INSTRUCTION TYPE 80 PLUG-IN and TYPE P80 PROBE 4986 Tektronix, Inc. S.W. Millikan Way P.O. Box 500 Beaverton, Oregon Phone MI 4-0161 Cables: Tektronix Tektronix International A.G. Terrassenweg 1A ● Zug, Switzerland ● PH. 042-49192 ● Cable: Tekintag, Zug Switzerland ● Telex 53. 070-276 SN 4986 #### WARRANTY All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument. Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer. Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service. Specifications and price change privileges reserved. Copyright © 1961 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner. ### TYPE 80 PLUG-IN UNIT AND TYPE P80 PROBE #### **Operating Information-Type P80 Probe** #### General The Type 80 Plug-In Unit and Type P80 probe are designed for operation with Tektronix 580-Series oscilloscopes. The Type P80 Probe provides the means for connecting a 580-series oscilloscope to the signal source. The probe can be connected to the signal source using one of the tips supplied. Or, if desired, special adaptors are available which allow direct connection of the probe to Type N, UHF, BNC, GR50 ohm and Tektronix 125 ohm connectors. #### Characteristics Risetime......Typically 3.5 nanoseconds when the P80 and Type 80 are used with a Tektronix Type 581 or 585. Bandpass......dc to approximately 100 mc. (Approximately 3 db down at 100 mc when using a 25 ohm source.) Typically, addition of attenuator heads causes no decrease in the risetime of the system. #### Input Voltage Maximum voltage with the AC-DC switch in the DC position is shown in the following table. Maximum dc working voltage with the AC-DC switch in the AC position using the probe alone or with any attenuator is 150 V DC. #### **Input Signal Considerations** Input signals to the oscilloscope are connected to the input connector of the plug-in unit through the P80 probe. The gain of the vertical deflection system is accurately calibrated so that the vertical deflection factor at the input of the probe is 0.1 volts per centimeter when the probe is used with a Type 80 Plug-In Unit. Attenuation of the input signal is accomplished by connecting an attenuator head onto the nose of the probe. Only a single attenuator head may be connected to the probe. If more attenuation is needed, Tektronix Standardized Attenuator Heads may be used. Two ratios of Standardized Head are available: X10 and X100. To increase the attenuation using the Standardized head, determine which combination of Attenuator Head and Standardized Head will give the desired attenuation. Attach the Standardized Head to the P80 probe, then place the Attenuator head on the Standardized Head. Never place more than one Attenuator Head on the Standardized Head. Table 7-1 lists the possible combinations of Standardized Heads and Attenuator Heads with other pertinent information. The Input Selector switch on the body of the probe determines whether input waveforms are ac coupled or dc coupled to the oscilloscope input. AC coupling blocks the dc component of the input waveform and permits only the ac components to be applied to the oscilloscope. DC coupling permits both ac and dc components to be applied to the oscilloscope. AC coupling is used to eliminate large dc components which would cause the trace to be deflected off the screen. DC coupling should be used to prevent distortion of low frequency input waveforms. #### **Operating Information-Type 80 Plug-In Unit** The VERTICAL POSITION control sets the position of the trace on the associated oscilloscope. Rotating the control clockwise moves the trace up. The control has sufficient range to position the trace off both the top and bottom of the screen. #### WARNING Whenever the Type P80 Probe or the Type 80 Plug-In Unit is replaced or used in a different instrument the Probe, Plug-In and Scope should be readjusted. Use the following procedure: Table 7-1 Maximum Voltage Ratings of P80 Probe, Attenuator Heads Standardized Heads, and Capacitive Coupler | | Max- | | | Max E in | | |-------------------------|----------------------------|---|--------------------|---------------------|----------------------| | Configurations | Allowable
DC
Voltage | Voltage required for 4 cm deflection DC * | AC ₁ ** | AC ₂ *** | AC ₃ **** | | P80 Probe | 100 V | .4 V | 150 V | | | | 2-1 Att. | 200 V | .8 V | 150 V | | | | 5-1 Att. | 350 V | 2.0 V | 150 V | | | | 10-1 Att. | 500 V | 4.0 V | 150 V | | | | 20-1 Att. | 700 V | 8.0 V | 150 V | | | | 50-1 Att. | 1000 V | 20.0 V | 150 V | | | | 100-1 Att. | 1500 V | 40.0 V | 150 V | | | | 2-1 Att. X 10 Stand. | 200 V | 8.0 V | | 250 V | | | 5-1 Att. X 10 Stand. | 350 V | 20.0 V | | 250 V | | | 10-1 Att. X 10 Stand. | 500 V | 40.0 V | | 250 V | | | 20-1 Att. X 10 Stand. | 700 V | 80.0 V | | 250 V | | | 50-1 Att. X 10 Stand. | 1000 V | 200.0 V | | 250 V | | | 100-1 Att. X 10 Stand. | 1500 V | 400.0 V | | 250 V | | | 2-1 Att. X 100 Stand. | 200 V | 80.0 V | | 250 V | | | 5-1 Att. X 100 Stand. | 350 V | 200.0 V | | 250 V | | | 10-1 Att. X 100 Stand. | 500 V | 400.0 V | | 250 V | | | 20-1 Att. X 100 Stand. | 700 V | 700.0 V (3.5 cm) | | 250 V | | | 50-1 Att. X 100 Stand. | 1000 V | 1000.0 V (2.0 cm) | | 250 V | | | 100-1 Att. X 100 Stand. | 1500 V | 1500.0 V (1.5 cm) | | 250 V | | | Capacitive Coupler | | | | | 600 v | ^{*} DC-Max DC with head and probe DC coupled Input Capacitance and Resistance. Typical values of the attenuators when attached to a probe or a standard attenuator head are shown in the following table. Table 7-2 | Attenuation | Input Capacitance | Input DC Resistance | |-------------|-------------------|---------------------| | 2:1 | 7.8 pf. | 200 k | | 5:1 | 3.3 pf. | 500 k | | 10:1 | 2 pf. | 1 megohm | | 20:1 | 1.4 pf. | 2 megohms | | 50:1 | 3.7 pf. | 5 megohms | | 100:1 | 1.4 pf. | 10 megohms | #### Calibrating the Probe 1. Equipment Tektronix Type 105 Square-Wave Generator or Equivalent. Tektronix P-80—50 ohm Termination Adapter, Tektronix Part No. 013-033. Tektronix Alignment Tool Kit, Tektronix Part No. 003-007. - 2. Terminate the OUTPUT of the Type 105 in the P-80—50 ohm Termination. Set the FREQUENCY of the Type 105 at 25 kc. Adjust the compensation of the Type P80 Probe for a flat-topped square wave. - 3. To adjust the X10 or X100 Standards for the P80 Probe, carry out step 2 of this procedure. Next, put the 2:1 Attenuator Head on the probe. Reconnect to the Type 105 as in Step 2. Adjust the Attenuator Head Compensation for best response to the square wave. Now, remove the 2:1 Attenuator Head. Put on the Standardized Head to be calibrated. Connect the 2:1 Attenuator Head in front of the Standardized Head. Reconnect to the Type 105 without the 50 Ω termination. Adjust both compensations in the Standardized Head for the best response to the square wave. ^{**} AC,-Max DC with probe AC coupled ^{***} AC2—Max DC with Standardized head AC coupled ^{****} AC3—Max DC with Cap. Coupler Table 7-3 | Input Capacitance of P80 Probe with Capacitive Coupler | |--| | P80 and coupler14 pf | | 100-1 Attenuator and coupler 8 pf | | 50-1 Attenuator and coupler7.5 pf | | 20-1 Attenuator and coupler5.4 pf | | 10-1 Attenuator and coupler5.8 pf | | 5-1 Attenuator and coupler7 pf | | 2-1 Attenuator and coupler11 pf | | | Note: Use of a X100 or X10 Standardizer between probe and Attenuator Head will not change these values. - 4. (This step may be omitted if only the probe is replaced or interchanged.) Set up the Type 105 for 250 kc output. Set the scope TIME/CM switch at 10 $\mu \rm sec$ and adjust L8085 (accessible from bottom of Type 80) so the top of the square wave is parallel with the graticule lines. Readjust the probe compensation if necessary. - 5. Connect the probe to the scope CAL. OUT. connector, and set the AMPLITUDE CALIBRATOR to .2 volt. Set TIME/CM switch to 500 μ sec, display the Calibrator signal and adjust the scope VERT. GAIN ADJ. (R1015) to provide 2 CM of vertical deflection. #### Circuit Operation The Type P80 Probe is an anode- cathode-follower circuit which applies a split phase signal to the plug-in unit. Input signals are applied to the grid of V8013 through protective resistor R8011. This signal is then split in phase and amplified by a factor of less than 1. The signals obtained from the plate and cathode of V8013 are applied through toroid transformer T8013 and the interconnecting plug to the vertical amplifier of the associated oscilloscope. The toroid is used to equalize the cathode and anode signals. The waveform from the plate of V8013 is dc coupled to the oscilloscope to extend the response to dc. The cathode waveform is ac coupled to the oscilloscope. Two controls affect the vertical position of the trace on the oscilloscope. The VERTICAL POSITION control is normally used to position the trace. The control adjusts the cathode voltage of the probe tube. This directly determines the current drawn by the tube and indirectly determines the vertical position of the trace. The POSITION RANGE ADJUST control is used to insure that the VERTICAL POSITION control is in the proper range. A voltage regulator circuit consisting of V8044 and V8053A supplies screen grid voltage for the probe tube. The output voltage of the regulator is set with the POSITION RANGE ADJUST control. By varying the screen voltage of the tube, the plate current can also be changed. This in turn allows the vertical position of the trace to be varied over a wide range. A circuit consisting of L8085, R8085, C8085, and R8077 is used to maintain the proper terminating impedance for the coaxial cable from the cathode of the probe tube. The dc resistance of L8085 is 13 ohms making the impedance of L8085 and R8085 93 ohms to ground at dc. This provides the proper termination at low frequencies. At high frequencies the correct termination is provided by R8077 and C8085. The series combination of L8085 is effectively out of the circuit at high frequencies because of the reactance of L8085. At intermediate frequencies the proper termination is obtained by C8085 and R8077 being effectively in parallel with L8085 and R8085. The circuits associated with V8053B provide the terminations for the grid line of the oscilloscope vertical amplifier. Resistors R8075 and R8077 provide the required 93ohm terminations. Cathode follower V8053B sets the voltage of the grid lines at approximately 50 volts and provides the plate voltage for the probe through the vertical amplifier grid line. Without additional circuits plate current would flow through R8071 and R8075 to the probe. This current flow would produce a voltage drop which would cause the two arid lines to be at slightly different potentials. Resistors R8073, R8074, R8071, R8077, and R8078 are used to maintain the two grid lines at the same voltage. Current flowing through R8071 and R8075 due to this circuit is approximately equal but opposite in direction to the plate current that would flow from the probe. This effectively eliminates the voltage drop produced by the plate current and insures that the two grid lines are at the same potential. #### P-80 Standard Accessories | DESCRIPTION | | PART NO. | |----------------------------|-----|------------------| | GROUND LEAD | | 1 <i>7</i> 5-063 | | CLIP ASSEMBLY | | 344-055 | | HOOK TIP | | 206-008 | | STRAIGHT TIP | | 206-009 | | HIGH FREQUENCY GROUND CLIP | | 013-047 | | PROBE HOLDER | | 352-030 | | ATTENUATOR HEADS | X2 | 010-306 | | | X5 | 010-307 | | | X10 | 010-308 | | | X20 | 010-309 | | | X50 | 010-310 | #### P-80 OPTIONAL ACCESSORIES | X10 Standard | 010-311 | |--|---------| | X100 Standard | 010-321 | | Capacitor Coupler | 010-312 | | Attenuator 100:1 | 010-322 | | Adapter, Probe to Type "N" Connector | 010-016 | | Adapter, Probe to Type "UHF" Connector | 013-017 | | Adapter, Probe to Type "BNC" Connector | 013-018 | ### PARTS LIST and #### **DIAGRAMS** #### **HOW TO ORDER PARTS** Replacement parts are available through your local Tektronix Field Office. Improvements in Tektronix instruments are incorporated as soon as available. Therefore, when ordering a replacement part it is important to supply the part number including any suffix, instrument type, serial number, plus a modification number where applicable. If the part you have ordered has been improved or replaced, your local Field Office will contact you if there is a change in part number. ## PARTS LIST TYPE P80 PROBE AND TYPE 80 PREAMPLIFIER Values are fixed unless marked variable. Tolerance $\pm 20\%$ unless otherwise indicated. | roleidlice <u></u> 2 | 0 % Offices Office wis | | Capacitor | 'S | | | | |--|---|--|---|---|--|--------------------------------|---------------------------------| | Circuit
No. | Tektronix
Part No. | | Desc | ription | | | Serial
No. | | C8010†
C8011†
C8013†
C8014†
C8016†
C8016† | 283-003
283-003
283-004
283-000
281-541
281-504 | .01 μf
.01 μf
.02 μf
.001 μf
6.8 μμf
10 μμf | Cer.
Cer.
Cer.
Cer.
Cer.
Cer. | Fixed
Fixed
Fixed
Fixed
Fixed
Fixed | 150 v
150 v
150 v
500 v
500 v
500 v | 10%
½% | 101-3386
3387-ир | | C8041
C8053A,B
C8071
C8073
C8085
C8086
C8088 | 285-510
290-037
**295-061
283-006
**295-061
281-010
281-022 | .01 μ f
2 × 20 μ f
.01 μ f
.02 μ f
.01 μ f
4.5-25 μ μ f
8-50 μ μ f | PTM
EMC
MT
Cer.
MT
Cer.
Cer. | Fixed
Fixed
Fixed
Fixed
Fixed
Var.
Var. | 400 v
450 v
200 v
600 v
200 v | | Х3387-up
Х3387-up | | | | | Resistors | | | | | | R8010†
R8011†
R8012†
R8016†
R8017† | 318-001
316-104
317-220
317-100
316-151 | 100 k
100 k
22 Ω
10 Ω
150 Ω | 1/ ₈ w
1/ ₄ w
1/10 w
1/10 w
1/ ₄ w | Fixed
Fixed
Fixed
Fixed | Prec.
Comp.
Comp.
Comp.
Comp. | 1%
10%
5%
5%
10% | | | R8018†
R8040
R8041
R8042
R8044 | 311-150
309-052
311-026
309-109
302-155 | 500 Ω
220 k
100 k
250 k
1.5 meg | 1/10 w
1/ ₂ w
2 w
1/ ₂ w
1/ ₂ w | Var.
Fixed
Var.
Fixed
Fixed | Comp.
Prec.
Comp.
Prec.
Comp. | 1%
1%
10% | | | R8047
R8048
R8050
R8053
R8054 | 302-473
302-473
302-102
308-024
302-104 | 47 k
47 k
1 k
15 k
100 k | 1/ ₂ w
1/ ₂ w
1/ ₂ w
10 w
1/ ₂ w | Fixed
Fixed
Fixed
Fixed
Fixed | Comp.
Comp.
Comp.
WW
Comp. | 10%
10%
10%
5%
10% | | | R8056
R8057
R8060
R8071
R8073 | 309-090
309-090
302-101
***312-597
302-101 | 50 k
50 k
100 Ω
93.1 Ω
100 Ω | / ₂ w
/ ₂ w
/ ₂ w
/ ₂ Ω
/ ₂ Ω | Fixed
Fixed
Fixed
Fixed
Fixed | Prec.
Prec.
Comp.
Checked
Comp. | 1%
1%
10%
1%
10% | | | R8074
R8074
R8075
R8077
R8078 | 302-103
309-228
***312-597
***312-597
302-103 | 10 k
12.5 k
93.1 Ω
93.1 Ω
10 k | 1/ ₂ w
1/ ₂ w
1/ ₂ Ω
1/ ₂ Ω
1/ ₂ w | Fixed
Fixed
Fixed
Fixed
Fixed | Comp.
Prec.
Checked
Checked
Comp. | 10%
1%
1%
1%
1% | 101-1949
1950-up
101-1949 | | R8078
R8080
R8081 | 309-100
311-074
311-016 | 10 k
5 k
10 k | ½ w
.1 w
2 w | Fixed
Var.
Var. | Prec. | 1% | 1950-up
X3387-up | | R8082
R8083 | 302-471
306-103 | 470 Ω
10 k | 1/ ₂ w
2 w | Fixed
Fixed | Comp. | 10%
10% | Х3887-ир | [†]Located in probe. ^{***} Checked to .1% of each other—furnished as a unit. ^{**} Checked to 1% of each other. #### Resistors (continued) | Circuit
No. | Tektronix
Part No. | | Desc | ription | | | Serial
No. | |--|--|--|---|---|--|-------------------------------|---| | R8084
R8085
R8085
R8086
R8088
R8089 | 306-103
309-184
309-266
311-010
302-332
308-123 | 10 k
80 Ω
93.1 Ω
2.5 k
3.3 k
20 Ω | 2 w
1/ ₂ w
1/ ₂ w
.1 w
1/ ₂ w
5 w | Fixed
Fixed
Fixed
Var.
Fixed
Fixed | Comp.
Prec.
Prec.
Comp.
WW | 10%
14%
1%
10%
5% | 101-3386
3387-up
X3387-up
X3387-up | | | | | Vacuum Tu | bes | | | | | V8013†
V8044
V8053 | 154-215
154-022
154-187 | 6688/E180F
6AU6
6DJ8/ECC88 | | | | | | | | | | Transform | er | | | | | T8013† | *120-132 | Toroid | | | | | | | | | | Inductors | 5 | | | | | L8085 | Use *114-131 | 60-105 μh | | Var. | | | | | | | | Switch | | | | | | SW 8010 † | *260-286 | AC-DC | | | | | | [†] Located in probe. ## Type 80 Mechanical Parts List | | Tektronix
Part Number | |--|--------------------------| | BUSHING, 3/8-32 × 9/16 × .412 | 358-010 | | CABLE HARNESS | 179-343 | | CHASSIS | 441-266 | | CONNECTOR, CHAS. MT. 16 CONT. MALE | 131-017 | | EYELET, TAPERED BARREL | 210-601 | | GROMMET, RUBBER 5/16 | 348-003 | | KNOB, LARGE BLACK, 1/4 HOLE PART WAY | 366-042 | | KNOB, PLUG-IN SECURING %16 x 5/8 | 366-125 | | LOCKWASHER, INT. #4 | 210-004 | | LOCKWASHER, INT. #6 | 210-006 | | LOCKWASHER, POT. INT. $\frac{3}{8} \times \frac{1}{2}$ | 210-012 | | LOCKWASHER, POT. INT. $\frac{3}{8} \times \frac{11}{16}$ | 210-013 | | LUG, SOLDER SE4 | 210-201 | | LUG, SOLDER, POT PLAIN 3/8 | 210-207 | | NUT, HEX 6-32 x 5/16 | 210-406 | | NUT, HEX 6-32 x 1/4 | 210-407 | | NUT, HEX $\frac{3}{8}$ -32 x $\frac{1}{2}$ | 210-413 | | NUT, HEX 6-32 x 5/16 x .194 5-10 W RES. MTG. | 210-478 | | NUT, HEX $\frac{3}{8}$ -32 × $\frac{1}{2}$ × $\frac{11}{16}$ | 210-494 | | PANEL, FRONT | 333-536 | | PLATE, SUB-PANEL | 386-926 | | PLATE, $5^{11}/_{32} \times 6^{11}/_{32}$ | 387-529 | | RING, RETAINING, #18 SECURING | 354-025 | | ROD, FRAME $^3/_8 \times 87/_8$ TAPPED 8-32 BOTH ENDS | 384-508 | | ROD, SECURING $\frac{3}{16} \times 10\frac{1}{2}$ 10-24 THREADED ONE END | 384-510 | | SCREW, $4-40 \times \frac{5}{16}$ BHS | 211-011 | | SCREW, $4-40 \times \frac{3}{8}$ BHS | 211-012 | | SCREW, 4-40 \times $^{5}/_{16}$ PHS W/LOCKWASHER | 211-033 | | SCREW, $6-32 \times \frac{5}{16}$ BHS | 211-507 | | SCREW, $6-32 \times \frac{3}{8}$ BHS | 211-510 | | SCREW, 6-32 \times $^{5}/_{16}$ PHS W/LOCKWASHER | 211-534 | | SCREW, $6-32 \times 11/_2$ RHS, PHILLIPS | 211-553 | | SCREW. 6-32 x 3% FHS 100°. CSK. PHILLIPS | 211-559 | #### Mechanical Parts List (continued) | | Tektronix
Part Number | |---|--------------------------| | SCREW, $8-32 \times \frac{1}{2}$ FHS 100°, PHILLIPS | 212-043 | | SCREW, $8-32 \times \frac{1}{2}$ FHS 100° | 212-044 | | SOCKET, STM7G | 136-008 | | SOCKET, STM9G | 136-015 | | SOCKET, 9 PIN CHAS. W/MALE INSERT | 136-077 | | SPACER, NYLON MLD. 3/8 FOR CERAMIC STRIP | 361-009 | | STRIP, CERAMIC $\frac{3}{4} \times 7$ NOTCHES, CLIP MTD. | 124-089 | | STRIP, CERAMIC $\frac{3}{4} \times 11$ NOTCHES, CLIP MTD. | 124-091 | | WASHER, STEEL $.390 \times \%_{16} \times .020$ | 210-840 | | WASHER, POLYETHYLENE .190 x $\frac{7}{16}$ x $\frac{1}{32}$ | 210-894 | SEE PARTS LIST FOR EARLIES VALUES AND S/N CHANGES OF PARTS MARKED WITH RED TINT BLOCKS . 9 – 19 9-19-61 TYPE 80 PROBE + TYPE 80 PLUG-IN UNIT At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested. MANUAL CHANGE INFORMATION Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages. If it does not, your manual is correct as printed. | | | (| |--|--|-----| | | | | | | | | | | | { | } | | | | { . | | | | | | | |) | | | | (| | | | | | | | · · | TYPE P80 Accessories List Correction (Text Page 4) | Clip Assembly | Change to | 344-005 | |---------------------|----------------------|---------| | Hook Tip | Change to | 206-107 | | Straight Tip | Change to | 206-106 | | Adapter, Probe to N | connector. Change to | 013-016 | #### TYPE 80 PROBE TYPE 80 PLUG-IN MOD 5107 Replace the calibration procedure in the manual with the following: #### Equipment Required The following equipment, or its equivalent is required to check the calibration of the Type 80 probe and plug-in. - 1. Tektronix Type 581 or 585 oscilloscope. - 2. Tektronix Type 105 Square-Wave Generator. - 3. Tektronix Type 109 Pulse Generator with 40 to 60 nanoseconds of charge line attached. - 4. Type 80 probe to G.R. -50ohm adapter. Tektronix part number 017-041 - 5. Alignment tool, Tektronix part number 003-000. #### 1. Preliminary Before installing the Type 80 into the oscilloscope, make a careful visual inspection of the unit. This is particularly important if any soldering has been done. Preset C8086 10 degrees from its minimum capacitance point. All other variable capacitors and potentiometers in both the plug-in and probe should be set to mid-range. Now make the following resistance-to-ground checks at the 16-pin interconnecting plug. The table lists the nominal resistance value from each pin to ground. #### PIN NUMBER #### RESISTANCE-TO-GROUND | 1 | 200kΩ | |----|----------------| | 2 | 3 k Ω | | 3 | infinite | | 4 | 200kΩ | | 5 | infinite | | 6 | infinite | | 7 | infinite | | 8 | infinite | | 9 | infinite | | 10 | 0 | | 11 | infinite | | | | | 12 | infinite | |----|------------------| | 13 | infinite | | 14 | 6.2 k Ω | | 15 | 23Ω | | 16 | 6.2 k Ω | #### 2. POSITION RANGE ADJUST Set up the oscilloscope for a free running trace. Now with the VERTICAL POSITION control centered mechanically, adjust the POSITION RANGE ADJUST until the trace is superimposed on the center horizontal graticule line. DO NOT move the VERTICAL POSITION control through out the remainder of this calibration procedure. #### 3. Low Frequency Compensation Adjustments Connect the Type 80 probe to the Type 105 Square-Wave Generator and adjust the generator for a 10kc output approximately 2 cm high. If repositioning of the trace is necessary do it with the POSITION RANGE ADJUST. The triggering circuit of the oscilloscope should be set to + INT and the controls adjusted for a stable display. The TIME/CM switch will have to be at .5msec and $50\mu \rm sec$ to view the waveform for any rolloff or overshoot of the front corner of waveform. The $50\mu \rm sec$ rate will let you check the overall level of the waveform. Now adjust R8018, in probe R8080 and L8085 for minimum spike or rolloff and for the best level on the top of the waveform. #### 4. Adjustment of High-Frequency Compensations Connect the Type 80 probe through the 50 ohm termination to the 109. The sweep rate of the oscilloscope should be set to $.05\mu sec/cm$ with the magnifier off. The AC-DC switch on the 80 probe should be set to AC. Now adjust R8086 until the leading edge of the waveform equals the average level of the waveform then with C8086 adjust the level of the first centimeter of waveform to equal the average level. Recheck R8018 and R8080. They interact with the high-frequency compensations.