Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

00000000000

Tektronix:

COMMITTED TO EXCELLENCE

4024/4025

COMPUTER DISPLAY
TERMINAL

PROGRAMMER’S
REFERENCE MANUAL

Copyright © 1978 Tektronix, Inc.
All Rights Reserved.

All software products including this document, all associated
tape cartridges and the programs they contain are the sole
property of Tektronix, Inc., and may not be used outside the
buyer’'s organization. The software products may not be
copied or reproduced in any form without the express written
permission of Tektronix, Inc. All copies and reproductions
shall be the property of Tektronix and must bear this copyright
notice and ownership statement in its entirety.

PRODUCT 4024/4025 Computer Display Terminal

This manual supports the following versions of this product: Serial # BO10100 & Up.

MANUAL REVISION STATUS

REV.

DATE

DESCRIPTION

7/78

Original Issue

4024/4025 PROGRAMMER'S

Section 1

Section 2

Section 3

4024/4025 PROGRAMMER'S

CONTENTS

INTRODUCTION
About ThisManual i

The 4024/4025 Computer Display Terminal..................
4024/4025 Featurest
Optional Featuresco i,
4025 Features........co it
Optional Features

The Split Screen: Workspace and Monitor..................
The 4024/4025 Keyboard
ASCII KBYS ..o
Cursor/NumericPad Keys. ...,
Function Keys ...
Programmable Keyboard

4024/4025 COMMAND STRUCTURE

How to Find Commands in ThisManual

The Format of 4024/4025 Commands
Delimited ASCII Strings.t

The Syntax of Command Descriptions

Selecting the Command Character
COMMAND

HOST PROGRAMMING FOR THE 4024/4025

Textand Commands. ...t

Computer-to-4024/4025 Communications...................
Sending Numeric Parameters.............................
ContinuingaCommand.
A Note on Invalid Commands
Displayinga CommandFile...............................

4024/4025-to-Computer Communications...................

Typing Intothe Monitor.
SEND .

Section 4

Section 5

PROGRAMMING THE KEYBOARD Page
Programminga Key. 4-1
LEARN . 4-2
Special Considerations 4-4
The LEARN Command and the COMMAND Command. ... 4-6
Key Programming and Keyboard Lockout 4-7
Clearing Key Definitions 4-8
CLEAR ittt imanntaenannn s aneansceasseenensess 4-8

SYSTEM STATUS AND INITIALIZATION

Terminal Status Commands.cooiiiioi .. 5-2
COMMAND 5-2
WORKSPACE. 5-3
MONITOR ... 5-5
MARGINS .. 5-7
ST OPS L 5-9
@] T 5-10
SNOOPY L 5-11

Communications Status Commands 5-13
BAUD < ic i sme a1t 6 mam einmeain o aim mnain e e a s e e ie m s e s 5 5-13
PARITY. o 5-15
ECHO .o 5-17
BUFFERED « : 5 55 65516655658 65,8 005 v w5000 ¢ o1 50 10 1 2 11 0 20 1 g e 0 5-19
@ 5-21
PROMPT .. 5-23
DE LAY 5-25
FIELD . ot e e e 5-26
B O o it it e e e et e e e e e e e 8 s s o s 5-28
DUPLEX . .. 5-30
DISCONNECT ... 5-32

Status Messages................ooiiiiiiiiiii... S, 5-33
The STATUS Key and the STATUS Message. 5-33
SYSTAT and the SYSTATMessagecoovn.... 5-34
TEST . 5-37
T E ST 455,555 55 5.5 5058515 58w e m w1 i e a5 s s 5-39

@ 4024/4025 PROGRAMMER'S

Section 6

Section 7

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY Page
The Cursor Commands ..., 6-1
SUIMP < s is s a5 65 655 @5 5550 50555508 5550 7 s oo s 0 6-2
P 54 6205505558 508 e mmcm o oo e e e s 6-5
DOWN. . 6-8
L] I 6-11
B IR 6-13
The TabCommands ..., 6-15
TAB . e 6-15
BACKTAB 5505 0555555 5555510 0020 0010000 05 10 1 0 0810 010t e 00 1 6-17
The ScrollingCommands ..., 6-19
RUP . 6-19
BRDOMN 5 56,515 0905 9505 515555 5 5 5 505 55408 55 o S5 om0k o3 o o 1 500 1t 0 6-21
Additional Commandso i 6-23
ERASE ... 6-23
BELL ..o 6-24

Form FilloutMode 7-1
FORM e i hit 55005 555,55 1e om0 o i s s+ o e 7-3
Creatinga Form 7-4
Field Attributes and Field Attribute Codes.................... 7-6
Font Attributes.......... ..o 7-6
Logical Attributes 7-7
Visual Attributes 7-8
Field Attribute Codes Withina Line........................ 7-9
Creating FieltdS . wwems cuumesmsmssmsnin s oo s oo mnmo s mece o e o e o 7-10
ATTRIBUTE. ... oo 7-10
Creating Fields with JUMP. 7-14
BUBINGS <55 w5 60550595 5589 6555, 5 8 50 506 m e mom nommwm e coimt e it 1000 e 7-16
HRULE ... 7-16
VRULE .. 7-17
Making Correct Junctions 7-18
The Effect of Form Fillout on 4024/4025 Commands 7-20
Typingin Form Fillout 7-20
TABinFormF Fillout........... 7-22
BACKTAB in Form Fillout............ ..., 7-24
ERASE in Form Fillott: . - s aime soems smsmmessanims isishime 7-26
The HOME Key and JUMP in Form Fillout. 7-27
Transmitting Forms and Form Data 7-28
SENDinFormF Fillout 7-28
FIELD in Form Fillout...... 7-30
Some Sample Transmissionsccvvieiiinnnnn... 7-31
@

iv

Section 8 TEXT EDITING Page .
The Text-EditingCommands, 8-1
DCHAR . .. 8-1
ICGHAR: = isisaimaissmnimsansms i8imnisianifssnifas@ionims o3 8-3 I
DLINE . .. 8-7
ILINE. .. 8-11 I
Section 9 4025 GRAPHICS I
The GraphicsCommandst 9-1
GRAPHIC. ... 9-1
VECTOR. ..o 9-4 .
BVECTOR :iiiiims imimisss s s ass mi omeasssss i s i s 9-6
LINE . 9-8
STRING ... 9-9 I
ERASE G ... c.nimeonsn im0 i n 51546 508 056505585 508 6 5. 5158 05 5 505 85 9-10
SHRINK ..o 9-11
Effects of a GraphicRegion........... 9-13 I
4010-Style GraphiCs « s:«issevrsmsvainsnisss sdamosasssssssss 9-16
Addressing the VectorBeam. 9-17
Graph Mode Memory ...t 9-17 l
Alternate CharacterFonts. 9-18
SYMBOL :inivs swsis sosansms imsms ivsensemuims soiimess s 9-18
DFEONT . 9-20 I
Section 10 PERIPHERALS l
Initializing the 4025 for Peripheral Communications.......... 10-1
SET 10-2 l
SETting the Printer Parameters 10-2
SETting the Tape Unit Parameters 10-4
SETting the Plotter Parameters 10-6 l
PERIPHERALS e 10-8
REPORT and Peripherals. 10-9
REPORTingthe Tape Unit 10-9 l
REPORTingthe Plotter 10-10
REPORTingthe Printer...... oa.. 10-11 l
@ 4024/4025 PROGRAMMER'S I

Section 10 (cont)

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

4024/4025 PROGRAMMER'S

Page

Communicating with Peripherals 10-12
ALLOCATE ... 10-12
DIRECTORY . i 10-15
KILL . o 10-17
PASS, s smownimsmaessinssmsassnass sasensssenssssssnasss 10-18
T B o 10-23
4025 COPY. . 10-25
Auto-Incrementing The Tape Unit......................... 10-29
Copying the Workspace tothe Plotter 10-29
CopyingonaHard Copy Unit........... 10-30
HCOPY . 10-30

MEMORY CONSIDERATIONS

THE ASCII CODE

4010-STYLE GRAPHICS CODES

ALTERNATE CHARACTER FONTS

SAMPLE PROGRAMS

COMMAND LISTING

PROGRAMMER’S CHECKLIST

OPTION SUMMARY

vi

Figure

ILLUSTRATIONS

Description

The 4024/4025 Computer Display Terminal
The Split Screen; Workspace and Monitor Scrolls
The 4024/4025 Keyboard
Command Format
String Delimiters
Status Messages
SYSTAT Messages
4025 ITEST <CR> Results
4025 |IGTEST <CR> Results
The Workspace Window and the Workspace Scroll
Sample Form
The Parts of a Form
Ruling Junctions Chart
A Graphic Region
The VECTOR Command
The RVECTOR Command
VECTOR Line Types
The STRING Command
A Graphic Display
A Graphic Display After The SEND Command
A User-Defined Symbol

© ~
N -
©O
A Ul i Il I Il N D I OE D I I D I N W aE e

4024/4025 PROGRAMMER'S

TABLES
Table Description Page
5-1 Snoopy Mode MNemONICSttt 5-12
9-1 4010-Style Graphics Required Byte Transmissions. 9-17
10-1 Tape Error Codes. 10-10
10-2 Plotter Language Commands. ..o, 10-19
10-3 Transmitting Plotter Commands UsingPASS 10-21
10-4 4025 COPY Parameters. e 10-25
10-5 4025 COPY SWIECHOS . : s c e ma 5505 555055 5505500055558 55 06005 00 s mem e 10-26
A-1 4025 Graphic Memory Capacity ..., A-2
B-1 ASCIll Code Chart. B-1
B-2 ASCIl Control Characterso .. B-2
C-1 4010-Style Graphics Code Chart............c.cooiiiinn. .. C-1
D-1 4024/4025 Alternate CharacterFonts D-1
D-2 Ruling Junctions Chart.......... D-3
F-1 Command Listingooiiii F-1
G-1 Programmer’s Reference Table............... ..., G-1
4024/4025 PROGRAMMER'S @

viii

Figure 1-1. The 4024/4025 Computer Display Terminal.

2402-11

4024/4025 PROGRAMMER'S

Section 1

'

INTRODUCTION

The 4024/4025 Computer Display Terminal belongs to the class of machines popularly
known as “smart terminals.” It is a computer terminal that carries communications
between the operator and a host computer. In addition, the 4024/4025 contains its own
microprocessor and supporting electronics. With this electronics, the 4024/4025
responds to its own set of commands, independently of the host computer.

The 4024/4025 is not intended to be a stand-alone computing system. Rather, its
computing ability complements that of the host computer, enabling the user to make full
use of the 4024/4025’s information display capabilities.

ABOUT THIS MANUAL

The purpose of this manual is to acquaint you with these capabilities and to describe in
O detail the commands to which the 4024/4025 responds. You can then use the full
potential of the 4024/4025 for problem solving and information display.

Two assumptions are made concerning the reader of this manual. First, the person should
be familiar with computer operations in general and with at least one programming
language. Second, the person should have access to either the 4024 Operator’'s Manual
or the 4025 Operator’'s Manual, as appropriate.

The 4024/4025 Programmer’s Reference Manual is organized along broad functional
lines. Section 1 gives an overview of the 4024/4025 Computer Display Terminal. Each
succeeding section explores one class of commands related to a basic terminal function.

The 4024/4025 has a variety of parameter settings, most of which are set by command,
and the action of other commands may be influenced by these settings. When this is the
case, commands are cross-referenced.

Unless noted otherwise, a command description applies to both the 4024 and the 4025.
The command sets for the two instruments are slightly different, however, as are the
options supported. When necessary, commands will be flagged appropriately: (4025
only), (Requires Option 3), etc. An appendix contains a list of commands and their flags in
summary form.

4024/4025 PROGRAMMER'S

B N B A IS NE B 5 BN D D BE O R G S G aEm e
(

1-1

INTRODUCTION

RELATED DOCUMENTATION

Information related to programming for the 4024/4025 can be found in the following
documentation:

4024 Computer Display Terminal Operator’s Manual
4025 Computer Display Terminal Operator’'s Manual
4010B0O1 (B02,B03,B04,B05) PLOT 10 Easy Graphing Software documentation

A 4024/4025 Programmer’s Reference card, containing a summary of information in this
manual, is also available.

The 4024/4025 can be used in a polling environment. For information related to polling,
see the 4020 Series Polling Reference Manual.

THE 4024/4025 COMPUTER DISPLAY TERMINAL

The 4024/4025 Computer Display Terminal (Figure 1-1) is an interface between the
terminal operator and a host computer. It is designed especially for applications involving
text editing and display and processing of forms. The 4025 also possesses basic graphic
capability.

The 4024/4025 consists of a display unit and a keyboard attached to the display unit by
a thin flexible cable. This display unit contains a 12 inch, refresh-style crt, a
microprocessor with supporting electronics, and a standard RS-232 interface. The
terminal operator types information on the keyboard. Information from both the keyboard
and the host computer is displayed on the crt.

4024/4025 terminal operations are controlled by the microprocessor and its associated
firmware (programs for the microprocessor which are stored in Read Only Memory chips,
or ROMs). With this firmware, the 4024/4025 responds to several dozen commands,
independently of the host computer. These commands determine settings of the
4024/4025 system parameters, control the screen display, and perform various functions
useful in applications programs.

4024/4025 PROGRAMMER'S

Y

‘

INTRODUCTION

4024/4025 Features

® Workspace and Monitor — The 4024/4025 display memory can be divided into
two portions or scrolls. One portion, called the workspace, serves as a scratchpad
for editing text, filling out forms, or displaying results of applications programs.
The monitor portion of memory stores messages to and from the computer and
any 4024/4025 commands typed on the keyboard.

® Split Screen — The 4024/4025 screen can be divided into two areas, or windows,
corresponding to the two portions of the display memory. The upper area is the
workspace window and displays information from the workspace. The lower area
is the monitor window and displays information from the monitor without writing
over the workspace display. The portions of the screen allotted to each of these
windows are set by command.

® Scrolling — When either the workspace window or the monitor window is full,
information in that window scrolls up to display additional information. Information
scrolled off the screen is saved as long as memory is available; the scrolled text
can be reviewed by scrolling down.

Forms — The workspace can display a form. When the operator has filled in the
blanks of the form, the data in these blanks can be sent to the computer with a
single command.

® Visual Enhancements — Characters can be displayed with the standard visual
attribute (light characters on dark background) or the enhanced visual attribute
(brighter characters on light background). The display can be blinked between
these attributes. In addition, the 4025 can display visual attributes of underscored
(all characters and spaces underlined), inverted (dark characters on light
background), and combinations of more than one visual attribute (such as
enhanced with underscore). Screen brightness and contrast are controlled
manually by the operator.

® |ocally or Remotely Programmable — Commands to the 4024/4025 can be typed
on the keyboard or sent from the computer.

® Programmable Operating Parameters — Various operating parameters (such as
parity, workspace margins, tab stops, etc.) can be set by commands given either
from the keyboard or from the computer.

® Buffered Operation — In buffered mode, a line of text (up to 80 characters) in the
monitor is saved for proofing or local editing before it is sent to the computer.

4024/4025 PROGRAMMER'S @ 1-3

INTRODUCTION

C

® Programmable Keyboard — Almost all of the keys on the keyboard can be
programmed to generate a different character or character string than the default
one. This allows commonly used character strings or commands to be generated
by pressing a single key.

® |ocal Text Editing — Using the editing keys or commands, one can edit text held
in the workspace before sending it to the computer.

® Status Messages — The 4024/4025 can display status messages which indicate
parameter settings, the command character, and the amount of unused memory in
the terminal.

Optional Features

® Printer copies — Information in the workspace or in the computer can be copied
on a TEKTRONIX 4642 Printer.

® Rulings — The Ruling Characters font provides a variety of ruling characters.
Using this font, the 4024/4025 can draw horizontal and vertical rulings to
highlight the structure of a form displayed in the workspace.

® Additional Display Memory — Options provide up to 32 K bytes of display memory.

® Optional Interfaces — Options allow the 4024/4025 to use a 20 mA current loop
or an RS-232 peripheral communications line. A polling interface allows the
terminal to operate as one of several “‘slave” display stations which communicate
with the computer through a polling controller.

4025 Features

® Programmable Baud Rate — The 4025 baud rate can be set by command.

Optional Features

® Graphics — The 4025 can store and display graphs in the workspace. Solid lines
and several types of dashed lines can be drawn.

® Alternate Character Fonts — The Math Characters font provides a variety of
symbols useful in mathematical applications. The user can define 16 character
fonts, with each font containing up to 128 characters.

1-4 4024/4025 PROGRAMMER'S

g

4024/4025 PROGRAMMER'S

INTRODUCTION

® GPIB Interface — The 4025 can communicate with four TEKTRONIX 4924 Digital
Cartridge Tape Drives and two TEKTRONIX 4662 Interactive Digital Plotters, using
a GPIB (General Purpose Interface Bus).

® Hard Copies — The 4025 can make permanent copies of all information on the

screen using a TEKTRONIX 4631 Hard Copy Unit. The Hard Copy Unit copies
forms and graphs just as they appear on the 4025 screen.

® Polling Controller — The 4025 can act as a “polling controller” to supervise
communications between several 4024/4025 “slave display stations”” and a host
computer, using IBM 3270-style Bisynchronous EBCDIC protocol.

THE SPLIT SCREEN: WORKSPACE AND MONITOR

Information sent to the display unit from the keyboard or the computer is stored in a part
of the terminal’s memory called the display list. This display list can be divided into two
sections or scrolls — the workspace scroll (or simply workspace) and the monitor scroll
(or simply monitor).

Information from the keyboard can be directed into either scroll, as can information from
the computer. Each scroll has specific uses, and the 4024/4025 processes information in
the workspace differently than it processes information in the monitor.

The workspace serves as a scratchpad area. The operator can use it to create text to
send to the computer, to edit text, to create or fill out forms, or to display results of
applications programs. Text typéd into the workspace is stored there until the terminal is
commanded to send data in the workspace to the computer.

The monitor is used to display commands typed on the keyboard and messages to and
from the computer. The monitor cannot contain forms or graphics. In general, the monitor
allows (1) the operator to communicate with the terminal or the computer, and (2) the
computer to issue error messages or prompts, without this information being written over
the contents of the workspace.

Corresponding to this division of the display list into workspace and monitor, the terminal
screen can be divided into two areas or “windows’ to display information stored in each
part of the display list. The upper area is the workspace window and displays information
from the workspace. The lower area is the monitor window and displays information from
the monitor.

INTRODUCTION

1-6

—— WORKSPACE

WINDOW

WORKSPACE /
SCROLL MONITOR

R WINDOW
i TION OF MONITO
PORISPLAYED Iy
wONITOR WIN®

/7

MONITOR
SCROLL

2402-1

Figure 1-2. The Split Screen; Workspace and Monitor Scrolls.

There is always a monitor defined; hence, there is always a monitor window of at least
one line. There may, however, be no workspace defined. If no workspace is defined, there
is no workspace window; the entire screen is devoted to the monitor.

When the terminal is powered up or RESET, the monitor window occupies the entire 34
lines of display, no workspace is defined, and text from the keyboard and text from the
computer are directed into the monitor. Appropriate commands to the 4024/4025 define a
workspace, select the number of lines in each window, and direct text from the keyboard
and text from the computer into the desired scrolls.

For each scroll there is a cursor — a pointer in the display list indicating where the next
character entered in the scroll will be stored. The cursor appears on the screen as a
bright underline one column in width. Only one cursor will be visible at a given time.
(There may be brief periods, while the terminal performs certain routines, when neither
cursor is visible.)

4024/4025 PROGRAMMER'S

‘

INTRODUCTION

If the workspace window is full and additional text is entered in the workspace, the
workspace automatically scrolls up to display the new text. Text scrolled off the screen is
saved in the display list so long as that memory capacity is not exceeded. The operation
of the monitor is similar, except that information scrolled off the monitor window will be
discarded if that memory space is needed for other purposes.

Scrolling commands and scrolling keys roll the workspace and monitor up and down,
independently, to display various portions of text.

THE 4024/4025 KEYBOARD

The 4024/4025 keyboard is shown in Figure 1-3.

1

CURSOR/

NUMERIC
ASCII KEYS | PAD

Figure 1-3. The 4024/4025 Keyboard.

As indicated in Figure 1-3, the keys on the 4024/4025 keyboard fall into three categories:
ASCIl keys, cursor/numeric pad keys, and function keys.

ASCII Keys

The ASCII section of the keyboard resembles an
ordinary typewriter keyboard. Each key in this
section, except the BREAK key, sends a character
of the ASCII code to the computer. (See the ASCII ASCII KEYS
Code Chart, Appendix B.) The BREAK key sends a

break signal which interrupts the computer’s opera-

tion.

4024/4025 PROGRAMMER'S 1-7

INTRODUCTION

1-8

OO0 OO0 OO0 OI1m

L | A

CURSOR/NUMERIC PAD

I OO O14O OT1m

s

CURSOR MOVEMENT KEYS

1M OO OO0 O10d

LIJTTTTTITTI I]IED
I

SCROLLING KEYS”

NUMERIC LOCK

NUMERIC KEYS

Cursor/Numeric Pad Keys

The cursor/numeric pad is the group of 11 keys to
the right of the ASCII section of the keyboard. This
group of keys functions as a cursor pad and as a
numeric pad.

When the NUMERIC LOCK function key is off
(unlighted), the group functions as a cursor pad. In
this mode the four keys marked with arrows move
the cursor and the two keys marked with triangles
scroll the display list. The remaining pad keys have
no effect.

When the NUMERIC LOCK function key is on
(lighted), the group functions as a numeric pad,
generating the digits O - 9 and the decimal point
(period). The shifted versions of the appropriate pad
keys still move the cursor and scroll the display list.

4024/4025 PROGRAMMER'S

‘

LIJTITTTTITITTT 11
L 1

FUNCTION KEYS

4024/4025 PROGRAMMER'S

INTRODUCTION

Function Keys

The function key group consists of the ERASE key,
the PT (Pad Terminator) key, and the sixteen keys
along the top of the keyboard.

The ERASE key is at the extreme upper left of the
ASCII section of the keyboard. This key erases
whichever scroll (workspace or monitor) receives
text from the keyboard.

The PT (Pad Terminator) key is the large key to the
right of the cursor/numeric pad. The default defini-
tion of this key is “undefined.”

The sixteen keys along the top of the keyboard are
divided into four groups of four each. Each key in
the rightmost group includes an LED which, when
lighted, indicates the key is “on.” These sixteen
keys have the following definitions.

F1 — Undefined

F2 — Undefined

F3 — Undefined

F4 — Undefined

F5 — HOME

F6 — Undefined

F7 — Undefined

F8 — SEND **

F9 — DELETE CHARACTER
F10 — DELETE LINE

F11 — ERASE & SKIP

F12 — INSERT LINE

F13 — INSERT MODE *

F14 — TTY LOCK *

F15 — NUMERIC LOCK/LEARN *
F16 — COMMAND LOCKOUT/STATUS *

* — lighted keys
** — The SEND key has no definition until
programmed.

INTRODUCTION

1-10

Function keys F1-F4 and F6-F8 have default definitions of “undefined”; these keys cause
no action unless they are programmed.

Function key F5 is the HOME key. Pressing this key returns the visible cursor to its
“home” position in row 1, column 1 of the scroll, at the upper left corner of the window.

Function keys F9-F16 perform the functions indicated by their keyboard labels. These
keys are discussed in detail in the 4024 Operator's Manual and in the 4025 Operator’s
Manual.

The default definition of the SEND key is “undefined.” Since the 4024/4025 command set
includes two different types of SEND commands, the shifted and unshifted_ versions of the
SEND key may be programmed, each with a different type of SEND command.

The LEARN key is the shifted version of the NUMERIC LOCK key. The STATUS key is the
shifted version of the COMMAND LOCKOUT key. Neither the LEARN nor the STATUS key
is a lighted key; each operates independently of the corresponding unshifted key.

The action of the DELETE CHAR, DELETE LINE, INSERT LINE, INSERT MODE, and LEARN
keys can be duplicated by 4024/4025 commands discussed later in this manual.

There are no 4024/4025 commands which correspond exactly to the HOME, ERASE &
SKIP, TTY LOCK, NUMERIC LOCK, COMMAND LOCKOQUT, or STATUS keys. The action of
the HOME, ERASE & SKIP, and COMMAND LOCKOUT keys can be duplicated by certain
command sequences discussed in later sections of this manual. There are no command
sequences which duplicate the action of the TTY LOCK or NUMERIC LOCK keys.

NOTE

In a 4024/4025 which contains a Polling Interface (Option 10), or in a
4025 which contains a Polling Controller (Option 11), the definitions
assigned to some of the function keys will be different than those
discussed in this section. Refer to the 4020 Series Polling Reference
Manual for relevant details.

Programmable Keyboard

Most of the keys on the 4024/4025 keyboard can be programmed with definitions other
than the default ones. This allows the operator to generate commonly used character
strings, commands, or command sequences by pressing a single key.

4024/4025 PROGRAMMER'S

INTRODUCTION

All of the keys on the keyboard can be programmed except the following six keys:

® The rightmost three lighted function keys — TTY LOCK, NUMERIC LOCK, and
COMMAND LOCKOUT. (Neither the shifted nor the unshifted versions of these
keys can be programmed.)

® The three ASCII keys — SHIFT, CTRL, and BREAK.

Key programming may assign different definitions to the shifted and unshifted versions of
the same key. For example, the upper case A key and its unshifted version, the a key, may
be programmed with different definitions.

Function keys F1-F4, F6-F8, and the PT (Pad Terminator) key have no definitions
assigned to them; their default definitions are “undefined.” These keys are reserved
specifically for programmed definitions. The SEND key (function key F8) is usually
programmed with some version of the SEND command.

4024/4025 PROGRAMMER'S 1-11

Section 2

4024/4025 COMMAND STRUCTURE

?

HOW TO FIND COMMANDS IN THIS MANUAL

The 4024/4025 responds to several dozen commands. This manual is organized
functionally and each command, with a description of its structure and what it does, is
listed in the appropriate section of the manual: the UP and DOWN commands are
described in Controlling the Display, the HRULE and VRULE commands in Forms and
Form Fillout, and so forth. The first section in which a command appears contains a
complete description of the command syntax.

If the presence of certain modes or settings affects the action of the command, these
effects are discussed in the relevant section. The TAB command, for example, causes a
different action when the terminal is in form fillout mode, and the action of TAB in form

fillout mode is discussed in the Forms and Form Fillout section.

In addition to these command descriptions, Appendix F lists all commands and the
sections of the manual in which each command is discussed.

THE FORMAT OF 4024/4025 COMMANDS

Each 4024/4025 command is represented by an English-style ASCII string. In addition to
the English-style commands, the 4025 graphics commands have counterparts on existing
4010-series terminals and PLOT 10 software. When these commands are sent from the
computer, they can be represented using the 4010-style codes. (See the 4025 Graphics
section for a discussion of the graphics commands and 4010-style codes.)
A 4024/4025 command consists of four parts:

® The command character

® The command keyword

® The command parameters

® The command terminator

O

4024/4025 PROGRAMMER’S 2-1

-----5

COMMAND STRUCTURE
COMMAND FORMAT

The command character is a unique, user-selectable character that does not normally
occur in text. This character informs the 4024/4025 that the information which
immediately follows is a command. The exclamation point, !, is selected as the command
character before the 4024/4025 is shipped from the factory. The operator or programmer
can change the command character by using the COMMAND command. (See Selecting

the Command Character later in this section.) We shall use the exclamation point, !, as the

command character throughout this manual.

The command keyword is a single word that identifies the command to be executed. This
keyword can be spelled out entirely or, if it contains more than three letters, it can be
truncated to the first three letters. The keyword must immediately follow the command
character; no spaces or other characters are allowed between the command character
and the keyword.

The command parameters, if any, follow the keyword. The type and number of parameters
depend on the particular command; some commands take no parameters at all.
Parameters can be numbers, character strings, or words. A parameter word can be
abbreviated to its first letter.

The last character in a command, whether a parameter or the final character of the
keyword, is separated from subsequent information by a command terminator. A
terminator can be a semicolon, a carriage return, or another command character. If the
command is the final string on a line of text, the terminator is a carriage return. If the
command is followed by text, a semicolon terminates the command and separates it from
the text. If the command is followed by another command, the command character of the
following command can serve as the terminator.

Parameters which are characters or character strings must be separated from the
keyword and from each other by separators. A separator can be a comma or one or more
spaces. The separator between a numeric parameter and the keyword or between a
numeric parameter and neighboring alphabetic parameters can be omitted.

Figure 2-1 illustrates the format of 4024/4025 commands.

Consider the following line:

'WOR 20 H;THIS IS THE WORKSPACE!MON H!BEL<CR>

The ; terminates the IWOR 20 H command. The ! of the |BEL command terminates the
'MON H command. The <CR> terminates the |BEL command and the entire line. The
string THIS IS THE WORKSPACE, since it is not preceded by a command character, is
treated as text and printed in the workspace.

4024/4025 PROGRAMMER'S

C

y e
e \
b

IBE LL < CR > (NO PARAMETERS)

L

COMMAND KEYWORD TERMINATOR
CHARACTER

| BAUD 1200 2400 <CR>

Lt JL

COMMAND
NATOR
CHARACTER \ \ TERmI

SEPARATOR SEPARATOR PARAMETER

KEYWORD PARAMETER

COMMAND PARAMETERS ABBREVIATED SEPARATOR
CHARACTER (SEPARATORS KEYWORD (NECESSARY)
OMITTED)
COMMAND
CHARACTER
(SERVES AS
TERMINATOR)

(KEYWORDS ABBREVIATED;

] WOR 20 K! MAR 10 70 <CR> UNNECESSARY SEPARATORS

J L JUL u n 1 AND TERMINATOR OMITTED)

ABBREVIATED TERMINATOR
: KEYWORD PARAM ETER PARAM ETER

2402-3

Figure 2-1. Command Format.

Separators followed by + or — signs can be omitted. The command
'RVE +5,0,—20,—110,+35,—110<CR>

may be written
'RVE+5,0—20—110+35—110<CR>

The separator between +5 and O cannot be omitted.

4024/4025 PROGRAMMER'S

Il BN I I B I B B BN I D DD O B D D O B =
|

COMMAND STRUCTURE
COMMAND FORMAT

COMMAND STRUCTURE
DELIMITED ASCII STRINGS

Delimited ASCII Strings

Some of the 4024/4025 commands accept delimited ASCII strings as parameters. A
delimited ASCII string consists of any string of printing ASCII characters with a delimiter
at each end of the string. The delimiters mark the beginning and the end of the delimited
string.

The characters which can be used as delimiters are shown in Figure 2-2.

(L ! @ # $ % ~ & % () _(underline)

+ =)}y 1 ~ "2 > ? 7/ N L.(period)
2402-4

Figure 2-2. String Delimiters.

The symbol currently used as the command character cannot be used as a delimiter. The
hyphen (—), vertical bar (|), semicolon (;), and comma (,) cannot be used as delimiters

(although their shifted versions can be so used), since these symbols have special uses
in 4024/4025 command syntax.
The same symbol must be used for both delimiters of a string. You may write
ILEARN F1 [!SEND MOD[13<CR>
but not |

ILEARN F1 [ISEND MOD] 13<CR>

The delimited string must not contain its own delimiter. To set the end-of-line string to the
ASCII string * * */ x for example, we could write

IEOL@** %/ * @<CR>.
Neither the * nor the / may be used here as a delimiter.
Some commands restrict the length of a delimited string. In general, a delimited string

should not contain the command character, except in the LEARN command. See the
individual command descriptions for details.

4024/4025 PROGRAMMER'S

COMMAND STRUCTURE
SYNTAX

THE SYNTAX OF COMMAND DESCRIPTIONS

The 4024/4025 command descriptions which appear in this manual use the following
conventions:

® The exclamation point,'!, is always used as the command character.

® In a keyword or parameter string which can be abbreviated, the necessary part of
the string is written in uppercase; the optional part is written in lower case. For
example,

STOps

means that any of the strings STO, STOP, or STOPS can be used as the keyword
in a STOPS command. Usually the choice will be STO for efficiency or STOPS for
readability. ‘

® Expressions in angle brackets, <..>, are parameter names (except the expres-
sion <CR>, which always means carriage return). When a command is given, the
parameter name is replaced by one choice from a specified set of valid
replacements. The set of valid replacements for the parameter name is listed or
described. The DLINE command, for example, is described in this way:

IDLIne [<count>]<CR>
where <count> is a positive integer.

® Optional parameters or parameter names are enclosed in square brackets. In the
DLINE command noted above,

[<count>]

means that the <count> parameter may or may not be specified. Default values
are given for all optional parameters.

® Whenever a list appears, with the members of the list separated by vertical bars, |,
one element is to be chosen from the list. For example, the FORM command

syntax reads:

IFORm [Yes|No]<CR>

4024/4025 PROGRAMMER'S 25

COMMAND STRUCTURE
SELECTING THE COMMAND CHARACTER

This means that either Yes or No may be specified, but not both. Neither of these
have to be specified. The notation Yes means that Y, YE, and YES are all valid
parameter names and define the same command; likewise for No. Thus
IFOR<CR>,/[FOR Y<CR>,IFORM YES<CR>,I[FOR N<CR>, and

'FORM NO<CR> are all valid commands, and there are still others.

® The carriage return, <CR>, is always used as the command terminator when a
single command is listed. In particular, in the command descriptions, <CR>
always terminates the command.

SELECTING THE COMMAND CHARACTER

When the 4024/4025 is shipped from the factory, it recognizes the exclamation point, !,
as the command character. The command character can be changed by the computer or
the operator by using the COMMAND command. The 4025 remembers its command
character even when it is RESET or powered off. The only way to change the 4025’s
command character is to give the COMMAND command. When the 4024 is powered on or
RESET, its command character returns to !, the default setting.

Whenever the terminal receives the command character, it tries to interpret the
information immediately following as a command. If this information is not intended to be
a command, confusion may result. Therefore, the command character must be selected
with care. It should not interfere with normal printing of text or terminal/computer
communications.

Symbols such as carriage return, line feed, or space, which are normally
used during communications between the 4024/4025 and the computer,
should NOT be used as command characters.

The command character may vary from one applications program to another. In a text-
editing program the exclamation point, !, would be a risky choice for the command
character, since this symbol is occasionally used as a punctuation mark. Another symbol,
perhaps # or @, should be chosen.

4024/4025 PROGRAMMER'S

COMMAND STRUCTURE
COMMAND

At the end of a program the command character should always be reset to the
exclamation point. In this way, the next user will know the proper command character and
be able to command the terminal as needed.

COMMAND

The COMMAND command is used to select a new command character.

Syntax
ICOMmand <character> <CR>

where <character> is a single ASCI| character or a two- or three-digit ASCIl Decimal
Equivalent (ADE) of an ASCII character.

Action
This command sets the command character to the symbol designated by <character>. If
<character> is a single numeral, that character is the new command character. If

<character> is a two- or three-digit numeral, that numeral is the ADE of the new
command character.

Examples

ICOMMAND #<CR> Sets the command character to the number sign, # whose

ICOM#<CR> ADE is 35.

ICOM 35<CR>

ICOM 8<CR> Sets the command character to the ASCII character 8.
ICOM 08<CR> Sets the command character to the ASCII BS (backspace)

character, whose ADE is 08.

4024/4025 PROGRAMMER'’S 2-7

Section 3

HOST PROGRAMMING FOR THE 4024/4025

This section discusses how to use programming language statements to communicate
with the 4024/4025. Application programs for the 4024/4025 can be written in any
programming language which can display alphanumeric information on the terminal
screen and accept data from the terminal.

TEXT AND COMMANDS

All information received by the 4024/4025, whether sent from the computer or typed on
the keyboard, can be divided into two categories: commands and text. A command causes
the 4024/4025 to modify its internal status in some way — perhaps to select a new
command character, to redirect text from the computer, etc. Text is information which is
printed verbatim on the terminal screen.

The 4024/4025 distinguishes between text and commands by the presence of the
command character. When the 4024/4025 receives the command character, it assumes a
command follows and tries to process incoming data as a command. When not processing

a command, the 4024/4025 treats information as text and displays it in the appropriate
text window.

COMPUTER-TO-4024/4025 COMMUNICATIONS

Any programming statement which sends alphanumeric data can be used to send text
and commands to the 4024/4025. Common examples are the PRINT statement in BASIC,
the WRITE statement in FORTRAN or PASCAL, and the DISPLAY statement in COBOL.
Suppose we are programming in BASIC. The BASIC statement

100 PRINT “IWOR 20 K”

creates a workspace of 20 lines and directs text from the keyboard into the workspace.

NOTE

When the PRINT statement is executed, the computer sends a <CR> after
IWOR 20 K. This <CR> serves as the command terminator.

4024/4025 PROGRAMMER'S

3-1

HOST PROGRAMMING
COMPUTER-TO-4024/4025

3-2

C

In contrast, the BASIC statement
200 PRINT “WOR 20 K"

causes the text WOR 20 K to be displayed in whichever scroll receives text from the
computer. The command character in line 100 makes the difference; it indicates to
the 4024/4025 that the information which follows is a command.

Suppose you wish to initialize the 4024/4025 by establishing a 20 line workspace to
receive text from the computer, signal the operator by printing the message THIS IS THE
WORKSPACE in the workspace, and ring the terminal bell. The BASIC statement

100 PRINT “IWOR 20 K;THIS IS THE WORKSPACE!BEL"”
causes the following events:
® The 4024/4025 receives the first !, signaling that a command follows.

® The 4024/4025 recognizes the string WOR 20 K; as a valid command and
executes it.

® The 4024/4025 receives the string THIS IS THE WORKSPACE. As long as the
terminal does not see the command character, it treats incoming information as
text and prints it in the workspace, which now receives text from the computer.

® The 4024/4025 receives the second !, signaling that another command follows.

® The 4024/4025 receives the string BEL, followed by the <CR> sent by the
computer at the end of the PRINT statement. The 4024/4025 recognizes the
BEL <CR> as a valid command and executes it.

When the 4024/4025 receives information from the computer, it processes that
information as it is received. Consider the preceding example:

100 PRINT “IWOR 20 K; THIS IS THE WORKSPACE!BEL"”

The 4024/4025 executes the IWOR 20 K; command as soon as the ; is received, while
continuing to receive information from the computer. The information THIS IS THE
WORKSPACE, since it is not a command, is sent to the workspace as soon as the IWOR
20K; command has been executed. When the terminal receives the <CR>, it executes
the 'BEL<CR> command.

‘
y

4024/4025 PROGRAMMER'S

HOST PROGRAMMING
SENDING NUMERIC PARAMETERS

In contrast to this, suppose the following line is typed on the keyboard:
'WOR 20 K; THIS IS THE WORKSPACE!BEL<CR>

No information is processed until the <CR> is typed. Then the line is processed just as
though it came from the computer.

Sending Numeric Parameters
Consider the 4025 VECTOR command:
'VEC 100,100 200,100 150,200 100,100<CR>
In BASIC, this command can be sent to the 4025 in any of the following ways.

1. Include the VECTOR command parameters as alphanumeric data in a PRINT
statement:

495 PRINT “!IVEC 100,100 200,100 150,200 100,100"

(The PRINT statement provides its own <CR>. This <CR> terminates the
VECTOR command.)

2. Send the VECTOR command parameters as data:
495 PRINT “IVEC”;100,100;200,100;150,200;100,100

In this example, as in the preceding one, parameters are separated into
coordinate pairs for readability.

3. Define, by host programming, BASIC variables X1=100, X2=150, X3=200,
Y1 = 100, and Y2 = 200. Then use the BASIC statement:

495 PRINT “IVEC”;X1,Y1;X3,Y1;X2,Y2;X1,Y1

This method is most versatile, since parameters can be modified by input from
the 4024/4025 operator or by the program itself.

The 4025 graphic commands are discussed in detail in the 4025 Graphics section.

4024/4025 PROGRAMMER'S 3-3

HOST PROGRAMMING
CONTINUING A COMMAND

C

Continuing a Command

Some 4024/4025 commands can be continued from one line of code in the host program
to the next line of code by inserting a continuation character at the end of the line. There
are two cases where this can be done:

® |n a VECTOR or RVECTOR command, the ampersand, &, can be inserted after a
numeric parameter to continue the command to the next line. The BASIC
statement

100 PRINT “IVECTOR 0,0,175,175,0,175,0,0”
can be written as two lines of code:

100 PRINT “IVECTOR 0,0,&”
101 PRINT “175,175,0,175,0,0”

® |n a command which takes a delimited ASCII string as a parameter, the delimited
string can be divided into two delimited strings on two consecutive lines of code
using the hyphen, -, as a continuation character. The BASIC statement

200 PRINT “ILEARN F1 /!ISEND ALL;!ERA W/13”
can be written as two lines of code:

200 PRINT “ILEARN F1 /ISEND ALL,;/-"
201 PRINT “/IERA W/13”

The line of text to be continued in this way should NOT be divided between the
command character and the keyword, within the keyword, within a numeric
parameter, or between a number and its plus or minus sign (if the sign is present).

Individual commands may tolerate minor variations in syntax. See the command
descriptions for details.

A Note on Invalid Commands

Since legend has it that not all programs run correctly the first time, some information is

in order concerning what to expect from the 4024/4025 when it receives data which
confuses it.

34 @ 4024/4025 PROGRAMMER'S

HOST PROGRAMMING
INVALID COMMANDS

When the 4024/4025 receives an invalid command (that is, a string preceded by the
command character but which the 4024/4025 cannot recognize as a command), the
results depend on the origin of this invalid command. In the following examples the
command keyword STOPS is misspelled STEPS:

1. Suppose the invalid command
ISTEPS 20 40 60<CR>
is sent from the computer in a BASIC PRINT statement:

100 PRINT “ISTEPS 20 40 60"

The 4024/4025 treats this invalid command as text and prints the entire string,
ISTEPS 20 40 60, in whichever scroll receives text from the computer.

2. When the invalid command
ISTEPS 20 40 60<CR>

is typed on the keyboard, an error message is printed and the invalid command
is repeated:

WHAT?
ISTEPS 20 40 60

This calls the operator’s attention to the source of the error.

3. Suppose this same invalid command is part of a sequence of commands sent
from the computer, as in the following BASIC statement:

100 PRINT “IERA WISTEPS 20 40 60!BEL"

The 4024/4025 erases the workspace, prints the text ISTEPS 20 40 60 in
whichever scroll receives text from the computer, and rings the bell. No error
message is given; whatever the terminal cannot recognize as a command is
treated as text.

4024/4025 PROGRAMMER'S 35

HOST PROGRAMMING
DISPLAYING A COMMAND FILE

4. If the sequence of commands
'IERA WISTEPS 20 40 60'BEL<CR>

is typed on the keyboard, all information preceding the invalid command is
processed. Then an error message, the invalid command, and the remainder of
the line are all printed in the monitor:

WHAT?
ISTEPS 20 40 60!BEL

If the 4024/4025 receives a command that requires a workspace and no workspace is
defined, the command simply ceases to be. Nothing will be executed and no error
message will appear.

Displaying a Command File

How does one display a file containing 4024/4025 commands so that it can be read,
modified, or debugged? There are two ways this can be done:

1. The 4024/4025 operator can press the COMMAND LOCKOUT key and then
display the file on the screen. When this key is lighted, the 4024/4025 treats all
information, including the command character, as text and prints it in the
appropriate scroll.

Press COMMAND LOCKOUT (LED comes on).
. (Display file containing ! as the command

. character, review and edit this file, and
. return edited file to the computer.)

Press COMMAND LOCKOUT again (LED goes off).
2. The operator or the computer can change the command character to a symbol
which does not appear in the file to be reviewed. In a file which does not contain

the symbol #, one might have:

ICOM #<cr> (Change command character to #.)

3-6 @ 4024/4025 PROGRAMMER'S

HOST PROGRAMMING

SEND
ICOM #<CR> (Change command character to #.)

. (Display file containing ! as the command

. character, review and edit this file, and

. return edited file to the computer.)

#COM ! <CR> (Reset command character to !.)
The 4025 can also stay execution of commands by using the 4025 COPY command (see
the Peripherals section).
4024/4025-TO-COMPUTER COMMUNICATIONS
There are three ways to send information from the 4024/4025 to the computer: type into
the monitor, give the SEND command, and give the REPORT command.
Typing into the Monitor
One way to enter information into the computer is to type it into the 4024/4025 monitor. If
the 4024/4025 is in unbuffered mode, information typed into the monitor is sent to the
computer character by character, as it is typed. If the 4024/4025 is in buffered mode,
information typed into the monitor is sent to the computer line by line, as each line is
terminated by a carriage return. Buffered and unbuffered modes are discussed in more
detail in the System Status and Initialization section.
SEND
A second way to send information to the computer is to first enter that information in the
4024/4025 workspace. When the operator or the computer gives the SEND command, all
the information in the workspace is sent to the computer.
Syntax
ISENd<CR>
This command causes all information in the 4024/4025 workspace to be sent to the
computer.
4024/4025 PROGRAMMER'S 3.7

HOST PROGRAMMING

SEND

3-8

Usually the SEND key is programmed to give the SEND command, so that the operator
can send the workspace contents to the computer simply by pressing the SEND key
when he is ready. ‘

The SEND command is used in conjunction with whatever input request statement is
available in your programming language. In BASIC, for example, the INPUT statement is
used; in COBOL, the ACCEPT statement is used.

NOTE

The key labelled SEND on the 4024/4025 keyboard is not pre-
programmed. It may be programmed to give the SEND command using the
LEARN command or the LEARN key.

The following program asks the operator to type a one-line message in the workspace and
press a key to send this message to the computer. When the computer receives the
message, it prints it back in the monitor, so that the operator can verify the message was
correctly received.

LIST

NONAME ©9:09 AM 25-Rpr-78

108 REM---CREATE A CLEAN WORKSPACE

118 PRINT ’!'WOR 20 K’

120 REM---PROGRAM SEND KEY (FUNCTION KEY 8) TO GIVE !SEND COMMAND

132 PRINT ’!LEAR F8/!SEND/13 1@’

1480 REM-—-INFORM OPERATOR

150 PRINT ’!MON H’

168 PRINT ’This program accepts a message from the 4824/4825 Workspace’
161 PRINT ’and verifies the message was received. khen you type your’
162 PRINT ’message, it appears in the workspace. MWhen you press the’
163 PRINT ’SEND key, your message is sent to the computer. The computer’
164 PRINT ’verifies your message by printing it back to you, in the’
165 PRINT ’monitor. MNow type your message and press the SEND key when’
166 PRINT ’ready.’

200 REM---ACCEPT INPUT FROM TERMINAL

210 INPUT R$

220 REM---SEND MESSAGE RECEIVED BACK TO TERMINAL

238 PRINT ’Your message was received. It read:’

240 PRINT

250 PRINT R$

260 PRINT

278 PRINT

939 END

4024/4025 PROGRAMMER'S

C

C

®

HOST PROGRAMMING

NOW IS THE TIME

This program accepts a message from the 48244825 Workspace
and verifies the message was received. When you type your
message, 1t appears 1n the workspace. MWhen you press the
SEND key, your message is sent to the computer. The computer
verifies your message by printing it back to you, in the

monitor. Now type your message and press the SEND key when
ready.
2

NOW 1S THE TIME
Your message was received. It read:

NOW IS THE TIME

NOTE

When the SEND command is given from the computer, it must be placed in
the applications program before the input request statement. In BASIC, for
example, write

100 PRINT “ISEND”
110 INPUT A%

Do not write

200 INPUT A%
210 PRINT “ISEND”

In the latter case the program never executes line 210. It halts at line 200,
waiting for data which never comes.

4024/4025 PROGRAMMER'S

SEND

39

HOST PROGRAMMING
REPORT

The use of the SEND command in form fillout applications is discussed in the Forms and
Form Fillout section.

REPORT
A third way to send information to the computer is for the computer to issue the REPORT
command to the 4024/4025.
Syntax
IREPort <device> <CR>

where <device> is either the two-digit number 00 or the two-digit number 01.

Action

This command causes the 4024/4025 to send a report to the computer. The report has
the following format:

‘

IANS <device>,<data field>;

The report identifier ANS (for “answer’) is followed by one space, the two-digit <device>
number, a comma, the <data field>, and finally a semicolon.

The <data field > parameter contains one or more fields, separated from each other by
commas. The format of <data field> depends on the value of <device> — that is, on
which device is reporting. For a given device, however, the format of <data field> is
always the same. This allows the applications program to parse <data field> correctly,
knowing which device was interrogated.

Examples
1. The command
'REP O0O<CR>

causes the 4024/4025 to report the system status block to the computer. This
report is in the following format:

'ANS 00,<p1>,<p2>;

@ 4024/4025 PROGRAMMER'S

HOST PROGRAMMING
REPORT

where:

<p1> is a four-digit decimal number specifying the number of unused blocks
of memory. (A block consists of 16 8-bit bytes.)

<p2> is a three-digit number specifying the system status byte. The leftmost
bit specifies whether the terminal is in buffered mode (bit=1) or unbuffered
mode (bit=0). The middle bit specifies whether the terminal is in form fillout
mode (bit=1) or not (bit=0). The rightmost bit specifies whether there is a
monitor present (bit=1) or not (bit=0).

The command

'REP 01 <CR>

causes the 4024/4025 to report the workspace cursor status to the computer.
This report is in the following format:

IANS 01,<p1>,<p2>,<p3>;
where:

<p1> is a three-digit decimal number specifying the row of the workspace
in which the cursor is located.

<p2> is a three-digit decimal number specifying the column of the workspace
in which the cursor is located.

<p3> is a single character, the character displayed at the cursor position.

Other values of <device> are possible if the 4024/4025 has certain peripheral devices
attached. See the Peripherals section for details.

The REPORT command can be used for purposes other than straightforward interrogation
of .the system status block or the workspace cursor.

Some programs may perform considerable processing before sending data to the terminal
or requiring input from the terminal. It may be convenient, therefore, to verify that the
terminal is alive and listening before proceeding. In BASIC, for example, the applications
program can begin with

100 PRINT “IREP 00"
110 INPUT A$

4024/4025 PROGRAMMER'S @ 3-11

HOST PROGRAMMING
REPORT

3-12

The program does not proceed until it receives A$. What A$ is, is not important.

As a second example, suppose the applications program is sending large amounts of data
to the 4024/4025 at relatively high baud rates. It is possible for the computer to overrun
the 4024/4025's input buffer, resulting in loss of information. The pair of statements
(here, in BASIC)

XXX PRINT “IREP 00”
XXX+1 INPUT AS$

can be inserted occasionally. The program pauses at each input statement and will not
continue until it receives input for A$ — that is, until the 4024/4025 has processed its
entire input buffer and ANSwers the REPort command. What the terminal ANSwers is not
important, only that it ANSwers.

The REPORT command is also used to obtain information about peripherals which may be
attached to the 4024/4025. Details are contained in the Peripherals section. Appendix E
contains a program segment in PASCAL to illustrate how the input from a REPORT
command can be processed.

@ 4024/4025 PROGRAMMER'S

Section 4

PROGRAMMING THE KEYBOARD

The 4024/4025 keyboard is programmable; that is, most of the keys can be programmed
to generate a character or string of characters other than the default ones. When a key is
programmed, the new definition assigned to that key is stored in the 4024/4025 RAM
(Random Access Memory). If the terminal is RESET or powered off, the definition is lost
and the key reverts to its default definition.

Key programming enables the operator to give a command or sequence of commands by
pressing a single key. During an applications program the operator may log on or log off
the computer, change terminal parameters, send information to the computer, page
through text, or perform any of several convenient functions just by pressing a key. Key
definitions may be part of terminal initialization or may occur at convenient points in a
program. A key can have several different definitions in a single program.

All the keys on the 4024/4025 keyboard can be programmed except the following six
keys:

® The rightmost three lighted function keys — TTY LOCK, NUMERIC LOCK/LEARN,
and COMMAND LOCKOUT/STATUS. (Neither the shifted nor the unshifted

versions of these keys can be programmed.)

® The SHIFT, CTRL, and BREAK keys.

PROGRAMMING A KEY

A key may be programmed with a new definition in one of two ways:
® The operator may use the LEARN key.
® The operator or computer may give the LEARN command.

The LEARN key performs the same action as the LEARN command. The 4024 Operator's
Manual and the 4025 Operator’s Manual describe the use of the LEARN key.

4024/4025 PROGRAMMER'S @

4-1

PROGRAMMING THE KEYBOARD
LEARN

LEARN

Syntax
ILEArn <key> [<string>]<CR>

where <key> designates the key to be programmed and <string> designates the
character or character string assigned to the designated key.

Action

This command redefines the key designated by the <key> parameter; whenever this key
is pressed, it generates the character string defined by <string>.

Range of Parameters

The <key> parameter may be any of the following:

® A single printing ASCII character.

® A two- or three-digit ADE (ASCII Decimal Equivalent) value from 00 through 127,
inclusive. (See the ASCII Code Chart, Appendix B.)

® A mnemonic representing a non-ASCI| key (function key or cursor/numeric pad

key):
F1 —F12 Function keys 1 through 12
S1—-S812 Function keys 1 through 12 with SHIFT
depressed
PO — P9, P, PT Numeric pad keys and Pad Terminator key
4-2 @ 4024/4025 PROGRAMMER'’S

128 Function Key
129 Function Key
130 Function Key
131 Function Key
132 Function Key
133 Function Key
134 Function Key
135 Function Key
136 Function Key

160 Pad Key O
161 Pad Key 1
162 Pad Key 2
163 Pad Key 3
164 Pad Key 4
165 Pad Key 5
166 Pad Key 6
167 Pad Key 7
168 Pad Key 8
169 Pad Key 9
170 Pad Key .

4024/4025 PROGRAMMER'S

0O ~NOOO A WN =

9

137 Function Key 10
138 Function Key 11
139 Function Key 12
140 Function Key 13

171 Pad Terminator Key

® One or more ADE values.
® One or more pseudo-ADE values.
® One or more delimited ASCII strings.

e Any combination of the above.

PROGRAMMING THE KEYBOARD

® A “psuedo-ADE value” representing a non-ASCII key:

144 SHIFT-Function Key
145 SHIFT-Function Key
146 SHIFT-Function Key
147 SHIFT-Function Key
148 SHIFT-Function Key
149 SHIFT-Function Key
150 SHIFT-Function Key
151 SHIFT-Function Key
152 SHIFT-Function Key

0N~ WN =

9

153 SHIFT-Function Key 10
154 SHIFT-Function Key 11
155 SHIFT-Function Key 12
156 SHIFT-Function Key 13

172 ERASE
173 SHIFT-ERASE
174 BK TAB

The <string> parameter may be any of the following:

If the <string> parameter is omitted, the key is assigned its default meaning (the
standard keyboard meaning). The <string> parameter may be any length as long as the
terminal’s display memory capacity is not exceeded.

LEARN

PROGRAMMING THE KEYBOARD

LEARN

Examples

ILEARN # /(End-of-Page)/<CR>
ILEA 35 /(End-of-Page)/<CR>

ILEA 35 13<CR>

ILEA F8 “ISEND MOD”13<CR>
ILEA 135 “ISEND MOD”13<CR>

Redefines the # key (SHIFT-3 key), whose
ADE is 35, to generate the parenthetical
comment (End-of-Page). The definition of the
3 key is unchanged.

Redefines the # key to mean carriage
return.

Programs function key F8, whose pseudo-
ADE is 135, to give the ISEND MOD com-
mand.

ILEA 148 /IWOR!ERA W;READY FOR NEXT PROGRAM/ 7 7 7 /IMON/13<CR>

ILEA 148 <CR>

Programs the SHIFT-HOME key, whose
pseudo-ADE is 148, to direct text from the
keyboard into the workspace, erase the
workspace, print the message READY FOR
NEXT PROGRAM there, ring the terminal bell
three times, and return the keyboard to the
monitor.

Restores the SHIFT-HOME key to its default
meaning (undefined).

NOTE

When programming a key to give a command or sequence of commands,
always include the ADE 13 as the last character of < string>. This
insures that pressing the programmed key causes the command(s) to be

executed.

Special Considerations

When the LEARN command is given from the computer, it may be continued from one line
of program code to the next by using a hyphen, -, as a continuation character. This
causes the next <CR>, up toone <LF>, and all NULs, RUBOUTs, and SYNCs to be
ignored until another character is received. The LEARN command

4024/4025 PROGRAMMER'S

PROGRAMMING THE KEYBOARD
LEARN

ILEA F3 /THIS COMMAND IS TOO LONG TO FIT ON ONE LINE/ 13 <CR>

can be written on two consecutive lines of BASIC program code as follows:

100 PRINT “ILEA F3 /THIS COMMAND IS TOO /-"
101 PRINT “/LONG TO FIT ON ONE LINE./ 13"

This does not apply to a LEARN command entered from the keyboard. If the command is
entered from the keyboard, one simply continues typing until the command is complete. If
the command is longer than one line (80 characters), the cursor wraps around to the next
line; the command is not terminated until <CR> is pressed.

Since delimited strings may contain only printing ASCII characters, any control
characters or non-ASCII characters included in a LEARN command must be encoded
as ADEs or pseudo-ADEs outside the delimited string. thus, the command

ILEA$ 13 10<CR>

programs the $ key (SHIFT-4 key) to mean <CR> <LF>. In contrast, the command

ILEA$ /13 10/<CR>

programs the $ key to print the ASCII string 13 10.

If one of the ASCII numeral keys (0-9) or the period key () is programmed, the
corresponding numeric pad key (with the NUMERIC LOCK key lighted) is also
programmed. Likewise, if the numeric pad key (with NUMERIC LOCK on) is programmed,
the corresponding ASCII numeral or period key is programmed. Programming an ASCI|
key does not program the corresponding cursor pad key with NUMERIC LOCK off.
Likewise, programming the cursor pad key with NUMERIC LOCK off does not program the
ASCII key marked with the same symbol.

If the character string assigned to a programmed key includes one or more commands,
those commands are executed but not displayed on the screen when the programmed key
is pressed.

The <string> parameter may include the CLEAR command, discussed later in this
section. Suppose we program the F1 function key as follows:

ILEARN F1 /IERA MICLEAR!BEL;Goodbye for now.IMON/13<CR>.

Pressing F1 causes all of the commands to be executed and the text “Goodbye for now”
to be printed in the workspace, even though the CLEAR command is given early in this
string.

4024/4025 PROGRAMMER'S @ 4-5

PROGRAMMING THE KEYBOARD
LEARN AND COMMAND

4-6

Function key pseudo-ADE’s can be included in the <string> parameter, but those ADE’s
generate default definitions instead of previously programmed definitions. Consider the
command sequence:

ILEARN 172 /IERA WIBEL/13<CR>
ILEARN 128 172<CR>

The first LEARN command programs the ERASE key (pseudo-ADE 172) to erase the
workspace and ring the bell. the second LEARN comand programs function key F1 to
mean the same as the unprogrammed ERASE key.

NOTE

The SEND keys (keys F8 and S8, with pseudo-ADEs 135 and 151,
respectively) have no meaning until programmed. Normally, these keys will
be programmed to send information to the computer.

The LEARN Command and the COMMAND Command

Do not confuse programming a key using the LEARN command with selecting a new
command character using the COMMAND command. These operations are different.

Programming a key with the LEARN command causes the programmed key to generate a
different character or character string than it normally generates. In contrast to this,
selecting a new command character does not change the character string generated by
any key. Rather, it changes the way the 4024/4025 processes the default symbol
generated by one particular key. The same key generates the same symbol, but that
symbol, when seen by the terminal, now has a different effect.

When the COMMAND command selects a new command character for the 4025, this new
selection is stored in the 4025 battery-maintained RAM. This means that the 4025
remembers the new command character, even when it is turned off or RESET. The only
way to change the 4025’s command character is to give a new COMMAND command.
When a key is programmed using the LEARN command, however, the learned definition is
lost if the terminal is turned off or RESET, and the key returns to its default definition.
(When the 4024 powers up and RESETs, its command character is always the
exclamation point.)

@ 4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

PROGRAMMING THE KEYBOARD
KEYBOARD LOCKOUT

KEY PROGRAMMING AND KEYBOARD LOCKOUT

When a key is programmed, the new definition assigned to that key is generated
whenever the key is pressed; however, the default character assigned to that key can still
be sent to the terminal. It is not the default character, but the key itself, which generates
the new definition.

Suppose we execute the following sequence of commands:
ILEA 127 34!LEA 34 /'WOR 20 H K/13<CR>

The RUBOUT key (ADE 127) is now programmed to mean quotes, “, and the quotes key
(ADE 34) is programmed to mean !WOR 20 H K< CR>. The ASCII quotes character can
be sent to the terminal with its usual meaning, either by sending the ASCII quotes

character (ADE 34) from the computer or by pressing the RUBOUT key on the keyboard.

It may be desirable to prevent an operator from issuing arbitrary commands to the
terminal during an applications program, but still allow him to issue certain specific
commands or command sequences. During a form fillout program, for example, the
operator should not be able to modify the form itself, but he should be able to give the
SEND MOD command.

Key programming can accomplish this. Suppose ! is the command character. If the
computer sends the command

'LEARN 33 00<CR>

to the 4024/4025, the ! (SHIFT-1) key is programmed to generate the ASCII NUL
character. This prevents the operator from using the ! key to generate the command
character. Yet the computer can send command characters to the terminal and can
program function keys to issue commands when pressed by the operator. Only the
operator’s ability to issue the command character arbitrarily from the keyboard is
impaired. At the proper time, the computer returns control of the 4024/4025 to the
keyboard by sending the command

ILEARN 33<CR>

This returns the ! key to its default meaning.

PROGRAMMING THE KEYBOARD
CLEAR

CLEARING KEY DEFINITIONS

To restore a single key to its default definition, use the LEARN command with the
<string> parameter omitted. The command

ILEARN <key> <CR>

will restore the <key> key to its default meaning.

CLEAR

To clear all programmed key definitions simultaneously, use the CLEAR command.
Either of the commands

ICLEAR<CR>
or
ICLE<CR>

clears all key definitions generated by LEARN commands or by the LEARN key. All keys
revert to their default definitions.

4-8 @ 4024/4025 PROGRAMMER'S

’

)

Section 5

SYSTEM STATUS AND INITIALIZATION

The 4024/4025 has many operating parameters which can be set from the keyboard or
from the computer. This allows the 4024/4025 to interface with a variety of host systems
as well as run many different applications programs easily and effectively. Some of these
parameters (the end-of-line string, for example) must be set when the terminal is first
installed and are changed infrequently, if at all. Other parameters (the form fillout mode

setting, for example) will be changed more often, perhaps several times within the same
program.

Clearly, it is necessary for the host and the applications program to be well informed of
the status of these parameters. Since these settings may be changed from the keyboard
without the host’s knowledge, the first task of any applications program is to initialize the
terminal; that is, the terminal must be set to a known and desired state which facilitates
execution of the program. When the program is completed, the terminal should be
returned to a known reference state for the convenience of future users.

Some parameters affect the status of the terminal itself. Other parameters affect the
status of communications between the terminal and the host computer. This section first
discusses the terminal status commands, which determine the status of the terminal
itself. These are the COMMAND, WORKSPACE, MONITOR, MARGINS, STOPS, FORM, and
SNOOPY commands. Then the communication status commands, which determine the
status of communications between the 4024/4025 and the host computer, are discussed.
These are the BAUD, PARITY, ECHO, BUFFERED, EOL, PROMPT, DELAY, FIELD, EOF,
DUPLEX, and DISCONNECT commands.

4024/4025 PROGRAMMER’S

STATUS/INITIALIZATION
COMMAND

TERMINAL STATUS COMMANDS

COMMAND

The syntax of the COMMAND command is
ICOMmand <character> <CR>

where <character> is a single printing ASCII character or the ADE (ASCII Decimal
Equivalent) of an ASCII character. The syntax and action of this command were
discussed in the 4024/4025 Command Structure section; however, some additional
comments regarding terminal initialization are in order here.

Since each command to the 4024/4025 must be preceded by the command character,
the computer must know the command character at all times. Although the terminal
operator can discover the command character by pressing the STATUS (SHIFT-
COMMAND LOCKOUT) key, the computer cannot do this. Therefore, at the end of each
applications program the command character must be set to a reference symbol. This
insures the next user proper access to the terminal. The exclamation point, !, is
recommended as the reference symbol. It is the command character when the 4024/4025
is shipped from the factory. It is also used as the command character throughout this
manual and throughout the 4024 and 4025 Operator’s Manuals.

The command character can be changed at the beginning of an applications program, or
anytime during the program, by using the COMMAND command. But the program should
always reset the command character to the reference character, !, before releasing
control of the terminal. Consider a text-editing program. Since the ! symbol is used
occasionally as a punctuation mark, one may wish to avoid using it as the command
character in this situation. Such a program might begin by choosing another command
character, say the @ character, and resetting to ! at the end of the program:

ICOM @ <CR>
(Body of program)

@COM !<CR>
End of execution .

5-2 @ 4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
WORKSPACE

WORKSPACE

When the 4024/4025 is powered up or RESET, there is no workspace or workspace
window, the entire 34-line screen is devoted to the monitor window, and text from both the
keyboard and the computer is directed into the monitor. Before an applications program is
run, the 4024/4025 terminal screen must be initialized:

® Divide the screen into a workspace window and a monitor window to display
information from the corresponding scrolls.

® Direct text from the computer and from the keyboard into the appropriate scrolls.

One of the commands used to initialize the screen is the WORKSPACE command.

Syntax
IWORkspace [<number>] [Host] [Keyboard] <CR>

where <number> is an integer between 0 and 33, inclusive.

Action

If <number> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
allots the top <number > lines of the screen for the workspace window. The remaining
34-<number> lines are used for the monitor window. At least one line is always reserved
for the monitor window.

If H (Host) is specified, text from the host computer is directed into the workspace. If K
(Keyboard) is specified, text from the keyboard is directed into the workspace.
(Commands typed on the keyboard are still displayed in the monitor.)

If only the <number> parameter is specified, text from the keyboard and text from the
computer go to the same scrolls as before. A WORKSPACE 0 command directs text from
both the keyboard and the computer into the monitor, since this command defines no
workspace.

If no parameters are specified and the command comes from the host computer, a
WORKSPACE H command is executed. If no parameters are specified and the command
is typed on the keyboard, a WORKSPACE K command is executed.

4024/4025 PROGRAMMER'S @ 5-3

STATUS/INITIALIZATION
WORKSPACE

5-4

Examples

IWOR 20 H K<CR>

'WOR 25<CR>

'WOR 0<CR>

'WOR H<CR>

'WOR<CR>

Erases the display list, reserves the top 20 lines of the
screen for the workspace window, and directs text
from both the computer and the keyboard into the
workspace.

Erases the display list, reserves the top 25 lines of the
screen for the workspace window. Does not change
the destination of text from the computer or of text
from the keyboard.

Erases the display list and reserves the entire 34-line
screen for the monitor window. Directs text from both
the computer and the keyboard into the monitor, since
no workspace is defined.

Directs text from the computer into the workspace.
Does not erase the workspace or change the position
of the workspace cursor.

If this command comes from the computer, it directs
text from the computer into the workspace. If the
command comes from the keyboard, it directs text
from the keyboard into the workspace.

@ 4024/4025 PROGRAMMER'’S

STATUS/INITIALIZATION
MONITOR

MONITOR

The WORKSPACE command does not allow you to specify which devices (Host,
Keyboard) send information to the monitor. The MONITOR command allows you to do this,
as well as create text windows.

Syntax
IMONitor [<number>] [Host] [Keyboard] <CR>

where <number> is an integer between 1 and 34, inclusive.

Action

If <number> is included, this command erases the entire display list (the monitor, and if
a workspace is defined, the workspace also). The terminal then defines a workspace and
reserves the top 34-<number> lines of the screen for the workspace window. The
remaining <number> lines are used for the monitor window. At least one line is always
reserved for the monitor window.

If H (Host) is specified, text from the computer is directed into the monitor. If K (Keyboard)
is specified, text from the keyboard is directed into the monitor.

If <number> is the only parameter specified, text from the computer and from the
keyboard go into the same scrolls as before. AMONITOR 34 command directs text from
both the computer and the keyboard into the monitor, since this command defines no
workspace.

If no parameters are specified and the MONITOR command comes from the host
computer, a MONITOR H command is executed. If no parameters are specified and the
MONITOR command is typed on the keyboard, a MONITOR K command is executed.

Examples
IMON 10 H K<CR> Erases the display list, creates a monitor window of 10
lines and a workspace window of 24 lines, and directs
text from the computer and from the keyboard into the
monitor.
4024/4025 PROGRAMMER'S @ 5-5

STATUS/INITIALIZATION

MONITOR

IMON 4<CR>

IMON 34 <CR>

IMON H<CR>

IMON<CR>

Erases the display list, creates a monitor window of 4
lines and a workspace window of 30 lines. Text from
the keyboard and text from the computer go into the
same scrolls as before.

Erases the display list and reserves the entire 34 lines
of screen for the monitor window. Directs text from
both the computer and the keyboard into the monitor,
since no workspace is defined. Equivalent to a WORK-
SPACE 0 command.

Directs text from the computer into the monitor; does
not erase either scroll.

If this command comes from the computer, it directs
text from the computer into the monitor. If the com-
mand comes from the keyboard, it directs text from the
keyboard into the monitor.

@ 4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
MARGINS

MARGINS

Workspace margins are set with the MARGINS command. (Monitor margins are always
set to columns 1 and 80, and cannot be changed.)

Syntax
IMARgins [<left> [<right>]]<CR>

where <left> and <right> are integers between 1 and 80, inclusive, and <left> is less
than <right>. If only one parameter is specified, it is taken to be the <left> parameter;

in this case, the <right> parameter remains unchanged. If both parameters are omitted,
<left> and <right> default to 1 and 80, respectively.

Action

This command sets the workspace margins—the left margin to column <left>and the
right margin to column <right>.

When the terminal receives a <CR> from the computer or from the keyboard, the cursor
moves to column <left>. All cursor movement keys and almost all commands which
move the cursor respect the left margin: if the left cursor key is pressed repeatedly, the
cursor moves left to column <left>, then wraps around to column 80 of the previous line;
the BACKTAB key does not move the cursor past column <left>. (The one exception is
the JUMP command. See the Controlling the Display section.)

If a character is typed into column <right>, the terminal bell rings. This is the only action
which occurs. If more characters are entered in the workspace, those characters are
displayed on the same line, and the cursor continues moving right until either (1) the
cursor moves past column 80 and wraps around to the next line, or (2) the terminal
receives a <CR> as a signal to begin a new line. In either case, the cursor moves to the
left margin in column <left> of the next line.

Examples

IMARGINS 10 70<CR> Sets the left workspace margin to column 10 and the
right margin to column 70.

IMAR 25<CR> Sets the left margin to column 25; leaves the right
margin unchanged.

STATUS/INITIALIZATION
MARGINS

IMAR<CR> Sets the left and right margins to their default settings:
columns 1 and 80, respectively.

The 4025 remembers its right and left margins when it is powered off or RESET. When the
4024 is powered up or RESET, its left and right margins default to 1 and 80, respectively.
NOTE

Unless stated otherwise, it is always assumed in this manual that the left
margin is set to column 1.

5-8 @ 4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION

STOPS
STOPS
Tab stops are set with the STOPS command.
Syntax
ISTOps [<stop 1>] [<stop 2>] ... [<stop 16 >]<CR>

where each <stop n> parameter is a positive integer between 2 and 80, inclusive, and
parameters are arranged in increasing order.
Action
This command sets up to 16 tab stops by listing the columns in which stops are defined.
Stops are defined in both the workspace and the monitor simultaneously. Only the stops
specified are defined; all previous stops are deleted. Stops may be set to the left of the
left workspace margin, to the right of the right workspace margin, and between the
margins.
If no parameters are specified, all tab stops are cleared.
Examples

ISTO 10 20 35 45 60<CR> Defines monitor and workspace tab stops in columns

10, 20, 35, 45, and 60. No other stops are defined; any
previously defined stops are deleted.

ISTO<CR> Clears all tab stops.
The 4025 remembers its tab stops when powered off or RESET. When the 4024 is
powered up or RESET, no tab stops are defined.

4024/4025 PROGRAMMER'’S @ 59

STATUS/INITIALIZATION
FORM l
FORM |
The FORM command places the 4024/4025 in form fillout mode and removes it from form l
fillout mode.
Syntax l
IFORm [Yes |No]<CR> I
Action '
The FORM YES command (or equivalent) places the 4024/4025 in form fillout mode. The
FORM NO command (or equivalent) removes the 4024/4025 from form fillout mode. A '
detailed discussion of form fillout mode is found in the Forms and Form Fillout section.
If no parameter is specified, Y (Yes) is assumed. l
Examples ‘ '
IFORM YES<CR> Places the 4024/4025 in form fillout mode.
IFOR Y<CR> '
IFOR<CR>
IFORM NO<CR> Removes the 4024/4025 from form fillout mode. l
IFOR N<CR>
The 4024/4025 always powers up and RESETs to FORM NO.
5-10 @ 4024/4025 PROGRAMMER'S '

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
SNOOPY

SNOOPY

The 4024/4025 has a “snoopy” mode of operation. In snoopy mode, the non-printing
ASCII characters (control characters) are represented on the screen by two letter
mnemonics. (See Table 5-1.) The RUBOUT (or DELETE) character is represented by a

blotch of fine diagonal lines. Entering and leaving snoopy mode is controlled by the
SNOOPY command.

Syntax
ISNOopy [Yes |[No]<CR>

If neither parameter is specified, Yes is assumed.

Action

The SNOOPY YES command places the 4024/4025 in snoopy mode. The SNOOPY NO
command removes the 4024/4025 from snoopy mode.

Snoopy mode is useful for troubleshooting and debugging, since it allows the operator to
examine all ASCII characters received by the terminal, not just printed characters. It is
also useful for inserting control characters into text stored in the workspace. Commands
are still executed in snoopy mode.

To see the ASCII NUL character printed when examining incoming data, it is necessary to
have the 4024/4025 parity set to “data.” (See the discussion of the PARITY command.)

Examples

ISNOOPY YES<CR> Places the 4024/4025 in snoopy mode.
ISNO Y<CR>
ISNO<CR>

ISNOOPY NO<CR> Removes the 4024/4025 from snoopy mode.
ISNO N<CR>

The 4024/4025 always powers on or RESETs to SNOOPY NO.

@ 5-11

STATUS/INITIALIZATION
SNOOPY l
Table 5-1
SNOOPY MODE MNEMONICS '
CONTROL | SNOOPY MODE CONTROL | SNOOPY MODE l
CHARACTER MNEMONIC CHARACTER MNEMONIC
NUL k] DLE g
SOH % DC1) l
STX % DC2 g
ETX & DC3 %
EOT & DC4 o
ENG % NAK % '
ACK & SYN S
BEL g ETB &
BS & CAN S
HT ks EM & l
LF ¥ SUB %
VT ¢ ESC E
FF F FS Fs
CR S GS § .
SO % RS K
SI S us %
5-12 @ 4024/4025 PROGRAMMER'S '

STATUS/INITIALIZATION
BAUD

COMMUNICATIONS STATUS COMMANDS

BAUD (4025 only)

The simplest communications system consists of a device to transmit information, a
device to receive information, and a communications link or “line.” The rate at which
information is transferred over a communications line is called the “baud rate.” This rate
is given in bits/second; a baud rate of 1200 means information is transferred at the rate
of 1200 bits/second.

During any communication, the rate at which the transmitting device transmits information
must equal the rate at which the receiving device receives it; otherwise the receiving
device will be overrun and information will be lost. If the host computer is sending data to
the 4024/4025 at 1200 baud, the 4024/4025 must be set to receive data at 1200 baud.
The 4024/4025 has a “receive baud rate” and a “transmit baud rate.” These need not be
the same; i.e, the terminal may receive information at a different rate than it transmits

information.

The 4024 transmit and receive baud rates are set internally when the 4024 is installed.
They can be changed only by Tektronix service personnel.

Each of the 4024 baud rates will be set to one of the following rates:
(75/110]150|300|600| 1200|2400 | 4800|9600}

The 4025 baud rates are set using the BAUD command.

Syntax
IBAUd <transmit>[<receive>]<CR>

where both <transmit> and <receive> are chosen from the following list:

{0|50|75|110|134|150|300|600| 1200|1800 |2400|4800 9600 }

4024/4025 PROGRAMMER'S @ 5-13

STATUS/INITIALIZATION
BAUD

Action

This command sets the transmit baud rate to <transmit> and the receive baud rate to
<receive>. A baud rate of 0 means an external clock is used.

If <receive> is omitted, it is set equal to <transmit>.

Examples

IBAU 300,1200<CR> Sets the transmit baud rate to 300 baud and the
receive baud rate to 1200 baud.

IBAU 2400<CR> Sets both transmit and receive baud rates to 2400
baud.

When the 4025 is powered off or RESET, it remembers the current baud rate.

5-14 @ 4024/4025 PROGRAMMER'’S

STATUS/INITIALIZATION
PARITY

PARITY

In the ASCII code, each of the 128 ASCII characters is represented by a 7-bit binary
number. When a character is transmitted, an eighth bit, called a “parity bit,” is also
transmitted. Some computers use this extra bit for error checking, some use it as a data
bit, and some simply ignore it.

The 4024/4025 parity must be set to correspond with that of the computer to which it is
connected. This is done by using the PARITY command.

Syntax
IPARity [Even|Odd | None | High |Data] <CR>

If no parameter is specified, the 4024/4025 parity defaults to None.

Action

This command sets the 4024/4025 parity. If the parity is set to Even, the terminal
transmits characters with even parity and checks incoming characters for even parity. If
the parity is set to Odd, the terminal transmits characters with odd parity and checks
incoming characters for odd parity. If the parity is set to None, the terminal transmits
characters with parity bit set to zero; the parity of characters input to the terminal is
ignored. If the parity is set to High, the terminal transmits characters with parity bit set to
one; the parity of incoming characters is ignored. If the parity is set to Data, the parity bit
of each character input to the terminal is treated as data; the parity bit is set to zero on
characters ouput from the terminal.

Examples
IPAR E<CR> Sets the 4024/4025 to even parity.
IPARO<CR> Sets the 4024/4025 to odd parity.
IPAR N<CR> Sets parity to ““none;” the 4024/4025 ignores the

parity bit on input characters and sets it to zero on
output characters.

4024/4025 PROGRAMMER'S @ 5-15

STATUS/INITIALIZATION
PARITY

IPAR H<CR> Sets parity to “high;” the 4024/4025 ignores the parity
bit on input characters and sets it to one on output
characters.

IPAR D<CR> Sets parity to ““data;” the parity bit is read as a data bit
for incoming characters and set to zero on output
characters.

The 4025 remembers its parity setting when powered off or RESET. When the 4024 is
powered up or RESET, its parity setting defaults to None.

5-16 @ 4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
ECHO

ECHO

When the operator types into the monitor in unbuffered mode, there are two ways that the
characters typed may be displayed on the screen: remote echo and local echo.

In remote echo communications, characters typed into the monitor are sent to the
computer without being displayed. As the computer receives each character, it “echoes’
it back to the terminal. (In some systems, a modem may provide the echo.) It is the
received echo, rather than the original transmitted character, that the 4024/4025 displays
on the screen. In remote echo communications:

® As each character is typed into the monitor, the operator can tell immediately
whether the computer has received that character correctly.

® Selective echo is possible. The computer can be programmed to decide which
characters to echo. In timesharing systems, for example, the computer is usually
programmed not to echo a user’s password.

In local echo communications, as each character is typed into the monitor, the
4024/4025 supplies its own echo. It displays each character sent to the computer
without waiting for the computer echo. Local echo communications may be used with half
duplex communications links, while remote echo requires full duplex communications.

It is important that the 4024/4025 be set for the proper echo. If the 4024/4025 is set to
remote echo and neither the host nor the modem provides an echo, characters typed on
the keyboard are not displayed at all. If the 4024/4025 is set to local echo and either the

host or the modem also provides an echo, characters typed in the keyboard are displayed
twice.

The type of echoing which the 4024/4025 uses is selected with the ECHO command.

Syntax
IECHo [Local | Remote] <CR>

If neither L nor R is specified, L is assumed.

Action

This command selects the echoing used by the 4024/4025 when text from the keyboard
is directed into the monitor and the 4024/4025 is in unbuffered mode.

4024/4025 PROGRAMMER'S @ 5-17

STATUS/INITIALIZATION

Sets the 4024/4025 for local echo.

Sets the 4024/4025 for remote echo.

The 4025 remembers its ECHO setting, even when powered off or RESET. The 4024

ECHO
Examples
IECH<CR>
IECHL<CR>
IECH R<CR>
powers up or RESETs to ECHO R.
5-18

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
BUFFERED

BUFFERED

The 4024/4025 can operate either in unbuffered mode or buffered mode. These modes of
operation differ in the way that the 4025 processes information from the keyboard.

When the 4024/4025 is in unbuffered mode, each character typed into the monitor is
immediately transmitted to the host. Under these circumstances, it is not possible to
locally edit the information displayed in the monitor. As soon as a character appears in
the monitor window, it has already been sent to the computer. Text typed into the
workspace is not sent to the computer until the SEND command is given and executed.
When the SEND command is executed, all the text in the workspace is sent to the
computer in an uninterrupted stream.

When the 4024/4025 is in buffered mode, characters entered in the monitor are stored in
the display memory until RETURN is pressed. Anytime before RETURN is pressed, the
current line can be edited locally. When RETURN is pressed, the 4024/4025 marks the
end of the line with an end-of-line (EOL) string and stores the line in a transmit buffer. The
line remains in the transmit buffer until it is processed. Each line typed in the workspace
is stored there and can be edited locally, even after RETURN is pressed. When the SEND
command is given, the entire workspace contents are read into the transmit buffer for
processing.

The contents of the transmit buffer are processed line by line on a first-in/first-out basis.
To do this, the 4024/4025 uses a switching arrangement involving prompts (prompt
strings) from the computer and EOL (end-of-line) strings from the 4024/4025.

When the computer is ready to receive data, it sends a prompt to the terminal. When the
terminal receives this prompt, it knows the computer has finished its transmission and is
ready to receive data. (The terminal usually waits a little while to be sure.) The terminal
then processes the oldest (first-in) line in its transmit buffer: information destined for
the computer is sent there and 4024/4025 commands are executed. When the entire line
has been processed, the terminal sends an EOL string to the computer. When the
computer sees the EOL string, it knows the terminal has finished processing a line and is
waiting for data. If the computer has data for the terminal, it sends this out, followed by a
prompt; if the computer has no data to send but wants data from the terminal, it simply
sends a prompt. So it goes, with suitable arrangements to begin and end this
conversation.

The 4024/4025 powers up in unbuffered mode. It remains in unbuffered mode until
placed in buffered mode by the BUFFERED command.

4024/4025 PROGRAMMER'S @ 5-19

STATUS/INITIALIZATION
BUFFERED

5-20

Syntax
IBUFfered [Yes |[No]<CR>

If neither Y nor N is specified, Y is assumed.

Action

If Y (Yes) is specified, the terminal is placed in buffered mode. If N (No) is specified, the
terminal is placed in unbuffered mode.

When a BUFFERED YES command is given by the host, each subsequent line of text
typed on the keyboard is held in the terminal’s output buffer until the host has sent a
prompt requesting that line. When a BUFFERED YES command is typed on the keyboard,
the same is true, except that the 4024/4025 behaves as if it has already received the first
prompt: the first line typed on the keyboard will be sent as soon as it is terminated;
subsequent lines each require a prompt before they are sent.

Examples
IBUF<CR> Places the 4024/4025 in buffered mode.
'BUF Y<CR>
IBUF N<CR> Removes the 4024/4025 from buffered mode.

The 4024/4025 powers up in unbuffered mode, and RESETs to unbuffered mode.
Pressing the BREAK key twice in quick succession also removes the 4024/4025 from
buffered mode.

4024/4025 PROGRAMMER'’S

STATUS/INITIALIZATION

EOL (End-of-Line)

When the 4024/4025 sends information to the computer, it sends an end-of-line string at
the end of each line of text. This end-of-line string tells the computer where one line of
text ends and the next line begins. In buffered mode, it also informs the computer that the
terminal has finished current processing tasks and can receive data from the computer.
Some computers expect to see <CR> (carriage return) at the end of each line; others
may expect to see <CR> <LF> (carriage return, line feed) or other strings at the end of
each line.

When the operator types text into the monitor destined for the computer, an end-of-line
string is inserted whenever RETURN is pressed. When text from the workspace is sent to
the computer (with a SEND command), an end-of-line string is inserted at the end of each
line of text. (In buffered mode, as the computer requests each line of text from the
terminal, the terminal sends that line, and inserts an end-of-line string at the end of the
line.) The EOL command is used to set the 4024/4025 end-of-line string.
Syntax

IEOL [<string>]<CR>
where <string> may be:

1. One or more delimited ASCII strings.

2. A sequence of ADE values separated by spaces, or commas.

3. Any combination of 1 and 2.

The end-of-line string defined by this command may not be more than ten characters in
length.

If <string> is not specified, it defaults to <CR> (carriage return).

Action

This command sets the end-of-line string which the 4024/4025 sends to the computer at
the end of each line of text.

4024/4025 PROGRAMMER'S @

EOL

5-21

STATUS/INITIALIZATION
EOL l
Examples I
IEOL<CR> Sets the 4024/4025 end-of-line string to carriage
IEOL 13<CR> return, <CR>, with ADE 13. I
IEOL 13 10<CR> Sets the end-of-line string to <CR> <LF>. l
IEOL /**$/ 13 10<CR> Sets the end-of-line string to the ASCII string
** $<CR> <LF>. l
The 4025 remembers its end-of-line string when it is powered off or RESET. When the
4024 is powered up or RESET, its end-of-line string defaults to <CR>. l
5-22 @ 4024/4025 PROGRAMMER'S .

4024/4025 PROGRAMMER’S

STATUS/INITIALIZATION
PROMPT

PROMPT

In buffered mode, when the host computer is ready to accept another line of text from the
4024/4025, it sends a promptor prompt string as a cue for the terminal to transmit
another line. Prompt strings vary with the computer and with the program; but the prompt
to which the 4024/4025 responds must agree with the prompt sent from the computer.
The 4024/4025 prompt string is set using the PROMPT command.
Syntax

IPROmpt [<string>]<CR>
where <string> may be:

1. One or more delimited ASCII strings,

2. A sequence of ADE values separated by spaces or commas.

3. Any combination of 1 or 2.

The <string> parameter may not define a string of more than ten ASCII characters.

If <string> is omitted, the prompt string is set to the line feed character, <LF>.

Action
This command sets the 4024/4025 prompt string to <string>. In buffered mode, the
4024/4025 waits to receive <string> from the computer before processing the next line
in its transmit buffer.
Examples

IPRO /*%x$/<CR> Sets the prompt string to **$. In buffered mode, the

4024/4025 must receive this string from the host
before it sends a line of text from its transmit buffer.

" 5-23

STATUS/INITIALIZATION
PROMPT

IPRO 13 10<CR> Sets the prompt string to <CR> <LF>, with ADEs 13
and 10, respectively.

IPRO /*%$/13 10<CR> Sets the prompt string to **$<CR><LF>.

IPRO<CR> Sets the prompt string to the default setting, <LF>.

The 4025 remembers its prompt string when RESET or powered off. When the 4024 is
powered up or RESET, its prompt string defaults to <LF>.

5-24 @ 4024/4025 PROGRAMMER’S

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
DELAY

DELAY

Sometimes it is desirable that the 4024/4025 not respond immediately to a prompt from
the computer. If the 4024/4025 is executing a SEND command on a rather full workspace
and the computer’s input buffers are small, it is possible for the 4024/4025 transmission
to overrun this input buffer. Information is lost and communications are garbled.

The prompt string may be used in other ways as well. Suppose the prompt string is <LF>
and the computer is sending a paragraph of straight text to the 4024/4025. There will be
many line feeds which are not intended as prompts. If the 4024/4025 waits before
responding to.a <LF>, and another character is received, the 4024/4025 knows to
cancel the planned response and keep listening to the computer for more text.

The 4024/4025 transmission delay is set using the DELAY command.

Syntax
IDELay <time><CR>

where <time> is a positive integer.

Action

This command sets the transmission delay to <time> milliseconds. In buffered mode,
after a prompt is detected, the 4024/4025 waits at least <time> milliseconds before
transmitting anything back to the computer.

Examples
IDEL 20<CR> Causes the 4024/4025 to wait at least 20 milliseconds
before responding to a prompt from the computer.
IDEL O<CR> The 4024/4025 responds immediately to a prompt

from the computer.

The 4025 remembers its delay time when it is RESET or powered off. When the 4024 is

powered up or RESET, its delay time defaults to O.

@ 5-25

STATUS/INITIALIZATION

FIELD

5-26

‘

FIELD

When the 4024/4025, in form fillout mode, sends form fields to the host computer in a
SEND operation, the computer must know when a new field begins. This can be arranged
in two ways:

1. Fields sent to the computer are preceded by a field separator character; each
time the computer sees this character it knows a new field immediately follows.
If a field has not been completely filled out, only the filled out portion of the field
is transmitted; trailing spaces are not sent.

2. Eachfield is sent in its entirety, including trailing spaces.

The choice of which method to use is determined largely by the programming language
used. (See Forms and Form Fillout for details.)

The 4024/4025 is instructed how to send form fields to the host by using the FIELD
command.

Syntax
IFIEId [<character>]<CR>

where <character> is a single printing ASCII character, or a 2- or 3-digit ADE between
00 and 127, inclusive.

If no parameter is specified, it is assumed to be NUL.

Action

This command sets the character which precedes fields of a form when they are
transmitted to the computer by the 4024/4025. If no value is supplied, then no character
is inserted before a field and trailing spaces are sent. Common choices for the field
separator are TAB, CR, and US.

.A‘

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
l FIELD
l Examples
IFIE@<CR> Sets the field separator to the @ character, with ADE
. IFIE 64<CR> 64. This character precedes each field of a form sent
to the computer.
' IFIE<CR> When fields of a form are sent to the computer, no field
separator is used. Each field is sent in its entirety,
l including all trailing spaces.
The 4025 remembers the field separator when RESET or powered off. When the 4024 is
l powered up or RESET, the field separator defaults to NUL.
' 4024/4025 PROGRAMMER'S @ 5-27

STATUS/INITIALIZATION

EOF

5-28

EOF (Requires Option 3 or 4)
The 4024/4025 can copy a file from one device to another by using the COPY command.

(See the Peripherals Section.) When this happens, the 4024/4025 looks for an end-of-file
string to know when to stop the COPY operation.

The end-of-file string is selected using the EOF command.

Syntax
IEOF [<string>]<CR>
where <string> consists of:
1. One more delimited ASCII strings.
2. A sequence of ADE values separated by spaces or commas.
3. Any combination of 1 and 2.
This command may not define an ASCII string of more than ten characters.

If <string> is not specified, it defaults to /x*.

Action

This command sets the end-of-file string. This string marks the end of a file transferred by
a COPY command. See the Peripherals section.

Examples
IEOF/$*%/<CR> Sets the end-of-file string to the ASCII string, $**. This
string marks the end of a file transferred by a COPY
command.
IEOF 27 27 7<CR> Sets the end-of-file string to <ESC> <ESC> <BEL>.
@ 4024/4025 PROGRAMMER'’S

STATUS/INITIALIZATION
' EOF
' IEOF/*%/27 <CR> Sets the end-of-file string to ** <ESC>.
l IEOF<CR> Sets the end-of-file string to its default value, / *.
The 4025 remembers the EOF setting when RESET or powered off. When the 4024 is
l powered on or RESET, the EOF string defaults to /.
l 4024/4025 PROGRAMMER'S @ 5-29

STATUS/INITIALIZATION
DUPLEX

5-30

DUPLEX (4025 only; requires Option 1)

The 4025 with Option 1 may be set for either full duplex or half duplex communications.
(The 4024 always uses full duplex communications.)

Full duplex mode is used with full duplex communication lines, which permit both terminal
and host to transmit at the same time. Half duplex is used with half duplex
communications lines, over which only one device (terminal or host) can transmit at a
time.

Half duplex communications can use either normal or supervisor mode.

In half duplex communications, the 4025 can also be set to respond to either “line
turnaround only” or “prompt string plus line turnaround” as the prompting condition in
buffered mode.

The DUPLEX command is used to set the 4025 for half duplex or full duplex
communications.

Syntax
IDUPlex [<fulldup>|<halfdup>]<CR>

where <fulldup> = Full
<halfdup> = Half [Supervisor | Normal][Line | Prompt]

If noc parameters are specified, full duplex operation is assumed. If half duplex is chosen
but neither Normal nor Supervisor mode is specified, Supervisor mode is assumed. If half
duplex is chosen and neither Prompt nor Line is specified, Line is assumed.

Action

This command sets the 4025 for either full duplex or half duplex communications. If half
duplex is chosen, either Supervisor or Normal mode is chosen. Also, the prompt condition
to which the 4025 responds in buffered mode is set to either Line (line turnaround only)
or Prompt (prompt string plus line turnaround).

Examples

IDUP<CR> Sets the 4025 for full duplex.
'DUP F<CR>

4024/4025 PROGRAMMER'S

IDUP H<CR>
IDUP H S<CR>
IDUPH S L<CR>

IDUP HS P<CR>

IDUP HN<CR>
IDUPHNL<CR>

IDUPHN P<CR>

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
DUPLEX

Sets the 4025 for half duplex with supervisor. In
buffered mode the prompt condition is line turnaround
only.

Sets the 4025 for half duplex with supervisor. In
buffered mode the prompt condition is the prompt
string plus line turnaround.

Sets the 4025 for half duplex normal. In buffered mode
the prompt condition is line turnaround only.

Sets the 4025 for half duplex normal. In buffered mode
the prompt condition is the prompt string plus line
turnaround.

The 4025 remembers its duplex setting when RESET or powered off.

@ 5-31

STATUS/INITIALIZATION
DISCONNECT

DISCONNECT (4025 only; requires Option 1)

Syntax

IDISconnect<CR>

Action

This command sends a signal to the modem, causing it to disconnect the 4025 from the
communications line. (The terminal turns off the “data terminal ready” signal on the RS-
232 interface for about one second. This causes the modem to disconnect from the
communications line.)

Example

IDIS<CR> Disconnects the 4025 from the communications line.

5-32 @ 4024/4025 PROGRAMMER'’S

STATUS/INITIALIZATION
STATUS MESSAGE

STATUS MESSAGES

In addition to the commands which set the 4024/4025 terminal parameters and
communications parameters, there are three “status” messages which display, on the
screen, information about the parameter settings and internal status of the terminal.
These are the STATUS message, the SYSTAT message, and the system RAM TEST
message. If the 4025 has a graphics memory (Option 23, 24, 25 or 26) a GTEST (Graphic
Test) message is also available.

The STATUS Key and The STATUS Message

At any time, the 4024/4025 operator may press the STATUS (SHIFT-COMMAND
LOCKOUT) key to get a brief STATUS message. This message is displayed in the monitor,
without disturbing the contents of the workspace. The STATUS message shows whether
the 4024/4025 is in buffered or unbuffered mode, the command character, and the
number of unused blocks of terminal memory. (A block consists of 16 eight-bit bytes. One
block holds at most 14 characters.) Two of these status messages are shown in Figure 5-1.

u ! 988

UNBUFFERED COMMAND CHARACTER 988 BLOCKS OF
IS “1*

MODE MEMORY LEFT
B \ 988
BUFFERED COMMAND CHARACTER 988 BLOCKS OF
MODE 1S/22N* MEMORY LEFT
2401-6
Figure 5-1. STATUS Messages.
4024/4025 PROGRAMMER'S @ 5-33

STATUS/INITIALIZATION
SYSTAT

5-34

SYSTAT and The SYSTAT Message

Both the 4024 and the 4025 have full length SYSTEM STATUS, or SYSTAT, messages
which list most of the parameter settings discussed in this section. The SYSTAT
command displays the SYSTAT message on the 4024/4025 monitor window.

Syntax

ISYStat<CR>

SYSTAT Parameters

The 4024 and 4025 SYSTAT messages list the following parameters, using the
abbreviations shown.

B — Transmit baud rate (4025 only)

RB — Receive baud rate (4025 only)

DL — Delay time

LM — Left margin

RM — Right margin

WL — Number of lines devoted to the workspace window

V# — Firmware version number

TS — Tab stops

CcC — Command character

FS — Field separator

PR — Prompt string

EL — End-of-line string

EF — End-of-file string (4024 only)

DU — Duplex (DU=F means full duplex, DU=H means half duplex) (4025 only)

BU — Buffered mode (Y means buffered, N means unbuffered)

EC — Echo (EC=R means remote echo, EC=L means local echo)

FF — Form fillout mode (Y means yes, N means no)

SN — Snoopy mode (Y means yes, N means no)

KB — Keyboard (KB=M means text typed on the keyboard is directed to the monitor,
KB=W means text from the keyboard is sent to the workspace)

CM — Communications line (CM=M means text from the communications line is
directed to the monitor, CM=W means such text is sent to the workspace)

PA — Parity (N means none, D means data, E means even, O means odd, H means
high)

4024/4025 PROGRAMMER'S

Q

STATUS/INITIALIZATION
SYSTAT

If the 4024/4025 contains Option 10 (Polling Interface) an additional field, PL=, appears.
This field is followed by a two-digit decimal number indicating the polling address of this
display station.

If the 4025 contains Option 1 (Half Duplex) and the 4025 is set for half duplex
communications, the DU field may contain one or two additional letters. See the DUPLEX
command description earlier in this section for details.

If a parameter is set to an ASCII control character, the two-letter mnemonic for that
character is shown in the parameter setting. This and the differences between the 4024
and 4025 SYSTAT messages are illustrated by Figure 5-2.

TB= 600 RB= 9600 DL= @ LM=1 RM=80 W.=0 V#=1.3
7S= 9 0 6 0 8 @ 9 9 9 @ 9 @ @ @ @ @

CC=! FS=% PR=% EL=%

DU=F BU=N EC=R FF=N SN=N KB=M CM=M PA=N

a. 40825 Default SYSTAT Message

DL= 0 M=1 RM=80 WL=0 V#=1.3

7S= 98 0 0 9 0 0 0 @ @ @ 6@ @ @ B B O
CC=! FS=% PR=Y EL=% EF=/%

BU=N EC=R FF=N SN=N KB=M C(M=M PA=N

b. 4824 Default SYSTAT Message

DL= @ M= 1 RM=83 WL=0 V#=1.3

752 0 2 2 2 2 @ @ P 9 @ @ @ @ @ @
CC=! FS=% PR=3 EL=§ EF=/x

BUsN EC=R FF=N SN=N KB=M CM=M PA=N

c. 4824 Default SYSTAT Message (with Option 32)

2402-5

Figure 5-2. SYSTAT Messages.

As shown in Figure 5-2, the 4024 SYSTAT message and the 4025 SYSTAT message
differ slightly. The differences are as follows:

® The TB and RB settings appear in the 4025 SYSTAT message but not in the 4024
SYSTAT message. The 4024 transmit and receive baud rates are set at
installation time and may only be changed by Tektronix service personnel.

4024/4025 PROGRAMMER'’S @ 5-35

STATUS/INITIALIZATION
SYSTAT

5-36

® Since the 4024 always uses full duplex communications, the DU setting does not
appear in the 4024 SYSTAT message.

® The EF setting appears in the 4024 SYSTAT message, but not in the 4025
SYSTAT message. The 4025 end-of-file string can be found by giving the
PERIPHERALS command (see the Peripherals section).

® |f the 4024 has Ruling Characters (Option 32), all two-letter control character
mnemonics in the SYSTAT message are replaced by the corresponding ruling
characters. Appendix D shows the correspondence between ASCII characters and
ruling characters.

When the 4025 is turned off or RESET, it remembers some of the parameter settings in
the SYSTAT message, and resets others to default settings. Those settings which are
remembered are: TB, RB, DL, LM, RM, TS, CC, FS, PR, EL, EF, DU, EC, and PA (and the PL
setting, if present).

When the 4025 is powered up or RESET:

e WL = 0 (Thereis no workspace defined.)

® BU = N (The 4025 is in unbuffered mode.)

® FF = N (The 4025 is not in form fillout mode.)

® SN = N (The 4025 is not in snoopy mode.)

® KB = MandCM = M (Both the keyboard and the computer direct text to the
monitor.)

When the 4024 is powered up or RESET, it returns all its SYSTAT parameters to their
default settings. These are summarized in the default 4024 SYSTAT message in Figure
5-2a.

The V# setting will not change unless a different firmware version is installed in the
4024/4025.

@ 4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
TEST

TEST

The command:

ITEST<CR>
or

'TES<CR>

causes the 4024/4025 to run a program which checks whether the terminal memory and
display are operating properly. The following actions occur:

® The terminal erases the entire display list and creates a 34-line monitor window.

® System ROM (Read Only Memory), system RAM (Random Access Memory), and
display RAM are checked. The four system ROM checksums are displayed. An
error in display RAM prevents a bad block of memory from being used; the number
of free blocks is reduced, but the terminal operates correctly.

® After the memory test, the lights on the four lighted function keys are turned on, all
128 ASCII characters are displayed in the monitor in snoopy mode, and all Font 1
characters (ruling characters) are displayed. (If this character set is not installed,
each of its characters is displayed as a dot matrix with every dot turned on.)

® After the two character sets are displayed, the visual attributes are diplayed.

® At the end of the test, the lights on the function keys are turned off and the bell is
rung.

Should the test reveal a failure in the system RAM, the message “RAM ERROR” appears.
In that case, Tektronix service personnel should be called.

NOTE
Running this test destroys any text or key definitions which may have been

stored in the 4024/4025 memory.

An example of the display created by a successful TEST on the 4025 is shown Figure 5-3.

4024/4025 PROGRAMMER'S 5-37

STATUS/INITIALIZATION

TEST l
186 149 116 104
BESEE AL ¥R DI OB B AT BORIE SR #5137 ()k+, -, /B123456789: ; < = >?@ABCDEFGHIJKLMNO
PARSTUVWXYZIN]"_*abcdefghi jk Imnopgrstuvwxyz{:}™%
L 4 L sl b e I £ H
[0 T ATY™ |
Q‘:“:E ® e o I
186 149 116 104 2;?;:;33: .
BEAGCRAL S bl BB % kY BWLREERY #5487 () x+, -, /B123456789: ; < = > ?@ABCDEF GHI JKLMNO i THE 128 ASCII
CHARACTERS i
IN SNOOPY
PARSTUVMXYZ[\1"_‘abtdefghi jk Imnopgrstuvwxyz{ | }*% | MeRE
rryFmm HH i S S |] mesr P S HY SRABR Ry b | - Fmmn HH HilH HULING L“ !
CHARACTERS >
LU HUE | || s A S HG SRARE Gy | |] I
THE SEVEN
] VISUAL
ATTRIBUTES
2402-6
Figure 5-3. 4025 !TEST <CR> Results. I
5-38 @ 4024/4025 PROGRAMMER'S l

4024/4025 PROGRAMMER'S

STATUS/INITIALIZATION
GTEST

GTEST (4025 only; requires Option 23, 24, 25 or 26)
If the 4025 has a Graphics Memory Option (Option 23, 24, 25 or 26), the command:

IGTEST<CR>
or
IGTE<CR>

When this command is executed, the entire display list is erased and a 34-line monitor
window is created. The terminal then tests the graphic memory. After a delay of about 15
seconds while it performs the test, the monitor displays the test results, starting with RAM
1 and proceeding to RAM 31. If no RAM is installed in a particular board location, the
4025 displays a “NO RAM” message. If RAM is installed, each character is tested twice
(each bit is tested for both 1 and 0). If the RAM passes the test, the 4025 displays “OK”
for each of these two tests. If the RAM for a particular character set fails the test, the
4025 displays the “BAD RAM” message and an error code for use by Tektronix service
personnel.

A sample display of a successful GTEST is shown in Figure 5-4.

5-39

STATUS/INITIALIZATION
GTEST

J

VONOTNLEWN,OOUONOUEWN=

3383333333 2333383338333

 \o

q

AN

>

RRRRRRRRRRRRRRRREBE5588558885858885855888838

AN

HeeBRYRBNLEYBIRANINDS

:

THERE IS NO GRAPHICS MEMORY
FOR FONTS 1-23.

1ST CHECK OF FONTS 24-31.

2ND CHECK OF FONTS 24-31.

11543-115

5-40

Figure 5-4. 4025 !\GTEST <CR> Results.

4024/4025 PROGRAMMER'S

Q

1
i
)
M
I
E
f
f
i
10
)
L
f
I
i
f
f
I’
i

Section 6

CONTROLLING THE DISPLAY

Before information is displayed on the terminal screen, decisions must be made regarding
the set-up of the screen: how the screen’s 34-line display is to be divided between the
workspace window and the monitor window; which scroll is to receive text from the
computer and which from the keyboard; and margins and tab stops. The commands which
set these parameters are discussed in the System Status and Initialization section. We
assume here that these parameters have been set. Throughout this section we assume
the left workspace margin is set to column one.

THE CURSOR COMMANDS

There are two cursors—the workspace cursor and the monitor cursor. Only one of these
is visible at a given time. Since, in either window, the cursor indicates the position at
which new information will be printed on the screen, one may wish to change the cursor
position at various times.

The programmer uses commands to position the cursor at a desired location. (The
operator may give these same commands from the keyboard, or use the corresponding
keys.) The commands which affect the cursor position are the cursor commands (JUMP,
UP, DOWN, RIGHT, LEFT) and the tab commands (TAB, BACKTAB). In addition, even
though there is no “HOME” command corresponding to the HOME key, the JUMP
command can be used to simulate the action of the HOME key. (See discussion of the
JUMP command.)

NOTE

If a cursor movement command, tab command, or scrolling command is
typed on the keyboard and text from the keyboard is directed into the
monitor, execution of the command inserts a line just below the line on
which the command is typed.

4024/4025 PROGRAMMER'’S 6-1

CONTROLLING THE DISPLAY

JUMP

6-2

JUMP (Workspace only)

Syntax
IJUMp [<row>[<column>]]<CR>

where <row> is a positive integer, and <column> is a positive integer not greater than
80. If only one parameter is specified, it is assumed to be the <row> parameter. If neither
parameter is specified, both <row> and <column> default to one.

Action

This command positions the workspace cursor in the row and column of the workspace
designated by <row> and <column>, respectively.

Picture the workspace scroll as a long table with an indeterminate number of rows, each
row having 80 columns (Figure 6-1). The topmost row in the workspace (whether it
contains text or is blank) is labeled row 1, the next row is row 2, and so forth. In each row,
columns are labeled column 1, column 2,..,column 80. This establishes an absolute
coordinate systemin the workspace scroll. Portions of this scroll may be visible in the
workspace window.

The JUMP command moves the workspace cursor to the specified row and column of the
workspace, expressed in these absolute workspace coordinates. The destination of the
cursor does not depend on its current location. (This is in contrast to the other cursor
commands, whose parameters specify positions relative to the current cursor position.)

If the JUMP command moves the cursor to a line not visible in the workspace window, the
workspace rolls up or down to display the line to which the cursor moves.

If the <row> parameter specifies a row of the workspace below the bottom of the
workspace window, the workspace rolls up and stops with the line containing the cursor
at the bottom of the window. If <row> exceeds the current number of lines in the
workspace, blank lines are created at the bottom of the workspace and the <row>-th row
is displayed as the last row in the workspace window.

If the <row> parameter specifies a row of the workspace above the top of the workspace
window, the workspace rolls down, stopping with the row containing the cursor at the top
of the window.

4024/4025 PROGRAMMER'S

C

)

C

)
y

CONTROLLING THE DISPLAY
JUMP

(Line 1 9
Line 2

E& N T

\ ! WORKSPACE
(N,1) (N,80) WINDOW
Row N, Column 1 Row N, Column 80

/\/

2402-9

Figure 6-1. The Workspace Window and the Workspace Scroll.

NOTE

This command applies only, and always, to the workspace cursor. It is not
necessary for the workspace to receive text from the computer or the
keyboard for this command to move the workspace cursor. When the
workspace cursor next appears, it appears at the location specified in the

JUMP command (assuming no other instructions which affect the
workspace cursor location have been given to the terminal meanwhile).

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY
JUMP

Examples
1. The command
'JUM 3,10<CR>
moves the workspace cursor to row 3, column 10.
2. Either of the commands

IJUM 3<CR>
!JUM 3,1 <CR>

moves the workspace cursor to row 3, column 1.
3. Any one of the commands
IJUM<CR>
IJUM 1 <CR>
'\JUM 1,1<CR>
moves the workspace cursor to row 1, column 1. Each of these commands is

equivalent to pressing the HOME key when the workspace cursor is visible and
the terminal is not in form fillout mode.

6-4 @ 4024/4025 PROGRAMMER'S

/

CONTROLLING THE DISPLAY

uUpP
upP
Syntax
IUP [<count>]<CR>
where <count> is a positive integer. If <count> is not specified, it defaults to one.
Action
This command is equivalent to pressing the up cursor key (pad key 8, marked T)
<count> times.
This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.
Suppose text from the computer is printed in the workspace and the command
IUP <count><CR>
is sent from the computer. This command moves the workspace cursor up <count> lines
from its current position, leaving the column location unchanged.
If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls down so that the line which the cursor moves to is the top
line in the window. However, the cursor will not move past the first line of the workspace,
regardless of how large <count> is.
If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.
4024/4025 PROGRAMMER'S @ 6-5

CONTROLLING THE DISPLAY

upP
Examples
Suppose text from the computer is printed in the
workspace, with the cursor in line 23, column 5.
1. The command
IUP 3<CR>
positions the cursor in line 20, column 5.
2. The subsequent command
IUP 7<CR>
causes the workspace to roll down and
positions the cursor in line 13, column 5.
6-6 @

(Line 1
Line 2

)

Line 20
Line 21
Line 22
Line 23
Lineds —————— CURSOR IN LINE 23,

Line 25

COLUMN 5

(Line 1 J

Line 2

Line 3

. l
L:::'g'?\ AFTER IUP 3<CR>
Line 22 CURSOR IN LINE 20,
Line 23 COLUMN 5

Line 24

Line 25

(Line 1
Line 2
Line 3

D

Line 14

Line 20
Line 21

JE——————
Lined3 AFTERIUP 7<CR>

CURSORIN LINE 13,
COLUMN 5

4024/4025 PROGRAMMER'S

| CONTROLLING THE DISPLAY
I upP
I 3. The subsequent command
IUP 13<CR>
| | -
rolls the workspace down, leaving the cursor Line! RETERITR | GGl
3 . . Line 2 CURSOR IN LINE 1,
in column 5 of line 1. Since the workspace Ling3 COLUMN 5
l will not scroll past the first line, the com- ‘
mands =
l IUP 14<CR>
IUP 15<CR>
I each have the same effect.
l 4024/4025 PROGRAMMER'’S @ 6-7

CONTROLLING THE DISPLAY

DOWN

6-8

DOWN

Syntax
IDOWn [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the down cursor key (pad key 2, marked !)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IDOW <count> <CR>

is sent from the computer. This command moves the workspace cursor down <count>
lines from its current position, leaving the column location unchanged.

If <count> is large enough to move the cursor to a line not visible in the workspace
window, the workspace rolls up until the line which the cursor moves to is at the bottom of
the window. If <count> is large enough to move the cursor past the last line in the
workspace, enough blank lines are created at the bottom of the workspace to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

Pressing the LINE FEED key <count> times has the same effect on the cursor. Pressing
this key also generates the ASCII Line Feed character, while pressing the down cursor
key does not.

4024/4025 PROGRAMMER’S

c_

)

Examples

Suppose a workspace window of ten lines is
defined, and the workspace contains 20 lines of text
(some of which may be blank). Suppose also that

line 1 is the top line in the workspace window and
the cursor isinline 1, column 6.

1. The command
IDOW 8<CR>

moves the cursor down eight lines to line 9,
column 6. No roll up occurs.

2. The subsequent command
IDOW 5<CR>

moves the cursor to line 14, column 6; the
workspace rolls up four lines.

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY

— \
o4 CURSORINLINET,
Line 3 COLUMN 6
Line 9
Line 10
Line 19
Line 20 ’)

Line 1

Line 2

Line 3

. AFTER !DOW 8 <CR>
: / CURSOR IN LINE 9,

Line 9 COLUMN &

Line 10

Line 19

Line 20 ’)

Line 1
Line 2

[Line 5
_AFTER IDOW 5<CR>

Line 13 ~~ CURSOR IN LINE 14,
Line 15_/ COLUMN 6
Line 19
Line 20 ’)

CONTROLLING THE DISPLAY
DOWN

3. The subsequent command
IDOW 10<CR>

adds four blank lines at the bottom of the
workspace and rolls the workspace up 10
lines. The cursor stops in the last blank line
created, at the bottom of the workspace
window.

6-10 @

(Line 1
Line 2
Line 3

Line 15

Line 20
Line 21 (blank)
Line 22 (blank)

Line 23 (blank)
Line 24 (blank)

AFTER !DOW 10
CURSOR IN LINE 24,

T

COLUMN

<CR>
5

4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER’S

CONTROLLING THE DISPLAY
RIGHT

RIGHT

Syntax
IRIGht [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the right cursor key (pad key 6, marked -)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
IRIG <count><CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the right.

If <count> is large enough to move the cursor beyond column 80, the cursor wraps
around to the left margin of the next line and continues moving right a total of <count>
columns. If this action requires the cursor to move to a line which is not visible in the
workspace window, the workspace rolls up so that the line in which the cursor stops is
the bottom line in the window. If this command requires the cursor to move beyond the
last line of the workspace, enough blank lines are created at the bottom of the scroll to
accommodate this command.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

@ 6-11

CONTROLLING THE DISPLAY

RIGHT

Example

Suppose there is a workspace window of ten lines,
with ten lines of text in this window. The left margin
is set at column 1 and the cursor is in column 1 of

line 8.

1. The command
IRIG 7<CR>

moves the cursor right seven columns to
column 8 of line 8.

2. The subsequent command
IRIG 153<CR>

moves the cursor through the remaining 73
columns of line 8 to column 1 of line 9, then
through the 80 columns of line 9 to column 1
of line 10. No roll up occurs.

3. The subsequent command

IRIG 167 <CR>
moves the cursor through the 80 columns of
line 10, creates a blank line 11 and moves
the cursor through the 80 columns of line
11, creates a blank line 12 and moves the
cursor through seven columns to column 8
of line 12. The workspace rolls up to display
line 12 as the last line in the workspace
window.

Line 1
Line 2

kine8 CURSORINLINES,

Line:9 COLUMN

Line 10

Line 1
Line 2

. ___AFTER IRIG 7<CR>
Line8 _. ——" CURSORINLINES,
Line 9 COLUMN 8
Line 10

Line 8 __AFTER IRIG 153<CR>
Line 9 CURSORIIN LINE 10,
Line 10 COLUMN 1

Line 1 J
Line 2

Line 3
Line 4

Line 9
Line 10 AFTER !RIG 167 <CR>
Line 11 (blank) " CURSOR IN LINE 12,

Line 12 (blank) _~ COLUMN 8

4024/4025 PROGRAMMER'S

.y

CONTROLLING THE DISPLAY
LEFT

LEFT

Syntax

ILEFt [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the left cursor key (pad key 4, marked <)
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command
ILEF <count> <CR>

is sent from the computer. This command moves the workspace cursor <count>
columns to the left.

If <count> is large enough to move the cursor to the left of the left margin, the cursor
wraps around to column 80 of the preceding line and continues moving left a total of
<count> columns. If this action requires the cursor to move to a line which is not visible
in the workspace window, the workspace rolls down so that the cursor stops in the top
line of the window. However, the cursor will not move above the first line in the workspace.
Thus this command does not insert blank lines at the top of the workspace.

If text from the computer is printed in the monitor and this command is sent from the

computer, it has the same effect on the monitor cursor.

4024/4025 PROGRAMMER'S @ 6-13

CONTROLLING THE DISPLAY
LEFT

Examples

Suppose a workspace is defined and the cursor is
visible in column 10 of line 6.

1. The command
ILEF 9<CR>

moves the cursor to column 1 of line 6.

2. The subsequent command
ILEF 150<CR>

moves the cursor through the 80 columns in
line 5, rolls down the workspace to display
line 4, and moves the cursor through the
rightmost 69 columns in line 4. The cursor
stops in column 11 of line 4.

3. The subsequent command
ILEF 300<CR>

moves the cursor through the leftmost ten
columns in line 4, then through the 80
columns in each of lines 3,2,and 1, rolling
the workspace down to display these lines.
The cursor stops at column 1 of line 1.

6-14 @

Line 1 \)
Line 2

CURSOR IN LINE 6,
COLUMN 10

Line 1)
Line 2

Line 5
Line 6
S AFTER!LEF9<CR>
: CURSORIIN LINE 6,
COLUMN 1

= D

C=~—— AFTER!LEF 150<CR>
CURSOR IN LINE 4,
COLUMN 11

Line 1
line2 ———_

Line 3
Line 4

—— AFTER !LEF 300 <CR>
CURSOR IN LINE 1,
COLUMN 1

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY
TAB

THE TAB COMMANDS

TAB

Syntax
ITAB [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action
This command is equivalent to pressing the TAB key <count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

ITAB <count><CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the right. If there are no tab stops defined to the right of the current cursor
position, the next tab moves the cursor to the beginning of the next line. Thus if <count>
is large enough to move the cursor past the last tab stop in a line, the cursor jumps to
column 1 of the next line and continues tabbing a total of <count> stops. Each skip to
the next line, as well as each skip to the next tab stop in a line, accounts for one of the
<count> tabs. If <count> is large enough to move the cursor below the bottom of the
workspace window, roll up occurs.

If <count> is large enough to move the cursor past the last line in the workspace,
enough blank lines are created at the bottom of the workspace to accommodate the
command.

If the text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

4024/4025 PROGRAMMER'S @ 6-15

CONTROLLING THE DISPLAY
TAB l
Examples e '
Line 2
Suppose there is a workspace window of ten lines, _ cunson e o
with tab stops in columns 10, 20, and 30, and the Mot coLuMNt l
cursorisinline 9, column 1.
—_—
1. The command l
éFTEsRO!TAB 4<CR>
ITAB 4<CR> R e 10,
moves the cursor to the three stops in line 9 I
and then to column 1 of line 10.
2. The subsequent command
Line 1
ITAB 17<CR> Hre p l
Lin_e5
moves the cursor to column 10 (the first i l
stop) in line 14. The first 16 tabs move the Line 12 (biank) —— A e
cursor through lines 10, 11, 12, and 13, to E'n'ilifg'iﬁﬁ/ oMK 16
column 1 of line 14; the final tab moves the l
cursor from column 1 of line 14 to the first
tab stop in line 14. I
NOTE l
The TAB command, like the TAB key, performs a different action when the I
4024/4025 is in form fillout mode. See the Forms and Form Fillout section
for details. .
6-16 @ 4024/4025 PROGRAMMER'S .

CONTROLLING THE DISPLAY
BACKTAB

BACKTAB

Syntax
IBACktab [<count>]<CR>

where <count> is a positive integer. If <count> is not specified, it defaults to one.

Action

This command is equivalent to pressing the BACKTAB (SHIFT-BACKSPACE) key
<count> times.

This command can be used to move either the workspace cursor or the monitor cursor. If
the command is typed on the keyboard, it moves the cursor in that scroll which receives
text from the keyboard. If the command is sent from the computer, it moves the cursor in
that scroll which receives text from the computer.

Suppose text from the computer is printed in the workspace and the command

IBAC <count> <CR>

is sent from the computer. This command moves the workspace cursor <count> tab
stops to the left. Each backtab moves the cursor one tab stop to the left, or to the left
margin if there are no tab stops to the left of the cursor position. The cursor does not
move to a preceding line of text, regardless of how large <count> is, but “sticks” at the
left margin of the current line.

If text from the computer is printed in the monitor and this command is sent from the
computer, it has the same effect on the monitor cursor.

Examples —_—

Suppose tab stops are set at columns 10,20, and 30,

. » CURSOR IN LINE N,
and the cursor is in column 35. COLUMN 35

L

4024/4025 PROGRAMMER'’S @ 6-17

CONTROLLING THE DISPLAY

BACKTAB
1. The command e ——————
Line N .
IBAC<CR>
moves the cursor left one stop to column 30
of the current line.
2. Any of the subsequent commands
——— ———
IBAC 3<CR> LT”\AHEMBACLCD.
IBAC 4<CR>
moves the cursor to column 1 of the current
line.
NOTE
The BACKTAB command, like the BACKTAB key, performs a different
action when the 4024/4025 is in form fillout mode. See the Forms and
Form Fillout section for details.
6-18 @

AFTER IBAC <CR>
CURSOR IN LINE N,
COLUMN 30

IBAC 4<CR>, ETC.
CURSOR IN LINE N,
MN 1

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY

RUP
THE SCROLLING COMMANDS
RUP (Roll Up)
Syntax
IRUP [<count>]<CR>
where <count> is a positive integer. If <count> is not specified, it defaults to one.
Action
This command is equivalent to pressing the up scrolling key (pad key 7, marked A)
<count> times.
This command rolls up the current scroll (workspace or monitor) <count> lines, or until
the last line of the scroll is visible at the bottom of the window. This command does not
create blank lines at the end of the scroll. If <count> is larger than the number of lines
remaining in the scroll, the scroll rolls up until the last line of the scroll is visible in the
window, then stops.
When the scroll rolls up, the cursor moves with it, remaining in the same line of text, at the
same column position, as long as that line of text remains visible. If that line of text passes
out of the window, the cursor “sticks” at the top of the window, with the column position
unchanged.
Examples
cun(s:g? "Id"I:INE 9,

Suppose a workspace window of ten lines is ey
defined, the workspace scroll contains 30 lines, and
the cursorisinline 9, column 5.

Line 29

Line 30 ')

4024/4025 PROGRAMMER'S @ 6-19

CONTROLLING THE DISPLAY

RUP
1. The command
'RUP 8<CR>
leaves line 9 at the top of the workspace,
with the cursor in line 9, column 5.
2. The subsequent command
IRUP 10<CR>
leaves line |9 at the top of the workspace
window, with the cursor in line |19, column 5.
3. Any of the subsequent commands
'IRUP 2<CR>
'RUP 3<CR>
leaves line 30 at the bottom of the work-
space window, with the cursor in line 21,
column 5.
6-20 ’ @

(Line 1 \)
Line 2

e AFTER!RUPB<CR>
Line 1 CURSOR IN LINE 9, COLUMN 5
AT TOP OF WORKSPACE WINDOW

Line 17
Line 18

Line 29

Line 30 ’)

(Line 1)
Line 2

Line 3

/—\
Lme_1i\]cn
Line 20 AFTER !RUP 10<CR>
CURSOR IN LINE 19, COLUMN 5
AT TOP OF WORKSPACE WINDOW

Line 27
Line 28

Line 1 \)
Line 2

Line21

Line 2’2\ ﬂ
AFTER !RUP 2<CR>,

'RUP 3<CR>, ETC.
CURSOR IN LINE 21, COLUMN 5
AT TOP OF WORKSPACE WINDOW

Line 29
Line 30

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY

RDOWN
RDOWN
Syntax
IRDOwn [<count>]<CR>
where <count> is a positive integer. If <count> is not specified, it defaults to one.
Action
This command rolls down the current scroll (workspace or monitor) <count> lines, or
until the first line of the scroll is at the top of the window. The RDOWN command cannot
be used to insert blank lines at the top of the workspace.
Giving this command is equivalent to pressing the down scrolling key (pad key 1,
marked ¥) <count> times.
When the current scroll rolls down, the cursor moves with it, remaining at the same row
and column position as long as that position is visible in the window. If that position
passes out of the window, the cursor “sticks” at the bottom line of the window, with the
column position remaining unchanged.
ine [
(tine; \)
Examples
e CURSOR
Suppose a workspace window of ten lines is
defined, with a workspace scroll of 30 lines and the T
cursor positioned in line 21, column 5. 30
4024/4025 PROGRAMMER'S @ 6-21

CONTROLLING THE DISPLAY

RDOWN
1. The command
IRDO 9<CR>
rolls the workspace down 9 lines, leaving the
cursor still positioned in line 21, column 5.
2. The subsequent command
IRDO 6<CR>
rolls the workspace down an additional six
lines, leaving the cursor in line 15, column 5,
at the bottom of the window.
3. Any of the subsequent commands
IRDO 5<CR>
IRDO 6 <CR>
IRDO 7<CR>
rolls the workspace down five lines, with the
cursor in line 10, column 5, at the bottom of
the window.
6-22 @

.

Line 1 \}
Line 2

Line 12
Line 13

AFTER !RDO 9 <CR>

Line Wson IN LINE 21, COLUMN 5§
OF WO!

Line 29

Line 30 ’)

Line 1 J
Line 2

Line &
Line 7

AFTER !RDO 6 <CR>
Line 14 CURSOR IN LINE 15, COLUMN §
Li AT BOTTOM OF WORKSPACE WINDOW

Line 29
Line 30

Line 1
Line 2

: AFTER !RDO 5<CR>,

’ / !RDO 6<CR>, ETC.
Line 9 CURSOR IN LINE 10, COLUMN 5
Line] AT BOTTOM OF WORKSPACE WINDOW

Line 29

Line 30 ’)

4024/4025 PROGRAMMER’S

ADDITIONAL COMMANDS

ERASE

Syntax

IERAse [Workspace | Monitor]<CR>

Action

This command erases the specified scroll. The entire scroll, not just the portion visible in
the window, is erased. If text is currently directed into that scroll, the cursor quickly
reappears in the home position (line 1, column 1, in the upper left corner) of the window. If
text is not currently directed into that scroll, the next time that cursor appears, it appears
in the home position. This command does not affect the size of the workspace and
monitor windows.

If no parameter is specified, the source of the command determines which scroll is
erased. If the commmand is sent from the computer and no parameter is specified, the
scroll which receives text from the computer is erased. If the command is typed on the
keyboard and no parameter is specified, the scroll which receives text from the keyboard
is erased.

The ERASE command can also be used to erase the contents of a graphics region in the
workspace by entering the command !|ERA 'ERA G<CR>. See the 4025 Graphics section

for details.
Examples
1. [ERA W<CR> Erases the workspace scroll and returns the workspace
cursor to the home position.
2. ERA M<CR> Erases the monitor scroll and returns the monitor cursor to
the home position.
3. IERA<CR> If sent from the computer, this command erases whichever

scroll receives text from the computer.

If typed on the keyboard, this command erases whichever
scroll receives text from the keyboard.

4024/4025 PROGRAMMER'S

CONTROLLING THE DISPLAY
ERASE

6-23

CONTROLLING THE DISPLAY
BELL .
BELL l
The 4024/4025 contains a bell. This bell sounds automatically when certain conditions
occur; for example, the bell rings if the operator types beyond the right margin, or if an l
attempt is made to enter a character in a protected field when the terminal is in form
fillout mode. l
The programmer may wish to sound the 4024/4025 bell at various times during an
applications program—perhaps to remind the operator to enter data, or to press a function
key. The BELL command is used for this purpose. l
Syntax l
IBELI<CR> l
Action I
The command
IBELL<CR> . l
or
IBEL<CR> '
sounds the 4024/4025 bell.
The bell also sounds when the ASCII BEL character, CTRL-G, is sent to the terminal. l
6-24 @ 4024/4025 PROGRAMMER'S I

Section 7

FORMS AND FORM FILLOUT

From the operator’s viewpoint, a form consists of several lines of text displayed in the
workspace and formatted in a particular way. A form is divided into blanks areas, which

the operator fills in, and labels, which identify the type of data to be entered in each blank.

There may also be horizontal and vertical ruling lines to emphasize the structure of the
form. The operator fills in the blanks with appropriate data and sends this data to the
computer for storage or processing.

A sample form used to store a customer’'s name and address is shown in Figure 7-1, with
the blanks shaded gray.

Customer’s Name .

Street Addr

1]
(%)
”

2402-7

Figure 7-1. Sample Form.

FORM FILLOUT MODE

A form is filled out and the data in the form sent to the computer while the 4024/4025 is
in form fillout mode.

Form fillout mode has several features designed to make it easy to fill out and process
forms.

® Data can be entered only in the blanks of the form. These blanks are called
unprotected fields. If the operator attempts to enter a character elsewhere in the
form (in a protected field), the terminal bell sounds and the character is inserted
in the next unprotected field in the form.

4024/4025 PROGRAMMER'S

7-1

FORMS AND FORM FILLOUT
FORM FILLOUT MODE

7-2

A typical form fillout application includes the following steps:

The FORM command is used to place the 4024/4025 in form fillout mode and to remove it
from form fillout mode.

Several keys on the keyboard behave differently when the keyboard types into the
workspace. The TAB key moves the cursor to the beginning of the next
unprotected field of the form. The BK TAB key moves the cursor to the beginning
of the preceding unprotected field. The HOME key moves the cursor to the
beginning of the first unprotected field in the form, rather than to column 1, row 1
of the workspace. The ERASE key erases only the data in the unprotected fields;
protected fields are not erased.

Several of the 4024/4025 commands have effects other than the usual ones.
When the computer types into the workspace, the TAB, BACKTAB, and ERASE
commands have the same effects as the corresponding keys. The editing
commands also behave differently. These differences are detailed, command by
command, throughout this section and later sections.

Insure that the terminal is not in form fillout mode.

Display the form in the 4024/4025 workspace. Either the operator creates the
form from the keyboard or, more usually, a stored form is sent from the computer
or tape unit to the workspace. Both processes are the same from the terminal’s
viewpoint.

‘

4

Place the terminal in form fillout mode.
Fill out the form.

Send the data in the form to the computer (or printer or, for the 4025, to a tape unit
or hard copy unit).

Erase the unprotected fields of the form and fill it out again; then send the new
data in the form to the computer. Repeat this procedure as long as necessary.

When the form is no longer needed, remove the terminal from form fillout mode
and erase the form itself from the screen.

i
)

@ 4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
FORM

FORM

Syntax
IFORm [Yes |No]<CR>

If no parameter is specified, Yes is assumed.

Action

If Yes is specified, the 4024/4025 is placed in form fillout mode. If No is specified, the
4024/4025 is removed from form fillout mode.
Examples

IFOR<CR> Places the 4024/4025 in form fillout mode.

IFOR Y<CR>

IFORM YES<CR>

IFOR N<CR> Removes the 4024/4025 from form fillout mode.
IFORM NO<CR>

4024/4025 PROGRAMMER'’S 7-3

FORMS AND FORM FILLOUT
CREATING A FORM

‘

CREATING A FORM

From the 4024/4025’s viewpoint, there is more to a form than meets the eye. Consider
the sample form in Figure 7-2. This form, and every form, consists of several lines of text.
Each line is divided into one or more sections called fields; each field is divided into
individual character positions.

Customer’s Name
Street Address
City
State £1p Code

QL 5

S |Customer’s Name

Y IS\
()l Street Address . j |5\

g 15
S1 City = — |
2 b
QI State
T z

l JIHl Street Address Ir i

Y~ =

FIELDS

2402-10

Figure 7-2. The Parts of a Form.

7-4 4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
CREATING A FORM

To display a form, the 4024/4025 stores the information which defines the form in the
portion of memory called the workspace display list. In addition to the characters which
are displayed on the screen, the display list includes markers which are not displayed.
These markers are of two types:

@ End-of-line markers which indicate where one line of text ends and the next line
begins.

® Markers called attribute codes. Attribute codes divided a line into fields and
determine the properties, or attributes, of those fields.

The fourth line of the sample form appears on the screen as follows:

Sl Street Address - , i : |6

2402-20

In the workspace display list, however, the following information is stored:

<ATT>|]<ATT>| | I<ATT> Street Hddress—l <ATT> | <ATT> <END-°F-L'NE>

1st 2nd 3rd 4th 5th
FIELD FIELD FIELD FIELD FIELD

ATTRIBUTE CODES
(NOT VISIBLE ON THE SCREEN
BUT INCLUDED IN THE DISPLAY LIST)

2402-21

To create a form one must complete the following steps:

® Decide what each line of the form is to look like—what attributes each field will
possess; what text, if any, will be printed in the protected fields.

® Attach attribute codes to each field so that when the 4024/4025 displays the
form, each field will have the desired attributes and the form, as a whole, will have
the desired appearance.

4024/4025 PROGRAMMER'S @ 7-5

FORMS AND FORM FILLOUT
FIELD ATTRIBUTES

7-6

FIELD ATTRIBUTES AND FIELD ATTRIBUTE CODES

There are three classes of field attributes:
® Character font attributes: font zero, font one, font two, etc.

® |ogical attributes: alphanumeric, numeric, protected, and protected modified.
Alphanumeric and numeric denote unprotected fields into which the operator can
enter data.

® Visual attributes: standard, enhanced, inverted, underscored, and combinations of
these.

Font Attributes

A 4025 font attribute is an integer between 0 and 31, inclusive. This integer designates
the character font from which characters are selected for display in the field. The default
font attribute is 0. Font O is called the standard font and consists of the 128 characters of
the ASCII code. Font 1 is always the Ruling Characters font (Option 32); Font 2 is the
Math Characters font (Option 34). On the 4025, other fonts may be determined by ROMs
inserted in the Character Set Expansion Board (Option 31), or may be defined by the user
with SYMBOL commands (if the 4025 contains Option 23, 24, 25, or 26).

A 4024 font attribute must be either 0 or 1. The meaning of these is the same as the
corresponding 4025 font attributes: Font O is the standard font and Font 1 is the Ruling
Characters font (Option 32).

If a font attribute is specified for which no character font is defined, each character in the
font is displayed as a rectangle with all the dots in that character cell matrix turned on.

NOTE

Font attributes in the display list affect the display whether the terminal is
in form fillout mode or not. A field with font attribute 1, for example,
displays characters from Font 1 at all times (assuming Option 32 is
present).

@ 4024/4025 PROGRAMMER’'S

C

C

FORMS AND FORM FILLOUT
FIELD ATTRIBUTES

Logical Attributes

The logical attributes which a field can possess are the same for the 4024 and the 4025.
These attributes are as follows:

Symbol Used Attribute Meaning

A Alphanumeric The default logical attribute. Specifies an alphan
umeric unprotected field into which any alphanu-
meric character may be entered.

N Numeric Specifies a numeric unprotected field. In form
filout mode, only characters with ADEs 32-63
can be entered in a numeric field. (This includes
the numerals 0-9, and most punctuation sym-
bols.)

P Protected Specifies a protected field. In form fillout mode, a
protected field cannot be typed into or erased.

Note that the fields of the form to be filled in by the operator must be unprotected fields,
with logical attributes A or N; labels and areas in which the operator is not to type should
be protected.

Each field possesses one of these logical attributes. In addition, any field may possess
the logical attribute M, for “modified.” The SEND MOD command sends to the computer
the data in those, and only those, fields which have been flagged as “modified” with the
logical attribute M. (See the discussion of the SEND command later in this section.)

A field may be flagged as “modified” in either of two ways:

® When the data in any unprotected field is changed, the terminal automatically
attaches the logical attribute M to that field. The next SEND MOD command sends
the data in that field to the computer and removes the M attribute. The data in this
field is not sent to the computer again until it has been modified in some way and
the field once again flagged with the logical attribute M.

® The ATTRIBUTE command may specify the logical attribute PM, for “protected
modified.” A SEND MOD command sends the data in such a field to the computer,
but does not remove the M attribute; thus a PM field is sent to the computer with
every SEND MOD command.

'

4024/4025 PROGRAMMER'S @ 7-7

g

FORMS AND FORM FILLOUT
FIELD ATTRIBUTES

NOTE
Logical attributes have effect only when the 4024/4025 is in form fillout

mode. When not in form fillout mode, the 4024/4025 ignores logical
attributes.

Visual Attributes

The visual attributes which a 4025 field can possess are as follows:

Symbol Used Attribute Meaning

S Standard Displays light characters on a dark background.
This is the default visual attribute.

E Enhanced Displays bright characters on a light background.

(The absolute brightness and contrast are con-
trolled manually by the operator.)

| Inverted Displays dark characters on a light background.
U Underscored Underscores all characters and spaces in the
field.

A 4025 field can possess two or three visual attributes simultaneously. If a field
possesses visual attributes of EU, for example, characters in the field are displayed both
enhanced and underscored.

A 4024 field can possess only the S (Standard) or E (Enhanced) visual attributes. For
compatibility with the 4025, however, the 4024 displays any 4025 field, converting all
inverted attributes to enhanced and all underscored attributes to standard. A 4025 field
with the visual attributes Ul will be displayed on a 4024 as SE, or simply enhanced.

NOTE

Like font attributes, visual attributes affect the display even when the
4024/4025 is not in form fillout mode.

4024/4025 PROGRAMMER'S

. \

FORMS AND FORM FILLOUT
FIELD ATTRIBUTES

Field Attribute Codes Within a Line

Unless instructed otherwise by an ATTRIBUTE command, the 4024/4025 begins each
line with the default attribute in each class: font 0, alphanumeric logical attribute, and
standard visual attribute.

An attribute code may specify attributes from one, two, or all three classes of field
attributes. As the 4024/4025 scans each line in its display list, it searches for attribute
codes. When it encounters a new attribute code, it modifies only the class or classes of
attributes specified in this new code; the other class or classes of attributes are not
modified. Suppose, for example, the following line is stored in the display list:

 - — — — — — — — — <numeric> ——————— — <CR>

Since the second attribute code specifies only the logical attribute numeric, the second
field is displayed in font O, enhanced (the font and visual attributes of the preceding field).

4024/4025 PROGRAMMER'S 7-9

FORMS AND FORM FILLOUT
ATTRIBUTE

7-10

CREATING FIELDS

Each field in a line is created by specifying the font, logical, and visual attributes which
the field possesses. The ATTRIBUTE command is used for this purpose.

ATTRIBUTE

Syntax
IATTribute [] [<logical >] [<visual>[-<visual>]]<CR>

where denotes a font attribute, <logical > denotes a logical attribute, and each
<visual> denotes one or more visual attributes.

Action

The ATTRIBUTE command inserts a field attribute code into the workspace display list at
the cursor position. This field attribute code marks the beginning of a new field and
designates the font, logical, and/or visual attributes of this field, as specified in the
ATTRIBUTE command. If this field is the first field in the line, the ATTRIBUTE command
specifies the attributes of the field which differ from the default attributes. If the field is
preceded by another field on the same line, the ATTRIBUTE command specifies the
attributes of the new field which differ from those of the preceding field. If two visual
attributes or sets of attributes are separated by a hyphen, the display blinks that field
between the two specified visual attributes or sets of visual attributes.

Restrictions on Syntax
For the 4025, is an integer between 0 and 31, inclusive. For the 4024, is
O or 1. For both the 4024 and the 4025, defaults to O (at the beginning of a line)
or to the font attribute of the preceding field.
For both the 4024 and the 4025,

<logical> = [A[N|P|PM]

where A denotes alphanumeric, N denotes numeric, P denotes protected, and PM denotes
protected modified. These parameters must be given in this single letter form.

C c
Il N Iy I Iy A BN Iy | O i I A N I D B I .

@ 4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
ATTRIBUTE

For the 4024/4025, <logical> defaults to A (at the beginning of a line) or to the logical
attribute of the preceding field.

For the 4025,

<visual> = [S|E|I|U|EI|EU|IU|EIU]
and

-<visual> = -[S|E|I|U|EI|EU|IU|EIU]
where S denotes standard, E denotes enhanced, | denotes inverted, and U denotes
underscored. If more than one letter is specified, the order of the letters does not matter;
El and IE give the same visual characteristics to the field.
If the -<visual> parameter is specified, the display blinks between the two attributes or
sets of attributes specified. For example, visual attributes of E-1 cause the field to blink
between enhanced and inverted visual attributes.
For the 4024,

<visual> = [S|E]

The 4024 will accept any 4025 visual attributes, converting all | attributes to E and all U
attributes to S.

For both the 4024 and the 4025, <visual> defaults to S (at the beginning of a line) or to
the visual attribute(s) of the preceding field.

No spaces are allowed between alphabetic parameters in the ATTRIBUTE command. To
define a protected field with the enhanced and inverted visual attributes give the
command

IATT PEI<CR>
To blink that field between the enhanced and inverted visual attributes, give the command

IATT PE-I<CR>

@ 711

FORMS AND FORM FILLOUT
ATTRIBUTE

Examples of ATTRIBUTE Commands

Font Attributes

IATT<CR> Defines a new field beginning at the cursor

IATT O position. When characters are entered in
this field, the field displays characters from
Font O, the standard font.

IATT 1<CR> Defines a new field beginning at the cursor
position. When characters are entered in
this field, the field displays the correspond-
ing characters from Font 1, the Ruling
Characters font. (Requires Option 32)

Logical Attributes

IATT A<CR> Defines an alphanumeric unprotected field
beginning at the cursor position.

IATT N<CR> Defines a numeric unprotected field begin-
ning at the cursor position. In form fillout
mode, only characters with ADEs 32-63 can
appear in this field.

IATT P<CR> Defines a protected field, beginning at the
cursor position. In form fillout mode, this
field cannot be typed into or erased.

IATT PM<CR> Defines a protected modified field beginning
at the cursor position. This field is transmit-
ted to the computer with each subsequent
SEND MOD command.

Visual Attributes

IATT S<CR> Defines a new field beginning at the cursor
position. Displays that field with the stan-
dard visual attribute—light characters on
dark background.

1

7-12 4024/4025 PROGRAMMER'S

IATT E<CR>

IATT I<CR>
(4025 only)

IATT U<CR>
(4025 only)

IATT E-S<CR>

IATT I-EU<CR>
(4025 only)

IATT AEU<CR>

IATT NI-EU<CR>

IATT 1 PS-E<CR>

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
ATTRIBUTE

Defines a new field beginning at the cursor
position. Displays that field with the en-
hanced visual attribute—bright characters
on light background.

Defines a new field beginning at the cursor
position. Displays that field with the inverted
visual attribute—dark characters on light
background. (On the 4024, inverted converts
to enhanced.)

Defines a new field beginning at the cursor
position. Displays that field with the under-
scored visual attribute—all characters and
spaces in the field are underscored. (On the
4024, underscored converts to standard.)

Defines a new field beginning at the cursor
position and blinks that field between the
visual attributes of enhanced and standard.

Defines a new field beginning at the cursor
position and blinks that field between the
visual attributes of inverted and enhanced
with underscore.

Combined Attributes (No spaces allowed between alphabetic parameters.)

Defines an alphanumeric field beginning at
the cursor position. Displays that field with
the enhanced and underscored visual attri-
butes.

Defines a numeric field beginning at the
cursor position. Blinks that field between the
visual attributes of inverted and enhanced
with underscore.

Defines a protected field beginning at the
cursor position. Blinks that field between the
visual attributes of standard and enhanced.
When characters are entered in this field,
the field displays characters from Font 1
(Ruling Characters). (Requires Option 32)

7-13

FORMS AND FORM FILLOUT
CREATING FIELDS WITH JUMP

@

c.
HE IS N EE EE N BN Iy EE R G By By OE DD I B EE ae

Creating Fields with JUMP
The JUMP command can be used with the ATTRIBUTE command to create several fields
on one line. Suppose you want to create a protected enhanced field 60 character
positions in length in row 3 of the workspace. The command

IJUMSIATTPE;— ———— —— (60 spaces) — — ———— <CR>
creates the desired field. However, the command

IJUM 3!ATT PE!JUM 3,60!ATT PS<CR>

creates the desired field more quickly and with more efficient coding.

The JUMP command can be used to create several fields on one line of the workspace
quickly and efficiently. Suppose you want row 5 to appear as follows:

Field 1

1 20 50 60
PROTECTED PROTECTED NUMERIC
STANDARD ENHANCED UNDERSCORED

2402-22

This can be done by transmitting the fields as series of spaces, as in the first example.
But the command sequence

'JUM 5!ATT PS;Field 1!JUM 5,20!ATT E!JUM 5,50!ATT NE-IU;Field 3———<CR>

gives the same display and transmits 21 fewer characters than the first method.

Suppose the workspace cursor is in the home position (row 1, column 1) and consider the
three command sequences:

1. !ATT P;Name |ATT AE!JUM 1,25!ATT PS<CR>
2. IATT P;Name !ATT AE!JUM 1,25!ATT S!JUM 1,60!ATT PS<CR>

3. !ATT P:Name !ATT AE!JUM 1,25!ATT PS!IJUM 1,80!ATT PS<CR>

y
i

°

7-14 @ 4024/4025 PROGRAMMER'’S

FORMS AND FORM FILLOUT
CREATING FIELDS WITH JUMP

When executed, each of these command sequences causes the same display:

2402-23

Each sequence, however, creates a very different “line” in the 4024/4025 display list,
and the differences between them are important when the 4024/4025 is in form fillout
mode.

The line generated by 1. ends in column 25; the display list contains nothing beyond that
column. If the operator moves the cursor right of column 25 in line 1 and presses a key,
the cursor moves to the beginning of the next unprotected field and prints the typed
character there. The terminal bell does not ring.

The line generated by 2. ends in column 60. Columns 26 through 59 constitute an
unprotected field. If the operator types in these columns, the text is printed just as it is
typed.

The line generated by 3. ends in column 80; all 80 columns of the screen are included in
this line. Columns 26 through 79 constitute a protected field. If the operator moves the
cursor into this field and types a character, the terminal bell rings, the cursor moves to the
beginning of the next unprotected field in the form, and the character is printed there.

When using the Jump command to create fields, alwa ys “tie down” the line
with the !ATT PS command, as shown in the preceding examples. If this is
not done, the display list may not include the last field created with JUMP.

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
HRULE

)

RULINGS

One can highlight the structure of a form by drawing rulings, or ruling lines. The
4024/4025 with the Ruling Characters font (Option 32) has two provisions for doing this.
First, the basic command set includes the HRULE (Horizontal Rule) and VRULE (Vertical
Rule) commands. Second, the Ruling Characters font (Option 32) itself provides
additional ruling characters for making junctions between horizontal and vertical rulings.

HRULE (Requires Option 32)

Syntax
IHRUle <row> <column> [<length> [<width>]]<CR>

where all parameters are positive integers. The <row> and <column> parameters give
absolute workspace coordinates (as in the JUMP command). Since there are only 80

columns, the <column> parameter must not exceed 80 and the sum of <column> and
<length> must not exceed 81. The <width> parameter, if specified, must be either 1 or
2. The default value for both <length> and <width> is 1. ‘

Action

This command draws a horizontal ruling in the workspace. The first character of the ruling
is drawn in the row and column specified by the <row> and <column> parameters.

The ruling continues to the right for a total of <length> columns. This ruling is a single
line if <width> is 1 and a double line if <width> is 2.

Examples

'HRU 3,5,20<CR> Beginning at row 3, column 5 of the work-

IHRU 3,5,20,1 <CR> space, draws a horizontal ruling through 20
columns (columns 5 through 24). The ruling
is a single line.

IHRU 3,5,20,2<CR> Beginning at row 3, column 5 of the
workspace, draws a horizontal ruling through
20 columns (columns 5 through 24). The
ruling is a double line.

7-16 @ 4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
VRULE

VRULE (Requires Option 32)

Syntax
IVRUle <row> <column> [<length> [<width>]]<CR>

where all parameters are positive integers. The <row> and <column> parameters are
absolute workspace coordinates (as in the JUMP command). The <column> parameter
must not exceed 80. The <width> parameter, if specified, must be either 1 or 2. The
default value of both <length> and <width> is 1.

Action

This command draws a vertical ruling in the workspace. The first ruling character is
drawn in the row and column specified by the <row> and <column> parameters. The
ruling continues downward for a total of <length> rows. If <width> is 1 (or omitted), the
ruling is a single line; if <width> is 2, the ruling is a double line.

Examples

IVRU 3,5,20<CR> Beginning at row 3, column 5 of the work-

I'VRU 3,5,20,1 <CR> space, draws a vertical ruling through 20
rows (rows 3 through 22). This ruling is a
single line.

IVRU 3,5,20,2<CR> Beginning at row 3, column 5 of the work-
space, draws a vertical ruling through 20
rows (rows 3 through 22). This ruling is a
double line.

NOTE

If the 4025 receives an HRULE or VRULE command but does not contain
Option 32, each character cell affected by the command is displayed as a
bright rectangle with all its matrix dots turned on. This also happens if an
ATTRIBUTE command < font> specifies a character font for which no
ROM is installed or no character definitions have been given. In this way,
the HRULE and VRULE commands may still be used to highlight the
structure of a form.

7-17

FORMS AND FORM FILLOUT
JUNCTIONS

C

Making Correct Junctions

While the HRULE and VRULE command are convenient, vertical and horizontal rulings
drawn with these commands do not cross or join each other. Each ruling character
occupies an entire character cell on the display, and a character cell which contains a
vertical ruling character cannot contain a horizontal ruling character. For example,
suppose you give the following sequence of commands:

'VRU 3,20,10,1 <CR>
'VRU 3,30,10,1 <CR>
'VRU 3,40,10,1 <CR>
'VRU 3,50,10,1 <CR>
'VRU 3,60,10,1 <CR>
'HRU 3,20,41,1 <CR>
'HRU 5,20,41,2<CR>
'HRU 12,20,41,1 <CR>

At this point, the basic structure of the form has been ereated, but the junctions between
horizontal and vertical rulings need to be added. The workspace display appears as
follows:

y

c,

The variety of ruling characters provided in the Ruling Characters Font (Option 32) allows
the programmer or operator to make neat, well-fitted junctions by selecting appropriate
font characters. The Ruling Junctions Chart (Fig. 7-3) is a reference sheet for making
junctions on either the 4024 or 4025. On either of these you can make junctions for the
sample form with the sequence of commands:

IJUM3,20!ATT1; @!JUM3,30;AlJUM3,40;A1JUM3,50;A1JUM3,60;B<CR>
IJUM5,20!ATT1;\!JUM5,30;K!JUM5,40;K!JUM5,50;K!JUM5,60; A <CR>
IJUM12,20!ATT1;PIJUM12,30;Q!IJUM12,40;Q!JUM12,50;Q!JUM12,60;R<CR>

4

7-18 @ 4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
l JUNCTIONS
l : Now the form looks like this:
' _ - mmm———
' A complete table of font characters is given in Appendix D.
l 4024/4025 Rulings 4025 Rulings
Rulings Standard Rulings Standard
l (Font 1) (Font 0) (Font 1) (Font 0)
\ ——— — — - -
d)lc)le)))))f
@YYGYYRYYYYYB G S ?
lﬁ L - XYY TYYoYYYYYz
NJIMIIK]I1D)N ? 0 ? ?
[- C (13)k)Im)))))In
HYYOYYIYYYYYJ ? L7 ?
l L _ q ? L 7 ?
[_ ¢ r ? 0 2 ?
L _ C t))s)lul)))v
PYYWYYQYYYYYR
‘ h111E]1111]]
| a— | DJICIIE]IIIIF E - E
= b = - -
l XYY IYYOYYYYYZ S RDI'DRDIG DS e
_ 0 _ [(
&=+‘=l LIJIKIIMIIIIIN C -
l I _ p1111111U111r
- 0 - -
0 . _ alllllglllllb
'==u=* 711511011112V - ?) -
l XYYYYYoYYYYYX
- ? -
= ? -
I qYYYYYwYYYYY|
2402-12
' Figure 7-3. Ruling Junctions Chart.
' 4024/4025 PROGRAMMER'S @ 7-19

FORMS AND FORM FILLOUT
TYPING IN FORM FILLOUT

7-20

THE EFFECT OF FORM FILLOUT ON 4024/4025
COMMANDS AND KEYS

Form fillout mode alters the action of some of the 4024/4025 commands and keys, but
does not affect the action of others. For commands discussed in later sections, any
effects of form fillout mode on a command are discussed when the command is
introduced. Some of the display control commands already discussed are affected by
form fillout mode:

® The TAB, BACKTAB, and ERASE commands (and their corresponding keys) are
affected by form fillout mode.

® The UP, DOWN, RIGHT, LEFT, RUP, and RDOWN commands (and their corre-
sponding keys) are not affected by form fillout mode. The JUMP command is not
affected by form fillout mode, but is still useful for working with forms.

The following discussion assumes that the 4024/4025 is in form fillout mode, that
commands come from the computer, and that text from the computer is directed into the
workspace.

Typing in Form Fillout

When the 4024/4025 is in form fillout mode, text can be entered only in the unprotected
fields of the form. If the operator types a character while the workspace cursor is in a
protected field, the terminal bell rings and the typed character is inserted in the first
column of the next unprotected field in the form.

If the cursor is in the last column of an unprotected field and the operator types a
character, the character is inserted in that column and the cursor moves to the first
column of the next unprotected field of the form.

If the cursor is moved beyond the last field in a line (using JUMP or a cursor key) and a
character is typed, the cursor moves to the beginning of the next unprotected field in the
form and the typed charater is entered there. In this case, the terminal bell does not ring.
(See the Creating Fields with JUMP discussion earlier in this section.)

4024/4025 PROGRAMMER'S

y

O U BN O ap B By EE

FORMS AND FORM FILLOUT
TYPING IN FORM FILLOUT

When a form is created, a line of the form may consist only of a <CR>. Such a line
contains no protected or unprotected fields; it appears on the terminal screen as a blank
line, but in the workspace display list only a <CR> is stored. If the cursor is positioned
anywhere in such a line, it is (strictly speaking) beyond the end of the line. If a character
is typed when the cursor is in such a line, the cursor moves to the beginning of the next
unprotected field in the form; the terminal bell does not ring.

If the cursor is moved beyond the last unprotected field in the form and a key is pressed,
the cursor moves to column 1 of the last line in the workspace window. The typed
character is not displayed.

4024/4025 PROGRAMMER'S @ 7-21

FORMS AND FORM FILLOUT
TAB IN FORM FILLOUT

TAB in Form Fillout

Each tab character advances the workspace cursor to the beginning of the next
unprotected field in the form. If the cursor is in the last unprotected field of the form, the
next tab character sends the cursor to the home position at the beginning of the first
unprotected field.

Examples

Suppose the sample form shown below is displayed in the workspace, with the cursor
positioned as shown.

Name Johr

CURSOR

Height ' 6

Social Security Number % !

2402-24

1. The command
ITAB<CR>

moves the cursor to the beginning of the next unprotected field.

Name .

URSOR AFTER

Hexght !TAB <CR>

Social Security Number

2402-25

2. The subsequent command

ITAB 4<CR>

v

advances the cursor four unprotected fields and positions it as shown.

7-22 @ 4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
TAB IN FORM FILLOUT

CURSOR AFTER

ITAB 4<CR>
2402-26

3. The subsequent command
ITAB 3<CR>

advances the cursor through the last two unprotected fields of the form and back
to the home position.

CURSORINHOME Name John.
POSITION AFTER — >
ITAB 3<CR> Height

Social Security Number & 00— D8-

2402-27

4024/4025 PROGRAMMER’S @ 7-23

FORMS AND FORM FILLOUT
BACKTAB IN FORM FILLOUT

BACKTAB in Form Fillout

A BACKTAB character moves the cursor to the beginning of the unprotected field in
which it is located. If the cursor is already at the start of an unprotected field, or if it is not
inside an unprotected field, a BACKTAB character moves the cursor to the start of the
preceding unprotected field. If the cursor is already at the start of the first unprotected
field in the form, a BACKTAB character leaves the cursor where it is.

Examples

Suppose the cursor is positioned in the last unprotected field of our sample form, as shown.

Rge
6 ft. 4 in. Weight 228 lbs.

yrs.

Social Security Number *V'i?m—ﬁ@*_cunson

i

2402-28

o

1. The command
IBAC<CR>

moves the cursor to the beginning of the unprotected field in which it is located.

m <—— CURSOR

2402-29

y

3

7-24 @ 4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
BACKTAB IN FORM FILLOUT

2. Any of the subsequent commands

IBAC 7<CR>
IBAC 8<CR>
'BAC 9<CR>

moves the cursor through all the preceding seven fields of the form, to the
beginning of the first unprotected field.

Name Jol
CURSOR — ™

Height

Social Security Number | 008- @€

2402-30

4024/4025 PROGRAMMER'S @ 7-25

FORMS AND FORM FILLOUT
ERASE IN FORM FILLOUT

C

ERASE in Form Fillout

In form fillout mode, the ERASE command erases only the contents of the unprotected
fields in the form and leaves the cursor at the beginning of the first unprotected field.
Example

Suppose a sample form is filled out as shown and the information in the form is sent to
the computer.

He 1ght

Social Security Number

2402-31

The command

IERAW<CR>

erases the contents of the form and leaves the cursor positioned as shown.

Social Security Number

2402-32

The command

'IERA<CR>

also does this if, as we assume here, the device issuing the command (computer or
keyboard) also types into the workspace.

7-26 @ 4024/4025 PROGRAMMER’S

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
HOME KEY AND JUMP

The HOME Key and JUMP in Form Fillout
When the 4024/4025 is notin form fillout mode, the command

IJUM<CR>

has the same effect as pressing the HOME key. In each case, the workspace cursor
moves to row 1, column 1, the “home” position.

In form fillout mode, pressing the HOME key moves the cursor to the beginning of the first
unprotected field in the form, which does not necessarily begin in row 1, column 1. But the
JUMP command has no respect for form fillout mode. Giving the command

IJUM<CR> or
IJUM 1,1<CR>

moves the cursor to row 1, column 1, whether that field is protected, unprotected, or even
part of the form.

The JUMP command can still be used, with the TAB command, to simulate the action of
the HOME key. As long as row 1, column 1 is a protected location, the sequence of
commands

IJUMITAB<CR>

moves the cursor first to row 1, column 1 ({IJUM), then to the beginning of the first
unprotected field in the form (ITAB).

@ 7-27

FORMS AND FORM FILLOUT
SEND IN FORM FILLOUT

7-28

TRANSMITTING FORMS AND FORM DATA

Because of the formatted nature of forms and form data, special care must be taken when
transmitting either to the computer. The SEND command and the FIELD command have
been specially designed for transmitting form information.

SEND in Form Fillout

Syntax

ISENd [All | Mod]<CR>
The default parameter is All; that is, ISEN<CR> is equivalent to !ISEN A<CR>.
There are two uses of the SEND command involving forms.

First, suppose the operator has constructed a form in the workspace and wishes to store
this form in the computer. (The 4025 with Option 4 can also store forms or form data on a
TEKTRONIX 4924 Digital Cartridge Tape Drive. See the Peripherals section.) After making
sure that the 4024/4025 is not in form fillout mode, the operator gives the SEND
command. (If the 4024/4025 is not in form fillout mode, the SEND, SEND ALL, and SEND
MOD commands are equivalent.) This command sends all the information in the
workspace to the computer. Field attribute codes in the workspace display list are
automatically encoded as ATTRIBUTE commands; thus, when the form is sent back to the
4024/4025 from the computer, the 4024/4025 has the necessary information to
reconstruct the form.

Second, suppose a form is displayed, the terminal is placed in form fillout mode, and the
form is filled out. The operator now wishes to send the data in the form (not the form itself)
to the computer for storage or processing. With the 4024/4025 in form fillout mode, the
operator uses either the SEND ALL command or the SEND MOD command.

The SEND ALL command sends to the computer the data in each unprotected field of the
form.

The SEND MOD command sends to the computer the data in just those fields flagged with
the logical attribute M (modified). In this case, the data in a field is sent to the computer if
and only if (1) the field is an unprotected field whose contents have been changed since
the last SEND or SEND MOD command, or (2) the field is a protected field permanently
flagged with the logical attribute PM (protected modified).

@ 4024/4025 PROGRAMMER'S

C

FORMS AND FORM FILLOUT
SEND IN FORM FILLOUT

When a SEND MOD command is given, then, consecutive blocks of data received by the
computer may not come from consecutive unprotected fields in the form. For the
applications program to process the data correctly, however, it must know the form
location from which each block of data comes. Therefore, when a SEND MOD command is
executed, the data from each modified field is sent to the computer, preceded by a pair of
three-digit numbers separated by a comma. These numbers specify, in absolute
workspace coordinates, the row (first number) and column (second number) of the first
character position of the field. Suppose, for example, a modified field begins in row 5,
column 3. When the data in this field is sent to the computer, it is preceded by the string
005,003. Examples of transmissions using the SEND MOD command appear later in this
section.

4024/4025 PROGRAMMER'S @ 7-29

FORMS AND FORM FILLOUT
FIELD IN FORM FILLOUT

‘v

FIELD in Form Fillout

Syntax
IFIEId [<separator>]<CR>

where <separator> is a single printing ASCII character or a two- or three-digit ADE of an
ASCII character. If no <separator> is specified, it is assumed to be NUL, whose ADE is
00.

Action

The FIELD command sets the field separator. If any non-NUL field separator is specified,
that character precedes the data sent to the computer from each field; trailing spaces are
not transmitted.

If no field separator (or the NUL separator) is specified, all the data in each field is
transmitted to the computer by a SEND (ALL or MOD) command. If a field is not
completely filled out, all the spaces at the end of the field are treated as data and sent to
the computer, along with the rest of the data in the field.

The 4025 remembers its field separator when powered off or RESET. When the 4024 is
powered up or RESET, its field separator defaults to NUL.

Examples

IFIE @ <CR> Sets the field separator to the @ character,

IFIE 64<CR> whose ADE is 64.

IFIE 9<CR> Sets the field separator to the ASCII charac-
ter 9.

IFIE 09<CR> Sets the field separator to the ASCII HT
(horizontal tab) character, whose ADE is 09.

IFIE<CR> Sets the field separator to NUL. When data
in a field is sent to the computer, no field
separator is used.

7-30 4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

FORMS AND FORM FILLOUT
SAMPLE TRANSMISSIONS

Some Sample Transmissions

Suppose the following form begins in row 1 of the workspace. The unprotected fields are
enhanced (shown here shaded gray); the last unprotected field has logical attribute
numeric. The end of each non-blank line is at the end of the last unprotected field in the

line. The three lines containing unprotected fields are separated from each other by blank
lines.

2402-33

To store this form in the computer, give the command
ISEN<CR>

The following information is sent to the computer:

IATT P;————Name !ATT AE;— — ———— ——— — <CR>IATT
P<CR> |ATT P;—Address |ATTAE; — — — — —— — ——
<CR>!ATT P<CR> |ATT P:—— — —City IATTAE;— — ——— —— — — — IATT PS; —
State:|ATT AE;— ——— — — — — — IATT PS;—ZIP IATT NE;— — — — — <CR>

Each transmitted space is shown here as a dash. Remember that the default logical
attribute of lines 2 and 4 (the blank lines) is alphanumeric. These lines must be protected
to prevent text from being entered in them.

Suppose now the 4024/4025 is placed in form fillout mode and the form is filled out.

Name John Doe

Address 1111 W.

2402-34

@ 7-31

FORMS AND FORM FILLOUT
SAMPLE TRANSMISSIONS

7-32

1.

If no field separator is specified, the command
ISEN A<CR>

sends the following data to the computer:

John Doe——-———————— — — <CR>1111—W.—First—St. — ———
<CR>Anytown——— Oregon——00000<CR>

No field separator is used and each field is sent, including all trailing spaces. In a
programming language which can divide an incoming line into blocks of
predetermined length (such as COBOL), this is a convenient format.

2. Suppose the field separator is the number sign, #. The command
ISEN A<CR>
now sends the following to the computer

#John—Doe<CR> #1111 —W.—First—St. <CR> #Anytown #QOregon
#00000<CR>

The host program must use the # character to distinguish data from different
fields.

3. Suppose that the same form is filled out for John Doe’s sister, Jane Doe, who lives
at a different street address in Anytown. Instead of erasing the form, the operator
presses the HOME key to return the cursor to the first unprotected field, and
simply types over the old information which must be changed.

2402-35

4024/4025 PROGRAMMER'S

<

@

FORMS AND FORM FILLOUT
SAMPLE TRANSMISSIONS

Now the first two unprotected fields are flagged with the logical attribute M. The
SEND MOD command sends the data in these fields to the computer.

If no field separator is specified, the command
ISEN M<CR>
sends the following data to the computer:

001,010Jane—Doe—————— — —— — — — <CR>003,0109999W.—Ninth—
St.<CR>

Note that no spaces or other characters separate the row and column identifiers
from the first character in the field.

4. Finally suppose the form is filled out for John’s brother, Brad Doe, with no street
address information provided, and the City and ZIP information modified:

Name |

Address

City S ZIPE

2402-36

If the field separator is the character, the command
ISEN M<CR>
sends the following data to the computer:

001,010#Brad—Doe <CR>003,010#<CR>005,010#Sometown005,038
#99999<CR>

4024/4025 PROGRAMMER'S @ 7-33

4024/4025 PROGRAMMER'S

Section 8

TEXT EDITING

THE TEXT-EDITING COMMANDS

The 4024/4025 recognizes four commands designed specifically for text editing: DCHAR

(Delete Character), ICHAR (Insert Character), DLINE (Delete Line), and ILINE (Insert Line).

NOTE
If an editing command is typed on the keyboard and text from the keyboard
is printed in the monitor, execution of the command inserts a blank line

just below the line on which the command is typed. All examples deal with
the workspace display.

DCHAR (Delete Character)
Syntax

IDCHar [<count>]<CR>
where <count> is a positive integer. If <count> is not specified, it defaults to one.
Action
This command deletes <count> characters, beginning with the character at the cursor
position. As each character is deleted, characters to the right of the cursor shift left to fill
the gap. The cursor does not move. If the terminal is in form fillout mode, only characters
to the right of the cursor in the same field shift left. If the terminal is not in form fillout

mode, all characters right of the cursor on the same line shift left.

This command is equivalent to pressing the DELETE CHARACTER key <count> times.

8-1

TEXT EDITING

DCHAR

8-2

Examples

Suppose the following text is displayed in the workspace, with the cursor positioned as
indicated:

Everything seems geems in order.
The command
IDCH<CR>
or
IDCH1<CR>
deletes the s at the cursor position, leaving the following display:
Everything seems %ems in order.
The subsequent command
IDCH5<CR>
leaves the desired display:
Everything seems-in order.
Suppose a form contains incorrect information in an unprotected field; with the cursor
positioned as shown:
Name: Jane Doe.DoeAge: 23
The command:

IDCH4<CR>

deletes the second “Doe” and the extra space. Neighboring fields are not affected.

Name: JaneDoe- Age: 23

. Y ‘

4024/4025 PROGRAMMER'S

TEXT EDITING
ICHAR

ICHAR (Insert Character)
Syntax

IICHar<CR>

Action

The ICHAR command places the 4024/4025 in insert mode. This command is equivalent
to pressing the INSERT MODE key.

In insert mode, when new text is sent from the computer or typed on the keyboard, the
cursor, the character at the cursor position, and characters to the right of the cursor are
shifted right to make room for the new text.
Suppose the text

END PAGE

[|

is displayed in the workspace, with the cursor positioned as shown. If the string

ICH;0OF <CR>
is sent from the computer, it inserts the text OF and displays the text

END OF PAGE

|

in the workspace, with the cursor positioned as shown.
If the string

lICH;OF <CR>

is typed from the keyboard, the <CR> is sent to the workspace as text, and the cursor is
positioned at the beginning of the next line:

END OF PAGE
- |

In form fillout mode, only characters in the unprotected field containing the cursor are
shifted right. Characters shifted past the rightmost position in that field are lost.

4024/4025 PROGRAMMER'S @ 8-3

TEXT EDITING

ICHAR

8-4

The BACKSPACE command can be used to delete unwanted characters just to the left of
the cursor, withoutleaving insert mode. Suppose the following text is displayed in the
workspace, with the cursor positioned as shown:

Everything would ﬁeems to be in order.
The command

IBAC 6<CR>
results in the following display:

Everything ﬁeems to be in order.
The cursor, the character at the cursor position, and characters to the right of the cursor
all move left six columns; the characters previously stored in those columns are deleted.

Pressing the BACKSPACE key six times gives the same results.

The DCHAR key can be used to delete unwanted characters at or to the right of the cursor
position, WITHOUT leaving insert mode.

Suppose the following text is displayed in the workspace, with the cursor positioned as
shown:

Everything \gould seems to be in order.
The command

IDCHAR 6<CR>
results in the following display:

Everything ieems to be in order.

The 4024/4025 does not leave insert mode. Pressing the DELETE CHARACTER key six
times gives the same results.

Any other cursor movement, resulting either from giving a command or from pressing a
key, will cause the 4024/4025 to leave insert mode.

4024/4025 PROGRAMMER'S

TEXT EDITING

Suppose the terminal is in form fillout mode and the following form is displayed, with the
cursor positioned as shown. The only unprotected fields are the three underlined fields:;
all other fields are protected.

NAME: Ebenezer Scrooge Age: 77
Miser

Position Applied for:
If the string
ICH; A<CR>

is sent from the computer the following display results:

NAME: Ebenezer A ScroogeAge: 77
Position Applied for: Miser

The subsequent string
IICH;ber<CR>
sent from the computer results in the form fillout display:

Name: Ebenezer Aber ScroAge: 77

Position Applied for: Miser

Finally, the string:
IICH;nathy <CR>
sent from the computer, moves the cursor past the end of the first unprotected field and

into the second unprotected field. The following first lines of the form will be seen in rapid
succession:

Name: Ebenezer Abern ScrAge: 77
Name: Ebenezer Aberna ScAge: 77
Name: Ebenezer Aberna! SAge: 77
Name: Ebenezer AbernatH Age: 77
Name: Ebenezer AbernathyAge: ;_7_
4024/4025 PROGRAMMER'S @

ICHAR

85

TEXT EDITING
ICHAR

If the second unprotected field has the A (alphanumeric) attribute, any further insertion of
characters shifts characters in the second field to the right and the old characters are
lost. If the string

IICH;B<CR>

is sent from the computer, the following display results:

Name: Ebenezer AbernathyAge: 5{
Position Applied for: Miser

However, if the second unprotected field has the N (numeric) attribute, a subsequent

ICHAR command which inserts alphabetic characters will move the cursor to the first
position in next unprotected field of the form and insert characters there. If the string

IICH;B. <CR>
is sent from the computer, the following display results:

Name: Ebenezer AbernathyAge: 77
Position Applied for: B. Miser
“w

If the insert character operation moves the cursor past the last unprotected field on the
form, the cursor moves to the beginning of the first unprotected field in the form which
can accept the new characters; the new characters are inserted in that field.

8-6 @ 4024/4025 PROGRAMMER'S

TEXT EDITING
DLINE

DLINE (Delete Line)

Syntax
IDLIne [<count>]<CR>

where <count> isa positive integer. If <count> is not specified, it defaults to one.

Action

If the 4024/4025 is not in form fillout mode, this command deletes <count> consecutive
lines of text, including the line containing the cursor. If the cursor is in the middle of a line,
the entire line is deleted. As each line is deleted, the lines below roll up to fill the gap. The
cursor moves to the beginning of the line which rolls up.

In form fillout mode, this command erases the contents of all unprotected fields in
<count> lines of the form. The line containing the cursor is counted as a deleted line,
whether or not it contains any unprotected fields. After this line, only lines containing at
least one unprotected field are counted as deleted lines. The cursor is positioned at the
beginning of the next unprotected field, after the last field erased.

This command is equivalent to pressing the DELETE LINE key six times.

A
Examples This is Line 1
This is_Line 2 CURSOR IN LINE 2,
This is Line 3 COLUMN 8
. . . . Th?s ?s L?ne 4
Suppose the terminal is not in form fillout mode, and 1his is Line's

This is Line 6

the workspace contains the text shown, with the
cursorinline 2, column 8:

The command
This is Line 1
his is Line 5
HisisLine @ CURSOR POSITION
IDLI 3<CR> AFTER IDLI 3<CR>

gives the workspace display shown here:

4024/4025 PROGRAMMER'’S @ 8-7

TEXT EDITING

DLINE

Suppose the terminal is in form fillout mode, and the workspace holds the form shown
here. The unprotected fields are enhanced (shown here shaded gray).

Position Applied For Office Manager

References

2402-37
If the cursor is positioned anywhere in the first line of the form, the command
IDLI<CR>
results in the display shown below.
cursor aFTer ___ Date Ju 1978
IDLI <CR> -
Position Rpplied For Off
References
BiliNew T e
Carol Crane
2402-38
@ 4024/4025 PROGRAMMER'’S

C\
)

TEXT EDITING
DLINE

The subsequent command
IDLI 3<CR>

results in the display shown here. Note that the line “References:” is not counted as a
deleted line, since it contains no protected fields.

Date SRS

Position Applied For

References

CURSOR AFTER

IDLI 3<CR>

2402-39

Suppose you begin with the form below and the cursor positioned as shown.

Position Applied For Of:

CURSOR Efferences
POSITION : : 4
Bill Brown 2
Carol Crane
2402-40
4024/4025 PROGRAMMER'S @ 8.9

TEXT EDITING
DLINE

The command
IDLI 3<CR>

results in the display shown here. Observe that the line which originally contained the
cursor has been counted as the first deleted line, even though it contains no unprotected
fields.

Date

Position Applied For

References

LINES ERASED

CURSOR AFTER
IDLE 3<CR>

2402-41

8-10 _ 4024/4025 PROGRAMMER'S

TEXT EDITING
ILINE

ILINE (Insert Line)
Syntax
llLIne [<count>]<CR>
where <count> is a positive integer. If <count> is not specified, it defaults to one.
Action

This command inserts <count> blank lines into the text immediately below the line
containing the cursor. The cursor is positioned at the beginning of the newest line. Lines
of text below the cursor position are rolled down to make room for the inserted blank
lines, and the scroll is lengthened so that these lines are saved on the display list.

This command is equivalent to pressing the INSERT LINE key <count> times.

The ILINE command makes it easy to insert new text between lines of old text. Use the
ILINE command to create several blank lines at the desired location. Type the new
information into the blank lines and use the DLINE command to delete any blank lines
left over.

NOTE

For text editing applications, the first line entered into the workspace
should be blank. If new text must be inserted above the old text, the cursor
is moved to the beginning of the workspace and the ILINE command is
used to create space for the new text. If the first line of the workspace
already contains text, this procedure inserts blank lines below the first line
of old text, rather than above it.

Examples Line
L8~ CURSORPOSITION

Line 4

Suppose the workspace contains the text shown
opposite, with the cursor positioned as shown.

4024/4025 PROGRAMMER'S @ 8-11

TEXT EDITING

ILINE

8-12

The command
IILI 3<CR>
inserts three blank lines between line 2 and line 3,

leaving the cursor in column 1 of the newest blank
line:

Line 1

Line 2
(blank)
(blank)

Kl AFTERULI3<CR>

ne 3
Line 4
Poema

When the 4024/4025 is in form fillout mode, the ILINE command has no effect.

4024/4025 PROGRAMMER'S

4024/4025 PROGRAMMER'S

Section 9

4025 GRAPHICS

The 4025 with Option 23, 24, 25, or 26 has basic graphic capability. A 4025 thus
equipped can draw several styles of vectors (line segments), intermix graphics with text
and forms, and store special purpose character fonts defined by the user. This section
explores these capabilities.

THE GRAPHICS COMMANDS

There are seven commands designed for creating graphic displays on the 4025. These

are the GRAPHIC, VECTOR, RVECTOR, LINE, STRING, ERASE G, and SHRINK commands.

Each of these is discussed in turn.

GRAPHIC (4025 only; requires Option 23, 24, 25, or 26)

Graphics are displayed in the 4025 workspace. Before this can be done, the workspace

must be prepared to display graphs by defining a graphic region. The GRAPHIC command
is used for this purpose.

Syntax
!GRAphic <beg row> <end row>[<beg col>[<end col>]]<CR>

where all parameters are positive integers designating rows and columns in absolute
workspace coordinates. Thus <beg row> must be less than <end row>, <beg col>
must be less than < end col >, and < end col > must be less than or equal to 80. Also,
< end row > must not exceed < beg row > by more than 52, since the graphic region
cannot exceed 53 rows in length. The default values of < beg col > and < end col > are
1 and 80, respectively.

Action

This command defines a graphic region in the 4025 workspace and erases all information
currently stored in this region. The graphic region thus defined consists of rows

<beg row> through <end row>, and columns <beg col> through <end col> in each of
these rows.

9-1

4025 GRAPHICS

GRAPHIC
Examples

IGRA 1,35<CR> Creates a graphic region in the workspace
containing columns 1 through 80 of rows 1
through 35.

IGRA 1,35,30<CR> Creates a graphic region in the workspace
containing columns 30 through 80 of rows 1
through 35.

The structure of a graphic region is best illustrated by an example. The command
IGRA 10,19,20,49<CR>

creates a graphic region which occupies rows 10 through 19, columns 20 through 49 in
each of these rows.

WORKSPACE

T0CELLS
HIGH

(Z7 77777777

Q00
000
000
000
000!
000
000
000
Q0@
000:
000!
000
000!

EACH CELL IS
A 14 x 8 MATRIX

2401-21

Figure 9-1. A Graphic Region.

4024/4025 PROGRAMMER'S

“‘

]

4025 GRAPHICS
GRAPHIC

As illustrated in Figure 9-1, this graphic region is 10 cells (character cells) high and 30
cells wide. Each cell consists of a dot matrix 8 dots wide by 14 dots high. Each dot can be
turned on (lighted) by an electronic vector beam. Various commands discussed in this
section draw vectors or display user-defined symbols by turning on patterns of these
dots.

The columns of dots are numbered from left to right across the graphic region, starting
with O for the leftmost column, and from bottom to top, starting with O for the bottom row.
In Figure 9-1, the 240 columns of dots (30 cells, each cell 8 dots wide) are numbered
from O to 239; the 140 rows of dots (10 cells, each cell 14 dots high) are numbered from
0 to 139. This establishes a coordinate system in the graphic region. Each dot in this
region is assigned X and Y-coordinates. The X-coordinate gives the dot’s horizontal
position; the Y-coordinate gives the dot’s vertical position. These coordinates are used in
the VECTOR and RVECTOR commands.

It is possible to define more than one graphic region in the workspace. If this is done,
new graphic commands affect only the graphic region most recently defined. Different
graphic regions should not overlap.

4024/4025 PROGRAMMER'S @ 9-3

4025 GRAPHICS
VECTOR

VECTOR (4025 only; requires Option 23, 24, 25 or 26)

When a graphic region of suitable size has been defined, vectors (line segments) can be
drawn in the graphic region using the VECTOR command.

Syntax
IVECtor <Xp><Yp><X1><Y{>[<Xo><Yo>..<Xy><Y,>]<CR>

where all <X;> and <Y;> parameters are positive integers. The parameters are
separated by spaces or commas.

Action

This command draws a vector from the point with graphic coordinates (<Xg>, <Yp>) to
the point with coordinates (<X1 >, <Y4 >). If additional pairs of coordinates are
specified, additional vectors are drawn from (<X{>, <Yq1>) to (<X2>, <Yo>), from
(<Xo>, <Yo>) to (<X3>, <Y3>), and so on.

The <X;> and <Y;> coordinates are graphic region coordinates and must lie within the
coordinate system defined by the current graphic region. If the graphic region was
defined by the !|GRA 10,19,20,49 <CR> command, all <X;> coordinates should be
between 0 and 239, and all <Y;> coordinates between 0 and 139.

If a point is specified which lies outside the graphic region, the 4025 does not try to draw
a line to that point. It resumes drawing with the next line segment which lies entirely
within the graphic region.

Example

Suppose you have used the |GRA 10,19,20,49 <CR> command to define the 240 X 140
graphic region described earlier. The command

'VEC 120,120 91,30 168,85 72,85 149,30 120,120<CR>

creates the display shown in Figure 9-2. (Axes are not shown on the display.) Note that,
since either a space or a comma serves as a separator, we have alternated these to
emphasize the VECTOR coordinate pairs.

@ 4024/4025 PROGRAMMER'S

y

C,

'S

4025 GRAPHICS
l VECTOR
I Y-AXIS
|
(120,120)

l (72,85) (168,85)

(91,30) }9,30)
I + X-AXIS

IVEC 120,120,91,30,168,85,72,85,149,30,120,120
. 2402-13
Figure 9-2. The VECTOR Command.

l 4024/4025 PROGRAMMER'’S @ 9-5

4025 GRAPHICS
RVECTOR

9-6

RVECTOR (Relative Vector) (4025 only; requires Option 23, 24, 25 or 26)

It is possible to draw vectors by specifying relative coordinates—that is, coordinates
relative to the last vector beam position. This is done by using the RVECTOR command.

Syntax

IRVEctor <rel Xg> <rel Yo> <rel X1><rel Y{>[<rel Xo><rel Yo> ...
<rel Xp> <rel Yo>]<CR>

where <rel X;> and <rel Y;> are integers, not necessarily all positive. The parameters
are separated by spaces or commas.

Action

This command draws one or more vectors in the graphic region, as does the VECTOR
command. The pair <rel Xg>, <rel Yg> specifies coordinates relative to the current
vector beam position. Each succeeding pair of <rel X;>, <rel Yj> parameters specifies
new coordinates relative to the preceding coordinate pair.

Example

Suppose that the current vector beam position is at the point with absolute workspace
coordinates (120,65). The command:

'RVE 0,55 -29,-90 77,55 -96,0 77,-55 -29,90<CR>

draws the star in Figure 9-3. It is the same figure drawn by the earlier VECTOR command,
but now each pair of coordinates given is relative to the preceding pair of coordinates.

As in the VECTOR command, if a pair of coordinates specifies a point outside the graphic
area, the 4025 ignores that point and resumes drawing with the next vector lying entirely
within the graphic region.

4024/4025 PROGRAMMER'S

\
J

C

4025 GRAPHICS
I RVECTOR
I Y-AXIS
A
START FINISH
I (120+0,65+55) = (120,120) = (149-29,30+90)
l (169-96,85+0) = (72,85) / (168,85) = (91+77,30+55)
ORIGINAL VECTOR BEAM
l POSITIONED AT (120,65)
(120-29,120-90) = (91,30) (149,30) =(72+77,85-55)
' . .
I — X-AXIS
'RVE 0, 55,-29,-90,77,55,-96,0,77,—-55,-29,90<CR>
l 2402-14
I Figure 9-3. The RVECTOR Command.
l 4024/4025 PROGRAMMER'S @ 9-7

4025 GRAPHICS

LINE

9-8

LINE (4025 only; requires Option 23, 24, 25 or 26)

The 4025 can draw different styles of vectors. The style of vector to be drawn is selected
with the LINE command.

Syntax
ILINe [<line type>]<CR>
where <line type> must be one of the following:
® A digit from 1 to 8, inclusive
® The letter P
® The letter E

If <line type> is not specified, it defaults to one.

Action

This command sets the type of line used to draw vectors in subsequent VECTOR and
RVECTOR commands. Line type 1 is a solid line, the default line type. Line types 2
through 8 are various styles of dashed lines. Line types 1 through 8 are shown in Figure
9-4.

2401-23

Figure 9-4. Vector LINE Types.

Line type P causes subsequent VECTOR and RVECTOR commands to plot isolated points
rather than connect points with line segments.

Line type E causes subsequent VECTOR and RVECTOR commands to draw “dark
vectors” which erase any lighted points through which they pass.

@ 4024/4025 PROGRAMMER'S

4025 GRAPHICS

STRING
STRING (4025 only; requires Option 23, 24, 25 or 26)
At times it may be desirable to enter text into a graphic area. Since there is no workspace
cursor in the graphic area, and since straight text sent to the terminal from the computer
is entered at the workspace cursor location, another way is needed to put text into a
graphic area. The STRING command does this.
Syntax
ISTRing <text><CR>
where <text> may be:
1. One or more delimited ASCII strings.
2. A sequence of ASCII Decimal Equivalents.
3. Any combination of 1 and 2.
The string defined by <text> should not contain the command character.
Action
This command inserts the string defined by the <text> parameter into the graphics area.
The first character defined by <text> is displayed in the character cell containing the
vector beam. Succeeding characters of <text> are displayed in succeeding character
cells. Any vectors or characters that were previously displayed in the character cells
where <text> is inserted are no longer visible, since each character of <text> fills an
entire character cell. A sample STRING command and the resulting display is shown in
Figure 9-5.
Triangle
'GRAPHIC 1,35
'VECTOR 0,0 300,80 150,200 0,0
'VECTOR 120,80
!STRING "Triangle” 2402-15
Figure 9-5. The STRING Command.
4024/4025 PROGRAMMER'S 9-9

@

4025 GRAPHICS

ERASE

9-10

ERASE G (4025 only; requires Option 23, 24, 25 or 26)

When the information displayed in a graphics area is no longer needed, it can be deleted
in one of two ways. One may delete the graphic region and all information stored in it from
the workspace display list. One may also erase the graphic information but leave the
graphic region defined to display new graphic information.

To delete the graphic region from the display list, give the ERASE WORKSPACE
command. The graphic region, along with all other information in the workspace, is
deleted from the display list. No further graphics commands can be executed until a new

graphic region is defined by a GRAPHIC command.

If one wishes to reuse the same graphic region, the ERASE G command is used.

Syntax

IERAse G CR>

Action

This command erases the contents of the graphic region containing the vector beam. All
information in the region, including text, is erased. The graphic region is still defined and
new graphic information and text can be displayed there.

4024/4025 PROGRAMMER'S

4025 GRAPHICS
SHRINK

SHRINK

There are two circumstances which make it necessary for the 4025 to alter the
coordinates of graphic information in its display list.

® The 4025 accepts 4010-style graphic commands from a host computer. In 4010-
style graphic commands, the X-coordinates can be as great as 1023. The X-
coordinates in a 4025 VECTOR or RVECTOR command should not exceed 639 (in
a graphics region occupying all 80 columns). It is necessary, therefore, to scale
incoming 4010-style graphic commands for display in the 4025 graphic region.
(See discussion of 4010-style graphics in this section.)

® To make hard copies of a graph displayed on the 4025 screen, give the HCOPY
command. (See the Peripherals section.) In order for graphs to be properly
proportioned on hard copies, the Y-coordinates must be scaled.

The SHRINK command is used to instruct the 4025 to alter graphic coordinates for each
of these circumstances.

Syntax

ISHRink [Yes |Hardcopy | Both | No] <CR>

The default parameter is Yes.

Action

SHRINK YES. This command causes the 4025 to “shrink” X- and Y-coordinates in
subsequent VECTOR or RVECTOR commands, multiplying them by a factor of approxi-
mately 5/8. This accommodates the 4025 to the range of possible coordinates in 4010-
style graphics commands.

To use the 4025 to execute a command file written for 4010-series terminals, first
dimension the graphics area to hold 35 rows of 80 columns. (IGRA 1,35,1,80 or IGRA

10,44 are two GRAPHIC commands which do this.) Then give a SHRINK YES command to
put the 4025 in graphics shrink mode.

4024/4025 PROGRAMMER'S @ 9-11

4025 GRAPHICS
SHRINK

SHRINK HARDCOPY. This command puts the 4025 in hardcopy shrink mode. In this
mode, the Y-coordinates (but not the X-coordinates) in VECTOR and RVECTOR
commands are multiplied by a factor of 7/8. This pre-distorts graphs drawn on the 4025’s
screen, so they appear in the proper proportion when copied on a TEKTRONIX 4631 Hard
Copy Unit. Character strings inserted in the graphics area with the STRING command will
not be shrunk. SHRINK HARDCOPY affects only vectors, not alphanumerics.

SHRINK BOTH. This command puts the 4025 in both graphics shrink and hardcopy
shrink modes. The X-coordinates in subsequent VECTOR and RVECTOR commands are
multiplied by approximately 5/8, while the Y-coordinates are multiplied by approximately
35/64.

SHRINK NO. This command removes the 4025 from both shrink modes.

@ 4024/4025 PROGRAMMER’S

4024/4025 PROGRAMMER'S

4025 GRAPHICS
EFFECTS OF A GRAPHIC REGION

EFFECTS OF A GRAPHIC REGION

The presence of a graphic region affects the action of some of the 4025 commands and
keys, summarized here:

DELETE CHARACTER: Inside a graphic region, the character is replaced by a space.

DELETE LINE: In a line which passes through a graphic region, only characters outside
the graphic region are deleted. Information inside the graphic region is not deleted.

ERASE & SKIP: In a line that passes through a graphic region, only characters outside
the graphic region are deleted.

ERASE WORKSPACE: This erases the entire workspace, including the graphic region
definition. A new GRAPHIC command must be given before further graphics can be
displayed.

CURSOR MOVEMENT AND TYPING: The ASCII keys, the cursor movement keys and
commands, and the scrolling keys and commands are not affected by the presence of the
graphics region. If the cursor is moved into a graphic region and a character typed on the

keyboard, that character replaces graphic information previously stored in that character
cell.

FORM FILLOUT MODE: All locations within the graphic region are protected in form
fillout mode. If a graphic region is less than 80 columns wide and no form exists in the
side region(s), then the side region(s) are unprotected by default and text may be entered
into them. To prevent text from being entered into these regions, they must be protected
or the graphic region must be expanded to include all 80 columns.

ATTRIBUTE CODES: Inside a graphic region, the 4025 inserts only font attribute codes
in the display list. All other attributes are ignored. Any visual attributes (enhanced, etc.)
which are in effect at the left edge of the graphic region affect the entire row of character
cells running through the graphic region. Logical attributes and font codes in effect at the
left edge of the graphic region do not affect the graphic region itself, but characters to the
right of the graphic region are given these same font and logical attributes.

THE SEND COMMAND: Graphic information in a graphic region is not transmitted by
the SEND command. Every character cell containing graphic information is transmitted as
an ASCII space. (Text information is sent, however.) Suppose the graph shown in Figure
9-6 is displayed in the workspace.

4025 GRAPHICS
EFFECTS OF A GRAPHIC REGION

9-14

OUTLAYS FOR TRANSPORTATION

— TOTAL
"""" HIGHWAYS AND OTHER TRANSPORTATION
--—- MASS TRANSIT AND RAILROADS

- = WATER

1S -

B
I
L 10
L
S e
0 28
N
S .

s+ T T -1

%]

B I | I 1 I I I I I
68 69 70 71 72 73 74 7 76 77 78 79
FISCAL YERRS
2402-16

Figure 9-6. A Graphic Display.

If you do a SEND operation to the computer, then SEND back from the computer to the
terminal, you obtain the display in Figure 9-7. No information generated by graphic
commands was sent to the computer. The display in Figure 9-7 is what is stored in the

computer.

4024/4025 PROGRAMMER'S

4025 GRAPHICS
EFFECTS OF A GRAPHIC REGION

15

OUTLAYS FOR TRANSPORTATION

]
I
L 10 |
L
I
0
N
S
5

TOTAL

HIGHWAYS AND OTHER TRANSPORTATION
MASS TRANSIT AND RAILROADS

WATER

|
69 70 71 72 73 74 ¢ 76
FISCAL YERRS

| I
77 78 79

2402-17

4024/4025 PROGRAMMER'S

Figure 9-7. A Graphic Display After the SEND Command.

9-15

4025 GRAPHICS
4010-STYLE GRAPHICS

9-16

4010-STYLE GRAPHICS ON THE 4025

The 4025 with a Graphics Memory option, accepts 4010-style graphic commands when
these commands are sent from the host. (The 4025 does not accept 4010-style graphic
commands entered on the keyboard.) 4010-style graphics uses ASCII characters to

encode graphic screen coordinates. Certain control characters are used as commands.

To enable the 4025 to respond properly to 4010-style graphic commands, issue the
commands

!GRAPHIC 1,35<CR>
ISHRINK<CR>

These set up a graphics region which is correctly proportioned to hold a 4010-style
graphics display. Specifically, the viewable graphic region is approximately 640X by
525Y, in 4025 workspace coordinates (1024X by 780Y in 4010 coordinates). (See the
SHRINK command discussion earlier in this section.)

The following 4010-style commands from the host cause the 4025 to change operating
modes:

1. The GS command—places the 4025 in 4010-style graph mode.

2. The US command—exits the 4025 from graph mode and positions the cursor at
the character cell containing the vector beam.

3. The ESC command—notifies the 4025 that the next character should be
interpreted as a command.

4. The ESC-Form Feed command—exits the 4025 from graph mode, erases the
display, and moves the cursor to the home position.

@ 4024/4025 PROGRAMMER'S

\

4024/4025 PROGRAMMER'S

4025 GRAPHICS
4010-STYLE GRAPHICS

Addressing the Vector Beam

The vector beam is moved to a point in the graphic region by sending to the terminal the
binary equivalents of the Y address and the X address (4010 coordinate addresses) of
the point. Each binary equivalent is separated into two parts: the five most significant bits
and the five least significant bits. The address 205Y,148X translates to 0011001101Y,
0010010100X (binary). The 0011001101Y becomes 00110 HiY and 01101 LoY; the
0010010100X becomes 00100 HiX and 10100 LoX. In graph mode, these bytes cause
the beam to be moved to the 205Y,148X position in the graphics area. To be sent to the
4025 these bytes must be encoded as ASCII equivalents. The 00110 HiY bit is encoded
as an ASCII “&” symbol, which has binary representation 0100110. The first two bits, 01,
instruct the terminal that this is a HiY address. The last five bits, 00110, form the HiY
segment of the Y address 0011001101. 205Y,148X is encoded as “&M$T.” Appendix C
is a Coordinate Conversion Chart for encoding X and Y-coordinates as ASCII characters.

Graph Mode Memory

When an address is sent to the terminal, the HiY, LoY and HiX bytes are stored in a
register. If the next address sent to the terminal repeats some of these bytes, they need
not be retransmitted. LoX must always be sent, since the command is not executed until
LoX is received. Even if the 4025 leaves graph mode and reenters it later, these three
bytes are retained. The following table shows which bytes must be sent in response to
specific byte changes.

Table 9-1

4010-STYLE GRAPHICS REQUIRED BYTE TRANSMISSIONS

Bytes Bytes which must be transmitted

Which

Change Hi Y LoY Hi X Lo X
Hi 'Y # #
LoY # #
Hi X # # e
Lo X =t

When the 4025 exits 4010 mode, the communications port is returned to the portion of
display memory it was in before entering 4010 mode (workspace or monitor).

For a complete discussion of 4010-style graphics, see the 4010 Series documentation.

@ 9-17

4025 GRAPHICS
SYMBOL

9-18

ALTERNATE CHARACTER FONTS

The 4025 graphics memory may be used to store alternate character fonts, defined by the
user for_special purposes.

With its full 32K of graphics memory (Option 26), the 4025 can accommodate up to 16
different fonts, each containing up to 128 characters. Fourteen of these fonts may be
user-defined. (The standard font is Font O and cannot be modified by the 4025 operator
or by the computer.) In addition to the standard font, two other predefined fonts are
available: Ruling Characters (Option 32) and Math Characters (Option 34).

Alternate character fonts are defined, symbol by symbol, with the SYMBOL command.

Symbol (4025 only; requires Option 23, 24, 25 or 26)
Syntax

ISYMbol <number> [<value 1>][<value 2>].. .[<value 14>]<CR>
where

<number> is an integer between 0 and 127, inclusive.
 is an integer between 1 and 31, inclusive.
<value n> is an integer from O to 255.

The parameter must specify a character font for which graphics memory is
installed. (The operator can discover which character fonts have graphics memory
installed with the GTEST command, discussed in the System Status and Initialization
section.) Each <value n> parameter defaults to zero.

Action

This command defines a symbol in character font . The <number> parameter is
the ASCII Decimal Equivalent of some ASCII character. When this ASCII character is
entered in a field with the indicated font attribute, the symbol defined by this command is
displayed.

@ 4024/4025 PROGRAMMER’S

4025 GRAPHICS
SYMBOL

The symbol is defined by specifying which dots in the 8 x 14 character cell matrix are
lighted when the symbol is displayed. Each <value n> parameter is converted into an 8-
bit binary equivalent. The zero/one pattern of this binary equivalent determines which of
the eight dots in the n-th row of the character cell will be lighted when this character is
displayed.

If fewer than 14 rows are specified, each of the unspecified parameters default to zero.
The remaining rows have no dots lighted and are displayed dark.
Example
The command

ISYM 97,30,0,0,0,0,2,52,72,72,52,2,0,255<CR>
defines character 97 of font 30. The number 97 is the ASCII Decimal Equivalent of the
ASCII character a. Thus when the a character is entered in a field with font attribute 30,

the symbol defined by this command is displayed. Figure 9-8 illustrates this symbol and
how the SYMBOL command defines it.

Eight- Bit
Integer Binary Equivalent Dot Pattern
0 o/o/o[oJo/0]0]0 l
0 l0j0oojo0o0 0 ‘
0 0/oo6[o 000
0 0o o/ojo/oolo
2 0/0/ojojo/0[1/0]
52 l0/0/1/1/0/ 100
72 1011001000
72 0/100/1000]|
52 0/0/1/1/0/1/0[0]
2 000/0/00 10 ‘
0 00000000
255 111117111
Default 00000000
Default 00/0ooooo } -
2402-18

Figure 9-8. A User-Defined Symbol.

If one wishes to clear symbol 97 frbm user-defined font 30, the command

ISYM 97,30<CR>

is given. All rows in the character cell matrix are set to zero, and this symbol is displayed
as a space, with no matrix dots turned on.

4024/4025 PROGRAMMER'S @ 9-19

4025 GRAPHICS

DFONT

9-20

DFONT (Delete Font) (4025 only; requires Option 23, 24, 25 or 26)

The graphics memory used to store symbol definitions in a user-defined character font
can be cleared of these definitions and released for another use by giving the DFONT
command.

Syntax

IDFOnt <CR>

where is an integer between 1 and 31, inclusive.

Action

This command deletes all symbol definitions in the specified font. The graphics memory
used to store these definitions can now be used to store graphic information or another
user-defined font.

Example

The command

'DFO 30<CR>

deletes from memory all symbol definitions in character font 30.

@ 4024/4025 PROGRAMMER'S

Appendix A

MEMORY CONSIDERATIONS

It is possible for the 4024/4025 to use up all of its display memory. Likewise, the 4025
may use up all of its graphics memory. The comments in this appendix should help the
programmer judge how much of each type of information can be sent to the terminal
before running out of memory.

DISPLAY MEMORY

On the 4024/4025 screen, a full line of text (a character displayed in every column) plus
ten attribute codes uses 112 bytes. A full screen of such lines (34 lines X 112 bytes/line)
uses about 3800 bytes. As a rule of thumb, then, you get about one full screen of display
for every 4K bytes of display memory. Usually, of course, one does not use the full 80
columns of a line for display. A rough calculation of line length will give the proper
adjustment factor. For example, if the program uses roughly 50% of each line for display, a
16K byte display memory will store approximately:

16K bytes xmx 2 = 8 34-line screens
4K bytes

The workspace and the monitor both use memory out of the same “pool” of display
memory. When the 4024/4025 has used most of its display memory and you attempt to
display more information, the result depends on which scroll is receiving information.

If the 4024/4025 runs low on memory while you are sending information to the
workspace, the terminal bell rings as a warning to the operator, and the terminal
overprints a portion of the current line with incoming data. If information continues to
come, the terminal soon refuses to print and the cursor sticks at its current location.

If the 4<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>