TE K INFORMATION NOV/DEC
FOR TECHNOLOGISTS 1984

TECHNOLOGY

report

COMPANY CONFIDENTIAL

& GETTING MORE OUT OF
b\ FLEX-CIRCUIT DESIGN

: \\\\

=
Tektronix
COMMITTED TO EXCELLENCE

CONTENTS

Volume 6, No. 8, November/December 1984.
Managing editor: Art Andersen, ext. MR-8934,

Flex Circuits Answer a Complex Probe
Design Problem

Getting More Out of Your

Flex-CircuitDesign

Mixing Languages on UNIX
An Update on Tek’s Software

Tools Program........... ceeaaees ceeaae

Factors in Designing Online

Documentation C e e aee e

Tektronix Standards Newsletter

d.s. 563-077. Cover: Nancy Pearen; Graphic
illustrator: Darla Olmscheid. Composition
editor: Sharlet Foster. Published for the bene-
3 fit of the Tektronix engineering and scientific
community.

This document is protected under the copy-

right law as an unpublished work, and may
11 not be published, or copied or reproduced
by persons outside TEKTRONIX, INC., with-
out express written permission.

Why TR?

18 Technology Report serves two purposes.
Long-range, it promotes the flow of technical

24 information among the diverse segments of
the Tektronix engineering and scientific com-
munity. Short-range, it publicizes current
events (new services available and notice of
achievements by members of the technical
community).

HELP AVAILABLE FOR
PAPERS, ARTICLES,
AND PRESENTATIONS

WRITING FOR
TECHNOLOGY REPORT

If you're preparing a paper for publication or presentation out-
side Tektronix, the Technology Communications Support (TCS)
group of Corporate Marketing Communications can make your
job easier. TCS can provide editorial help with outlines, abstracts,
and manuscripts; prepare artwork for illustrations; and format
material to journal or conference requirements. They can also
help you “storyboard” your talk, and then produce professional,
attractive slides to go with it. In addition, they interface with
Patents and Trademarks to obtain confidentiality reviews and

to assure all necessary patent and copyright protection.

For more information, or for whatever assistance you may need,
contact Eleanor McElwee, ext. 642-8924. [

Technology Report can effectively convey ideas, innovations,
services, and background information to the Tektronix techno-
logical community.

How long does it take to see an article appear in print? That is a
function of many things (the completeness of the input, the re-
view cycle, and the timeliness of the content). But the minimum is
six weeks for simple announcements and as much as 14 weeks
for major technical articles.

The most important step for the contributor is to put the message
on paper so we will have something to work with. Don’t worry
about organization, spelling, and grammar. The editors will take
care of that when we put the article into shape for you.

Do you have an article to contribute or an announcement to
make? Contact the editor, Art Andersen, 642-8934 (Merlo Road)
or write to d.s. 53-077. O

TECHNOLOGY
REPORT

FLEXIBLE CIRCUITS PART I

FLEX CIRCUITS ANSWER A
COMPLEX PROBE DESIGN PROBLEM

David G. Payne is an electromechanical engineer
in Logic Analyzers, part of DAG. Dave first joined
Tek in 1977. He then spent a year at Freightliner
as a designer, later rejoining Tek in 1978. Dave
has an associate’s degree from Portland Com-
munity College.

This article illustrates some unique properties of flexible
circuitry by showing how a flex circuit was used in a com-
plex 68-conductor probe. With the increased use of more
complex integrated-circuit packages, leadless chip car-
riers, and surface-mounted devices, probe construction
and probing techniques are going through major changes.
Today’s more exotic components require new probe de-
signs. The author, a divisional design engineer, also dis-
cusses flexible-circuit design techniques and how they
apply to other situations. For the vendor’s view, see “Get-
ting More Out of Your Flex-Circuit Design” (in this issue).

Flexible circuits are answering needs in ways never imaginable
with wire and cable technology. Generally, flexible circuits are
much like printed wiring boards (PWBs), in that their basic func-
tion is to route electrical signals, but this is where the similarity
ends! Because flex circuits are pliable, that is flexible, they are
amazingly versatile (see figure 1). This versatility, plus new shield-
ing materials and extreme circuit densities fit flex circuitry for ap-
plications that can’t be solved with traditional cables and printed
wiring boards.

For example, customers of our division (Logic Analyzers) badly
needed a system to probe devices in leadless chip carriers (LCC).
The usual probes - built with discrete wires, cables, or clips -
would not solve these customers’ problems. At best, the old
techniques would be too expensive. At worst, they would be
cumbersome and difficult to attach.

The Application

We had to provide a way to connect 65 of the 68 pins in a user’s
microprocessor socket to a remote IC socket of the same type
(see figure 2). To be close to the circuit under test, the remote
socket had to be on the flex circuit itself. (The remote socket
contains the user’s microprocessor during testing and must be
near the circuit under test to minimize crosstalk.)

Many of the pins on the remote socket had to be connected to
the personality module. The three pins in the user’s socket not
connected to the remote socket had to be terminated at the
module; this required routing through the remote socket area,
actually bypassing it. The major problem all this posed for us
was how to gain connection to the user’s socket without com-
promising the user’s probing convenience.

I

Figure 1. With this flex circuit, 68 conductors can be placed
where they are needed to do logic analysis in a micropro-
cessor’s actual application environment.

Making the Connection

Our first and most challenging task was gaining connection to
the user’s microprocessor socket. We decided to fabricate a
printed wiring board (PWB) of the same dimensions as the lead-
less chip, and somehow make a high-density, permanent con-
nection to this substrate (the PWB). After much thought about
what connection method would be low-profile (a profile of less
than .030” was needed), permanent, and reliable — lap solder-
ing seemed to be the only answer.

Lap soldering is a method where exposed (bared) pads on the
edge of a flex circuit are folded and laminated back on them-
selves, leaving conductors exposed on both sides of the fold
(see figure 3). The folded conductors may then be soldered
directly to the substrate with the aid of appropriate holding fix-
tures. This method is inherently low-profile, and can also pro-
duce extreme density when proper soldering techniques are
used.

Lap soldering is an excellent way to produce dense connections
in many flexible-circuit applications. When vapor-phase solder-
ing is used with flex lap joints, mass termination of flex-circuit
connections (many connections effected simultaneously) can be
very economical. With good fixturing and in-line vapor-phase
equipment, the process should be a simple sequence of apply-
ing solder paste to the PWB, baking the paste, cleaning and fix-
turing the parts, soldering, and post cleaning. Vapor-phase lap
soldering has the potential of being able to terminate lines and
spaces as small as 7 mils. This has actually been done on a
small scale in a lab environment.

TECHNOLOGY
REPORT

SOCKET
LID
LEADLESS
CHIP CARRIER

(USER’S MICROPROCESSOR)

TO USER'’S SOCKET
(CIRCUIT UNDER TEST)

TEXTOOL SOCKET
REMOTE SOCKET

CABLES
TO LOGIC ANALYZER

PM 202
(PERSONALITY MODULE)

Figure 2. Problem: How do you connect a logic analyzer to a microprocessor in its actual operating environment?
Imagine trying to attach 65 conventional probes to a functioning microprocessor in a chip carrier; attaching just one or
two would be difficult, or even impossible. The solution: Put another socket (the remote socket) in parallel with the
processor’s normal home (the user’s socket). The remote socket is mounted on and intergrated into the probe’s cir-
cuitry. To do logic analysis, the probe is plugged into the user’s socket and the processor to be tested is plugged into
the remote socket. Flex circuits enable such probes to be more easily manipulated while preserving much of the pro-

cessor’s actual operating environment.

With the low-profile termination achieved, we needed to get the
flex circuit to exit the user’s socket through a .800”" x .050"" slot
in the lid. How were we to route 68 conductors through that
small opening? Fifty-one conductors had to be routed on one
section of the flex, while the remaining 17 conductors would
have to be routed on the other section. For 51 conductors to fit
through the slot, the width of each of the runs and spaces had
to be 7 mils.

Finer Lines Than PWBs - In general, flex circuits can have finer
lines than conventional printed wiring boards, but minimum line
widths and spaces vary from vendor to vendor. To assure good
yields and consistent delivery, find out what your vendors can
do before fixing your design. Ask them. Look at their literature.

Folding a Single Layer for Double Layer Performance

Next, we had to route all signals on one layer — cost goals dic-
tated the use of a single-sided circuit to save money. After doing
the routing, we folded part of the single-sided circuit over the
first layer containing the remote socket and soldered this folded
part to the remote-socket pins. The first layer of circuitry has the
pattern appropriate for the component that will be placed at that
location. The second, folded layer has the same pattern except
the component-lead holes are drilled larger than the holes on
the first layer. All exposed pads are then solder coated.

When the second layer of circuitry is folded and laminated onto
the first, the large holes on the second layer line up to the first
layer such that solder is exposed on both layers. During solder-
ing, both layers will be soldered simultaneously (see figure 4).
Folding and laminating achieves the functions of a double-sided
circuit, using only single-sided materials.

TECHNOLOGY
REPORT

BASE FLEX CKT MATERIAL

SOLDER FILLET

ADHESIVE

I~\

PAD ON PWB FLEX CKT TRACE

LAP SOLDER JOINT

PWB

Figure 3. With dense flexible circuits, vapor-phase soldering is the best way to economically mass terminate many
connections. (Mass terminate, in this sense, means connect simultaneously.) For soldering, the end of the flexible cir-
cuit is folded back and held by adhesive prior to soldering. In lab conditions, lines and spaces as small as 7 mils have

been attached.

COMPONENT

£

BASE MAT’L

.(BASE MAT’L

4 AN
COVER SHEET—¢-9 \W| —*<N_e-}— COVER SHEET
V \
COPPER TRACE ADHESIVE SOLDER COPPER TRACE
(:5 MIL)
(1 MILTHICK) ~ COMPONENT BASE MAT'L (FOLDED LAYER)

LEG

(1 MIL)

Figure 4. When folded, a single-sided flex circuit can approach double-sided performance. When holes are lined up

using jigs, both layers can be simultaneously soldered.

There is significantly less cost in a single-sided circuit than in a
double-sided circuit. Folded flex circuits offer great interconnect
versatility and use less base material. For example, consider a
flex circuit for routing signals inside an instrument. If such a cir-
cuit were laid out without folds, much base material in the flat
could be wasted. If, instead, the layout was to done such as to
minimize the amount of base material to be used, you might
plan to fold the circuit to meet its final shape (see figure 5).

Base Material

The base material we chose for the probe application was
copper-clad polyimide (Kapton). Kapton is very flexible, and
was readily available in the desired thicknesses.

To resist fracturing, we specified the copper cladding to be rolled
annealed; rolled annealed copper cladding can be flexed many

times without failure. In contrast, electro-deposited copper clad-
ding, although acceptable in static applications, tends to frac-
ture when flexed repeatedly.

The Critical Path

Once all of the major design issues were resolved, it was time
for our PWB design group (in DAG) to lay out the circuit for the
first film work. They were to do layout from our drawings. They
were also to order film and prototypes.

We were unpleasantly surprised to find lead times for prototypes
in the flex-circuit industry (outside Tek) often are 10 to 12 weeks.
For most projects this is much too long. We needed prototypes
in no more than two weeks to meet project goals. Tek's Applied
Chemical Components group (ACC) could meet our schedule.

TECHNOLOGY
REPORT

=

A ‘ B

=T

Figure 5. A little planning in layout can save considerable base material. Pattern A folds to produce finished circuit B,

using less material than a no-fold pattern such as C.

The process of laying out the probe’s flex circuit was more com-
plex than expected. Our PWB designer didn’t have flex-circuit
layout guidelines. What's more, most PWB design guidelines
don’t apply to flexible circuits. We had to rely on vendors and
their publications for the information. (See “Flexible Circuits, Part
2" for guidelines.)

After we ordered the first prototypes from Applied Chemical
Components, our lack of flex-circuit information necessitated
heavy communication with them. In these discussions, we found
that early consultation with ACC or any other flex-circuit supplier
is critical. This allows time for the supplier to study the circuit
and suggest changes that can be most easily made before do-
ing the first layout. Early consultation can save many film revi-
sions and a lot of time and effort.

Ordering the Prototypes

When the film was ready, we assembled a package that included
an order for ACC specifying materials and quantity, a film packet,
and mechanical drawings (prints). During consultations, ACC
helped us prepare these essentials.

The prints are critical and should include profile, circuit struc-
ture, special tolerances, plating and material call outs, hole sizes
for both base material and cover sheet, and a detailed cross
section of the circuit.

If the prototypes are going to be fabricated in-house or by any
other source than the final manufacturer, it's a good idea to give
that manufacturer time to come up to speed. Give the manufac-
turer time to build a “parallel” set of prototypes — We didn’t!
This oversight significantly delayed the shipment of the PM202
Personality Module for which the probe was an essential part.
These delays could have been avoided by giving the vendor
the chance to build prototypes in parallel with in-house prototyp-
ing. Even if you never use the vendor’s prototypes, your money
will be well invested.

The Prototypes Worked!

Despite the complex design, the first prototypes worked. Sur-
prisingly, imaging and etching the fine lines proved to be much
less of a problem than we expected. The problems that did show
up related to inefficiencies in assembly and raw-circuit manufac-
turing. For example, we had to enlarge the cover-sheet opening
to expose more conductor to solder to. (Cover sheets are
equivalent to solder masks in PWBs.)

Other difficulties were cover-sheet misalignment, intermittent dis-
continuities, and solderability problems. The intermittents were
the major problem in the first prototypes; they were caused by
improper strain relief and the use of electro-deposited copper-
clad material. Once we substituted rolled annealed copper, the
discontinuities disappeared.

Alignment of lap solder joints before soldering is very important;
it is also difficult without fixturing. With fixturing, soldering was
easy. When your flexible circuit will require assembly, that is
adding parts, design your fixtures early — before the first pro-
totype assembly if possible. To use fixturing in the first build, the
raw circuits must have tooling holes and features to match the
fixtures. (We find it helpful to talk to flex-circuit vendors and in-
house sources when planning fixturing.)

Shielding and Crosstalk

Late in probe development, crosstalk showed up as a major
problem. Despite our earlier economic concerns, we now had
to add a second circuit layer to eliminate the crosstalk between
signal lines.

There are at least three basic ways to shield, not only against
crosstalk but also against electromagnetic susceptence and

radiation. You can add circuit ground-plane layers, screen on
silver-bearing-ink layers, or vapor deposit aluminum layers on
the circuit. Each method has advantages and disadvantages.

TECHNOLOGY
REPORT

The choice of shielding method depends on balancing the elec-
trical, mechanical, and environmental requirements. Adding one
copper layer to the copper circuit as a ground plane, for exam-
ple, will eliminate crosstalk, but suppressing electromagnetic
radiation may require a layer on both sides. Unfortunately, add-
ing any layers to a flex circuit will degrade mechanical perform-
ance; multilayer circuits are likely to have poor flex life.

Adding a second layer — the ground plane - lowers the flex per-
formance significantly. The single-layer circuit tested to about
200,000 flexes; the double-sided circuit (signal lines over a ground
plane) lasted only 2,000 cycles. To improve flex life, we imaged
an array of holes in the copper layer that forms the ground
plane. This increased flex life 50%, to about 3,100.

Single-sided circuits with a layer of silver ink screened on each
side tend to do very well in flex-life tests. However, silver ink gen-
erally doesn’t shield as well as copper. (Its conductivity, and
therefore its shielding ability, depends on aspect ratio, thick-
ness, and silver content.)

Then there is aluminum. | mention vapor-deposited aluminum
only because the industry does use it. However, its effective-

ness is questionable; it loses conductivity because it oxidizes

quickly and becomes highly resistive.

The need for a ground-plane layer gave us another difficulty.
How were we to electrically connect the two layers of circuitry
(where connections to ground were needed) without plated-
‘through holes? Plated-through holes both increase cost and
reduce flex life — because the process adds electro-deposited
materials to the rolled annealed copper. In our case the answer
was easy.

The few points requiring feed throughs in our probe’s flex circuit
were in inconspicuous areas; therefore, eyeleting was accep-
table. Wherever a feedthrough was needed, we placed an eye-
let in a drilled hole and then soldered to pads on both sides.

Production Tooling

The tooling costs for flex circuits vary widely with volume and
circuit complexity. For low volumes, a steel-rule die is sufficient
for cutting out the profile; you will also need drill tapes, and fold-
ing, testing, and assembly fixtures. For low volumes, tooling
costs are typically between $5000 and $10,000.

For high volume, you can'’t predict costs without specific circuit
details. You will need a hardened-steel tool for cutting profiles.
Therefore costs will certainly exceed those for low volume.

Conclusions

In the development of any flex-circuit design, especially those
that are complex or unique, early delivery of prototypes and
early planning are critical.

Easy, fast access to design information is also a key to success.
If you don’t have this information, see your vendor. In any case,
establish vendor contact early to confirm schedules and manu-
facturability. Without considering these factors, a flex circuit can
become the critical-path item and drive your project schedule
out weeks.

For More Information
For more information, call David Payne 629-1887 (92-716). [J

Flexible Circuits Part lI

GETTING MORE OUT OF YOUR
FLEX-CIRCUIT DESIGN

Gary Uchytil is a senior electrochemical process
engineer in Applied Chemical Components, part
of EMCO. Gary joined Tek in 1976 from Plessy
Micro Science, where he was engineering mana-
ger. He is a past president of the Photo Chemical
Machining Institute and a past vice president of
the California Circuits Association. Gary has a BS
in general science from Oregon State University.

The logic analyzer probe (PM202) described by Dave Payne
in “Flex Circuits Answer the Challenge of a Complex-Probe
Design” was one of the first flex circuits made in Applied
Chemical Component’s Flex Circuit business element. In
this article, the author relates the process of developing
the probe in the context of what the division-level designer
can do to achieve more effective flex-circuit designs.

Applied Chemical Components (ACC) is now producing electri-
cally tested flex-circuit assemblies complete with soldered-in
components. Many of these assemblies use suface-mounted
devices (SMDs). Many are vapor reflow soldered. We sell these
assemblies to the divisions as part of larger assemblies, acting
as a general contractor to the divisions.

Manufacturing in ACC is uniquely organized into business ele-
ments. Each business element has the complete manufacturing
responsibility for a product or products - from start to finish. The
products of a business element share a common technology,
usually implied by the organization’s name: Photo Etch Prod-
ucts, EMI -Shielded Products, High Frequency Products, Stain-
less Steel Etch Products, etc. These business elements are
equipped to do work requiring tight tolerances: +0.0005",
0.003” lines and spaces, 0.001” thick material, and registrations
as close as 0.0002".

TECHNOLOGY
REPORT

When division designers began to ask for flexible circuitry, we
formed a new business element, Flexible Circuit Assemblies,
and used the technology we had developed in the Photo Chem-
ical Machining group. The Flex Circuit Assemblies business ele-
ment can produce prototype flex circuits and assemblies fast —
within 10 days. They can also handle production runs.

The Challenge of the Emulator Probe

Logic Analyzer engineering contacted the Flex Circuit business
element after they had completed the probe’s physical layout
and needed a prototype. Because of the probe’s complexity
and novel features, the LA team was uncertain about how manu-
facturable the probe would be. We couldn’t answer all their ques-
tions immediately, but we worked out answers as we made the
first prototype. The major uncertainties were:

e Would copper take the tight bend required without cracking?
The flex circuit required the copper-clad polyimide to be tight-
ly folded (creased). We found nothing describing this proce-
dure in the literature.

e Because a LCC socket had to be connected to two circuit
layers, would the solder wick down the leads to the second
circuit?

e Could we go beyond the tolerances of conventional pin regis-
tration? Pad sizes were limited because the probe design
called for three runs to go between pads. These runs were to
be 0.006” wide with 0.004” spacing. This made the cover-
sheet registration difficult.

e Would material wastage increase the price of the end-product
of which the flex circuit was a part — perhaps beyond the
targeted price? Because the circuit was large, only two cir-
cuits could be printed on one sheet of the base material.

The key to the probe project’s success was ACC'’s early partici-
pation in the design. If ACC had not known the requirements
before the prototype was to be built, the project would have
been delayed. Both Logic Analyzer engineering and ACC agreed
that the prototype delivery had to be reduced from the 12 weeks
quoted by outside flex vendors. We delivered in four days, six
days sooner than the 10-day target. Early delivery helped Logic
Analyzers meet its schedule - even after making modifications
based on evaluations of the prototype’s performance.

Design Rules

This part of the article presents 14 design rules. These rules
complement the flex-circuit manufacturing process. I've related
them to the logic analyzer probe (PM202) to clarify their value to
the division-level designer.

Rule 1

The PM202 Probe required a sharp bend to complete the circuit
pattern.

e Design rule 1: In any bend area, the runs should be as per-
pendicular to the bend as possible. (See figure 1.)

'BEND AREA

Figure 1. Runs should be perpendicular or nearly perpen-
dicular to a bend point or area.

Rules 2 and 3

The polyimide that is the base material for flex circuits can be
purchased with either electrodeposited or rolled annealed cop-
per cladding. The copper is fastened to the polyimide with
either modified epoxy or acrylic adhesives. After repeated fold-
ings, the rolled annealed copper cladding and acrylic adhesive
used for the PM202 Probe didn’t crack during bend testing; this
combination proved superior, with the longest test life.

e Design rule 2: When the circuit must be sharply bent or the
circuit will be flexed more than 1000 times in actual use,
specify rolled annealed copper clad with acrylic adhesive.

e Design rule 3: In dynamic areas (where flexing will occur),
runs should not take 90-degree angular turns. If turns must
be made, always lay out smooth curves. (See figure 2.)

Rules 4 through 8

Photo Chemical Machining’s knowledge of processing thin ma-
terial and rolled-metal stock was invaluable in producing the
prototype flex circuits for the probe. And because chemical pro-
cessing does not mechanically damage the surface of the mate-
rial, our yields are 95% and greater.

At Tektronix, holes in copper-clad polyimide are NC drilled. We
also NC drill the polyimide cover sheet to expose circuit pads
for soldering. Most outside vendors stamp holes in the polyimide
with hard dies.

e Design rule 4: At Tek, square pads rather than round pads
are preferred because the circuit will be NC drilled. Runs
should attach at the corner of the pads, as shown in figure 3.

e Design rule 5: In all cases, square pads are mandatory when
the runs are 0.010” wide or narrower.

e Design rule 6: Rolled annealed copper has a grain. Runs
that follow the direction of this grain will survive more bend-
ing. On your drawings, always specify the area that will flex
and the grain direction needed to maximize flex life.

TECHNOLOGY
REPORT

| 4

BEND AREA

Figure 2. 90-degee angular turns should not be placed in
areas where repeated flexing will occur. Use smooth turns
instead.

o Design rule 7: Always specify 1 0z. copper on your drawing.

e Design rule 8: Always highlight critical tolerances on your
drawing.

Rule 9

Flex-circuits are made by photo etching. A photosensitive coat-
ing is applied to the copper cladding; this coating is exposed to
an image created by the film work, developed, and the exposed
copper is etched away. This process is done in a clean room
because one tiny dust particle can be fatal, causing a reject. The
flex-circuit process can yield 0.003” lines and spaces (see fig-
ure 4). The imaging process is exact enough for 0.0005" front-
to-back registration of circuitry.

The film tooling is generated by a CAD system and photo plot-
ted by ACC’s Graphic Tooling group. The circuits are plotted
onto film or glass. In either case, we keep the master within
ACC to prevent damage.

e Design rule 9: Show critical line widths and spacings on your
drawing. If line-width minimums are critical, we can compen-
sate for the etching process by adding width to the photo
tooling.

Figure 3. Runs should be attached to a pad at the pad’s corner.

TECHNOLOGY
REPORT

row as 0.003”. This SEM photo was taken using 180 times
magnification.

Rules 10 and 11

After etching, the copper runs are covered with a polyimide
sheet of the same thickness as the base polyimide; this cover
sheet acts much like a solder mask on a PWB. The cover sheet
is durable and protects the copper runs from damage, shorts,
and wear. The pads or other areas to be soldered are coated
with solder or immersion tin.

e Design rule 10: The cover-sheet holes should be 0.015”
larger than the diameter of the drilled hole.

e Design rule 11: If a group of pads are to be bared (exposed)
by a window in the cover sheet, then the registration tolerance
of the window will be £0.50”. WARNING: A window cut in
the cover sheet to bare pads can create a natural bend poirit
that will, with repeated bending, break conductors at the
edge of the cover sheet window.

Rules 12 and 13

The flex circuit is then stamped out with a steel-rule die, inspected,
and continuity tested. Next, the circuit is sent to assembly for
component mounting, soldering, and electrical testing.

e Design rule 12: Set aside a 0.75” area outside the circuit
itself to allow for steel-rule-die tooling holes.

e Design rule 13: Make component mounting holes 0.010”
larger than the lead to be inserted.

Vapor reflow soldering

In earlier PM202s, the small PWB was lap soldered by hand. To-

day, we blind solder this PWB by applying solder paste and using
vapor reflow soldering. This improves yields and productivity.

ACC’s Other Flex-Circuit Capabilities

The PM202 was the first Tek probe to employ a flex design.
Because LA engineering and ACC flex circuit engineering were
closely coupled, the PM202 met a tight marketing-set schedule.

Although the PM202 was challenging, it didn’t require all the
processes we have available. We can also give you plated-
through holes, “rigidized” flexible circuitry, and vias.

Figure 4. Lines on ACC-made flex circuits can be as nar-

Plated-through holes

The polyimide base for flex circuits can support plated-through
holes for connecting runs on opposite sides. When using plated-
through holes, we plate only the pad and hole areas. The elec-
trodeposited copper must be kept off the runs or flexing may
cause cracking. (With plated-through holes, pads are about
0.0015” higher than the runs.)

Rigidizing flexible circuitry

Areas of a flex circuit can be reinforced, or “rigidized” with a
stiffener, FR-4 for example. These areas are usually used for
mounting components or connectors. The rigidized area is
usually a two-sided circuit on polyimide, laminated to a stiffener
having matching hole locations. The holes in the stiffener are
not plated through; in fact, there is usually no circuitry on the
stiffened area (other than mounted components and connecting
runs).

e Design rule 14: Make the holes in the stiffener 0.020” larger
than the holes in the flex circuit.

INSULATION

COPPER FOIL

PLATED COPPER

Figure 5. Vias in flex circuits can be as small as 0.010” in
diameter. Vias are used to electically connect runs on op-
posite sides of flex circuits. ’

Vias

To electrically connect runs on both sides of the polyimide, very
small holes can be NC drilled in the copper-clad polyimide and
through-hole plated. These small holes are called vias. Vias in
flex circuits can be as small as 0.010” in diameter. Many surface-
mounted-device circuits are etched on copper-clad polyimide.
To save space, the electrical connection between the circuits on
the front and on the back are made with vias drilled in the mount-
ing pad.

For More Information

This article has discussed some of the features used in flex cir-
cuits and has included a manufacturing guide. By no means
have all applications been detailed, or even mentioned. To get
more information on other applications and to discuss special
designs, contact Gary Uchytil, at 627-0321 (32-330). [

-1 TECHNOLOGY
REPORT

MIXING LANGUAGES ON UNIX

Joel Swank is software engineer in the Software
Center, part of Software Tools Support. Joel joined
Tek in 1975. Earlier he was a systems programmer
for the State of Virginia. Joel has a BS in computer
science from Virginia Tech.

Although UNIX provides a variety of high-level lan-
guage compilers, UNIX languages are not designed
to work together. This is unfortunate but not an in-
surmountable barrier. This article shows how three
of the most popular languages on Unix — C, For-
tran, and Pascal — can be mixed.

Trying to link routines from one language with routines in another
can be frustrating, but by following a few guidelines, such lan-
guages can be successfully mixed, giving programmers access
to many powerful subroutine libraries. Mixing also allows sec-
tions of large applications to be written in the best language for
the task.

In this article, we will examine how C, Fortran, and Pascal can
be mixed. | have included 15 working examples developed by
the Software Center.

The example programs were developed under UNIX 4.1BSD,
TEK version 1.1. We have also tested the programs under UNIX
4.2BSD. We found all 4.1BSD concepts work equally as well
under UNIX 4.2, except Fortran output to stdout.

The big problem in mixing two languages is determining what
data types are equivalent. Some data types have no direct equiv-
alents but can be emulated; for example, only Fortran has com-
plex variables, but an equivalent C structure can be defined.
Other data types have no equivalents; for example, Pascal has
no single-precision floating-point numbers.

Mixing C and Fortran
UNIX 4.2BSD Fortran

There is a slight difference in the way 4.2 Fortran and 4.1 For-
tran handle stdout. When stdout is used in a Fortran subroutine
called from C under UNIX 4.2BSD, the output is sent to a file
called fort.6 instead of stdout. You can circumvent this bug/
feature by using the symbolic-link feature of UNIX 4.2 to reas-
sign the output. To direct output to the terminal, use the com-
mand In -s /dev/tty fort.6 before running the program; this cir-
cumvention prevents the shell from redirecting the Fortran out-
put. An alternate method allows normal use of stdout. You create
a dummy Fortran main program that does nothing except call
the real mainline C program and return.

Equivalent data types

Here are the equivalent data types for Fortran and C:

FORTRAN C

integer*2 x short int x
integer x long int x

logical x long int x

real x float x

double precision x double x

real*8 x double x
complex x struct { float r, i} x

double complex x
character*10 x

struct { double r, i } x
char x[10]

Fortran and C character strings are not exactly equivalent. A null
character (binary 0) marks the end of a C string. A Fortran string
must be padded with nulls to the defined length of the string. In
all other respects, the character strings are equivalent.

Naming conventions

The Fortran compiler appends an underscore (__) to all external
identifiers. This means that Fortran programs can call only C
routines named with a trailing underscore. It also means Ftn.
subroutines must be identified in C routines by appending an
underscore to the name of the Fortran routine.

Passing parameters

C normally passes parameters by value; that is, the values of
the parameters are put on the stack. Fortran passes parameters
by address; that is, pointers to the values are put on the stack.
You can overcome this incompatibility by forcing C to pass by
address. A C calling routine must specify parameters to be
passed to Fortran using the ‘address of’ notation. For example:
fsub__(&n,&x);

A C routine called from Fortran must receive pointers as param-
eters. The parameters must be declared as pointers using the
‘pointer to’ notation. (For example: float *n, *x) This need to
specifiy pointers is not true of arrays in C. In C, arrays are always
passed by address.

Multi-dimensional arrays

C and Fortran also differ in the way each stores multidimensional
arrays. In C, the rightmost subscript varies fastest; in Fortran,
the leftmost subscript varies fastest. You can overcome this prob-
lem by declaring the subscripts in the opposite order in the two
languages. For example a Fortran array such as real x(5,4)
would be declared as float x[4][5]; in C.

C and Fortran also index array elements differently. C numbers
the elements of an array of n elements from 0 to n-1. In the same
array, Fortran numbers the elements from 1 to n. If indices are
passed, 1 must be added to each index passed from C to For-
tran, and 1 must be subtracted from each index passed from
Fortran to C.

R

Routines

Fortran has two types of routines: the function and the subrou-
tine. C has only one: the function. But by usage, the program-
mer can make a C function equivalent to either a Fortran func-
tion or a Fortran subroutine. A Fortran function differs from a
Fortran subroutine in that it returns a value to the calling routine
while a Fortran subroutine does not. For a Fortran routine to be
callable as a function, that routine must be declared a function
in its first line. Also, the value to be returned must be assigned
to the function name.

For a C routine to be callable as a function, the routine must
specify the return value on the return statement. The way a C
routine is called depends on whether it is a function or a subrou-
tine. In Fortran, subroutines must be called using the call state-
ment; a function is called by using it as a value in an assignment
statement. In C, a subroutine is called by specifying its name
and parameters as a complete statement and a function is called
by using it as a value in a statement.

Linking

To link Fortran and C programs, special linkage editor com-
mands are needed. For example:

Normal C to F77 link:
%lId — X /lib/crt0.0 (your objects) (your libs) — 1177 —1F77 —1m
-1c

If the — p option was used on any of the compiles:
%lId — X /lib/mcrt0.0 (your objects) (your libs) — 1177 —1F77
—-1m -1c

If the —g option was used on any of the compiles:
%Id — X /lib/crt0.0 (your objects) (your libs) —1g — 1177 —1F77
-1m -1c

Examples 1 through 4 show C routines calling Fortran routines.
Examples 5 through 7 show Fortran routines calling C routines.

Mixing C and Pascal
Data types

Pascal has fewer data types than either Fortran or C. Although
all Pascal data types have at least a rough equivalent in C, not
all C data types have a Pascal equivalent. The Pascal data type
Boolean has no direct equivalent in C. A Pascal Boolean data
type can be interpreted as a C character data type, but the only
values valid are binary 0 (false) and binary 1 (true). Here are the
equivalent data types:

Pascal C

var x: integer long int C
var x: real double x
var x: packed array[1..10] of char ~ char x[10]
var x: boolean char x

Passing parameters

Pascal normally passes all parameters by value. Except for ar-
rays, C does too. To pass arrays to and from C, the array must
be declared in the Pascal function or procedure definition with a
var statement. The use of var in a definition causes all parameters
to be passed by address.

Pascal arrays are stored in memory in the same way as C ar-
rays. A Pascal array of n elements is indexed from 1ton. AC
array of n elements is indexed from 0 to n-1. This means indices
passed from Pascal to C must have one subtracted from their
values, and indices passed from C to Pascal must have one
added to their values.

Parameters other than arrays can also be passed by address by
using the var statement in the Pascal procedure definition. For
example: procedure psub (var x,y:real);

The C routine must also pass by address. If C is the calling rou-
tine, the parameters must be coded using the ‘address of’ nota-
tion. For example: psub (&x,&y);

If C is the called routine, the parameters must be declared as
pointers. For example: float *x, *y; Declaring variables as
pointers allows the values of parameters to be updated directly
by the called routine.

Routines

Pascal has two types of routines, the function and the proce-
dure. C has only one, the function. But by usage, the program-
mer can make the C function equivalent to either the Pascal
function or the Pascal procedure. A Pascal function differs from
a Pascal procedure by returning a value to the calling routine; a
Pascal procedure does not. For a Pascal routine to be callable
as a function, it must be declared as a function in the first line of
the routine and the data type of its return value must be speci-
fied. Also the value to be returned must be assigned to the func-
tion name.

For a C routine to be callable as a function, it must specify the
return value on the return statement. The way a routine is called
also depends on whether it is a function or a procedure. In both
Pascal and C, procedures must be called by using the function
name and parameters as a complete statement; a function is
called by using it as a value in an assignment statement.

Linking

To link Pascal and C programs, special linkage editor commands
are needed. For example:

Normal C to Pascal link:
%71d —X /lib/crt0.0 (your objects) (your libs) —1pc —1c

If the —p option was used on any of the compiles:
%1d —X /lib/mert0.0 (your objects) (your libs) —1pc —1c

If the —g option was used on any of the compiles:
%Id —X /lib/crt0.o (your objects) (your libs) —1g —1pc —1¢c

Pascal include files

Standard Pascal requires that all function and procedure defini-
tions be included from an ‘h’ file rather than coded in-line. This
is not enforced in the current version of the 4.1 bsd compiler.
For simplicity, my examples violate this restriction. In practice,
all procedure and function definitions should be in separate ‘h’
files to maintain portability and upward compatibility to new re-
leases of the compiler.

Examples 8 through 11 show C routines that call Pascal routines.
Examples 12 through 15 show Pascal routines that call C routines.

-I TECHNOLOGY
REPORT

Mixing Pascal and Fortran

Because Pascal will not accept the underscore (__) character in
identifiers, Pascal and Fortran cannot call each other directly.
But if you use a C interface routine, this restriction is bypassed
and Pascal and Fortran can be mixed.

For More Information
For more information, call Joel Swank, 627-4403 (50-487). [

Fifteen Working Examples

EXAMPLE 1. C calling a Fortran function as a
function.
/* Example of calling a function, called fsqrt, written in fortran
from a C program
o/
main()
{
float x,y,fsqrt_(); /° declare fsqrt as a fortran real function °/
x=45;
y=fsqrt_(&x); /* pass the address of x */
printf("the square root of %f is %f\n”, x,y);

}
C This fortran function can be called as a C function
C
real function fsqrt(x)
real x
C return value is assigned to the function name
fsqrt=sqrt(x)
return
end

EXAMPLE 2. C calling Fortran passing a
2-dimensional array.

/* Example of calling a fortran subroutine from C , passing a 2
dimensional array */

float x[5][4];
int i,j;
/° fill the array °/
for (i=0; i<5;i++)
/*® subscripts vary from 0 to n-1 */
{ for (j=0; j<4; j++)
{

/* rightmost subscript varies most rapidly */
x[i][j] = i*10+j;

printf(" %£" x[i][iD;

}

printf (\n");
}
/° pass the array to fortran subroutine for printing */
out_(x); /° arrays are always passed by address */

}

Fortran subroutine that receives a 2 dimensional array from
a main program written in C

subroutine out(x)
subscripts are in the opposite order
real x(4,5)
index goes from 1ton
do 10i=1,5
leftmost subscript varies most rapidly.
10 write (6, 20) (x(j,i),j=1,4)
20 format (6£5)
return
end

C
C
C
C
C
C

EXAMPLE 3. C calling Fortran passing character
strings.

/* Example of a C routine that calls a fortran subroutine
passing two character strings.
L/
#define MAXL 80
#define EOF §
main()
{
int len;
char line[MAXL]line2[MAXL];
len=getline(line, MAXL);
len=getline(line2, MAXL);
char_(line line2);

getline(s, lim) /° get line into s, return length */
char s[J;
int lim;
{
int c,i;
for (i=0; i< lim; ++i) s[i]=\0’ /° clear string for fortran */
for (i=0; i<lim-1 && (c=getchar())!=EOF && c!=\n’; ++i)
si]=c;
return(i);

Subroutine that recieves two character strings from a C calling
routine, concatenates them and prints the result.

subroutine char(line line2)
parameters longer than 40 will be truncated
character®40 line,line2
character®80 line3
line3=line//line2
write(6,30) line3
30 format (a80)
return
end

A aOno

EXAMPLE 4. C calling Fortran to perform complex
number calculations.

/* Example of a C routine that calls a fortran subroutine to
perform calculations on complex numbers
%/
main()
{
/* define a complex data type to C ~ °/
struct complex { float r; floati;} ;
struct complex m,n;
mr=-81;
mi=15;
nr=-81;
ni=15;
cxrt_(&m); /* pass address - value returned in m */
printf("The square root of %f,%f is %f,%f \n",n.r,ni,mr,mi);

(Example 4 continues next page)

TECHNOLOGY
REPORT

13

(Example 4 continued)

C Example of a subroutine called from C to do complex calculations

subroutine cxrt(num)

complex num

write (6,30) num

num =sqrt(num)

write (6,30) num

write (6,30) num*num
30 format (6f10.5)

return

end

EXAMPLE 5. Fortran calling C routine as a function.

£77 routine that calls C routine as function

external csqrt
Both parameter and return value data type must match
data types in declared in the C function.
real®8 b,r
b=81
r=csqrt(b)
wite (6,30) br
30 format(‘the square root of ’,£105,’ is ’,f10.5)
end

C
C
C Declare the external ¢ function
C
C

/* C function called from f77 as a function */

/* data type of return value of function must be declared °/
double csqrt_(x)

/* data type of parameter declared */

double *x;

double y sqrt();
y=sqrt(*x);
printf("the square root of %f is %f\n",°x,y);
/* value to be returned must be on return statement, and data type must
match the data type declared for the function °/
return(y);

EXAMPLE 6. Fortran calling C passing and return-
ing parameters.

C
C — test of {77 calling C passing 2 reals and an array
G
dimension arry(11)
C program will add first 10 array elements
data cnt/10/
data arry/1,2,3,4,5,6,7,8,9,10,11/
call addum(cnt,arry,tot)
print °tot
end

/.
C subroutine designed for calling from F77
/.
addum_(cnt,arry,tot)
/° all parameters are pointers */
float °cnt, °tot, *arry;
{
float i;
*tot=0;
for (i=1;i < = ®cnt; i++) {
°tot = °tot + *arry;

EXAMPLE 7. Fortran calling C passing a
2-dimensional array.

C Example of a fortran routine routine passing a
C 2 dimensional array to C
C
real x(4,5)
C leftmost subscript varies most rapidly
do 10i=1,5
do 10 j=1,4
10 x(j,i)=j*10+i
do 20 i=1,5
20 write (6,30) (x(j,)j=14)
30 format (6f4)
call carray(x)
end

/* C routine that receives a 2 dimensional array from Fortran
]
carray_(x)
/* subscripts are reversed °*/
float x[S[4];
{
int i,j;
/° rightmost subscript varies most rapidly - indices start at 0/
for (i=0; i<5; i++) {
for (j=0; j<4; j++) {
printf(" % £ x[ifliD;
}

printf(\n");
}

EXAMPLE 8. C calling a Pascal function.

f* Example of C calling Pascal function
o

!

main()

/° double in C equals real in Pascal °/
double n,m,psub1();
n=22;
m =psubl(n);
printf("%f is the square of %f\n”,m,n);

(° Pascal function to be called as a C function °)

function psubl(xxeal):real;
begin

psubl := x°x;
end;

EXAMPLE 9. C calling Pascal procedure passing
parameters both ways.

/* Example of a C routine that calls a Pascal subroutine, passing
parameters both ways °/
main()
{
double n,m,psub2();
n=22;
/* parms passed as addresses so Pascal can modify them °*/
psub2(&n,&m);
printf("%f is the squarc of %f\n",m,n);

(®* Parameters declared with var because addresses are

) amry ++; being passed from C °)
} procedure psub2(var x,yTeal);
begin
y :=x°x
end;
TECHNOLOGY

REPORT

EXAMPLE 10. C calling Pascal passing character
strings.
/* Example of a C routine that calls a Pascal subroutine
passing two character strings.
°/
#define MAXL 80
#define EOF 5
main()
{
int len;
char line[MAXL]line2[MAXL];
printf ("enter line 1:);
len=getline(line, MAXL);
printf ("enter line 2: ");
len=getline(line2, MAXL);
psubd(line line2);
}
getline(s, lim) /* get line into s, return length */
char s[];
int lim;
{ .
int c,i;
for (i=0; i<lim-1 && (c=getchar())!=EOF && c!=\n’; ++i)
s[i]=c;
s[i] = \0";
return(i);

(* Example of a Pascal routine that receives strings from C °)

(* declare a string as a packed array of char *)
type string = packed array[1.80] of char;

(° declare procedure with var because C passes address of strings °)
procedure psubd(var st1,st2string);
begin
writeln(st1,5t2);
end;

EXAMPLE 11. C calling Pascal passing a 2 dimen-
sional array.

/* Example of calling a Pascal subroutinc from C , passing a 2
dimensional array */
o
;
main()
{
double x[Sf4);
int i,j,y,psub5();
for (i=0; i<5;i++)
{ for (j=0; j< 4; j++)

x[i]lj]] = i°10+j;
printf(" %£° x[i][iD;

}
printf (\n");

}
psub5(x);
}

(* Pascal routine that receives a 2 dimensional array from C °)

type myarray = array(1.5,1.4] of real;
(° array to be passed must be declared in a var statement
because a pointer is passed *®)
procedure psubS(var x : myarray);
var i,jinteger;
begin
for j:=1to Sdo
begin
fori:=1to4do
begin
write(” " x[j,i]:5:1);
end;
writcln;
end;
end;

EXAMPLE 12. Pascal calling C as a procedure.
(° Example of Pascal calling C as a procedure L)

program test2(input,output);
var x,y:real;
procedure csub2(x,y:real);external;
begin
x := 69¢l5;
y = 42;
csub2(x,y);
end.

/* C routine that receives two doubles from Pascal ¢/

csub2(x,y)
double x,y;

printf("%f, %0’ x,y);
}

EXAMPLE 13. Pascal calling C as a function.

(* Example of Pascal calling a C subroutine as a function °)

program test4(input,output);
var x,y:real;
(* C subroutine declared as a Pascal function)
function csub4(xreal):real;external;
begin
x := 8130673.61536374653;
y := csub4(x);
writcIn(’the square root of ’,x,’ is AN
end.

/* Example of a c routine that is called as a Pascal function °*/

csub4(x)
/* recals in Pascal are doubles in C %/
double x;

{
double y;

y=sqri(x);
return(y); /° must include return value on return statement L7

EXAMPLE 14. Pascal calling C passing a
2-dimensional array.
(° Example of pascal passing a 2 dimensional array to C °)

program test6(input,output);
type myarry = array[1.5,1.4] of real;
var x: myarry;

i,j:integer;
proccdure csub6(var x: myarry);external;
begin
for j:=1to 5do
begin
fori:=1to4do
begin

x[j,i] = j*10+i;
write(’ "x[j,i}:5:1);
end;
writeln;
end;
csub6(x);
end.

(Example 14 continues next page)

NRRN5

(Example 14 continued)
/* C routine that receives a 2 dimensional array from Pascal
csub6(x)
double x[5[4];
{
int i,j;
for (j=0; j<5; j++H) {
for (i=0; i< 4; i++) {
printf(" %f" x[j[iD;

}
printf(\n");

EXAMPLE 15. Pascal calling C passing a character
string.
(* Example of Pascal passing a string to a C subroutine °)

program test8(input,output);
(° dcclare a string as a packed array of char °)
type string = packed array[1.80] of char;
var st : string;
ct : integer;
procedure csub8(var st: string);external;
begin
write(‘enter string: °);
for ct := 1 to 80 do
if not eoln and not eof then read(st[ct])
else st[ct] := chr(0); (° C requires the null terminator 9
readln;
csub8(st);
end.

/® C routine that receives a character string from Pascal */

csub8(st)
char *st;

{
printf("%3\n" st);

AN UPDATE ON TEK’s SOFTWARE

TOOLS PROGRAM

Chuck Martiny is the manager of the Software
Center, part of the Computer Science Center.
Chuck joined Tek in 1976 from the Computer
Sciences Corporation with more than 20 years in
software development and other software-related
experience. He holds a BSEE from the University
of Arizona.

The Software Tools Program is almost one year old. Al-
ready, parts of the program are adding to the knowledge
and productivity of engineers throughout Tek. Other parts
are still developing - standardizing on a UNIX version for
Tektronix, for example. This article reports on who is do-
ing what and details the help and training now available to
Tek software engineers and software users.

The Software Tools Program was developed in the Technology
Group's Software Center. Formed in 1980, the Center helps im-
prove the productivity of software engineers and the quality of
software developed by the product groups at Tektronix. (Soft-
ware Center services are described in the sidebar.)

‘The Software Tools Program Today

In 1982, the Software Center surveyed software users at Tek.
After evaluating user responses to this annual survey, we de-
cided two areas needed extensive study:

(1) The software tools that Tek and the industry are using

(2) The tools Tek will need for the greatest productivity in the
future

After Norm Kerth (now in GPP) conducted the study, we con-
cluded that the Center should concentrate on UNIX as an oper-
ating environment and that Tek needed to concentrate on seven
areas within UNIX:

e A Tek-standard UNIX
Production-quality compilers

A configuration-management system
A high-level-language debugger
Specification and design tools
Software-test tools

Based on these conclusions, we have developed a proposal

as part of the Software Tools Program. Our study is detailed in a
report that served as the justification for the Tools Program. The
report stressed Tek's need to standardize on a few high-quality

tools. With these standard tools:

-l TECHNOLOGY
REPORT

o Software engineers could share information and programs,
reducing product-development time.

e Spend less time and money maintaining the many sets of
tools now in use.

e Improve the quality of Tek products — with less effort and cost -
by using proven tools and software modules.

Seven Groups Work for the Success of the Tools
Program

For efficiency, the Tools Program was divided into six parts, giv-
ing most program responsibilities to talent within five existing
and two new Tek organizations: The UNIX Steering Committee
(new), the UNIX Training group, the Tools Support group (new),
the UNIX Documentation group, the UNIX User Assistance
group, and the UNIX System Support group. These six opera-
tions, plus the Software Center, compose the Software Tools
Program.

Although the Software Center was the driving force behind the
program and continues to coordinate many of the activities, the
Tools Support group is the only part reporting into the SWC.

UNIX Steering Committee

The Unix Steering Committee works to assure that Tektronix
uses a single, standardized version of UNIX, and that this ver-
sion is well supported throughout the company. The steering
committee also recommends and establishes corporate UNIX
strategies and works to resolve issues requiring agreement by
the operating divisions.

Tek’s current UNIX standard is an enhanced version of Berkeley
4.2. The Committee is defining the version for the next release.
In this consideration, the primary issues are the release’s com-
patibility for development, its match to future product require-
ments, and its conformance with national standards.

For more information about UNIX Steering Committee activities,
contact chairman Jon Marshall at 685-2233 or Chuck Martiny at
627-6834.

UNIX training

Technical Communications (in the Scientific Computer Center,
managed by Carolyn Schloetel) provides UNIX training as sup-
port for those doing product development. This is on-the-job
training for programmers, design engineers, and manufacturing
and support personnel.

Three staff instructors have developed and are teaching classes
for novice users (introduction, files and directories, mail, and the
vi and ms commands) and intermediate users (Systems Work-
shop). Other classes are being developed for shell programming,
4.2 internals, device drivers, and UNIX tools.

Videodisc courses on UNIX fundamentals and C programming
are offered. Two interactive videodisc systems are available for
student use by rental from Technical Communications. Because
this computer-based instruction is interactive, users can learn at
their own speed or address particular areas of UNIX. For details
call Carolyn Schloetel, 627-1762.

THE SOFTWARE CENTER
Among the services the Software Center provides are:

Tools Support - The Center researchs, evaluates, selects,
and obtains major software packages to help engineers
with their software tool needs.

Software Center Information Exchange — A collection of ex-
ample and reference documents for software engineers
and project managers. It includes more than two hundred
documents in 21 categories covering topics such as post-
project reviews, product-design and evaluation documents,
and project-management plans.

Consulting — Members of the Software Center are available
to help you during any phase of your project, particularly
with tools and methods for the design and development of
software products.

Corporate Archiving — The Center archives Tektronix prod-
uct software and assists others with procedures aimed at
assuring proper archiving of all Tek software and software
tools.

Tools support

Based on the evaluation of engineering needs, we formed a
Tools Support Staff within the Software Center. The staff, led by
Tom Milligan, has these objectives:

e Help the divisions identify, acquire and install S/W develop-
ment tools

e Help engineers solve their problems in using supported tools

o Assure that error-fixes are professional and timely

e Provide an on-line catalog of available and supported tools at
Tek.

A major service of the Tools Support Staff is helping project
leaders develop phase-by-phase tool plans early. The staff can
help you select the best tools for functionality, reliability, ease of
use, level of support, and cost.

The tools staff can also coordinate in-house tool-use training.
Training is done with instruction documentation or by groups
within Tektronix.

UNIX documentation

Documenting UNIX presents many challenges, for example, the
conversions from 4.1c to 4.2 bsd and the introduction of ECS
UNIX.

To date, both ECS-related documentation and 4.2 Berkeley re-
prints have been published by Technical Communications (in
the Scientific Computer Center). Nancy Peate, UNIX documen-
tation project leader, now coordinates the compilation and
distribution of Tektronix manual pages (local Tek mods). She
also handles orders for the USENIX user’s and programmer’s
manuals (4.2 Bsd).

TN 7

UNIX documentation, textbooks, tutorials, and manuals are avail-
able from Hazel Ade in Technical Communications, 627-1771
(76-036). New publications and UNIX tutorials are announced in
CSC INTERFACE. To receive the INTERFACE, call Editor Nancy
Peate, 627-1763.

UNIX-user assistance

User training ~ The UNIX operating system is extremely power-
ful. It's also difficult to learn. And there are few UNIX experts at
Tektronix. For these reasons, the UNIX User Assistance group
provides on-site training and support to help software engineers
to become proficient in UNIX quickly.

Telephone help — Users can get telephone help from the Scien-
tific Computer Center’s Applications group:

In Beaverton, call Don Hauge at 627-5245.
At Walker Road, call Byron Rendar at 629-1630.

UNIX questions can be sent via electronic mail to tektronix/unix-
help. Walk-in customers are also welcome at all three sites.

Questions ranging from simple to complex have been answered
with the help of the Small Systems Support Group (S3G). S3G is
part of the Scientific Computer Center.

UNIX systems support

The UNIX Small Systems Support Group (S3G) existed before
the Software Tools Program. The group’s former responsibilities
have been changed to support the new program.

Bob Perry, group manager, has established ways to install and
support Berkeley UNIX version 4.2 on Tektronix VAX computers
until the Tek standard version is ready. Upon installation of a Tek
Standard UNIX, S3G will provide the Tektronix engineering com-
munity with bug fixes, extensions and other changes.

Installation of version 4.2 Berkeley UNIX is complete on most
existing systems.

Summary

We have looked at the status and progress of the Software Tools
Program and its major commitment to helping develop a Tek-
tronix Unix, standardized and supported across product groups.
Today, Tek engineers have access to training, on-line help, and
documentation that just a short time ago were virtually non-
existent for UNIX. Soon more, and more powerful, software
development tools will be accessible.

For More Information
For more information, call Chuck Martiny 627-6834. [

FACTORS IN DESIGNING
ONLINE DOCUMENTATION

By Herb Weiner, all rights reserved.

Herb Weiner is a senior software engineer in the
Information Display Division. Among his responsi-
bilities is the design of the user interfaces in IDG
products. Herb serves on the Tektronix User Inter-
face Coordination Committee. He is a member of
ACM SIGDOC, SIGGRAPH, and SIGCHI, the Com-
puter Systerns Group of the Human Factors Society,
and IFIP Working Group 6.3 on Human-Computer
Interaction. He received his BS degree in engi-
neering from Cornell University.

This article will appear as a chapter in the forthcoming
Handbook of Systems Documentation, edited by Diana
Patterson, to be published by VanNostrand Reinhold. This
article must not distributed outside of Tektronix, Inc.

Requirements of Online Documentation

Online documentation must satisfy a more rigorous set of require-
ments than printed documentation. If most of these requirements
can not be satisfied, the user may be better off with more tradi-
tional documentation. Some applications (e.g., installation in-
structions, service instructions) are not suitable for online docu-
mentation. Good online documentation requires more than just
placing a manual online.

Should be as flexible as printed documentation

Online documention must provide all of the flexibilities of a
printed document. The reader must be able to pick up and put
aside a document at will, whether it is printed or online. Systems
which require the user to terminate the task at hand (e.g., exit
from an editing session) to use the documentation are not ac-
ceptable. The user must be able to skip around (flip pages)
within a document, and refer to several documents simulta-
neously. Referencing an online document should not obscure
the displayed work in progress; but if it does, it should be possi-
ble to restore the contents of the display after finishing with the
online documentation.

Must be concise

Online documentation must be more concise than printed docu-
mentation because the capacity of most displays is less than a
printed page, and because updating displays typically takes
longer than turning a printed page. Printed documentation makes
use of spacing, font styles and sizes, and graphics to separate
topics, lead the reader’s eye, and illustrate concepts. The ideal
display for online documents would have these same capabili-
ties. In practice, documentation must often be designed for use

1 TECHNOLOGY
REPORT

on a variety of displays, some of which are barely adequate. In
some situations, the display capability may be so limited (e.g., a
microwave oven) that online documentation is not even feasible.

Direct access needed

Limitations in the speed with which information can be displayed
necessitate a more direct means for locating information than
flipping pages in a manual. These limitations are more severe
when data communications speeds are the limiting factor. An
online index can provide direct access; an even more direct
path can be provided by keying the information to the current
task. For example, pressing a HELP key could provide online
descriptions of the options available to the user. Pressing the
HELP key immediately after an error message could provide
more information about the error and the appropriate corrective
action. Users may find it convenient to place “bookmarks” at
spots in the online documentation, so they can easily return to
the same point later.

Users may want hard copies

Online documentation has the disadvantage that it can only be
used on the system. Unlike a printed document, users can not
make notes in the margins of online documents. Thus, users
may want printed copies to carry away or annotate. While it is
sometimes satisfactory to queue a print request to a shared
printer for later delivery, users often want the hard copy right
away.

Integrating online and printed documentation

Online and printed documentation should be closely integrated
for information consistency and to simplify the document crea-
tion and maintenance. One approach is to write the documenta-
tion using a set of formatting macros (a general markup lan-
guage). This technique allows the same information to be for-
matted for either online or printed documentation. If the informa-
tion is concise and well organized for use as online documenta-
tion, it will probably be a good base for the printed documenta-
tion, even if the printed documents are to be more detailed.

Good online documentation needs to be closely integrated into
the user interface. Only through such close integration will it be
possible to key the online documentation to the task at hand.

Requirement: Serving Varied Users

It is widely recognized that printed documentation must serve a
variety of users. Often, this requirement is achieved by providing
multiple documents; for example, a tutorial manual, a reference
manual, and a service manual. This separation is not usually ob-
vious with online documentation, since the same information can
be accessed in several ways. For example, an entire document
could be presented sequentially (in small units) as part of a tu-
torial, while individual sections could be presented (for refer-
ence) when the user presses the HELP key. Organization of on-
line documentation to support such varied use requires more ef-
fort in the planning stages, but can reduce the amount of writing
needed.

Reference organization

Reference documentation needs to be organized to enable users
to rapidly find answers to specific questions, so that they can
proceed with the task at hand. The most common requirement
is to determine the syntax or semantics of a specific command.
Sometimes, a user may need to determine the name of a com-
mand which will perform a specific function. A good online help
system will also answer questions about equipment (e.g., termi-
nals, printers), services (e.g., rates, hours of operation), or other
information (e.g., where to look, who to ask).

Tutorials

Tutorials need to provide general (overview) information as well
as specific information. Prolonged usage is common, perhaps
spanning several sessions, since the learning is the task at hand.
Usage of a tutorial is not necessarily followed by usage of the
system. However, a tutorial may involve directed use of the sys-
tem. For example, the EMACS editor tutorial involves using
EMACS on a special file which describes the EMACS commands,
tells the user when to try them, and then explains the results.
The tutorial on the Apple Lisa also involves using the system,
but in an environment that provides assistance if the user makes
an error.

Document authors and updaters are users too

Remember that the people who write and maintain the online
documentation are users too! They need to be able to update
the documentation with consistency when a system changes;
they need to perform global searches and updating. If a docu-
ment is divided into many small units to support direct access to
the required information, it may be difficult to perform such global
maintenance using the standard editor, and special mainte-
nance tools may be needed.

User created documentation

If an online documentation system is good, users or groups of
users may want to integrate the documentation for their own ap-
plication into the system. Since this documentation may describe
applications not available to all users, individual users should
not be allowed to change the master copy of the documenta-
tion. Furthermore, they should not copy the master documenta-
tion and then update that copy, since subsequent changes to
the master would not change their private copy. Users should
see consistency between treatments of system-provided ap-
plications and documentation and user-provided applications
and documentation. That is, the user should be able to build an
environment in which his or her application programs appear to
be “standard” system facilities.

Foreign language documentation

If a product is being developed for international markets, foreign-
language documentation can be important. For this reason, it is
a good idea to avoid English-language dependencies in the de-
sign of online documentation. For example, compact hash tables
or alphabetical organizations optimized for English keywords
may not operate well (or at all) after translation to a foreign lan-
guage. Such techniques should be avoided anyway, since they
make it more difficult to extend or modify the system, even in
English.

gl

%* L
: Computer Center Rates :
% 3K K 2 4
¢ Period ! Item : Rate :
% % * x
1 B8: AM ¢ CPU Time ¢ 108.08/Hour !
H to % 23 %K
¢ 5:00 PM ! Connect Time ¢! 25.00/Hour
%* % % *
' 5:00 PM ¢ CPU Time ¢ 58.88/Hour
H to X > < %
: B:00 AM : Connect Time ' 10.08/Hour
* % % %

Figure 1. A table constructed using ASCII characters.

Online documentation not always appropriate

Online documentation is not appropriate for every product. It re-
quires storage, whether disk-based or memory-based. If online
documentation can be shared by users, each of whom would
otherwise need their own copy of the printed documentation (as
in a host-based, multi-user system), online documentation can
be less expensive than printed documentation. Conversely, on
a single-user system, online documentation might be more ex-
pensive than printed documentation. Although this higher cost
may be justified by increased productivity the cost-benefit trade-
off should be evaluated for each situation.

Forms of Online Documentation

The appropriate form of online documentation depends upon dis-
play and hardware capabilities, the characteristics of the user,
and the information to be communicated.

Text

Textual documentation is the most common form of online docu-
mentation. It is the easiest to create and maintain. Furthermore,
it requires the least operating system support while supporting
the widest variety of terminals. Finally, text can generally be dis-
played more rapidly than other forms of online documentation.

Graphics

Graphic documentation more effectively communicates certain
information than does pure text. Graphic communication does
not necessarily mean pictures! As with print, proper spacial
placement of text can graphically improve effectiveness. Lists
(one item per line) are the most effective way to present alter-
natives, even though lists leave a lot of blank space on a display
which already has a very limited capacity. If capacity is a prob-
lem, multiple columns improves display utilization.

Some information is well suited for presentation using a table.
The ASCII characters “*” (42), “-" (45) and “|” (124) can be
used to construct elaborate tables, even on displays which do
not support graphics or have a ruling-character font. Figure 1
shows an example of such a table.

Documentation employing graphs is less common than docu-
mentation containing tables. Nevertheless, such graphics can
be presented, in a crude fashion, even on non-graphic displays;
such a technique has long been used to create graphs on char-
acter printers. Figure 2 shows such a graph.

Sophisticated graphics

Displays with more graphics capabilities can be used for line il-
lustrations; more sophisticated displays may support filled areas,
shading, and/or color. The XEROX Star allows simple animation.
One such animation documents the paper path through a copier
for service training. The PLATO system allows 35 MM slides to be
projected from behind the display and combined with computer-
generated graphics. Another possibility is to combine camera
video with computer graphics.

Audio

A less common form of online documentation is audio. Audio
documentation should be considered where the eyes are not
available to examine documentation (e.g., while operating ma-
chinery) or where display is limited (e.g., a microwave oven).
Audio should not be used where it would distract others or where
the user might not accept it (psychologically). In preparing audio
documentation, voice (e.g., male and female, authoritative or
friendly) is an additional factor to consider.

¢+ Typical response time as Aokok

¢ a function of time of day Rk olokok

: Notojokokok Aok

H sopojok x

: sotolotok %

: Rojojok Hoiolok *

: prietletorie ot ook x

. solciolcioic Aok

¢ ololok Mok

Holojoic Nok

: Holololok
8AM 9AM 1B AM 11 AM Noon 1 PM 2PM 3PM 4PM SPM 6PM 7PM 8 PM

Figure 2. A graph constructed using ASCII characters.

2 TECHNOLOGY
REPORT

Loosely Coupled Online Documentation

It is convenient to classify online documentation into three cate-
gories based upon the relationship between the information con-
tained and the system on which the documentation is imple-
mented. The first category encompasses documentation which
is loosely coupled to the system on which it is implemented.
Such documentation can provide information about the system
on which it is implemented, or it could provide information about
a different system or even computer-based tutorials unrelated to
computers. (The other two categories, input assistance and er-
ror messages are closely coupled to the system on which they
are implemented. These categories will be discussed in the next
section.)

Sequential organization

Loosely coupled documentation can be organized sequentially,
hierarchically, or randomly. The distinction depends upon the
nature of the pointers, or cross references, which the system
can follow to locate the desired information. Such pointers are
analogous to a “see page 23" or “see section 5.2” in printed
documents. Sequentially organized documentation does not
contain such pointers; consequently, only complete units of the
documentation can be displayed, starting at the beginning.
Thus, to obtain any information about a particular command, it
would probably be necessary to display all documentation for
that command.

The UNIX system includes a sequentially organized online docu-
mentation system. The MAN command displays all documenta-
tion for the specified command(s). The WHATIS command is simi-
lar to the MAN command, but it displays only the summary line
describing the basic purpose of the command. The APROPOS
command searches the summary lines of each command and
displays the summary lines which contain the specified key-
word. For example, APROPOS EDITOR displays the summary
line for all commands containing the word EDITOR in the sum-
mary. The WHEREIS command can be used to locate the source,
binary, and/or manual file(s) for the specified command.

Hierarchical organization

Hierarchically organized documentation can be accessed by
major headings, as in a traditional outline; for example: Pur-
pose, Syntax, Files Referenced, Options, Algorithms Used, Er-
rors Generated, and Related Commands. Each major topic
could be further subdivided:; for example, the documentation for
a compiler would probably contain a separate section describ-
ing the source file, the listing file, and the object file. If the user
requested information on FILES, the system could then provide
an overview of the three files used and, if requested, details on
a specific file. A user should not be required to know or specify
the fully qualified path to the desired information when using a
hierarchically organized online system. Thus, HELP PASCAL
LISTING should be sufficient to obtain information on the listing
file; HELP PASCAL FILES LISTING should be acceptable but
not required. Context plays an important role. Thus, after re-
questing HELP PASCAL FILES, HELP LISTING should be suffi-
cient to obtain information on the PASCAL LISTING file.

Hierarchically organized documentation does not necessarily have
to be implemented using pointers. For example, the Cornell Uni-
versity HELP system is hierarchically organized from the users’
perspective. However, it is implemented using sequential files
which contain the hierarchical information on special control
lines; the desired information is located by searching through
the sequential files rather than following pointers.

Random organization

The pointers in randomly organized documentation are not re-
stricted to the hierarchical organization described above; they
can point to information at the same, higher, or lower level in the
same or another document. Thus, information on the PASCAL
LISTING file described above may reference (point to) informa-
tion on the PASCAL CROSSREFERENCE option, which affects
the amount of information written to the listing file. Similarly, in-
formation on the PASCAL CROSSREFERENCE option would
reference the information on the PASCAL LISTING file. On the
display, such references might be indicated by an asterisk
(analogous to a footnote). Ideally, it should be possible for the
user to follow such a reference simply by pointing to the aster-
isk. A button would be provided to allow (but not require!) the
user to return to the previous context after following such a
reference.

The Xanadu system, first described by Ted Nelson in 1974, is
the first system to support randomly organized documentation,
or hypertext, as Ted Nelson calls it. Xanadu even allows pointers
between alternative and/or previous versions, and allows alter-
native and/or previous versions to be compared to locate dif-
ferences at the word level. These pointers can also be used to
construct new documents which logically encompass portions
of existing documents without actually copying the existing
information.

Closely Coupled Online Documentation

The other two categories of online documentation involve assis-
tance in input entry and error messages; these messages pro-
vide assistance after an error has occurred. Both of these
categories of online documentation must be closely coupled to
the system on which they are implemented. Unless the design
of such online documentation begins early in the design phase,
the results will almost certainly be less than satisfactory.

Command entry

Input assistance can assist in command entry. One approach is
to use traditional keyboard entry of commands, and to provide
special keys that the user can press for assistance. Digital Equip-
ment Corporation used this approach in designing the TOPS-20
operating system. During command entry, the user can enter a
question mark and the system will immediately respond by tell-
ing the user what is expected. If an option is expected, the sys-
tem will respond with a list of the valid options. Unfortunately,
the responses are sometimes vague. For example, if a question
mark is entered to determine the parameters of the COPY com-
mand, the system will respond that a filename is expected, but it
will not specify whether the expected filename is the source or
the destination.

GO

If the escape key is pressed during command entry, the system
will respond by completing the current field if the characters al-
ready entered are sufficient to uniquely determine the user’s in-
tent; otherwise, the system will ring the bell on the terminal. For
example, if the user types COP and presses the escape key, the
system will type the Y. The escape key also works when enter-
ing filenames or options. Unfortunately, if the entry is ambigu-
ous, the system will not list the possibilities.

If the user presses the backspace key immediately after receiv-
ing an error message resulting from an error in entering the com-
mand, the system will retype the command up to, but not includ-
ing the error. Unfortunately, if the error is near the beginning of
along command, the user must retype most of the command.

Menus

An alternative to traditional command entry is command entry
from menus. Because menus change the task of command en-
try from one of recall to one of recognition, menus are a form of
documentation. For example, a user unfamiliar with a system
may not recall how to produce the final copy of the documenta-
tion after completing some editing. However, that user would
probably recognize PRINT as the correct command if he saw it
on a menu.

System designers should consider the fact that people have dif-
ferent learning styles. Some people are more successful with
tasks described in words, while others respond more favorably
to spacial formats. An advantage of menus over traditional com-
mand entry (words) is that both spacial and verbal cues are pre-
sented simultaneously. In other words, a spacially oriented user
will always find a specific command at a specific position in the
menu.

Usually, menus are displayed on the screen. If special graphic
input hardware is available, the user can pick a menu item by
pointing to it. Otherwise, the user must enter the selection using
the keyboard, usually by typing the item number of the desired
selection. If the quantity of possible commands is large, hierar-
chical menus are often used. The upper-level menu might allow
users to select editing commands, printing commands, backup
utilities, etc. If the user selects printing commands, the next-level
menu might allow the user to select the paper, specify the num-
ber of copies, specify the name of the file to be printed, etc.

Menus and the time to invoke a command

The time required to invoke the command is a function of three
factors: (1) the time required to display the menu, (2) the time re-
quired for the user to search through the menu and make a
selection, and (3) the time required for the user to indicate the
selection to the system.

In contrast, the time required to invoke a command using tradi-
tional command entry is a function of the user’s think time and
the time required to key in the command. For beginners, think
time is the dominant factor, and menus can reduce this think
time. For experts, however, display time is the dominant factor,

and menus can hinder productivity. This is especially true when
an experienced user must pass through several menus in a
system having a hierarchical menu organization in order to get
to the desired command. (Menus are like having help informa-
tion displayed all the time, even when it is unnecessary.)

Tablet menus

Graphic input tablets can provide an alternative to screen menus.
A tablet menu is printed on paper, mylar, etc. which is fastened
to the tablet surface. Entries are selected by pointing to the menu
item on the tablet, without using the display or keyboard. Since
a printed menu is used, the menu can group related items within
boxes, and can employ graphic information or be color coded.
The most significant advantage of tablet menus is that display-
time delay is eliminated. However, since the position of the menu
on the tablet is critical, switching between several menus is not
practical. Also, tablet menus can not be used with other graphic
input devices such as a mouse. In situations where a tablet is
already being used for graphic input, tablet menus are suitable
for experts as well as beginners, since they can reduce the need
to switch frequently between keyboard entry and tablet entry.

Input assistance

Assistance can be provided for entering data as well as for enter-
ing commands. Where data is to be entered in a fixed order,
prompting can be used, but form-fillout is more flexible. How-
ever form-fillout requires special support in the terminal. The
system constructs a form on the display, complete with spaces
to be filled in by the operator. The operator can fill in the spaces
in any convenient order, and can even leave some spaces blank,
if the application allows.

Error messages, the user’s feelings

Error messages provide online assistance after an error is de-
tected. The error-message designer must understand the user’s
point of view in this situation: The message receiver's work flow
has just been interrupted, and he or she may have to correct
something to proceed with the task at hand. This interruption
may produce an emotional state (frustration, stress, surprise,
anger, and/or fear) which makes successful communication
more difficult.

Error message guidelines

Error messages should provide the user with sufficient informa-
tion, in the user’s terms, to identify and correct the problem,
unless the information is not available or being intentionally
withheld (like a password). For example, the message “Insuffi-
cient space to store file on disk” does not provide information
sufficient to correct the problem. A better message might be
“Insufficient space to store file on disk. 103 additional disk
blocks required.” All messages should be as semantically ac-
curate as possible. For example, “File not found” may imply to
an inexperienced user that the file does exist, but has somehow
been lost. A better message would be precise: “File does not
exist.”

2 TECHNOLOGY
REPORT

The error messages should be understandable to the user with-
out referring to additional documentation. For example, the er-
ror message “DISK21 Insufficient space 103,534 cannot be in-
terpreted without additional documentation. The message could
mean “Insufficient space to store file on disk. 103 blocks avail-
able of 534 required [431 more needed]" or “Insufficient space
to store file on disk. 103 additional blocks required of 534 total”
or even “Insufficient space to store file on disk. 103 blocks avail-
able: 534 additional blocks required [637 total].”

If the system is designed for users with widely differing experi-
ence, the error message should be brief, and indicate that more
information is available. Present the most frequently required in-
formation first. There are several reasons for choosing this strat-
egy. First, novices are generally willing to ask for additional in-
formation, provided that information is available; second, many
expert users object strongly to systems which treat them like
beginners. Furthermore, even novices need to see a particular
message only a few times before they understand that message;
however, they are likely to see the message many more times
after they become experienced - and as an “expert,” react
negatively to over-information.

For example, the message regarding disk space (above) might
be changed to read “Insufficient space to store file on disk. 103
additional disk blocks required. Press HELP for more informa-
tion.” If the user presses HELP, the system might respond “Either
delete some files or insert a different disk.” It is this additional
message which tells the user how to correct the problem. ldeal-
ly, the error-message system should both contain pointers to
other portions of the online documentation and consider the con-
text in which the user presses HELP. Thus, if the user presses
HELP again, the system might list only those commands rele-
vant to the current situation; for example: obtain a list of the files
which can be deleted, examine a particular file to determine
whether or not to delete it, and delete specific files.

Finally, it is important for messages to be consistent in how they
indicate the severity of the problem. For example, error mes-
sages (which require explicit action) should be clearly distin-
guished from warning messages (which may often be ignored).

For More Information

For more information, call Herb Weiner 685-3586. [

LIBRARY VIDEO TAPES COVER Al,
INGRES, AND DIGITAL SIGNAL PROCESSING

The Library in building 50 has added three video-taped courses
to its collection. These 3/4 inch tapes may be viewed in the
Library or they may be borrowed.

Twenty-three tapes make up a course on artificial intelligence
given by Patrick Winston, MIT's Al authority. The text for this
course is Artificial Intelligence, by Patrick Winston, published by
Addison Wesley (about $23.00). The text is not essential for the
first part of the course, which covers fundamentals. Because the
Library does not circulate the text, you will have to buy it to
complete the course.

Twenty-two tapes teach an MIT course titled “Digital Signal Pro-
cessing.” The Course is taught by Alan Openheim, whose book
Digital Signal Processing (Prentice-Hall, $33.00) is used as the
text. This book too, must be purchased.

The third new taped course is on INGRES, a relational data
management system. Twelve tapes make up the course.

For more information, call the Corporate Library, 627-5388. [

Technology Report
MAILING LIST COUPON

O ADD Name:

D.S.:

0 REMOVE

Not available to
field offices or
outside the U.S.

MAIL COUPON
TO 53-077

Payroll Code:
(Required for the mailing list)

For change of delivery station, use a directory
change form.

D3

TEKTRONIX
STANDARDS
NEWSLETTER

Technology Report will no longer publish routine information
about new standards and standards activity. This information is
now available in the Tektronix Standards Newsletter. To receive
the newsletter, contact Bonnie Kooken, 627-1799 (78-529). I

COMPANY CONFIDENTIAL
NOT AVAILABLE TO FIELD OFFICES

143d3d AQD3TONHI3L
TIIMNY0D 3 QdVHIIY

GB8Z-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer.

