SOME BASIC CIRCUITS used in TEKTRONIX INSTRUMENTS An expansion of lecture notes prepared by John Mulvey, Field Engineering Revised October, 1960 Additional copies of this publication can be obtained from your Field Engineer or Tektronix Representative or from Tektronix, Inc., P.O. Box 500, Beaverton, Oregon. When ordering additional copies ask for FIP-11, Tek No. 061-139. Price, 25 cents per copy Copyright, 1960 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner. ## SOME BASIC CIRCUITS USED IN TEKTRONIX INSTRUMENTS ### **FOREWORD** Similar configurations appear throughout Tektronix circuitry. A good understanding of these basic circuits aids in maintenance and calibration of the various instruments. Troubleshooting procedures often involve these circuits. Some engineering aspects are discussed where it might prove helpful, although generally the treatments are as brief as possible. The sequence of the descriptions are arranged so very little repetition of certain principles needs to be made; an understanding of one circuit should pave the way for easier understanding of subsequent ones. Accordingly, any random reference to the descriptions should be made with the realization that an understanding of foregoing principles may be required. The notes do not cover all the basic circuits used. Only those circuits are described which are considered to be especially important or unconventional. ## CATHODE FOLLOWER (GENERAL) The Cathode Follower has two special characteristics which make it essential in some applications: Low output impedance and low input capacitance. The output impedance of a cathode follower is not basically determined by the value of the cathode resistor used, but is roughly equivalent to the reciprocal of the transconductance of the vacuum tube used, at the point where it biases itself. Output impedance is typically in the order of a few hundred ohms. For instance, a tube which can be operated as a cathode follower in a condition where its transconductance is 5000 micromhos (.005 mhos) will have an internal impedance of about 1/.005 or 200 ohms. If, in this situation, the proper cathode resistor should work out also to be 200 ohms (as in Circuit No. 1), the output will be a load equal to the cathode follower impedance and only about one-half of the signal voltage will appear at the cathode as appears at the grid. Cathode followers that swing down from a quiescent level as well as up will usually be biased about half-way between cut-off and zero bias. Cathode Followers with low-impedance loads cannot follow large grid signals without severe distortion occurring due to grid-current flow on positive-going swings, or to the tube cutting off on negative swings. There are two reasons why the input capacitance of a Cathode Follower is lower than other configurations: - 1. There is no Miller-effect capacitance because the plate voltage does not change. - 2. Only part of the grid-cathode capacitance adds to the input capacitance since its charge changes by only a fraction of the voltage through which the grid swings. The manner in which the effective grid-cathode capacitance is reduced can be visualized in another way by considering the low-impedance cathode signal as assisting the grid signal. This principle can be utilized to raise the low-frequency input impedance as well as the high-frequency input impedance. (See Circuit No. 2) ## CATHODE FOLLOWER (GRID RETURNED TO CATHODE CIRCUIT) The low-frequency input impedance of this circuit is raised much higher than the value of the one-megohm grid resistor. The signal voltage at the bottom end of the grid resistor follows and is nearly equal to the grid voltage; the difference between input and output appears across the grid resistor. This difference voltage is only about 10 percent of the input voltage (in this case), and the current through the one-megohm resistor is only about one-tenth of what it would be with full signal voltage across it. The current that does flow is a measure of input impedance, and indicates that the input impedance (for low frequencies) is raised about 10 times to about 10 megohms. The total cathode resistance is 2000 ohms for this figure; 10 times what it was when the bias resistor was returned directly to ground. For a given input signal the cathode signal will be nearly double what it was with just a 200-ohm load. That is, the cathode will follow the grid about 90 percent of the way through its voltage excursions instead of only about 50 percent. The reason for the improved following-action is that a much smaller cathode current change is required through 2000 ohms than through 200 ohms to produce a given cathode voltage change. The grid-cathode voltage then (the difference-voltage between input and output) will be only large enough to account for the small current-change needed to establish the output voltage, and the output will be more nearly equal to the input. An input capacitor is shown to indicate the probable need to isolate the quiescent +9 volt grid-to-ground voltage from the signal source. ## CATHODE FOLLOWERS (LONG-TAILED, OR CONSTANT CURRENT) If the cathode resistor of a Cathode Follower returns to a voltage well below the grid level, the cathode is said to have a long tail. When the quiescent grid voltage is at ground level (zero volts) a negative supply voltage is of course required. This is a good arrangement for input circuits since it makes an input capacitor unnecessary, permitting DC coupling when desired. The further below the grid level the cathode supply voltage is, the higher must be the value of the cathode resistor to maintain equivalent bias and current for the Cathode Follower. The higher the cathode resistance, the more favorable is the following action of the cathode, and higher amplitudes of grid signal swing can be handled. Long-tailing of cathodes adds another important feature: stability of gain. For a given tube operated with a given plate (or screen) voltage, the transconductance is primarily a function of the cathode current. Constant cathode current is therefore important for gain stability in any amplifier circuit where the gain depends primarily on transconductance. Cathode-emission changes occur with changes of filament voltage (temperature) and with tube aging and tend to change the cathode current. Ordinarily, self-biasing circuits reduce such changes but long-tailing of cathodes further reduces the changes and approximates a condition of constant current. When a long-tailed cathode-follower has to drive a considerable capacitive load, a rather unusual thing happens: It can follow better (faster) going up than coming down. The rate at which it can charge going up is limited only by the rate at which zero bias (full) cathode current will charge the capacitance. Coming down, the discharge rate is limited by the time constant of the cathode resistor and the load capacitance. At high frequencies (or short rise-times) even very small capacitive loads may impose limitations on the following-action of long-tailed Cathode Followers. Circuit No. 3 behaves very much the same way as No. 2 except that the input impedance is no higher than the grid-to-ground resistor. Because the grid returns to ground, however, the input signal can be directly coupled to the grid. The network consisting of R₁ and C₁ can be inserted with no effect upon the normal operation of the circuit. Its purpose would be to prevent excessive grid current in the event too high a positive voltage was applied to the input. of the williams and discorp sources 0 . 2.0 00) Circuit No. 4 acts essentially the same as No. 3 with improved following-action, improved gain stability and ability to handle larger grid signals. Circuit No. 5 is a slight improvement over No. 4 in the same respects as No. 4 is an improvement over No. 3. Its cathode supply voltage of -149 volts is nearly typical of the -150 volts used so frequently. In fact, if the supply had actually been made -150 volts, the current would be different by only three-fourths of 1 percent. Even normal variations in tolerance of 1-percent resistors could account for as much difference. Circuit No. 6 is the same as No. 5 except that the grid is 149 volts above ground, which allows the cathode to return to ground instead of to a voltage below ground. Circuit No. 7 shows a pentode tube substituting for the cathode resistor. Pentodes can be operated with very high plate resistance (in the order of a megohm); in this way they have the effect of extending the negative supply voltage many hundreds of volts and make the constant-current characteristic extremely flat. Circuit No. 8 is the same as No. 7 except the cathode of the pentode is supplied from ground. The grid circuit is shown able to accept special control voltages. This permits the cathode resistance of V_2 to become dynamic. One use of this special characteristic is to permit any cathode-follower load capacitance to discharge faster than it otherwise would be able to, as for fast negative-going sawtooth (sweep) voltages. In this case, a suitable control voltage is available by differentiating a simultaneous positive-going sawtooth voltage. A differentiated sawtooth voltage, except at its very beginning, produces a constant voltage proportional to the rate of voltage change. At a - May the first and parties of the ground the ## CATHODE-COUPLED DC AMPLIFIERS If a cathode follower is used to drive the cathode of a second tube instead of its grid (Circuit No. 9) its grid may be operated at a fixed voltage and the advantages of grounded-grid operation will result. Such a circuit permits the two cathodes to share the same resistor. If both tubes have the same transconductance, only about one-half of the input signal will appear at the cathode, since the cathode impedance of V_2
will be the load for the cathode follower \hat{V}_1 . The gain through such a circuit will be only about one-half of what might be expected, since the signal at the cathode (1/2 of the input signal) will be the grid-cathode signal for V_2 . Notice that there is no phase reversal between the output signal and the input signal. A - 1 2 2 In Circuit No. 10 the input signal is put on the other grid and the grid of V₁ is grounded. V₁ serves to decouple the cathode signal and is about 50 percent effective, leaving about half of the input signal at the cathode as degeneration. The gain either way, then, is about the same. The primary difference is that the improved bandpass of grounded-grid operation may be lost due to the Miller-effect when operated in the second way. If a suitable pentode is used for the second half, the Miller-effect is reduced and nearly equal gain and bandwidth characteristics result for the two modes, as in Circuit No. 11. #### CATHODE-COUPLED VOLTAGE COMPARATOR AMPLIFIERS In the foregoing cathode-coupled circuits, the quiescent DC level of both grids was ground. If there was a difference between the two DC levels, the DC output level would indicate which input level was higher. That is, if the grid of V_1 were slightly higher than the grid of V_2 , the output plate voltage would be considerably higher than normal; if the grid of V_2 were slightly higher than the grid of V_1 , the output voltage would be considerably lower than normal. The output voltage, then, is a measure of how closely the instantaneous voltage on the two grids compares and is an indication of which is higher. The circuit is a voltage comparator as well as amplifier. If a means is provided for manually fixing the DC level of one grid, as in Circuit No. 12, the output plate voltage will swing through a definite region whenever the input signal voltage crosses through a level equal to that of the fixed grid. The fixed grid is by-passed with a capacitor considerably larger than the grid-cathode capacitance to allow fast-changing cathode voltages to fully charge and discharge the grid-cathode capacitance. As long as the cathodes are long-tailed, the range of level adjustment can be quite large, giving the circuit the ability to compare widely different levels on any signal. The use of a pentode for the common cathode resistor permits more accurate comparisons over a wider voltage range, especially for upward swings. (See Circuit No. 13) If a plate resistor is added in the plate circuit of the cathode-follower section of circuits 9, 10, and 11, output signals of both phases are available simultaneously. If the two tubes are of the same type and have plate resistors of equal values, as in Circuit No. 14, the two output signals will be well balanced push-pull voltages. This circuit is a paraphase inverter with a long tail. The long tail provides especially well-balanced output signals as well as good gain stability. The 50 percent loss of gain is recovered by having a push-pull signal result from a single-ended input. This circuit, by being symmetrical, has very good hum-free, drift-free characteristics. For instance, power supply ripple voltage at the two plates will be equal and of the same phase and so produce no push-pull output. A REST DIFFERENTIAL AMPLIFIER If balanced push-pull signals are applied to each grid of Circuit No. 14 (as in Circuit No. 15), there will be no cathode signal, and no degeneration. Balanced signals are those which have equal amplitudes but opposite phase. As long as a positive-going signal on one grid is accompanied by an equal negative-going signal on the other grid, an increase in current in the first tube will be accompanied by an equal decrease in current in the second tube, and the net change in current through the cathode resistance will be zero. This holds true essentially as long as either tube does not get cut off or draw grid current: "Class A" operation. If one tube should get cut off, strong degeneration for the opposite tube takes place and is usually desirable. If quiescent bias is not too close to zero volts, one tube will cut off before the other draws grid-current whereupon the conducting tube acts like a cathode-follower and will not draw grid current even with large positive-going signals. In a push-pull amplifier with common long-tailed cathodes, it is the out-of-phase signals in the two halves which are amplified; in-phase signals suffer strong degeneration and are attenuated. Besides being attenuated, equal in-phase signals that get to the output deflection plates are basically incapable of producing deflection anyway, since beam deflection is determined by the difference in deflection plate voltages rather than deflection plate voltage with respect to ground. A push-pull amplifier that does a good job of cancelling equal in-phase (common-mode) signals is called a differential amplifier, since only the difference between two input signals is manifested at the output. The manner in which cancellation of common-mode signals takes place might be explained further: To test for common-mode cancellation one signal is applied to both inputs and any output observed. Input signal amplitude should be increased until some output is observable. The common-mode rejection ratio will be the ratio of the input signal amplitude applied in this way to the input signal amplitude required to produce the same deflection when applied to one input only. Using only one signal at both input grids requires that the two grids be tied together. Since the grids are tied together and the cathodes are tied together, the two inputs behave as one input with very strong cathode degeneration. That is, a grid signal produces very little change in cathode current so there is very little plate signal. Even with plate resistors equal in value to the cathode resistor, just about one-half as much signal voltage would appear at the plates as appears at the grids; a loss instead of a gain. Subsequent stages further attenuate the signal. ### PUSH-PULL STAGE GAIN CONTROL If, instead of using just one cathode resistor in a push-pull stage two are used (that have a parallel equivalent value equal to the one), a single variable resistor between the cathodes will control the gain. To understand why, imagine that the resistor is variable between zero ohms and infinity. Thus when the resistance is zero ohms, the tops as well as the bottom ends of the two resistors are tied together and appear as one resistance, and the circuit has maximum gain. With the variable resistor at infinity, the cathode circuits are completely isolated and there will be maximum cathode degeneration. The variable resistor serves as a degeneration control for both tubes. ## HIGH-FREQUENCY EQUALIZATION To extend the high-frequency response of an amplifier, at the expense of low-frequency gain, a frequency discriminating degeneration control can be used. A small cathode-bypass capacitor is practical in single-ended amplifiers. In a push-pull stage, a similar arrangement is shown. ## RC VOLTAGE DIVIDER (CIRCUIT NO. 18) An RC voltage divider (or attenuator) is basically a resistance divider modified to divide high frequencies by the same amount as low frequencies and DC. Any capacitive load connected at the junction of a resistance divider (i.e. grid capacitance) can affect the attenuation ratio. The reactance is negligible at low frequencies; at high frequencies the effective divider ratio will increase. A capacitor (C1) may be added to the non-loaded leg of the divider which compensates for the capacitance of the load. As a result we have a resistance divider in parallel with a capacitance divider. It is usually necessary to use an adjustable capacitor to provide precise compensation. When a complex waveform is fed through an ideal properly-compensated RC divider, all of its frequency components are attenuated equally, and the true wave shape is preserved. This suggests a simple method for the proper compensation of an RC divider. Square waves have both high- and low-frequency components, and their shape is easily recognized; they make an ideal test signal for adjusting or for verifying proper adjustment of RC divider. The square wave itself must have sufficiently short risetime, no overshoot, and a flat top. A suitable frequency is determined mainly by the RC time constants of the RC divider. It is interesting to note that the time constant for the RC elements in the top half of an RC divider equals the time constant for the RC elements in the bottom half when the divider is properly adjusted. There is no specific square-wave frequency which is ideal for adjusting a given RC divider. The main thing required is that the frequency be low enough so that the period for one half-cycle is longer than one RC time constant of the divider. The risetime of a square wave suitable for adjusting RC attenuators does not necessarily have to be as short as that needed to adjust the transient response of the amplifier following the RC attenuators. If the risetime is shorter than about one-tenth of the RC time constant of the attenuator, adequate adjustments can usually be made if strict attention is given to matching the actual shape of leading corners rather than to making each appear as square as possible. The passive high-impedance probes usually needed to introduce the signal into the scope are essentially compensated voltage dividers. Use of these probes requires that the impedance of a stepped input attenuator remain constant through its range of steps. Shunt trimmers are provided for making the input capacitance to the scope constant from range to range $(C_2 \text{ and } C_3)$. C₄ is another type of shunt trimmer often provided. This one trimmer permits re-establishment of proper RC compensation for the entire set of step-attenuator adjustments whenever the input tube characteristics change enough to alter its input capacitance, or the tube is
replaced. The same trimmer can be used to standardize the input capacitance of different inputs (either on separate scopes or separate channels in one scope) to reduce the need to recompensate a probe which is used interchangeably. Some amplifiers use additional stages (for higher gain) that are not used when large signals are handled. This means that two different tubes are used as input tubes. A shunt trimmer one one or both of these tubes permits standardizing the direct input capacitance to the two tubes. #### LONG-TAILED DC-COUPLED DIVIDERS When it is desirable to DC-couple a signal at one DC level to another DC level (i.e., plate level to ground level) without attenuating the signal too much, the long-tail or constant-current principle can be used. In Circuit No. 19 the divider consists of two equal resistances, so the DC level at the center will be half-way between the level at the top and level at the bottom, or -2.5 volts. If the plate level changes by two volts, the grid level will change by half of that, or by one volt. This is an attenuation of two to one, but the signal is changed in level by 147.5 volts back down to a level where it can be amplified again with only one +225-volt supply. A trimmer capacitor is shown across the top half of the divider, making it an RC divider. #### DC-COUPLING THROUGH NEON TUBES DC-coupling from one voltage level to another can be accomplished in some circuits with practically no attenuation of the signal in the process by using NE-2 neon bulbs. An example is shown in Circuit No. 20. These bulbs have constant voltage characteristics similar to V.R. tubes, and so can be used to provide a rather constant drop in voltage in a divider circuit. Since they tend to fluctuate under certain conditions and require a certain ionization and deionization time, they are usually used to handle only large signals or are part of feedback loops, or both. The capacitor couples fast-changing signal components to the grid without requiring a change in ionization of the NE-2 during such intervals. ## CATHODE-COUPLED BI-STABLE MULTIVIBRATORS (DC-COUPLED SCHMITT CIRCUITS) A bi-stable multivibrator is one which is stable indefinitely with either half conducting and the opposite half cut off. They are usually made to operate with a control voltage on one grid; in this case the multivibrator frequency will be the same as the grid signal frequency if the signal amplitude is sufficient and the frequency is not too high. Circuit No. 21: If the grid of V_1 is high enough, V_1 will conduct. Conduction in V_1 lowers its plate voltage and drives the grid of V_2 down into cut-off. Since the plate voltage is DC-coupled to the grid, the right-hand tube will remain off until the grid of the left half comes down again. With V_2 cut off, the cathode voltage will closely follow the grid of V_1 . When the cathode lowers sufficiently, conduction starts in the right-hand tube and diminishes in the left-hand tube. As soon as this happens, the transition is accelerated by the increase in plate voltage of V_1 which rapidly raises the grid of V_2 , hastening cut-off of V_1 . V_2 will then conduct until the grid of V_1 rises enough to let the left side conduct again. J. Charles Circuit No. 22: A cathode-follower may be inserted between stages to speed up the transition from one state to another by reducing the capacitance that the first tube must drive, and by providing low-impedance drive for the input capacitance of the right-hand tube. Circuit No. 23: All of these multivibrators have hysteresis. That is, the grid signal must come down past the voltage level where a transition took place going up, in order to produce a transition coming down. Multivibrators with much hysteresis require large signals to operate them. In order to control the multivibrator with a small signal, the hysteresis must be small. Hysteresis can be reduced by separating the cathodes slightly by a variable resistor. With this arrangement, the cathode level of the tube that is not conducting will be somewhat lower than the other cathode and thereby biased closer to conduction, If hysteresis is reduced too much, the circuit will be unstable. The capacitor C₁ maintains the voltage drop across R₁ for an instant during transitions to improve stability during these critical periods. #### CATHODE-COUPLED MONOSTABLE MULTIVIBRATORS The monostable multivibrator is stable in only one mode. If triggered into the opposite conducting state it will revert to its stable state on its own after a certain period. Circuit No. 24: In the stable state, D2 is conducting up through R1, clamping the cottom end of R1 close to ground. This puts the grid of V2 about eight volts higher than the grid of V1, so V2 is conducting and V1 is cut off. C1, then, is charged to the full value of B+, in this case 100 volts. If D1 conducts for an instant, the plate voltage of V1 is lowered for an instant and the negative-going wavefront is coupled through C1 to the grid of V2. If this voltage lowers the cathode of V2 enough, current will start to flow in V1, and the plate of V1 is lowered further, assisting in switching V2 off completely. C1 will then discharge through R1 until the current diminishes sufficiently to allow the grid of V2 to rise to where it may again conduct. When V2 starts to conduct, its cathode starts to rise, and current through V1 diminishes. Reduction of current through V1 allows its plate ro rise which stops the discharge of C1 hastening the rise of the grid voltage of V2 and the transition back to the stable mode. In the unstable mode, while the plate of V1 and D1 is down, D1 cannot conduct. As soon as the plate of V1 goes up, however, C1 quickly recharges through R2 and D2 and the circuit is ready to be re-triggered. #### DIODE DISCONNECT Diodes are useful for disconnecting one circuit from another at proper moments. By driving the cathode up (or the plate down) current through a diode can be stopped. In Circuit No. 24 a triggering current can be made to pass from the plate of V_3 to the plate of V_1 whenever the plate voltage of V_3 is lowered farther than that existing at the plate of V_1 . Whenver this happens the multivibrator is triggered and diode D_1 disconnects V_3 as soon as the plate of V_1 comes down on its own. The diode then holds V_3 disconnected as long as the plate of V_1 is down, keeping untimely triggering signals at the plate of V_3 from affecting the multivibrator. In Circuit No. 25, a positive gate at the grid of V_1 makes V_1 conduct heavily and drives the plates of V_1 and D_1 below ground. The grid of V_2 is then disconnected from ground and seeks a new level. ## PHANTASTRON SAWTOOTH GENERATOR (MILLER INTEGRATOR) Circuit No. 26: The Phantastron is a self-gating sawtooth generator. In the quiescent mode, the grid of V₁ is clamped close to ground by grid current through R₁. In this condition screen current is so heavy that the screen voltage is very low. Since the screen is DC-coupled to the suppressor, the suppressor voltage is so low that it completely cuts off the plate current. A small negative pulse coupled into the plate circuit of V1 goes to the grid of V2 and is coupled back over to the grid of V1 by the way of the cathode follower and C1. If its amplitude is not too small, screen current is reduced enough (raising the suppressor voltage) to permit plate current to flow. If this happens, the plate quickly drives its own grid (through V2) nearly to cutoff where both screen and plate current are low. The grid immediately starts to rise, however, as C1 immediately starts to lose its charge. But the rise of grid voltage is slowed down and linearized by inverse feedback from the plate. That is, C1 is forced to discharge just fast enough into R1 to keep the current into R1 nearly constant. Constant current into or out of a capacitor results in a linear change in voltage across it, so its output is a sawtooth. As the grid goes up and the plate runs down, the screen gets a larger and larger share of current, until finally the suppressor is lowered enough to affect the plate current, and it is switched suddenly and entirely to the screen. Plate voltage of V₁ then suddenly rises and C₁ quickly recharges through V₂ with grid current from V₁. The main purpose for V₂ is to shorten the retrace (recharge) time. The waveform from the Phantastron is very linear. There is, however, a fast "step" at the beginning of each sawtooth which occurs when the plate voltage is driving its grid close to cut-off to start the run-down. ## SELF BIAS WITH GROUNDED CATHODE (ANODE FOLLOWER) Circuit No. 27: Self bias can be achieved without a cathode resistor by inverse voltage feed-back between plate and grid as shown in Circuit 27. This circuit operates basically the same way as a circuit using a self-biasing resistor in a cathode circuit — that is, any current flowing develops a grid-cathode voltage which limits and actually establishes the operating current. With no plate current, the plate voltage of V3 would go up high enough to tend to operate the grid of V3 above the cathode (full current). With heavy plate current the plate of V3 would tend to drive the grid below cut off. Only one value of plate current will satisfy the conditions established by tube type, screen voltage, plate supply voltage, plate load, and divider ratio. If a neon tube is used instead of R4, the circuit operates in the same manner, but without the loss imposed by the divider. #### SELF BIAS WITH GROUNDED CATHODE Circuit No. 28: If a cathode follower is inserted in the feedback path, low-impedance drive for the grid circuit of V3 is provided. R2 would not have to be used for the circuit to operate. Its presence does influence the DC levels in the circuit somewhat because some of the current through R1 is diverted from V2 through R2. ## ROPIQUET-KOBBE SAWTOOTH GENERATOR (MILLER INTEGRATOR) Circuit No. 29: In the quiescent state,
before a sweep starts, V1 is cut off and the circuit is in a stable condition and remains that way until V1 is gated on. In the stable state the grid voltage of V3 is established by DC feedback from its plate as in circuit 28. The similarity of Circuit 29 and Circuit 28 should be pointed out: Because V₁ is not conducting it need not be shown in Circuit 28. Similarly, because D₁ and D₂ are conducting and represent a low impedance path they can be considered shorted and are therefore not shown in Circuit 28. With both D₁ and D₂ shorted, C₁ would be shorted so it also is not shown. With both D₁ and D₂ shorted the top as well as the bottom of R₁ and R₃ are shorted together and represent only one resistance, so R₃ is not shown. In Circuit No. 29 current passes through R3; part goes through V2 with some being diverted through D1 and R2 to ground. At the same time current passes through R1, through D2 and R2 to ground. Since there is very little voltage drop across D2 the grid voltage of V3 is essentially the same as that established across R2, the actual amount being determined by the one satisfactory set of conditions for self bias. As soon as V1 conducts fully, the drop across R2 increases, D1 and D2 is disconnected, and the grid of V3 starts to go down. It is retarded however, by inverse feedback from the plate of V3 through cathode follower V2 and capacitor C1. The <u>current</u> through R1 now, having no other path, starts to charge C1 and at the same time establishes the grid voltage for V3. The feedback, by opposing any change in the voltage at the grid of V3, maintains essentially constant current into C1. This assures a linear increase of charge voltage across it. Almost all of the voltage-increase across C1 appears at the top end of C1, as a positive-going linear ramp (sweep). A small percentage of the voltage-increase appears at the bottom end of C1 (V3 grid) as a negative-going signal. R1 and C1 are essentially the only two components which control the rate of rise. If at any time during the sawtooth rise V_1 stops conducting, the plate of D_1 will go above its cathode allowing current through R_1 to flow into D_2 . The grid of V_3 will then start to rise and C_1 will discharge (through D_2 and R_2) at a rate which again attempts to keep the grid of V_3 at a constant voltage. The discharge rate is determined, then, primarily by the value of C_1 and R_2 . Discharge will stop soon after the cathode of D_1 comes down to the level of its plate. At this instant D_1 starts to conduct and current through D_2 diminishes as the current through D_1 increases. The quiescent mode is re-established the instant sufficient current is diverted from V_2 through D_1 to set the grid voltage of V_3 at the particular level that satisfies the quiescent conditions. # Tektronix, Inc., P.O. Box 500, Beaverton, Oregon Telephone, Mitchell 4-0161 TAX—BEAV 311 Cobie: TEKTRONIX AN OREGON CORPORATION Field Engineering Offices | | Field Engineering Offices | 1111 - 11173 | |--|--|--| | BUQUERQUE* | Tourrank, Inc., 509 San Maleo Bird. N. E. Albuquerque, New Moxico - 1WX AO 96
Southern New Mexico | | | ILANTA* | Tabrindiz Inc. 124 Tota Pove. V Tr. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | VAILey 5:9000
VOlunteer 2:7570 | | ALTIMORE* | Tektronik Int. 47 Maryyale Drive Bullaia 25; New York . TWX-WM5V 2. | (4F 3.786)
Takail 3.6686 | | UFFALO
HICAGO*
LEVELAND | Tektronix, Inc., 200 higgins about 100 regions 9, Onio TWA-CY 352 | n Arna Zinjah 0212 | | ALLAS* | A711 Denigo Drive, P. O. Box 35104, Dollas 35, Texas ITWX-D1 264 | AXminuter 3.4175 | | AYTOM MOTYA | Tektronix, Inc. Jack South Ash Street Denver 22, Colorado IWX-DN 879 | nka Arem: Zeniih 321 | | ENVER | | | | NDICOTT* | Technonia, Inc., 3214 Victor Street, Greensbojo, Florth Coroling. 1WX-GN 540. | 6 7 8 101 7 8
302 | | IOUSTON | Tekingnix, Inc., 3037 North Keyslons Ave., Indianopolis 5, Indiano TWX | HEdrick 2-1000 | | (ANSAS CITY | Teknopis, Inc. 5920 Natl. Mission, Kansas Transmiss. 1914 St. Laula La | Area Etherprise 6510 | | OS ANGELES AREA | Tektronis, Inc., 5441 East Severy Siyd. East Lot Angeles 22, Cellianile TWX-MRS 1855 Tektronis, Inc. 17418 Ventura Blyd. Entino California TWX-WNYS 5441 R. E. Tektronis, Inc. 17418 Ventura Blyd. Entino California TWX-WNYS 5441 R. E. | RAymond 3 9408
State 8 5170 = | | Encine
*West L. A. | Tekronia, Inc., 11681 San Vicenie Bivd., West tos Angeles 49, California | GRanile 3 1105 | | MINNEAPOLIS | Tektronia, Ido., 1100 W. Loke Street, Minneapolis, 16, Minnesotto 1WXAP 983 | WAInui 7-9559- | | NEW YORK CITY ARE *New York City and | A Long feland served by: Long feland served by: Long feland served by: Long feland served by: TWX.—G CY NY 1418 Feland by: TWX.—G CY NY 1418 | Planter 7 4850 | | Weskhasler Count | Takironix, Inc., aso vising River Yallay servad by: y, Western Connecticut, Hudson River Yallay servad by: y Kesternix, Inc., 1122 Main Street, Stamford, Connecticut, 1WX—STAM 056 | DAVI: 5.3817 | | *Northern Now Jers | nov served by: | Wellager n. + 1 + 4 | | OREANDO* | | | | PALO ALTO*
PHILADELPHIA* | Tektronis, Inc., 7709 Ugoniz Ave. Chicago, Tektronis, Inc., 7709 Ugoniz Ave. | WHILDBA 0-4*1-3 | | PHOENIX * | Hawthorne Feelrones, 700 S. E. Howeld III. Hew York TWXPOUGH 5063 | GRover 1-3020 | | POUGHKEEPSIE *
SAN DIEGO | Tekhonix Inc. 3043 Resectors pires, 300 September Section Washington TWX-SE | 798 PARKWOY 3-1400 | | SEATTLE
ST. PETERSBURG | Jehranix, lat., 43-10 Kollay Road and Pickard Drive, P. O. Box 155, Syratuse 11, New York | Clambia 4.2426 | | SYRACUSE* | | v &&Idwh 5.1138 | | WASHINGTON D. C | .* .Tekfroniz. Int.: 90 9 Columbia | anne sa Boale sait | | | CI Comment's Guernsey, Undinerial | es | | | Tektronix, Inc., Victoria Avenue, 31. 30 Tek GUERNSEY TELEX 41-93 Telephane: CENTRAL 3767 CABLE: TEK GUERNSEY TELEX 41-93 11. 11. 11. 11. 11. 11. 11. 11. 11. 11 | Erajaja | | AUSTRALIA | ties importally by tid. Box 1920 G.P.O., Melbourne C.I., Australia | LA-5795 | | | | | | | Electronic Industries Emports Pty Ltd., 121 Crown Street East Sydney, Australia | 54.75-85-5ERIE | | AUSTRIA:
BELGIUM | Regulation Meture, 57 Acres on the Sauth America Inc., 51 Broadway, New York 6, New York | 2 7000 47.7391 | | BRAZIL | Consulting & Suppliers Company for South America Inc. 61 Broddwny, New York O. New York
Importation Industria E Comercia Ambries S.A., As Groca Aracha 226-601/6 Rio De Jaheiro,
Importation Industria E Comercia Ambries S.A., As Groca Aracha 226-601/6 Rio De Jaheiro,
Palmar Lida, Ruo 7 de Abril 251, Soe Paulo, Brazil
Palmar Lida, Ruo 7 de Abril 251, Soe Paulo, Brazil
Laboratorios Aedistan 41 4 1064 entre Kahiy y 32, Alteras del Vedada, Habana, Cuba
Laboratorios Aedistan 41 4 1064 entre Norm 133.40, Vesterbragada, Kabenhava Y. Denmark | 34.4497
8.5970 | | CUBA | fallowledge Mediton 41 41063 entre Kehly y 32, Alfreds del Vedado, randula, Court | Palae 1369, Palae 1343 | | DENMARK
FINLAND | from Olives A/S. Centrumgoardan, Roam 133, 4D, Vesterbragade, Kobenhayn Y, Denmark | 62 FR . LD . 25 - 45 - 45 - 5 | | FRANCE | Inge Orsen A/a Commongs | Alennania 5 6900 | | | lage Otten A/S. Continuitation, Helsinki, Finland. Into O'Y, 13 Aventultinkoru, Helsinki, Finland. Into O'Y, 13 Aventultinkoru, Helsinki, Islandro, Islandro | Algonquin 5 6900
siy 08.36 Klaber 54.82
70.669
75376 | | GREECE
INDIA | lago Oleen A/S. Christinskato, Helsinki, Finland. Into O'Y, 13 Mortiultinskato, Helsinki, Finland. Mourice L. Borisier & Co. 741-745 Workington St., New York 14, N. Y. Mourice L. Borisier & Co. 741-745 Workington St., New York 14, N. Y. Rojokons Joshniques Intercontinentales, 124 Ayenne de Moldkoff, Paris 16, France | Alganquin 5 6980
siy 08 36 Klaber 54-82
70-669
75376
COlumbus 5-8323 | | GREECE
INDIA
ISRAEL | Ingo Oleen A.S. Into O.Y. 13 Mortiultinkoru, Helsinki, Finland. Into O.Y. 13 Mortiultinkoru, Helsinki, Finland. Mourice I. Borisier & Co. 741.745 Worsington St., New York 14, N. Y. Mourice Delivery Intercontinentales, 1,24 Avenue de Molakoff, Pécis 16, France. Pariote Delivery Intercontinentales, 1,24 Avenue de Molakoff, Pécis 16, France. Mourice Delivery I. Rue Alopekis, Altens (N.), Gresce. Mourice Delivery I. Rue Alopekis, Altens (N.), Gresce. Mourice Delivery I. Rue Alopekis, Altens (N.), Gresce. Facilitation of Production | Alganquin 5 8900
ssy 08 36 Klaber 54 87
70 669
75376
COlumbus 5 8323
6890
790 555 | | GREECE
INDIA | lago Olea A's Carliblitakaru, Helsinki, Finland. Into O'Y, 13 Mortiblitakaru, Helsinki, Finland. Mourice I. Borisier & Co. 741.745 Washington St., New York 14, N. Y. Mourice Delising St. Intercontinentales, 1314 Avenue de Motakoff, Paris 16, France. Por Reiskons Techniques, Intercontinentales, 1314 Avenue de Motakoff, Paris 16, France. Mourice Delisinglib, 2, &ue Alopesis, Athens (K), Gresco. Mourice Delisinglib, 2, &ue Alopesis, Athens (K), Gresco. Mourice Charlesprises, 146, Koyani Building, Oppi Came Baug, New Charni Read, Bombay 4, India Especial Charlesprises, 146, AS, Washi 14th, Stries, New York, 36, New York Landseas Essiera Co., Ud., P. O., Sos 2554, 22 Adas St., Fel Aviv, Israel Silverter, Ud., 21 Via Visconti di Modroan, Mileno, Tally Silverter, Ud., 21 Via Visconti di Modroan, Mileno, Tally | Algorquin 5-6980
ssy 05-36 Klaber 34-82
70-669
75376
COlumbus 5-823-3
46490
790-555
568-044
524-071-524-071 | | GREECE | Ingo Olea A's Carlistinskoru, Helsinki, Finland Into O'Y, 13 Mortistinskoru, Helsinki, Finland Into O'Y, 13 Mortistinskoru, Helsinki, Finland Moriot Delitagio, 2 Rue Alopekis, Albens (K), Gresce Moriot Brieferprises, 46, Kyrani Building, Opp. Came Baug, New Charni Road, Bambay 4, India Fautions Enderprises, 46, Kyrani Building, Opp. Came Baug, New York Landseas Ensiera Go., Lid., P. O., Box 2554, 22 Mess. St., Tel Avy, Israel Landseas Ensiera Go., Lid., P. O., Box 2554, 22 Mess. St., Tel Avy, Israel Silverstor, Lid., 21 Via Viscovil di Modroara, Milana, Italy Silverstor, Lid., 21 Via Passello, Roma, Italy Silverstor, Lid., 22 Via Passello, Roma, Italy Silverstor, Lid., 22 Via Passello, Roma, Italy Silverstor, Lid., 2 Via Passello, Roma, Italy Midariya: Blactist Co., Lid., 32 "Chame, Kyabashi, Chun-ka, Takya Japan Midariya: Blactist Co., Lid., 32 "Chame, Kyabashi, Chun-ka, Takya Japan | Algorquin 5 5900 ssy 08 36 Kleber 34 82 70.669 75376 COlumbus 5 8323 46490 790.555 568.046 524.021 524.021 561-9256 46.44.22 The Mages 98 51 53 | | GREECE | Ingo Olea A's Carlibitakaru, Helsinki, Finland Into O'Y 13 Meritultinkaru, Helsinki, Finland Into O'Y 13 Meritultinkaru, Helsinki, Finland Mourice L. Parisier & Co. 741.745 Washington St., New York 14, N. Y. Mourice L. Parisier & Co. 741.745 Washington St., New York 14, N. Y. Reiostons Jehniques Intercontinentales, 134 Avenue de Malakoti, Paris 16, Fronce. Por Reiostons Deleggio. 2, Ree Alopeeis, Altens (A). Greece. Murios Deleggio. 2, Ree Alopeeis, Altens (A). New Charni Read, Bombay 4, India Electronic Enterprises, 46, Korani Building, Opp. Camer Baugs, New Charni Read, Bombay 4, India Landsens Products Corp., 48 West, 41th Siress, New York 36, New York Landsens, Endern Co., Ud., P. O., Sor 2524, 22 Mess. 51. Tel. Aviv., Israel Landsens, Endern Co., Ud., P. O., Sor 2524, 22 Mess. 51. Tel. Aviv., Israel Silverstor, 11d., 12, Via Misconti di Modroga, Miston, Italy Silverstor, 11d., 12, Via Massico, Romo, Italy Silverstor, 11d., 12, Via Massico, Romo, Italy Silverstor, 11d., 12, Via Massico, Romo, Italy Silverstor, 11d., 12, Via Massico, 12d., 12 | Algoriqui 5 5900 ssy 05 36 Klaber 34-82 70-669 75376 COlumbus 5-8223 790-555 868-044 574-021, 524-071 561-9256 4644-22 The Huge's 6615-35 80, 177-90 | | GREECE | Ingo Olean A's Continuitation, Helsinki, Findand. Into O'Y 13 Mortiluitation of Helsinki, Findand. Into O'Y 13 Mortiluitation of A1.745 Washington St. New York 14, N. Y. Mourice L. Parisier & Co. 741.745 Washington St. New York 14, N. Y. Mourice L. Parisier & Co. 741.745 Washington St. New York 14, N. Steiner (K). Greece. Marios Delleggio. 2, Rue Alopeeis, Altens (K). Greece. Marios Delleggio. 2, Rue Alopeeis, Altens (K). Greece. Landsens Products Corp. 48 West 48th Sirees, New York 36, New York Landsens Endern Co. Ud., P. O. Sor 2524, 22 Mess. 51. Tel Aviv. Israel Landsens Endern Co. Ud., P. O. Sor 2524, 22 Mess. 51. Tel Aviv. Israel Silverstor, 1dd., 12, Via Visconti di Modroan, Midna, Ifaly Silverstor, 1dd., 12, Via Raisello, Romo, Italy. Silverstor, 1dd., 12, Via Raisello, Romo, Koabeshi, Chup-ku, Takya, Japan. Midoriya: Efectris Co., Lid., 3, 2. Chome, Kyabeshi, Chup-ku, Takya, Japan. Colsto, Aparisado 2250, Mexico I. D.P., Mexico Colsto, Aparisado 2250, Mexico I. D.P., Mexico Colsto, Aparisado 2250, Mexico I. D.P., Mexico Colsto, Aparisado 2250, Mexico I. D. Osla, Norway. Morgeesticure & Compony, Colletts Gote 10, Osla, Norway. Morgeesticure & Compony, Colletts Gote 10, Osla, Norway. Regimementos de Lobusione in dan Rue Federo Norres, 47, Lithour Portugal Equipmentos de Lobusione in dan Rue Federo Norres, 47, Lithour Portugal | Algonquin 5-5900 ssy 05-36 Kleber 34-82 75-689 75-75-76 COlumbus 5-8323 46-900 790-555 868-046 872-021-52-671 561-9256 46-44-21 The Higger 98-51-53 60-17-96 733436/733437 | | GREECE HOIA LISAGE HOIA LISAGE HALV HALV HALV HALV MEXICO NETHERBANDS HORWAY HO | Ingo Oren A's Continuation Helsinki, Finland Into O'Y, 13 Mortiultinkaru, Helsinki, Finland Into O'Y, 13 Mortiultinkaru, Helsinki, Finland Mourise L. Burisier & Co. 741.745 Washington St. New York 14, N. Y. Mourise L. Burisier & Co. 741.745 Washington St. New York 14, N. Y. Reiokons Techniques Intercontinentales, 174 Avenue de Moldkoff, Paris 16, Fronce. Policy Christophia, 2, Kryoni Building, Opp. Camer Baug, New Charni Raud, Bombay 4, India Einstrand Endouch Coton, 48 West, 14th
Street, New York, 36, New York Landseus Ensiern Co., Lid., P. O., Sov. 2554, 22 Meze, St. Tel. Aviv., Israel Landseus Ensiern Co., Lid., P. O., Sov. 2554, 22 Meze, St. Tel. Aviv., Israel Silverstor, Lid., 21 Via Visconti di Modrone, Misen, Italy Silverstor, Lid., 21 Via Visconti di Modrone, Misen, Italy Silverstor, Lid., 21 Via Visconti di Modrone, Misen, Italy Silverstor, Lid., 21 Via Resistala, Roma, Italy Silverstor, Lid., 21 Via Resistala, Roma, Italy Silverstor, Lid., 22 Via Resistala, Roma, Italy Silverstor, Lid., 22 Via Resistala, Roma, Italy Aldorivat Electric Co., Lid., 3, 2 Chame, Kyabashi, Chub-ku, Takyo, Jepan Aldorivat Electric Co., Lid., 3, 2 Chame, Kyabashi, Chub-ku, Takyo, Jepan Colsso, Aportado 2250, Mexico I. D.P., Mexico C. N. Road, n.v., 11-13 Cort van der Landensirad, Riswitk, Z.H., Netherlands Equipomentus de Laboratorio Lid., Ruo Fedro Huncet, 47, Libad, Portugal Equipomentus de Laboratorio Lid., Ruo Fedro Huncet, 47, Libad, Portugal Equipomentus de Laboratorio Lid., Ruo Fedro Huncet, 47, Libad, Portugal Ext. D. Jacustoses Sc. Zeleith, Switzerlond | Algoriquin 5-6900 ssy D5-36: Klabie 34-82 70-669 75-376 COlumbus 5-8323 5-86204 5-70-555 8-86204 5-72-15-2-6 40-44-21 The Huge's 561-3-5 40-73-3-43 Stackhalm 25-78-71 (051) 34-44-31 | | GREEGE | Into O'Y, 13 Mortibitinkaru, Helsinki, Finland. Into O'Y, 13 Mortibitinkaru, Helsinki, Finland. Into O'Y, 13 Mortibitinkaru, Helsinki, Finland. Mourice I. Burisier & Co., 741.745 Washington St., New York 14, N. Y. Mourice I. Burisier & Co., 741.745 Washington St., New York 14, N. Y. Reiskons Techniques Intercentinentales, 13,14 Avenue de Modekoff, Paris 16, france. Post Residence Child As Washington, Opp. Came Boug. New Charni Road, Bombay 4, India Esertance Enterprises, 46, Kayani Building, Opp. Came Boug. New Charni Road, Bombay 4, India Esertance Child Color. 48, West 14th Stires, New York 36, New York Landsens Essiera Go., Ud., P. O., Sos 2554, 22 Mass St., Fel Aviv, Israel Landsens Essiera Go., Ud., P. O., Sos 2554, 22 Mass St., Fel Aviv, Israel Landsens Essiera Go., Ud., P. O., Sos 2554, 22 Mass St., Fel Aviv, Israel Silverstor, Ud., 21 Vid Viscoriil di Modekont, Milano, Italy Silverstor, Ud., 21 Vid Viscoriil di Modekont, Milano, Italy Silverstor, Ud., 22 Vid Rassello, Roma, Holma, Italy Silverstor, Ud., 22 Vid Rassello, Roma, Holma, Italy Silverstor, Ud., 23, Assacio I. Drs., Mosko, Takya Japan Midariya Esteriic Co., Ud., 32, Chama, Kyabashi, Tahas, Italy Morgaestilicine & Compony, Calletts Gole 10, Oslo, Narway N | Algoriquia 5 5900 Algoriquia 5 5900 70,669 75,376 COlumbus 5 8123 46900 790,555 868,034 561,9256 4644,21 This Hope 96,51 53 60,17 96 733457,733437 510,511, 34,44,71 510,511, 34,44,71 510,511, 34,44,71 510,511, 34,44,71 31,221 Archysiv, 6251 | | GREEGE INDIA ISABE ITALY IAPAN AMEXICO NETHERIANDS NORWAY POBYIGAL PUESTO RICO SWEDEN SWITZERIAND UNION OF EQUITN AFRICA UNITED KINGGOO | Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Mourice L. Bursier & Co. 741.745 Worsington St., New York 14, N. Y. Mourice L. Bursier & Co. 741.745 Worsington St., New York 14, N. Y. Reiotkonis Tochniques Intercontinentales, 134 Avenue de Molakoff, Párli 16, Fronce. Par Rourice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Indisens Freducts Corn. A. Revit 18th Sirest, New York 36, New York Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Holopeti, Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., Service St., London, R. Niswitk, Z.H., Netherlands Colesio, Apartado 2256, Mexico J. D.P., Mexico Los Road, N.Y., 11 13 Cort vin des Landonstrad, Rijswitk, Z.H., Netherlands Colesio, Apartado 2256, Mexico J. D.P., Mexico Josephila, Roadon Roadon St., Sav 2387, Santiurie, Puerlo Reo Josephila, Roadon St., Roadon St., Sav 2387, Santiurie, Puerlo Reo John Rey AC, Dulouriussie St., Zucleh B, Switzerlond Omal Rey AC, Dulouriussie St., Zucleh B, Switzerlond John Rey AC, Dulouriussie St., Zucleh B, Switzerlond John Loberator Int. Ltd., Nucleonius District, Puerlo Reco | Algonquin 5 5900 Algonquin 5 5900 79.669 75.376 COlumbus 5 8323 660046 324.071 524.071 561.0756 Abi.A4.21 The Higge 98:51.53 60.179 73.436/73343/ Stackhalm 25 28 71 (051) 34.44.30 31.221 Aychway 6251 contertideo, Uruguay 8 58 78 | | GREECE INDIA ISRAEL IVALY IAPAN MEXICO NETHERIANDS NORWAY POBYIGAL PUESTO RICO SWEDEN SWITZERIAND UNION OF SOUTH AFRICA UNITED KINGGOO UNITED KINGGOO INDIA PROCESSANO UNITED KINGGOO UNITED KINGGOO UNITED KINGGOO INDIA INDIA PRICA UNITED KINGGOO INDIA ING | Into O.Y. 13 Meritultinkaru, Helsinki, Finland. Into O.Y. 13 Meritultinkaru, Helsinki, Finland. Into O.Y. 13 Meritultinkaru, Helsinki, Finland. Mourice I. Burisier & Co. 741.745 Washington St., New York 14, N. Y. Mourice I. Burisier & Co. 741.745 Washington St., New York 14, N. Y. Relakons Techniques Intercentinentales, 1314 Avenue de Molakoff, Páris 16, France. Pos Relakons Techniques Intercentinentales, 1314 Avenue de Molakoff, Páris 16, France. Pos Resistancia Golden, 14, N. Rest 14th Stires, New York 36, New York Landsens Fraduck Colon. 48, West 14th Stires, New York 36, New York Landsens Ensiera Go., Ud., P. O. 80x 2554, 22 Mess St., Tel Aviv. Israel Landsens Ensiera Go., Ud., P. O. 80x 2554, 22 Mess St., Tel Aviv. Israel Landsens Ensiera Go., Ud., P. O. 80x 2554, 22 Mess St., Tel Aviv. Israel Silverstor, Ud., 21 Via Passello, Romo, Italy Silverstor, Ud., 21 Via Passello, Romo, Italy Silverstor, Ud., 21 Via Passello, Romo, Italy Silverstor, Ud., 22 Via Passello, Romo, Italy Midoriya: Blactis Co., Ind., 32 Chame, Kyobosha, Chunck, 16kyal Japan Midoriya: Blactis Co., Ind., 32 Chame, Kyobosha, Chunck, 16kyal Japan Midoriya: Blactis Co., Ind., 32 Chame, Kyobosha, Chunck, 16kyal Japan Midoriya: Blactis Co., Ind., 32 Chame, Kyobosha, Chunck, 16kyal Japan Colesia, Apartado 2150, Messec I. D.R., Messes Co. N. 80ad, n.v., 11, 13 Cort van des Ladaminand, Riswell, 2 Hi, Netherlands Colesia, Apartado 2150, Messec I. D. Oslo, Norway Morgeostiares & Company, Colletts Gold I.O. Oslo, Norway Morgeostiares & Company, Colletts Gold I.O. Oslo, Norway Intercenting the Labatorica Education of Santander Messes Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix Fernar, Ab. Smaracatragash 155, Bas 36 Bromma, Swedeni, Dix F | Algonquin 5 5900 Algonquin 5 5900 70.669 70.669 75376 COlumbus 5 8323 46400 790.555 868.044 80.17.925 A0.44.21 The Hague 96.51 53 60.17.92 73436/733417 Stackhalm 25 78 77 (1051) 34.4-26 Archway 6251 | | CREECE | Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Indo O'Y, 13 Mortiultinkaru, Helsinki, Finland. Mourice L. Bursier & Co. 741.745 Worsington St., New York 14, N. Y. Mourice L. Bursier & Co. 741.745 Worsington St., New York 14, N. Y. Reiotkonis Tochniques Intercontinentales, 134 Avenue de Molakoff, Párli 16, Fronce. Par Rourice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Murice Delleggib. 7. Rue Alopekis, Altens (N.), Gresce. Indisens Freducts Corn. A. Revit 18th Sirest, New York 36, New York Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.1 Via Visconti di Modroate, Milano, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Italy Silverstar, Ltd. 2.7 Nis Cassello, Roma, Holopeti, Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., 3. 2. Chome, Kopheshi, Chun-ku, Takyo, Japan Midoritya: Electric Co., Ltd., Service St., London, R. Niswitk, Z.H., Netherlands Colesio, Apartado 2256, Mexico J. D.P., Mexico Los Road, N.Y., 11 13 Cort vin des Landonstrad, Rijswitk, Z.H., Netherlands Colesio, Apartado 2256, Mexico J. D.P., Mexico Josephila, Roadon Roadon St., Sav 2387, Santiurie, Puerlo Reo Josephila, Roadon St., Roadon St., Sav 2387, Santiurie, Puerlo Reo John Rey AC, Dulouriussie St., Zucleh B, Switzerlond Omal Rey AC, Dulouriussie St., Zucleh B, Switzerlond John Rey AC, Dulouriussie St., Zucleh B, Switzerlond John Loberator Int. Ltd., Nucleonius District, Puerlo Reco | Algonquin 5-5900 Algonquin 5-5900 70-669 70-669 75-376 COlumbus 5-8123 46490 790-525 868-0044 524-021, 524-021 The Hague 965-15 50-1-9256 40-44-21 The Hague 965-15 51-9256 40-44-21 The Hague 965-15 51-9256 40-44-21 40-42-15 51-9256 40-44-21 40-42-15 51-9256 40-42-16
40-42-16 40-4 |