
MI 5010 Multifunction Interfacing System User's Guide

5187-0

For additional copies, order: 070-5187-00 Product Group 76 First Printing MAY 1984

· ·				
	J			

TABLE OF CONTENTS

		Page		
	trations n	i	Section 3	MI 5010 System Function Card Handshake Line Summary
Section 1	MI 5010 Operation		Section 4	MI 5010 System Programming
Section 2	Operating the MI 5010 System Function Cards		Section 4	Commands
	50M10 Analog-to-Digital Converter Card	2-4	Section 5	MI 5010 System Status Bytes and Error Codes
	50M40 Relay Scanner Card 50M41 Low-Level Relay Scanner Card 50M50 Memory Card	2-10 2-12	Section 6	Sample Programs for MI 5010 System
	50M70 Development Card		Section 7	Instrumentation Software Library

List of Illustrations

Fig.		_	Fig.		D
No.		Page	No.		Page
1-1	MI 5010 Address and Terminator		2-11	50M41 Front Panel Interface	
	Switches	1-1		Connector	2-13
2-1	50M10 Front Panel Interface		2-12	50M41 On-Board Jumper Locations .	2-14
	Connector	2-1	2-13	50M41 Relay Schematic	2-14
2-2	50M10 On-Board Jumper Locations .	2-2	2-14	50M50 Front Panel Interface	
2-3	50M20 Front Panel Interface			Connector	2-16
	Connector	2-4	2-15	50M50 On-Board Jumper Locations .	2-17
2-4	50M20 On-Board Jumper Locations .	2-5	2-16	50M70 PIA Pin Assignments	2-18
2-5	50M30 Front Panel Interface		6-1	Sine, Square, and Triangle Generator	
	Connector	2-6		Program (4052A)	6-2
2-6	50M30 On-Board Jumper Locations .	2-7	6-2	Sine, Square, and Triangle Generator	
2-7	50M30 Output Line Configurations	2-8		Program (4041)	6-5
2-8	50M40 Front Panel Interface		6-3	Low-Frequency Digitizer Program	
	Connector	2-10		(4052A)	6-8
2-9	50M40 On-Board Jumper Locations .	2-11	6-4	Low-Frequency Digitizer Program	
2-10	50M40 Relay Schematic	2-12		(4041)	6-11
	•		6-5	Data Acquisition Program (4052A)	6-13
			6-6	Data Acquisition Program (4041)	6-16

Introduction

This user's guide is designed to help you get started using the Tektronix MI 5010 Multifunction Interfacing System. It is intended to supplement, rather than take the place of, the operator's manuals and other documentation supplied with the elements of the system. Please refer to the other documents for further details on its operation.

The MI 5010 Multifunction Interfacing system consists of the MI 5010 Multifunction Interface, the MX 5010 Multifunction Interface Extender, and, at present, seven function cards capable of a variety of functions typically required in automated testing system interfacing, data acquisition and generation, and process control.

The MI 5010 and MX 5010 each house up to three of the function cards, in any combination. The MI 5010 provides the means of communication between the system controller and the function cards. The MX 5010 is always used in connection with an MI 5010, extending its control to six function cards at one GPIB address.

As of this printing, the function cards available for use in the MI/MX system are:

50M10 Analog-to-Digital Converter Card 50M20 Digital-to-Analog Converter Card 50M30 Digital Input/Output Card 50M40 Relay Scanner Card 50M41 Low-Level Relay Scanner Card 50M50 Memory Card 50M70 Development Card

Section 1 MI 5010 Operation

Setting up the MI 5010 for GPIB Operation

The MI 5010 communicates on the GPIB via the GPIB connector on the rear of the TM 5000 power module in which it is installed. Each GPIB instrument within a given power module will have its own address; the power module itself does not have an address. Power to the power module should be turned off when inserting or removing plug-in instruments or cards.

The MI 5010 primary address and message terminator are set by means of a bank of six switches on the rear of the MI 5010. A label similar to that shown in Figure 1 identifies the switches and their meanings. The MI 5010 is shipped from the factory with the switches set to an address of 23 and to EOI-only for the message terminator.

Valid primary addresses include the range of 0 to 30 (address 31 effectively disables the MI 5010 from communicating on the GPIB). If your controller reserves an address for itself, do not set the MI 5010 to that address. The Tektronix 4050-series controllers reserve address 0 for themselves. The Tektronix 4041 defaults to address 30 on power-on, but may be programmed to use any primary address. The MI 5010 ignores secondary addresses.

EOI-only is recommended as the message terminator for use with Tektronix controllers. LF/EOI is recommended for use with a Hewlett-Packard controller. (In the latter position, the MI 5010 still recognizes EOI as a terminator and transmits EOI concurrently with the line-feed character to terminate the message.)

MI 5010 Power-On

The MI 5010/MX 5010 performs a self-test at power-up. During the self-test, all front-panel indicators (the ADDRESSED and ERROR lights on the front of the MI 5010 and the ACTIVE and ERROR lights on the front of each of the installed function cards) are lighted. If an internal error is detected, the ERROR light on the MI 5010 and/or one or more of the function cards will remain lighted after the self-test has been completed. See the operator's manual for the proper procedure to follow in the case of a failed self-test.

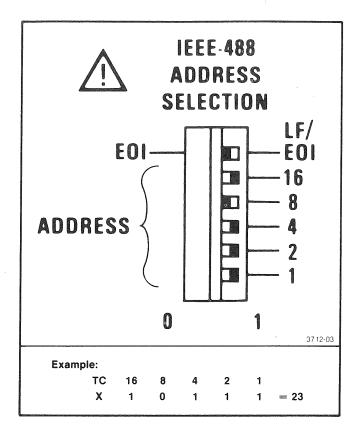


Fig. 1-1. MI 5010 address and terminator switches.

Following a successful self-test, the MI 5010 and the installed function cards go to the default states shown in Section 4 of this guide.

The MI 5010 asserts SRQ to report power-on status after completing the self-test. This SRQ can be handled by a serial poll, although the MI 5010 communicates normally on the GPIB and executes commands whether or not the SRQ is serviced. Some controllers, such as the Tektronix 4051 and 4052 when used without the 405XR14 GPIB rompack, require that the program contain an SRQ handler and begin by enabling the handler; otherwise the power-on SRQ will cause the program to halt. The 4051 and 4052 indicate this condition by displaying the message, "NO SRQ ON UNIT."

Sending Messages to the MI 5010

Most GPIB controllers provide a high-level statement that allows you to transfer device-dependent messages to the MI 5010. In the 4041, it's the PRINT statement.

150 Print #23: "TIME 09:11:00"

A useful variation assigns the MI 5010 address to a variable and inserts that variable in the PRINT statement in place of the number for the address. This allows you to change the program to work with the MI 5010 set to other addresses by changing only the statement that assigns the variable.

```
170 Mi=23
180 Print #mi:"TIME 09:11:00"
```

Notice that the MI 5010 message (what's inside the quote marks) is the same in both of the above examples. The rest of each example varies to match the PRINT statement syntax designed into each controller. This suggests that once you understand your controller's output and input statements, it's just a matter of plugging in the MI 5010 commands you need.

Getting MI 5010 Current Settings

MI 5010 queries or output commands (such as SET? or TIME?) prepare the instrument for bus data output, but do not start such output. The MI 5010 waits until it sees its talk address to begin sending the requested data. This is accomplished by the INPUT statement in the 4052A or the INPUT PROMPT statement in the 4041.

```
220 Input $23 prompt "ID?":id$
```

In each of the above examples the MI 5010 will respond by sending back its identification followed by the version number of its firmware.

All instrument settings can be obtained in one message with the following commands:

```
260 Input #23 prompt "SET?":settins$
```

You can later restore the MI 5010 to those same settings simply by sending that setting string back to the MI 5010 as follows:

```
300 Print #23:settins$
```

Talking to the Cards

To send a message to a card in the MI 5010, select the card and then send the card commands as you would any other message to the MI 5010. Here is a message that asks for and inputs the name of the card in slot 1 of the MI 5010:

```
340 Print #23:"SELECT 1"
350 Input #23 prompt "NAME?":name$
```

A card's function settings can be acquired into a single string if the string is dimensioned large enough.

```
370 Dim fsettns$ to 150
380 Input #23 prompt "FSET?":fsettns$
```

MI 5010 Command Buffer

The MI 5010/MX 5010 system has two operating modes, "immediate" and "buffered." In the immediate mode, commands are executed immediately upon receipt of the message terminator (EOI-only or LF/EOI). In the buffered mode, commands are stored in a command buffer within the MI 5010 for later execution. The command buffer is loaded by sending the BUFFER ON command, followed by the commands to be buffered, then followed by the BUFFER OFF command. The commands in the buffer are executed when the MI 5010 receives the EXEC <num> command where the argument <num> determines how many times the buffer is to be executed. A negative argument causes continuous operation. The commands STOP, INIT, or EXEC < num > cause buffered execution to end. The buffer is erased by sending the INIT command or by opening the buffer again with the BUFFER ON command.

An entire test sequence can be put into the buffer and executed repetitively for as long as the test needs to be performed. The advantage of the buffered mode is that it reduces GPIB traffic for repetitive functions.

Three commands control execution in the buffered mode: EXECUTE, STOP, and WAIT. The EXECUTE command determines the number of times that the buffered commands will be executed. The argument for the EXECUTE command ranges from -255 to +254. Any negative number means continuous operation until a new EXECUTE command or a STOP command is sent to the instrument. An EXECUTE 0 command produces no executions if none is occurring; if any are occurring, buffered mode execution stops at the completion of the one in progress.

The WAIT command is used to suspend execution of the buffer while waiting for some event to occur. The event may be any of the following:

WAIT <num>—a time duration from 0 to 655.35 seconds in 0.01-second steps.

WAIT UNTIL—a selected time reading of the time-of-day clock.

WAIT TRIG—receipt of the <GET> interface message or TRIGGER command.

WAIT COND—an EXT TRIG, IDV, or ODR signal received at any of the resident cards.

WAIT OFF-execution resumed.

The WAIT <num> provides for a delay in execution of the buffer. This delay can be used to allow for settling time of an external circuit. The WAIT UNTIL command can be used to interrupt the controller at a given time-of-day. The WAIT TRIG command can be used with the GET interface message to synchronize operation of the MI 5010 and its cards to other instruments on the GPIB. The WAIT COND command allows the synchronization of the MI 5010 and its cards to external trigger signals coming from other devices in the test system. Other instruments on the bus can be synchronized to this external trigger by the use of the ARM SRQ command. ARM SRQ instructs the MI 5010 to assert SRQ upon receipt of an EXTERNAL TRIGGER, IDV, or ODR signal at a selected function card. The controller can then synchronize other instruments on the bus as a response to this SRQ.

MI 5010 Response to Interface Messages

The following program sequences show various interface messages transmitted to the MI 5010.

```
130
        Pri addr=23 !
                         MI primary bus address
1.40
150
                wbyte atn(pri_addr+32) !
160 Listen:
                                              Send Listen Address (MLA)
170
180 Unlisten:
                  wbyte stn(unl) !
                                              Send Unlisten (UNL)
190
              wbyte atn(pri_addr+64) !
200 Talk:
                                              Send Talk Address
210
                wbste atn(unt) !
220 Untalk:
                                              Send Untalk
230
240 Devclear:
                  wbste dcl !
                                              Send Device Clear
250
260 Selctcir:
                  wbste sdc(pri addr),ath(unl) ! Send MLA, Selected Device
270
                                                   Clear, UNL
280 Trisser:
                 wbyte set(pri_addr),atn(unl) ! Send MLA, Group Execute
290
                                                  Trisser, UNL
```

The MI 5010 responds to DCL (and SDC if listen addressed) by clearing its Input and Output Buffers and any unexecuted setting commands in its Pending Settings Buffer, along with any errors or events waiting to be reported (except power-on).

GET satisfies the WAIT TRIG condition when the MI 5010 is executing buffered settings (and the instrument is listen addressed). GET also provides a trigger

for MI 5010 card functions: if a function card is in the DT SET mode, decoded settings are executed only on receipt of GET; if a function card is in the DT TRIG mode, inputs or outputs do not change until receipt of GET.

See the MI 5010 Operators Manual for a full discussion of how the instrument responds to interface messages.

Section 2 Operating the MI 5010 System Function Cards

This section describes the operation of each of the function cards presently available for use with the MI 5010 Multifunction Interfacing System. The handshaking lines on each card are summarized in Section 3 of this guide, and the programming commands for each card are listed in Section 4. Greater detail on the specifications, theory of operation, and maintenance and calibration of the cards is given in their respective instruction manuals.

50M10 A-D Converter Card

The 50M10 is a 12-bit analog-to-digital converter with four ranges selectable by means of internal jumpers:

Range	Resolution
-102.40 to $+102.35$ mV	50 μV
-1.0240 to $+1.0235$ V	500 μV
-10.240 to $+10.235$ V	5 mV
-102.40 to ± 102.35 V	50 mV

Figures 2-1 and 2-2 show the 50M10 front-panel interface connector pin assignments and the 50M10 on-board jumper locations, respectively.

The voltage to be measured is applied to pin 6A with the analog ground or common applied to pins 5B, 6B, and/or 7B. Any of these pins may be elevated to ± 350 volts (dc plus peak ac) from earth ground.

The 50M10 range is selected by means of J3051 and J2051. J3051 sets the gain of the 50M10 input amplifier to select a basic range of \pm 100 mV, \pm 1 V,

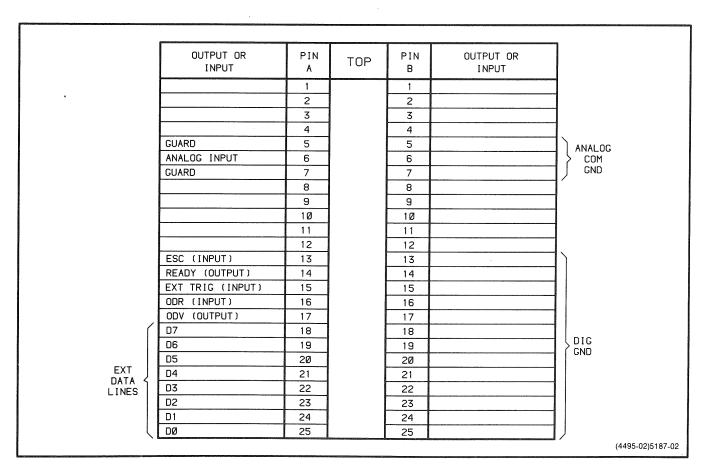


Fig. 2-1. 50M10 front panel interface connector, front view.

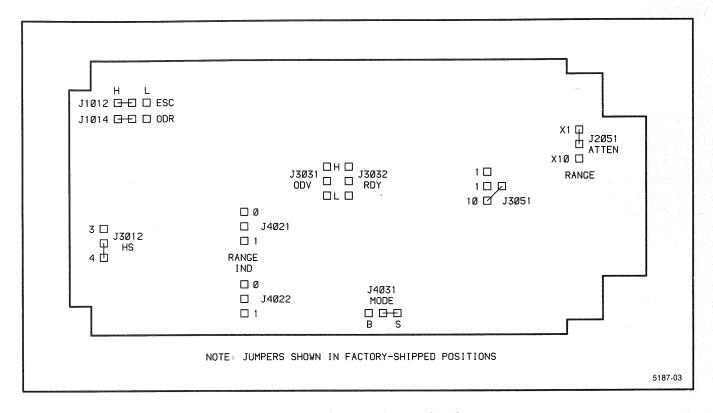


Fig. 2-2. 50M10 on-board jumper locations.

or \pm 10 V; J2051 inserts a 10X attenuator ahead of the input amplifier to obtain a range of \pm 100 V. J4021 and J4022 set the logic to provide the proper response to the settings queries from the GPIB system controller.

Internally generated guard voltages are available at pins A5 and A7. In the three lower ranges of operation, these guard voltages are approximately equal to the voltage applied to pin A6; in the highest range of operation, the guard voltage is approximately equal to one tenth of the voltage applied to pin A6.

The 50M10 takes less than 32 microseconds to convert an analog voltage to a digital value. This converted value is available over the GPIB in binary, decimal, or hex format, and/or in digital format at the External Data Lines of the 50M10 front panel connector. If the 50M10 has previously been sent the command EXT ON, then the digital word is available both over the GPIB and at the front panel connector. If the 50M10 has previously been sent the command EXT OFF, then the digital word is available only over the GPIB; it is not available at the front panel connector.

With EXT ON, the 12-bit digitized value is sent to the eight external data lines in two 6-bit bytes, high byte first. Within each byte, the most significant bit is on pin 20A and the least significant bit is on pin 25A. Pin 19A carries the high-byte/low-byte indicator. When the high byte of a given conversion is present on the external data lines, pin 19A is high; when the low byte is present, pin 19A is low. Pin 18A is not used, and is connected internally to a low logic level.

Two modes of conversion are available, Burst Mode and Step Mode, selectable by means of jumper J4031. In the Burst Mode, conversions occur continuously as long as the ESC line is held in the true state by the receiving device. In the Step Mode, one conversion occurs each time the ESC line is changed from the false state to the true state.

Conversions may also be initiated by means of the CONVERT command or SEND command over the GPIB. The CONVERT command causes a conversion to occur; the SEND command causes a conversion to take place and returns the value in volts over the GPIB.

The ODR (Output Data Received) and ODV (Output Data Valid) lines are used to handshake the converted digital value at the 50M10 front panel connector out to some external receiving device, such as the 50M50 Memory Card. In general, the 50M10 asserts ODV when it has placed a valid data byte on its

output lines, and the receiving device asserts ODR when it has accepted that data byte.

Two modes of handshaking are available, the 4-state handshake mode and the 3-state handshake mode. The 4-state handshake mode is generally used to communicate with devices which are slower than the 50M10. The 3-state handshake mode is generally used to communicate with devices which are faster than the 50M10.

In either mode, when the 50M10 places a byte of data on its external data lines, it asserts its ODV line. In the 4-state handshake mode, the 50M10 requires that the ODR line go from an false level to a true level and back to a false level before it will place another byte of data on its external data lines and assert ODV again. Thus, the 50M10 will wait until the receiving device has received a data byte and signaled via the ODR line that it is ready for the next before placing another data byte on its external data lines. Since there are two bytes of data for each conversion, there will be two ODV/ODR handshakes per conversion.

In the 3-state handshake mode, the 50M10 will continue to place data on its external data lines as long as the ODR line is held true by the receiving device and as long as conversions are occurring. The 50M10 will assert ODV each time a new byte is put onto the external data lines, but the 50M10 does not have to wait for an external signal before placing subsequent bytes on the external data lines. When the receiving device places the ODR line in the false state, the data handshaking will stop, although conversions may continue to take place, depending upon the state of the ESC line. With the 50M10 in the Burst Mode and with the ESC and ODR lines held in their true state, the 50M10 is capable of making conversions and transmitting the converted digital values at the rate of 30,000 conversions per second.

The READY line is an output line which is in the true state except during the time that the 50M10 is in the process of making a conversion. It may be used to signal other parts of the measurement system when a conversion is in process and/or when it has been completed.

50M20 D-A Converter Card

The 50M20 is a 12-bit digital-to-analog converter with either voltage or current output, selectable by means of an on-board switch. In the voltage mode, the output range is -10.240 volts to +10.235 volts with 5 mV resolution and 5 mA current capability. In the current mode, the output range is -20.48 mA to +20.47 mA, with $10~\mu\mathrm{A}$ resolution and 11 volts compliance.

The digital value to be converted may be sent to the 50M20 over the GPIB (via the MI 5010) or through the 50M20's front panel connector from an external word generator, such as the 50M50 Memory Card. The argument of the SOURCE command determines which of these sources of digital data the 50M20 will pay attention to. Total conversion time for data sent to the 50M20 through its front panel connector is 20 microseconds or less.

Figures 2-3 and 2-4 show the 50M20 front-panel interface connector pin assignments and the 50M20 on-board jumper locations, respectively.

The Data Input lines at the 50M20 front panel connector are pins 19A through 25A. The analog output of the 50M20 appears between pins 7&8A and 7&8B.

Over the GPIB, the value of the desired analog output is sent either as a voltage or current expressed in decimal, or as the digital equivalent of that value expressed in binary, decimal, or hex. Through the data input lines of the front panel connector, the value of the desired analog output is expressed digitally in two 6-bit bytes. Within each byte, the most significant bit is on pin 20A and the least significant bit is on pin 25A. Pin 19A is used for the high-byte/low-byte indicator. A high state applied to pin 19A indicates that a high byte is present; a low state applied to pin 19A indicates that a low byte is present. Pin 18A is not used; it has no internal connection within the 50M20.

Pins 14A through 17A are handshake lines which permit synchronization with other devices. The READY line is an output line which is true except while the 50M20 is in the process of making a conversion. The signal on this line may be used to signal other parts of the measurement system when a con-

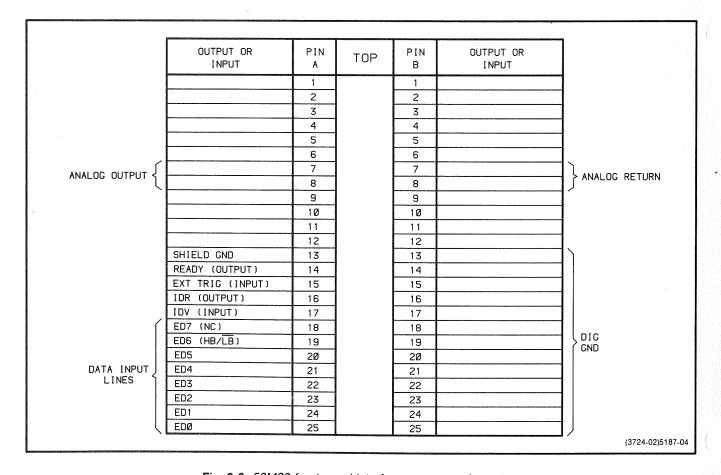


Fig. 2-3. 50M20 front panel interface connector, front view.

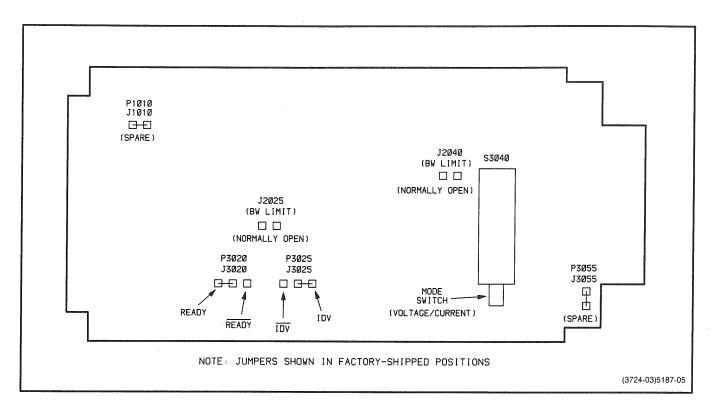


Fig. 2-4. 50M20 on-board jumper locations.

version is in process and/or when it has been completed.

The EXT TRIG line is an input line which allows the external system to cause selected actions to occur within the measurement system. (See ARM command, Section 4.)

The IDR (Input Data Received) and IDV (Input Data Valid) lines are used to synchronize the receipt of input data on the Data Input lines. When the external sending device has placed a valid data byte on the Data Input lines, it must assert IDV to signal the 50M20 that it may accept the byte. When the 50M20 has accepted the data, it asserts IDR to signal the external sending device that it may send the next

byte. Once it goes true, IDR remains true until reset by the trailing edge of the IDV signal.

In the normal bandwidth mode of operation, the 50M20 output settles to within one least significant bit of its final value within 20 microseconds. Smoothing of the output signal can be accomplished by placing a shorting jumper on J2040. This places a bandwidth filter in the signal output line and stretches the settling time to about 250 microseconds. At the same time that this is done, a shorting jumper should also be placed on J2025 which stretches the READY signal's false state to 250 microseconds to coincide with the lengthened settling time of the output signal. Two spare shorting jumpers are supplied with the 50M20 at J1010 and J3055.

50M30 Digital I/O Card

The 50M30 provides sixteen digital output lines and sixteen digital input lines. The sixteen output lines provide TTL levels to control various types of test and measurement instruments, relays, indicators, etc. The

sixteen input lines accept data from pushbuttons, switches, contact closures, and most digital devices capable of supplying TTL output levels. Figures 2-5 and 2-6 show the 50M30 front-panel interface connector pin assignments and the 50M30 on-board jumper locations, respectively.

	OUTPUT OR	PIN	TOP	PIN	OUTPUT OR	
	INPUT	Α	TUP	В	INPUT	
	DIG GND	1		1	DIG GND	_
(D0Ø	2		2	D01	
	D02	3		3	D03	
DATA	D04	4		4	D05	DATA
OUTPUT	D06	5		5	D07	SOUTPUT
LINES	D08	6		.6	D09	LINES
	D01Ø	7		7	D011	
	D012	8		8	D013	
l	D014	9		9	D015	
·	USER SUPPLY VOLTAGE (+15V MAX)	10		1Ø		
	DIG GND	11		11	DIG GND	
(DIØ	12		12	DI1	
	DI2	13		13	DI3	
	DI4	14		14	DI5	
DATA INPUT <	DI6	15		15	DI7	DATA INPUT
LINES	DI8	16		16	D19	LINES
	DI1Ø	17		17	DI11	
	DI12	18		18	DI13	
Ĺ	DI14	19		19	DI15	
·	IDV (INPUT)	20		2Ø	DIG GND	
	IDR (OUTPUT)	21		21	DIG GND	
	ODV (OUTPUT)	22		22	DIG GND	
	ODR (INPUT)	23		23	DIG GND	
	BFR TRIG	24		24	DIG GND	
		25		25	ERROR	

Fig. 2-5. 50M30 front panel interface connector, front view.

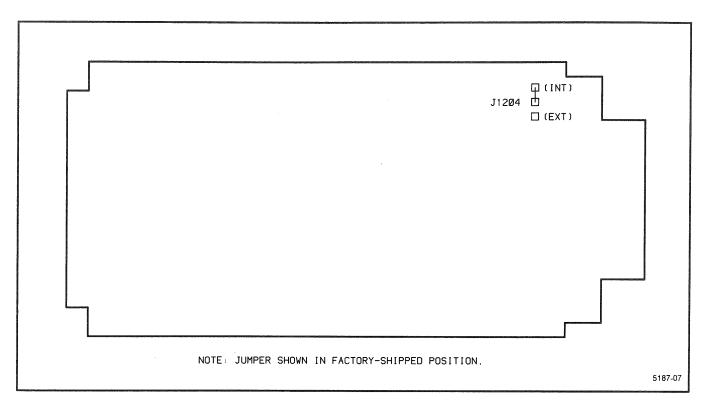


Fig. 2-6. 50M30 on-board jumper location.

As shipped from the factory the output lines are tied through 2 kohm resistors to an internal +5 volt supply. J1201 allows the output lines to be connected through the same 2 kohm resistors to an external supply as high as +15 volts, or as open-collector outputs to an external supply as high as +30 volts. The three modes of operation are diagrammed in Figure 2-7.

The sixteen input lines are tied through approximately 22 kohms to an internal +5 volt supply, and are therefore normally in the high state.

For programming the 50M30, the output channel is designated Channel 1 and the input channel is designated Channel 2. The digital word to be placed on the output channel may be sent over the GPIB or loaded from the command buffer in the MI 5010 in binary, decimal, or hex format. Likewise, the digital word present on the input channel may be returned over the GPIB or transferred to the MI 5010 input buffer in binary, decimal, or hex format as desired. There is no way in the 50M30 to move a word from the input channel to the output channel without going through the controller.

Four handshake lines—IDV, IDR, ODV and ODR (pins 20A through 23A)—at the 50M30 front panel connector permit synchronization of input and output

signals with external devices. In normal handshaking of input data, the sending device initiates the handshake by placing a valid data word on the 50M30's input lines and asserting IDV. When the 50M30 has received that word, it asserts IDR to signal the sending device that it is ready for the next word. The 50M30 automatically resets IDR to its false level after about two microseconds.

In normal handshaking of output data, the 50M30 asserts ODV to signal the receiving device that a valid word is present on its output lines. When the receiving device has received and accepted that digital word, it asserts the ODR line to signal the 50M30 that it may place another word on its output lines. The 50M30 does not require that the receiving device assert ODR before placing a subsequent data word on its output lines; however, once asserted, the ODV line will remain true until it is reset by an ODR signal.

It takes the 50M30/MI 5010 combination about 2 milliseconds to respond to an ODR from the external system and about 3 milliseconds to respond to an IDV from the external system. Thus, with handshaking, the 50M30 can place words on its output lines at a maximum rate of about 500 words per second. It can receive words on its input lines at a maximum rate of about 333 words per second. (If input or output speed

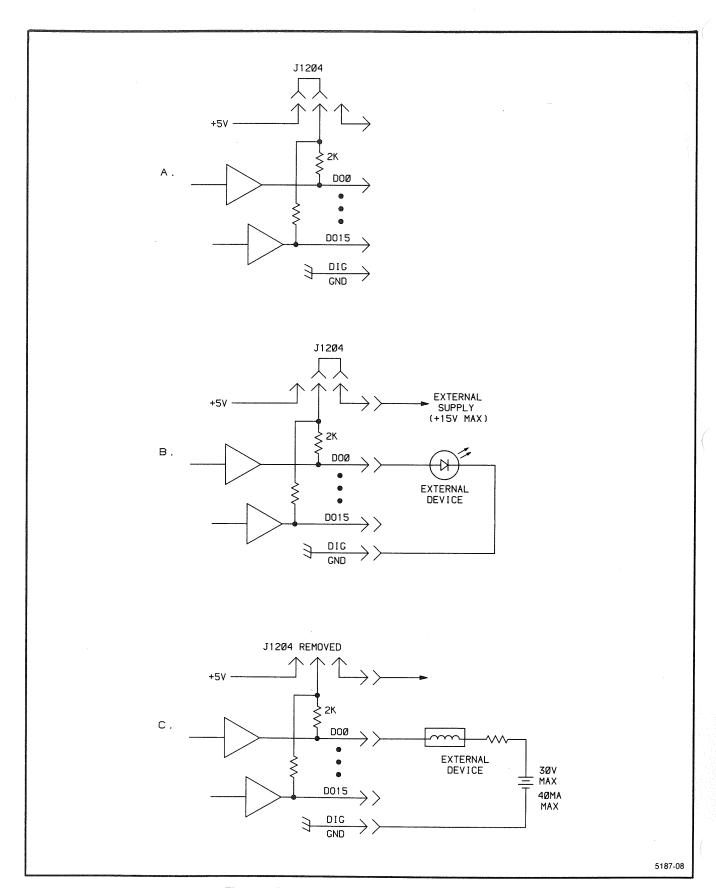


Fig. 2-7. Typical 50M30 output line configurations.

is critical, then the 50M50 memory card with its 200,000 words per second speed should be used instead of the 50M30.)

There is also a limitation in the number of different words that the 50M30 can generate or acquire at the above rates. The number of different words which can be generated is limited by the size of the command buffer. The command buffer can hold about 300 commands, including the data words to be generated and the wait commands between words. So the practical limit on the number of words which can be generated by means of the command buffer is 100 to 150, depending upon the size of the words and the number of intervening commands.

When the 50M30 "reads" a word on the input lines, it stores that word in an input buffer in the MI 5010. This buffer has a limit of about 48 words before it becomes full. When the buffer becomes full, its contents must be transmitted over the GPIB before it can accept any further words. So the maximum number of words which the 50M30 can read at 3 milliseconds per word is about 48. Then there will be some time, determined primarily by the speed of the controller, before further words can be accepted.

Of course, there is no limit to the number of words that can be input or output if each word is transmitted individually over the GPIB from the controller. In this case, the data rate is primarily a function of the speed of the controller.

50M40 Relay Scanner Card

The 50M40 contains 16 independent, single-pole, single-throw mercury-wetted relays which are wired in four groups of four relays, with each group tied to a separate common. The groups of four may also be configured, by means of internal jumpers, into groups of eight, twelve, or sixteen—each group with its own common connection. Individual switch closures are controlled by commands over the GPIB or by com-

mands from the command buffer in the MI 5010. Each switch may be individually closed or opened without regard to the state of the other switches. Or a special scanning mode of operation may be programmed wherein the switches are closed one at a time in a user-selectable sequence, in a break-before-make fashion.

Figures 2-8 and 2-9 show the 50M40 front panel interface connector pin assignments and the 50M40 on-board jumper locations, respectively.

	OUTPUT OR INPUT	PIN A	TOP	PIN B	OUTPUT OR INPUT	ross Baggaligg Colorada
	EXT TRIG (INPUT)	1		1	GND	al extra de osentific
	READY (OUTPUT)	2		2	GND	
	(1) K13ØØ	3		3		
INPUT/OUTPUT	(2) K13Ø1	4		4		
GROUP A	(3) K14ØØ	5		5		
L	(4) K14Ø1	6		6	GROUP A COM]
		7		7		_
	GND	8		8		1
	(5) K15ØØ	9		9		1
INPUT/OUTPUT	(6) K15Ø1	10		10		
GROUP B	(7) K131Ø	11		11		
	(8) K141Ø	12		12	GROUP B COM	
		13		13		
	GND	14		14]
	(9) K1411	15		15		_
INPUT/OUTPUT	(1Ø) K151Ø	16	<u> </u>	16		1
GROUP C	(11) K1511	17		17		
	(12) K132Ø	18		18	GROUP C COM	
		19		19		1
	GND	20	1	20		1
	(13) K142Ø	21		21		1
INPUT/OUTPUT	(14) K1421	22		22		
GROUP D	(15) K152Ø	23		23		
	(16) K1521	24		24	GROUP D COM	1
	GND	25		25		

Fig. 2-8. 50M40 front panel interface connector, front view.

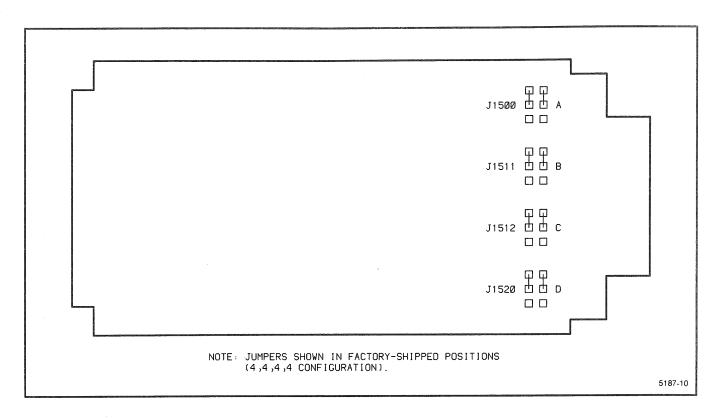


Fig. 2-9. 50M40 on-board jumper locations.

Figure 2-10 is a schematic diagram of the 50M40 switching matrix showing how the jumpers configure the matrix into groups of 8, 12, and 16. As diagrammed, moving the jumpers to the left connects the bank of four switches to the next lower common line. The jumpers are actually dual jumpers; the second portion of each one activates the logic which tells the controller what the configuration is, in answer to a configuration query from the controller.

Two handshake lines, EXT TRIG and READY (Pins 1A and 2A), provide the means of synchronizing the operation of the 50M40 with the external system. The READY line is an output line which is normally high. Whenever the 50M40 receives a command to open or close any relay, the READY line goes low and stays low for about five milliseconds to notify the rest of the measurement system that the relays are changing state and no measurements should be taken during this time. The EXT TRIG line is an external trigger input line which allows the external system to cause selected actions to occur within the measurement system. (See ARM command, Section 4.)

If the switch closure commands to the 50M40 are coming from the MI 5010 command buffer, it takes the 50M40/MI 5010 combination about two milliseconds to respond to an external trigger signal, so the maximum rate of switch operations is typically be about one operation every seven milliseconds. If the switch closure commands are coming from the controller; the period of time between operations is increased by the amount of time that it takes the controller to service the SRQ initiated by the external trigger signal and to place the next command on the GPIB.

50M41 Low-Level Relay Scanner Card

The 50M41 contains ten independent pairs of guarded, normally open, low-thermal relay contacts which are wired in two groups of five, with each group tied to a separate common. The two groups of five may be configured, by means of internal jumpers, into one group of ten with one common connection. Individual switch pair closures are controlled by commands over the GPIB or by commands from the command buffer in the MI 5010. Each switch pair may be individually closed or opened without regard to the state of the other switch pairs. Or a special scanning mode of operation may be programmed wherein the switch pairs are closed one at a time in a user-selectable sequence, in a break-before-make fashion.

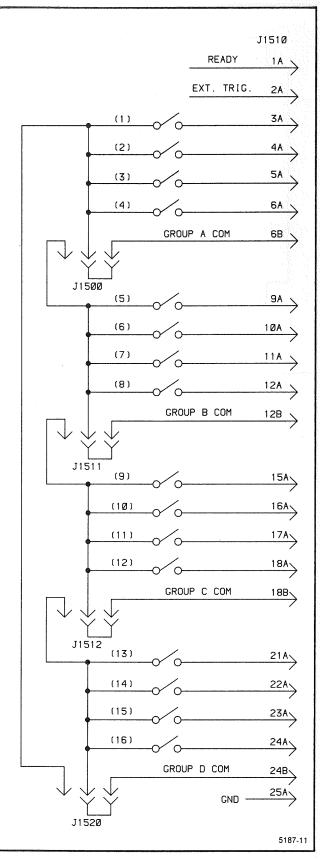


Fig. 2-10. 50M40 Relay Schematic.

Each differential pair of contacts has less than one microvolt of thermal offset, low to high, and each pair is accompanied by a third set of contacts to switch shields or guards. The guard voltage must be applied by the external system; the 50M41 does not supply a guard signal.

Figures 2-11 and 2-12 show the 50M41 front-panel interface connector pin assignments and the 50M41 on-board jumper locations, respectively.

Figure 2-13 is a schematic diagram of the 50M41 switching matrix. As diagrammed, moving J3090ABC to the left changes the configuration from two 1-to-5 switches to one 1-to-10 switch. J3095 enables and disables the tree relay in the Group A common lead.

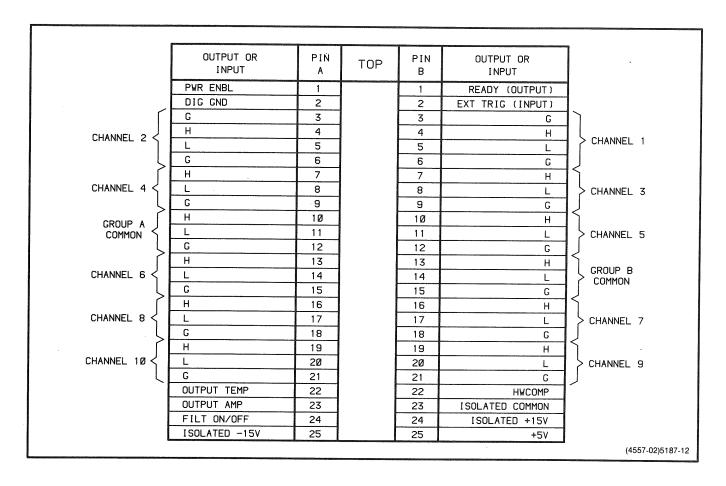


Fig. 2-11. 50M41 front panel interface connector, front view.

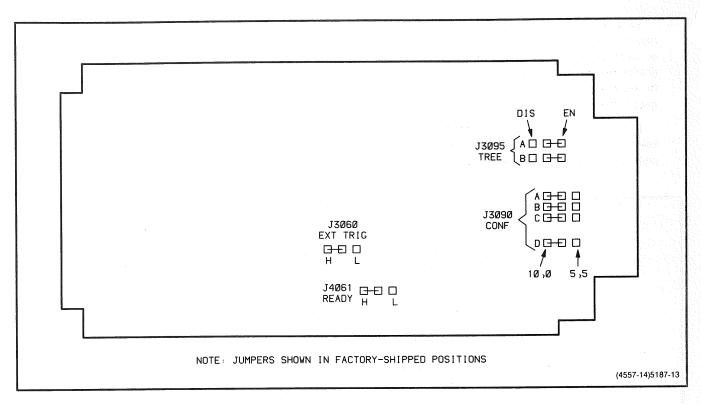


Fig. 2-12. 50M41 on-board jumper locations.

Fig. 2-13. 50M41 Switching Schematic.

Two handshake lines, EXT TRIG and READY, provide the means of synchronizing the operation of the 50M41 with the external system. The READY line is an output line which is normally in its true state. Whenever the 50M41 receives a command to open or close any relay, the READY line goes to its false state and stays false for about three milliseconds to notify the rest of the measurement system that the relays are changing state. The EXT TRIG line is an input line which allows the external system to cause selected actions to occur within the measurement system. (See ARM command, Section 4.)

If the switching commands to the 50M41 are coming from the MI 5010 command buffer, it takes the 50M41/MI 5010 combination about three milliseconds to respond to an external trigger signal, so the maximum rate of switch operations will typically be about one operation every six milliseconds. If the switching commands are coming from the controller, the period of time between switch operations is increased by the amount of time that it takes the controller to service the SRQ initiated by the external trigger signal and to place the next command on the GPIB.

Tektronix provides a family of high-gain, low-noise signal conditioning modules, designated M41A1 through M41A8, for use with the 50M41. These modules mount onto the front panel connector of the 50M41 and make use of the switching of the 50M41 to switch the input to the module among multiple sources.

The M41A1 is a general purpose amplifier with switchable gain in decade steps from 1 to 1000. A software-selectable, low-pass filter with a corner frequency of approximately 6 Hz provides more than 60 dB of normal mode rejection at 60 Hz. The frequency response of the amplifier with the filter turned off is approximately 10 kHz.

Signal conditioning modules M41A2 through M41A8 are thermocouple amplifiers, each designed to operate with a specific thermocouple type (J, K, E, T, S, R, and B, respectively). They are virtually identical to the M41A1 except that each contains an isothermal block with a temperature sensor, and the gain and offset of each module are fixed at values appropriate for its thermocouple type.

Pins 25A and 23B through 25B of the 50M41 front panel connector provide voltages for powering the signal-conditioning modules. Grounding pin 1A to pin 2A turns on the isolated supply; this grounding occurs automatically whenever one of the signal conditioning modules is mounted onto the front panel connector of the 50M41. The +5 volt supply is on continuously.

The FILT ON/OFF, OUTPUT AMP, and OUTPUT TEMP lines control the operation of the signal conditioning modules. They are activated by commands to the 50M41 from the system controller. The HARD-WARE COMP line permits the user's software to determine if hardware cold-junction compensation is enabled or not; hardware compensation is activated by means of a jumper within the signal conditioner module.

50M50 Memory Card

The 50M50 is a buffer memory input/output device which can be used either as a high-speed digital word generator or as a high-speed data acquisition buffer. Its 16 k bytes of memory can be compartmentalized under program control into as many as sixteen separately addressable variable-length data buffers. The sixteen input/output lines can be configured under program control as two independent 8-bit input/output ports or as a single 16-bit input/output port. These ports can be connected separately under program control to any of the sixteen addressable data buffers. These buffers are created, named, and sized by means of the CREATE command to the 50M50, and are connected to the input/output ports by means of the ATTACH command.

Figures 2-14 and 2-15 show the 50M50 front-panel interface connector pin assignments and the 50M50 on-board jumper locations, respectively.

The 50M50 can be programmed to input or output data via the two 8-bit ports simultaneously, or to input data via one 8-bit port while outputting data via the other 8-bit port. Each of the two 8-bit ports has its own set of handshake lines; therefore, synchronizing of data input and output on the two channels can be done completely separately from one another. When the two 8-bit channels are used as a single 16-bit channel, the Channel 1 handshake lines are used.

Pins 9A, 10A, 16A, and 17A are either Input Data Valid and Input Data Received or Output Data Received and Output Data Valid lines, depending upon whether the corresponding channel is programmed for

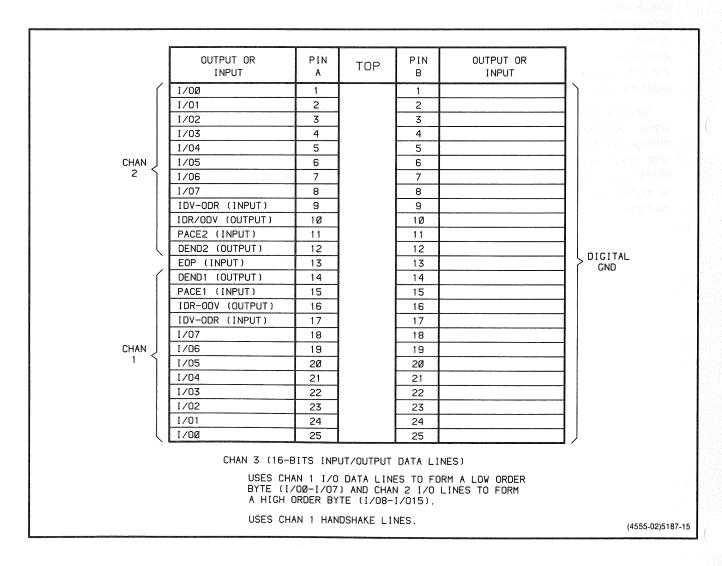


Fig. 2-14. 50M50 front panel interface connector, front view.

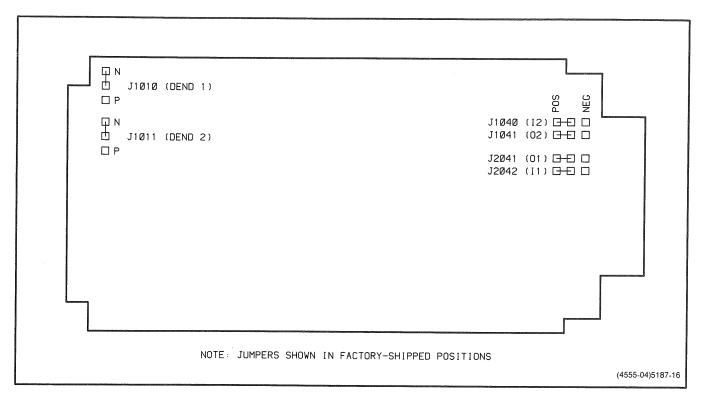


Fig. 2-15. 50M50 on-board jumper locations.

input or output. In normal handshaking of output data, the 50M50 asserts ODV to signal the receiving device that a valid word is present on its output lines. When the receiving device has received and accepted that word, it asserts the ODR line to signal the 50M50 that it may place another word on its output lines. The 50M50 does not require that the receiving device assert ODR before placing a subsequent word on its output lines; however, once asserted, the ODV line will remain true until it is reset by an ODR signal.

In normal handshaking of input data, the sending device initiates the handshake by placing a valid data word on the 50M50's input lines and asserting IDV. When the 50M50 has received that word (clocked it into the attached buffer), it asserts IDR to signal the sending device that it is ready for the next word. The 50M50 automatically resets IDR to its false level after about two microseconds.

The PACE lines are used to clock or gate data out in the output mode. The PACE line is quiescently high, and as long as it is allowed by the external device to

remain high, the 50M50 will make conversions (subject to other programming and handshake conditions). When the external device pulls the PACE line low, the 50M50 will stop its operation immediately following the next ODV. The purpose of the PACE line is to allow the external device to control the rate of data transmission from the 50M50. By pulsing the PACE high for more than one microsecond and less than one handshake cycle, the external device can clock data out of the 50M50 one byte at a time.

In the input mode, the 50M50 asserts the DEND (Data End) line when the attached buffer is full. In the output mode, the 50M50 asserts DEND when it has transmitted the last data byte in the attached buffer.

The EOP (End of Process) line is an input line which the external device asserts to signal the end of a data transmission. Assertion of this line detaches any attached buffers to prohibit further transmission to or from those particular buffers. Assertion of the EOP line also satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.

50M70 Development Card

The 50M70 provides the user with the means of developing his own unique circuit and interfacing it to the GPIB without the need for designing and building the GPIB interface itself. Interface between the 50M70 and the builder's circuit is through two 16-bit 68B21 interface registers (PIAs) which provide 32

data input/output lines, three sets of handshake lines, and several other lines for synchronizing the system with the device under test. Figure 2-16 shows the PIA pin assignments of the 50M70.

Each of the 32 data lines may be individually set for either input or output by means of the DIR command over the GPIB. The functions of the handshake and control lines are described in Section 3 of this guide.

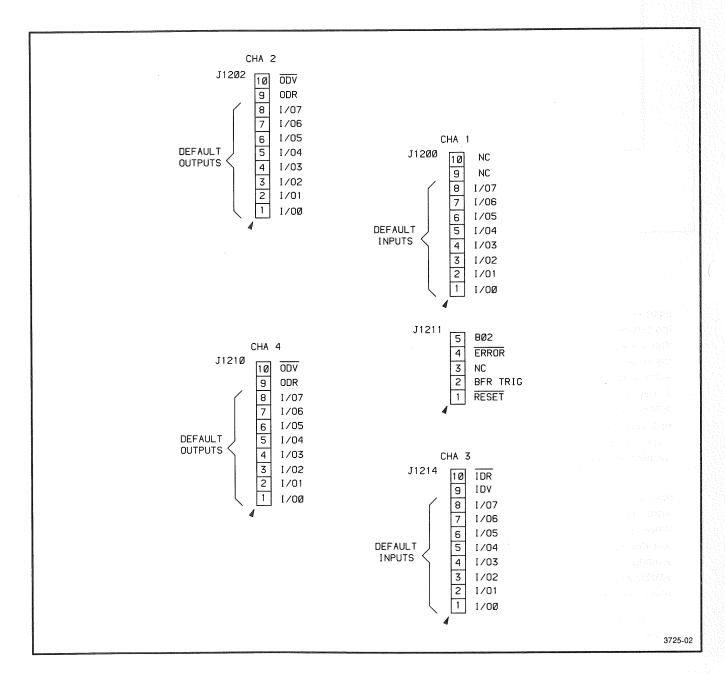


Fig. 2-16. 50M70 PIA pin assignments.

Section 3 MI 5010 System Function Card Handshake Line Summary

This section summarizes the handshake lines available on each of the function cards in the MI 5010 Multifunction Interfacing System. The word "Select" in the True State column indicates that the true state (high or low) of that line is selectable by means of a jumper on the card. "Prog." indicates that the true

state is programmable over the GPIB. All handshake lines use TTL logic levels.

More detail on the use of the handshake lines is given in Section 2 of this guide and in the respective function card instruction manuals.

50M10 Handshaking Lines

Line Name	Input or Output	True State	Function
ESC	Input	Select	Initiates a conversion by the 50M10. This line must be enabled by EXT ON command to $50M10$.
READY	Output	Select	Goes false while a conversion is taking place.
EXT TRIG	Input	High	Satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.
ODR	Input	Select	In 4-state handshake mode, indicates to 50M10 that an output data word has been accepted, and resets ODV. In 3-state handshake mode, allows continuous output of data, subject to operation of ESC line. This line must be enabled by EXT ON command to 50M10.
ODV	Output	Select	Indicates that a valid data word is available on 50M10 external data lines. This line must be enabled by EXT ON command to 50M10.

50M20 Handshaking Lines

Line Name	Input or Output	True State	Function
READY	Output	Select	Goes false while a conversion is taking place (approximately 20 microseconds in normal bandwidth mode; approximately 250 microseconds in limited bandwidth mode).
EXT TRIG	Input	High	Satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.
IDR	Output	Select	Indicates to the sending device that a data word has been received. Once asserted, IDR remains true until reset by trailing edge of IDV.
IDV	Input	Select	Indicates to the 50M20 that the sending device has placed a valid data word on the 50M20 data input lines.

50M30 Handshaking Lines

Line Name	Input or Output	True State	Function
IDV	Input	High	Indicates to the 50M30 that the sending device has placed a valid data word on the 50M30 data input lines. Satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.
IDR	Output	High	Indicates that the 50M30 has received the data word on its data input lines and is ready for the next.
ODV	Output	High	Indicates that a valid data word is present on the 50M30 data output lines. Reset by ODR.
ODR	Input	High	Indicates to the 50M30 that the receiving device has received the output data word and is ready for the next. Satisfies ON, SRQ, and COND arguments of ARM and WAIT commands. Resets ODV. (50M30 will ignore ODR if ODV is low.)
BFR TRIG	Output	Low	Occurs on receipt of Group Execute Trigger (GET) by MI 5010.

50M40 Handshaking Lines

Line Name	Input or Output	True State	Function
EXT TRIG	Input	High	Satisfies ON, SRQ, and COND arguments of ARM and WAIT commands.
READY	Output	High	Indicates that relays have settled after a CLOSE, OPEN, or NEXT command.

50M41 Handshaking Lines

Line Name	Input or Output	True State	Function
PWR ENBL	Control	Low	Enables isolated supplies when connected to digital ground. (Attachment of signal conditioning module automatically makes this connection.)
OUTPUT TEMP	Control	Low	Programs signal conditioning module to output the thermal block temperature voltage.
OUTPUT AMP	Control	Low	Programs signal conditioning module to output the thermocouple temperature voltage.
FILT ON/OFF	Control	Low	Enables low-pass filter in signal conditioning module.
HW COMP	Control	Low	Programs signal conditioning module to enable hardware temperature compensation.
READY	Output	Select	Indicates that relays have settled after a CLOSE, OPEN, or NEXT command.
EXT TRIG	Input	Select	Satisfies ON, SRQ, and COND arguments of ARM and WAIT commands.

50M50 Handshaking Lines

Operation in Data Input Mode

Line Name	Input or Output	True State	Function
IDV	Input	Select	Indicates to the 50M50 that the sending device has placed a valid data word on the 50M50 data lines.
IDR .	Output	Select	Indicates that the 50M50 has received the data word on its data lines and is ready for the next.
DEND	Output	Select	Indicates that the attached buffer is full.
EOP	Input	High	Detaches all attached buffers, and satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.

Operation in Data Output Mode

Line Name	Input or Output	True State	Function
ODR	Input	Select	Indicates to the 50M50 that the receiving device has received the output data word and is ready for the next. Resets ODV. (50M50 will ignore ODR if ODV is false.)
ODV	Output	Select	Indicates that a valid output data word is present on the 50M50 data lines. Reset by ODR.
DEND	Output	Select	Indicates that the last data byte in the attached buffer is present on the 50M50 data lines.
EOP	Input	Select	Detaches all attached buffers, and satisfies the ON, SRQ, and COND arguments of the ARM and WAIT commands.
PACE	Input	High	Holds off ODV when held low by external device.

50M70 Handshaking Lines

Line Name	Input or Output	True State	Function
ODV	Output	Prog.	Indicates that a valid output data word is present on the selected channel.
ODR	Input	Prog.	Indicates to the 50M70 that the receiving device has received the output data word on the selected channel and is ready for the next. Satisfies ON, SRQ, and COND arguments of ARM and WAIT commands.
IDR	Output	Prog.	Indicates to the sending device that the 50M70 has received the data word on the selected channel and is ready for the next word.
IDV	Input	Prog.	Indicates to the 50M70 that a valid input data word is present on the selected channel. Satisfies ON, SRQ, and COND arguments of ARM and WAIT commands.
B02	Output	NA	Buffered 1-MHz clock out (derived from MI 5010 clock).
ERROR	Output	Low	Goes low during power-up self-test. Stays low if a hardware error exists in 50M70.
BFR TRIG	Output	Low	Occurs on receipt of Group Execute Trigger (GET) by MI 5010.
RESET	Output	Low	Indicates that power-up self-test is occurring (see ERROR line).

	7	
		The state of the s
	à	
		er de dinamente e e
		- 二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十
		· · · · · · · · · · · · · · · · · · ·

Section 4 Programming Commands

This section lists the commands which may be sent to the MI 5010/MX 5010 and the function cards. Each command begins with a header -- a word or abbreviation that describes the function to be implemented. A command may include one or more arguments, which are separated from the header by a space and from each other by commas. Multiple commands may be combined in a message by separating the commands with semi-colons.

As an example, the following multiple command message sent to the MI 5010 initializes the MI 5010 (sets it to its power-up settings), directs the subsequent commands to the card in the first slot of the MI 5010, and closes relays 4 and 7 on that card (this assumes a 50M40 or 50M41 in the first slot of the MI 5010):

INIT;SEL 1;CLO 4,7

Most of the MI 5010 commands and all of the function card commands are executable in either immediate or buffered mode. In the MI 5010 command list, the commands which are executable in the immediate mode are indicated by the letter "I" in the mode column; those that are executable in the buffered mode are indicated by the letter "B" in the mode column. Commands that are executable in both modes are indicated by "I/B."

Following the list of commands for each instrument is a listing of the power-up settings for that instrument.

MI 5010 Programming Commands

Header	System/S Argument(s)		Commands Description
ERR?		I/B	Error query. With RQS ON returns error code for most recent event reported when serial polled. With RQS OFF it returns the highest priority status.
ID?		I/B	Identify instrument query.
INIT		I	Initializes system to its power-up state.
OPC	ON	I/B	OPeration Complete SRQ. Buffered commands executed on completion of EXECUTE command.
	OFF	I/B	Disables OPeration Complete function.

MI 5010 Programming Commands (cont)

System/Status Commands (cont)				
Header	Argument(s)	Mode	Description	
OPC?		I/B	OPeration Complete query.	
RQS	ON	I/B	Enables SRQ assertion.	
	OFF	I/B	Disables SRQ assertion (except power-on).	
RQS?		I/B	Request for service query.	
SET?		I/B	MI 5010 settings query.	
TEST		I	Self-test command.	
USER	ON	I/B	Enables user SRQ function (INST ID button).	
	OFF	I/B	Disables user function	
USER?		I/B	User function query.	

Card Control Commands Header Argument(s) Mode Description					
	Aigument(s	, wode	Description		
BUF	ON		Opens command storage buffer.		
	OFF	i .	Closes command storage buffer.		
COND	1	I/B	Sets flag for WAIT COND command.		
	0	I/B	Resets flag for WAIT COND command.		
COND?			Condition query.		
EXEC	<num></num>	ı	Closes command storage buffer, if open, and executes the number of times designated by the argument. Argument values 0 to 254. 0 causes no executions, but an SRQ is generated if OPC ON has been received.		
	<-num>		Buffered commands executed indefinitely (always). Execution ceases on receipt of a STOP, EXEC <num>, INIT, or TEST command.</num>		
EXEC?		I/B	Execute query.		
SEL	<slot num=""> [,card name]</slot>	I/B	Selects function card defined by argument(s).		
SEL?		I/B	Card select query.		
STOP		l	Stops execution of buffered command sequence.		
	<hh>: <mm>: <ss> [,50 or 60 or 400]</ss></mm></hh>	I/B	Initializes time-of-day clock. Second argument equals power line frequency; default = 60 Hz.		
TIME?			Time-of-day clock query.		

Card Control Commands (cont) Header Argument(s) Mode Description					
TRIG		I/B	Performs same function as <get> interface message. See IEEE 488 Interface Messages, and Detailed Command List.</get>		
UNTI	<hh>: <mm>: <ss></ss></mm></hh>	I/B	Sets the time comparison value for the WAIT UNTIL command.		
UNTI?		I/B	Time comparison value query.		
WAI	TRIG	В	Suspends execution of the command storage buffer until receipt of the TRIG command or <get>.</get>		
	COND	В	Suspends execution of the command storage buffer until an armed function card receives a condition defined for the selected card.		
	UNTI	В	Suspends execution of the command storage buffer until the time-of- day clock equals the argument value specified in the UNTIL command.		
	<num></num>	В	Suspends execution of the command storage buffer until <num> of seconds has passed.</num>		
	OFF	В	No waiting period for buffered mode execution.		
WAI?		I/B	Wait status query.		
	MI 5010 Power-On Settings				
	PC		OFF		
RQS SEL			OFF		
			0 (or lowest slot filled, 1-6)		
Ų	SER		OFF		

50M10 Programming Commands		50	50M10 Programming Commands (cont)			
Header	Argument(s)	Description	Header	Argument(s)	,	
ARM	ON	Causes 50M10 to	EXT?		Returns EXT setting.	
		generate both a logical condition and an SRQ when an external trigger (EXT TRIG) occurs.	FLAG?		Returns 1 if EXT TRIG has occurred since las FLAG query.	
	COND	Causes 50M10 to generate only a logical condition when EXT			Returns 0 if EXT TRIG has not occurred since last FLAG query.	
	SRQ	TRIG occurs. Causes 50M10 to generate only an SRQ	FSET?		Returns 50M10 ARM, DT, and EXT command settings.	
		when EXT TRIG occurs.	HDAT?		Returns hexadecimal	
	OFF	No action is generated when EXT TRIG occurs.			formatted conversion data.	
ARM?		Returns arming status.	NAM?		Returns the card name	
BDAT?		Returns binary formatted conversion data.	RANGE?		Returns the 50M10 range (.1, 1, 10, and 100) configurations.	
CONVERT		Causes a conversion to be made.	SEND		Initiates a conversion and returns the value in	
DAT?		Returns decimal formatted conversion data.			volts. Does not return a header.	
DT	TRIG	With EXT OFF enabled, causes a conversion whenever a <get> interface message or</get>	VOLT?		Returns the last conversion value in volts. Does not cause a conversion.	
		MI 5010 TRIG command is received.	4514	50M10 Power-	•	
	OFF	Causes the 50M10 to ignore the <get> interface message and MI 5010 TRIG command.</get>	ARM DT EXT		OFF OFF OFF	
DT?		Returns the device trigger setting.				
EXT	ON	Enables the 50M10 external port to communicate with other devices via the front connector and enables the ESC (External Start Conversion) line.				
	OFF	Disables the external port and ESC line.				

5	0M20 Program	ming Commands		50M	50M20 Programmin
Header	Argument(s)	Description	Header		Argument(s)
ARM	ON	Causes 50M20 to generate both a logical condition and an SRQ when an external trigger (EXT TRIG) occurs.	DT		SET
	COND	Causes 50M20 to generate only a logical condition when EXT TRIG occurs.			
	SRQ	Causes 50M20 to generate only an SRQ when EXT TRIG occurs.			TRIG
ARM?	OFF	No action is generated when EXT TRIG occurs. Armed status query.			
CURR	<num></num>	Sets 50M20 to output the current specified by the argument. <num> is assumed to be in</num>			OFF
		milliamperes with a range of -20.48 to $+20.47$.	DT?		
CURR?		Output current setting query.	FLAG?		
DAT	<num></num>	Puts binary equivalent	FSET?		
	B <num> H<num></num></num>	defined by the selected argument into the digital inputs of the digital-to-	MODE?		
		analog converter. <num></num>	NAM?		
		can be decimal, binary, or hexadecimal. Decimal range, 0 to 4095.	SOUR	INT	
DAT?		Decimal data format query.		EXT	
BDAT?		Binary data format query. Hexadecimal data format			
		query.	SOUR?		
			VOLT	<num></num>	>
			VOLT?		

query.

50M20 Programming Commands (cont)

Header	Argument(s)	Description
--------	-------------	-------------

50M20 Power-On Settings

Voltage Mode:	0.000
VOLT	OFF
ARM	2048
DAT	INT
SOUR	OFF
Current Mode: CURR ARM DAT SOUR DT	0.00 OFF 2048 INT OFF

	50M30 Pro	gramming Commands	5014	00 B	
Head					ng Commands (cont)
ARM	ON		Header	Argument(s)	Description
	ON	Handshake lines generate both a logical condition and SRQ when ODR or IDV	BDAT?	*	Binary data format query (Channel 1 or 2).
	COND	signal occurs. Handshake lines generate	HDAT?		Hexadecimal data format query (Channel 1 or 2).
		only a logical condition when an ODR or IDV signal occurs.	DT §	SET	Alter settings after receipt of <get> interface message or MI5010 TRIG</get>
	SRQ	Handshake lines generate		•	command.
		only an SRQ when an ODR or IDV signal occurs.	T .	á	Change input/output data after receipt of <get></get>
	OFF	No action is generated by the handshake lines.	·	i I	nterface message or MI5010 TRIG command.
ARM?		Armed status query.	0		<get> interface</get>
CHA	<num></num>	Accesses channel defined	1	C	message or MI5010 TRIG command has no effect.
		by argument. $<$ num $> = 1$ for data	DT?		Device trigger status query.
		output channel. = 2 for data	FLAG?	F in	lag query for ODV or IDV
		input channel.	FSET?	50	0M30 current settings
CHA?		Accessed channel query.			uery.
DAT	<num> B<num></num></num>	Puts binary equivalent of <num> into Channel 1</num>	NAM?	Fi	unction card name query.
	H <num></num>	data output register.		50M30 Power-	On Settings
		<num> can be decimal</num>	CHA		1
DAT?		binary or hexadecimal	DT		OFF
DAI:		Decimal data format query	CHA 1: DAT		
		(Channel 1 or 2).	ARM		0
			CHA 2:		OFF
			ARM		OFF

50M40 Programming Commands			50M40 Programming Commands (cont)			
Header	Argument(s)		Header	Argument(s)	Description	
ARM	ON	Causes 50M40 to generate both a logical condition and SRQ when an external	FLAG?		Flag query for occurrence of EXT TRIG signal (interrupt).	
	COND	trigger (EXT TRIG) occurs. Only the logical condition is generated for EXT TRIG. The logical condition is	FSET?		50M40 current settings query. Use CONF? query obtain hardwired relay configuration.	
		defined as the satisfaction of the WAIT COND	NAM? NEXT		Card name query.	
		command.			Closes next relay in the defined scanning sequer	
	SRQ	Only an SRQ is generated for an EXT TRIG signal.			Scanning sequence defi by SCAN command arguments.	
	OFF	No action is generated for an EXT TRIG signal.	OPE	<num></num>	Opens relay(s) defined I	
ARM?		Armed status query.	01 =	[,num]	the argument(s), up to total numbers.	
CLO	<num> [,num]</num>	Closes relay(s) defined by argument(s), up to 16 total		ALL	Opens all relays.	
	[,114111]	numbers (1—16).	OPE?		Open relay query.	
CLO?		Closed relay status query.	SCAN	<num></num>	Relay scanning sequen	
CONF?		Hardwired configuration status query.		[,num]	specified by the order of arguments, up to 16 numbers.	
DT	SET	Causes 50M40 to wait for <get> interface message before altering its</get>	SCAN?		Relay scanning sequen query.	
		settings.		50M40 Po	wer-On Settings	
	TRIG	Causes 50M40 to wait for the MI5010 TRIG command before altering its settings.		T RM PE	OFF OFF 1,2,3,4,5,6,7,8,9,10 12,13,14,15,16	
	OFF	<get> interface message or MI 5010 TRIG command have no effect on 50M40.</get>		LO CAN	0	
DT?		Device trigger setting query.				

	50M41 Progra	50M41 Programming Commands (cont)				
Heade	r Argument(s	Description	Head		\rgument(s	-
ARM	ON	Causes the 50M41 to generate a logical condition and assert SRQ when the	DT?			Returns the current DT setting.
	COND	external trigger (EXT TRIG) is asserted.	FLAG?	?		Returns FLAG 1, if an EXT TRIG has occurred since the last flag query;
	COND	Causes the 50M41 to generate only a logical condition when EXT TRIG	FSET?			otherwise returns FLAG 0. Returns the 50M41 current
	SRQ	is asserted.				setting. Use CONF? query to obtain hardwired relay
	·	Causes the 50M41 to assert only an SRQ when EXT TRIG is true. MOD?			configuration. Returns type of module	
	OFF	No action is generated when EXT TRIG is	NAM?	i		connected to the 50M41. Returns 50M41 card
		asserted.				identification.
ARM?		Returns current ARM command setting.	NEXT			Causes the 50M41 to go to the next relay closure
CLO	<num> [,<num>]</num></num>	Causes the 50M41 to close specified relays (integers 1				defined by the SCAN command.
	0	through 10) and pulses the READY line. Pulses READY line; does	OPE		num>]	Causes the specified relay(s) (integers 1 through 10) to open.
CLO?		not affect the relays. Returns the number(s) of		0		Causes the READY line to change state; does not affect relays.
001150		the currently closed relay(s).		ALL		Causes all the relays to
CONF?		Returns card relay jumper configuration.	OPE?			open. Returns the number(s) of
DT	SET	Causes the 50M41 to wait	SCAN			the currently open relay(s).
	-	for a Group Execute Trigger <get> interface message before executing previously received setting</get>	SCAN	<nu [,<n< td=""><td>um>]</td><td>The order of the arguments (specifying the relay integers 1 through 10) sets up the scanning sequence.</td></n<></nu 	um>]	The order of the arguments (specifying the relay integers 1 through 10) sets up the scanning sequence.
•	TRIG	commands. Allows the <get></get>	!	0	 	Does not change the relay scanning sequence.
	:	interface message to strobe previously received relay setting changes defined by the OPEN, CLOSE, or SCAN	SCAN?			Returns the current relay scanning sequence.
	(TREE	CLOS		Causes the tree relay to close.
c	OFF (commands. Causes the 50M41 to		OPEN	-	Causes the tree relay to pen.
		gnore the $<$ GET $>$ nterface message.	TREE?			Returns the current tree elay state.

50M41 Programming Commands (cont)

Description Argument(s) Header

50M41 Power-On Settings

OFF DT OFF ARM 1,2,3,4,5,6,7,8,9,10 OPE 0 CLO 0 **SCAN OPEN** TREE OFF (used with ampli-**FILT**

fier modules only)

OFF (used with thermo-OUTPUT couple amplifier modules only)

MODULE COMMANDS

OPTIONAL SIGNAL CONDITIONING

Description Header Argument(s) Causes the 50M41 to FILT ON insert a filter providing 60 dB of normal mode rejection at 60 Hz in the 50M41 output when using the optional signal conditioning modules. No filtering in the output. **OFF** Returns the current FILT? FILTER command setting. Returns current HWCOMP? hardware temperature compensation setting. Makes the iso-thermal OUTPUT **TEMP** block temperature available at the thermocouple amplifier module analog output. Makes the amplifier **AMP** output available at the signal conditioning

OFF

OUTPUT?

module analog output. Opens the output relay.

Returns the signal

conditioning module's analog output setting.

50M50 Programming Commands			50M50 Programming Commands (cont)			
Header	Argument(s)	Description	Header	Argument(s)	Description	
ABORT APPEND	<name1>,</name1>	Stops the handshake and detaches all channels.	DIR?		Returns buffer names, length of buffer data, and buffer unused	
ALLEND	<name1>,</name1>	Concatenates the buffer data identified by the argument <name2> to the end of buffer data identified</name2>	EOP?		space (bytes). Returns 0 (EOP line not asserted) or 1 (EOP line is asserted).	
		by the argument <name1>.</name1>	FSET?		Returns current 50M50 settings:	
ARM	ON	Generates a logical condition, detaches all channels, and asserts SRQ when the EOP	MEM?		Returns the number of unused bytes in the buffer memory: MEM <num>.</num>	
	COND	line is asserted. Generates a logical	PURGE		Clears all buffers in the memory card.	
	SRQ	condition and detaches all channels when the EOP line is asserted. Asserts SRQ and	RAMERR?		Returns results of the self-test at power-on or after the RAMTEST command.	
		detaches all channels when the EOP line is asserted.	RAMTEST		Causes a complete RAM test (purges the memory).	
	OFF	No action results when EOP is asserted.	REC	<name>, <format>,</format></name>	Names buffer receiving data, format of	
ARM? ATT		Returns ARM status.	.*	<data></data>	received data, and buffer data values.	
811	<name>, <chan>, <type></type></chan></name>	Assigns name to buffer, channel number, and data type.	REPEAT	ON	Enables REPEAT mode on Channel 1.	
ATT?		Returns buffer name(s), channel	·	OFF	Disables REPEAT mode.	
BACKUP	 binary	number, and data type. Outputs a 260 byte	REPEAT?		Returns repeat mode setting.	
	block>	binary block: directory (256 bytes), system variables (4 bytes), and all buffer data.	SEND	<name>, <format></format></name>	Interprets buffer data and outputs results over the GPIB.	
BACKUP?		Returns binary block data.	START		Initiates data transfers between buffer	
CREATE	<name>, <length></length></name>	Assigns name to buffer and new buffer length in (bytes).	·		memory and the front panel connector set up by the ATTACH command.	
DEL	<name></name>	Deletes buffer name.	STAT?		Returns status of all channels.	

50M50 Programming Commands (cont)

Header Argument(s)

Description

50M50 Power-On Settings

ATT

NONE

REPEAT

OFF

ARM

OFF

	50M70 Programming Commands			50M70 Programming Commands (cont)			
Header	Argument(s)	Description	Header	Argument(s)	Description		
ARM	ON	Causes handshake lines to generate both a logical condition and an SRQ when an ODR or IDV	DIR	<num></num>	A decimal number is used to set up the data direction register of the currently selected channel.		
	COND	signal occurs on the selected channel (Channel 1 has no handshake lines). Only a logical condition is		B <num></num>	An 8-bit binary number is used to set up the data direction register of the currently selected channel		
		generated for an ODR or IDV signal. The logical condition is defined as the satisfaction of the WAIT			(0 = input port, 1 = output port). A port is a single data line (or bit).		
	SRQ	COND command. Only an SRQ is generated for an ODR or IDV signal.		H <num></num>	A hexadecimal number is used to set up the data direction register of the currently selected channel.		
	OFF	No action is generated by the ODR or IDV signal.		DIR?	Direction of decimal data query.		
ARM?		Arming status query.		BDIR?	Direction of binary data		
CHA	<num></num>	Selects user defined channel. <num> = 1, 2, 3, or 4.</num>		HDIR?	query. Direction of hexidecimal		
CHA?		Currently selected channel query.	DT	SET	data query. Causes 50M70 to wait for <get> interface</get>		
DAT	<num></num>	Puts binary equivalent of a decimal number into the data output register of the			message or MI 5010 TRIG command before altering its settings.		
	_	currently selected channel. Puts 8-bit binary number		OFF	No action is taken on receipt of <get></get>		
		into the data output register of currently selected channel.			interface message or MI 5010 TRIG command.		
		Puts the binary equivalent	FLAG?		ODR or IDV interrupt flag query.		
		of a hexadecimal number into the data output register of the currently	FSET?		50M70 current settings query.		
		selected channel.	NAM?		Card name query.		
DAT?		Decimal data format query.	SLO	POS	Causes 50M70 to respond to the positive edge of an ODR or IDV signal.		
BDAT? HDAT?		Binary data format query. Hexadecimal data format query.		NEG	Causes 50M70 to respond to the negative edge of an ODR or IDV signal.		
			SLO?		ODR or IDV signal slope setting query.		

50M70 Programming Commands (cont)					
Header	Argument(s)	Description			
	50M70 Power-0	On Settings			
CHA	•	1			
DT		OFF			
CHA 1:					
DAT		255*			
DIR		0			
CHA 2:					
DAT		XXX*			
DIR		0			
ARM		OFF			
SLO		NEG			
CHA 3:					
DAT		255*			
DIR		0			
ARM		OFF			
SLO		NEG			
CHA 4:					
DAT		XXX*			
DIR		0			
ARM		OFF			
SLO		NEG			

*If data lines not connected.

4-13

Kapan water

13 1 aan

iasi

S AVEQ

FAG.

Mini ARA

OUAL E AN

eag :

A PARA

0.76

7491

MALA

Cathaga a serie e Mas Maria

and the second second

Section 5 Status Bytes and Error Codes

Programmable interrupts are provided in the MI 5010 Multifunction Interfacing System to inform the controller of asynchronous events, such as operation complete, command errors, and receipt of external triggers by the function cards. If the MI 5010 is set to respond to report such an event (by the RQS ON

command), it asserts SRQ and sets its status byte and error code appropriately. The status byte returned in response to a serial poll and the error code returned in response to an error query (ERR?) are listed below.

Error Codes and Status Bytes

Description	ERR? Response	Serial Poll Response (STB)
No Errors or Events	0	0
Active, No Errors To Report	0	128
Command Errors		
Command header error	101	97
Header delimiter error	102	97
Command argument error	103	97
Argument delimiter error	104	97
Nonnumeric argument (numeric expected)	105	97
Missing argument	106	97
Invalid message unit delimiter	107	97
Execution Errors		
I/O buffers full, output dumped	203	98
Legal command, but settings conflict	204	98
Argument out of range	205	98
Group execute trigger ignored; busy processing last message	206	98
Select error. No card in that slot.	220	98
Internal Errors		
RAM error on card in slot x	34x	99
ROM error on card in slot x	36x	99

Error Codes and Status Bytes

	Description	ERR? Response	Serial Poll Response (STB)
,	System Events		1 (4) 2 (4) • (4)
	Power on	401	65
	Operation complete. Execution of buffered commands has been completed	402	66
	User request (INST ID pressed)	403	
ı	Device Warnings		
	Time-of-day clock not initialized and WAIT UNTIL command was to be executed.	605	102
[Device Dependent (Card) Events		
	Power on errors on card in slot x	74x	225
	Hardware errors on card in slot x	77x	226
	Armed condition warning on card in slot x	79x	192+x

Section 6 Sample Programs for the MI 5010 Multifunction Interfacing System

This section gives program listings for three different programs combining the operation of two or more function cards in the MI 5010 Multifunction Interfacing System. Two versions of each program are given, one using the Tektronix 4052A controller with the 4052R14 GPIB rompack and the other using the Tektronix 4041 controller.

The three programs are:

 Sine, square, and triangle generator program, using the 50M50 Memory Card and the 50M20 Digital-to-Analog Converter Card.

- Low-frequency digitizer program, using the 50M50 Memory Card and the 50M10 Analogto-Digital Converter Card.
- Data acquisition program, using the 50M50 Memory Card, the 50M10 Analog-to-Digital Converter Card, and the 50M41 Low-Level Scanner Card.

Other sample programs are found in the instruction manuals for each of the instruments. Still other programs are available from the Tektronix Instrumentation Software Library.

```
110
        ****** 50M50 MEMORY CARD / 50M20 DIGITAL TO ANALOG CARD ****
        120
130
1.40
      May 25, 1984
150
        Copyrisht (c) 1983 Tektronix, Inc. All rights reserved. The software is provided on an "as is" basis without warrants of
160
170
180
        any kind. It is not supported.
190
        This program may be reproduced without prior permission, in
200
210
        whole or in part, by the original purchaser. Copies must
220
        include the above copyright and warranty notice.
230
240
250
        Loads the 50M50 Memory Card with the byte pattern to produce a
        sine wave, triangle wave and square wave based on given
260
270
        parameters.
280
        These parameters are amplitude, offset and symmetry of the
290
        waveform.
300
      ! The waveform is produced by the 50M20 Digital to Analog
310
        Converter card which converts the binary representation of the
320
        waveform to its analog equivalent.
330
        The number of points of the waveform are 256.
340
      ! The maximum frequency attainable with 256 points is 200 Hz
350
      ! Higher frequencies are possible with fewer points. The frequency
        of the output is controlled by appliying a 1.1 microsecond wide
360
370
       pulse to the PACE input of the 50M50 Memory Card (15A). The
380
        frequency of the output is determined by the time between
390
        pulses. The following equation is used to calculate the output
400
        frequency:
410
420
        Output Frequency=1/[2*(Time between pulses)*(Number of Points)]
430
440
        The frequency applied to the pace input is limited to 102.4KHz
450
        with a 256 point waveform. Each byte pattern is given a file
460
        name in the 50M50 which is descriptive of its contents. The
470
        file names are,SINE, SQUARE and TRIANG. Each file is selected
480
        for output by attaching it to port 1 of the 50M50.
490
500
        REQUIRED FOUTPMENT:
510
        MI/MX 5010 Programmable Multifunction Interface
520
        50M50 Memory Card.
530
        50M20 Digital to Analog Converter Card.
540
        4052A Controller with 4052R14-1A GPIB Enhancement Romeack.
550
560
        PROGRAM SEGMENT VARIABLES:
570
        mi: MI 5010 primary address.
580
        _points: Number of points making up the waveform.
        wave: Array containing the calculated waveform.
590
600
       vmax: Maximum peak voltage allowed by 50M20.
610
        voltseel: Feak to reak amelitude of sine wave.
620
      ! voltspp2: Peak to peak amplitude of square wave.
630
        voltspp3: Peak to peak amplitude of triangle wave.
640
        _offset1: Offset of sine wave.
650
         offset2: Offset of square wave.
         offset3: Offset of triangle wave.
660
670
      ! Symmet2: Symmetry of square wave.
      ! summet3: Summetry of triangle wave.
680
690
      ! statbute: Target variable for device identifier.
700
        address: Address of instrument requesting service.
710
        ecode: Error code returned by a Tektronix instrument in response
720
      I to an error query.
```

Fig. 6-1. Sine, square, and triangle wave generator (4052A).

(4555-15) 5187-17

```
730
740
      ! OPERATING INSTRUCTIONS:
      ! 1) Connect MI 5010 and 4041 with GPIB cable. Use port 0.
750
760
        2) Change instrument or program, if necessary, so primary
770
           address in instrument and program agree--program expects 23.
780
        3) 50M20 must be installed in slot 1 and 50M50 in slot 2 of
790
           MI 5010 or change program assignment of these cards.
800
        4) Connect:
                            50M20
                                                  50M50
810
                                               17A (ODR)
                          16A (IDR)
                                       to
820
                          17A (IDV)
                                               16A (ODV)
                                       to
830
                                               19A (I/06)
                          19A (E06)
                                       to
840
                          20A (E05)
                                       to
                                               20A (I/05)
850
                          21A (E04)
                                               21A (I/04)
                                       to
860
                          22A (E03)
                                      to
                                               22A (I/03)
870
                          23A (E02)
                                       to
                                               23A (I/O2)
880
                          24A (E01)
                                       to
                                               24A (I/O1)
890
                          25A (E00)
                                               25A (I/OO)
                                       to
900
910
        5) Obtain output signal from: 50M20 Analog Out
                                                           Analog Return
920
                                                  7A
                                                                7 R
930
940
        6) Connect PACE signal to 15A of 50M50.
950
        7) Set 50M50 to positive handshake.
960
970
        Instrument address must be set to 23 or the program assignment
980
990
      ! changed.
1000
1010
       ! INSTRUMENT CONTROL:
        Only polls instrument on address 23. Polling routine must be
1020
1030
        changed if other instruments are on the bus.
1040
1050
       1060
       ! Besin main program segment
1070 INIT
1080 Mi=23
1090 ON SRQ THEN 1990
     Points=256
1110 DIM Wave( points)
1120 PRINT @MIT"SEL 1;SOUR EXT"
1130 PRINT @Mi: "SEL 2; ABORT; PURGE; REPEAT ON; CREATE SINE, "; 2* Points
1140 PRINT @Mi: "CREATE SQUARE,";2* Points
1150 PRINT @Mi: "CREATE TRIANG,";2* Points
1160 Vmax=10.2
1170 PAGE
1180 PRINT "Enter Vpeak-peak and offset, Vpeak+offset must be <=10.2 V"
1190 FRINT "Peak to reak amplitude of sine wave:";
1200 INPUT Voltspp1
1210 PRINT "Offset of sine wave:";
1220 INPUT
            offset1
1230 IF Voltspp1/2+ABS( offset1)<=Vmax THEN 1260
1240 PRINT "Illegal combination of amplitude and offset, try again."
1250 GO TO 1190
1260 PRINT "Peak to reak amplitude of square wave:";
1270 INPUT Voltsep2
1280 PRINT "Offset of square wave:";
1290 INPUT
           offset2
1300 IF Voltsep2/2+ABS(_offset2)(=Vmax THEN 1330
1310 PRINT "Illegal combination of amplitude and offset, try again."
1320 GO TO 1260
1330 PRINT "Feak to reak amplitude of triansle wave:";
1340 INPUT Voltspp3
1350 PRINT "Offset of triangle wave:";
                                                                              4555-16
```

Fig. 6-1 (cont.). Sine, square, and triangle wave generator (4052A).

```
1360 INPUT
            offset3
1370 IF Voltspp3/2+ABS( offset3)(=Vmax THEN 1400
1380 PRINT "Illesal combination of amplitude and offset, try again."
1390 GO TO 1330
1400 PRINT "Enter symmetry desired (in percent) for square wave:";
1410 INPUT Symmet2
1420 PRINT "Enter symmetry desired (in percent) for triangle wave:";
1430 INFUT Symmet3
1440 SET DEGREES
1450 Index=0
1460
       ! Generate sine wave array.
1470 FOR
          degrees=0 TO 360-360/_points STEP 360/_points
1480
         Index=Index+1
         Wave(Index)=(SIN(_desrees)*Voltspp1/2+_offset1)*200+2048
1490
1500 NEXT
           desrees
1510 CALL "LISTEN"; Mi
1520 CALL "PRISTR", "RECEIVE SINE, BINBLK,"
1530 CALL "BINOUT", "PACK", Wave, E
1540 WBYTE @63,95:
1550
        ! Generate square wave array.
1560 FOR Count=1 TO points*Symmet2/100+1
         Wave(Count) = (Voltspp2/2+ offset2) *200+2048
1570
1580 NEXT Count
1590 FOR Count=_points*Symmet2/100+1 TO
                                            Points
         Wave (Count) = (-Voltspp2/2 + offset2) *200 + 2048
1600
1610 NEXT Count
1620 CALL "LISTEN";Mi
1630 CALL "PRISTR", "RECEIVE SQUARE, BINBLK,"
1640 CALL "BINGUT", "PACK", Wave, E
1650 WBYTE @63,95:
        ! Generate triangle wave array.
1670 FOR Count=1 TO Symmet3* points/100
1680
         Wave(Count)=Voltspp3%100/(Symmet3* points)*Count
         Wave(Count) = (Wave(Count) - Voltspp3/2+ offset3) *200+2048
1690
1700 NEXT Count
1710 FOR Count=Symmet3* points/100 TO points
         Wave(Count)=-Voltspp3*100/((100-Symmet3)* points)*Count
1720
1730
         Wave(Count)=Wave(Count)+Voltspp3*100/(100-Symmet3)
1740
         Wave(Count) = (Wave(Count) - Voltspp3/2+_offset3) *200+2048
1750 NEXT Count
1760 CALL "LISTEN";Mi
1770 CALL "PRISTR", "RECEIVE TRIANG, BINBLK,"
1780 CALL "BINOUT", "PACK", Wave, E
1790 WBYTE @63,95:
1800 FAGE
1810 PRINT USING "fa/fa": "Select function: ", "1. Sine wave";
1820 PRINT USING "fa/fa":"2. Square wave","3. Triangle wave";
1830 PRINT USING "fa": "4. Exit program"
1840 INPUT Wayform
1850 IF Wavform(1 OR Wavform)4 THEN
1840
         GO TO 1800
1870 ELSE
1880
         GOSUB Wavform OF 1910,1930,1950,1970
1890 END IF
1900 GO TO 1800
1910 PRINT @Mi: "SEL 2; ABORT; ATTACH SINE, 1, DAC; START"
1920 RETURN
1930 PRINT @Mi:"SEL 2;ABORT;ATTACH SQUARE,1,DAC;START"
1940 RETURN
1950 PRINT @Mi: "SEL 2;ABORT;ATTACH TRIANG,1,DAC;START"
1960 RETURN
1970 END
        !SRQ handler
1980
```

Fig. 6-1 (cont.). Sine, square, and triangle wave generator (4052A).

4555-17

```
1990 POLL Address,Statbyte;Mi
2000 PRINT @Mi:"ERR?"
2010 INPUT @Mi:Ecode
2020 PRINT " Status byte: ";Statbyte;" Error code: ";Ecode
2030 RETURN
2040 END
```

Fig. 6-1 (cont.). Sine, square, and triangle wave generator (4052A).

```
100
        ****** 50M50 MEMORY CARD / 50M20 DIGITAL TO ANALOG CARD ********
110
120
        130
       May 25, 1984
140
150
       Copyright (c) 1983 Tektronix, Inc. All rights reserved. The software is provided on an "as is" basis without warrants of
1.60
                                                                   This
170
        any kind. It is not supported.
180
190
       This program may be reproduced without prior permission, in whole
200
210
        or in part, by the original purchaser. Copies must include the
220
       above copyright and warranty notice.
230
      ! PURPOSE:
240
250
      ! Loads the 50M50 Memory Card with the byte pattern to produce a
* *
            sine wave,
260
      ! triangle wave and square wave based on given parameters. These
₩ ₩
            parameters
270
      ! are amplitude, offset and symmetry of the waveform. The
            waveform is produced by the
* *
280
      ! 50M20 Disital to Analos Converter card which converts the
并关
            binary representation
290
      ! of the waveform to its analog equivalent. The number of points of the
300
      ! waveform are 256. The maximum frequency attainable with 256 points is
310
      ! 200 Hz. Hisher frequencies are possible with fewer points. The
* *
            frequency
320
      ! of the output is controlled by appliating a 1.1 microsecond wide pulse
      ! to the PACE input of the 50M50 Memory Card (15A). The
330
××
            frequency of the
340
      ! output is determined by the time between pulses. The following
××
            equation
350
      ! is used to calculate the output frequency:
360
      ! Output Frequency = 1/E2*(Time between pulses)*(Number of Points)]
370
380
390
      ! The frequency applied to the pace input is limited to 102.4KHz
            with a 256
××
400
       point waveform. Each bute pattern is given a file name in the 50M50
     ! which is descriptive of its contents. The file names are SINE, SQUARE
410
      ! and TRIANG. Each file is selected for output by attaching it
420
           to port 1
开关
430
       of the 50M50.
440
```

(4555-19) 5187-18

```
450
      ! REQUIRED EQUIPMENT:
460
      ! MI/MX 5010 Programmable Multifunction Interface
        50M50 Memory Card.
480
        50M20 Disital to Analos Converter Card.
        4041 Controller (V2.0)
490
500
510
      ! MAIN PROGRAM SEGMENT VARIABLES:
      ! mi: MI 5010 losical unit number. Opened in line 1040.
520
530
        points: Number of points making up the waveform.
540
      ! wave: Array containing the calculated waveform.
550
        vmax: Maximum reak voltage allowed by 50M20.
540
        voltspp1: Peak to peak amplitude of sine wave.
570
        voltspp2: Peak to peak amplitude of square wave.
580
      ! voltspp3: Peak to peak amplitude of triangle wave.
590
        offset1: Offset of sine wave.
      ! offset2: Offset of square wave.
600
610
      ! offset3: Offset of triangle wave.
620
      ! symmet2: Symmetry of square wave.
630
     ! symmet3: Symmetry of triangle wave.
      ! statbute: Status bute reported by instrument requesting service.
640
A50
      ! address: Address of instrument requesting service.
      I ecode: Error code returned by a Tektronix instrument in
660
XX
            response to an error query.
670
680
      ! OPERATING INSTRUCTIONS:
690
        1) Connect MI 5010 and 4041 with GPIB cable. Use port 0.
700
        2) Change instrument or program, if necessary, so primary address in
710
           instrument and program agree--program expects 23.
720
        3) 50M20 must be installed in slot 1 and 50M50 in slot 2 of MI
* *
            5010 or
730
           change program assignment of these cards.
740
        4) Connect:
                            50M20
                                                   50M50
750
                          16A (IDR)
                                       to
                                                17A (ODR)
                          17A (IDV)
760
                                       to
                                               16A (ODV)
270
                          19A (E06)
                                       to
                                                19A (I/06)
780
                          20A (E05)
                                       to
                                                20A (I/O5)
790
                          21A (E04)
                                       to
                                                21A (I/O4)
800
                          22A (E03)
                                                22A (I/03)
                                       to
810
                          23A (E02)
                                                23A (I/02)
                                       to
820
                          24A (E01)
                                       tο
                                                24A (I/01)
830
                          25A (E00)
                                                25A (I/00)
                                       to
840
850
        5) Obtain output signal from: 50M20
                                                Analog Out
                                                             Analog Return
860
                                                    ZA.
                                                                  7 B
880
        6) Connect PACE signal to 15A of 50M50.
890
        7) Set 50M50 to positive handshake.
900
910
       ERRORS:
920
      ! No GPIB or tape error handlers are linked so 4041 prints
* *
            default system
930
        error messages and stops if such errors occur (instrument
* *
            power is off
940
      ! or tame camacity exceeded, etc.).
950
960
        INSTRUMENT CONTROL:
970
        Polls all instruments on selected port.
980
990
```

4555-20

```
1000
       ! Besin main program segment
1010
         Init
1020
         On sry then call handler
1030
         Mi = 23
1040
         Open #mi:"spibO(pri=23,eoa=(0)):"
1050
         Enable sra
1060
         Points=256
1070
         Integer wave(points)
1080
         Print #mi: "SEL 1; SOUR EXT"
         Print #mi: "SEL 2;ABORT;PURGE;REPEAT ON;CREATE SINE,";2*points,
1090
              "CREATE SQUARE,";2*points,"CREATE TRIANG,";2*points
1100
         Vmax=10.2
1110
         Print "Enter peak to peak amplitude and offset, Upeak + Offset
             no greater than 10.2 volts'
  ××
         Input prompt "Peak to peak amplitude of sine wave:":voltspp1
1120
         Input prompt "Offset of sine wave:":offset1
1130
         If voltspp1/2+abs(offset1)) vmax then print "Illesal
1140
             combination of amplitude and offset, try asain" else soto 1160
1150
         Goto 1120
         Input prompt "Peak to peak amplitude of square wave:":voltspp2
1160
         Input prompt "Offset of square wave: ":offset2
1170
         If voltspp2/2+abs(offset2))vmax then print "Illegal
1180
             combination of amplitude and offset, try again" else goto 1200
  **
1190
         Goto 1160
         Input prompt "Peak to peak amplitude of triangle wave:":voltspp3
1200
         Input prompt "Offset of triangle wave:":offset3
1210
         If voltspp3/2+abs(offset3))vmax then print "Illesal
1220
             combination of amplitude and offset, try asain" else soto 1240
1230
         Goto 1200
         Input prompt "Enter symmetry desired (in percent) for square
1240
             wave:":symmet2
  XX
1250
         Input prompt "Enter symmetry desired (in percent) for triansle
             wave:":symmet3
  **
1260
         Set angle 1
1270
         Index=0
       ! GENERATE SINE WAVE ARRAY.
1280
1290
         For degrees=0 to 360-360/points step 360/points
1300
           Index=index+1
           Wave(index)=(sin(desrees)*voltspp1/2+offset1)*200+2048
1310
1320
           Next degrees
         Print #mi:"RECEIVE SINE, BINBLK, "; !Instruct 50M50 to receive
1330
             sine wave array.
  * *
         Print usins "%" #mi:wave
1340
       ! GENERATE SQUARE WAVE ARRAY.
1350
1360
         For count=1 to points*symmet2/100+1
           Wave(count) = (voltspp2/2+offset2)*200+2048
1370
1380
           Next count
1390
         For count=points*symmet2/100+1 to points
1400
           Wave(count) = (-voltspp2/2+offset2) *200+2048
1.410
           Next count
         Print #mi: "RECEIVE SQUARE, BINBLK,"; !Instruct 50M50 to receive
1420
  **
             square wave array.
         Print using "%" #mi:wave
1430
         GENERATE TRIANGLE WAVE ARRAY.
1440
1450
         For count=1 to symmet3*points/100
           Wave(count) = (voltspp3*100/(symmet3*points)
1460
             *count-voltspp3/2+offset3)*200+2048
  * *
1470
         For count=symmet3*points/100 to points
1.480
           Wave(count)=(-voltspp3*100/((100-symmet3)*points)
1490
             *count+voltspp3*100/(100-symmet3)-voltspp3/2+offset3)*200+2048
  ¥¥
           Next count
1500
```

4555-21

```
Print #mi: "RECEIVE TRIANG, BINBLK,"; !Instruct 50M50 to receive
1510
            triansle wave array.
 * *
         Print using "%" #mi:wave
1520
         Print usins "9(fa/)":"Select function:","1. Sine wave","2.
1530
             Square wave","3. Triangle wave","4. Exit program'
1540
         Input wayform
         If wavform<1 or wavform>4 then print "Undefined function, try
1550
            assin" else sosub wayform of sine,square,triansle,leave
1560
         Goto 1530
              print #mi:"SEL 2;ABORT;ATTACH SINE,1,DAC;START" ! Attach
1570 Sine:
             file SINE for output.
 * *
1580
         Return
                 print #mi:"SEL 2;ABORT;ATTACH SQUARE,1,DAC;START" !
1590 Square:
             Attach file SQUARE for output.
1600
         Return
1610 Triansle:
                   print #mi:"SEL 2;ABORT;ATTACH TRIANG,1,DAC;START" !
            Attach file TRIANG for output.
 * *
1620
         Return
1630 Leave:
1700 Sub handler
1710
         Poll statbute/address
         Input prompt "ERR?" #address:ecode
1720
         Print "Address: ";address;" Status byte: ";statbyte;" Error
1730
             code: "Jecode
  Ж¥
1740
         Resume
1750
         End
                                                                               4555-22
```

Fig. 6-2 (cont.). Sine, square, and triangle wave generator (4041).

```
100
     110
       ****** 50M50 MEMORY CARD / 50M10 ANALOG TO DIGITAL CARD ****
       120
130
1.40
      May 25, 1984
150
      Copyrisht (c) 1983 Tektronix, Inc. All rights reserved.
160
       software is provided on an "as is" basis without warranty of
170
180
       any kind. It is not supported.
190
       This program may be reproduced without prior permission, in
200
210
       whole or in part, by the original purchaser. Copies must
220
       include the above copyrisht and warranty notice.
230
240
250
     ! Sets up the 50M50 to receive 512 samples from the 50M10 Analog
       to Digital Converter Card. The sampling rate is controlled by
260
270
       an External Start Conversion pulse 1.1 microseconds wide. The
280
       sampling rate is determined by the time between pulses. The
290
       time between pulses cannot be faster than 42 micro seconds. The
300
       number of _points multiplied by the sampling rate equals the
310
       time window.
320
330
     ! Time Window=(Number of Points)*(Sampling Rate)
340
                                                               (4555-23) 5187-19
```

Fig. 6-3. Low frequency digitizer (4052A).

```
! Once the data is received in the array WAVE it is scaled to the
350
       proper voltage values in array WAVE1.
360
370
380
       REQUIRED EQUIPMENT:
       MI/MX 5010 Programmable Multifunction Interface
390
        50M50 Memory Card.
400
       50M10 Analos to Disital Converter Card.
410
       4052A Controller with 4052AR14-1A GPIB Enhancement Rompack.
420
430
      ! MAIN PROGRAM SEGMENT VARIABLES:
440
     ! mi: MI 5010 primary address.
450
460
        points: Number of samples.
470
       wave: Array of samples.
480
     ! wavel: Array of scaled samples.
490
      ! flas: Flas to inform of data acquired (buffer full, error 200).
500
      ! statbute: Status bute reported by instrument requesting service.
510
       address: Tarset variable for device identifier.
520
        ecode: Error code returned by a Tektronix instrument in
       response to an error suery.
530
540
550
      ! OPERATING INSTRUCTIONS:
     ! 1) Connect MI 5010 and 4052A with GPIB cable.
560
     ! 2) Change instrument or program, if necessary, so primary
570
580
           address in instrument and program agree---program expects 23.
590
       3) 50M10 must be installed in slot 3 and 50M50 in slot 2 of
600
           MI 5010 or change program assignment of these cards.
        4) Connect:
                           50M10
                                                 50M50
610
                                              16A (IDR)
620
                         16A (ODR)
                                     to
630
                         17A (ODV)
                                     to
                                              17A (IDV)
                         18A (D07)
                                              18A (I/07)
640
                                      to
                         19A (DO6)
                                              19A (I/06)
650
                                      to
                         20A (D05)
                                              20A (I/05)
660
                                      to
670
                         21A (D04)
                                      to
                                              21A (I/O4)
                         22A (D03)
                                              22A (I/03)
680
                                      to
                         23A (D02)
                                              23A (I/U2)
690
                                      t,o
                         24A (D01)
700
                                      to
                                              24A (I/O1)
710
                         25A (DOO)
                                              25A (I/NO)
                                      to
720
730
     ! 5) Apply input signal to: 50M10
                                          Analos Input
                                                         Analos Ground
740
                                               6A
750
       6) Connect External Start Conversion (ESC) signal to 13A of
760
770
           50M10.
       7) Set 50M50 to positive handshake.
780
790
        8) Set 50M10 to appropriate ESC polarity determined by
800
           available external signal, 4 state handshake and conversion
810
           to ster mode.
820
830
       ERRORS:
       Instrument address must be set to 23 or the program assignment
840
850
860
      ! INSTRUMENT CONTROL:
870
880
       Only polls instrument on address 23. Polling routine must be
890
       changed if other instruments are on the bus.
900
910
```

4555-24

```
920 INIT
930 Flas=0
940 Mi=23
950 ON SRQ THEN 1160
960 points=512
970 DIM Wave( points), Wave1( points)
980 PRINT @Mil"SEL 3;EXT ON"
990 PRINT @Mi: "SEL 2; ABORT; PURGE; REPEAT OFF; ARM COND; OPC OFF"
1000 PRINT @Mi:"SEL 2;CREATE TEST,";2* points
1010 PRINT @Mi:"SEL 2;ATTACH TEST,1,ADC;START"
1020 WAIT
1030 IF Flag THEN 1050
1040 GO TO 1020
1050 Flag=0
1060 PRINT @Mi:"SEL 2;SEND TEST,BINBLK"
1070 CALL "BININ","PACK,UNSI",Wave,E;Mi
1080 PRINT @Mi:"SEL 3/EXT OFF; RANGE?"
1090 INPUT @Mi:Ranse
1100 Wave1=Wave-2048
1110 Wave1=Wave1*Ranse
1120 Wave1=Wave1/2000
1130 FRINT "Data Acquired and Scaled\underline{G}\underline{G}"
1140 END
1.1.50
         ISRQ handler
1160 FOLL Address, Statbyte; Mi
1170 PRINT @Mi: "ERR?"
1180 INPUT @Mi:Ecode
1190 IF Ecode=200 THEN
          Flas=1
1200
1210 ELSE
1220
          Flag=0
1230 END IF
1240 IF Flas THEN 1260
1250 PRINT "Status byte: ";Statbyte;"Error code: ";Ecode
1260 RETURN
1270 END
                                                                                            4555-25
```

Fig. 6-3 (cont.). Low frequency digitizer (4052A).

```
100
110
         ******* 50M50 MEMORY CARD / 50M10 ANALOG TO DIGITAL CARD ********
120
130
140
        May 25, 1984
150
        Copyrisht (c) 1983 Tektronix, Inc. All rights reserved. This
160
         software is provided on "as is" basis without warranty of
170
        any kind. It is not supported.
180
190
200
      ! This program may be reproduced without prior permission, in whole
210
        or in part, by the original purchaser. Copies must include the
220
        above copyrisht and warranty notice.
230
240
250
        Sets up the 50M50 to receive 512 samples from the 50M10 Analog to
      ! Disital Converter Card. The sampling rate is controlled by an
260
 XX
270
      ! Start Conversion pulse 1.1 micro seconds wide. The sampling rate is
      ! determined by the time between pulses. The time between pulses ! cannot be faster than 42\ \mathrm{microseconds}. The number of points
280
290
 Ж¥
             multiplied
300
      ! by the sampling rate equals the sampled time window.
310
320
      ! Time Window=(Number of Points)*(Sampling Rate)
330
340
      ! Once the data is received in the array WAVE it is scaled to
 **
             the proper
350
      ! voltage values in array WAVE1.
360
370
        REQUIRED EQUIPMENT:
380
        MI/MX 5010 Programmable Multifunction Interface
390
        50M50 Memory Card.
400
        50M10 Analog to Digital Converter Card.
41.0
        4041 Controller (V2.0)
420
430
      ! MAIN PROGRAM SEGMENT VARIABLES:
440
      ! mi: MI 5010 logical unit number. Openened in line 930.
450
      ! points: Number of samples.
440
      ! preamb$: String to acquire data preamble (SEND).
470
        wave: Array of samples.
480
      ! wave1: Array of scaled samples.
490
      ! flag: Flag to inform of data acquired (buffer full, error 200).
500
      ! statbate: Status bate reported by instrument requesting service.
510
      ! address: Address of instrument requesting service.
520
      ! ecode: Error code returned by a Tektronix instrument in
 * ¥
            response to an error query.
530
540
      ! OPERATING INSTRUCTIONS:
550
      ! 1) Connect MI 5010 and 4041 with GPIB cable. Use port 0.
560
        2) Change instrument or program, if necessary, so primary address in
           instrument and program agree--program expects 23.
570
580
      \pm 3) 50M10 must be installed in slot 3 and 50M50 in slot 2 of MI
*×
            5010 or
590
           change program assignment of these cards.
```

(4555-26) 5187-20

```
50M10
                                                   50M50
       ! 4) Connect:
 600
                          16A (ODR)
                                        to
                                                16A (IDR)
610
                          17A (0DV)
                                                17A (IDV)
620
                                        t.o
                                                18A (I/07)
630
                          18A (D07)
                                        t,n
                          19A (DO6)
                                                19A (I/06)
640
                                        to
                                                20A (I/05)
                          20A (D05)
650
                                        to
                          21A (D04)
                                                21A (I/O4)
660
                                        to
                                                22A (I/03)
                          22A (D03)
670
                                        t.o
                          23A (D02)
                                        to
                                                23A (I/02)
680
                          24A (D01)
                                                24A (I/01)
490
                                        to
700
                          25A (D00)
                                                25A (I/00)
710
                                                                Analos Ground
 720
         5) Apply input signal to: 50M10
                                              Analos Input
730
                                                                      6B
                                                    64
 740
750
         6) Connect External Start Conversion (ESC) signal to 13A of 50M10:
         7) Set 50M50 to positive handshake.
       ! 8) Set 50M10 to appropriate ESC polarity determined by available
 220
            external signal, handshake to 4 state and conversion to step mode.
 780
 790
         ERRORS:
 800
810
       ! No GPIB or tage error handlers are linked so 4041 prints
 **
             default system
820
       ! error messages and stops if such errors occur (instrument
 ¥ ¥
             power is off
830
        or tage capacity exceeded, etc.).
840
850
         INSTRUMENT CONTROL:
         Polls all instruments on selected port.
860
870
880
         890
         Init
900
         On srq then call handler
 910
         Flag=0
 920
         Mi = 23
         Open #mi:"spib0(pri=23,eos=(0)):"
930
 940
         Enable sra
950
         Points=512
 960
         Dim preamb$ to 5
 970
         Integer wave(points)
 980
         Long wave1(points)
990
         Print #mi: "SEL 3;EXT ON"
1000
         Print #mi: "SEL 2;ABORT; PURGE; REPEAT OFF; ARM COND; OPC OFF;
             CREATE TEST, ";2*points
 16 16
         Print #mi: "SEL 2;ATTACH TEST,1,ADC;START"
1010
1020
         Wait
1030
         If flas then soto 1040 else soto 1020
1040
         Flag=0
1045
         Print #mi: "SEL 2; SEND TEST, BINBLK"
         Input #mi usins "5a%":preamb$,wave
1050
1060
         Input prompt "SEL 3;EXT OFF; RANGE?" #mi:ranse
1070
         Wave1=(wave-2048)/2*ranse/1000
1080
         Print "Data Acquired and Scaled^G^G"
1090
         End
1200 Sub handler
1210
         Poll statbute, address
         Input prompt "ERR?" #address:ecode
1220
         If address=mi and ecode=200 then flas=1 else flas=0
1230
         If flas then soto 1260
1240
1250
         Print "Address: ";address;" Status byte: ";statbyte;" Error
             code: ";ecode
 景景
1260
         Resume
1270
         End
                                                                            (4555-27) 5187-21
```

Fig. 6-4 (cont.). Low frequency digitizer (4041).

```
100
110
      ! * 50M50 MEMORY CARD/50M10 ANALOG TO DIGITAL CARD/50M41 SCANNER*
1.20
        130
140
        May 25, 1984
150
        Copyrisht (c) 1983 Tektronix, Inc. All rights reserved. The software is provided on an "as is" basis without warranty of
1.60
170
180
        any kind. It is not supported.
190
200
        This program may be reproduced without prior permission, in
210
        whole or in part, by the original purchaser. Copies must
220
        include the above copyrisht and warranty notice.
230
240
        PURPOSE:
250
      ! Scans ten different voltage points ten times for a total of 100
260
        readings. The readings are then scaled to the proper voltage
270
       levels according to the 50M10 input range. Once the readings
280
        are scaled the ten readings from each point are averaged and
        printed out on the 4050A screen.
290
300
310
        REQUIRED EQUIPMENT:
320
        MI/MX 5010 Programmable Multifunction Interface
        50M50 Memory Card.
330
        50M10 Analos to Disital Converter Card.
340
350
        50M41 Low Level Scanner Card.
        4052A Controller with 4052R14-1A GPIB Enhancement Rompack.
360
370
380
      ! PROGRAM SEGMENT VARIABLES:
      ! mi: MI 5010 primary address.
390
400
        test: Array used to input the 100 readings from the 50M50.
410
        testvolt: Array containing the scaled voltage levels.
420
       avegvolt: Array containing the averaged readings.
430
        flas: flas to inform of data acquired (buffer full, error 200).
440
        statbate: Status bate reported by instrument requesting service.
450
        address: Tarset variable for device identifier.
460
        ecode: Error code returned by a Tektronix instrument in response
470
      ! to an error query.
480
490
        OPERATING INSTRUCTIONS:
500
        1) Connect MI 5010 and 4050A with GPIB cable.
510
        2) Change instrument or program, if necessary, so primary addres
520
           instrument and program agree--program expects 23.
        3) 50M41 must be installed in slot 1 and 50M10 in slot 2
530
540
           and 50M50 in slot 3 or change program assignment of
550
           these cards.
560
        4) Connect:
                           50M10
                                                  50M50
                                             16A (IDR)
570
                          16A (ODR)
                                      to
                          17A (ODV)
580
                                      to
                                              17A (IDV)
590
                          18A (D07)
                                       to
                                               18A (I/07)
600
                          19A (106)
                                       to
                                               19A (I/06)
                          20A (D05)
610
                                       to
                                               20A (I/05)
                          21A (D04)
620
                                      to
                                               21A (I/O4)
                          22A (D03)
630
                                       to
                                               22A (I/03)
640
                          23A (D02)
                                       to
                                               23A (I/02)
650
                          24A (D01)
                                               24A (I/O1)
                                       to
                         25A (DOO)
                                               25A (I/00)
660
                                       to
670
680
        4) Connect:
                           50M10
                                                  50M41
690
                         13A (ESC)
                                                 1B (READY)
                                       to
700
                          14A (READY)
                                                 2B (EXT TRIG)
                                       to
710
                          6A (INPUT)
                                       to
                                                13R (Hi)
720
                          6B (COM)
                                                14B (Lo)
                                       to
                           5A (GUARD)
730
                                       t.o
                                                15B (GUARD)
740
                                                                         (4555-28) 5187-22
```

Fig. 6-5. Data acquisition program (4052A).

```
750
       ! 5) Connect input signals to:50M41
                                                  Ηi
                                                          Lo
                                                                  Guard
                     Chan
740
                                                   4 R
                                                          5 R
                                                                   6B
770
                            2
                                                   44
                                                          5A
                                                                   óΑ
                            3
780
                                                   7 B
                                                          88
                                                                   9 B
790
                                                   7A
                                                          8A
                                                                   9A
800
                                                  13A
                                                         1.4A
                                                                  1.5A
810
                                                  16B
                                                         17B
                                                                  18B
820
                                                  16A
                                                         1.7A
                                                                  18A
830
                                                 19B
                                                         20B
                                                                  21B
840
                                                  19A
                                                         20A
                                                                  21A
850
         6) Set 50M41 jumpers for 1-of-10 and trisser slope to positive.
860
       1 7) Set 50M50 to positive handshake.
870
880
       ! 8) Set 50M10 input range jumpers to accomdate input signal.
       ! 9) Set 50M10 ESC polarity jumper to positive.
890
900
910
920
       ! Instrument address must be set to 23 or the program assignment
930
       I chansed.
940
950
      INSTRUMENT CONTROL:
940
      ! Only polls instrument on address 23. Polling routine must be
970
        changed if other instruments are on the bus besides the MI 5010
980
990
1000
       ! Besin main prosram sesment
1010 INIT
1020 Flag=0
1030 Mi=23
1040 ON SRQ THEN 1360
1050 DIM Test(100), Testvolt(10,10), Avesvolt(10)
1060 PRINT @Mi:"INIT; SEL 1; SCAN 1,2,3,4,5,6,7,8,9,10; TREE OPEN"
1070 PRINT @Mi:"SEL 2)CONVERT/EXT ON" ! Set up 50M10
1080 PRINT @Mi:"SEL 1; ARM COND" ! Set 50M41 to respond to EXT TRIG. 1090 PRINT @Mi:"SEL 3; ABORT; PURGE; REPEAT OFF; CREATE TEST, 200"
1100 PRINT @MI: "ATTACH TEST,1,AUC; START"
1110 PRINT @Mi: "BUFFER ON; SEL 1; NEXT; WAIT COND; BUFFER OFF"
1120 PRINT @Mi:"EXEC 100" ! Execute the buffer 100 times.
1130 WAIT
             ! Wait for service request interrupt.
1140 IF Flag THEN 1160
1150 GO TO 1130
1160 Flas=0
1170 PRINT @Mi: "SEL 3; SEND TEST, BINBLK"
1180 CALL "BININ", "PACK, UNSI", Test, E; Mi
1190 PRINT @Mi:"SEL 2;EXT OFF;RANGE?"
1200 INPUT @Mi:Ranse
1210
       ! Scale and average data.
1220 PAGE
1230 FOR Column=1 TO 10
1.240
        Tempsum=0
1250
        FOR Row=1 TO 10
1260
            Testvolt(Row,Column) = (Test((Row-1)*10+Column)-2048)/0.2*Ranse
            Testvolt(Row,Column)=Testvolt(Row,Column)/10000
1270
1280
            Tempsum=Tempsum+Testvolt(Row,Column)
1290
        NEXT Row
1300
        Avesvolt(Column)=Tempsum/10
        PRINT USING "6A2D2X8D.5D": "POINT ", Column, Avesvolt (Column)
1310
1320 NEXT Column
1330 PRINT "Data Acquired and ScaledG"
1340 END
1350
       ISRQ handler
```

4555-29

```
1360 FOLL Address, Statbyte; Mi
1370 FRINT @Mi: "ERR?"
1380 INPUT @Mi: Ecode
1390 IF Ecode=200 THEN
1400 Flas=1
1410 ELSE
1420 Flas=0
1430 END IF
1440 IF Flas THEN 1460
1450 PRINT "Status byte: "; Statbyte; "Error code: "; Ecode
1460 RETURN
1470 END
```

Fig. 6-5 (cont.) Data acquisition program (4052A).

```
* 50M50 MEMORY CARD / 50M10 ANALOG TO DIGITAL CARD / 50M41 SCANNER *
110
        120
130
      I May 25, 1984
140
150
      ! Copyright (c) 1983 Tektronix, Inc. All rights reserved. Th ! software is provided on an "as is" basis without warranty of
1.60
                                                                   This
170
       any kind. It is not supported.
180
190
200
       This program may be reproduced without prior permission, in whole
210
        or in part, by the original purchaser. Copies must include the
       above coperisht and warrants notice.
220
230
240
      ! PURPOSE:
      ! Scans ten different voltage points ten times for a total of 100
250
260
      ! readings. The readings are then scaled to the proper voltage levels
270
      ! according to the 50M10 input range. Once the readings are scaled the
280
        ten readings from each point are averaged and printed out on the
      ! 4041 printer.
290
300
     ! REQUIRED EQUIPMENT:
310
320
      ! MI/MX 5010 Programmable Multifunction Interface
330
        50M50 Memory Card.
340
     ! 50M10 Analos to Disital Converter Card.
350
        50M41 Low Level Scanner Card.
360
        4041 Controller (V2.0)
370
380
     ! PROGRAM SEGMENT VARIABLES:
390
     ! mi: MI 5010 logical unit number. Opened in line 1030.
400
     ! test: Array used to input the 100 readings from the 50M50.
410
      ! testvolt: Array containing the scaled voltage levels.
420
      ! avesvolt: Array containing the averaged readings.
430
     ! flas: flas to inform of data acquired (buffer full, error 200).
440
     ! statbute: Status bute reported by instrument requesting service.
      ! address: Address of instrument requesting service.
450
460
      ! ecode: Error code returned by a Tektronix instrument in
××
            response to an error query.
470
                                                                            (4555-41) 5187-23
```

Fig. 6-6. Data acquisition program (4041).

```
480
       ! OPERATING INSTRUCTIONS:
       ! 1) Connect MI 5010 and 4041 with GPIB cable. Use port 0.
 490
 500
         2) Change instrument or program, if necessary, so primary address in
 510
            instrument and program agree--program expects 23.
 520
         3) 50M41 must be installed in slot 1 and 50M10 in slot 2 of MI
 **
             5010 and
 530
            and 50M50 in slot 3 or change program assignment of these cards.
                                                    50M50
 540
         4) Connect:
                             50M10
 550
                           16A (ODR)
                                        to
                                                 16A (IDR)
                                                17A (TTIV)
                           17A (0DV)
 560
                                        to
 570
                           18A (D07)
                                                18A (I/07)
                                        to
                           19A (I)06)
                                                 19A (I/U6)
580
                                        tδ
 590
                           20A (D05)
                                                 20A (I/05)
                                        to
600
                           21A (D04)
                                                 21A (I/04)
                                        t.n
 610
                           22A (D03)
                                                 22A (I/03)
                                                 23A (I/02)
620
                           23A (D02)
                                        to
630
                           24A (D01)
                                        to
                                                 24A (I/01)
640
                           25A (D00)
                                        t.o
                                                25A (I/00)
650
660
         4) Connect:
                             50M10
                                                    50M41
670
                           13A (ESC)
                                        to
                                                  1B (READY)
                                                  2B (EXT TRIG)
680
                           14A (READY)
                                        t.o
690
                            6A (INPUT)
                                                 13B (Hi)
700
                            6B (COM)
                                                  14B (Lo)
                                        t.o
710
                            5A (GUARI)
                                                  15B (GUARD)
720
230
         5) Connect input signals to:50M41
                                                        Lo
                                                               Guard
740
                    Chan
                                                        5B
                                                 4 B
                                                                6B
250
                                                4A
                                                        5A
                                                                6A
760
                           3
                                                7 B
                                                        88
                                                                9B
                                                                9A
770
                                                7A
                                                        BA
780
                                                10B
                                                       11B
                                                               1.2B
790
                           6
                                               13A
                                                       14A
                                                               15A
                                                       17B
800
                                               16B
                                                               18B
                           8
810
                                               1.6A
                                                       17A
                                                               1.8A
820
                           9
                                               19B
                                                       20B
                                                               21B
830
                                               19A
                                                       20A
                                                               21A
840
       ! 6) Set 50M41 jumpers for 1-of-10 and trisser slope to positive.
850
         7) Set 50M50 to positive handshake.
860
       ! 8) Set 50M10 input range jumpers to accomdate input signal.
870
880
       ! 9) Set 50M10 ESC polarity jumper to positive.
890
900
       ! ERRORS:
910
       ! No GPIB or tage error handlers are linked so 4041 prints
 **
             default system
920
       ! error messages and stops if such errors occur (instrument
 ××
             power is off
930
       ! or tage capacity exceeded, etc.).
940
950
         INSTRUMENT CONTROL:
960
         Polls all instruments on selected port.
970
         980
990
         Begin main program segment
         Init.
1000
1010
         On srq then call handler
1020
         Mi = 23
         Open #mi:"spibO(pri=23,eos=(0)):"
1.030
         Enable sra
1040
1050
         Integer test(10,10)
         Long testvolt(10,10), avegvolt(10)
1060
1070
         Print #mi: "INIT; SEL 1; SCAN 1,2,3,4,5,6,7,8,9,10; TREE OPEN" !
             Set up 50M41.
 * *
                                                                                  4555-42
```

Fig. 6-6 (cont.). Data acquisition program (4041).

```
Print #mi:"SEL 2)CONVERT;EXT ON" ! Set up 50M10
1080
         Print #mi: "SEL 1; ARM COND" ! Set 50M41 to respond to EXT TRIG.
1090
         Print #mi: "SEL 3;ABORT;PURGE;REPEAT OFF;CREATE TEST,200;ATTACH
1100
              TEST,1,ADC;START" ! Set up 50M50
  ××
1110
         Print #mi: "BUFFER ON) SEL 1; NEXT; WAIT COND; BUFFER OFF" ! Load
              MI 5010 buffer with scan and wait for EXT TRIG signal.
         Print #mi: "EXEC 100" ! Execute the buffer 100 times.
1120
         Wait | Wait for service request interrupt.
1130
         If flas then so o 1150 else so to 1130 ! If SRQ is caused by
1140
             50M50 buffer full error, then continue.
  * *
1150
1160
         Input prompt "SEL 3; SEND TEST, BINBLK" using "5a%" #mi:preamb$,
         test ! Input data from 50M50.
Input prompt "SEL 2;EXT OFF;RANGE?" #mi:ranse ! Obtain ranse
1170
  * *
              information from 50M10.
1180
       ! Scale and average data.
1190
         For column=1 to 10
1200
           Tempsum=0
1210
           For row=1 to 10
1220
              Testvolt(row,column)=(round((test(row,column)-2048)/0.2*ranse))
1230
              Testvolt(row,column)=testvolt(row,column)/10000
1240
              Tempsum=tempsum+testvolt(row,column)
1250
             Next row
1260
           Avesvolt(column)=tempsum/10
           Print usins "6A2D2X8.5G" #"PRIN:":"POINT ",column,avesvolt(column)
1270
1280
           Next column
         Print #"FRTP:":"Data Acquired and Scaled^G"
1290
1300
         End
1400 Sub handler
1410
         Poll statbute, address
         Input prompt "ERR?" #address:ecode
1420
1430
         If address=mi and ecode=200 then flas=1 else flas=0
1440
         If flas then soto 1460
         Print "Address: ";address;" Status byte: ";statbyte;" Error
1450
  ××
             code: "!ecode
1460
         Resume
1.470
         End
                                                                                  4555-43
```

Fig. 6-6 (cont.). Data acquisition program (4041).

Section 7 Instrumentation Software Library

ASCII & GPIB CODE CHART																						
B7 B6 B5			85		9 9 1		Ø 1	ø		Ø ₁	1		ı ø	ø		-	1	1			1 1	1
BITS B 4 B 3 B 2 B 1			i	CONTROL			NUMBERS SYMBOLS					UPPER CASE					LOWER CASE					
ø	Ø	Ø	ø	°NUL。	DLE 10 16	40 20	SP	32	60 30	0	16 48	100	@	0 64	120 50	P	16 80	140 60	9	0 96	160 70	16 112
<i>9</i>	,0	9	1	SOH	DC1	41 21	9	33	61 31	1	17 49	101	A	65	121 51	Q	17 81	141 61	a	97	161 Q 71	113
ø	Ø	1	ø	2 STX 2 3	DC2 12 18	42 22 43	9 9	34	32	2	18 50	102	B	66	52	R	18 82	62	b	98	162 72	114
.	ø	1	1	3 3 3 4 SDC	DC3 13 19 24 DCL	23	#	35	63 33 64	3	19 51 20	103 43 104	C	67	123 53	S	83	143 63	C	99	163 S	115
9	1	ø	ø	EOT 4 4 5 PPC	DC4 14 20 25 PPU	24	\$	36	34	4	52	44	D	68	54	T	20 84 21	64	d	00	164 74	116
Ø	1	9	1	ENQ 5	NAK 15 21 26	25 46	%	37	35	5	53	45	E	69	55	U	85	65	8 1	01	75 166	
.0	1	1	ø	ACK 6	SYN 16 22 27	26 47	&	38	36 67	6	54 23	46 107	F	70	56 127	V	86	66 147	1	02	76 167	118
Ø	1	1	1	BEL 7 7	17 23 30 SPE	27 50		39	37 70	7	55 24	47 110	G	71 8	57 130	W	87 24	67 150	9 ,	03	77 170	119
1	Ø ~	9	Ø	8 8 11 TCT	18 24 31 SPD	28 51		40 9	38 71	8	56 25	48 111	H	72 9	58 131	X 	88 25	68 151		9	78 171	120
1	.Ø 	,Ø 1	1	9 9 12 LF	19 25 32 SUB	29 52)	10	39 72	9	57 26	49 112		73 10	59 132	Y Z	89 26	69 152		05 10	79 172	121
_ 1	 	1	.8	A 10	1A 26 33 ESC	2A 53	4	42 11	3A 73	9	58 27	4A 113	J K	74 11	5A 133	<u>_</u>	90 27	6A 153			7A Z	122
1	1	ø		B 11	1B 27 34 FS	2B 54		12	3B 74	, <	59 28	4B 114	L	75 12	5B 134	-	91 28	6B 154	1	-+	7B	123 28 *
1	1	ø	1	C 12	35 GS	2C 55		13	3C 75		29		M	13	5C 135	9	92 29		m	13	7C 175	29
1	1	1	ø	D 13 16 SO E 14	1D 29 36 RS 1E 30	2D 56 2E	•	45 14 46	3D 76 3E	>	61 30 62	4D 116 4E	N	77 14 78	5D 136 5E	^	93 30 94	6D 156 6E	n	14	7D 176 ~	125 , 30
1	1	1	1	17 SI F 15	37 US 1F 31	57 2F	/	15	77 3F	?	UNL 63	117 4F	0	15 79	137 5F		JNT 95	157 6F		15	177 DE (RUBO	L
			ADDRESSED UNIVERSAL LISTEN COMMANDS COMMANDS ADDRESSES							TALK ADDRESSES						SECONDARY ADDRESSES OR COMMANDS						

KEY

octal 25 PPU GPIB code
NAK ASCII character

*| on some keyboards or systems

(PPE)

(PPD)

REF: ANSI STD X3. 4-1977 IEEE STD 488-1978 ISO STD 646-1973

TEKTRONIX STD 062-5435-00 4 SEP 80 COPYRIGHT © 1979, 1980 TEKTRONIX, INC. ALL RIGHTS RESERVED.

TEKTRONIX INSTRUMENTATION SOFTWARE LIBRARY

Utility Software for TM 5000 Instruments

Utility Software is available from Tektronix, Inc. for TM 5000 Instruments. This software consists of a set of subroutines and subprograms that perform common instrument functions over the GPIB such as data acquisition, front-panel set-up, etc. These routines are designed to be easily integrated into your application programs. And since they are small and well documented, the routines are easy to modify to suit your particular applications. Refer to the current Tektronix Instrumentation Software Library Catalog for instrument options, ROM packs, and other required equipment.

The following Utility Software was available when this Instrument Interfacing Guide was printed. Other software may be available; contact your local Tektronix Field Office for further information.

Description	Tektronix Part No.
TM 5000/4041 Utility Software (DC-100 tape)	062-6958-01
TM 5000/4052A Utility Software (DC-300 tape)	062-6957-01

Ordering Utility Software (U.S. Only)

Your local Tektronix Field Office has the current prices for software available from the Tektronix Instrumentation Software Library.

Order Tektronix Instrumentation Software Library programs from Tektronix Central Parts Ordering by using the toll-free number serving your area. The following map identifies the geographical regions in the U.S. and the toll-free number serving each region.

Call the toll-free number serving your area and give the Customer Service Representative the Tektronix nine-digit part number and name of the software package you want to order. If you have any questions about the software, call your local Tektronix Field Office.

Ordering Utility Software (Outside the U.S.)

Outside of the U.S., order Tektronix Instrumentation Software Library programs through your local Tektronix sales office or from the Tektronix Instrumentation Software Library order point serving your area. Refer to the following list for the applicable library order point.

Africa, Europe, Middle East

Contact local Tektronix sales office.

Australia

Tektronix Instrumentation Software Library Tektronix Australia Pty. Limited Sydney 80 Waterloo Road North Ryde, N.S.W. 2113

Canada

Tektronix Instrumentation Software Library Tektronix Canada Ltd. P.O. Box 6500 Barrie, Ontario Canada L4M 4V3

Caribbean, Latin America, and Far East (except Japan)

Tektronix Instrumentation Software Library Export Marketing Tektronix, Inc. P.O. Box 500 Beaverton, OR 97077 U.S.A.

Japan

Tektronix Instrumentation Software Library Sony/Tektronix Corporation 9-31 Kitashinagawa-5 Tokyo 141 Japan

Program Library

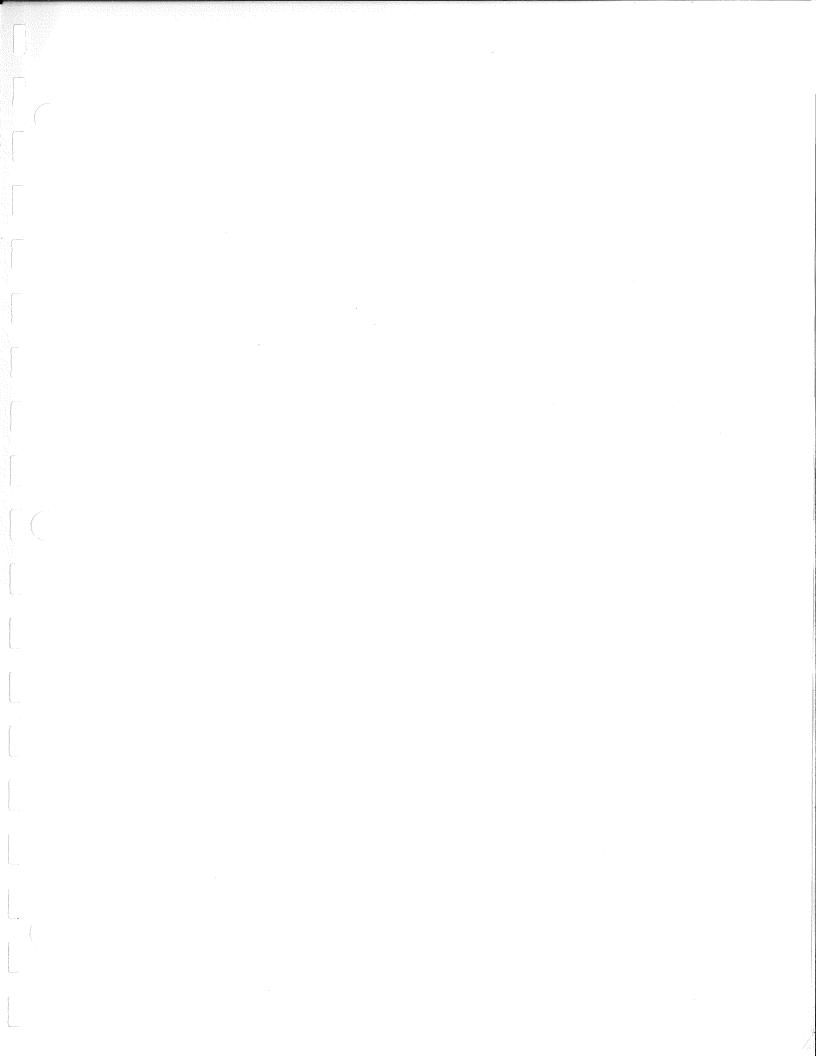
The Tektronix Instrumentation Software Library includes over 200 software programs for a variety of Tektronix programmable instruments and controllers. The Library Catalog provides abstracts of the available software. Programs are available as ready-to-load media or as listings (see Catalog). For a copy of the latest catalog, contact your local Tektronix Field Office or representative and ask for Tektronix Instrumentation Software Library Catalog #99W-5570.

Program Contributions

If you have a program which you would like to submit to the Tektronix Instrumentation Software Library,

we will send you, in exchange, one software package of your choice from the Customer/User Software portion of the Program Library (see current library catalog). Submitted programs must use Tektronix programmable instruments and must meet certain coding and documentation standards.

To contribute a program, submit a copy of the program on media along with a listing and a Tektronix Instrument Software Library release form (see current library catalog). If the program was created as part of your employment, the release must be signed by an authorized representative of your employer. Acceptance of the program is subject to review of the Tektronix Instrumentation Software Library staff.


For further information on submitting a program or for information about coding and documentation standards, contact:

Tektronix Instrumentation Software Library Tektronix, Inc. Group 157, 54-016 P.O. Box 500 Beaverton, OR 97077

es grade promise Types engaging mental Pass escale TYP dalah

e de la companya de l de la companya de la company

n de name de la companya de la comp

