch in the OFF position and onnect the dc voltmeter from the SENSITIVITY switch bracket to ground. Place the SENSITVIY switch in the $X 2$ ON position. Adjust the $2 K V$ ADJ control for a reading of -1950 volts on the dc voltmeter. Adjust the HOR POS VERN ADJ control so that the HORIZONTAL POSITIONING Vernier control will move the

fig. 5-17. Left side view of the
Place the SENSITIVITY switch in the NORMAL (24 KV) position. Adiust the 4 KV ADJ control so that the HORI
ZONTAL POSITIONING Vernier control will move the race exactly 1 centimeter when the control is rotated trace exactly
from 0 to 1.0 .
16. HOR POS VERN ADJ, 2 KV ADJ, and 4 KV ADJ, (Types 517A and Modified 517 only.)
Place the DC POWER switch in the OFF position and connect the do voltmeter from the SENSITIVITY switch bracket (24 kv) position and return the DC POWER switch to the ON position. Adjust the 4 KV ADJ control for a reading of 4000 volts on the de voltmeter. Adjust the HOR POS VERN ADJ control so that the HORIZONTAL POSITIONING Vernier control will move the
when it is rotated from 0 to 1.0 .
Place the SENSITIVITY switch in the X2 (12 KV) position. Adiust the 2 KV ADJ control so that the HORIZONTAL
pOSITIONING Vernier will move the trace exactly 2 centiPOSITIONING Vernier will move the
meters when it is rotated from 0 to 1.0 .

17. MAX INTENSITY ADJ

With the SWEEP STABILITY and TRIGGER AMPL controls

Fig. 5 -19. Left side view of the indicator unit showing the location
of the test points used to check the vertical sensitivity of the instru-
ment.

WARNING

In checking the crt cutoff voltage, the meter leads are connected to points where the potential is approximately -4000 volts. The entire meter is consequently
also at approximately -4000 volts. Therefore it is essential that you shut off the high voltage when connecting or disconnecting the meter leads and that you
refrain from touching the meter when the high voltage is on.
19. Check CRT Curoff Volitage

Using the HV SW, turn off the high voltage. Rotate the INTENSITY control fully countercockwise and connect the do voltmeter between the grid and cathode of the crt at the
test points shown in Fig. 20 Return the HV SW to the ON test points shown in Fig. 20. Return the HV SW to the ON
position and slowly advance the INTENSITY control until a spot is visible on the screen. Then turn the INTENSITY control counterclockwise until the spot iust disappears. The meter reading is the cutoff voltage of the crt. This voltage should be between 93 and 115 volts for Type 517 OscilloModified Type 517 Oscilloscopes.
Turn off the HV SW and allow the high voltage power supply to discharge before removing the meter leads.
20. Check Vertical and Horizontal Positioning Limits

Place the SENSITIVITY switch in the NORMAL $(24 \mathrm{KV})$

Fig. 5-20. Location of test points used to check the CRT cutof
the center of the screen and then check the movement of the spot while rotating the POSITIONING controls between their limits. From the center of the screen, the minimum
spot movement should be the amounts and directions listed spot movement should be the amounts and directions listed
in Table 3. Modified Type 517 Oscilloscopes should have the same positioning limits as the Type 517A Oscilloscopes.

21. Adjust Unblanking Compensation

Place the SWEEP TIME/CM switch in the $2 \mu \mathrm{SEC} / \mathrm{CM}$ posi ion. Connect a 50 mc sine wave signal to the SIGNAL IN PUT connector and trigger the sweep at a 1 kc rate using he Trigger Rate Generator. Adjust the signal amplitude and the VERT AMPL ATTEN control to obtain approximately centimeters of vertical deflection. Rotate the SCALE ILLUM control fully counterclockwise and furn down the intensity
until the trace is just visible. Adjust L 110 until the intensity at the start of the trace is the same as the intensity of the remainder of the sweep.

2. Check the Sweep Inverter

Rotate the SWEEP STABILITY and TRIGGER AMPL con rols fully counterclockwise. Measure the voltage dropped 25 and 35 volts. If the voltage is incorrect, it will be necessary that you select tubes for use as VII8 and
will produce the proper voltage drop across R163.

Fig. 5-21. Right side view of the indicator unit showing the
23. Check the DC Restorer.

Slowly furn up the intensity until a spot appears on the Slowly furn up the intensity until a spot appears on the
screen. Remove tube V133 and note any change in the position of the spot. If the spot moves more than 1 millimeter, tube V133 is defective and must be replaced.

24. Check Clamp Tubes.

Place the SWEEP TIME/CM switch in the $20 \mu \mathrm{SEC/CM}$ position and trigger the sweep at a 1 kc rate with the NAL INPUT connector and observe the spacing between markers on the display. Change the triggering rate to 100 cycles and again observe the spacing between markers. If the sweep timing is changed, as is evident if the spacing between markers is
should be replaced.

> NOTE In each sweep timing step place the second time marker or sine wave under the second vertical line of the graticule and time the sweep between the sec- ond and ninth vertical lines.

25. 2μ SEC/CM Sweep Timing

Preset capacitor Cl 36 up one-third from minimum capacitance and connect 1μ second markers from the time-mark generator to the SIGNAL INPUT connector. Place the
ger the sweep and adjust the L.F. COMP control and C129 for 2 markers per centimeter. Capacitor C129D is used to time the sweep while the L.F. COMP control is used to adiust the sweep for best linearity. It is necessary to adjust C129D and the L.F. COMP control simultaneously to obtain the proper
settings for both adjustments. The L.F. COMP control was adjusted previously in step 12 to approximately the correct setting and should require only a slight additional adjustment at this point.

Fig. 5-22. Typical waveform obtained with correct $2 \mu \mathrm{SEC} / \mathrm{CM}$
sweep timing and linearity. 26. $10 \mathrm{M}_{\mu} \mathrm{SEC} / \mathrm{CM}$ Sweep Timing

Place the SWEEP TIME/CM switch in the $10 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect a 50 mc sine wave signal from the timemark generator to the SIGNAL INPUT connector and trigger the sweep at a 10 kc rate from the time-mark generator.
NOTE

It may be necessary to repeat steps 25 and 26 several times to obtain the best sweep linearity due to the
interaction between the L.F. COMP control and C136.

27. 20 M SEC/CM Sweep Timing

Place the SWEEP TIME/CM switch in the $20 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Leave the input and triggering signal connections as they were in step 26. Adjust C129J for 1 cycle per centimeter.

28. $50 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ Sweep Timing

Place the SWEEP TIME/CM switch in the $50 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Leave the input and triggering signal connections centimeters

29. $100 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ Sweep Timing.

Place the SWEEP TIME/CM switch in the $100 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect a 10 mc sine wave signal from the timemark generator to the SIGNAL INPUT connector and trigger the sweep at a 1 kc rate from the
Adjust Cl 29 H for 1 cycle per centimeter.

30. $200 \mathrm{M}_{\mu}$ SEC/CM Sweep Timing.

Place the SWEEP TIME/CM switch in the $200 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect a 5 mc sine wave signal from the time-mark generator to the SIGNAL INPUT connector and trigger the sweep at a 1 kc rate from the time-mark generator. Adjust C129G for 1 cycle per centimeter.

31. $500 \mathrm{M}_{\mu} \mathrm{SEC} / \mathrm{CM}$ Sweep Timing

Place the SWEEP TIME/CM switch in the $500 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Leave the input and triggering signal connections centimeters.
32. $1 \mu \mathrm{SEC} / \mathrm{CM}$ Sweep Timing

Place the SWEEP TIME/CM switch in the $1 \mu S E C / C M$ position. Connect 1μ second markers to the SIGNAL INPUT connector and trigger the sweep at a 1 kc rate from the time-
mark generator. Adiust C 129 E for 1 marker per centimeter.

33. Check $2 \mu \mathrm{SEC} / \mathrm{CM}$ Sweep Timing

Place the SWEEP TIME/CM switch in the 2μ SEC/CM posifion and check the setting of C129D. (C129D was set in step sary to obtain the proper sweep timing.

34. 5 SEC/CM Sweep Timing

Place the SWEEP TIME/CM switch in the $5 \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect 5μ second markers to the SIGNAL INPUT receptacle and trigger the sweep at a 1 kc rate from the
time-mark generator. Adjust R181E for 1 marker per centi-time-m
meter.

35. 10μ SEC/CM Sweep Timing.

Place the SWEEP TIME/CM switch in the $10 \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect 10μ second markers to the SIGNAL IN. the time-mark generator. Adjust R181C for 1 marker per centimeter.
36. $20 \mu \mathrm{SEC} / \mathrm{CM}$ Sweep Timing.

Place the SWEEP TIME/CM switch in the $20 \mu \mathrm{SEC} / \mathrm{CM}$ position. Leave the marker and triggering signal connections as they were in step 35. Adjust R181A for 2 markers per centimeter
37. Check Vertical Amplifier for Microphonic or Noisy Tubes.

Disconnect any input signals to the oscilloscope being
wise and connect high impedance earphones directly be tween the vertical deflection plates at the neck of the crt:
Using the rubber tip of a pencil tap the vertical prempli Using the rubber tip of a pencil, tap the vertical preampli-
fier chassis and listen for excessive hum or noise. Either exfier chassis and listen for excessive hum or noise. Either ex-
cessive hum or noise can indicate microphonic tubes. The defective tubes can be detected by tapping each tube individually.

38. Check Vertical Preamplifier Bias Voltage

Rotate the VERT AMPL ATTEN control fully clockwise. Measure the voltage at the wiper arm of the VERT AMPL
ATTEN potentioneter to ground. This voltage should be ATTEN potentiometer to ground. This voltage should be between -1.9 and -2.1 volts.

39. Check Vertical Deflection Factor

Rotate the VERT AMPL ATTEN control fully clockwise, and using the Calibrator voltage, check the vertical deflection factor of the oscilloscope. If the instrument is a Type 517 ,
the deflection factor should be between 60 and 100 millithe deflection factor should be between 60 and 100 millivolts per centimeter. The vertical deflection factor for Type
517 A and Modified Type 517 Oscilloscopes should be betwe 25 add 50 illits per chould be be

Fig. 5-23. Vertical amplifier trimmer settings.
40. Preset Trimmer Slugs.

Trimmer slugs in the vertical preampliifer and driver amplifier should be preset as follows and as shown in Fig. 5-24 if the vertical amplifier is to be tuned.
op row on preamplifier chassis slugs in $3 / 8^{\prime \prime}$ Second row on preamplifier chassis slugs in $5 / 16^{\prime \prime}$ Third and Fourth rows on preamplifier chassis . slugs in $1 / 4^{\prime \prime}$ Driver amplifier $\ldots \ldots$...... adjustment shaft profruding $1 / 2^{\prime \prime}$

ig. 5-24. Location of the various portions of the vertical amplifier

41. Tune Output Distributed Amplifie

Connect the properly terminated positive output of the short rise-time pulser to the SICNAL NPUt connector. Sef and adjust the pulser output to provide 1 centimeter of vertical deflection for Type 517 Oscilloscopes and 2 centimeters for Type 517A and Modified Type 517 Oscilloscopes. Place he TRIGGER SELE trigger the sweep
Adiust the forward row of trimmers on the output distributed amplifier chassis for the best square-wave response.
These trimmers affect the leading edge of the pulser wave form for about 1 centimeter at this sweep speed. Start with the trimmers at the extreme right side of the chassis and work toward the left. Because of the interaction between the front and back rows of trimmers, only a rough
of the front row trimmers should be made at first.
Place the TRIGGER SELECTOR switch in the -SIG posilion and set the pulser controls to obtain negative pulses.
Adjust the back row of trimmers on the output distributed amplifier chassis for the best square-wave response. The same procedure in adjusting the back row of trimmers should be used as was used to adjust the front row. When the
back row of trimmers has been adjusted approximately, apply positive pulses and repeat the adjustment of the front row. Continue to adjust the forward row of trimmers with positive pulses and the back row of trimmers with negative pulses until all trimmers are set at their best positions.
While adjusting the trimmers, occasionally reduce the sweep speed momentarily so that you may obtain a better perspective of any tilt or slope of the waveform.

The neutralizing capacitors affect the portion of the pulse waveform just to the right of the portion adjusted by the chassis. The neutralizing capacitors are located amplifies extreme right end of the driver amplifier chassis and are accessible from below. The front capacitor is adiusted using a positive going pulse the back one is adjusted
The leading edge of the pulses can be adiusted to a
limited extent by 5509 and 1510 in the you shunt these coils one at a time you can observe th portion of the waveform which is affected by each coil. It is possible that different shunt resistors across the coils will produce a better waveform and in such cases the resistors shay be shorted completely.

42. Check Delay Time

Place the SWEEP TIME/CM switch in the $10 \mathrm{M} \mu \mathrm{SEC} / \mathrm{CM}$ position. Connect appropriate properly terminated outputs from the short risetime pulses to the SIGNAL INPUT and TRIGGER INPUT Connectors. When the sweep is triggered externally by the pulser, the applied pulses should appear
approximately 2 centimeters from the start of the trace. When the sweep is triggered internally from the input signal, the applied pulse should appear approximately 1 centimeter from the start of the trace. If the delay observed is much placed. If the delay time is not the same for both posisame for both pos

Fig. 5-25. Measuran of witcal risetime

43. Check Risetime

Connect the properly terminated outputs of the pulser to appropriate oscilloscope input connectors and adiust the pulser output for 2 centimeters of vertical deflection. Under these conditions the time required for the pulse to rise from can be checked using the HORIZONTAL POSITIONING Vernier control.
Set the HORIZONTAL POSITIONING Vernier control at zero and use the coarse HORIZONTAL POSITIONING control to position the display so that the center vertical line of
the graticule passes through the rising portion of the waveform 2 centimeters from the bottom of the rise. Use the HORIZONTAL POSITIONING Vernier control to position
passes through the rising portion of the waveform 1.8 centimeters up from the bottom of the rise. The reading of the ORIZONTAL POSITIONING Vernier control multiplied by 0 is the rise-time in $M_{\mu s e c o n d s . ~}^{\text {sen }}$

note

Fig. 5-27. Type 517 Oscilloscope left and right side views showing the location

PARTS LIST and
D\|AGRAMS

MANUFACTURERS OF CATHODE-RAY OSCILLOSCOPES

HOW TO ORDER PARTS

Replacement parts are available from or through your local Tektronix Field Office．

Changes to Tektronix instruments are sometimes made to accommo date improved components as they become available，and to give you the benefit of the latest circuit improvements developed in our engineer－ ing department．It is therefore important，when ordering parts，to include the following information in your order：Part number including any suffix，instrument type，serial number，and modification number if applicable．
If a part you have ordered has been replaced with a new or im－ proved part，your local Field Office will contact you concerning any change in part number．

PART LIST

Bulbs				
				Tektronix Part Number
B90	X1691 up	Neon，NE－2		150．002
B324		Neon，NE－51		150－003
B325		Incandescent，	\＃47	150－001
B326		Incandescent，	\＃47	150．001
B327		Incandescent，	\＃47	150－001
B401		Incandescent，	\＃ 47	150－001
B430		Neon，NE－51		150－003
B838－841	101－2126	Neon，NE－2	ged and Checked	150－010
B838	2127－up	Neon，NE－2，Ag	ded and Checked	150－011
B839	2127－up	Neon，NE－23		150－027
B840	2127－up	Neon，NE－23		150－027
B841	2127－up	Neon，NE－2，Ag	ed and Checked	150－011

Values fixed unless marked Variable：
Tolerance $\pm 20 \%$ unless otherwise indicated．

	훈움̃ㅇ 					5
	$\sum_{0} \sum_{0} \sum_{0} \sum_{0} \sum_{0}$	$\sum_{0} \sum_{0} \sum_{0} \sum_{0} \sum_{0}^{\infty}$	$\sum_{0}^{2} \sum_{0}^{2}$		응	
	Biozoz	Bicioisioi				
		¢ّ				
	きだミミき 잉ㅎㅎㅎ	ミミ゙ぎミ 훟ㅎㅎㅎㅎ	ざミ 웅 を＂ぎミペ あぁすべさ		$\begin{aligned} & 3 \\ & N_{0}^{3} \\ & 0 \\ & 0 \end{aligned}$	
					$\begin{aligned} & \text { 즘 } \\ & \stackrel{-1}{\vdots} \\ & \vdots \end{aligned}$	
	흐으ㅇㅡㅡㄴ으ㄴㅡㅡㄴ	은은은은	은응은춘		ํํํํํํ デひびひ	© ® $^{\text {c }}$

X1901-up	Silicon Diode
X1901-up	Silicon Diode
X1901	
X1901-up	Silicon Diode
Silicon Diode	
X1901-up	Silicon Diode
X1901-up	Silicon Diode
X1901-up	Silicon Diode

Tektronix art Number

 Use 152.047 \begin{tabular}{l} Use

Use $152-047$

\hline 152047
\end{tabular} Use $152-047$

Use
Us2047 Use
Use
U20.047 Use $152-047$ Use
Use $152-047$
Un-047 Use
Use
IS

152-047 Use
Se $152-047$
Use 152.047 Use 152-047
Use $152-047$
nductors
First distributed stage trigger amplifier, grid inductor First distributed stage trigger amplifier, plate inductor Second distributed stage trigger amplifier, plate inductor $12 \mu \mathrm{~h}$

101-5
$7.1 \mu \mathrm{~h}$
$20.30 \mu \mathrm{~h}$
$20.30 \mu \mathrm{~h}$
22.5 mh
2.
2.5 mh
$255 \mu \mathrm{~h}$

Var. core 276-503
$6.5-13 \mu \mathrm{~h}$
Var. core 276-503
多.5-13 $\mu \mathrm{mh}$
2.5 mh

- -2

X1962-up
Saturable reactor
First stage vertical amplifier, grid inductor
First stage vertical amplifier, plate inductor
Second stage vertical amplifier, grid inductor
Second stage vertical amplifier, plate indu

Third stage vertical amplifier, plate inductor Inverter stage vertical amplifier, grid inductor
Inverter stage vertical amplifier, plate inducto
$0.79-1.5 \mu \mathrm{~h}$

PABTS LIST TYPE 517/517A

Rectifiers

SR401A,B 101-1900x

10-250 ma plates per leg101-1900x 10-250 ma plates per le

P170CF Probe

Capacitors						
						Tektronix Part Number
C951	. $001 \mu \mathrm{f}$	Cer.		500 V	GMV	
C952	. $01 \mu \mathrm{f}$	Cer.		250 v	GMV	283-005
C953	. $01 \mu \mathrm{f}$	Cer.		250 v	GMV	$283-005$
C954	$2 \times .01 \mu \mathrm{f}$	Cer.		250 v	GMV	(2) 283.005
C955-A	. 5 -5 $\mu \mathrm{\mu} \mathrm{f}$	Special	Var.			(2) 283.05
C956-D	Special*					283-500
*Silvered Mica Disk. Capacitance depends on desired time constant and voltage division ratio. Limits between $2 \mu \mu \mathrm{f}$ and $500 \mu \mu f$, approximately.						

*Silvered Mica Disk. Capacitance depends on desired time constant and voltage division ratio. Limits between $2 \mu \mu \mathrm{f}$ and
$500 \mu \mu \mathrm{f}$, approximately.

Inductors						
$\begin{aligned} & \mathrm{L} 995 \\ & \mathrm{~L} 996 \end{aligned}$	Special Special					$\begin{aligned} & { }^{*} 108-100 \\ & { }^{108-100} \end{aligned}$
Resistors						
R951	100Ω	1/10 w	Fixed	Comp.	20\%	
R952	12 meg	1/2w	Fixed	Comp.	20\%	307-003
$\mathrm{R}^{\text {R953 }}$	10Ω	1/2w				302-100
R995A	2960Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-031
R995B	1480Ω	$1 / 2 w$	Fixed	Prec.	2\%	309-028
${ }^{\text {R995C }}$	995Ω		Fixed	Prec.	2\%	309-085
R995D	513Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-080
R995E	285Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.075
R995F	208Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-074
R995G	208Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-074
R996A	19.6Ω		Fixed		2\%	309-063
R996B	39.5Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-065
R996C	60Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-068
R996D	127Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-070
R996E	317Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309-077
R996F	840Ω		Fixed	Prec.	2\%	309-084
R996G	840Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.084
R997A	2960Ω	$1 / 2 w$	Fixed	Prec.	2\%	309.031
${ }_{\text {R9997 }}$	1480Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.028
R997C	995 ת	1/2w	Fixed	Prec.	2\%	309-085
R997D	513Ω	1/2w	Fixed	Prec.	2\%	309-080
R997E	285Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.075
R997F	208Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.074
R997G	208Ω	$1 / 2 \mathrm{w}$	Fixed	Prec.	2\%	309.074
(ब)(PARTS LIST - TYPE 517/517A					6-21

Type 517/517A Mechanical Parts List

	Tektronix Part Number
ADAPTOR, 3 WIRE TO 2 WIRE SN 1554-up	103-013
ANGLE, BRACE 1413/16	122-002
ANGLE, BRACE $113 / 4$	122.003
BAR, $3 / 8 \times 1 / 2 \times 31 / 2$	381-004
BAR, $3 / 8 \times 1 / 2 \times 21 / 4$	381-006
BAR, $3 / 8 \times 1 / 2 \times 31 / 2$	381-007
BAR, $3 / 8 \times 3 / 8 \times 4$	381-008
BAR, $3 / 8 \times 3 / 8 \times 23 / 4$	381.009
BAR, $3 / 8 \times 1 / 2 \times 31 / 32$	381-010
BAR, $3 / 8 \times 1 / 2 \times 109 / 16$	381-011
BAR, $3 / 8 \times 3 / 8 \times 61 / 2$	381-013
BAR, $3 / 8 \times 1 / 2 \times 1115 / 16$	381-018
BAR, $1 / 4 \times 1 / 4 \times 21 / 8$	381-021
BAR, $1 / 4 \times 1 / 4 \times 23 / 8$ TAPPED $6-3211 / 4110$ FROM END	381-022
BAR, $1 / 4 \times 1 / 4 \times 23 / 8$ TAPPED 6.321 " FROM END	381.023
BAR, $1 / 4 \times 1 / 4 \times 4$ W/ONE TAPPED HOLE 8 -32 TAPPED 6.32 ONE END	381-028
BAR, $1 / 4 \times 1 / 4 \times 4$ W/ONE \#18 HOLE TAPPED 6.32 ONE END	381.029
BAR, $3 / 8 \times 1 / 2 \times 109 / 16$	$381-036$
BAR, $1 / 4 \times 1 / 4 \times 9 / 16$	381-041
BAR, $1 / 4 \times 1 / 4 \times 11 / 16$	381-042
BASE, $3 / 4 \times 1 / 4$ PLATED	432-004
BLOCK, WOOD DC	391-003
BLOCK, WOOD SP32-16	391-004
BOARD, TERMINAL $5 / 8 \times 2$	392-011
BOARD, TERMINAL $115 / 16 \times 21 / 32$	392-012
BOARD, TERMINAL ${ }^{31} / 32 \times 41 / 16$	392-015
BOARD, TERMINAL $3 \times 53 / 8$ (BOOTSTRAP)	392-039
BOARD, TERMINAL $35 / 8 \times 53 / 8$	392-040
BOARD, TERMINAL $55 / 8 \times 55$	392-041
BOARD, TERMINAL $15 / 8 \times 15 / 16$	392-053
BOARD, TERMINAL $13 / 16 \times 31 / 32$	392-054
BOARD, TERMINAL $115 / 16 \times 21 / 32$	392-055

BOARD, TERMINAL $1 \% \times 27 / 8$
BOARD, TERMINAL $115 / 16 \times 37 / 32$ W/16 TERMINALS
BOARD, TERMINAL $1 \% \times 41 / 16$ SN 1691-up
392.061

BOARD, TERMINAL. $1 \% \times 53 / 4$
BOARD, TERMINAL $15 / 16 \times 75 / 16$
BOARD, TERMINAL $15 / 16 \times 35 / 8$ W/18 TERMINALS
BOARD, TERMINAL $23 / 4 \times 45 / 8$
BOARD, TERMINAL $21 / 4 \times 43 / 8$
BOLT, SPADE $6-32 \times 7 / 8$
214.013

BRACKET, BS8B SWITCH
BRACKET, BS9 SWITCH W/2 CLIPPED CORNERS
BRACKET, 2 POT
406-015
BRACKET, $1 \times 15 / 16 \times 1 / 2$
406-020
BRACKET, POT $1 \times 1^{21 / 32} \times 1 / 2$
406-023
BRACKET, POT $1 \times 113 / 32 \times 1 / 2$
406-027
BRACKET, INTENSITY
406-073
BRACKET, FOCUS
406-074
RRACKET, SWEEP
406.075

BRACKET, SWEEP OUTPUT "G"
406.077

BRACKET, SWEEP OUTPUT "H"
406-078
BRACKET, SHOCKMOUNT
BRACKET, GROUND STRAP PLATED
406-081
406-086
BRACKET, MOUNTING $21 / 8 \times 41 / 2 \times 7 / 16$
BRACKET, F \& I MOUNTING
406-089
406-094
RRACKET, "J" $21 / 4 \times 23 / 4 \times 7 / 16$
BRACKET, RIGHT ANGLE GEOM. \& V. SEAM ADJ. POT
406-095
406-181
BRACKET, CRT SN 1509-up
BRACKET, RECTIFIER MOUNTING $1 \times 3 \times 5 / 8 \quad$ SN 101-1900
406-363
BACKE, RECHER MOUNTNO $1 \times 3 \times 8 / 8$ SN 10190
406.079

BRACKET, RECTIFIER MOUNTING $21 / 8 \times 23 / 4 \times 1$ SN 101-1900
406-080
BRACKET, RECTIFIER MOUNTING SILICON 3×3 SN 1901-up
406-507
406-612
$3 \times 21 / 8 \times 3 / 4$
SN 1901-up
BUSHING, CERAMIC \#10.31
BUSHING, ALUM. $3 / 8-32 \times 1 / 16$ $358-001$

BUSHING, BRASS HEX $3 / 8-32 \times 13 / 32$ PLATED

BUSHING, NYLON FOR 5-WAY BINDING POST	358-036
CABINET, INDICATOR SN 101-1894	437-014
CABINET, INDICATOR, BLUE VINYL SN 1895-up	437-055
CABINET,POWER SN 101-1739	437-015
CABINET, POWER SN 1740-1894	437-047
CABINET, POWER, BLUE VINYL SN 1895-up	437-056
CABLE, HARNESS VERT. AMP. \#2 PRE-AMP	179.018
CABLE, HARNESS VERT. AMP. \#1	179.019
CABLE, HARNESS SWEEP OUTPUT	179.021
CAbLE, HARNESS F \& I (CRT FILAMENT) 101-1316X	179.022
CABLE, HARNESS H.V. OSC. \#1	179.023
CABLE, HARNESS H.V. OSC. \#2	179.024
CABLE, HARNESS POT BOARD	179-025
CAbLE, HARNESS POWER SN 101-1429	179-017
CABLE, HARNESS POWER SN 1430-1739	179-212
CABLE, HARNESS POWER SN 1740-up	179-358
CABLE, HARNESS SWEEP SN 101-1690	179.020
CABLE, HARNESS SWEEP SN 1691-up	179-339
CABLE, HARNESS INTERCHASSIS SN 101-1739	179.026
CABLE, HARNESS INTERCHASSIS SN 1740-up	179-357
CAP, FUSE	Use 200-582
CHASSIS, DA 2 PLATED	441-042
CHASSIS, DA 3 PLATED	447-044
CHASSIS, DA I PLATED	441-043
CHASSIS, H.V.P.	441-045
CHASSIS, O	441.046
CHASSIS, P	441-047
CHASSIS, s	441-048
CLAMP, CABLE 3/16 PLASTIC	343-002
CLAMP, CABLE $1 / 4$ PLASTIC	343-003
CLAMP, CABLE $1 / 2$ PLASTIC	343-006
CLAMP, CABLE $3 / 4$ PLASTIC	343-008
CLAMP, TUBE BASE $13 / 8,13 / 32 \times 13 / 8$ W/1 MOUNTING STRAP	343-012
CLAMP, CABLE $3 / 8$	343-013

CLAMP, STAINLESS STEEL $1 / 2$ MOUNTING RIGHT ANGLE TO CIRCLE
CLAMP, $17 / 32$ CRT SOCKET $23 / 16$ DIA. W/2 MOUNTING STRAPS 343-022 CLAMP, PLASTIC CABLE $3 / 8$ 343-023
CONNECTOR, CABLE TRANSFORMER 131-003
CONNECTOR, CHAS. MOUNT 4 CONT. FEMALE
131-009
CONNECTOR, CHAS. MOUNT 2 CONT. MALE
131-010
CONNECTOR, CHAS. MOUNT 1 CONT. FEMALE
131-012
CONNECTOR,TERMINAL FEED THRU 1 PT.
131-025
CONNECTOR, CABLE END CO5 PLATED
131-028
CONNECTOR, CHAS. MOUNT 16 CONT. MALE PLUG SN 1740 -up
131.077 CONNECTOR, CHAS. MOUNT 16 CONT. FEMALE SOCKET SN 1740-up

131-078 CONNECTOR, CHAS. MOUNT 3 COND. MALE W/3 SE6 LUGS SN 101-1844 131-094 CONNECTOR, CABLE ASS'Y

131-111
CONNECTOR, CHAS. MOUNT 3 WIRE MOTOR BASE ASS'Y SN 1885-up 131-150 COUPLING, FIBER

Use 376-003
COUPLING, ALUM. $9 / 32$ "UNIVERSAL"
376-005
COUPLING, INSULATING MOLDED NYLON ASS'Y 376-011
COVER, GRATICULE
Use 200-382
Eyelet, TAPERED BARREL
210-601
FAN, 5 $1 / 2^{\prime \prime}$ BLADE
369-001
FAN, $10^{\prime \prime}$ blads, TORRINGTON
Use 369-005
FIlter, light plexi $5^{\prime \prime}$ blue SN 101-956
378-504
FILTER, LIGHT PLEXI $5^{\prime \prime}$ BLUE W/CAM HOLE SN 957-up 378-515
FRAME, LO B 33
426-010
FRAME,LP B 37
426.011

FRAME, RO B 32
$426-012$
FRAME, RP B 36
426.013

GRATICULE, 5" SN 101-925
331-008
GRATICULE, $5^{\prime \prime}$ W/O CAM SN 926-956
331-030
GRATICULE, 5" W/CAM SN 957-up
331-033
GROMMET, RUBBER $1 / 4$
$348-002$
GROMMET, RUBBER 5/16
348.003

GROMMET, RUBBER $3 / 8$

	Tektronix Part Number
GROMMET, RUBBER $1 / 2$	348-005
GROMMET, RUBBER $3 / 4$	$348-006$
HANDLE, PLATED	367-003
holder, NEON bulb single molded	352-008
HOLDER, FUSE	352-010
KNOB, RAW 1400	366-004
KNOB, RAW 4104	366.007
KNOB, RAW 4108	366-009
KNOB, SMALL REXOLITE $.750 \times .625 \times .250$ HOLE	366.025
KNOB, DIAL ASS'Y KN. 380A1 W/S.S. \& 88CL.	366-507
LOCKWASHER, INT. \#4	210-004
LOCKWASHER, EXT. \#6	210-005
LOCKWASHER, INT. \#6	210-006
LOCKWASHER, INT. \#8	210-008
LOCKWASHER, EXT. \#10	210-009
LOCKWASHER, INT. \#10	210.010
LOCKWASHER, POT INT. $3 / 8 \times 1 / 2$	210-012
LOCKWASHER, INT. $3 / 8 \times 11 / 16$	210-013
LOCKWASHER, $1 / 4 \times 1 / 4$ SPLIT SPRING	210-016
LOCKWASHER, SHAKEPROOF . 472 ID	210-027
LUG, SOLDER SE4	210-201
lug, solder Se6 W/2 Wire holes	210-202
lug, solder seb long	210-203
LUG, SOLDER DE6	210-204
LUG, SOLDER SE10, LONG	210-206
LUG, SOLDER POT PLAIN	210-207
MOTOR, $34 \mathrm{~W}, 1500$ RPM, 115 V	147-001
MOTOR, PAINTED, DRILLED, TAPPED	147-004
NUT, HEX $4.40 \times 3 / 16$	210-406
NUT, HEX $6.32 \times 1 / 4$	210-407
NUT, HEX $8-32 \times 5 / 16$	210-409
NUT, HEX $1 / 4-20 \times 7 / 16$	210-411
NUT, HEX $3 / 8-32 \times 1 / 2$	$210-413$
NUT, HEX 15/32-32 $\times 1 / 16$	210-414

Me	Tekłronix Part Number
NUT, HEX $5 / 16-24 \times 1 / 16$	210-417
NUT, KNURLED GRATICULE	210-424
NUT, HEX $10-32 \times 3 / 8 \times 1 / 0$	210-445
NUT, KEPS $6.32 \times 5 / 16$	210-457
NUT, KEPS $8-32 \times 11 / 16$	210-458
NUT, SWITCH, 12 SIDED	210-473
NUT, HEX ALUM $8.32 \times 1 / 2 \times 23 / 64$	210-462
NUT, HEX $6-32 \times 5 / 16 \times .1945-10$ W. RESISTOR MOUNTING	210-478
NUT, HEX $3 / 8-32 \times 1 / 2 \times 11 / 16$	210.494
NUT, SQUARE $10-32 \times 3 / 8$	210-501
NUT, ROUND $7 / 16 \times 1 / 8$ BNC ADAPTER TYPE	210-507
NUT, HEX $10-32 \times 3 / 8 \times 1 / 8$	210-564
NUT, KEPS STEEL $10-32 \times 3 / 8$	220-410
PANEL, FRONT FELIX SN 101-564	333-081
PANEL, FRONT, REVISED SN 565-925	333-082
PANEL, FRONT SCOPE "A" SN 926-1690	333-164
PANEL, FRONT W/SWEEP LOCK OUT CIRCUIT SN 1691-up	333-484
PANEL, FRONT POWER SN 101-925	333-174
PANEL, FRONT POWER "A" SN 926-1739	333-165
PANEL, FRONT POWER "A" SN 1740-up	333-548
PLATE, SUB-PANEL POWER	386-305
PLATE, ACCESS COVER PLEXI	386-310
PLATE, SPACING W/1 ROUND CORNER	386-320
PLATE, 517C	386-321
PLATE, SPACING $3 / 8 \times 11 / 2$	386-439
PLATE, SUB-PANEL INDICATOR	386-449
PLATE, CRT SUPPORT FLANGE	386-453
PLATE, CAP. MOUNTING S.S. FOR 517A	386-825
PLATE, PLUG ADAPTER SN 1740-up	386.923
PLATE, THERMO CUT-OUT MOUNTING SN 1740-up	386-936
PLATE, FP $81 / 2 \times 147 / 8$	387-509
PLATE, CENTER $1 \times 113 / 4$	387-510
PLATE, TOP $33 / 16 \times 113 / 4$	387-511
PLUG, 12 PIN CHASSIS MALE SN 101-1739	$134-017$
POINTER, $5 / 16$ OD $\times 17 / 32$ LG.	$331-018$
POINTER, MOLDED	331-021
POST, CONNECTING INSULATED	129-006

POST, BINDING 5-WAY STEM \& CAP ASS'Y (FLUTED) 129-036

RING, FAN SHIELD 354.007
RING, FAN 354-008
RING, LOCKING SWITCH 354-055
RING, ROTATING NYLON W/HANDLE 354-066
RING, SECURING SN 1658-up $354-068$
ROD, EXT. ALUM. $1 / 4 \times 4^{13 / 16} \quad 384-008$
ROD, EXT. ALUM. $1 / 4 \times 51 / 16 \quad 384-009$
ROD, EXT. ALUM. $1 / 4 \times 21 / 4 \quad 384.014$
ROD, EXT. ALUM. $1 / 4 \times 63 / 4 \quad 384.018$
ROD, EXT. ALUM. $1 / 4 \times 147 / 8 \quad 384.036$
ROD, EXT. ALUM. $1 / 4 \times 181 / 16$
ROD, POLY $1 / 4 \times \frac{1}{32}$ TAPPED 4 -40 THRU
ROD, POLY $1 / 4 \times 5 / 16$ TAPPED 4.40 THRU
385.001

ROD, POLY $1 / 4 \times 11 / 32$ TAPPED $4-40$ THRU
385-002

ROD, DELRIN $3 / 8 \times 2 \frac{1}{2}$ TAPPED $6-32$ ONE END
385-005
ROD, NYLON $5 / 16 \times 3 / 4$ TAPPED $6-32$ THRU
385-013
ROD, NYLON $5 / 16 \times 1$ TAPPED 6-32 THRU
385-016
ROD, BAKELITE $7 / 16 \times 13 / 4 \quad$ SN 101-1508
385-021
ROD, ALUM. $3 / 8 \times 111 / 16$ TAPPED 8-32 BOTH ENDS $385-030$
ROD, NYLON $5 / 16 \times 5 / 8$ TAPPED $6-32$ THRU W/\# 18 HOLE
385-033
ROD, NYLON $5 / 16 \times 3 / 4$ TAPPED $6-32$ ONE END W/PIN
385-034
ROD, $5 / 16 \times 1$ TAPPED 6-32. ONE END W/PIN, NYLON
385-038
ROD, NYLON $5 / 16 \times 11 / 4$ TAPPED 6.32 ONE END W/PIN
385-040
ROD, NYLON $5 / 16 \times 1 \frac{1}{4}$ TAPPED $6-32$ ONE END W/2 PINS $385-041$
ROD, NYLON $5 / 16 \times 13 / 4$ TAPPED 6.32 BOTH ENDS W/PIN $385-046$
ROD, NYLON $5 / 16 \times 13 / 4$ TAPPED $6-32$ BOTH ENDS $385-060$
ROD, ALUM. $1 / 4 \times 15 / 8$ TAPPED 6.32 BOTH ENDS 358-091
SCREW, $4.40 \times 1 / 8$ BHS
SCREW, $4-40 \times 3 / 16$ BHS
11-007
SCREW, $4.40 \times 1 / 4$ BHS 211.008
SCREW, $4-40 \times 5 / 16$ BHS $211-011$
SCREW, $4-40 \times 3 / 8$ RHS 211.013
SCREW, $4-40 \times 7 / 8$ RHS

Mechanical Parts List (continued)	
	Tektronix Part Number
SCREW, $4-40 \times 1 \frac{1}{8}$ RHS	211-020
SCREW, $2-56 \times 3 / 16$ RHS	211-022
SCREW, 4-40 5 516 PAN HS, W/LOCKWASHER	211-033
SCREW, $2-56 \times 1 / 2$ RHS	211-034
SCREW, $6.32 \times 1 / 8$ BHS	211-501
SCREW, $6.32 \times 3 / 16 \mathrm{FHS}, 100^{\circ}$	211-502
SCREW, $6.32 \times 3 / 16$ BHS	211-503
SCREW, $6.32 \times 1 / 4$ BHS	211-504
SCREW, $6.32 \times 5 / 16$ BHS	211-507
SCREW, $6-32 \times 3 / 8$ BHS	211-510
SCREW, $6-32 \times 1 / 2$ BHS	211-511
SCREW, $6-32 \times 5 / 8$ BHS	211-513
SCREW, $6-32 \times 3 / 4$ BHS	211-514
SCREW, $6.32 \times 7 / 8$ BHS	211-516
SCREW, $6-32 \times 1$ BHS	211-517
SCREW, $6.32 \times 1 / 4$ RHS	211-520
SCREW, $6.32 \times 5 / 8 \mathrm{FHS}, 100^{\circ}$, PHILLIPS	211-522
SCREW, $6.32 \times 5 / 16$ PHS, W/LOCKWASHER	211-534
SCREW, $6-32 \times 5 / 16$ FHS, 100°, CSK, PHILLIPS	211-538
SCREW, $6.32 \times 1 \frac{1}{2}$ RHS, PHILLIPS	211-553
SCREW, $6-32 \times 3 / 8 \mathrm{FHS}, 100^{\circ}$, CSK, PHILLIPS	211-559
SCREW, $8.32 \times 1 / 4$ BHS	212-001
SCREW, $8-32 \times 1 / 4 \mathrm{FHS}, 100^{\circ}$	212-002
SCREW, $8.32 \times 1 / 4$ THS	212-003
SCREW, $8.32 \times 5 / 16$ BHS	212-004
SCREW, $8-32 \times 1 / 2$ BHS	212-008
SCREW, $8.32 \times 3 / 4$ FHS, 100°	212-011
SCREW, $8-32 \times 1 \frac{1}{4} \mathrm{FHS}, 100^{\circ}$	212-012
SCREW, 8.32×2 RHS	212-013
SCREW, $8.32 \times 21 / 4$ RHS	212-014
SCREW, $8-32 \times 21 / 2 \mathrm{RHS}$	212-015
SCREW, $8-32 \times 3 / 8 \mathrm{BHS}$	212-023
SCREW, $8-32 \times 13 / 4$ FHS	212-037

SCREW, $8-32 \times 3 / 8$ FHS, 100°, PHILLIPS 212-040
SCREW, $8-32 \times 1 / 2 \mathrm{FHS}, 100^{\circ}$, PHILLIPS 212-043
SCREW, $10-32 \times 3 / 8$ BHS 212-507
SCREW, $10-32 \times 5 / 8$ BHS 212--509
SCREW, $1 / 4-20 \times 11 / 4 \mathrm{FHS}$ 212-521
SCREW $10-32 \times 5$ HHS 212-542
SCREW, $10-32 \times 3$ FHS, 100°, PHILLIPS 212-544
SCREW $10-32 \times 41 / 2 \mathrm{HHS}$ 212-546
SCREW, $10-32 \times 7 / 8$ RHS 212-548
SCREW, SET $8-32 \times 1 / 8$ HSS 213-005
SCREW, SET $8-32 \times 3 / 16$ HSS 213-006
SCREW, THREAD CUTTING $4-40 \times 3 / 3$ FHS 213-012
SCREW, THREAD CUTTING $8-32 \times 1 / 2 \mathrm{FHS}$ $213-016$
SREW, THREAD CUTTING $6-32 \times 3 / 3$ TRUSS HS, PHILLIPS 213-041
SCREW, THREAD CUTTING $5-32 \times 3 / 16$ PHS, PHILLIPS 213-044
SCREW, THREAD CUTTING $6-32 \times 5 / 16 \mathrm{FHS}, 100^{\circ}$, CSK, PHILLIPS 213-068
SCREW, THREAD FORMING \# $4 \times 1 / 4$ PHS, PHILLIPS 213.088
SHIELD, TUBE $\%$ W/SPRING $13 / 8$ HI 337-006
SHIELD, TUBE $7 / 8$ W/SPRING $13 / 4 \mathrm{HI}$ 337-007
SHIELD, CAL. VERT 337-044
SHIELD, DA1 PRE-AMP PLATED W/RODS 337-045
SHIELD, DRIVER $337-063$
-SHIELD, CRT 337-110
SHIELD, TUBE 7 PIN $21 / 4 \mathrm{H}$ 337-128
SHIELD, $5^{\prime \prime}$ GRATICULE LIGHT SN 1376-up 337-187
SHOCKMOUNT, RUBBER SOLID SQUARE $1 / 2 \times \%$ HI 348-016
CKET, GRATICULE LAMP 136-001
SOCKET, STM 7 136.007
SOCKET, STM7G 136-008
SOCKET, STM7 SHIELDED 136.009
SOCKET, STM8G 136-011
SOCKET, STM8 MOIDED 136-013
SOCKET, STM9 $136-014$
SOCKET, STM9G 136-015
SOCKET, UP BRACKET 12 (RECT.) CHASSIS FEMALE 136.018
SOCKET, STMI4 36.019

SOCKET, LIGHT W/GREEN JEWEL SOCKET, LIGHT W/CLEAR JEWEL
SOCKET, TIP JACK BLACK NYLON
SPACER, NYLON $5 / 32$ FOR CERAMIC STRIP
SN 1901-up
SPACER, NYLON $3 /$ FOR CERAMIC STRIP
STRAP, MOUNTING $1 \times 45 / 16$ W/214-012
STRIP, BAKELITE 8 PT.
STRIP, BAKELITE 9 PT.
STRIP, FELT $1 / 16 \times 13 / 16 \times 167 / 8$ LIGHT BLUE SN 101-1375 STRIP, CERAMIC $3 / 4 \times 3$ NOTCHES CLIP MOUNTED SN 1901 -up STRIP, CERAMIC $3 / 4 \times 1$ NOTCHES CLIP MOUNTED TAG, VOLTAGE RATING
TUBE, CONDUIT BAKELITE $1 / 4 \times 3 / 8 \times 93 / 4$ LG
TUBE, SPACER ALUM. $196 \times 5 / 16 \times 5 / 16$ LG.
TUBE, SPACER ALUM. $441 \times 1 / 2 \times 2 \frac{3}{6}$ LG.
TUBE, SPACER ALUM. $.125 \times 3 / 16 \times 3 / 4$ LG.
TUBE, SPACER ALUM. $.180 \times 1 / 4 \times 1 / 8$ LG.
TUBE, SPACER ALUM. $.180 \times 1 / 4 \times 3 / 16$ LG.
TUBE, SPACER ALUM. $180 \times 1 / 4 \times 1 / 4 \mathrm{LG}$.
TUBE, SPACER ALUM. $180 \times 1 / 4 \times 7 / 16 \mathrm{LG}$.
TUBE, SPACER, ALUM. . $180 \times 1 / 4 \times 3 / 4 \mathrm{LG}$.
TUBE, SPACER ALUM. $180 \times 1 / 4 \times 1 \mathrm{LG}$.
tUBE, SPACER NYLON $.144 \times 5 / 16 \times 1 / 2$ W/\#27 HOLE LENGTHWISE
TUBE, SPACER ALUM. $245 \times 3 / 3 \times 3 / 4$ LG.
TUBE, SPRING PIN $1 / 8 \times 1 / 16$
WASHER, STEEL $65 \times 5 / 16$
WASHER, STEEL $6 L \times 3 / 8$
WASHER, STEEL $85 \times 3 / 8$
WASHER, STEEL $5 / 16 \times 5 / 8$
WASHER, BRASS CENTERING RES. 20 W
WASHER, BRASS CENTERING RES. 25 W
WASHER, RUBBER WAN 13-20
WASHER, RUBBER WAN 16-24
WASHER, ALUM. $1 / 4 \times 1 / 8$
WASHER, STEEL $.390 \times 9$
WASHER, RUBBER FOR FUSE HOLDER
WASHER, STEEL FLAT $.470 \times 2 \frac{1}{3} 3$
WASHER, BRASS $1 / 4 \times 7 / 16 \times .050$
WASHER, STEEL, $1 / 4 \times 3 / 6 \times .020$

136-027 136-028 136-037 361-007 $361-009$ 346-002 124.006 124.007 124.055 124-087 124-100 $334-649$ 166-002 $166-005$

H.V. SUPPLY BLOCK

CALIBRATOR BLOCK

L995: 22 TURNS \# 28 BARE COPPER 3/32"FORM, 9/16"LONG. L996: 17 TURNS \# 28 BARE COPPER $3 / 32^{\prime \prime}$ FORM, 7/16"LONG.

CHANGE TO:

