Tektronix
 COMMITTED TO EXCELLENCE

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

Tektronix, Inc.
P.O. Box 500

Beaverton, Oregon \qquad

Copyright © 1983 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and are registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

TABLE OF CONTENTS

SECTION 1-GENERAL INFORMATION Page SECTION 3-THEORY OF OPERATION Page
FRONT-PANEL CONNECTORS 1-1
SPECIFICATIONS 1-1
SECTION 2-OPERATING INSTRUCTIONS
INDEX TO PART II-PERFORMANCE CHECK PROCEDURE 2-1
PERFORMANCE CHECK INITIAL SETUP PROCEDURE . 2-1
A. CHANNEL AMPLIFIERS 2-2
B. TRIGGER VIEW TRACE 2-2
C. THRESHOLD AND PROBE OFFSET 2-4
D. EXTERNAL CLOCK 2-6
E. TRIGGER-LEVEL SENSITIVITY 2-8
F. TRIGGER-EDGE SENSITIVITY 2-10
G. TRIGGER-A THEN B 2-14
H. TRIGGER-RESET 2-18
INDEX TO PART III-ADJUSTMENT PROCEDURE 2-21
ADJUSTMENT INITIAL SETUP PROCEDURE 2-21
A. POWER SUPPLY 2-21
B. ATTENUATOR OFFSET 2-21
C. AMPLIFIER 2-21
D. TRIGGER THRESHOLD AND PROBE OFFSET 2-21

LIST OF ILLUSTRATIONS

Figure
 1-1 Relative timing of output signals
 LIST OF TABLES

PageTable
No. Page
1-1 Electrical Characteristics 1-1
1-2 Environmental Characteristics 1-2

GENERAL INFORMATION

The 067-1155-99 is a signal source designed to aid in the calibration and performance verification of the 7 A42 Logic Triggered Vertical Amplifier. It is housed in a two-wide TM500 plug-in package. Connections are made from it to the 7A42 with 50 ohm coaxial cables.

FRONT-PANEL CONNECTORS

The front panel of the 067-1155-99 has 13 BNC connectors, one banana jack, and a latch release knob to remove the plug-in from the TM 500 mainframe.

The eleven connectors are labeled with letters and subscripts. They provide the digital signals necessary to verify performance of the 7A42. The amplitudes of those with the subscript " 0 " are ECL levels attenuated by a factor of ten when the line is terminated by 50 ohms to ground. The subscript " 0 " outputs are to be connected to the 7A42 channel inputs. The subscript " 1 " outputs are ECL levels
(not attenuated) when the line is terminated by 50 ohms to a -2 V supply, and are intended to be used with the 7A42 EXT CLOCK (ECL level) input. The subscript " 2 " output signal swing is approximately OV to 1 V when terminated by 50 ohms to ground. They are intended to drive the 7A42 RESET input. Figure 1-1 shows the relative timing of these signals.

The 067-1155-99 also provides two voltage references to calibrate the 7A42 trigger thresholds and probe offset DVM. The +5 V POWER output is for development and calibration purposes only and is not used during the 7A42 performance verification.

SPECIFICATIONS

The electrical characteristics listed in Table 1-1 apply when the following conditions are met: (1) Adjustment of the instrument must have taken place at an ambient temperature between $+20^{\circ}$ and $+30^{\circ} \mathrm{C}$, (2) the instrument and its host mainframe must be allowed a 20 -minute warm-up period, (3) all specifications are valid at an ambient temperature of 20° to $30^{\circ} \mathrm{C}$, unless otherwise stated, (4) the instrument must be in an environment that meets the limits described in Table 1-2.

Any applicable conditions not listed above are expressly stated as part of that characteristic. Environmental characteristics are listed in Table 1-2.

TABLE 1-1
Electrical Characteristics

Characteristic	Performance Requirement
OUTPUT AMPLITUDE	
AO, BO, CO, DO, EO, and FO	$\begin{array}{\|l} -100 \mathrm{mV}<=\mathrm{VOH}<=-80 \mathrm{mV} \\ -180 \mathrm{mV}<=\mathrm{VOL}<=-160 \mathrm{mV} \text { with } 50 \text { ohm termination to ground. } \end{array}$
A1, C1, D1	$\begin{aligned} & -1.00 \mathrm{~V}<=\mathrm{VOH}<=-0.80 \mathrm{~V} \\ & -1.80 \mathrm{~V}<=\mathrm{VOL}<=-1.60 \mathrm{~V} \text { with } 50 \text { ohm termination to }-2 \mathrm{~V} . \end{aligned}$
(For calibration and test only)	$\begin{aligned} & +0.55 \mathrm{~V}<=\mathrm{VOH}<=+0.75 \mathrm{~V} \\ & -0.25 \mathrm{~V}<=\mathrm{VOL}<=-0.05 \mathrm{~V} \text { with } 50 \text { ohm termination to ground. } \end{aligned}$
A2, C2	$\begin{aligned} & +0.7 \mathrm{~V}<=\mathrm{VOH}<=+0.9 \mathrm{~V} \\ & +0.0 \mathrm{~V}<=\mathrm{VOL}<=+0.2 \mathrm{~V} \text { with } 50 \text { ohm termination to ground. } \end{aligned}$

TABLE 1-1 (CONT) Electrical Characteristics

Characteristic	
Performance Requirement	
OUTPUT AMPLITUDE (CONT)	
.250 V REF	$+0.250 \mathrm{~V} \pm 0.001 \mathrm{~V}$ DC, with 1 megohm load.
5.00V REF	$+5.00 \mathrm{~V} \pm 0.01 \mathrm{~V}$ DC, with 100 K ohm load.
+5 V POWER	+4.75 V to +5.5 V DC.

TIMING OF SIGNAL OUTPUTS (refer to timing diagram)

Description	Mnemonic	Spec
Delay, A0 to B0	Tab	$4.5 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
Delay, A0 to C0	Tac	$9.0 \mathrm{~ns} \pm 0.4 \mathrm{~ns}$
Delay, F0 to A0	Tfa	$90 \mathrm{~ns} \pm 20 \mathrm{~ns}$
Delay, A0 to A1, C0 to C1, D0 to D1	T01	$0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
Delay, A0 to A2, C0 to C2	T02	$0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
Width (50\% points), D0, D1	Td	$4.5 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
Width (50\% points), E0	Te	$9 \mathrm{~ns} \pm 0.4 \mathrm{~ns}$
Width (50\% points), A2	Ta	$90 \mathrm{~ns} \pm 4 \mathrm{~ns}$

POWER REQUIREMENTS

From TM500 mainframe,	+33.5 V DC	50 ma
	+11.5 VDC	20 ma
	-33.5 V DC	80 ma
Maximum power consumption:		less than 5 watts.

TABLE 1-2
Environmental Characteristics

Characteristic	Information
Operating temperature range	+20 to $+30^{\circ} \mathrm{C}$ room ambient.
Storage temperature range	-55 to $+75^{\circ} \mathrm{C}$.

Figure 1-1. Relative timing of output signals.

OPERATING INSTRUCTIONS

This section gives the detailed information necessary to use the 067-1155-99 7A42 Calibration Fixture to verify that the 7A42 meets its electrical specifications.

The 067-1155-99 is an acceptable substitute for some of the required test equipment listed in Table 4-2 of the 7A42 Service Manual, Vol 1. Where applicable, these operating instructions will list a procedure which uses the 067-1155-99 in place of the recommended standard equipment. There are some checks for which the 067-1155-99 cannot be used; in these cases, the user is referred to the procedure and equipment listed in the Checks and Adjustment section of the 7A42 Service Manual.

At the beginning of each section there is a list of equipment, in addition to the 067-1155-99, that is needed in the procedures where the 067-1155-99 can be used. A TM500 or TM5000 mainframe is also needed to house the 067-1155-99. One additional item not in Table 4-2 that is convenient (but not essential) is the BNC to Binding Post Adapter (Tektronix Part No. 103-0035-00).

Figure, Tables, and Setup Conditions mentioned in this procedure are located in the 7A42 Service Manual (Volume 1) in section 4, Checks and Adjustment.

INDEX TO PART IIPERFORMANCE CHECK PROCEDURE

A. CHANNEL AMPLIFIERS—Refer to 7A42 Service Manual

B. TRIGGER VIEW TRACE

1. Preliminary Setup
2. Check Trigger View Amplitude
3. Check Trigger View-Time Coincidence With Channel Display
C. THRESHOLD AND PROBE OFFSET
4. Preliminary Setup
5. Check Threshold Voltage Range-Refer to 7A42 Service Manual
6. Check Threshold Accuracy
7. Check Threshold Hysteresis-Refer to 7A42 Service Manual
8. Check Probe-Tip Input Voltage Accuracy
D. EXTERNAL CLOCK
9. Preliminary Setup
10. Check Ext Clock View-Time Coincidence With Channel Display
11. Check Minimum External Clock Width
12. Check External Clock Input ThresholdsRefer to 7A42 Service Manual
13. Check External Clock Setup Time
14. Check External Clock Hold Time
E. TRIGGER-LEVEL SENSITIVITY
15. Preliminary Setup
16. Check Trigger Filter
17. Check Maximum Toggle Frequency-Refer to 7A42 Service Manual
18. Check Trigger Output Voltage
F. TRIGGER-EDGE SENSITIVITY
19. Preliminary Setup
20. Check Edge Setup Time (Chan-To-Chan)
21. Check Edge Hold Time (Chan-To-Chan)
22. Check Edge Setup Time (Edge-Sens Chan)
23. Check Edge Hold Time (Edge-Sens Chan)
G. TRIGGER-A THEN B
24. Preliminary Setup
25. Check Time Between Event A And Event B
26. Check Time From Event B To Event A
27. Check Minimum Event Duration
28. Check A Then B Gate Output Width
29. Check Gate Output Timing
H. TRIGGER-RESET
30. Preliminary Setup
31. Check Reset Input Thresholds-Refer to 7A42 Service Manual
32. Check Reset Input Pulse Width
33. Check Post-Reset Inhibit Time
34. Check Reset Activation Window

PERFORMANCE CHECK INITIAL SETUP PROCEDURE

Refer to the 7A42 Service Manual for this procedure.

A. CHANNEL AMPLIFIERS

Refer to the 7A42 Service Manual for this procedure.

B. TRIGGER VIEW TRACE

Additional Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable

B1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the time base unit controls:

Triggering
\qquad
Coupling .
Source . Int
Mag
In (X1)

B2. CHECK TRIGGER VIEW AMPLITUDE NOTE

First perform step B1, then proceed.
Configure the equipment to the B2. SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF pulse generator.
2. Connect the FO output directly to the 7A42 CH 1 input with the coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the GND button (CH 1 GND light on). Set the CH 1 trace 1 division above the center horizontal graticule line.
e. Press the GND button (CH 1 GND light off).
f. Set the time-base unit Triggering Level control as necessary for a stable display.
g. CHECK-the trigger view waveform for an amplitude of 0.35 division, within the limits of 0.25 to 0.45 division. Refer to Figure 4-2.
h. Move the FO output signal from the CH 1 input to the CH 2 input connector.
i. Press the DISPLAY button (CH1 DISPLAY light off).
j. Press the PROG TRIG button (button light on).
k. Press the CLEAR button and the CH 2 button (red CH2 TRIGGER FUNCTION light on).
I. Press the PROG CHAN button (button light off).
m. Press the CH 2 button (CH 2 button light on).
n. Press the DISPLAY button (CH 2 DISPLAY light on).
o. Rotate the CH 2 POSITION control to position the trace on the screen.
p. Press the TTL/ECL button (Ch2 ECL TTL button light off).
q. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
r. CHECK-the trigger view waveform for an amplitude of 0.35 division, within the limits of 0.25 to 0.45 division. Refer to Figure 4-2.
s. Repeat parts h through r for CH 3 and CH 4 .
t. If you do not intend to perform the following step, replace the $J 747$ BA (Battery Enable link plug that you removed in the Initial Setup Procedure.

B3. CHECK TRIGGER VIEW-TIME

 COINCIDENCE WITH CHANNEL DISPLAY NOTEIf the preceding step was not performed, first perform step B1, then proceed.

Configure the equipment to the B3. SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF pulse generator.
2. Connect the A0 output directly to the 7A42 CH 1 input with the coaxial cable (no attenuator).

NOTE

The Amplifier Gain and Trigger Threshold adjustments must be properly adjusted for this check to pass the performance requirements.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the TTL/ECL button (CH2 ECL TTL light off).
f. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
g. Press the CH 3 button (button light on).
h. Press the TTL/ECL button (CH3 ECL TTL light off).
i. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 350 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
j. Press the CH 4 button (button light on).
k. Press the TTL/ECL button (CH4 ECL TTL light off).
I. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 450 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off)
m. Press the CH 1 button (button light on).
n. Press the TRIG VIEW button (button light on).
o. Press the GND button (CH 1 GND light on). Set the CH 1 trace 1 division above the center horizontal graticule line.
p. Press the GND button (CH 1 GND light off).
q. Set the time-base unit Triggering Level control as necessary for a stable display.
r. Set the time-base unit Time/Div to 2 ns.
s. Set the time-base unit Position control to position the 50% amplitude level of the Trigger View Transition to the center vertical graticule line. Refer to Figure 4-3.
t. Press the PROG TRIG button (button light on).
u. Press the CLEAR button.
v. Press the CH 1 button.
w. CHECK-that the channel transition 50\% amplitude level is within 1.5 divisions of the center vertical graticule line. Refer to Figure 4-3.
x. Press the NOT button.
y. CHECK-repeat part w.
z. Press the EDGE button.
aa. CHECK—Repeat part w.
bb. Press the NOT button.
cc. CHECK—repeat part w.
dd. Press the CLEAR button.
ee. Press the CH 2 button.
ff. Press the NOT button, the OR button, and the CH 1 button respectively.
gg. CHECK-repeat part w.
hh. Press the NOT button.
ii. CHECK—repeat part w.
jj. Press the EDGE button.
kk. CHECK-repeat part w.
II. Press the NOT button.
mm.CHECK—repeat part w.
nn. Press the CLEAR button.
oo. Press the B button (button light on).
pp. Repeat parts v through nn .
qq. Move the $A 0$ output signal from the CH 1 input to the CH 2 input connector.
rr. Press the PROG CHAN button (button light off).
ss. Press the DISPLAY button (CH1 DISPLAY light off).
tt. Press the CH 2 button (button light on).
uu. Press the DISPLAY button (button light on).
vv. Press the PROG TRIG button (button light on).
ww. Press the CLEAR button, and the CH 2 button (red CH2 TRIGGER FUNCTION light on).
$x x$. Press the PROG CHAN button (button light off).
yy. Repeat parts o through qq for $\mathrm{CH} 2, \mathrm{CH} 3$ and CH4.
zz. Replace the J 747 BA (Battery Enable link plug that you removed in the Initial Setup Procedure.

C. THRESHOLD AND PROBE OFFSET

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable
4. Meter Leads

Tektronix 103-0035-00 BNC to Binding
Post Adapter (not in Table 4-2)

C1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the time-base unit controls:

Triggering	
Mode	Auto
Coupling	Dc
Source	Int
Mag	(X1)

C2. CHECK THRESHOLD VOLTAGE RANGE

Refer to the 7A42 Service Manual for this procedure.

C3. CHECK THRESHOLD ACCURACY NOTE

If the preceding step was not performed, first perform step C1, then proceed.

Configure the equipment to the C3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the +.250 V REF output to the 7A42 CH 1 input with a coaxial cable.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the GND button (CH 1 GND light on).
d. Press the THRESH button (button light on).
e. Press the TRIG VIEW button (button light on).
f. Press the LEVEL buttons for a SWITCHING THRESHOLD readout of .000 .
g. Move the SWITCHING THRESHOLD voltage level up and down from the .000 volt level, using the LEVEL buttons, and note that the trigger view trace dc level shifts.
h. Record the SWITCHING THRESHOLD voltage levels at which the two shifts occur.
i. CHECK-the average of the two values recorded in part h should be .000 volts within the limits of plus or minus .001 volt.
j. Press the GND button (CH 1 GND light off).
k. Press the LEVEL up button to move the SWITCHING THRESHOLD readout to . 250 VOLTS.
I. Move the SWITCHING THRESHOLD voltage level up and down from the . 250 volt level, using the LEVEL buttons.
m . CHECK-that the trigger view trace dc level shifts between high and low at .250 volts, within the limits of .244 and .256 volts, as read on the SWITCHING THRESHOLD readout display.
n. Press the DISPLAY button (CH1 DISPLAY light off).
o. Press the CH 2 button (button light on).
p. Press the DISPLAY button (CH 2 DISPLAY light on).
q. Press the TTL/ECL button (CH 2 ECL TTL light off).
r. Press the GND button (CH 2 GND light on).
s. Press the PROG TRIG button (button light on).
t. Press the CLEAR button.
u. Press the CH 2 button (red CH 2 TRIGGER FUNCTION light on).
v. Press the PROG CHAN button (button light off).
w. Move the coaxial cable input signal to the CH 2 input connector.
x. Repeat parts f through w for $\mathrm{CH} 2, \mathrm{CH} 3$, and CH4.
y. NOTE: It is not necessary to check the threshold accuracy of the TTL family. Satisfactory verification of the ECL family threshold accuracy adequately verifies TTL family performance.
z. If you do not intend to perform the following step, replace J747 BA (Battery Enable link plug that you removed in the Initial Setup Procedure).

C4. CHECK THRESHOLD HYSTERESIS

Refer to the 7A42 Service Manual for this procedure.

C5. CHECK PROBE-TIP INPUT VOLTAGE ACCURACY

NOTE

If the preceding step was not performed, first perform step C1, then proceed.

Configure the equipment to the C5 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Power Supply and Digital Voltmeter.
2. Connect the BNC to Binding Post Adapter to the +5.00 V REF output. Attach the meter leads to the Binding Post Adapter, red to red, and black to black. Attach the black meter lead tip to the oscilloscope ground post.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the THRESH button (button light on).
c. Press the PROBE OFFSET button (red button light on).
d. CHECK-the SWITCHING THRESHOLD readout display for a reading of 0.00 volts within the limits of +0.02 to -0.02 volts.
e. Touch the red meter lead to the PROBE TIP connector.
f. CHECK-the SWITCHING THRESHOLD readout display for a reading of +4.88 to +5.12 volts.
g. Replace the J747 BA (Battery Enable link plug that you removed in the Initial Setup Procedure.

D. EXTERNAL CLOCK

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable (Two Required)

D1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the time-base unit controls:

Triggering
\qquad
Coupling . Dc
Source . Int
Mag ... In (X1)

D2. CHECK EXT CLOCK VIEW-TIME COINCIDENCE WITH CHANNEL DISPLAY NOTE

First perform step D1, then proceed.

Configure the equipment to the D2 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the A1 output directly to the 7A42 EXT CLOCK input with a coaxial cable. The BNC T adapter is not needed.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the TRIG VIEW button (button light on).
e. Press the GND button (CH 1 GND light on). Set the CH 1 trace 1 division above the center horizontal graticule line.
f. Press the GND button (CH 1 GND light off).
g. Set the time-base unit Triggering Level control as necessary for a stable display.
h. Press the PROG TRIG button (button light on).
i. Press the CLEAR button.
j. Press the CH 2 button (red CH 2 TRIGGER FUNCTION light on).
k. Press the OR button, the NOT button, and the CH 2 button (green CH 2 TRIGGER FUNCTION light on).
I. Press the EXT CLOCK SYNC button (button light on).
m. CHECK-that the Ext Clock View Transition (measured at the 50\% amplitude levels) occurs simultaneously with the Channel Transition, within 1 division. Refer to Figure 4-7.
n. Press the Clock Slope button to select the falling edge (button light off).
o. CHECK-that the Ext Clock View Transition (measured at the 50\% amplitude levels) occurs simultaneously with the Channel Transition, within 1 division.
p. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

D3. CHECK MINIMUM EXTERNAL CLOCK WIDTH

NOTE

If the preceding step was not performed, first perform step D1, then proceed.

The ECL level minimum EXT CLOCK width can be checked with the 067-1155-99, however the TTL level check requires the equipment and procedure described in the 7A42 Service Manual.

Configure the equipment to the D3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the D1 output directly to the 7A42 EXT CLOCK input with a coaxial cable. The BNC T adapter is not needed.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
c. Press the TTL/ECL button (CH 1 ECL TTL light off).
d. Press the TRIG VIEW button (button light on).
e. Press the PROG TRIG button (button light on).
f. Press the B button (button light on).
g. Press the CH 2 button (red CH 2 TRIGGER FUNCTION light on).
h. Press the OR button, the NOT button, and the CH2 button (green CH2 TRIGGER FUNCTION light on).
i. Press the A button (button light on).
j. Press the PROG CHAN button (button light off).
k. Press the GND button (CH 1 GND light on).
I. Set the CH 1 trace 1 division above the center horizontal graticule line.
m. Press the GND button (CH 1 GND light off).
n. Press the B button (button light on):
o. Press the EXT CLOCK SYNC button (button light on).
p. CHECK-that the waveform display remains triggered.
q. Press the CH 2 button (button light on).
r. Press the TTL/ECL button (CH2 ECL TTL light off).
s. CHECK-that the waveform display remains triggered.
t. Press the A button (button light on).
u. Press the PROG TRIG button (button light on).
v. Press the CLEAR button.
w. Press the CH 2 button, the OR button, the NOT button, and the CH 2 button, respectively.
x. Press the PROG CHAN button (button light off).
y. CHECK-that the waveform display remains triggered.
z. Press the TTL/ECL button (CH 2 ECL TTL light on).
aa. CHECK-that the waveform display remains triggered.
bb. Turn the mainframe oscilloscope Power off.
cc. Refer to the 7A42 Service manual for the procedure to check the TTL level minimum EXT CLOCK width. Use procedure D3, beginning with step ff .

D4. CHECK EXTERNAL CLOCK INPUT THRESHOLDS

Refer to the 7A42 Service Manual for this procedure.

D5. CHECK EXTERNAL CLOCK SETUP TIME NOTE

If the preceding step was not performed, first perform step D1, then proceed.

Configure the equipment to the D5 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the C1 output directly to the 7A42 EXT CLOCK input with a coaxial cable. The BNC T adapter is not needed.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
c. Press the TTL/ECL button (CH 1 ECL TTL light off).
d. Press the GND button (CH1 GND light on).
e. Set the CH 1 trace 1 division above the center horizontal gratiucle line.
f. Press the GND button (CH 1 GND light off).
g. Press the TRIG VIEW button (button light on).
h. Press the EXT CLOCK SYNC button (button light on).
i. CHECK-that the displayed waveform remains triggered.
j. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

D6. CHECK EXTERNAL CLOCK HOLD TIME

NOTE

If the preceding step was not performed, first perform step D1, then proceed.

Configure the equipment to the D6 SETUP
CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the CO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the A1 output directly to the 7A42 EXT CLOCK input with a coaxial cable. The BNC T adapter is not needed.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 p f$ light off).
c. Press the TTL/ECL button (CH1 ECL TTL light off).
d. Press the PROG TRIG button (button light on).
e. Press the CLEAR button, the NOT button, and the CH 1 button, respectively (green CH 1 TRIGGER FUNCTION light on).
f. Press the PROG CHAN button (button light off).
g. Press the GND button (CH 1 GND light on).
h. Set the CH 1 trace 1 division above the center horizontal graticule line.
i. Press the GND button (CH 1 GND light off).
j. Press the TRIG VIEW button (button light on).
k. Press the EXT CLOCK SYNC button (button light on).
I. CHECK-that the displayed waveform remains triggered.
m. Replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

E. TRIGGER-LEVEL SENSITIVITY

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable (Two Required)

E1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the time-base unit controls:

Triggering
\qquad
Coupling. Dc
Source . Int
Mag ... In (X1)

E2. CHECK TRIGGER FILTER

NOTE
First perform step E1, then proceed.
Configure the equipment to the E2 SETUP
CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the A0 output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator).
3. Set the time-base sweep speed to $20 \mathrm{~ns} / \mathrm{div}$.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the TRIG VIEW button (button light on).
e. Press the GND button (CH 1 GND light on).
f. Position the CH 1 trace 1 division above the center horizontal gratiucle line.
g. Press the GND button (CH 1 GND light off).
h. Press the PROG TRIG button (button light on).
i. Note the width of the trigger view pulse (approx 90ns).
j. Turn the TRIGGER FILTER control on, just out of the detent position (minimum on position).
k. CHECK-that the trigger view pulse width is reduced not more than 15 ns from the width observed in step i.
I. Turn the TRIGGER FILTER control OFF (in detent).
m . Set the time-base unit Time/Div to 0.2us.
n. Press the CLEAR button, the CH 1 button, and the NOT button, respectively (green CH 1 TRIGGER FUNCTION light on).
o. Note the width of the trigger view pulse, the time that trigger view is in the high state (approx 700ns).
p. Turn the TRIGGER FILTER control out of the detent, to the maximum clockwise position.
q. CHECK-that the trigger view pulse width is reduced by at least 300 ns. Record the exact amount of reduction.
r. Press the B button (button light on).
s. Press the CH 1 button, then the NOT button (green CH 1 TRIGGER FUNCTION light on).
t. Turn the TRIGGER FILTER control OFF (in detent).
u. As in step o, note the width of the trigger view pulse, the time that trigger view is in the high state (approx 700ns).
v. Turn the TRIGGER FILTER control out of the detent, to the maximum clockwise position.
w. CHECK-that the trigger view pulse width is reduced by at least 300 ns. Record the exact amount of reduction.
x. CHECK-find the difference between the values recorded in part q and part w. The difference between these two values must be less than 10% of the sum of the two recorded values.
y. Turn the TRIGGER FILTER and control OFF (in detent).
z. Set the time-base unit Time/Div to 20 ns.
aa. Press the NOT button (red CH1 TRIGGER FUNCTION light on).
bb. Note the width of the trigger view pulse (approx 90ns).
cc. Turn the TRIGGER FILTER control on, just out of the detent position (minimum on position).
dd. CHECK-that the trigger view pulse width is reduced not more than 15 ns from the value observed in step bb.
ee. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

E3. CHECK MAXIMUM TOGGLE FREQUENCY

Refer to the 7A42 Service Manual for this procedure.

E4. CHECK TRIGGER OUTPUT VOLTAGE NOTE

If the preceding step was not performed, first perform step E1, then proceed.

Configure the equipment to the E4 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the FO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator).
3. Set the time-base sweep speed to $100 \mathrm{~ns} / \mathrm{div}$.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the GND button (CH 1 GND light on).
e. Set the CH 1 trace 2 divisions above the center horizontal graticule line.
f. Press the GND button (CH 1 GND light off).
g. Press the CH 4 button (button light on).
h. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 450 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
i. Press the DISPLAY button (CH4 DISPLAY light on).
j. Press the GND button (CH 4 GND light on).
k. Position the CH 4 display baseline (zero volts) 3 divisions below the center horizontal graticule line.
I. Press the GND button (CH 4 GND light off).
m . CHECK-that the trigger output pulse amplitude level ranges from less than +0.2 V to greater than +0.8 V .
n. Replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

F. TRIGGER-EDGE SENSITIVITY

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable (two required)

F1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the time-base-unit controls:

Triggering	
Mode	Auto
Coupling	Dc
Source	Int
Mag	$\ln (\mathrm{X} 1)$

F2. CHECK EDGE SETUP TIME

 (CHAN-TO-CHAN)
NOTE

First perform step F1, then proceed.
Configure the equipment to the F2 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the B0 output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
c. Press the TTL/ECL button (ECL TTL light off).
d. Press the CH 2 button (button light on).
e. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
f. Press the TTL/ECL bution (CH 2 ECL TTL light off).
g. Press the DISPLAY button (CH 2 DISPLAY light on).
h. Press the TRIG VIEW button (button light on).
i. Press the PROG TRIG button (button light on).
j. Press the CLEAR button.
k. Press the CH 1 button, the AND buton, the CH 2 button, and the EDGE button, respectively.
I. CHECK-that the waveform display is triggered.
m. Press the CLEAR button.
n. Press the NOT button, the CH 1 button, the AND button, the NOT button, the CH 2 button, and the EDGE button, respectively.
o. CHECK-that the waveform display is triggered.
p. Reverse the signal connections on the CH 1 and CH 2 input connections.
q. Press the CLEAR button.
r. Press the CH 1 button, the EDGE button, the AND button, and the CH 2 button, respectively.
s. CHECK-that the waveform display is triggered.
t. Press the CLEAR button.
u. Press the NOT button, the CH 1 button, the EDGE button, the AND button, the NOT button, and the CH 2 button, respectively.
v. CHECK-that the waveform display is triggered.

NOTE

The "Channel-to-Channel Edge Setup Time" performance requirement applies for all combinations of channels in A and B trigger functions. To completely verify this specification would require performing the preceding checks 24 times. This specification was completely checked at the factory. Because of this, if you make performance checks on a routine basis we feel that completing the preceding checks "once" will give a high confidence level that all combinations will meet specifications, unless:

NOTE

1. the trigger self-test (performed at power-up) fails, or
2. any ICs on the Trigger Board have been replaced. (Refer to the Maintenance section for a list of checks to perform when specific ICs have been replaced.)
w. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

F3. CHECK EDGE HOLD TIME (CHAN-TO-CHAN)

NOTE

If the preceding step was not performed, first perform step F1, then proceed.

Configure the equipment to the F3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the A0 output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator). Connect the B0 output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
c. Press the TTL/ECL button (ECL TTL light off).
d. Press the CH 2 button (button light on).
e. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
f. Press the TTL/ECL button (CH 2 ECL TTL light off).
g. Press the DISPLAY button (CH 2 DISPLAY light on).
h. Press the TRIG VIEW button (button light on).
i. Press the PROG TRIG button (button light on).
j. Press the CLEAR button.
k. Press the CH 1 button, the EDGE button, the AND button, the NOT button, and the CH2 button, respectively.
I. CHECK-that the waveform display is triggered.
m. Press the CLEAR button.
n. Press the NOT button, the CH 1 button, the EDGE button, the AND button, and the CH 2 button respectively.
o. CHECK-that the waveform display is triggered.
p. Reverse the signal connections on the CH 1 and CH 2 input connectors.
q. Press the CLEAR button.
r. Press the NOT button, the CH 1 button, the AND button, the CH2 button, and the EDGE button, respectively.
s. CHECK-that the waveform display is triggered.
t. Press the CLEAR button.
u. Press the CH 1 button, the AND button, the NOT button, the CH2 button, and the EDGE button, respectively.
v. CHECK-that the waveform display is triggered.

NOTE

The "Channel-to-Channel Edge Hold Time" performance requirement applies for all combinations of channels in A and B trigger functions. To completely verify this specification would require performing the preceding checks 24 times. This specification was completely checked at the factory. Because of this, if you make performance checks on a routine basis we feel that completing the preceding checks "once" will give a high confidence level that all combinations will meet specifications, unless:

1. the trigger self-test (performed at power-up) fails, or
2. any ICs on the Trigger Board have been replaced. (Refer to the Maintenance section for a list of checks to perform when specific ICs have been replaced.)
w. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

F4. CHECK EDGE SETUP TIME (EDGE-SENS CHAN)

NOTE

If the preceding step was not performed, first perform step F1, then proceed.

Configure the equipment to the F4 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the EO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the TTL/ECL button (CH2 ECL TTL light off).
f. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
g. Press the CH 1 button (button light on).
h. Press the GND button (CH 1 GND light on).
i. Set the CH 1 trace 1 division above the center horizontal graticule line.
j. Press the GND button (CH 1 GND light off).
k. Set the time-base unit Triggering Level control as necessary for a stable display.
I. Press the PROG TRIG button (button light on).
m. Press the CLEAR button.
n. Press the TRIG VIEW button (button light on).
o. Press the NOT button, the EDGE button, and the CH 1 button, respectively.
p. CHECK-that the pulse display remains triggered (falling edge of pulse aligned with the leading edge of the trigger view pulse).
q. Press the CLEAR button.
r. Press the NOT button, the CH 2 button, the OR button, the NOT button, the EDGE button, and the CH 1 button, respectively.
s. CHECK-that the pulse display remains triggered (falling edge of pulse aligned with the leading edge of the trigger view pulse).
t. Press the CLEAR button.
u. Press the B button (button light on).
v. Press the NOT button, the EDGE button, and the CH 1 button, respectively.
w. CHECK-that the pulse display remains triggered (falling edge of pulse aligned with the leading edge of the trigger view pulse).
x. Press the CLEAR button.
y. Press the NOT button, the CH 2 button, the OR button, the NOT button, the EDGE button, and the CH 1 button, respectively.
3. CHECK-that the pulse display remains triggered (falling edge of pulse aligned with the leading edge of the trigger view pulse).

NOTE

The "Edge-Sensitive Channel Edge Setup Time" performance requirement applies for all combinations of channels in A and B trigger functions. To completely verify this specification would require performing the preceding checks 4 times. This specification was completely checked at the factory. Because of this, if you make performance checks on a routine basis we feel that completing the preceding checks "once" will give a high confidence level that all combinations will meet specifications, unless:

1. the trigger self-test (performed at power-up) fails, or
2. any ICs on the Trigger Board have been replaced. (Refer to the Maintenance section for a list of checks to perform when specific ICs have been replaced.)
aa. If you do not intend to perform the following step, replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

F5. CHECK EDGE HOLD TIME (EDGE-SENS CHAN)

NOTE

If the preceding step was not performed, first perform step F1, then proceed.

Configure the equipment to the F5 SETUP
CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the DO output directly to the 7A42 CH 1 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the TTL/ECL button (CH2 ECL TTL light off).
f. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
g. Press the CH 1 button (button light on).
h. Press the GND button (CH 1 GND light on).
i. Set the CH 1 trace 1 division above the center horizontal graticule line.
j. Press the GND button (CH 1 GND light off).
k. Set the time-base unit Triggering Level control as necessary for a stable display.
I. Press the PROG TRIG button (button light on).
m. Press the CLEAR button.
n. Press the TRIG VIEW button (button light on).
o. Press the EDGE button, and the CH 1 button.
p. CHECK-that the pulse display remains triggered (rising edge of pulse aligned with the leading edge of the trigger view pulse).
q. Press the CLEAR button.
r. Press the NOT button, the CH 2 button, the OR button, the EDGE button, and the CH 1 button, respectively.
s. CHECK-that the pulse display remains triggered (rising edge of pulse aligned with the leading edge of the trigger view pulse).
t. Press the CLEAR button.
u. Press the B button (button light on).
v. Press the EDGE button, and the CH 1 button.
w. CHECK-that the pulse display remains triggered (rising edge of pulse aligned with the leading edge of the trigger view pulse).
x. Press the CLEAR button.
y. Press the NOT button, the CH 2 button, the OR button, the EDGE button, and the CH 1 button, respectively.
z. CHECK-that the pulse display remains triggered (rising edge of pulse aligned with the leading edge of the trigger view pulse).

NOTE

The "Edge-Sensitive Channel Edge Hold Time" performance requirement applies for all combinations of channels in A and B trigger functions. To completely verify this specification would require performing the preceding checks 4 times. This specification was completely checked at the factory. Because of this, if you make performance checks on a routine basis we feel that completing the preceding checks "once" will give a high confidence level that all combinations will meet specifications, unless:

1. the trigger self-test (performed at power-up) fails, or
2. any ICs on the Trigger Board have been replaced. (Refer to the Maintenance section for a list of checks to perform when specific ICs have been replaced.)
aa. Replace the J474 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

G. TRIGGER-A THEN B

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable (Three Required)

G1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modification which may affect this procedure.
c. Set the time-base unit controls:

```
Triggering
    Mode ...................................... . Auto
    Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dc
```



```
Mag ...............................................(X1)
```


G2. CHECK TIME BETWEEN EVENT A AND EVENT B

NOTE

First perform step G1, then proceed.
Configure the equipment to the G2 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the BO output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the TTL/ECL button (CH 2 ECL TTL light off).
f. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
g. Press the DISPLAY button (CH 2 DISPLAY light on).
h. Press the PROG TRIG button (button light on).
i. Press the CLEAR button.
j. Press the CH 1 button, and the EDGE button.
k. Press the B button.
I. Press the CH 2 button, and the EDGE button.
m. Press the A THEN B button (button light on).
n. Press the TRIG VIEW button (button light on).
o. CHECK—that the waveform display is triggered on the screen, and that the rising edge of the CH 2 transition is aligned with the leading edge of the trigger view pulse.
p. If you do not intend to perform the following step, replace the $J 747$ BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

G3. CHECK TIME FROM EVENT B TO EVENT A

NOTE

If the preceding step was not performed, first perform step G1, then proceed:

Configure the equipment to the G3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the BO output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15$ pf light off).
d. Press the CH 2 button (button light on).
e. Press the DISPLAY button (CH 2 DISPLAY light on).
f. Press the TTL/ECL button (CH 2 ECL TTL light off).
g. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
h. Press the CH 3 button (button light on).
i. Press the DISPLAY button (CH 2 DISPLAY light on).
j. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 350 \Omega 1 \mathrm{M} \Omega 15$ pf light off).
k. CHECK-the two signal displays, CH 1 and CH 2 , should be triggered on screen with the CH 2 transition delayed about 5 ns behind the CH 1 transition. The CH 3 trace should display the trigger output signal, about 2 divisions in amplitude and somewhat delayed behind the other two signals.
I. Press the PROG TRIG button (button light on).
m. Press the CLEAR button.
n. Press the CH 2 button, and the EDGE button.
o. Press the B button (button light on).
p. Press the NOT button, and the CH 1 button.
q. Press the A THEN B button (button light on).
r. Set the time-base unit Time/Div to 10 ns.
s. CHECK-that the waveforms are triggered on the screen, and that the falling edge of the CH 1 transition is followed by both the falling edge of the CH 2 transition and the falling edge of the CH 3 trigger output transition. The ring visible on the falling CH 3 transition is normal.
t. Set the oscilloscope mainframe B Trigger Source to Right Vert.
u. Note the relative timing between the CH 3 transition and either the CH 1 or CH 2 transition.
v. Repeatedly press the EDGE button.
w. CHECK-that the relative timing between the CH 3 transition and either the CH 1 or CH 2 transition does not change more than 0.2 division.
x. CHECK-for little or no change in the general shape of the CH3 transition.
y. Set the oscilloscope mainframe B Trigger Source to Vert Mode.
z. Move the J701 link-plug back to the Normal position (refer to Fig. 4286-454).
aa. If you do not intend to perform the following step, replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

G4. CHECK MINIMUM EVENT DURATION NOTE

If the preceding step was not performed, first perform step G1, then proceed.

Configure the equipment to the G4 SETUP
CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the BO output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the DISPLAY button (CH2 DISPLAY light on).
f. Press the TTL/ECL button (CH2 ECL TTL light off).
g. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
h. Press the PROG TRIG button (button light on).
i. Press the CLEAR button.
j. Press the CH 1 button, the AND button, the NOT button, and the CH 2 button, respectively.
k. Press the B button.
I. Press the NOT button, and the CH 1 button.
m . Press the A THEN B button (button light on).
n. Press the TRIG VIEW button (button light on).
o. CHECK-that the waveform display is triggered on the screen.
p. Press the A button (button light on).
q. Press the A THEN B button (button light off).
r. Press the CLEAR button.
s. Press the NOT button, and the CH 1 button.
t. Press the B button (button light on).
u. Press the CLEAR button.
v. Press the CH 1 button, the AND button, the NOT button, and the CH2 button, respectively.
w. CHECK-that the waveform display is triggered on the screen.
x. If you do not intend to perform the following step, replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

G5. CHECK A THEN B GATE OUTPUT WIDTH

NOTE

If the preceding step was not performed, first perform step G1, then proceed.

Configure the equipment to the G5 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the BO output directly to the 7A42 CH2 input with a coaxial cable (no attenuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the CH 2 button (button light on).
e. Press the TTL/ECL button (CH2 ECL TTL light off).
f. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
g. Press the DISPLAY button (CH 2 DISPLAY light on).
h. Press the PROG TRIG button (button light on).
i. Press the B button (button light on).
j. Press the CH 2 button (red CH 2 TRIGGER FUNCTION light on).
k. Press the A THEN B button (button light on).
I. Connect a coaxial cable from the oscilloscope mainframe Sig Out connector to the CH 4 input connector.
m. Press the PROG CHAN button.
n. Press the CH 4 button.
o. Press the DISPLAY button.
p. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button.
q. Press the TTL/ECL button.
r. Set the oscilloscope mainframe B Trigger Source to Right Vert.
s. CHECK-that the width of the A THEN B gate pulse, displayed in CH 4 , is 1 division, within 0.2 division, measured at the 50% amplitude levels.
t. Set the oscilloscope mainframe B Trigger Source back to Vert Mode.
u. If you do not intend to perform the following step, replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

G6. CHECK GATE OUTPUT TIMING NOTE

If the preceding step was not performed, first perform step G1, then proceed.

Configure the equipment to the G6 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the AO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator).
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button ($\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the GND button (CH 1 GND light on).
e. Set the CH 1 trace 1 division above the center horizontal graticule line.
f. Press the GND button (CH 1 GND light off).
g. Press the upper VOLTS/DIV button to display 20 mV in the crt readout display.
h. Press the CH 2 button (button light on).
i. Press the DISPLAY button (CH 2 DISPLAY light on).
j. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
k. Press the PROG TRIG button (button light on).
I. Press the B button.
m . Press the NOT button, and the CH 1 button.
n. Press the A THEN B button (button light on).
o. Set the CH 1 and CH 2 POSITION controls to vertically center the two waveforms on the graticule.
p. CHECK-for less than 3 divisions between the rising edge of the CH 1 signal and the rising edge of the CH 2 signal.
q. Move the $J 701$ link plug back to the Normal position (refer to Figure 4-14).
r. Replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

H. TRIGGER-RESET

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Coaxial Cable (Three Required)
4. Adapter Cable

H1. PRELIMINARY SETUP

a. Perform the Performance Check Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modification which may affect this procedure.
c. Set the time-base unit controls:

Triggering	
Mode	Auto
Coupling	Dc
Source	
Mag	

H2. CHECK RESET INPUT THRESHOLDS

Refer to the 7A42 Service Manual for this procedure.

H3. CHECK RESET INPUT PULSE WIDTH NOTE

If the preceding step was not performed, first perform step H1, then proceed.

Configure the equipment to the H3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the LF Pulse Generator.
2. Connect the FO output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the AO output directly to the 7A42 CH 2 input with a coaxial cable (no attenuator). Connect the SMB to BNC adapter cable to the A2 output but do not make the connection to the 7A42 RESET input at this time.
3. Set the time-base sweep speed to $100 \mathrm{~ns} /$ div.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
c. Press the TTL/ECL button (CH1 ECL TTL light off).
d. Press the GND button (CH 1 GND light on).
e. Position the CH 1 trace 2 divisions above the center horizontal graticule line (GND reference).
f. Press the GND button (CH 1 GND light off).
g. Press the CH 2 button (button light on).
h. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 250 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
i. Press the TTL/ECL button (CH2 ECL TTL light off).
j. Press the DISPLAY button (CH2 DISPLAY light on).
k. Press the GND button (CH 2 GND light on).
I. Position the CH 2 trace at the center horizontal graticule line.
m. Press the GND button (CH 2 GND light off).
n. Press the TRIG VIEW button (button light on).
o. Press the PROG TRIG button (button light on).
p. Press the CLEAR button, the CH 1 button, and the NOT button, respectively (green CH 1 TRIGGER FUNCTION light on).
q. Press the oscilloscope mainframe B Trigger Source Left Vert button.
r. Connect the adapter cable to the 7A42 RESET connector (already attached to the A2 output at the other end).
s. Set the time-base Hold Off control as necessary for a stable display.
t. CHECK-that the display is triggered, and appears the same as illustrated in Figure 4-16, with the exception that the CH 1 trace is inverted.
u. Press the CLEAR button.
v. Press the CH 1 button, the EDGE button, and the NOT button, respectively (the CH 1 TRIGGER FUNCTION light is flashing green).
w. Press the B button (button light on).
x. Press the CLEAR button, and the CH 4 button (red CH4 TRIGGER FUNCTION light on).
y. Press the PROG CHAN button (button light on).
z. Press the CH 3 button (button light on).
aa. Press the DISPLAY button.
bb. Press the TTL/ECL button (CH3 ECL TTL light off).
cc. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 350 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
dd. Press the A THEN B button (button light on).
ee. Press the oscilloscope mainframe B Triggering Source Right Vert button.
ff. CHECK-that the display is triggered, and appears the same as illustrated in Figure 4-17, again with the exception that the CH 1 trace is inverted in polarity.
gg. Press the oscilloscope mainframe B Trigger Source Left Vert button.
hh. If you do not intend to perform the following step, replace the $J 747$ BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

H4. CHECK POST-RESET INHIBIT TIME NOTE

If the preceding step was not performed, first perform step H1, then proceed.

Configure the equipment to the H4 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the C0 output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the SMB to BNC adapter cable to the C2 output but do not make the connection to the 7A42 RESET input at this time.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15$ pf light off).
d. Press the GND button (CH 1 GND light on).
e. Position the CH 1 trace two divisions above the center horizontal graticule line.
f. Press the GND button (CH 1 GND light off).
g. Press the PROG TRIG button (button light on).
h. Press the CLEAR button.
i. Press the NOT button, and the CH 1 button.
j. Press the B button (button light on).
I. Press the CH 2 button, the OR button, the NOT button, and the CH 2 button, respectively.
m . Press the A button (button light on).
n. Set the time-base Position control to align the falling edge of the square wave with a vertical graticule line, and note its position.
o. Connect the SMB to BNC adapter cable to the 7 A42 RESET input (the other end is already connected to the C2 output).
p. Press the B button (button light on).
q. CHECK-that the falling edge of the square wave has shifted to the left not more than 1 division (10 ns), from the point noted in part n.
r. If you do not intend to perform the following step, replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

H5. CHECK RESET ACTIVATION WINDOW note

If the preceding step was not performed, first perform step H1, then proceed.

Configure the equipment to the H5 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the HF Pulse Generator.
2. Connect the C0 output directly to the 7A42 CH 1 input with a coaxial cable (no attentuator). Connect the SMB to BNC adapter cable from the C2 output to the 7A42 RESET input. Connect the B0 output through a coaxial cable to the time base external trigger input, however, the time-base trigger source should be set to INT (internal) at this time.
a. Initialize the 7A42 front-panel settings by turning the oscilloscope mainframe Power off, then back on again.
b. Press the TTL/ECL button (CH 1 ECL TTL light off).
c. Press the $1 \mathrm{M} \Omega / 50 \Omega$ button $(\mathrm{CH} 150 \Omega 1 \mathrm{M} \Omega 15 \mathrm{pf}$ light off).
d. Press the GND button (CH 1 GND light on).
e. Position the CH 1 trace 2 divisions above the center horizontal graticule line.
f. Press the GND button (CH 1 GND light off).
g. Press the TRIG VIEW button (button light on).
h. CHECK-that the square-wave signal is not triggered on the screen.
i. Press the time-base unit EXT Triggering Source button. Note that the falling edge of the square wave signal is triggered on the screen, but there is no signal on the trigger view trace. An adjustment of the time-base trigger level may be necessary to obtain a stable display.
j. Press the time-base unit INT Triggering Source button.
k. Move the coaxial cable supplying the CH 1 signal from the CO output to the AO output.
I. CHECK-that the CH 1 square wave rising edge and the trigger view pulse rising edge are both triggered on the screen, and that both occur at approximately the same time. An adjustment of the time-base trigger level control may be necessary to obtain a stable display.
m. Replace the J747 BA (Battery Enable) link plug that you removed in the Initial Setup Procedure.

End of Part II Performance Check Procedure.

INDEX TO PART IIIADJUSTMENT PROCEDURE

A. POWER SUPPLY—Refer to 7A42 Service Manual
B. ATTENUATOR OFFSET-Refer to 7A42 Service Manual
C. AMPLIFIER-Refer to 7A42 Service Manual
D. TRIGGER THRESHOLD AND PROBE OFFSET

1. Preliminary Setup
2. Adjust Trigger View Position-

Refer to 7A42 Service Manual
3. Adjust Trigger Thresholds
4. Adjust Probe Offset

D. TRIGGER THRESHOLD AND PROBE OFFSET

Equipment Required: (Numbers correspond to those listed in Table 4-2, Test Equipment).

1. Oscilloscope Mainframe
2. Time-Base Unit
3. Flexible Plug-in Extender (Two required)
4. Coaxial Cable
5. Meter Leads
6. Alignment Tool

Tektronix 103-0035-00 BNC to Binding
Post Adapter (not in Table 4-2)

D1. PRELIMINARY SETUP

a. Perform the Adjustment Initial Setup Procedure.
b. Refer to Section 5, Instrument Options, and to the change information at the rear of the manual for any modifications which may affect this procedure.
c. Set the oscilloscope mainframe and time base unit controls:

MAINFRAME
Power. On
Vertical Mode Left
Horizontal Mode B
B Trigger Source Left Vert
B Intensity
Visible display
Readout
Visible display
Focus Well defined display
TIME BASETriggering
Mode Auto
Coupling Dc
Source Int
Mag $\ln (X 1)$

D2. ADJUST TRIGGER VIEW POSITION

Refer to the 7A42 Service Manual for this procedure.

D3. ADJUST TRIGGER THRESHOLDS

NOTE
If the preceding step was not performed, first perform step D1, then proceed.

Configure the equipment to the D3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the +.250 V REF output directly to the 7A42 CH1 input connector with a coaxial cable. Do not use the 50 ohm feedthrough terminator at the 7A42 inputs.

Follow steps a through v of adjustment procedure D3 given in the 7A42 Service Manual.

D4. ADJUST PROBE OFFSET

NOTE

If the preceding step was not performed, first perform step D1, then proceed.

Configure the equipment to the D3 SETUP CONDITIONS except:

1. Substitute the 067-1155-99 for the Calibration Generator.
2. Connect the Tektronix 103-0035-00 BNC to Binding Post Adapter to the +5.00 V REF output. Attach the meter leads to the Binding Post Adapter, red to red, black to black. Attach the tip of the black meter lead to the oscilloscope ground post.

Follow steps a through j of adjustment procedure D4 given in the 7A42 Service Manual.

This completes the Part III-Adjustment Procedure.

THEORY OF OPERATION

Components discussed below are shown on schematic diagrams in section 6 of this manual.

OSCILLATOR

Transistors Q220 and Q222 form a square wave oscillator which free runs with a frequency of about 11 MHz . Assume initially that Q222 is on while Q220 is off. The voltage at the emitter of Q220 becomes more negative as C221 discharges through R223. Capacitor C221 discharges until the emitterbase junction of Q220 becomes forward biased. As Q220 turns on the oscillator state changes.
Regeneration starts when Q220 conducts and C221 stops discharging; this reduces the collector current of Q222. Thus, the collector voltage of Q222 rises positive which causes the base and emitter of Q220 to rise positive. The positive going voltage is coupled to the emitter of Q222, turning it off.

Now Q220 is conducting and Q222 is not. The voltage at the emitter of Q222 goes negative as C221 charges through R224. When the emitter-base junction of Q222 becomes forward biased the oscillator will again change state to complete the cycle.

Transistor Q221 level shifts and buffers the square wave output signal to ECL logic levels. Potentiometer R220 provides frequency adjustment.

COUNTER

Universal counter U210 is used in the count-down mode to generate the output waveforms. The count decrements after each rising edge of the clock input supplied by Q221. The output at pin 2 is a square wave which is high during counts $7,6,5$, and 4 , and low during $3,2,1$, and 0 . The output at pin 14 is wire-ORed with the outputs from pins 15 and 2, after being inverted by gates U310B and U310C, to form a signal that goes low during count 6 and remains high otherwise. This signal is buffered by gate U310D.

CONTROLLED TIMING OUTPUTS

The signals at the front panel A, B, and C outputs are representations of the waveform at pin 15 of U310C. The B signal is delayed behind the A signal by delay line DL320.

The C signals are further delayed by delay line DL420. The different output amplitudes and levels are obtained with ac coupling and resistor networks.

CONTROLLED WIDTH OUTPUTS

The pulse signals at the front panel D and E outputs have a width that is controlled by the delay lines DL612 and DL610, respectively. The gates from U600 form complementary versions of the count-6 signal. The D and E output signals go high only during the propagation time of the associated delay lines. At the EO output, for example, assume the level at pin 7 of U600D is initially high. At this time the pin 10 output (U600D) will be high and the pin 11 output will be low. When pin 7 goes low, the outputs both change state; the high to low transition reaches pin 6 of U620B immediately causing output pin 3 to go high. The low to high transition is delayed from reaching U620B pin 7 by the delay line DL610. After pin 7 finally goes high, pin 3 returns to the low state.

Reference voltages

The +. 250 V reference voltage is formed by a resistive divider across precision voltage reference VR200; R200 provides adjustment of this voltage. The output voltage on pin 6 of U 100 is a precision +5.00 V reference; R100 provides adjustment of this voltage.

POWER SUPPLIES

A high-efficiency switching power supply converts the mainframe + and -33.5 volt supplies to regulated $-5 \mathrm{~V},-2 \mathrm{~V}$, and +5 V for use by the digital circuitry. Three terminal regulator U130 provides +5 V to the switching power supply. Three-terminal regulator U120 forms -15 volts which is used to bias the oscillator and output circuits. The switching power supply is common to the 7A42; refer to the 7A42 Service Manual for a detailed circuit description. In the 067-1155 the 7A42 supply primary voltages are 33.5 V rather than 50 V , and the regulator IC operates from the 11.5 V supply rather than 15 V .

In TM5000 mainframes, the primary voltages are positive and negative 26 volts (regulated) rather then 33.5 volts. The power supply accomodates the lower primary voltage by increasing the switching transistor's duty cycle.

Resistor R220 is a test-selectable load on the +5 V output to keep that voltage within specified limits since the switcher regulates from its -5 V supply only.

CALIBRATION PROCEDURE

```
Required Test Equipment:
TM500 or TM5000 mainframe, any size
TM500 Flexible Plug-in Extender..........................067-0645-02
```



```
Coaxial Cables (2 needed) . . . . . . . . . . . . . . . . . . . . . . . . . . . 012-0057-01
BNC to Post Adapter (2 convenient) ..................103-0035-00
Assorted 1/2 watt resistors ................................(see power supply adjustment)
```



```
1 Megohm resistor ..................................................415-0105-00
```

Required Tooling:
A peltola cable terminator installation fixture will be needed to complete the delay line assemblies after their lengths have been adjusted. A soldering station will also be needed in the event that a component value needs to be test selected.

POWER SUPPLY ADJUSTMENT

Connect the 067-1155-99 through the flexible extender to the TM500 mainframe. Be sure that the extender is not inverted on either end. Preset the current limit pot on the power supply to the maximum CCW position. Monitor the -5 V supply with the DVM while the instrument is turned on. Adjust the -5 V ADJ pot on the left hand side of the power supply board for a reading of -5.1 volts. Measure the +5 V supply at the +5 V POWER .jack on the front panel. If this supply is not within the specified limits, test select R220 to bring it in to spec. A larger value of R220 will increase the supply voltage; a smaller value will decrease it. Spot check the other supply voltages, $-15 \mathrm{~V},-2 \mathrm{~V},+11.5 \mathrm{~V}$, etc, to see if they are within reasonable limits (10\%).

Move the AUX LOAD jumper on the power supply board to the "in" position; the LED will light red. Adjust the current limit pot CW until the the LED begins to blink. Back off on the adjustment until the LED just lights steadily. Return the AUX LOAD jumper to the "out" position; the LED should go out.

REFERENCE VOLTAGE ADJUSTMENT

Connect the 1 Megohm resistor across the two binding posts of the 103-0035-00 BNC to Post

Adapter. Attach the adapter to the +.250V REF output, and connect the DVM to the posts. Adjust R200 for a reading of exactly +0.025 V .

Now connect the 100K ohm resistor across the binding posts of the (other) adapter. Attach the adapter to the +5.00 V REF output and adjust R100 for a reading of exactly +5.00 V on the DVM.

OSCILLATOR FREQUENCY ADJUSTMENT

Connect output A2 through a coaxial cable to a 7A42 input channel. Trigger the test scope on the rising edge of this signal. With the time base set at $10 \mathrm{~ns} / \mathrm{div}$, adjust R220 for a pulse width of 90 ns (9 divisions) measured at the 50% amplitude points of the waveform.

DELAY LINE LENGTH ADJUSTMENTS

The delay lines are initially longer than necessary so that they can be shortened if needed. To adjust the line lengths, the instrument must first be assembled and tested with the long lines. The resulting delays are measured. If a correction is needed, the excess length can be calculated from the knowledge that the propagation speed of the signal in this coax is about .127 ns per inch (50 ps per cm). Since the total delays are also a function of the individual ICs in each instrument it is recommended that the

Calibration Procedure-067-1155-99

cables be calibrated in the instrument in which they are to eventually be installed.

To measure the delay between the A and B signals, for example, connect the AO and BO outputs through two coaxial cables (same length) to the two input channels of the 7A24. Measure the delay between the 50% points on the rising edges of the two waveforms. The delay line C (DL420) should be adjusted by measuring the delay from AO to CO rather than from $B 0$ to $C 0$ after the A to B delay
has been calibrated to prevent accumulation of error. The subscript 1 and 2 outputs require no separate calibration; just check to see that they are functional.

The pulse outputs DO and EO should be measured and the D and E delay lines (DL612 and DL610 respectively) shortened as needed to bring the pulse widths at the 50% points into spec. The FO output requires no calibration.

REPLACEABLE ELECTRICAL PARTS
 PARTS ORDERING INFORMATION

Abstract

Replacement parts are available from or through your loca Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number

Change information, if any, is located at the rear of this manual.

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS

Abbreviations conform to American National Standard Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

Read: Resistor 1234 of Assembly 23

Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit numbers will appear on the diagrams. Each diagram is clearly marked with the assembly number views located in the Mechanical Parts List. The comonent number is obtained by adding the assembly number prefix to the circuit number

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly $A 1$ with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts)

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number

Mfr. Code	Manufacturer	Address	City, State, Zip
000IZ	DALE ELECTRONICS CORP.	P.O. BOX 3164	TEMPE, AZ 85282
000JO	DILECTRON INC.	2669 S MYRTLE AVE	MONROVIA, CA 91016
000JR	MUSASHA WORKS OF HITACHI LTD	1450 JOSUIHON-CHO	KODAIRA-SHI, TOKYO, JAPAN
000KK	XICOR INC.	851 BUCKEYE COURT	MILPITAS, CA 95035
00853	SANGAMO ELECTRIC CO., S. CAROLINA DIV.	P O BOX 128	PICKENS, SC 29671
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01281	TRW ELECTRONIC COMPONENTS, SEMICONDUCTOR		
	OPERATIONS	14520 AVIATION BLVD.	LAWNDALE, CA 90260
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR	P O BOX 5012, 13500 N CENTRAL	
	GROUP	EXPRESSWAY	DALLAS, TX 75222
02735	RCA CORPORATION, SOLID STATE DIVISION	ROUTE 202	SOMERVILLE, NY 08876
03508	GENERAL ELECTRIC COMPANY, SEMI-CONDUCTOR		
	PRODUCTS DEPARTMENT	ELECTRONICS PARK	SYRACUSE, NY 13201
04222	AVX CERAMICS, DIVISION OF AVX CORP.	P O BOX 867, 19TH AVE. SOUTH	MYRTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
07263	FAIRCHILD SEMICONDUCTOR, A DIV. OF		
	FAIRCHILD CAMERA AND INSTRUMENT CORP.	464 ELLIS STREET	MOUNTAIN VIEW, CA 94042
12697	CLAROSTAT MFG. CO., INC.	LOWER WASHINGTON STREET	DOVER, NH 03820
12969	UNITRODE CORPORATION	580 PLEASANT STREET	WATERTOWN, MA 02172
14433	ITT SEMICONDUCTORS	3301 ELECTRONICS WAY	
		P O BOX 3049	WEST PALM BEACH, FL 33402
14552	MICRO SEMICONDUCTOR CORP.	2830 E FAIRVIEW ST.	SANTA ANA, CA 92704
15454	RODAN INDUSTRIES, INC.	2905 BLUE STAR ST.	ANAHEIM, CA 92806
15818	TELEDYNE SEMICONDUCTOR	1300 TERRA BELLA AVE.	MOUNTAIN VIEW, CA 94043
18324	SIGNETICS CORP.	811 E. ARQUES	SUNNYVALE, CA 94086
20932	EMCON DIV OF ILLINOIS TOOL WORKS INC.	11620 SORRENTO VALLEY RD	
		P O BOX 81542	SAN DIEGO, CA 92121
24546	CORNING GLASS WORKS, ELECTRONIC		
	COMPONENTS DIVISION	550 HIGH STREET	BRADFORD, PA 16701
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
32997	BOURNS, INC., TRIMPOT PRODUCTS DIV.	1200 COLUMBIA AVE.	RIVERSIDE, CA 92507
34335	ADVANCED MICRO DEVICES	901 THOMPSON PL.	SUNNYVALE, CA 94086
50434	HEWLETT-PACKARD COMPANY	640 PAGE MILL ROAD	PALO ALTO, CA 94304
51642	CENTRE ENGINEERING INC.	2820 E COLLEGE AVENUE	STATE COLLEGE, PA 16801
53184	XCITON CORPORATION	5 HEMLOCK STREET	LATHAM, NY 12110
54473	MATSUSHITA ELECTRIC, CORP. OF AMERICA	1 PANASONIC WAY	SECAUCUS, NJ 07094
55210	GETTIG ENG. AND MFG. COMPANY	PO BOX 85, OFF ROUTE 45	SPRING MILLS, PA 16875
55680	NICHICON/AMERICA/CORP.	6435 N PROESEL AVENUE	CHICAGO, IL 60645
56289	SPRAGUE ELECTRIC CO.	87 MARSHALL ST.	NORTH ADAMS, MA 01247
59660	TUSONIX INC.	2155 N FORBES BLVD	TUCSON, AZ 85705
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W. 12TH ST.	ERIE, PA 16512
73138	BECKMAN INSTRUMENTS, INC., HELIPOT DIV.	2500 HARBOR BLVD.	FULLERTON, CA 92634
73899	JFD ELECTRONICS COMPONENTS CORP.	PINETREE ROAD	OXFORD, NC 27565
75042	TRW ELECTRONIC COMPONENTS, IRC FIXED		
	RESISTORS, PHILADELPHIA DIVISION	401 N. BROAD ST.	PHILADELPHIA, PA 19108
75378	CTS KNIGHTS, INC.	400 REIMANN AVE.	SANDWICH, IL 60548
76493	BELL INDUSTRIES, INC.,		
	MILLER, J. W., DIV.	19070 REYES AVE., P O BOX 5825	COMPTON, CA 90224
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
80031	ELECTRA-MIDLAND CORP., MEPCO DIV.	22 COLUMBIA ROAD	MORRISTOWN, NJ 07960
88407	BULOVA WATCH CO. INC. ELECTRONICS DIV.	61-20 WOODSIDE AVE	WOODSIDE, NY 11377
90201	MALLORY CAPACITOR CO., DIV. OF	3029 E. WASHINGTON STREET	
	P. R. MALLORY AND CO., INC.	P. O. BOX 372	INDIANAPOLIS, IN 46206
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601

Component No.	Tektronix Part No.		del No. Dscont	Name \& Description	Mfr Code	Mfr Part Number
AlR335	321-0077-00			RES. ${ }^{\text {, FXD, FILM: } 61.9 \text { OHw, 18, } 0.125 \mathrm{~W}}$	91637	MFF 1816G6 JR90F
AlR420	323-0163-00			RES., FXD, FILP: 487 OHm, 1\%,0.50w	75042	CECTO-4870F
AlR421	321-0083-00			RES., FXD, FILM: 71.5 OW, 1\%,0.125	91637	MFF 1816G71R50F
AlR422	323-0163-00			RES. , FXD, FILM: 487 ORM, 1\%, 0.50 W	75042	CECTO-4870F
AlR430	321-0135-00			RES. ,FXD, FILM: 249 OHm, 1\%, 0.125 W	91637	MFF 1816G249R0F
AlR431	315-05 10-00			RES. ,FXD, CMPSN: 51 OHM,5\%,0.25W	01121	CB5 105
AlR432	315-0510-00			RES., FXD, CHPSN:51 ORW, 5\%,0.25w	01121	CB5 105
AlR433	321-0135-00			RES., FXD, FILM:249 OH1, 1\%, 0.125 m	91637	MFF 1816G249ROF
AlR434	321-0071-00			RES. , FXD, FILM: 61.9 OH, 1\%,0.125	91637	MFF 1816G61R90F
AlR5 10	315-0510-00			RES, ,FXD, CMPSN: 51 OHw, 5\%, 0.25W	01121	CB5 105
AlR520	315-0510-00			RES. , FXD, CMPSN: 51 OHm, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 105
AlR521	321-0083-00			RES., FXD, FILM: 71.5 OHM, 1\%,0.125	91637	MFF 1816G71R50F
AlR522	323-0163-00			RES. ,FXD, FILM: 487 OHM, 1\%, 0.50 w	75042	CECTO-4870F
AlR523	315-0510-00			RES, ,FXD, CMPSN:51 OHM, 5\%,0.25W	01121	C85 105
AlR530	315-0510-00			RES., FXD, CMPSN:51 OHM, 5\%,0.25w	01121	C85 105
AlR531	315-0510-00			RES., FXD, CMPSN:51 OHM, 5\%, 0.25 W	01121	CB5 105
AlR532	315-0510-00			RES. , FXD, CMPSN: 51 OHM , 5\%, 0.25 W	01121	CB5 105
AlR533	321-0135-00			RES., FXD, FILM:249 OHM, 1\%,0.125	91637	MFF 1816G249ROF
AlR534	315-0152-00			RES., FXD, CMPSN: 1.5K OWm, 5\%,0.25	01121	CB1525
AlR535	315-0221-00			RES., FXD, CMPSN: 220 OHM, 5\%,0.25W	01121	CB2215
AlR536	321-0077-00			RES., FXD, FILM:61.9 OHm, 1\%,0.125W	91637	MFF 1816G61R90F
AlR600	315-0221-00			RES. , FXD, CMPSN: 220 OHm, 5\%, 0.25 W	01121	CB2215
AlR601	315-0510-00			RES. , FXD, CMPSN: 51 OHW, 5\%,0.25W	01121	CB5 105
AlR610	323-0159-00			RES., FXD, FILM: 442 OHm, 1\%, 0.5W, TC=T0		
AlR611	321-0083-00			RES., FXD, FILM: $71.50 \mathrm{Om}, 1 \%, 0.125 \mathrm{~W}$	91637	MFF 1816G71R50F
AlR6 12	321-0135-00			RES. , FXD, FILM: 249 OHW, 1\%, 0. 125 W	91637	MFF 1816G249ROF
AlR620	315-0510-00			RES. , FXD, CMPSN:51 OHM, 5\%,0.25W	01121	CB5 105
AlR621	321-0071-00			RES. , FXD, FILM:61.9 OHM, 1\%,0.125	91637	MFF 1816G6 1R90F
AlR622	315-0510-00			RES. , FXD, CMPSN: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 105
AlR623	315-0510-00			RES. , FXD, CMPSN: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 105
AlR624	321-0083-00			RES. ,FXD, FILM: 71.5 OMm, 1\%,0.125	91637	MFF 1816G71R50F
AlR625	323-0160-00			RES. , FXD, FILM: 453 OHm, 1\%, 0.50w	75042	CECTO-4530F
AlR630	315-0510-00			RES. ,FXD, CMPSN: 51 OHW, 5\%,0.25W	01121	CB5 105
AlR631	315-0510-00			RES. ,FXD, CMPSN: 51 OHm, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 105
AlR632	315-0510-00			RES. ,FXD, CMPSN: 51 OHM, 5\%, 0.25 W	01121	CB5 105
AlR633	315-0271-00			RES. , FXD, CMPSN: 270 OHM, 5\%, 0.25 W	01121	CB2715
AlR634	321-0135-00			RES , , FXD, FILM: 249 OHM, 1\%, 0.125 W	91637	MFF 1816G249ROF
AlR635	321-0071-00			RES. , FXD, FILM:61.9 OHM, 1\%, 0.125 W	91637	MFF 1816G6 1R90F
Alul00	156-1437-00			MICROCIRCUIT, LI:VOLTAGE REFERENCE	04713	MC1404AU5DS
AlUl20	156-0527-00			MICROCIRCUIT, LI:NEG VOLTAGE REGULATOR, 15V	04713	MC7915CT
AlU130	156-0277-00			MICROCIRCUIT, LI:VOLTAGE RECULATOR	07263	MICROA7805UC
Alu2 10	156-0641-00			MICROCIRCUIT, DI: UNIVERSAL, HEXIDECIMAL CNTR	80009	156-0641-00
AlU310	156-1641-01			MICROCIRCUIT, DI: SCREENED	04713	MC10H102(LD OR P.
Alu320	156-1641-01			MICROCIRCUIT, DI : SCREENED	04713	MCIOH102(LD OR P:
AlU420	156-1641-01			MICROCIRCUIT, DI: SCREENED	04713	MCIOH 102 (LD OR P
Alu520	156-1641-01			MICROCIRCUIT, DI: SCREENED	04713	MCIOH102(LD OR P
AlU600	156-1676-00			MICROCIRCUIT, DI: SCREENED	04713	MCIOH107(LD OR P
Alu620	156-1641-01			MICROCIRCUIT, DI: SCREENED	04713	MCIOH102(LD OR P:
AlvR200	156-1490-00			MICROCIRCUIT,LI:VOLTAGE REFERENCE	32293	ICL8069CCSQ

Component No.	Tektronix Part No.	Serial/Model No.		Name \& Description	Mfr Code	Mfr Part Number
		Eff	Dscont			
A2	670-1513-00			CKT BOARD ASSY:POWER SUPPLY	80009	670-7513-00
A2C105	283-0051-00			CAP.,FXD,CER DI:0.0033UF,5\%,100V	56289	1C20C0G332J100B
A2C108	283-0179-00			CAP., FXD, CER DI: $0.68 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	56289	3C37X5R684K 100B
A2Clll	281-0115-00			CAP, ,FXD, CER DI:0. IUF, 20\%,50V	04222	MA205E 104MAA
A2C115	290-0782-00			CAP., FXD, ELCTLT: $4.7 \mathrm{~F},+75-10 \%, 35 \mathrm{~V}$	55680	35ULA4R7V-T
A2Cl16	290-0782-00			CAP. ,FXD, ELCTLT: $4.7 \mathrm{FF},+75-10 \%, 35 \mathrm{~V}$	55680	35ULA4R7V-T
A2C117	281-0775-00			CAP, ,FXD, CER DI:0. IUF, $20 \%, 50 \mathrm{~V}$	04222	MA205E 104MAA
A2C118	281-0715-00			CAP.,FXD, CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	MA205E 104MAA
A2C119	281-0765-00			CAP. ,FXD, CER DI: 100PF, 5\%, 100V	51642	G1710-100NPO101J
A2C122	283-0249-00			CAP. ,FXD, CER DI: $0.068 \mathrm{UF}, 10 \%, 50 \mathrm{~V}$	12982	8131N075 C 683K
A2C205	290-0176-00			CAP., FXD, ELCTLT: $22 \mathrm{UF},+50-10 \%, 10 \mathrm{~V}$	55680	ULAIA220TEA
A2C207	283-0164-00			CAP.,FXD, CER DI: $2.2 \mathrm{UF}, 20 \%, 25 \mathrm{~V}$	04222	SR402E225MAA
A2C220	290-0683-00			CAP. ,FXD, ELCTLT: $100 \mathrm{UF},+20 \%, 200 \mathrm{~V}$		
A2C301	281-0812-00			CAP.,FXD, CER DI: 1000PF, 10\%, 100 V	12982	8035D9AADX7R 102K
A2C302	281-0712-00			CAP. ,FXD, CER DI: $0.0047 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	GC701C472K
A2C325	290-0768-00			CAP. ,FXD, ELCTLT: 10UF , +50-10\%, 100V	54473	ECE-A100V 10L
A2C330	290-0768-00			CAP. ,FXD, ELCTLT: 10UF,+50-10\%, 100 V	54473	ECE-A IOOV 10L
A2C405	283-0693-00			CAP., FXD, MICA D: $1730 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D19-5F1731F0
A2C4 10	290-0818-00			CAP. , FXD, ELCTLT: $390 \mathrm{UF},+100-10 \%, 40 \mathrm{~V}$	56289	6720397H040DS5C
A2C425	290-0111-00			CAP. ,FXD, ELCTLT: 220UF , +50-10\%, 10VDC	56289	5020231
A2C530	290-0932-00			CAP., FXD ELECT: 390 UF , $+100-10 \%$, 15VDC	90201	VPR39 1NOIE1A3J
A2C540	290-0711-00			CAP. ,FXD, ELCTLT: 220UF, $+50-10 \%, 10 \mathrm{VDC}$	56289	5020231
A2C630	290-0818-00			CAP. , FXD, ELCTLT: $390 \mathrm{UF},+100-10 \%, 40 \mathrm{~V}$	56289	6120397H040DS5C
A2C640	290-0171-00			CAP. ,FXD, ELCTLT: 220UF, +50-10\%, 10VDC	56289	502D231
A2CR 100	152-0141-02			SEMICOND DEVICE:SILICON, 30V, 150MA	01295	IN4152R
A2CR110	152-0141-02			SEMICOND DEVICE:SILICON, 30V, 150MA	01295	IN4152R
A2CR111	152-0141-02			SEMICOND DEVICE:SILICON,30V, 150MA	01295	IN4 152R
A2CR121	152-0141-02			SEMICOND DEVICE:SILICON,30V,150MA	01295	IN4152R
A2CR230	152-0400-00			SEMICOND DEVICE:SILICON, 400V, 1A	80009	152-0400-00
A2CR400	152-0400-00			SEMICOND DEVICE: SILICON, 400V, 1 A	80009	152-0400-00
A2CR402	152-0400-00			SEMICOND DEVICE:SILICON, 400V, 1A	80009	152-0400-00
A2CR406	152-0141-02			SEMICOND DEVICE:SILICON,30V, 150MA	01295	IN4152R
A2CR407	152-0141-02			SEMICOND DEVICE:SILICON,30V, 150MA	01295	IN4152R
A2CR4 10	152-0582-00			SEMICOND DEVICE:SILICON,20V,3A	04713	1N5820
A2CR503	152-0400-00			SEMICOND DEVICE:SILICON, 400V, 1A	80009	152-0400-00
A2CR520	152-0581-00			SEMICOND DEVICE:SILICON,20V,1A	04713	1N5817
A2CR620	152-0582-00			SEMICOND DEVICE:SILICON,20V,3A	04713	1N5820
A2DS 125	150-1036-00			LAMP, LED: RED, 3.0V, 40MA	01295	TIL 209A
A2J230	131-0608-00			TERMINAL, PIN: 0.365 L X 0.025 PH BRZ GOLD (QUANTITY OF 3)	22526	47357
A23440	131-0608-00			TERMINAL,PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{PH}$ BRZ GOLD (QUANTITY OF 6)	22526	47357
A23450	131-0608-00			TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{PH}$ BRZ GOLD (QUANTITY OF 1)	22526	47357
A2L220	108-0473-00			COIL, RF: 1504H	80009	108-0473-00
A2L310	108-0473-00			COIL, RF: 150UH	80009	108-0473-00
A2L420	108-0336-00			COIL, RF: 100UH	80009	108-0336-00
A2L530	108-0336-00			COIL, RF: 100UH	80009	108-0336-00
A2L630	108-0336-00			COIL, RF : 100 ${ }^{\text {H }}$	80009	108-0336-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.
American National Standard Institute
1430 Broadway
New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors $=$ Values one or greater are in picofarads (pF). Values less than one are in microfarads ($\mu \mathrm{F}$).
Resistors $=$ Ohms (Ω).

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

REPLACEABLE
 MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
00X
Part removed after this serial number

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.
$12345 \quad$ Name \& Description
Assembly and/or Component
Attaching parts for Assembly and/or Component
---*--
Detail Part of Assembly and/or Component
Attaching parts for Detail Part

- - - -

Parts of Detail Part
Attaching parts for Parts of Detail Part
-- * - -
Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol ---*---indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further liem Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

$"$	
$\#$	INCH
ACTR	NUMBER SIZE
ACTUATOR	
ADPTR	ADAPTER
ALIGN	ALIGNMENT
AL	ALUMINUM
ASSEM	ASSEMBLED
ASSY	ASSEMBLY
ATTEN	ATTENUATOR
AWG	AMERICAN WIRE GAGE
BD	BOARD
BRKT	BRACKET
BRS	BRASS
BRZ	BRONZE
BSHG	BUSHING
CAB	CABINET
CAP	CAPACITOR
CER	CERAMIC
CHAS	CHASSIS
CKT	CIRCUIT
COMP	COMPOSITION
CONN	CONNECTOR
COV	COVER
CPLG	COUPLING
CRT	CATHODE RAY TUBE
DEG	DEGREE
DWR	DRAWER

ELCTRN	ELECTRON
ELEC	ELECTRICAL
ELCTLT	ELECTROLYTIC
ELEM	ELEMENT
EPL	ELECTRICAL PARTS LIST
EQPT	EQUIPMENT
EXT	EXTERNAL
FIL	FILLISTER HEAD
FLEX	FLEXIBLE
FLH	FLAT HEAD
FLTR	FILTER
FR	FRAME OR FRONT
FSTNR	FASTENER
FT	FOOT
FXD	FIXED
GSKT	GASKET
HDL	HANDLE
HEX	HEXAGON
HEX HD	HEXAGONAL HEAD
HEX SOC	HEXAGONAL SOCKET
HLCPS	HELICAL COMPRESSION
HLEXT	HELICAL EXTENSION
HV	HIGH VOLTAGE
IC	INTEGRATED CIRCUIT
ID	INSIDE DIAMETER
IDENT	IDENTIFICATION
IMPLR	IMPELLER

IN	INCH
INCAND	INCANDESCENT
INSUL	INSULATOR
INTL	INTERNAL
LPHLDR	LAMPHOLDER
MACH	MACHINE
MECH	MECHANICAL
MTG	MOUNTING
NIP	NIPPLE
NON WIRE NOT WIRE WOUND	
OBD	ORDER BY DESCRIPTION
OD	OUTSIDE DIAMETER
OVH	OVAL HEAD
PH BRZ	PHOSPHOR BRONZE
PL	PLAIN Or PLATE
PLSTC	PLASTIC
PN	PART NUMBER
PNH	PAN HEAD
PWR	POWER
RCPT	RECEPTACLE
RES	RESISTOR
RGD	RIGID
RLF	RELIEF
RTNR	RETAINER
SCH	SOCKET HEAD
SCOPE	OSCILLOSCOPE
SCR	SCREW

SE	SINGLE END
SECT	SECTION
SEMICOND SEMICONDUCTOR	
SHLD	SHIELD
SHLDR	SHOULDERED
SKT	SOCKET
SL	SLIDE
SLFLKG	SELF-LOCKING
SLVG	SLEEVING
SPR	SPRING
SQ	SQUARE
SST	STAINLESS STEEL
STL	STEEL
SW	SWITCH
T	TUBE
TERM	TERMINAL
THD	THREAD
THK	THICK
TNSN	TENSION
TPG	TAPPING
TRH	TRUSS HEAD
V	VOLTAGE
VAR	VARIABLE
WI	WITH
WSHR	WASHER
XFMR	TRANSFORMER
XSTR	TRANSISTOR

Fig. \&

Index	Tektronix	Serial/Model No.				
No.	Part No.	Eff	Dscont	Qty	12345	Name \& Description

105-0718-01	1	BAR, LATCH RLSE:	80009	105-0718-01
105-0719-00	1	LATCH,RETAINING:PLUG-IN	80009	105-0719-00
129-0154-00	3	SPACER, POST: 0.25 OD $\times 1.50$ INCH LONG, AL	80009	129-0154-00
131-1315-01	13	CONN,RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1
136-0139-00	1	Jack, TIP:BANANA STYLE, W/RED CAP	80009	136-0139-00
200-1837-00	2	COVER,PLUG-IN:TOP AND BOTTOM	80009	200-1837-00
210-0046-00	1	WASHER, LOCK: 0.261 ID, INTL, 0.018 THK, BRS	78189	1214-05-00-0541C
210-0269-00	1	TERMINAL,LUG:NON LOCKING, $0.257^{\prime \prime}$ MTG HOLE (ATTACHING PART FOR $136-0139-\mathrm{XX}$)	78584	905-020
210-0583-00	1	NUT, PLAIN, HEX: $0.25-32 \times 0.312$ INCH, BRS (ATTACHING PART FOR 136-0139-XX)	73743	2×20317-402
210-0898-00	1	WSHR, SHOULDERED: 0.37500×0.105 " THK (ATTACHING PART FOR $136-0139-X X)$	80009	210-0898-00
211-0504-00	18	SCREW, MACHINE: 6-32 $\times 0.25$ INCH, PNH STL	83385	OBD
211-0507-00	4	SCREW, MACHINE: $6-32 \times 0.312$ INCH, PNH STL (ATTACHING PART FOR 407-1693-XX)	83385	OBD
213-0793-00	6	SCREW,TPG, TF: 6-32 $\times 0.4375$, TAPTIIE,FIL (ATIACHING PART FOR 333-2380-XX)	93907	OBD
213-0229-00	8	SCR,TPG,THD FOR:6-20 X0.375" 100 DEG,FLH STL (ATIACHING PART FOR 333-3062-XX)	93907	OBD
213-0232-00	1	SCR,TPG, THD FOR: 2-32 $\times 0.312$ INCH,PNH STL (ATTACHING PART FOR 105-0719-XX)	83385	OBD
333-2380-00	1	PANEL, REAR:	80009	333-2380-00
333-3062-00	1	PANEL, FRONT:	80009	333-3062-00
337-1399-04	2	Shield, elec: SIDE	80009	337-1399-04
337-3145-00	1	SHIELD,ELEC:FRONT SUBPANEL	80009	337-3145-00
343-0549-00	8	STRAP, TIEDOW: $0.091 \mathrm{~W} \times 3.62$ INCH LOWG	06383	PLTIM
366-1690-00	1	KNOB:SIL GY, $0.53 \times 0.23 \times 1.059$	80009	366-1690-00
385-0160-00	4	SPACER,POST:0.812 L W/6-32 THD THRU,AL	80009	385-0160-00
386-5082-00	1	SUBPANEL, FRONT:	80009	386-5082-00
407-1693-00	4	BRACKET, COVER:ALUMINUM	80009	407-1693-00
426-1245-00	2	FR SECT, PLUG-IN:LEFT SIDE, TOP AND BOttom	80009	426-1245-00
426-1246-00	1	FR SECT, PLUG-IN:RIGHT SIDE, TOP AND BOTTOM	80009	426-1246-00
426-1246-01	1	FR SECT, PLUG-IN:RIGHT SIDE, TOP AND BOTTOM	80009	426-1246-01
		AI MFG CAL SOURCE BOARD INCLUDES:		
210-0586-00	2	. NUT, PL, ASSEM WA: $4-40 \times 0.25$, STL	83385	OBD
211-0008-00	2	.SCREW, MACHINE: 4-40 $\times 0.250$, PNH, STL, CD PL ((T TACHING PARTS FOR UI20,UI30)	83385	OBD
		A2 POWER SUPPLY BOARD INCLUDES:		
131-0993-00	1	. BUS, CONDUCTOR:2 WIRE BLACK	00779	850100-01
176-0119-00	AR	.WIRE, ELEC: 14 AWG, BARE, 12.0L	80009	176-0119-00
210-0586-00	1	. NUT, PL, ASSEM WA: 4-40 $\times 0.25$, STL	83385	OBD
210-1178-00	1	. WASHER, SHLDR:U/W TO-220 TRANSISTOR	49671	DF 137A
211-0008-00	1	. SCREW, MACHINE: $4-40 \times 0.250, \mathrm{PNH}, \mathrm{STL}, \mathrm{CD}$ PL	83385	OBD
220-0829-00	2	. NUT, PRESSMOUNT: 4-40 $\times 0.21600,5 T L$ CD PL	46384	KF2-440
346-0032-00	3	.STRAP,RETAINIMG:0.075 DIA $\times 4.0 \mathrm{~L}$, MLD RBR	98159	2859-75-4

Fig. \& Index No.
Tektronix Serial/Model No. Part No. Eff Dscont Qty $12345 \quad$ Name \& Description \quad M

MIRE KITS

175-1825-00

175-3102-00

175-3491-00

175-8768-00

175-8769-00

175-8770-00

175-8771-00

10 CABLE ASSY,RF:50 OHN COAX,8.0 LONG 80009 175-1825-00 (AlJ530 TO AlJ22;AlJ533 TO AlJ20;AlJ630 10 A1.324;AlJ632 TO AlJ30;A1J6 14 TO AlJ23; AlJ330 TO AlJ12;A1J332 TO A1J11;A1J430 TO AlJ10;AlJ432 TO AlJ14)
2 CABLE, ASSY, RF:50 OHW COAX, 10.0,9-N 80009 175-3102-00 (AlJ200 TO AlJ32;A1J300 TO AlJ31)
1 CABLE ASSY, RF:50 OHM COAX, 11.0 L,9-2 80009 175-3491-00 (AlJ100 10 AlJ33)
1 CABLE ASSY,SP,ELEC: 7,22 AWG,8.0L,RIBBON 80009 175-8768-00 (A2P200 TO A2P440)
1 CABLE ASSY,SP, ELEC: 7,22 AWG,7.0L,RIBBON 80009 175-8769-00 (A2P 100 TO A2P450)
3 CABLE ASSY,RF:50 OHM COAX,40.0L,6-N 80009 175-8770-00 (AlJ320 TO AlJ420;AlJ422 TO AlJ520; AlJ612 TO AlJ622)
1 CABLE ASSY,RF:50 OHM COAX,80.0L,6-N 80009 175-8771-00

Mir
Code Mfr Part Number
(A1J610 TO AlJ620)
(SINGLE WIRE FROW Al+5V TO JACK)

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

Change Reference:
Product: 067-1155-99
Manual Part No.: 061-2820-00

DESCRIPTION

EFF SN: ALL

TEXT CHANGES

SECTION 1, page 1-1, SPECIFICATIONS, performance requirement for A1, C1, D1 Output Amplitude for calibration and test only;

CHANGE TO READ:

$\mathrm{A} 1, \mathrm{C} 1$	$+0.55 \mathrm{~V} \leq \mathrm{VOH} \leq+0.75 \mathrm{~V}$
(for calibration and test only)	$-0.25 \mathrm{~V} \leq \mathrm{VOL} \leq-0.05 \mathrm{~V}$ with 50 ohm termination to ground.
D1	$+0.60 \mathrm{~V} \leq \mathrm{VOH} \leq+0.80 \mathrm{~V}$
(for calibration and test only)	$-0.05 \mathrm{~V} \leq \mathrm{VOL} \leq+0.05 \mathrm{~V}$ with 50 ohm termination to ground.

SECTION 5, Replaceable Electrical Parts

CHANGE TO READ:

page 5-4

```
A1P100 131-0608-00 TERMINAL, PIN:0.365 L X 0.025 PH BRZ GOLD 22526 47357
                                    (QUANTITY 6)
A1P200 131-0608-00 TERMINAL, PIN: 0.365 L X 0.025 PH BRZ GOLD 22526 47357
                                    (QUANTITY 7)
page 5-5
\begin{tabular}{lllllll} 
A1R535 & \(315-0271-00\) & RES.,FXD,CMPSN:270 OHM, 5\%,0.25W & 01121 & CB2715 \\
A1R610 & \(323-0188-00\) & RES.,FXD,FILM:887 OHM 1\%, 0.5W & 75042 & CECTO-8870 \\
A1R613 & \(323-0188-00\) & RES.,FXD,FILM:887 OHM \(1 \%, 0.5 \mathrm{~W}\) & 75042 & CECTO-8870
\end{tabular}
```

SECTION 7, Replaceable Mechanical Parts, page 7-2;
CHANGE TO READ:

200-1837-00 to 200-1837-02
ADD:
195-1976-00 1 LEAD, ELECTRICAL: 26AWG, 12.0L 80009 195-1976-00
page 7-2, after A1 MFG CAL SOURCE BOARD INCLUDES;
ADD:

| 136-0727-00 | 1 | SKT, PL-IN ELEK: MICROCIRCUIT, 8 DIP | 09922 | DILBO8P-108 |
| :--- | :---: | :--- | :--- | :--- | :--- |
| 136-0252-07 | 21 | SOCKET, PIN CONN: W/O DIMPLE | 22526 | $75060-012$ |

