Tektronix
 COMMITTED TO EXCELLENCE

 $015-0611-00$ F
PROGRAMMABLE PULSE HEAD 015-0611-00

\qquad

TEK INTER-OFFICE COMMUNICATION

GIDEP permit request

In response to the reguest to grant permission to the Governmant Industry Exchange Program (GPDEP) to reproduce Tektronix operator, service and instruction manuals, Tektronix, Inc. hereby grants such permission tor distribution of such documents to any GIDEP user that is a full participant In the Metrology Data Interchange Data Base of GIDEP provided that all copies of the original work include the entire copyright notice and ownership statement exactly as it appears in the original, together with the Legend "Reproduced with permission.

This permission has been approved by the Intellectual froperty committee of tektronlx, and a copy of this memo may be provided to GIDEP to provide the requested permission.

1 mp

Copyright © 1991 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE and \square are registered trademarks of Tektronix, Inc. TEL EQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges areveserved.

INSTRUMENT SERIAL NUMBERS

Each instrument manufactured by Tektronix has a serial number on a panel insert, tag, or stamped on the chassis, The letter at the beginning of the serial number designates the country of manufacture. The last five digits of the serial number are assigned sequentially and are unique to each instrument. Those manufactured in the United States have six unique digits. The country of manufacture is identified as follows:

B010000	Tektronix, Inc., Beaverton, Oregon, USA
J300000	Sony/Tektronix, Japan
H700000	Tektronix Holland, NV, Heerenveen,
	The Netherlands

Instruments manufactured for Tektronix by external vendors outside the United States are assigned a two-digit alpha code to identify the country of manufacture (egg., JP for Japan, HK for Hong Kong. IL for Israel, etc.).

TABLE OF CONTENTS

Page
LIST OF ILLUSTRATIONS ii
LIST OF TABLES ii
OPERATORS SAFETY SUMMARY iii
SERVICE SAFETY SUMMARY lv
Section 1 SPECIFICATION $1-1$
Introduction 1-1
Accessories $1 \cdot 1$
Pefformance Conditions $1-7$
Electrical Characteristics 1-i
Environmental Characteristics 1-2
Physical Characteristics 1-2
Section 2 OPERATING INSTRUCTIONS 2-1
introduction 2-1
Connecting to the CG 5010/CG 5011 2-1
Controls and Connectors 2-1
General Operating Information 2-1
Programming Commands Via GPIB 2-2
Repackaging Information 2-3
WARNING
THE FOLLOWING SERVICING INSTRUICTIONS ARE FOF USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJUAY DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO
Section 3 THEORY OF OPERATION 3-1
Introduction 3-1
Relay Switching Circuit 3-2
Fast Edge Driving Circuit 3-2
Positive Fast Edge Generator 3-2
Negative Fast Edge Generator 3-4
Straight-Through (Direct) Mode 3-4
Section 4 CALIBRATION 4-1
Performance Check 4-
Introduction 4-1
Calibration Interval 4-1
Services Available $4-1$
Test Equipment Required 4-1
Performance Check Procedure 4-2
Adjustment Procedure 4.5
Introduction 4-5
Test Equipment Required 4.5
Preparation 4-5Page
Section 5 MAINTENANCE 5-1
Recalitibration 5-1
Disassembly and Reassembly 5-1
Bottom Cover Removal and Replacement 5-1
Top Cover Removal and Replacement 5-2
Hypcon Connector 5.2
Disassembly and Remova -2
Reassembly and Replacement 5-4
Board Removal and Replacement 5-4
Cable Removal and Replacement 5-4
Log Cell Removal and Replacement 5-4
Cleaning Instructions 5-5
Exterior 5-5
Interior 5-5
Obtaining Replacement Parts 5-5
Ordering Parts $5 \cdot 5$
Static-Sensitive Components 5-5
Test Equipment 5-6
Section 6 OPTIONS 6-1
Section 7 REPLACEABLE ELECTRICAL PARTS
Section 8 DIAGRAMS AND ILLUSTRATIONSSchematic DiagramsPars Location Grids
Section 9 REPLACEABLE MECHANICAL PARTSExploded ViewAccessoriesCHANGE INFORMATION

LIST OF ILLUSTRATIONS

Programmable Pulse Head, 015-0611-00 v
2-1 Pulse Head Connector 2-1
3-1 Pulse Head Block Diagram 3-1
3-2 From NEGATIVE To POSITIVE While In FAST EDGE Modo 3-2
3-3 From POSITIVE To NEGATIVE White in FAST EDGE Mode $3-3$
3-4 From Direct Mode To POSTTIVE FAST EDGE Mode 3-3
3-5 From Direct Mode to NEGATIVE FAST EDGE Mode 3-4
3-6 Polarity And Output Relay Switching 3-5
3-7 From POSITIVE FAST EDGE Mode To Direct Mode 6
Flg. Flg.
No. Page No. Page
3-8 From NEGATIVE FAST EDGE Mode To Direct Mode 3-6
4-1 Measurement of step 2 risetime. 4-3
4-2 Measurement of step 3 upper peak of aberration 4-4
4-3 Measurement of step 3 peak-to-peak aberration of adjacent peaks. 4-4
5-1 Maintenance Diagram (Exploded View) 5-1
5-2 Hypcon Connector (Exploded View) 5-3
8-1 Edge Driver Board (A20) (Parts Location)8-2 Fast Edge Board (A22) (Parts Location)
LIST OF TABLES
Table
No. Page
1-1 ELECTAICAL CHARACTERISTICS 1-1
1-2 ENVIRONMENTAL CHARACTERISTICS 1-2
1-3 PHYSICAL CHARACTERISTICS 1-2
2-1 CG 5010/CG5011 SETTING COMMANDS 2-2

Table

No. Page
4-1 LIST OF TEST EOUIPMENT
REQUIREMENTS ...4-1
5-1 RELATIVE SUSCEPTIBILITY TO STATIC DISCHARGE DAMAGE5-6

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

4
DANGER - High voltage.
Protective ground (earth) terminal.
ATTENTION - refer to manual.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Power Cord

Use only the connector specified for your product.
Refer connector changes to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this productin an explosive atmosphere unless it has been specifically centified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and pandels properly installed.

SERVICE SAFETY SUMMARY
 FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safoty Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On
To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels, soldering, or replacing cormponents.

SPECIFICATION

Introduction

The Pulse Head is an accessory to the CG 5010/CG 5011 programmable Calibration Generator. It connects to the main output of the CG 5010/CG 5011 and is programmed and stimulated by signals from the CG 5010/CG 5011. This accossory generates I V square waves with a well defined leading edge. This adge is used to verify and calibrate transient response in wide-band oscilloscopes

Accessorles

This instruction manual is the only standard accessory.

Performance Conditions

The electrical characteristics are valid only if the Pulse Head has been calibrated at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ and is operating at an ambient temperature betwe日n $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$, unless otherwise noted.

Hems listed in the Performance Requirements column of the Electrical Characteristics are verified by completing the Performance Check in the Calibration section of this manual.

Items listed inthe Supplementa! Information column are not verified in this manual.

Table 1-1
ELECTRICAL CHARACTERISTICS

Characteristics	Periormance Requirements	Supplemental Information
Fast Edge Pulse Amplitude Variable Range	1.1 V pak, $\pm 5 \%$. $\pm 10 \%$	Required Input Signais: $\begin{aligned} & V \text { Control Pin }= \pm 9.6 V, \pm 1 \% . \\ & V \text { Coax }= \pm 5 V, \pm 1 \% \end{aligned}$
Polarity	Positive rising from ground to +1 V or negative falling from ground to - 1 V .	In the straight-through mode, the pulse will output any signal routed through the CG 5010/CG 5011 OUTPUT connector.
Risatime	s150 ps.	Driving wavelorm $\mathrm{T}, 410 \mathrm{~ns}$. Triggered on edge going to ground.
Leading Edge Aberrations	$\pm 3 \%$ of pulse amplitude; not to exceed 4\%, p-p for adjacent peaks.	Valid from 0 to 50 ns after step. Verified with SD-22 sampling head.
Long Term Flatness		$\pm 1 \%$, after 50 ns .
Frequency	100 Hz to 100 kHz in decade steps.	
Source Resistance		$50 \Omega, \pm 2 \%$.
Control Pin Signals Programming Operating		$\pm 12 \mathrm{~V}, 150 \mathrm{~mA}$ maximum. $\pm 10 \mathrm{~V}, 60 \mathrm{~mA}$ maximum.
Coax Signals Programming Operating		$\pm 5 \mathrm{~V} 30 \mathrm{~mA}$ maximum (dc). $\pm 5 \mathrm{~V}, 30 \mathrm{~mA}$ maximum (square wave).
Maximum Power Requirements Programming Operating Straight-through mode		$\begin{aligned} & -2 \mathrm{~W} . \\ & <1 \mathrm{~W} . \\ & <0.05 \mathrm{~W} . \end{aligned}$

Table 1-2
ENVIRONMENTAL CHARACTERISTICS

Characteristles	Dascription	
Temperature	Meets Mill-T-28800B, class 5.	
Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.	
Non-operating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.	
Humidity	90-95\% RH for 5 days to $50^{\circ} \mathrm{C}$.	Excoeds MiL-T-28800B, class 5.
Altitude	Excoeds MIL-T-28800B, class 3.	
Operating	4.6 km (15,000 feet).	
Non-operating	15 km (50,000 feet).	
Vibration	$0.64 \mathrm{~mm}\left(0.0252^{\prime \prime}\right) 10 \mathrm{~Hz}$ to 55 Hz , 75 minutes.	Meets or exceods MIL-T-28800B, class 3.
Shock	$50 \mathrm{g's}$ (1/2 sine), $11 \mathrm{~ms}, 18$ shocks.	Meets or exceeds MiL-T-28800B, class 3.
Bench Handling	45° or $4^{\prime \prime}$ equilibrium, whichever occurs first.	Meets MIL-T-28800B, class 3.
EMI Compatibility		
Conducted Emissions Conducted Susceptibility Radiated Emissions Radiated Susceptibility		Meats MIL-T-28800B, class 3 MIL-STD-461A when performed in accordance with MIL-STD-462 with following exceptions: Radiated emissions, tested to 30 dB above specification from de to 700 MHz .
Electrical Discharge	20 kV maximum.	Charge applied to each protruding area of the product under test except the output terminals.
Transportation Vibration Package Drop	$25 \mathrm{~mm}\left(1^{\circ}\right)$ at 270 rpm for 1 hour. 10 drops from 91 cm (3 ft).	Qualified under National Safe Transit Asscciation Preshipment Test Procedures 1A-B-1 and 1A-B-2.
Cables		
Flex Life	10,000 cycles at 120° flex with 0.66 kg (1.5 lb) weight.	
Pull Test	15.88 kg (35 lbs) axial pull at 1 minute duration.	

Table 1-3
PHYSICAL CHARACTERISTICS

Characterlstics	Descrlptlon
Finish	Light and dark gray painted metal.
Overall Dimensions	$196.9 \mathrm{~mm}\left(7.75^{\prime \prime}\right) \mathrm{L} \times 53.4 \mathrm{~mm}\left(2.102^{\circ}\right) \mathrm{W} \times 38.1 \mathrm{~mm}\left(1.5^{7^{\prime}}\right) \mathrm{H}$.
Net Weight	$0.27 \mathrm{~kg}(0.6 \mathrm{lb})$.

OPERATING INSTRUCTIONS

Iniroduction

The Pulse Head is an accessory designed to operate with the CG 5010/CG5011 Programmable Calibration Generator and is calibrated and ready to use when received.

The attached cable from the Pulse Head contains signal as well as power lines and connects directly to the CG 5010/ CG 5011 front panel OUTPUT connector. Power for the head is taken from the CG 5010/CG 5011 through this connector.

The Pulse Head is programmed and stimulated by signals from the CG 5010/CG 5011. The head generates a squarewave whose leading edge is used to verity and calibrate transient responses in other instruments.

Connecting to CG 5010/CG 5011

Use care when connecting the Fulse Head plug to the
CG 5010/CG 5011 to avoid pin misalignment and pos-
sible connector damage.
Observe the positioning dot on the Pulse Head plug and
align this dot with the positioning dot on the outside ring of the

CG 5010/CG 5011 OUTPUT connector, Insert the plug into this connector slowiy.

Controls and Connectors

OUTPUT Connector-Output for CG 501D/CG 501% amplitude mode voltage, time signals, or current signals (direct mode operation). Output for Pulse Head generated positivegoing or negative-going fast rise pulses (pulse mode operation).

General Operating Information

With the appropriate CG 5010/CG5011 settings and proper triggering of the oscilloscope, a fast edge pulse will appear on the crt screen. This pulse will indicate that the Pulse Head is functioning properly.

Atach the Pulse Head OUTPUT connector to the oscilloscope under calibration. The oscilloscope being calibrated should be checked for time base accuracy and linearity.

After warm-up time, press to light the CG 5010/CG 5011 OUTPUT ON pushbution and the FAST EDGE pushbution. Select either the \sqrt{N} (positive) or $\sqrt{7}$ (negative) EDGE POLARITY pushbuttons on the CG 5010/CG 5011.

Fig. 2-1. Pulse Head connector.

Operating Instructions - Pulse Head 015-0611-00

With the appropriate plug-in settings and proper triggering of the Oscilloscope a fast edge pulse will appear on the crt screen. This pulse will indicate that the Pulso Head is functioning properly.

Programming Commands Via GPIB

The Pulse Head can be programmed from the CG $5010 /$ CG 5011 via commands received from the GPIB. The commands (Header and Argument) and descriptions are given in Table 2-1.

Table 2-1
CG 5010/CG 5011 SETTING COMMANDS

Header	Argument	Description
MODE	FE or FASTEDGE	Sets instrument to FAST EDGE mode.
POS		Sets positive EDGE polarity.
NEG		Sets negative EDGE polarity.
TRIG	ON	Tums TRIGGER OUTPUT on.
	OFF	Tums TRIGGER OUTPUT off.
	NORM	Sets trigger rate same as output signal rate
	X. 1	Tums on TRIGGER OUTPUT and sets trigger rate to one-tenth output signal rate.
	X. 01	Turns on TRIGGER OUTPUT and sets trigger rate to one-hundredth output signal rate.
FXD		Sets instrument to 0.0\% error with error display off.
VAR		Sets instrument to display device under test percent ertor reacout.
PCT	anr 23	Sets device under test percent readout.
INC		Adds 0.1 to present device under test error readout for HIGH and FAST indications or subtracts 0.1 for LOW and SLOW indications.
DEC		Subtracts 0.1 from present percent error readout for HIGH and FAST indications or adds 0.1 for LOW and SLOW indications.
FREQ	$4 \mathrm{nr} 3>$	Sets chop frequency from 100 Hz to 100 kHz .
TRIG	ON	Turns TRIGGER OUTPUT on.
	OFF	Turns TRIGGER OUTPUT OFF.
	NORM	Sets trigger rate same as output signal rate.
	X. 1	Turns on TRIGGER OUTPUT and sets trigger rate to one-tenth output signal rate.
	$\times .01$	Tums on TRIGGER OUTPUT and sets trigger rate to one-hundredth output slgnal rate.
OUT	ON	Sets main OUTPUT off.
	OFF	Sets main OUTPUT off.

NOTE
Reler to the CG 5010/CG 5011 instruction manual Programming section for more detailed information.

Repackaging Information
If shipping this instrument to a Tektronix Service Center for service of repair, attach a tag showing owner (with address) and the name of an individual to contact. Include the complete instrument serial number and a description of the service required.

Save and reuse the package in which the instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

1. Obtain a corrugated canton having inside dimensions of no less than six inches more than the instrument dimensions; this will allow for cushioning. Use a cartor having a test strength of at least 200 pounds.
2. Surround the instrument with protective polyethylene sheeting.
3. Cushion the instrument on all sides by tightly packing dunnage or urethane foam between carton and instrument, aliowing three inches on all sides.
4. Seal carton with shipping tape or industrial staples.

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

THEORY OF OPERATION

Introduction

Power, control logic, and signal input to the Pulse Head is obtained from the CG 5010/CG 5011 OUTPUT connector, through two leads and a coaxial cable.

After connecting the Pulse Head, the CG 5010/CG 5011 Head Sense circuit senses the particular head connected. When a Pulse Hiead is connected, the CG 5010/CG 5011 connectorcontrol pin has, momentarily, approximately +3 Vec. When this voltage is sensed by the CG 5010/CG 5011 Head Sense circuit, the relays are energized for the straight-through mode.

The Pulse Head circuitry is composed of three functional blocks; positive fast-edge generator. negative fast-edge generator and the relay drivers. See Fig. 3-1.

Two different signals are required to drive the Pulse Head errcuits:

1. A variable $10 \mathrm{Vdc}(\pm 10 \%$) to supply power to the relay orivers and tast edge generators. Atter programming, this voltage also determines the amplitude of the 1 V fast edge output.
2. A squarewave $\pm 5 \mathrm{~V}$ to trigger the drive circuitry and to program the relays.

In the straight-through (direct) mode the output relay. K1010, is set to allow voltage, timing, or current signats generated in the CG 50t0/CG 5011 to pass directly to the Pulse Head OUTPUT connector. With relay K1010 switched to the FAST EDGE mode position, either positive-going or nega-tive-going fast rise pulses (generated by Pulse Head circuitry) are passed to the OUTPUT connector. See wavetorms in Fig. 3-2 and Fig. 3-3 for output pulses. Signals controliing this action come from the CG 5010/C@ 5011 duing the first 35 ms atter power on, or a mode switching, or polarity change cceurs (500 wavetorms in Fig. 3-4 and Fig. 3-5). Switching is arranged so that only one relay (log cell) is switched at a time. The 35 ms setting delay prevents both relays switching at the same time.

NOTE

The waveforms shown are idealized and only approximate the display readout for the given signal conditions.

Fig. 3-1. Pulto Hitad block diggram.
REV JUL 1991

Relay Switehing Circult

The input relay. K1210. closes whenever the comtrol line goes to + or -12 V . The output relay, K1010, and polarity relay, Kil10, are dual coil latching switches. A 10 ms pulse is required to set or reset them. The CG 5010/CG 5011 generates all programming signals for the relays. Felay K1010 is pulsed when the control pin and the coaxial line both have the same polarity. The $\pm 5 \mathrm{~V}$ is do coupled to the bases of transistors Q1211 and O1213. Relay K1110 is driven when the 10 V changes polarity. The signal is ac coupled through C1103 (located on the Edge Driver board) to the bases of transistors Q1200 and Q1203. This signal, depending on polarity, causes a current pulse in the collector of either O1200 or O1203. With 10 V on the control pin, the input relay K1z10 is elosed connecting the coax center conductor to the edge driver ercuits.

Afterenteringthe FASTEDGE mode, the CG5010/CG 5011 programs the control pin positive (+12 V). Atter 35 ms setting delay, the coaxial signal cable is programmed positive for another 35 ms . As the control pin oraws current through R1202, (located on the Edge Driver board) K1210 closes. A positive voltage (+10 V) is applied through CRiti00 to the collector of. Qt200. This sets Ktt10 (see Fig. 3-6). Positive drive is also applied to 01211 (also through CR1 100), which
sets K1010. A few milliseconds later, the CG 5010/CG 5011 applies de voltage and signal voltage as required tor the pulse polarity selected by the EDGE POLARITY pushbuttons on the CG 5010/CE 5011.

When the positive EDGE POLARITY pushbutton on the CG 5010/CG 5011 is pressed, the operation for the Pulse Head circuit requires the control pin to remain at +10 V and the coaxial line to supply a square wave that switches between ground and -5V through R1117 (see Fig. 3-6). With these two lines carrying opposite polarity voltages, O1211 remains off and no further switching of K1010 oecurs. O1200 is oft. The time constant set by R1200 and C1103 (located on the Edge Driver board) in the base of Q1200 determines the length of time Q1200 is on. The +10 V is now applied through diode CR1100 as supply voltage for: the positive tast-edge generator circuit. The CG 5010/CG 5011 has now changed the signal on the coaxial line from +5 V to a negative square wave (between ground and -5 V). The repetition rate is determined by the lighted FREOUENCY pushbutton on the CG 5010/CG 5011.

Fast Edge Driving Circults

Positive Fast Edge Generator. This generator is composed of transistors Q1001, Q1202, Q1101, O1000, and associated circuitry.

Fig. 3-2. From Negative to POSitive while in FAST EDGE mode.

Theory of Operation - Pulse Head 015-0611-00

Fig. 3-3. From POSTIVE to NEGATIVE while in FAST EDGE mode.

Fig. 3-4. From direct mode to POSTIVE FAST EDGE Inode.

Theory of Operation - Pulse Head 015-0611-00

Fig. 3-5. From direet mode to NEGATIVE FAST EDEE mode.

When the signal on the coaxial line is $\mathbf{- 5} \mathrm{V}, \mathrm{O} 1202$ and Q1001 are turned aff. Diode CR1000 conducts. When Q1001 is not conducting. Q1101 is turned on to maintain a constant current through diode CR1100 and a constant voltage on Q1001 emitter. This improves the wavaform long term flatness at Jow repettion rates. This action connects Q1000 (current source) to -5 V to forward bias, a snap-off diode located in the hybrid pulse shaper circuit, U1112. During forward conduction, the snap-off diode stores current carriers. When the coaxial line driving waveform rises toward ground, Q1000turns off and Q1202 turns on. This causes O1001 to tum on. The positive voltage now applied to the shaper circuit in the Hybrid Pulser causes the eurrent to reverse. The snap-off diode momentarily acts like a battery (until it runs out of stored carriers). When the diode stops conducting, the voltage across the diode snaps positive. This positive excursion develops a fast step at the OUTPUT connector. The output must be teminated in 50Ω to obtain the proper waveshape.

As the coaxial line driving signal goes to -5 V, CR1000 conducts causing Q1000 to turn on. The snap-off diode in the hybrid shaper circuit is again forward biased and the cycle repeats.

The 5.1 V Zener diode, VR1205 acts as a voltage stabilizer in the base circuit of Q1202 to prevent changes in time delay with amplitude. To minimize jitter, the bias on VR1205 is chosen so that triggeringoccurs at the steepest point of the 5 V driving waveform.

Negative Fast Edge Generator. This generator is composed of transistors O1212, Q1111, O1012, Q1011, and associated circuitry.

The negative fast edge generator operation is similar to the positive fast edge operation. Refer to the Positive Fast Edge Generator circuit description.

Straight-Through (Direet) Mode. When the CG 5010/ CG5011 is switched out of the fast edge mode, both the control pin and coaxial lines go negative. See wavetorms in Fig. 3-7 and Fig. 3-8. This applies a negative voltage and negative base drive to Q1213 which switches K1010 to the reset (direct mode) position (see Fig. 3-6). Approximately 10 ms later, the CG 5010/CG 5011 shitss the control line to near $0 \quad V$ which opens the input relay, K1210

The CG 5010/CG 5011 output signal is now connected directly to the OUTPUT connector on the Pulse Head.

Fig. 3-6. Pelafity and output rotay awhehing.

Theory of Operation - Pulse Head 015-0611-00

Fig. 3-7. From POSTIVE FAST EDGE mode to diepet mode.

Fig. 3-6. From NEGATIVE FAST EDGE mode to direct mode.

CALIBRATION
 PERFORMANCE CHECK

Introduction

This procedure checks the electrical performance requirements as listed in the Specification section in this manual. Perform the Adjustment procedure if the Pulse Head fails to meet these checks. In some cases, recalibration may not correct the discrepancy; circuit troubleshooting is then indicated.

Callbration Interval

To ensure instrument accuracy, check the calibration every 1000 hours of operation of at a minimum of every six months if used infrequently.

Services Avallable

Tektronix, Inc. provides complete instrument repair and adjustment at local field service centers and at the factory service center. Contact your local Tektronix field office or representative for further information.

Test Equipment Required

The following test equipment or equivalent is suggested to perform the Performance Check and Adjustment procedure (refer to Table 4-1).

Table 4-1
LIST OF TEST EQUIPMENT REQUIREMENTS

Description	M inimum Spectications	Applications	Example
Power Modula	GPIB Compatible	All tests	TEKTRONIX TM 5006A
Programmable Calibration Generator, CG 5010/CG 501		All tests	TEKTRONIX CG 50torç 5011
Digital Sampling Oscilloscope	Must accept sampling heads	All tests	TEKTRONIX 11801. 11802. CSA 803
Sampling Head	Risetime $\leq 17.5 \mathrm{ps}$	All tests	TEKTRONIX SD-22
2X Attenuator BNC connectors	$50 \Omega .(6 \mathrm{~dB})$	All tests	Tektronix Part No. 011-0069-02
50Ω BNC to 3.5 mm (SMA) adapter (2 req)		All tests	Tektronix Part No. 015-1018-00
Insulated adjustment tool		Adjustment Procedure	Tektronix Part No. 003-0675-00
Coaxial Cable	BNC connectors	All tests	Tektronix Part No. 012-0057-01

PERFORMANCE CHECK PROCEDURE

Equlpment Setup:

Connect Pulse Haad to CG 5010/CG 5011 and to sampling head with BNC to SMA adapter. Comnect CG 5010/CG 5011 TRIGGER OUTPUT to 11801 Trigger Output with a X2 attenuator.

Prolliminary control aottings:

Set CG 5010/CG 5011 controls:

AMPLITUDE MODE	FAST EDGE
EDGE POLARTTY	(POSTIVE)
VARIABLE	OFF
FREQUENCY	100 kHz
OUTPUT	ON
TRIGGER OUTPUT	NORM,ON

Depress and hold the FAST EDGE pushbutton until the CG 5010/CG 5011 display shows "dL". This places the Pulse Head in delayed mode.

Set 11807 controls:
-Select the Ltility main menu by pressing the Utility pushbutton.

- Touch the lnitialize block on the main mentu.
- Select the Sampling Head channel that is connected to the Pulse Head by pressing the Select Channel pushbutton on the Sampling Head.

1. Chack Fast Edge Pulse Amplitude
a. Press the Autoset pushbutton on the 11801 .
b. Set the 11801 main size to 2us/div by touching the horizontal (\longleftrightarrow) icon at the top of the crt and adjusting the upper control knob.
c. CHECK - for a wavelorm on the display.
d. Select the 11801 cursors by touching the Cursors icon at the top of the crt. Solect the cursor type pop-up monu by touching the Cursor Type block on the main menu. Select horizontal bars by touching the Horizontal Bars block. Touch the Exit block to exit.
e. Adjust the cursors using the upper and bower control knobs. Place one cursor on the top of the square wave and one cursor on the bottom of the square wave.
f. CHECK that (delta) V is betwoon 1.045 V and 1.155 V (inclusive). Record the armplitude for use in the following steps.
g. Set the CG5010/CG 5011 VARIABLE controlto ON and rotate the VARIABLE knob to change the puise amplitude on the er.
h. CHECK - that the pulse amplitude may be adjustec to $\pm 10 \%$ of the voltage measured in stap f.
i. Set the CG5010/CG5011 EDGEPOLARITYto(NEGATIVE) and set the CG5010/CG5011 VARIABLEcontrol :0 OFF.
j. Repeat parts a. through h.

2. Chack Fast Edge Pulas Risotime

Maintain the same setup and settings as above with the oxception of :

CG 50t0/CE 501\%:
VARIABLE
EDGE POLARITY
OFF
(POSTIVE) 5
a. Press the AUTOSET pushbution on the 11801.
b. Set the 11801 main size to $2 u s / d i v$ by touching the horizontal $(\underset{\text { (}}{ }$) icon at the top of the crt and adjusting the upper control knob.
c. Select the 11801 wavaform main menu by pressing the Waveform pushbuttion.
d. Select the acquire description pop-up menu by touching the Acquire Desc block on the main menu.
e. Select the wavetorm averaging by pressing the Average N block on the pop-up menu. Touch the Exit block to exit.
f. Select the 11801 measurements main menu by pressing the Measure pushbutton.
9. Select the moasurements pop-up menu by touching the Measurements block on the main menu.
h. Select the risetime measurement by pressing the Rise block on the pop-up menu. Touch the Exit Menu block to exit.

1. \$elect the measurement mode pop-up manu by toucting the Rise block on the main menu. Set Tracking to Off by touching the Tracking block on the pop-up menu. Touch the Rise block again to exit
f. Sof the 11801 . main size to 100 perdiv by adjusting the upper control knob.
k. CHECK - that the risotime is less than or equal to 150 ps . Read the measured risetime below the Rise block on the 11801. Soe Fig, 4-1.

Fig. 4-1. Measurement of step 2 risetime.
l. Set the CG5010/CG5011 EDGE POLARITY to (NEGATIVE) 飞.
m. Press the Autoset pushbutton on the 11801.
n. Set the 11801 main size to 2 us/div by adjusting the upper control knob.
o. Select the 11801 measurements pop-up menu by touching the Measurements block on the main menu.
p. Deselect the risetime measurement by touching the Rise block on the pop-up menu. Select the falltime measurement by touching the Fall block on the pop-up menu. Touch the Exit Menu block to exit.
q. Select the measurement mode pop-up menu by touching the Fall block on the main menu. Set Tracking to On by touching the Tracking block on the pop-up menu. Set Tracking to Off by touching the Tracking block on the pop-up menu. This will reset tracking and lockit on the new levels. Touch the Fall block again to exit.
r. Set the 11801 main size to $100 \mathrm{ps} /$ div by adjusting the upper control knob.
s. CHECK - that the faltime is less than or equal to 150 ps. Read the measured fallime below the Fall block on the 11801.

3. Check Fast Edge Leading Edge Aberrations

Maintain the same setup and settings as above with the exception of :

CG 5010/CG 5011:
EDGE POLARITY (POSTTIVE) 5
a. Press the Autoset pusthbutton on the 11801.
b. Set the 11801 main size to $500 \mathrm{~ns} / \mathrm{div}$ by touching the horizontal $(\longleftrightarrow$) icon at the top of the ert and adjusting the upper control knob.
c. Set the 11801 control knobs to vertical functions by touching the vertical (\mathcal{N}) icon at the left of the cr . Place the top of the waveform on the center graticule by adjusting the vertical offset with the lower control knob.
d. Set the 11801 vertical size to $10 \mathrm{mV} /$ div by adjusting the upper control knob.
e. Place the flattest portion of the waveform on the center graticule line by adjusting the vertical offset with the lower control knob.
f. Set the 11801 main size to $1 \mathrm{~ns} / \mathrm{div}$ by touching the horizontal (\longleftrightarrow) icon at the top of the crt and adjusting the upper control knob.
9. Select cursors by touching the Cursors icon at the top of the crt.
h. Adjust the cursors using the upper and lower control knobs. Place one cursor on the upper peak of the aberration and one cursor on the center graticule.
i . CHECK - that the peak aberration (detta V) is less than 3\% of the amplitude recorded in step 1. See Fig. 4-2.
j. Place one cursor on the lower peak of the aberration and one cursor on the center graticule line.
k. CHECK - that the peak aberration (detta V) is less than 3% of the amplitude recorded in step 1.
I. Place the cursors on the two adjacent peaks which are the farthest apart vertically. Two peaks are adjacent if there is no change in the direction of the slope between them.
m. CHECK - that the peak-to-peak aberration (delta V) is less than 4% of the amplitude recorded in step 1. See Fig. 4-3.
n. Set the CG5010/CG5011 EDGE POLARTYY (NEGATIVE) $亡$.
o. Press the Autoset pushbutton on the 11801.

Sectlon 4 - Pulse Head 015-0611-00
Performance Chack Procedure

Fig. 4-2. Measurement of step 3 upper peak of aberration.
p. Set the 11801 main size to $500 \mathrm{~ns} / \mathrm{div}$ by touching the horizontal (\longleftrightarrow) icon at the top of the ert and adjusting the upper control knob.
q. Set the 11801 control knobs to vertical functions by touching the vertical ($\$$) icon at the left of the crt. Place the bottom of the waveform on the center graticule by adjusting the vertical offset with the lower control knob.
r. Set the 11801 vertical size to $10 \mathrm{mV} /$ div by adjusting the upper control knob.
s. Place the flattest portion of the waveform on the center graticule line by adjusting the vertical offiset with the lower control knob.
t. Set the 11801 main size to $1 \mathrm{~ns} / \mathrm{div}$ by touching the horizontal (\longleftrightarrow) icon at the top of the ert and adjusting the upper control knob.
v. Repeat steps g. though m .

4. Check Fast Edge Pulse Frequency Output (100 Hz to 100 kHz)

Maintain the same setup and settings as above.
a. Press the Autoset pushbutton on the 11801.

Flg. 4-3. Measurement of step 3 peak-to-peak aberration of adjacent peaks.
b. Set the 11801 main size to 1 us/div by touching the horizontal (\longleftrightarrow) icon at the top of the crt and adjusting the upper control knob.
c. CHECK - for a displayed pulse.
d. Set the CG 5010/CG 5011 FREQUENCY to 10 kHz .
e. Set the 11801 main size to 10 us/div by adjusting the upper control knob.
f. CHECK - for a displayed pulse.
g. Set the CG 5010/CG 5011 FREQUENCY to 1 kHz .
h. Set the 11801 main size to 100 us/div by adjusting the upper control knob.
i . CHECK - for a displayed pulse.
j. Set the CG 5010/CG 5011 FREQUENCY to 100 Hz .
k. Set the 11801 main size to $1 \mathrm{~ms} / \mathrm{div}$ by adjusting the upper control knob.
I. CHECK - for a displayed pulse.

This completes the Performance Check Procedure.

ADJUSTMENT PROCEDURE

Introduction
Use this Adjustment Procedure to restore the Pulse Head to original factory calibration.

If this instrument has undergone repairs, the Adjustment procedure is recommended.

Test Equipment Required
Reter to Table 4-1 for applicable test equipment used in this procedure.

Preparatlon

Access to the internal adjustments is achieved with the Pulse Head top cover removed (see Maintenance Procedure in this manual).

After 30 minutes warm-up period, make Pulse Head adjustments at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$ $\left(+68^{\circ} \mathrm{F}\right.$ and $+86^{\circ} \mathrm{F}$).

Refer to Check Fast Edge Leading Edge Aberrations in the Performance Check (maintain same check set-up and control settings) when making following adjustments. See Adjustment Locations (Fig 8-3) in the fold-out section of this manual.

1. Adjust Positive Back Termination, R1200 and C1100 (locatad on Fast Edge board)
a. Sot CG 5010/CG 5011 EDGE POLARITY to (POSITIVE) ㄷ.
b. Press the Autoset pushbutton on the 11801.
c. Set the 11801 main size to $\mathbf{5 0 0} \mathrm{ns} / \mathrm{div}$ by touching the horizontal (\longleftrightarrow) icon at the top of the crt and adjusting the upper control knob.
d. Sat the 11801 control knobs to vertical functions by touching the vertical ($\$$) icon at the left of the crt. Place the top of the waveform on the center graticule by adjusting the vertical offset with the lower control knob.
e. Set the 11801 verical size to $10 \mathrm{mV} / \mathrm{div}$ by adjusting the upper control knob.
t. Place the flattest portion of the waveform on the center graticule line by adjusting the vertical offset with the lower control knob.
g. ADJUST - R1200 for maximum flatness of the displayed pulse top.
h. ADJUST - C1 100 to equalize the aberrations on each side of graticule center line.

Interaction between R1200 and C1 100 may require slight readjustment to obtain the optimum displayed pulse.
i. CHECK - displayed pulse for aberrations less than $\pm 3 \%$ of pulse amplitude and adjacent pulse peaks not to exceed 4%, peak-to-peak.
2. Adjuat Negative Back Termination, R1210 and C1110 (located on Fast Edge board)
a. Set CG 5010/CG 5011 EDGE POLARTTY to (NEGATIVE) $亡$ 。
b. Repeat parts b through i of previous adjustment procedure (step 1), substituting R1210 and C1 110 for the adjustment in steps 1 g and 1 h respectively.

This completes the Adjustment Procedure.

MAINTENANCE

Recalibration

To ensure accurate measurements, check the calibration of this instrument after each 1000 hours of opetation or every six months if used infrequently. In addition, replacement of components may necessitate recalibration of the effected circuits. Fefer to the Adjustment Procedure in the Calibration section.

Disassembly and Reassembly

NOTE

Refer to Fig. 5-1 for the following procedures:
Bottom Cover Removal and Replacement
a. Remove cover screw (1) and four end serews (2)

Fig. 5-1. Maintenance diapram (exploded viaw).

Maintenance - Pulse Head 015-0611-00

b. Carefully lift top cover away from side rails (3), Remove side rails for better board access.
c. To replace bottom cover, set side rails in place and position cover in the side rail grooves.
d. Replace cover screw and four end screws.

Top Cover Removal and Replacement

a. Pemove four end screws (4) .
b. Carefully lift botton cover away from side rails (3). Side rails can be removed, if desired.
c. To replace top cover, set side rails in place and position cover in side rail grooves.
d. Replace four end screws.

Hypcon Connector

The Hypcon Connector (hybrid-printed connector) is preci-sion-made and designed to provide a low loss electrical and a thermally efficient connection between the printed circuit board and hybrid integrated circuit (see Fig. 5-2).

CAUTION

Care must be taken, when replacing the hybrid IC's, not to touch the elastomer gold-plated contacts or to use a cleaner which will degrade contact reliabillty.

The Hypcon Connector and hybrid IC (see Fig. 5-1. (12)) should be removed if it is necessary to use a cleaning solvent near ($1 / 2^{\prime \prime}$) the connector.

IMPORTANT

Remove all traces of solder flux or foreign material from the circuit board contact area before replacing the connector.

Contamination usually takes place during the soldering and cleaning process. Flux. oil, or other contaminants can be carried under the connector during the cleaning operation. When the solvent evaporates, nonconductive contaminants may remain on or near the contact interfaces.

The cleaning process, either hand cleaning with a solvent or machine cleaning in an automatic detergent wash, is not recommended for the board containing the Hypcon Connec10 r .

If a component acjacent to the Hypcon Connector must be replaced, the following steps are recommended:

1. Remove the hybrid IC and Hypcon Connector before any soldering or cleaning, and store in a dir free covered container. See Disassembly and Removal instructons.
2. Hand soldering recommendations:
a. Use small diameter solder ($0.030^{\prime \prime}-0.040^{\prime \prime}$),
b. Use low power soldering irons (15-20 watts)
c. Use care with solder amount and placement.
3. Remove solder flux and contact contamination with isopropyl alcohol or denatured alcohol.
4. Flush the hybrid and Hypcon Connector mounting area with isopropyl alcohol. Do not use cotton-tipped appicators. The elastomer should be examined for dust, hair, etc., before it is reinstalled.

If the etched circuit board surfaces require additional cleaning, scrub with a soft rubber eraser and blow or vacuum clean while dusting surface with a small clean brush.
5. If the hybrid IC and elastomer contact holder are contaminated, clean the contact holder and hybrid by flushing or spraying with alcohol and oven dry at $+50^{\circ} \mathrm{C}$. Do not scrub with a cotton tipped applicatoror similardevice. If the contact holder is excessively contaminated, replace it with a new one.

Make sure that the elastomer is properly seated in the contact holder before remounting the assembly to circuit board. Exercise care when mounting the plastic frame elastomer contact holder, and hybrid IC assembly to the circuit board to prevent misalignment between the connector and bpard.

CAUTION

Because of close tolerances involved, special care must be taken to assure correct index alignment of each Hypcon Connector partduing reassembly. Failure to do so can result in a cracked hybrid substrate. See Fig. 52 for index locations.

A maximum of 2 inch pounds of torque should be applied to the mounting screws to secure the Hypcon Connector to the circuit board.

Dlsassembly and Removal

a. Note index arrow on circuit board and Hypcon Connector plastic frame pointed mounting ear.
b. Note screw locations then unscrew and remove the four screw and washer assemblies.
c. Carefully lift the Hypcon Connector from the board.
d. Note index location of hybrid and carefuly remove the board with tweezers.
e. Note index location of elastomer contact holder and remove by grasping a corner of the contact holder with tweezers and lifting up.

ASSY. (4)

EXPLODED VIEW OF HYPCON CONNECTOR

STEPPED HYPCON
UNMATED)
(MATED)

Fiy. 5-2 Hypeon Connector (oxploded view).

Małntenance - Pulse Head 015-0611-00

```
CAUTION
```

Avoid touching the hybrid and elastomer contact holder. Skin oils can be degrade reliability.

Reassambly and Replacement

a. Grasp corner of elastomer contact holder with tweezers and place holder in plastic frame slot using care to match the flat contact holder with the flat frame corner. Place a clean plastic envelope over finger and press to seat contact holder in the frame. The contact holder must be evenly seated on all four sides.
b. Match hybrid flat corner with board arrow. Line up the hybrid gold index runts with the circuit board runs.
c. Match pointed mounting ear of Hypcon Connector with flat corner of receptacle and guide registration pins into the board holes. Make certain the corners of hybrid line up with the corners of connector.
d. Insert mounting hardware and apply a meximum of 2 inch pounds of torque to secure the connector assembly.

NOTE

After replacement of Hypcon Connector, check the fast edge pulse for accuracy before attempting any adjustments. See Pettormance Check in the Callibration section.

Board Removal and Replacement (See Flg. 5-1).

After removing covers, siderails (see Cover Removal and Replacement) and coax connector and disconnecting log cell connectors (see Hypcon Connector). Remove the Fast Edge board and Fast Edge Driver board using the following procedure:
a. Remove the two screws (5) securing the Fast Edge board to the Fast Edge Driver board.
"b.Pullthe boards apant, using care not to bend any of the eight board interconnect pins.
c. To teplace boards, line up the eight Fast Edge board interconnect pins with the Fast Edge Driver board pin sockets. Carefully insert the pins into their receptive sockets.

CAUTION

To force the pins into the sockets without proper alignment can cause damage to the pins and sockets.
d. After boards are properly connected together, replace the two screws.

Cable Removal and Replacement (from Fast Edge board)
a. After board removal, carefully unsolder the cable connections (8) and remove the cable.
b. To replace the cable, reverse above procedure.

Log Cell Removal and Replacement (Refer to Fig. 5-1)

Log Cell 1 Femoval
a. Loosen two screws securing clamp (7) . Slide clamp forward to expose coaxial center conductor.
b. With aid of a solder wick and tweezers, carefully unsolder wire connected to center conductor, detaching wire with tweezers. Removal of the two clamp screws detaches coaxial connector from board.
c. Note the log cell (8) wires lead dress to the board (essential for proper high frequency operation of the unit).
d. Using tweezers, unsolder the three board leads from the $\log \mathrm{cell}$.
e. Disconnect \log cell vector. Unscrew four Fast Edge board screws (10) securing the log cell to board.
f. Carefully remove the log cell.

Log Cell 1 Replacement

a. Position log cell on board, lining up cell wires to their respective solder points on the board.
b. Replace the four Fast Edge board screws (10).
c. Using tweezers, properly dress log cell wire leads as close as possible to the board and carfefully solder the connections.
d. Carefully solder center conductor wire connections and slide clamp over this solder connection and tighten clamp screws. Make centain center wire does not touch the clamp.
e. Attach the log cell connector.

Log Cell 2 Removal

a. Note log cell 9 wires dress with respect to the board.
b. Using weezers, unsolder the four board leads from the \log cell.
c. Disconnect log cell connector. Unscrew four Fast Edgeboard screws (10) securing log cell to board.
d. Carefully remove the log cell.

Log Call 2 Replacement

a. Position log cell on board lining up cell wires to their respective solder points on board.
b. Replace the four bottom board screws (10)
c. Using tweezers, properly dress log cell wire leads to the beard and carefully solder all connections.
d. Attach the log cetl connector.

Cleaning Instructions

This instrument should be cleaned as often as operating conditions require. Accumulation of dint on components acts as an insulating blanket and prevents efficient heat dissipation that can cause overheating and component breakdown.

CAUTION

Avoid the use of chemical cleaning agents that might leave a film or damage the plastic material used in this instrument. Use a non-residue type of cleaner; preferably, isopropyl alcohol or totally denatured ethyl alcohol. Before using any other type of cleaner. consult your Tektronix Senvice Center or fepresentative.

Exterior. Loose dust accumulated on the covers can be removed with a sott cloth or a smallbrush. Dirt that rememins can be removed with a soft cloth dampened with a mild detergent and water solution. Abrasive cleaners should not be used.

Interior. Dust in the interior of the instrument should be removed occasionally due to its electrical conductivity under high humidity conditions. The best way to clean the interior is to blow off the accumulated dust with dry low pressure air; then use a soft brush.

After making minor board repairs, cleaning is best accomplished by carefully flaking or chipping the solder flux from the repaired area. See Hypcon Connector for further cleaning instructions.

Isopropyl alcohol can be used to clean major repairs to the circuit board. After cleaning, flush the board well with clean, isopropyl alcohol. Make certain that resin or dirt is carefully removed from the board.

Obtaining Replacement Parts

Electrical and mechanical parts can be obtained through your local Toktronix Field Office or representative. However, many of the standard electronic components are available from local commercial sources. Before purchasing or ordering pats from a source other than Tektronix, Inc., check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

Ordering Parts

When ordering replacement parts from Tektronix, Ine., it is Important to include all of the following information:

1. Instrument type (include modifigation or option numbers).
2. Instrument serial number,
3. A description of the part (if electrical, include the component number).
4. Tẹktronix part number.

Static-Sensitive Components

CAUTION

Static discharge may damage semiconductor components in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 5-1 tor relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

Observe the following precautions to avoid damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers on a metal rail, or on conductive foam. Label any package that contains staticsensitive assemblies or components.
3. Discharge the static voltage from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by the body, never by the leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work sulface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only special antistatic suction type or wick type desoldering tools.

Maintenance - Pulse Head 015-0611-00

Test Equipment

Before using any test equipment to make measurements on static-sensitive components or assemblies, be certain that any voitage or current supplied by the test equipment does not exceed the limits of the component to be tested.

Table 5-1
RELATVE SU\$CEPTIBILITY TO STATIC DISCHARGE DAMAGE

Semiconductor Classes			Relative Susceptibility Levels
-MOS or. CMOS microcircuits or discretes, or linear microcircuits with MOS inputs (Most Sensitive)			1
ECL			2
Schotiky signal	des		3
Schottky TTL			4
High-frequency	olar transistors		5
JFETs			6
Linear microcirc			7
Low-power Sch	ky TTL		8
TTL (Least Sen			9
*Valtage equivalent for levels:			
1=100 to 500 V	4-500 V	7.400	00 to 1000 V (0xt)
2=200 to 500 V	5=400 to 600 V	8m900	
3-250 V	6=600 to 800 V	9-12	200 V
(Voltage discharged from a 100 pF capacitor through a resistance of 100Ω.)			

Section 6 - Pulse Head 015-0611-00
OPTIONS

There are no options available at this time.

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your tocal Tektronix. Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components at they become available, and to give you the benefit of the \{atest circuit improvements developed in our engineering department. It is theretore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered thas been replaced with a new or improved part, your local Tektronix, Inc. Field Otlice or representetive will contact you concerning eny change in part number.

Change information, it any, is located at the rear of this manual.

LIST OF ASSEMBLIES

 A list of assemblies can be found at the beginning of theEltctrical Parts List. The assemblies are listed in numerical order.
When the complete component number of a part is known, this ifst will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes. names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS

Abbreviations conform to American National Standare Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies. subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:
Example a. component number

Read: Realetor 1234 of Ausembly 23

Pead: Pesizior 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassembilies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good tor all serial numbers.

NAME 8 DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an liem Name may sometimes appear as incomplete. For further ltem Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts Lisi)

Indicates the code number of the actual manufacturer of the part. (Code to name and address crosa relerence can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers perl number

Replaceable Electrical Parts
Pulse Head 015-0611-00

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER

Code	Manufacturer	Addros:	City, State, ZIp Code
01121	ALENBRADLEY 90	1201 SOUTH 2NDST	MLLWAUKEE WI53204
03509	GENERAL ELECTRIC CO	W GENESEE ST	AUBURN NY 13021
	SEMI-CONDUCTOR PROOUCTS DEPT		
04228	AVX CERAMICS DIV OF AVX CORP	19TH AVE SOUTH	MYRTLE BEACH SC 29577
		POBOX 867	
04713	MOTOROLA MC	5005 E MCOOWEIL RD	PHOENIX AZ 85008
	SEMICONDUCTOR GROUP		
12633	FIFTH DIMENSION INC	got NEW YORK AVE	TRENTON NJ 08639
14493	ITT SEMICONDUCTORS DN		WEST PALM BEACH FL
14552	MICROSEMICONDUCTOR CORP	2830 S FAIRVIEW ST	SANTA ANA CA 92704
15636	ELEG-TROL ANC	26477 NGOLDEN VA山EY RD	SAUGUS CA 91350
19701	MEPCOFELECTRA NC	POBCX 760	MINERAL WELS TX 78067
	A NORTH AMERICAN PHILIPS $C O$		
22526	DU PONT EIDE NEMOURS AND COINE	515 FISHINS CREEK RD	NEW CUMAERLAND PA 17070-3007
	DU PONT CONNECTOA SYSTEMS		
	DIV MIITTARY PROOUCTS GROUP		
25403	PHILPS COMPONENTS DISCRETE PRODUGTS	GEORGE WASHINGTON HWY	SMITHFIELD RI02917
	DIV DISCRETE SEMICONDUCTOR GROUP		
32997	BOUPNS NC	1200 COLUMBIA AVE	RIVERSIDE CA 92507
	TRIMPOT DN		
50434	HEWLETT-PACKARD 60	640 PAGE MIL RD	PALO ALTO CA 94304
	OP'OELECTRONICS DN		
57668	ROHM CORP	16931 MULKEN AVE	MVVNE CA 92713
59660	TUSONIX INC	2155 N FORBES ELVD	TUCSON, AREONA 65705
80009	TEKTRONIX NC	14150 SW KARL BRAUN DF	BEAVERTON CR 97077-0001
		POBOX 500	

compenent No.	Telkronix Part No.	Serial/Astembly No. EHectlve Decont	Name ${ }^{\text {a }}$ Deascription	Mtr. Code	Mfr. Part No.
A ${ }^{2}$	671-2988-60		CIRCUIT BD ASSY:EDGE DRIVE	80009	671.2098.00
A22	671-1982-00		CIRCUIT BD ASSY FAST EDGE	80009	671-1982-00
A20	671-2099-00		CIRCUIT BD ASSY EDGE DRIVE	80009	671-2098-00
A20C1000	283-0177-00		CAP. $\mathrm{FXD}, \mathrm{CER} \mathrm{D} \mathrm{D:1UF}+60-.20 \%, 25 \mathrm{~V}$	04222	SR302E105ZAATH
A20C100-1	283-0477-00		CAP, FXD, CER D:1UF $+80-20 \% 25 \mathrm{~V}$	04222	SR302E105ZAATR
A20C1004	$281.0831-00$		CAP, FXD,CER D:43FF, $2 \%, 100 \mathrm{~V}$	59660	513-011A1-5
A2001011	283-0177-00		CAP,FXO,CER DF:SIF, $480-20 \%, 25 \mathrm{~V}$	04222	Sh302E105ZAATR
A20C1012	263-0177-00		CAP,FXD,CER DI: $14 \mathrm{~F},+80-20 \%, 25 \mathrm{~V}$	04222	SR302EICSZAATR
A 2001013	283-0331-00		CAP,FXD,CER DI:43PF,2\%,100V	59660	513-011A1-5
A20Cl 103	283-016400		CAP, FXD, CER D $22.24 \mathrm{FF}, 20 \%, 2 \mathrm{VV}$	04222	SP402E235MAA
A20C1105	$281-0811-00$		CAP, FXD,CER DI:10PF.10\%, 100V	04222	MA101AICOKAA
A 20 CO 1113	281-0811-00		CAP FXDCER DI IOPF, 10\% 100V	04223	MAOAAOOKAA
A $20 C R 1000$	152-0536-00		SEMICOND DVC,DiSW,4V,C132	06713	SMV1110 (MBD101)
A20CR1002	152-0141-02		SEMICOND DVC,DY:SW,S1,30V.150MA,30V	00508	DAE27 (1N4152)
A20CR1010	152-0536-00		SEMICOND DVC,LP:SW,4V,C132	04713	SMV1110 (MED101)
AZOCR1011	152-0144-02		SEMICOND DVE,D:SW,SS, $30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
A20CR1100	152-014i-02		SEMICOND DVC,DI:SW,S1,30V,150MA,30V	03508	DAE527 (1N4152)
A20CR1103	152-0922-00		SEMICOND DVG,DI:SCHOTTKY,SI,15V,00-35	50434	5082-2672
A20CR1111	152-0141-02		SEAHCOND DVC,DISW,S1,30V,150MA,30V	09508	DA2527 (1N4152)
ANOCR1116	152-0322-00		SEMICOND DVC,D:SCHOTIKY,SL, $15 \mathrm{~V}, \mathrm{DO} 35$	50434	5032-2672
A20CR1200	152.014102		SEMICOND DVC,DISW, ${ }^{\text {SII }}$, $50 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	03508	DA2527 (1N4152)
200CR1203	152-014102		SEMICOND DVC, DISW, SI,30V,150MA,30V	03508	DA2527 (1N4152)
azocht212	152-0141-02		SEMICOND DVC, D:SW, S1,30V,150MA,30V	09508	DA2527 (1N4152)
A20CR1233	152-0141-02		SEMICOND DVC, Di:SW, $51,30 \mathrm{~V}, 150 \mathrm{MA}, 30 \mathrm{~V}$	09508	DA2527 (${ }^{\text {(Na } 452 \text {) }}$
A201204	131-0608-00		TERMNALPIN:0. 365 L $\times 0.025$ BRZ GLD PL (OUANTTY 4)	22526	48283-036
N201214	131-0608-00		TERMINALPIN:O.365 L X 0.025 ERZ GLD PL (OUANITTY 4)	22526	48283-036
N2011002	${ }_{136-0852-00}$		SCCKET, FIN CONN:SINGEPPCB,TG6,0030 H	225\%	75060-012
120P1004	136-0252-00		SOCKET,PIN CONN:SINGLEPCCB,TG,0.030 H	225%	75060-012
A20P1005	136-0252.00		SOCKE, PIN CONN:SINGLEPCB,TG, 0000 H	22526	75060-012
A20P1007	136.0252.00		SOCKET,PIN CONN:SINELE, PCB, $1 / 6,0000 \mathrm{H}$	22826	75060-012
A20P1009	136-0252-00		SOCKET,PR CONN:SINGLE,PCB, $76,000030 \mathrm{H}$	22585	75060-012
N20P1012	136-0252-00		SOCKET,PIN CONN:SINGLE,PCB, T/G,0.030 H	${ }^{2585}$	75060-012
A20P1013	136.0252-00		SOCKE,PIN CONN:SINGLE,PCE, TM, 0.030 H	22526	75060-012
N20P1014	136-0352-00		SOCKET,PIN CONN:SINGLEPCB, T/G,0,030 H	258	75060-012
12001000	151.044100		TRANSISTOR*NPN,S1,TO-72	04713	SRF501
12001001	151-0850-00		IRANSISTOR,SK:ZIPCOAR,PNP,15V,75MA	25409	日FC3sm
22001011	$151-0851-00$		TRANSISTOA, SK: BPOLAR,NPN, 15V,75MA	25403	日F663
A2001012	$151.0434-00$		TRANSISTOR:PNP,SLTO-72	04713	\$5714
20091101	151.041-00		TRANSISTOR NPH , Sl, $10-72$	04713	SRFSOT
A2009111	151-043400		TRANSISTOR:PNP,SITO-72	04713	S5714
A2001200	151-0302-00		TRANSISTOR:NPN, 51, TO-18	04713	2 N 22824
12001202	151-0441-00		TRANSISTOR:NPN, 51, TO-72	04713	Snf501
12001203	151.0001 .00		THANSISTOA:PNP,SLTO-16	04713	ST898

Replaceable Electrical Parts Pulse Head 015-0611-00

Compenent
Tektronlx Part No.

A22.1014 A22K1010 A22K 1110 A22K1210 A22R1200 $131-0787.00$ 148-101900 149-1019-00 148-0079-02 $311-063400$

AZ2R1202	$301-0271-00$
$A Z 2 \mathrm{R} 1210$	$311-0634-00$

A㟋1112
$165.2421-00$

Sorlal/A*pombly No.
Effective Dscont Name E Description
TERMINAL FIN: $0.64 \mathrm{~L} \times 0.02550 \mathrm{PH}$ BRZ
PELAY,LATCHING:FDAM C,SPDT
FELAY,LATCHING:FORMC,SPD \dagger
RELAY, REED 2 FORM A. $110 \mathrm{MA}, 28 V D C$
RES, VAR,NONW:TPMR.

RES,FXD,FLM270 OHM,5\% 0.5W
RES, VAR,NONWW:TRMR
MKROCKT,DGTLPULSAR HYBRD,

Mfr.
Code Mtr. Part Mo,

22526 47354-000
12633 ORDER BY DESC
12633 ORDER BY DESC
15636 R6738-1
33997 3329H-L58-501

19701 5053CX270RO
$32997 \quad 3329 \mathrm{H}-156-501$
80009 165-2421-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols
Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973
Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.
American National Standard Institute
1430 Broadway
New York. New York 10018

Component Values

Electrical components shown on the ciagrams are in the following units unless noted otherwise:
Capacitors = Values one or greater are in picofarads (pF). Values less than one are in microfarads ($\mu \mathrm{F})$.
Resistors $=$ Ohms (Ω).

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the titte for the circuit board component location iliustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Reptaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number "(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

ADJUSTMENT LOCATIONS

Fig. 8-3. Fast Edge board (A22).

COMPONENT MUMBER EXAMPLE

Chussis -mounled components have no Assembly Number
peilin-ser end of Redaces ble Electical Pats Lust

PARTS LOCATIONS

Flg. 8-1. Edge Driver board (A20).

Flg. 8-2. Fast Edge board (A22).

PULSE HEAD
SHT. IOF 2 A
1

羋 SWITCH SHOWN IN POSITIVE EDGE \& MODE POSITION

REPLACEABLE MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your tocal Tektronix. Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available. and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important. when ordering parts. to inctude the following information in your order: Part number, instrument type or number, serial number, and modification number if applicabie.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information. if any, is located at the rear of this manual.

ITEM NAME

In the parts List, an them Name is separated from the description by a colon ($:$). Because of space limitations. an Item Name may sometimes appear as incomplete. For further them Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical perts list is indented to indicate item relationships. Following is an example of the indentation system used in the aescription column.

12345
Name \& Description
Assembly andior Component
Attaching parts for Assembly and/or Component
*** END ATTAChING PARTS
Derail Part of Assembly andior Component
Altaching parts for Detail Part
*o.. END attaching parts
Parts of Detal Part
Attaching parts for Parts of Defail Part
.... END ATTACHING PARTS

Attaching Parts always appear in the same indentation as the item it mounts. while the detail parts are indented to the right Indented items are part of. and included with, the next higher indentation.
attaching perte muti be purchased etparately, unless otherwist spellied.

"	HNCH	ELCTR	ELECTRON
*	mumber Size	ELEC	ELECTRICAL
ACTA	ACTUATOR	ELCTLt	ELECTROLYTIC
ADPTA	ADAPTER	ELEM	ELEMENT
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LISt
AL	ALUMINUM	EOPT	EQUPPMENT
ASSEM	ASSEMBLED	EXT	EXTEANAL
mssy	ASSEMBLY	Fil	Flllaster mead
ATTEN	ATTENUATOA	FLEX	Flexible
AWG	AMERICAN WIRE GAGE	FLH	FLATHEAD
80	BOARD	FETR	FILTEA
BRKT	BRACKET	FR	FRAME OT FRONT
Bns	Brass	FSTNA	FASTENER
BRZ	ERONZE	FT	FOOT
-SmG	CuShing	EXD	FIXED
cab	Cabinet	GSKT	GASKET
CAP	CAPACITOR	MDL	handie
CEA	CERAMIC	HEX	HEXAGON
CHAS	Crmassis	HEX HD	HEXAGONAL HEAD
CKT	CIACUIT	HEX SOC	HEXAGONAL SOCKET
COMP	COMPOSITION	HLCPS	HELICAL COMPAESSION
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION
COV	COVER	Hiv	High voltage
CPLG	COUPLING	IC	Integrated circuit
CAT	CATHODE PAY TUAE	ID	insioe dianketer
DEG	degree	IDENT	IDENTIFICATION
DwR	DAAWER	IMPLA	IMPELLER

IN	:NCH-1
INCAND	incandescent
NSUL	INSULATOR
NTL	INTERNAL
LPHLDA	LAMPHOLDER
MACH	Machine
MECH	MECMANICAL
MTG	MOUNTING
NIP	NIPPLE
NON WIRE	NOT WIAE WOUND
080	ORDEA EY DESCRIPTION
Ob	OUTSIDE DIAMETER
OVH	OVAL HEAD
PH Brz	PHOSPHOR BRONZE
PL	plan or plate
PLSTC	PLASTIC
PN	Paft number
PNH	PAN HEAD
PWA	POWER
ACPT	RECEPTACLE
RES	AESISTOA
RGO	RIGID
RLF	PElief
RTNR	RETAINER
SCH	SOCKET HEAD
SCOPE	OSCILLOSCOPE
SCM	SCAEW

SE	Single end
SECT	SECTION
SEMICOND	SEMICONDUCTOR
S+MLD	SHIELD
Shlpa	SHOULDEAED
SKT	SOCKET
SL	Slide
Slflkg	SELF LOCKING
Slvg	SLEEVING
SPA	SPRING
SO	SOUARE
SST	STAINLESS STEEL
STL	STEEL
SW	SWITCH
T	TUBE
YEの*	terminal
THD	ThPEAD
THK	THICK
TNSN	TENSION
TPG	TAPPING
TRH	truss head
v	volvage
VAM	variable
wi	WITH
WSMA	WASHEA
XFAP	TRANSFORMER
XSTA	TRANSISTOR

CROSS INDEX - MFR. CODE NUMBER TO MANUFACTURER
HFT.
Code Mruffactumer

01536
EXTRON INC
CAMCAR DIV
SGMS PRODUCTS UNIT
09772 WEST COAST LCCKWASHER CO INC
12327
22526
FREEWAY CORF
OU PONT E I DE NEWORS AND CO INC DU PONT COHNECTOR SYSTEMS dIV MILITARY PRODLCTS GROUP
46384 PENN ENGINEERING AND MFG CORP
70318
73743
77900
80009 ALlmetal scere propucts co INC FISCHER SPECIAL MFG CO SHAKEPROOF DIV OF ILLINOIS TOOL WORKS TEKTRONIX INC

TK0435
TK0456
TK1582

LEWIS SCREN CO AROW FASTENERS INC
DELTA WEST CO

Adrest

1818 CRISTINA ST
16730 E JOHFSON DRIVE PO BOX 3588
9301 ALEN DR
515 FISHING CREEK RD

P0 100 311
821 STEMART AVE
446 MORGAN $\$ 1$
SAINT CHARLES RD
4900 S W GRIFFITH DR
PO BOX 500
$4114 \$$ PEORIA
2112 AFERICAN AVE
7185 SW SANDALRG ST
SUITE C

City, State, Zip Cade
FOCKFORD It 61109

CITY OF LNEUSTRY CA 9174A
CLEVELAND OH 44125
NEW CIMBERLAND PA 17070-3007

DOYLESTOMM PA 18901
GARDEN CITY NY 11530
CIMCINNATI OH 45ZOE
EIGIN IL 60120
BEAVERTON OR 97077
CHICAGO IL 60509
HAYUARD CA 94545
TIGARD WA 97223

Fig. 8 Index Mo.	Teltranix Part lifo.
1-1	204-2008-00
-2	211-0118-00
-3	366-6144-00
-4	204-0775-00
-5	211-0118-00
-6	211-0101-00
-7	175-2038-03
-8	210-0583-00
-9	210-0046-00
-10	200-3858-00
-10.1	211-0022-00
-11	--- --
-12	220-0627- 00
-13	210-1008-60
-14	211-0287-00
-15	129-0659-00
-15	407-1983-02
-17	-r-w= -mmer
-18	136-0252-00
-19	-
-20	----- ----
-21	----- -----
-22	- -----
-23	211.0897-00
-24	425-1337-00
$\begin{aligned} & -25 \\ & -25 \end{aligned}$	$\begin{aligned} & 211-0259-00 \\ & 220-0797-00 \end{aligned}$
	131-1923-00
-27	220-0449-00
-28	211-0116-00
-29	131-1778-04
-30	358-0072-00
-31	204-0755-00
-32	220-0495-00
-33	210-0012-00
-34	220-0807-00
-35	131-2026-00
-36	342-0381-00
-37	103-0195-01
-38	200.3859-00

