TE K INFORMATION AUG/SEPT
FOR TECHNOLOGISTS 1985

TECHNOLOGY

report

COMPANY CONFIDENTIAL

USING NATURAL LANGUAGE
IN HUMAN/COMPUTER COMMUNICATION

chsE’

case 2
Case’

E

=
Tektronix:
COMMITTED TO EXCELLENCE




CONTENTS

Volume 7, No. 4, August/September 1985.
Managing editor: Art Andersen, ext.

Natural Language and

Human-Computer Communication................. 3

An Expert System Helps Troubleshoot
the Wave Solder Process................

A Host-Based Prototype
Debugging System .......

Bringing IC Vendors To Tek

via “CONNECTIONS™ ...........ccciiiiiiinnnnn.

It’s Time to Look at CMOS/SOS .....

MR-8934, d.s. 53-077. Cover: Darla Olms-
cheid; Graphic illustrator: Nancy Pearen.
Composition editor: Sharlet Foster. Pub-
lished for the benefit of the Tektronix engi-
neering and scientific community.

. - | This document is protected under the copy-
right law as an unpublished work, and may
not be published, or copied or reproduced

. by persons outside TEKTRONIX, INC., with-

out express written permission.

Why TR?

Technology Report serves two purposes.
Long-range, it promotes the flow of tech-
nical information among the diverse seg-
ments of the Tektronix engineering and
scientific community. Short-range, it pub-
licizes current events (new services avail-
able and notice of achievements by mem-
bers of the technical community at
Tektronix).

HELP AVAILABLE FOR
PAPERS, ARTICLES,
AND PRESENTATIONS

If you're preparing a paper for publication or presentation out-
side Tektronix, the Technology Communications Support (TCS)
group of Corporate Marketing Communications can make your
job easier. TCS can provide editorial help with outlines, abstracts,
and manuscripts; prepare artwork for illustrations; and format
material to journal or conference requirements. They can also
help you "storyboard” your talk, and then produce professional,
attractive slides to go with it. In addition, they interface with
Patents and Trademarks to obtain confidentiality reviews and

to assure all necessary patent and copyright protection.

For more information, or for whatever assistance you may need,
contact Eleanor McElwee, ext. 642-8924. [J

WRITING FOR
TECHNOLOGY REPORT

Technology Report can effectively convey ideas, innovations,
services, and background information to the Tektronix techno-
logical community.

How long does it take to see an article appear in print? That is a
function of many things (the completeness of the input, the re-
view cycle, and the timeliness of the content). But the minimum is
six weeks for simple announcements and as much as 14 weeks
for major technical articles.

The most important step for the contributor is to put the message
on paper so we will have something to work with. Don’t worry
about organization, spelling, and grammar. The editors will take
care of that when we put the article into shape for you.

Do you have an article to contribute or an announcement to
make? Contact the editor, Art Andersen, 642-8934 (Merlo Road)
or write to d.s. 53-077. O

TECHNOLOGY
REPORT



Colorless Green Ideas Sleep Furiously

Natural Language and
Human-Computer Communication

Brian Phillips is a principal software engineer in
the Computer Research Lab, part of Tek Labs.
He joined Tek in 1983 from Texas Instruments.
Brian’s experiences include a stint as a Research
Fellow at the University of Papua—New Guinea,
where he taught the first computer science
| course in that country and learned Tok Pisin
(“Pidgin”). He has a BSc in physics and a Post-
__ | graduate Diploma in electronic computation
from the Unlversny of Leeds, England. Brian also holds a PhD in
linguistics from the State University of New York at Bulffalo.

The Computer Research Lab has been working on a
natural-language system for computer systems. Having
computers fluent in, say English, would break some of
the barriers now discouraging casual users. Even com-
puter experts would benefit. However, natural languages
are intricate in their workings, making natural-language
projects a ‘‘sticky wicket.” ...Just think of how a com-
puter might have trouble with that one.

As | glance at the screen of my Magnolia workstation, | can
see examples of various UNIX commands | have used:

Ipg -Plw

chips

Is

ms -Tlw encyclopedia &
emacs encyclopedia

| know what they mean because | use them frequently and so
remember them. There are also many commands | know exist
but seldom use. For these | usually cant remember the proper
syntax and have to consult on-line documentation or a manual.
And, unfortunately, there are certainly commands that | don't
know of even though they could be useful to me.

The situation described above is not peculiar to me; it arises
whenever a user has to learn a language to communicate with
a computer, a language whose uneven use results in uneven
retention.

Professional computer scientists can accept the need to learn
computer languages to accomplish their tasks. On the other
hand, there is the growing class of “casual” users who want to
use the machine for some task but dont want to waste time
learning a computer language; they see that as a distraction
from the task they wish to perform.

One solution for both professional and casual users would be
a language they do not have to learn and do not forget. An
example lies in what we use routinely with fellow humans; why
can't we use our native languages, English in my case, with
machines? This argument is attractive. With such capabilities,
the user could engage his machine in interactive fact-finding
or control, the user could, for example, retrieve information
from a database, or set parameters for a simulation without
having to learn a formal language designed to suit the task.

Unfortunately it turns out that Natural Languages—English,
Chinese, etc. (in contrast with Formal Languages—UNIX, For-
tran, etc.)—are complex and it is not easy to create a system
that will interpret them. Nevertheless the advantages make
people willing to expend the effort in trying.

So far | have mentioned only the conversational use of a
natural language. It is also a durable repository of human
knowledge, in letters, books, menos. If computers could
“read” books and extract the knowledge, many new vistas
would open: chemists and engineers, doctors and lawyers
would have better access to their libraries; instructional
systems would automatically develop tutorial material from
the technical literature.

Giving a command or information to a machine is only part
of any interaction. On my workstation screen | also find the
statements:

PID TT STAT TIME COMMAND

18933 p0O S 0:02 -csh (csh)
18943 p0 R 0:00 psx
8334 p3 | 0:04 -csh (csh)

| know what some of that means!

It would be more comforting if computers could generate tex-
tural responses meaningful to me. These responses could be
error conditions, answers to questions, or reports.

But, natural language usage is not without its problems. In this
article | want to present its advantages and disadvantages, to
outline the difficulties in building a system, and finally to de-
scribe a natural language system we have developed in the
Computer Research Lab (CRL). For reasons that will be ex-
plained, my discussion will largely be confined to the use of
natural language to enter commands and questions.

TECHNOLOGY
REPORT



Advantages and Disadvantages

One obvious advantage of a natural language is that it would
not have to be taught to the user. Another is that it can be
universal, capable of being used across a wide range of ap-
plications. In contrast Fortran is not much use for an interac-
tive graphics editor.

A novice learning a new application and a new interface lan-
guage may welcome postponing learning the formal language
and using natural language so that he can focus on the ap-
plication. Even for the professional, natural languages are
often appropriate: We are all casual users of some systems
and forget much between our infrequent usages.

Nevertheless natural language is not the answer to all the prob-
lems of human-computer communication. A natural language
system interposes another level of software between the user
and the machine with a corresponding decrease in speed.
Expert users will resent this. For them, the greater efficiency
justifies learning the formal language. But in the future, com-
puting systems may become so complex that natural language
interfaces will be essential even for the expert user.

There are applications for which a natural language interface
would be inane, a spreadsheet for example. It is far better to
move a cursor to a box and type in “$200” than to type
“Move to column 3, row 4 and enter $200."

The Nature of Language

Humans use languages easily. This has led us into a false im-
pression of the simplicity of language. The lesson was learned
25 years ago when, anticipating a shortage of human trans-
lators to cope with Russian technical articles, attempts were
made to build automatic translation systems. The attempts failed.
Although these systems could not produce high-quality trans-
lations, they did show how naive we were about language.

It was thought that effective translation was possible by trans-
lating the words of one language into those of the other with
some rearranging of the order of words. In German, for exam-
ple, the verb generally goes at the end of the sentence not
between subject and object as in English. The realities of
translation turn out to be more complex. Consider

Give me the case.

Is “case”’ a suitcase, a legal case, or a case of cans? All are
possible and all could translate differently in the target lan-
guage. To resolve the ambiguity one has to understand the
sentence, that is, to know its meaning in the context of its use.
Unfortunately, representing meaning turns out to be a remark-
ably hard task.

“Semantics” is that part of linguistics that deals with meaning.
It is one of the several levels of organization in language. Dif-
ferent schools of linguistic thought have different distinctions,
but all generally include:

Phonology—The sound structure: The “ng” sound is never
found at the beginning of an English word.

Morphology—The structure of words. The use of affixes to form
plurals and past tenses: pest, pests; like, liked.

Syntax—The structure of sentences: A determiner precedes a
noun or an adjective, never a verb. Hence “the on lamp red
turn” is not syntactically well-formed.

Discourse—How sentences are put together to form coherent
dialogues, paragraphs, etc. A paragraph like the following
would be disturbing: “Are the peaches ripe? It will require a
new crankshaft.”...Each sentence has a different topic.

Semantics—The meaning of utterances: “Colorless green ideas
sleep furiously” has no meaning (ignoring poetic license.) It's
syntax is good, however.

The early workers in machine translation failed to realize the
importance of discourse and semantics in their research. As
they were working with written texts, phonology was irrelevant.
Since then Computational Linguistics has been more diligent
in its examination of all of the components of language. How-
ever complete solutions are not yet available.

In particular, there are still considerable theoretical weaknesses
in the machine analysis of semantics, discourse, and phonology.
The “case” example showed the problems that have to be fac-
ed in the semantic component in a natural-language system.
Discourse requires an understanding of semantics and of
topical structure. Phonological analysis would enable spoken
input to be accepted. To do this it is necessary to segment an
acoustic signal into an unambiguous form akin to the string of
characters developed by typing in words. Doing this is particu-
larly difficult because of dialects and differences in individual
manners of speaking. We probably all pronounce “coffee” dif-
ferently but the typed form has no variation, hence the greater
ease of handling typed input.

One practical approach to solving the “case’ problem is to
recognize explicitly that the application domain, say, is “law”
and to put only one meaning into the system. This is the
technique of creating application-specific sub-languages. All
present systems are application-specific; there is no natural
language system with humanlike pan-disciplinary fluency.

Present commercial systems are confined either to typed
command-entry interactions or to limited aids to machine
translation. For the command-entry systems the weaknesses
just outlined are less evident and pragmatic solutions are
possible. In machine translation, difficult problems can be
deferred to the user for handling interactively, or in a post-
editing phase.

So far | have been talking generally about limitations in our
understanding of language. | would now like to show more
specific phenomena that cannot be fully treated because of
our lack of knowledge. These phenomena further restrict the
facilities found in natural-language systems.

Consider the dialogue:

Q: How many resistors are in the bins?
A: 400,000

Q: (a) Are they full?
(b) When did they arrive?

TECHNOLOGY
REPORT



In (a) the pronoun “they" refers to the bins; in (b) to the resis-
tors. We make the correct determination by understanding the
questions in the context of the discourse. To do this for ques-
tion (a), we would have to know that bins can be full but tran-
sistors cannot. However, both bins and transistors can arrive.
So how is it that resistors are preferred to bins in (b)? The
answer lies in discourse structure: resistors are the topic of the
first question and continue to be so in the second as there is
no indication of a topic change.

The use of a pronoun instead of repeating the noun is per-
vasive, it is part of the phenomena of “anaphora” In computa-
tional systems anaphora is either disallowed or resolved by,
say, taking the nearest preceding “appropriate” noun. This is
imperfect and not necessarily easy to implement. Practical
systems will thus be restricted in their handling of anaphora.

Language allows us to use incomplete sentences, their com-
pletion being possible because of preceding statements:

Q: When did Mike Tomlinson join the company?
A: July 1, 1982.
Q: Harry Barton?

The second question is understood to be of the same form as
the first with the new name substituted. This is called “ellipsis.”
Again, in general, ellipsis is hard to describe fully and can be
expensive to implement as it involves retaining analyses of the
preceding entries.

Another phenomena is “paraphrasing.” The following are a
few of the ways of asking the same question of a database
comprising a company’s sales statistics:

What was the income from the truck division last year?

Give me the sales figures for the truck division from last year.
How much did the truck division sell last year?

What did the truck division make in sales in 19847

If our sub-language permits all possible paraphrases—and off-
hand there is no reason for choosing one over another—the
language system is going to explode in size. So as a practical
necessity, many forms of expression will be excluded.

Al limitations forced on the language-interface designer create
a problem for the user.

How is he or she to know what parts of his normal language
the system covers and hence will accept? It is little use to say
that “cleft” and “pseudo-cleft” sentences are not permitted;
that is the jargon of the linguist and not meaningful to the
average user. Training is a possibility—but the whole idea of
having a natural-language interface is to avoid training. Train-
ing time, if needed, could just as well be used to teach the
formal language.

When coverage is limited, a user can type in a query only to
have the system reject it without giving diagnostic help. It is
little wonder that such systems frustrate users.

INGLISH

INGLISH, the system | am about to describe, attempts to ease
the coverage problem for the user. It is a modest, engineering
approach that does not try to incorporate such things as
anaphora and ellipsis, yet it is a practical system.

INGLISH—for INterface enGLISH [1]—is written in Smalltalk [2]
and runs on the Magnolia and 4404 Artificial Intelligence
Workstations. The examples in the figures are taken from a
demonstration system that answers questions about the 4404.

INGLISH provides a framework—a parser and display
windows—that is tailored to an application by providing a
grammar and vocabulary that define the sublanguage of the
application.

INGLISH analyzes each word as it is entered and if it does
not match any of the expected words of the sublanguage, it
rejects the word and pops up a menu of acceptable words.

In figure 1, the user typed “fortran”, but this exceeded the
coverage and a menu of possibilities appeared. The user
selects one and continues to create the sentence. If at any
time the user is unaware of how to continue, he or she can
type “help” (figure 2) to see the possibilities. Case is irrelevant.
However, for clarity we choose to make entries in lowercase
and have them echoed in uppercase after INGLISH accepts
them.

INGLISHI

TEK4404 Fact Retrieval System l Entry

WHAT DOES PEGASUS COST **PARSED
Less than fifteen thousand dollars.

WHEN WILL PROLOG BE AVAILABLE **PARSED
Prolog should be available soon.

CAN PEGASUS RUN LISP **PARSED
Yas; ask me to ’DESCRIBE’ the language or
ask a human for aven mora detail.

WHICH OPTIONS SHOULD WE GET FOR PEGASUS **PARSED
Buy tha Franz Lisp disk and the Prolog disk,

which go for 4000 each. LISP (#1)
WHEN WILL PEGASUS BE ON THE MARKET **PARSED
Pagasus is here-- you'ra using me right now!!

ISMALLTALK (#4)
**ABORT (#&

HOW MUCH WILL fortran

Figure 1. INGLISH, like all natural-language systems, has
limited coverage—that is, most words and word mean-
ings are not covered. Here the user has exceeded cover-
age by typing in “Fortran”. The system provides a menu
of covered words for the user to use in completing his or
her query.

INGLISH]

TEK4404 Fact Retrieval System
WHEN WILL PEGASUS BE SOLD IN help

Entry

[AMERICA (#1)
EUROPE (#2)
JAPAN (#3)
RUSSIA (#4)

¥ ABORT (#5)

Figure 2. Invoking on-line help to complete a query
brings up a menu.

TECHNOLOGY
REPORT




With this approach, the user cannot create a sentence that the
system will not accept. A user may stumble through sentence
creation, but need never abort the sentence,

There are actually two ways that a sentence can be created
using INGLISH: by menu selection or by typing. Human fac-
tors experiments[3] have shown that novices prefer the menus,
but as experience is gained, typing is preferred. In fact, in
INGLISH, the two forms can be mixed within a single sentence;
so self-paced migration away from menu use is encouraged
as the user becomes conditioned to system coverage. The
assistance is invoked only when the user deviates from the
sublanguage; otherwise it never intrudes.

In figure 3, the menu type of interaction is shown. A mouse
click brings up a menu, figure 3A; a word is selected, figure
3B; and the selected word is added to the sentence, figure
3C. This cycle is repeated until the sentence is completed,
figure 3D.

INGLISH INGLISH -
TEK4404 Fa: TEK4404 Fau
EoRiEe 1] [~ CAN (#7) ]
DESCRIBE (#2) E‘E'Eiu'&"-_'-“l
DOES (#3) DOES (#3)
HOW (#4) HOW (#4)
IS (#5) IS (#5)
WHAT (#6) WHAT (#6)
WHEN (#7) WHEN (#7)
WHICH (#8) WHIGH (#8)
**ABORT (#9) *RABORT (#9
A B
INGLISH
TEK4404 F.
DESCRIBE
C
INC‘:LISHI
TEK4404 Fact Retrieval System
DESCRIBE SMALLTALK ON PEGASUS "™*PARSED
With a total of 32K oops, Pegasus Smalltalk is the
standard Xerox Virtual Image on top of a very fast
virtual machine. Workspace variables need not be daclared..,
Mark-sweap garbaga collection and virtual memory
giva you that spacious VAX Taling.

INGLISH has several other features to assist the typist-user. It
incorporates a spelling corrector. Thus in figure 4, “descibe” is
corrected to “DESCRIBE.” If the current state of a partially
entered sentence can be continued in only one way, INGLISH
will automatically add this continuation. However, a speedy
typist might also be typing identical words; INGLISH will “soak
up” such duplication; in figure 5, INGLISH added “WILL” and
“will” was also typed but the latter “will” will be deleted. Word
completion is also possible. Just enter sufficient initial letters to
identify uniquely a word, and a “?” to get the full word. If the
identification is not unique, a menu of the matches will appear
(figure 6).

INGLISH

TEK4.

dasciba

Figure 4. The user can form a query by typing in words
too. Here, the user has erroneously typed ‘‘descibe’”. No
problem, INGLISH will substitute “DESCRIBE”’ (not shown).

INGLISH

TEK44

WHEN WILL will

Figure 5. INGLISH can anticipate a word. Here the user
has typed “WHEN” and the system adds “WILL"”. If, dur-
ing this automatic phrase completion, the user had also
typed “will”” only one “WILL’ will be used—INGLISH
soaks up the duplicate.

| D

Figure 3. Using INGLISH the user can form a query

by typing in words or by using a mouse-summoned
menu as has been done in A. In B, “DESCRIBE” has
been selected with the mouse as the the first word of
the user-created sentence (query). The selected word is
copied into the developing sentence in C and the com-
pleted query is answered in D.

INGLISH

TEK44

wh?

WHAT (#1)

WHEN (#2)

WHICH (#3)
**ABORT (#4)

Figure 6. Here, the user is asking for help in completing
“wh.” A menu of choices responds to the “?”’

TECHNOLOGY
REPORT




Everything so far described takes place in the entry mode.

As an alternative to attempting to analyze ellipsis, INGLISH
offers an edit mode. Clicking the mouse in the top right-hand
box of the window changes the mode to edit. In the edit mode,
the user can use Smalltalk’s editor to modify any text in the
window to create a new sentence. Suppose the user wanted
to ask “When will Smalltalk be available?” Rather than entering
the whole query, an earlier entry may be chosen for editing, if
this entails less effort. This is illustrated in figure 7. The user
noticed that the second question was “When will Prolog be
available” and chose to edit this, replacing “Prolog” by “Small-
talk” the new sentence is then selected using the mouse; the
shaded box around the sentence indicates the selection.
Choosing the menu command “DOIT" causes the selected
sentence to be analyzed. As the analysis proceeds, the
sentence will be copied to the bottom of the window (after
«_which go for 4000 each”) and will be followed by the
answer. Editing requires only slightly more effort of the user
than if the system offered ellipsis, but this type of editing struc-
ture makes INGLISH, itself, a much simpler program.

INGLISH

TEK4404 Fact Retriaval System | Edic

WHAT DOES PEGASUS COST **PARSED
Less than fiftean thousand dollars.
[WHER WILL dmaitaih 88 AVAILABLE PAPARSED)
Prolog should be availabla soon.

copy
CAN PEGASUS RUN LISP **PARSED cut
Yas; ask ma to 'DESCRIBE’ the languaga or u‘n’;:
ask a human for avan mora detail. Do (T
WHICH OPTIONS SHOULD WE GET FOR PEGASUS **PARSED
Buy tha Franz Lisp disk and thae Prolog disk,
which go for 4000 each.

Figure 7. In the edit mode shown here, the user is going
to ask about smalltalk availability. The user has typed in
“smalltalk” where he or she had used “prolog” earlier.
The prolog availability here will be replaced with small-
talk’s availability when DO IT is executed.

The parser in INGLISH uses a modified left-corner parsing
algorithm([4]. A sublanguage is defined by a semantic gram-
mar[5]. This grammar formalism combines syntax and seman-
tics by using categories in the grammar that have meaning
connotations. This enables both syntactic and semantic “well-
formedness” to be checked simultaneously. (Figure 8 shows a
portion of the grammar used in the above examples.)

<Sentence > — DESCRIBE < Definiteltem >

<Sentence> — <WhDefiniteTime > WILL <Definiteltem> BE <BeModal>
<MachinePhrase > — <Machine>

<DiscountPhrase > — A DISCOUNT <Quant>

<SupportPhrase > — INCLUDE <TimeAdv> < RepeatedDiscreteServiceActivity >
<WhilePhrase> — WHILE RUNNING <Language >

<CanClause> — <Person> GET <Information>

<HowComplement3> — <MachinePhrase > RUN <IndefiniteFeature >
<IndefiniteFeature > — <language >

< DefiniteFeature > — <Language >

<ExistentialFeature > — <DiscountPhrase >

<Information> — <Llanguage >

<Information> — <VacuousSelector > INFORMATION

<HowSelector> — <TimeSelector >

<HowSelector> — <PriceSelector>

<Definiteltem> — <language> ON <MachinePhrase >

<Quant> — FOR <MachinePhrase >

Figure 8. A portion of the semantic grammar used in the
previous examples.

A more linguistic system than the one we used in INGLISH
would have separate forms of representation for syntax and
semantics. The grammar would describe sentences in terms
of nouns, verbs, and the like. The semantics would give a gen-
eral description of relationships between concepts. Using a
semantic grammar is a restriction, but there are still a wide
range of applications within the power of INGLISH.

INGLISH in an Application

We are using INGLISH within the Computer Research Labora-
tory (CRL) to develop INKA (INGLISH Knowledge Acquisi-
tion[6], a system to acquire knowledge for a troubleshooting
expert system (see Technology Report, Sept/Oct 1984). Through
INKA an experienced technician can build the knowledge
base for the diagnostic process.

INKA constrains the user to enter statements in the sublan-
guage GLIB (Generalized Language for Instrument Behavior[7]).
GLIB was developed within the troubleshooting-assistant pro-
ject. If the expert was not constrained but allowed to use unre-
stricted English, automatic translation into the internal form of
knowledge of the knowledge base would be impossible.

We Will Offer INGLISH as a General Package

In the light of our experience with INKA we are rewriting
INGLISH to make it available as a general package. We will
provide a format for describing the sublanguage of an ap-
plication and for translating INGLISH statements into the inter-
nal form required by the application.

For more information, call Brian Phillips 627-1119 (50-662). [

References

[1] Phillips, B., and S. Nicholl, “INGLISH: A Natural Language
Interface” TR CR-85-30, Tektronix, Inc., Beaverton, Oregon, 1985.

[2] Goldberg, A., and Robson, D., Smalltalk 80: The Language
and its Implementation, Reading, MA, Addison-Wesley, 1983.

[3] Gilfoil, D.M., Warming up to Computers: A Study of Cogni-
tive and Affective Interaction over Time, Proceedings of the
Human Factors in Computer Systems Conference, Gaithers-
burg, MD, 1982, pp. 245-250.

[4] Griffiths, T, and Petrick, S.R., “On the relative efficiency of
context-free grammar recognizers,” Comm. ACM, 1965, 8, pp.
289-300.

[5] Burton, R.R., “Semantic Grammar: An Engineering Tech-
nique for Constructing Natural Language Understanding Sys-
tems,” Tech. Rep. 3453, Bolt, Beranek, and Newman, Cam-
bridge, Massachusetts, 1976.

[6] Phillips, B., Messick, S., Freiling, M., and Alexander, J.,
“INKA: The INglish Knowledge Acquisition Interface for Elec-
tronic Instrument Troubleshooting,” TR CR-85-04, Tektronix,
Inc., Beaverton, Oregon, 1985.

[7] Freiling, M., J. Alexander, D. Feucht, and D. Stubbs,
“GLIB—A Language for Representing the Behavior of Elec-
tronic Devices,” TR CR-84-12, Tektronix, Inc., Beaverton,
Oregon, 1984.

TECHNOLOGY
REPORT



An Expert System Helps Troubleshoot
the Wave Solder Process

Sabah Randhawa is an assistant professor of in-
dustrial engineering at Oregon State University,
Production control, decision-support systems,
operations research, and artificial intelligence
are his areas of interest. Sabah holds a BS in
chemical engineering from the University of En-
gineering and Technology, Pakistan, an MS in
industrial engineering from Oregon State Univer-
sity, and a PhD from Arizona State University.
He is @ member of IIE, ORSA, CASA/SME, and Alpha Mi Pu.

Bill Barton is a systems/software engineer in the
Laboratory Instruments Division. He joined Tek
in 1978, As part of the test engineering depart-
ment, he heads a project that provides information-
management tools to the division and investi-
gates how artificial intelligence systems can be
.| applied to manufacturing processes. His previous
work includes designing a PC-based quality-

Y/ information system and developing diagnostic
software. He has worked in computer configuration, interfacing, and
maintenance. Bill is a member of AAAl and ASQC.

Productivity substantially depends on machine operators’
knowledge. How an operator acquires that knowledge
directly or indirectly involves experts. Unfortunately this
acquisition of knowledge is often inefficient or delayed.
Expert systems may resolve these problems. By being
friendly, nearby sources of know how, expert systems
have demonstrated much promise in helping operators
become self-sufficient resolvers of commonplace
machine problems.

In any manufacturing operation, machines are idle too often,
up to 90 percent of actual production time in extreme cases.
As much as 50 percent of this idle time may be downtime.
Even at lesser levels of idleness, the loss of production due to
down time is a serious and universal problem.

The downtime situation is difficult to rectify largely because the
demand for expert maintenance technicians exceeds the sup-

ply. Many believe expert systems can relieve this shortage and,

ultimately, increase manufacturing productivity.

Our broad objective was to design and develop a prototype of
an expert system that would help operators troubleshoot the
wave soldering process. Wave soldering is a process critical to
producing circuit boards.

Because Tek makes a wide variety of circuit boards, conditions
for wave soldering differ. Because boards are made in small
batches, soldering process conditions are changed often, as
many as several times a day. Even when things go smoothly,
each change of process eats up production time. When prob-
lems surface, substantial machine and operator time is lost.
This time can be significantly reduced.

The first objective in the project was to develop a tool to assist
operators solve problems quickly, by themselves, without call-
ing for managers and experts to help. No waiting. Fix it now,
and get on with the job is the concept. If this were possible,
not only would production efficiency rise, the pool of mainten-
ance experts could be put to assignments more challenging
than fixing the same old problems.

A second objective was to develop a tool for training new
operators for the wave solder machine. Because operator turn-
over is high, new operator training is a recurring and sub-
stantial load on managers and experienced operators. A
powerful training tool could free these resources for more
direct productivity.

The System

The two objectives were realized in an expert system that
would both train a new operator and later help that operator
troubleshoot problems in the wave soldering process.

We developed the expert system iteratively, following these
steps:

1. As a test bed, this project had to represent a typical manu-
facturing process. With the help of Mike Freiling, an artificial
intelligence researcher from CRL, we selected a wave solder
machine having the problems typical for most machines.
The machine is in Building 47.

2. We researched most of the knowledge to be coded in the
expert system from manuals and documents and from
human experts. What we got from interviewing the experts
was heuristic knowledge, that is the subjective rules that
characterize the decision making of experts. Our experts
were Bert Adams, a manufacturing engineer, Ed Langerveld,
who managed the wave solder process, and the experienced
machine operators.

3. We identified the causes of most machine malfunctions and
product-quality problems:

e [nsufficient solder e Removed print

e \oids e Raised components

e Solder bridges e Solder balls

e [cicles e Missed joints

e Peeling solder resist e Front edge of boards poorly
e Nonwetting soldered

e Warping e Rough solder

e Rosin film e Flooding

The knowledge we obtained at this step is, for the most
part, generic to most wave solder machines. Definitions for
the above are found in reference.[1] An example definition
is as follows:

TECHNOLOGY
REPORT



INSUFFICIENT SOLDER: holes not full, poor wicking, or
several leads not soldered, affecting the integrity of the
solder joint.

The process variables, which cause those problems
include:

Solder contamination
Bubble fluxer air pressure
Airknife angle

Wash solution temperature
Wash solution concentration

Solder conveyor speed  ©
Wash conveyor speed
Flux temperature °
Flux concentration °
Solder bath temperature e

We formulated the information gained as inference rules.
Such an inference rule states what can be inferred about
machine operations from the symptons exhibited by the
process variables. Figure 1 shows how information is
organized when formulating an inference rule.

4. The software model based on the information identified in
step 3 was developed on personal computers—IBM XT
and COMPAQ PLUS using PROLOG. (CRL provided help

with program refinements.) The features of the expert
system include:

Simple, interactive program—The wave-solder expert pro-
gram is simple and interactive so that operators with little or
no computer background can use it.

Operator-system dialog—In a computer-initiated dialog, the
user responds to questions asked by the computer. To
minimize input errors, user response is kept short. Where
appropriate, a menu of valid answers to a question is pro-
vided for user response.

It explains its ‘reasoning=—The system can explain the
reasoning process behind the queries and answers in the
model.

Questions ordered by problem frequency—Though the
model does not explicitly handle uncertainties such as two
solutions with equal probability, we based the order in
which the questions are asked on how frequently each pro-
cess variable had caused a specific problem. These fre-
quencies were derived from our interviews with the experts.

INSUFFICIENT
LEVEL 1 - PROBLEM SOLDER
LEVEL 2 - IDENTIFICATION m
(SYMPTOM)
LEADS NOT UNFILLED POOR
SOLDERED HOLES WICKING
_— /
LEVEL 3 - POSSIBLE
CAUSE
HIGH LOW LOW LOW
CONVEYOR FLUX SOLDER PREHEAT
SPEED LEVEL WAVE TEMPERATURE
LEVEL 4 - ACTION é
REDUCE INCREASE INCREASE INCREASE
CONVEYOR FLUX SOLDER PREHEAT
SPEED LEVEL WAVE TEMPERATURE

Figure 1. Developing inference rules is a major part of expert-

cient solder is structured by identifying a symptom, one or more possible causes indicated by each symptom,

system development. Here the basic problem of insuffi-

and a

recommended action. The operator does not see this structure.

TECHNOLOGY
REPORT



Insufficient solder
Voids

Solder bridges
Icicles

Peeling solder resist
Nonwetting

Warping

Rosin film

SoQ "T0 00 o

SELECT YOUR PROBLEM (a,b.,...)

SHOW PROBLEM DEFINITION? (y/n)
y

the integrity of the solder joint.

Return to menu? (y/n)
n

Several leads are not soldered. (y/n/?)
b/

The conveyor speed is too high. (y/n/?)
n

y

Explain? (y/n)
y

When the following conditions are true:
Several leads are not soldered.

INSUFFICIENT SOLDER; holes not full, poor wicking,

WAVESOLDER ASSISTANT MENU

i Removed print

j Raised components

k Solder balls

| Missed joints

m Front edge of boards poorly soldered
n Rough solder

o Flooding

g Quit

or several leads not soldered, affecting

PLEASE CHECK FOR THE FOLLOWING CONDITIONS:

The flux level is less than 1/2 inch above the stone. (y/n/?)

Increase the flux level to 1/2 inch above the stone.
Check for plugged stone or air line, if necessary.

Increase the flux level to 1/2 inch above the stone.
Check for plugged stone or air line, if necessary.

The flux level is less than 1/2 inch above the stone.
ENTER ANY CHARACTER TO CONTINUE.

Figure 2. The dialog between system and operator features menus, straightforward
are the expert system’s offer to explain its reasoning if the oper-

and simple operator responses. “Explain?” and “?”
ator is curious or has doubts.

5. The computer system was critiqued by the experts and
machine operators for accuracy and usability. They felt
comfortable with the system and expressed enthusiasm
concerning their participation in the next phase of full
implementation.

A complete project description is given in [1]. Figure 2 shows
a typical user-terminal session.

Results

The results of the wave solder expert system project are
threefold:

First, a test bed was developed to implement long-term eval-
uation of manufacturing productivity improvements using
knowledge-based systems at the operator level.

questions asked by the system

Second, the system demonstrated that it could relieve man-
agers and experienced operators of some training chores by
partially substituting for human tutors.

Third, the experience gained with this prototype helped us
develop a general framework for other troubleshooting sys-
tems. Lab Instruments will apply this framework to more com-
plex equipment and problems.

For More Information

For more information, call Bill Barton at 627-4216 (47-589). O

References

1. Randhawa, Sabah, Wavesolder Assistant, Technical Report,
Tektronix, Inc., (June 1985).

1 TECHNOLOGY
REPORT




A Host-Based

Prototype Debugging System

Brad Needham is a software engineer in Lab
Scopes, part of the Laboratory Instruments Divi-
sion. Brad joined Tek in 1978 after receiving his
BS in computer science from the University of
Oregon. At the time this article was written,
Brad was a member of the Engineering Com-
~| puting Systems’ Unix-Kernel team.

Alan Jeddeloh is an hardware/software engineer
in the Graphic Workstations Division, which in-
cludes what was Engineering Computing Sys-
tems. Alan joined Tek in 1975 after receiving his
BS in computer science from Oregon State
University.

How can you debug software without an emulator? An
in-circuit emulator is as indispensable to a software engi-
neer as a logic analyzer or oscilloscope is to a hardware
engineer, yet there are some projects for which emula-
tion simply isn’t available. The development of the 6000
Series workstations was such a project.

To compete in the fast-paced workstation market, we in ECS
(now part of Graphic Workstations Division) had chosen to
base our product on the most powerful microprocessor avail-
able at the time—the National Semiconductor 32000 Series.
Unfortunately, the chips were so new that no NS32000 emula-
tors would be available for several years. Rather than build a
custom debugging system from scratch, we combined existing
software and hardware debuggers into an integrated test and
debug system. Although the resulting host-based debugging
system did not provide all the features of an emulator, it proved
to be a productive environment for firmware development.

Lacking an in-circuit emulator, what methods (however primi-
tive) can be used to debug firmware? One way is to add a
serial 1/0 port and a monitor ROM to your prototype, then
connect a terminal to the serial port.

A simple monitor ROM might allow you to examine and load
registers or memory by typing register names and memory
addresses at the terminal. To transfer control to the monitor
ROM from specific points in your test code (an emulator’s
breakpoint and single-step functions), you would need to quick-
ly make temporary changes in that code, yet it would be in-
feasible to burn new ROMs each time you wanted to set a
breakpoint! On the other hand, a RAM-based system would
have to be reloaded frequently. Loading each word of code by
hand is such a time-consuming and error-prone process that it
is infeasible for even small amounts of test code.

One solution to the problem of loading RAM is to disconnect
the prototype’s serial 1/0O port from the terminal, connecting the
line instead to a host computer. A simple debugger could then
be written to run on the host machine, accepting commands
from a user and translating them into sets of commands to the
monitor ROM. You would then be able to tell the debugger to
load your test code, and the debugger would send the myriad
of monitor commands required to load each word of your
code into the prototype.

A host-based debugger offers many productive alternatives.
Since the bulk of your debugger is developed on your host
machine, the rich software-development environment of your
host can be used to quickly create a powerful user interface.
Assuming that your prototype's code was generated by host-
based tools (compiler, assembler, linker), a host-based debug-
ger can provide sophisticated symbolic-debug by accessing
symbolic information stored on the host. All of the features of
your host’s operating system are available to you: a large,
shared file-system; sophisticated terminal I/O control; high-
level languages.

Not wanting to write a complete debugger from scratch, we
took the approach we had seen used on the MDP 8560 I/O
processor project: That is, modify an existing host debugger
(such as ADB) so that it communicates with your small
monitor ROM. This gave us all the benefits of a host-based
debugger plus two more: We had the much smaller task of
modifying a debugger rather than re-inventing the wheel. We
produced a debugging language familiar to anyone who has
used the original host-based debugger—one step toward an
integrated development environment.

Features of the Chosen Debugger

The host-based debugger ADB provides sophisticated features
for examining and controlling the program being tested:

o Reference to global variables and subroutines by name

e Input of constants in decimal, octal, hexidecimal, or ASCI

o Address and data can be arithmetic expressions involving
variables, register contents, and constants (e.g., print the
data 20 bytes away from the current top of stack).

e A primitive script language (allowing the writing of scripts to
decode data structures)

e Execution breakpoints (via BPT instruction)

e Single-step

e C-language stack backtrace (currently active function calls
and their actual parameters)

e Ability to send test data to the program from a host file

e Ability to output data from the program to a host file

o A variety of formats in which to view addresses or data:
o Two- or four-byte signed or unsigned integers in octal,

decimal, or hexidecimal

e Four- or eight-byte floating point numbers

R 1



e ASCII characters or strings
e [nstruction disassembly
e An offset from the nearest global symbol

ADB lacks the logic-analysis features of many in-circuit
emulators: breakpoints on data references, execution break-
points for ROM routines, real-time execution trace.

Hardware Support

For host-based debugging, the prototype (figure 1) requires

a serial port, the debug-monitor ROM set, and an external
character-recognizer card. Serial ports are available on several
of the prototypes. On the 6200’s I/O processor (IOP), for ex-
ample, one of its four ports is dedicated as the debug port
when in the debug mode and ROM space is sufficient to hold
both the debug monitor and the normal bootstrap and diag-
nostic functions.

VAX 11-780
Prototype

= NS32016
=z
:;3, Monitor
& Rom

Al

™

Q < f5

)

o gN & o Program
S5 NEe)
E o wna Ram
s 9 o
O¢

Figure 1. The prototype hardware contains a serial port,
monitor ROM, program RAM, and a NS32016 processor.
The character recognizer controls the reset and interrupt
inputs to the prototype, allowing the VAX-based debug-
ger to load and test protype programs via the RS-232
cable.

Other boards, such as the 6200's compute engines, have
neither ROM space nor serial ports. We developed small
daughter cards containing a serial port, ROMs, and a small
amount of static RAM for these boards. The static RAM on the
debug boards allows the monitor to be used even if the main
board’s dynamic RAM is not functional. Table | summarizes
some of the ways in which the serial ports, ROMs, and RAMs
were implemented.

Out first prototype had to be interrupted and reset by hand. If
the program being debugged lost control, there was no way
to automatically return control to the monitor ROM. Taking a
few hints from Tek Labs’ Magnolia project, we built a simple
board that would watch for special characters coming across
the RS-232 cable.

The character-recognizer (figure 2) card is an ASCII “filter” that
pulses an output line when a given character is seen on the
serial line. Up to four different characters can be recognized,
each of which can pulse a different output line. The card also
has square pins to allow patching RS-232 leads and both DTE
and DCE output connectors.

Hardware
DB16000

Implementation
ROM, RAM, and serial port on standard board.

6100 Compute Engine Monitor shares ROM space with power-up code.

Uses system RAM and standard serial port.

6200 "Big Build"
Engine

Compute  Daughter card with static RAM, ROM and serial

port, plugs on using DIN-style connector.

6200 "Production"
Engine

Compute  Daughter card with static RAM, ROM, and serial
port plugs on adapter to CPU daughter card.
Four ROMs used to implement 32-bit data path.
6200 I/0 Processor (IOP) Monitor shares ROM space with power-up code.
Uses normal sub-system RAM and one of four
serial ports already on the board.

6200 I/0 Channel (10C) ROMs on board. Uses normal sub-system RAM.
61KR02 Sync/Async option board used for serial

port. .
RS-232 Square RS-232
Male Connector . Pins Female Connector
oo
(Pull-up
v Pull-down)
O 8-bit parallel data from host
éﬁ e 6402 1
= UART ]
s 8-bit comparators
[ 0] RESET

NMI

8-bit DIP switches

Figure 2. The character recognizer can be set—with 8-bit
switches—to recognize up to four ASCII characters. In
the debugging process two special characters are used,
one to reset and one to interrupt the prototype.

Two of the character-recognizer outputs are used by the de-
bugger. These outputs are patched into the prototype’s reset
and non-maskable-interrupt (NMI) inputs, usually via square
pins on the prototype.

Modifying the Debugger
Choosing the debugger

In many ways, choosing the debugger to be modified was
harder than modifying the debugger itself. The two UNIX de-
buggers available at the start of the project were ADB and
SDB. Although SDB offers C-language debugging features—
such as printing C structures and breakpointing on C state-
ments—it doesn't provide access to individual machine in-
structions or registers. ADB, on the other hand, offers good
assembly-language debugging but little C-level support.

Because most code for the 6000-series was written in C, we
knew that a lot of debugging would involve discovering ma-
chine dependencies in that C code. Much of those dependen-
cies would occur at the assembly-language level. Many engi-
neers in ECS were well-acquainted with ADB; few had used
SDB. After careful consideration, we decided to base our
remote debugger on ADB rather than SDB.

-1 TECHNOLOGY
REPORT




Recently, several programs have been developed that allow
both C-language and assembly-language debugging. For ex-
ample, the 6000 Series’ version of SDB includes many of the
features of ADB. Third Eye Software, in California, offers a port-
able debugger called CDB.

Changes for remote debugging

Under UNIX, all debugging of a process is performed by a
system call named “ptrace” (for process trace). This single
subroutine provides all these features:

Read/write a word from/to the memory of the process
being debugged

Read/write one of its registers

Single-step (execute one instruction, then stop)
Continue running at a given address

All higher-level debugging features use only these primitive
operations. Breakpoints, for example, are set by writing a
breakpoint instruction into the desired memory locations.

To let the modified debugger access a remote prototype
rather than a process on the host, a subroutine named
“ptrace” had to be written. This subroutine accepts param-
eters that tell it to read from or write to a given location in the
prototype's memory, to read from or write to a given register in
the prototype, or to run or single-step the prototype program.
It then passes the request to the prototype’s monitor ROM
through the RS-232 cable running between the host and the
prototype, reads the response from the monitor ROM, and
“returns the appropriate value to whatever part of the debugger
requested the action. (See figure 3)

The ptrace subroutine provides a complete interface to a pro-
totype once a program is started, but first something has to
download the code to be tested. To create a process to be
tested under UNIX, a UNIX debugger calls the “exect” system
call (for execute and trace); our debugger had to offer a simi-
lar function. Again, we wrote a subroutine to replace the func-
tion of the corresponding system call—our exect subroutine
downloads the code to be tested by talking with the monitor
ROM.

To interrupt a process being debugged under UNIX, you type
AC. In response to this signal the operating system stops the
process and gives control to the debugger. To provide this
function in our host-based debugger, we wrote a subroutine
that would send a code to the character-recognizer card. Once
this card is in place, a prototype can be completely controlled
through an RS-232 cable. Invoking the debugger sends the
character to reset the prototype (hex81) and typing AC sends
the character to interrupt the prototype (hex82).

Adapting ADB for a foreign machine

ADB was written to debug VAX machine-code. Although an
early version of our modified debugger communicated with a
monitor ROM, it still believed that the prototype contained VAX
instructions rather than NS32000 machine-code. Three parts of
the debugger remained to be changed: its idea of the machine
register set, its disassembler, and its stack-backtrace function.

Debugger (Adb) Program being debugged
A

Code

Ptrace - -

I Y, — Data_—_

— »
= Registers

Debugging a UNIX Process

Debugger (Adb 16) Program being debugged

“Ptrace” Monitor
— Rom
RS-232
Line

Debugging a Remote Process

Figure 3. The ptrace system call provides the interface
between a UNIX debugger and the process it is debugg-
ing. In the remote debugging system, a custom “ptrace”
subroutine communicates with a monitor ROM to provide
the same kind of interface.

Both the NS32000 and VAX processors have a program
counter, stack pointer, stack-frame pointer, and several floating-
point and general-purpose registers. Changing ADB’s knowl-
edge of the machine register set was a straightforward matter.
We replaced its table of VAX machine registers with the cor-
responding table of NS§32000 registers.

ADB contains a complete machine-instruction disassembler.
That is, for any machine instruction in memory, ADB can print
out the assembly-language text of that instruction and its oper-
ands. Since NS32000 machine language has almost nothing
in common with the VAX, we replaced ADB's VAX disassembler
with a NS32000 disassembler.

Two questions commonly arise while debugging C code: “What
parameters were passed to this subroutine?” and “What sub-
routine called the current subroutine?” Since the program
stack contains the return addresses and parameters of each
active subroutine call, both questions can be answered by ex-
amining the stack pointer and contents of the stack. Only a
few changes to ADB's stack backtrace function were necessary
to accommodate the slight differences in the format of sub-
routine calls on the VAX and the NS32000.

M3



We avoided one class of problems by choosing the NS32000
rather than, say, a Motorola 68000. On a NS32000, the order-
ing of bytes within a multibyte integer is identical to the order-
ing of bytes on a VAX. Both the VAX and NS32000 place the
more-significant bytes of a 2- or 4-byte integer into increasing
addresses in memory; the Motorola 68000, on the other hand,
uses the opposite order. This may seem trivial, but if we had
been working with the 68000, this simple difference in byte
ordering would have been the source of many bugs.

ADB, like many programs, was not written to be “portable,” to
be easily moved from one type of processor to another. Every
time it collects a set of bytes into an integer value or converts
an integer into a set of bytes, ADB assumes that those bytes
are ordered as they are on a VAX. Had our prototypes con-
tained 68000s, we would have had to find and fix each of
those byte-ordering assumptions in ADB.

Debug Monitor

The debug monitor provides local control for the prototype.
The monitor is small (about 8K of ROM) and uses about 1/2K
of RAM, including stack space. The monitor is coded in C, ex-
cept for the module comprising the interrupt/trap handler and
context switch, which is coded in assembler. The base ad-
dresses used for ROM and RAM vary from prototype to pro-
totype. Load addresses are controlled by using different
targets in the monitor's make file.

UNIX native compilers and linkers assume that the memory
space is contiguous and always writable, The linker assembles
the final executable program with the program instruction
(“text segment”) first, followed by constants and strings ("data
segment”), followed by the uninitialized variables (“BSS
segment”).

When a program, such as the monitor, is to be placed in ROMs,
the address space is not always so “normal”’ The address
range for the ROMs may appear anywhere before or after the
address range for the RAM.

The compiler group added two flags to the cross-linker to
allow specifying the base addresses for the text and BSS seg-
ments. We left the data segment to follow the text segment, as
it normally does. We set up the checksum/ROM-building util-
ities to put both the text and data segments in the ROM. This
allowed us to use initialized constants and strings in the pro-
grams we put in ROM, with the caveat that initialized variables
and constants could not be altered at run time.

We designed all prototype hardware (figure 1) so that the
debug monitor ROMs get control after power-up or when the
host sends the reset character. On prototypes where the ROMs
do not normally start at address zero, they are mapped
(ghosted) to zero after a reset. The monitor then usually per-
forms some overt act to “de-ghost” the ROMs. For example,
on the IOC, the monitor's ghost is disabled automatically as
soon as any RAM location is accessed.

The ROM monitors are linked to reside at their normal ad-
dresses. The first instruction the monitor executes is a jump.
This sets the monitor executing in its normal address range.

The monitor then performs whatever actions are required to
de-ghost itself and enable the RAM. The monitor can then
also perform other hardware initializations as required by the
particular prototype. The specific code is conditionally compiled
for each type of prototype, which again is controlled by the
targets in the make file.

The monitor then performs the rest of the initialization. in-
cluding setting up the interrupt and trap vectors and setting
up a default user-context. The default user-context includes the
user-processor registers, a default stack, and interrupt vectors.
The monitor then sends its reset message to the host and
enters its main command loop.

When the monitor receives control after a trap or an interrupt,
it saves the user context, sends an appropriate message to
the host, and enters its main command loop. (See figure 4.)

Reset
1/0 Request $
or
Trap Initialize (Data Flow)
P Save
rgg)(tj);pe Context e—
Restore mgi"n”m Host
Return Context —
From
Trap
(RETT)

Figure 4. The monitor gets control at power-up or after a
system reset. On command from the host, the monitor
transfers control to the program in the prototype memory.
The monitor regains control when the program makes an
1/0 request or when a trap occurs.

Once in the main command loop, the monitor sends a prompt
to the host and waits for commands. The host may then send
commands to read or change registers or memory. Eventually,
the host sends a command to either continue execution (go)
or single step one instruction (step).

To execute the go command, the monitor first restores all of
the user context except the program-status register (PSR),
module register (MOD), and program counter (PC). The PSR,
MOD, and PC are then loaded onto the monitor's stack, and
the monitor executes a return from trap (RETT) instruction,
which loads all remaining registers from the stack in one
atomic (uninterruptable) operation.

The monitor uses the trace feature of the NS32000 hardware
to implement the single-step command. The NS32000 PSR
has two bits that control the trace feature: the trace (T) bit and
the pending (P) bit.

If the T bit is set at the start of an instruction, the processor
sets the P bit. If, at the end of the instruction, both the T and
P bits are still set, a trace trap occurs.

When the host sends a step command, the monitor sets the T
bit in the user's PSR before the user’s context is restored. The
user program executes one instruction, which then gets a

-1 TECHNOLOGY
REPORT



trace trap, and the monitor then saves the new context and
sends a trace trap message and a prompt to the host. The
major limitation of this method is that the user must be careful
not to single step any instructions that load the PSR!

Similar events happen for breakpoints. Before we get to that,
let's look at what happens when the instruction being single
stepped turns off the T or P bits. The program gets away. For-
tunately, our compilers never generate instructions that will
turn these bits off. Normally, these instructions will appear in
only the sequences initializing the operating systems. There-
fore, this potential for turning off the T or P bits turned out to
be only a minor inconvenience—provided the user knew of
the danger.

Now, look at what events happen for breakpoints.

The host installs a breakpoint by sending commands to the
monitor that change a normal instruction into a breakpoint-trap
(BPT) instruction. The host first reads and saves the byte at
the specified address, then changes the memory byte to a
breakpoint instruction. The host keeps a list of which locations
have breakpoints set, and what the true memory contents
should be. The host installs the breakpoints just before send-
ing the go command. When a breakpoint instruction is ex-
ecuted, it causes a breakpoint trap to occur, which returns
control to the monitor. The monitor sends a breakpoint-trap
message to the host, which then restores the memory loca-
tions to their proper contents.

Breakpoints are installed and removed each time the pro-
totype is started and stopped. This makes the prototype
memory appear normal when being examined or changed by
the user.

Most programs do not need to control interrupt and trap vec-
tors. Test programs usually do not need to (or want to) deal
with interrupts and traps. A host-based debug system accepts
these programs without major modifications to handle the
hardware. Other system software, such as the UNIX kernel,
adopt a policy of “peaceful coexistence.” System software is
set up to determine whether it has been downloaded; if it has,
it only commandeers those vectors it requires, leaving the
others pointing to the monitor. If the software has started nor-
mally, it does the full interrupt initialization.

Debug monitor protocol

The software for the 6000 Series was prototyped using Na-
tional Semiconductor’'s DB16000 cards. These were multibus
cards, each containing an NS32016 processor and support
chips, memory, a serial port, and a multibus interface. The
boards carried a debug monitor, which became the model
from which the final 6000 Series’ debug monitor was built.

These first software prototypes were used to develop and test
the compilers, assembler, loader, libraries, and all of the rest of
the software-support tools needed. Some DB16000 systems
were expanded with extra memory, Ethernet interfaces and
primitive disk interfaces and used as the target for the first
UNIX port. This allowed software effort to parallel hardware
design.

The DB16000 Debug Monitor had several limitations. It was
written in assembly language and the source code was not
available except as a listing, and the syntax was not compati-
ble with the cross assembler. It also was not particularly port-
able to other hardware. For these reasons, we decided to write
a new monitor for the DB16000s and port it as required to the
various prototype configurations. Since by this time we had
written a version of ADB that used the National monitor, we re-
tained most of the National command set for compatibility.

The host-monitor communications are similar to normal com-
mands and prompts that might be seen between a host and
a user on a terminal: The monitor sends a prompt, the host

sends a command, the monitor may send the results of the

command, and the monitor then sends a new prompt.

The table below lists the command set provided by the debug
monitor:

CHANGE / PRINT MEMORY

CMB <address> <data>

PMB <address>

CMW <address> <data>

PMW <address>

CMD <address> <data>

PMD <address>

F <address> <address> <byte>

Change memory byte (8 bits)
Print memory byte (8 bits)
Change memory word (16 bits)
Print memory word (16 bits)
Change memory double (32 bits)
Print memory double (32 bits)
Fill memory range with <byte>

CHANGE / PRINT CPU REGISTERS

CCF <data>/ PCF
CFP <data>/ PFP
CIN <data>/ PIN
CMO <data>/ PMO
CPC <data>/ PPC
CPS <data>/ PPS
CRn <data>/ PRn
CS0 <data> / PSO
CS1 <data>/ PS1

Change / Print Config register
Change / Print Frame Pointer
Change / Print Intbase register
Change / Print Mod register
Change / Print Program Counter
Change / Print Processor Status
Change / Print general register n
Change / Print Stack Pointer 0
Change / Print Stack Pointer 1
CSB <data>/ PSB Change / Print Static Base

CSP <data> / PSP Change / Print current Stack Pointer
X Fast read of CPU context

CHANGE / PRINT FPU REGISTERS

CFn <data>/ PFn Change / Print general register n
CFS <data>/ PFS Change / Print Status
Y Fast read of FPU context

CHANGE / PRINT MMU REGISTERS

CBC <data>/ PBC
CBPn <data>/ PBPn
CEA <data> / PEI
CMS <data> / PMS
CPFn <data>/ PPFn

Change / Print Breakpoint Count register
Change / Print Breakpoint register n
Change / Print Error / Invalidate register
Change / Print Status register

Change / Print Program Flow register n
CPTn <data>/ PPTn Change / Print Page Table Base n

CSC <data>/ PSC Change / Print Sequential Count register
Z Fast read of MMU context

CONTROL AND HOUSEKEEPING

Ack Acknowledgment / synchronization
Go Start execution

L <checksum> <address> <data> ... Down-load program

Ok Data Handshake

Step Single-step one instruction

U <checksum> <count> <data> ... User data from Host

Version Print ROM monitor version

RN 5



The Ack command helps maintain synchronization between
the host and the monitor. After the monitor powers up, or
anytime after the monitor sends an asynchronous message to
the host (such as after a breakpoint trap has occurred), the
monitor rejects any further commands from the host until an
Ack command is received.

The U and L commands and the responses to the X, Y, and Z
commands send their data in a packed binary format. The for-
mat packs each three successive 8-bit binary bytes into four
ASCII characters. This allows binary data to be transmitted
over a normal, 7-bit host connection with reasonable efficiency.
Each command is individually checksummed to ensure its
integrity.

The X, Y, and Z commands were added to the original com-
mand set to speed system response when single-stepping a
program. The original debugger polled each register separate-
ly each time the debugger regained control. Polling register by
register was slow because it required about 35 separate com-
mands and 70 separate reads (one read for the response, one
read for the following prompt)!

The X, Y, and Z commands return the CPU, FPU, and MMU
registers in just three commands. The register sets are sent to
the host as single packed binary blocks. The context is divided
into three commands because a given prototype may be lack-
ing an MMU or FPU.

User requests

Our monitor provides four user-request calls to support simple
character 1/0 and simple system control. One of the two draw-
backs of the original monitor supplied by National was that it
provided no handshake for user writes. This meant that a user
program could easily (and frequently) overrun the host com-
puter, causing data loss.

The other drawback of National’s monitor was that its user-
requests use the service-request (SVC) instruction to com-
municate with the monitor. The SVC instruction causes a trap
to a supervisor program; this program is then expected to in-
terpret the user’s request, perform the requested action, and
return to the user. The difficulty in this was that we were port-
ing operating systems and other code that used the SVC
mechanism for its own purposes.

The monitor provides four user requests: read, write, exit, and
setconfig. The user requests are invoked by placing the ap-
propriate arguments in CPU registers and doing a subroutine
call to location 10 (hexidecimal). Although this avoids using the
SVC call, it does require that the user process turn off inter-
rupts (if they are on) before making the call.

The read call causes the monitor to send a read request to
the host. The host responds when it has data for the user pro-
cess by sending the U command containing the data. The
monitor unpacks the data into the buffer specified in the user
request and returns control to the user process.

The write request causes the monitor to send the specified
data to the host. After the data is sent, the monitor waits for an

OK command from the host, indicating that the data has been
properly received. This simple handshake prevents the user
process from sending data faster than the host can read it.

Both the read and write requests use the “packed binary” for-
mat described above to transmit the data, resulting in a full
8-bit data path from the user process to the host and back.

The exit request provides a clean way for the user process to
terminate. The request allows the process to pass a termina-
tion status back to the host. Unlike other user requests, the
exit call does not return control to the user-process.

The setconfig call provides a way around a shortcoming in the
NS32000 design. The processor’s config register is set by soft-
ware to specify which optional chips (memory management,
floating point, etc.) are present. If an instruction specific to a
given chip is executed and the corresponding bit in the config
register is not set, an undefined-instruction trap occurs.

So far, so good. But there are two problems: The config register
cannot be read to determine its current setting, and if a given
config-register bit is set but the corresponding chip is not pre-
sent, the CPU hangs in a catatonic state. This means that
there is no way for a debug monitor to dynamically determine
what the configuration is, and—worse—the monitor cannot tell
if the software being run has changed the config register to
enable a chip that is not present on all prototypes. The set-
config command enables the user process to inform the
monitor when it changes the Config register.

The version of the C-standard 1/O library used by the cross
loader makes use of the read and write monitor calls in its 1/0
subroutines. This made the standard UNIX-input/output rou-
tines available to programs running on a prototype. A test pro-
gram for a math library, for example, could be compiled and
run on a VAX, then built using the cross compiler and cross
loader, downloaded to a prototype, run, and the results of both
runs compared.

Why This Approach Was Successful

In our project, the host-based approach to debugging was
successful for several reasons:

(1) We were beginning a new hardware design, instead of
modifying an existing one. We could easily add debugging
support—a monitor ROM and an RS-232 port—to our
boards. Our task would have been almost impossible had
the hardware design been frozen earlier.

(2) The software to be tested and debugged had very few
real-time dependencies. Our peripherals had very few soft-
ware timing constraints—data overruns could be easily
avoided during testing. The prototype RS-232 driver, for ex-
ample, could be tested by typing one character at a time
on the system console. Had we been developing real-time
code, such as firmware for a digital oscilloscope, our task
would have been much harder. As it turned out, smart
logic analyzers (the 1240 and DAS) were sufficient to make
the necessary real-time observations.

1 TECHNOLOGY
REPORT



(3) The debugging model under UNIX is simple and powerful.
It is a straightforward matter to modify any UNIX debugger,
replacing the ptrace subroutine with a custom subroutine
(in our case, one that communicates with a monitor ROM
through an RS-232 cable).

Benefits of the Host-Based Debugger

The user interfaces of the remote debugger and the host’s
debugger were nearly identical—engineers in ECS didn't have
to learn a new (and incompatible) debugging language just
because their programs were destined to run on a prototype
rather than a VAX.

Early prototypes of the hardware were few and had to be
shared among many groups. Because remote debugging
removed the need for the engineer to be physically near the
prototype being tested, scarce prototypes could be pooled.
Prototypes could be accessed on an as-needed basis rather
than by wandering from lab area to lab area asking ‘“is any-
body using your prototype?”

Since the debugger ran on the same host computer used for
all of our other tasks, we found it easy to share data: A proto-
type program could be fed test data from a host file and could
store its results in another host file. The test results could be
examined or edited by one of the host's many file-processing
programs then sent by electronic mail to other members of the
project.

Many early tests involved tiny fragments of prototype code.
Remote debugging dramatically reduced the time spent to run
such short tests; we didn't have to walk to a lab, find an unused

prototype and nearby terminal, log into a development system
or host computer, and manually reset the prototype. Without
leaving his bench, an engineer could swiftly find an unused
prototype, download and run a program, and store the results
of the test.

Remote debugging allowed engineers to run test programs
from almost anywhere, at anytime. It was routine for one of us
to call our VAX at Tek in the evening from a terminal at home,
compile a test program, load that program into a prototype
over at Tek, and then examine test results—all in only a few
minutes.

This debugger was just one step toward an integrated
program-development environment. In ECS, all of our cross-
development tools were based on their corresponding native
tools. For example, the only differences between the NS32000
C compiler and the VAX compiler were their names—c76 ver-
sus cc—their options and file naming conventions were iden-
tical. One coherent set of tools—compiler, loader, assembler,
editor, etc—shared common invocations, flags and switches,
file formats, revision control, and build control.

Time to Develop the Debugging System

From the time the project was started until the final versions of
the monitor ROM, character recognizer, and modified debug-
ger were available, six months had passed. During that time,
we spent approximately five man-months on the project.

For More Information

For more information, call Brad Needham, 627-1583 (39-222)
or Alan Jeddeloh, 685-2882 (61-215). [J

Bringing

IC Vendors to Tek

via “CONNECTIONS”

By Wes Bruning, Manager, Connections Program

The Connections Program is a critical part of Tek’s strategy
for the computer aided engineering market. But Connec-
tions is not only a strategy, it’s a way for Tek circuit de-
signers to access the products and the know-how of a
score of IC vendors.

The Connections program links IC vendors (foundries) with the
CAE Systems Division's design tools through vendors’ libraries.
Why are IC-vendor libraries important? Well, not having IC-
vendor libraries on a CAE workstation would be like not having
applications programs for your computer.

In CAE systems, libraries provide the essentials of circuit de-
sign and design implementation: graphics for schematic cap-
ture, models for simulation, physical descriptions for layout
(place and route), and the details of fabrication. Without the
libraries an engineer couldn't capture a schematic, nor simu-
late, nor fabricate, even with a powerful CAE system.

At this time, we are in the process of developing libraries
directly for twelve semicustom-IC vendors, and indirectly for
three others. This means each of fifteen IC vendors will main-
tain Tek-compatible semicustom libraries (graphics and logic
models) for the CAE 2000 and its simulators. These libraries
are formatted in the Generic Library for use with any CAE
2000 simulator. Additional vendor libraries will be added.

The Generic Library is a database of simulation models for
semicustom ICs.

Each IC vendor, in a joint effort with our applications engineers,
creates simulation models for its semicustom family.

AMCC, for example, specializes in ECL gate arrays. A Generic
Library exists for each of AMCC's four gate-array families—the
Q1500, QH1500, Q3500, and Q700. Each library consist of
simulation models of each cells in a family. These models
reference the primitives (ANDs, ORs, NORs, etc.) specific to

a particular CAE-2000 simulator.

R



Library components or “tool models” are created by substitut-
ing simulator-specific primitives into library-specific simulation
models. If the designer wishes to simulate his or her library-
specific QH1500 circuit with IDEAL, the Generic Library simu-
lation model for the QH1500 would compile using the IDEAL
tool models. This would produce a “tool deck” acceptable to
the IDEAL simulator. If the designer specified the HILO-2 simu-
lator, the Generic Library model (of the QH1500 library) would
compile using HILO tool models. Thus a “tool deck” accep-
table to the HILO simulator would be produced.

The Generic Library simulation models, therefore, have to be
developed only once by the library designer (typically the ven-
dor) to enable the IC designer to use multiple simulators. The
number of simulators one can use is limited only by the number
of simulator-specific primitive sets that exist. At this writing, four
simulators are supported: IDEAL, HILO-2, SCALD and Zycad.

That's enough for now about about how libraries and simulators
work. Let's talk about Connections as a program and how it
helps sell Tek CAE workstations. It does this by providing li-
braries for the user of a Tek workstation. And Tek designers
are—or will be—users!

Who Should Make My IC?

One top concern of the electrical designer or design manager
is: Which IC vendor should | choose to fabricate my design so
as to achieve my goals for performance, functionality, and cost?
Who can give me high-reliability parts and on-time delivery?
Clearly, there are many factors involved in selecting a semi-
custom vendor.

Just as clearly, there are many factors in choosing a CAE
workstation. A key factor is the number of libraries in its data-
base. Because the “correct” foundry for one application may
be wrong for another, the workstation supported by the most
IC vendors has an edge. Not that the workstation with the
most libraries always wins, but it sure helps. Connections was
implemented to provide Tek’s CAE Systems’ Division sales

engineers and their customers with as many IC-vendor
libraries as possible, as rapidly as possible.

The heart of the Connections Program is cooperative selling,
team cooperation between the sales engineers of CAE
Systems Division and the sales engineers of various IC ven-
dors. These sales teams are already working together, swap-
ping sales leads, making customer calls and presentations
jointly. We intend potential customers to see Tek offering both
CAE design tools (and associated Tek equipment) and strong
ties to IC-vendor manufacturing know-how. In Tek’s CAE
marketing strategy IC-vendor relationships are key.

Right now, we have such relationships with twelve vendors:
AMCC, Gould AMI, ASEA HAFQ, Barvon Research, California
Devices, Fairchild, LS| LOgic, Mostek, Motorola, NEC, TriQuint,
and VTI. We have indirect contacts (through Source 11) with
three more vendors: IMP, Comdial and NCR. More vendors
will be added soon. All such vendors will soon be “on line” to
the Tek design engineer designing a semicustom IC. Because
Tektronix is a major account to these vendors, they are
willing—even anxious—to work with Tek engineers on new
designs.

Part of the Connections Program enables IC vendors to pre-
sent themselves to the Tektronix engineers and managers. We
are doing this through seminars and articles. Technology
Report will be a major vehicle by which technical and vendor
information will be passed to the Tektronix designer. Starting
with this issue, articles drafted by various IC vendors will be
presented addressing technical aspects of semicustom and
custom IC design.

For More Information
For more information, call Wes Bruning, 629-1488 (94-520). (J

Wes Bruning is the manager of Connections, a program of the CAE
Division. Wes joined Tek in 1977 from the Naval Ocean Systems
Center where he did hydrodynamics measurements. He is a regis-
tered professional engineer whose BSME is from San Diego State
University.

It’'s Time to Look at CMOS/S0OS

This Connections article is based on material supplied to
the CAE Division by ASEA HAFO, a semiconductor com-
pany active in research for about 30 years. Doing this ar-
ticle is unusual for Technology Report. But Connections
too is unusual. Connections is a CAE Division program
that is, among other things, integrating design criteria
from many vendors into the CAE database that is at the
core of Tek’s CAE 2000. Wes Brunning of the CAE Divi-
sion explains Connections elsewhere in this issue.

SOS stands for silicon on sapphire. It's a technology that pro-
vides excellent device isolation. As a result, SOS technology
excells as the basis for making exceptionally high-quality, high-
speed circuits. In combination with CMOS, SOS is a most
promising candidate for digital VLSI circuits because these cir-
cuits are becoming denser and faster and designers, therefore,
are increasing concerned about leakage and stray capacitance.

In an SOS circuit, the isolating monolithic sapphire substrate
is used only as a carrier, that is, the structure upon which cir-
cuitry sits. To make a SOS circuit, a thin silicon epitaxial film is
grown in the sapphire surface and transistors are then fabri-
cated in that film by conventional MOS technology.

The basic feature of SOS is the complete isolation achieved
between devices on the same chip. This isolation is achieved
by using a sapphire substrate. With CMOS/SOS, designers can
produce absolutely latch-up-free CMOS circuits having the
highest-possible integration density. It also means very low
parasitic capacitances, resulting in higher speed and lower
power dissipation than possible with “bulk” CMOS. (Most ICs
are made starting with solid-silicon wafers—'bulk” in the jargon.)
Another important advantage SOS offers is a high level of
design flexibility, employing mixed junction transistors and
separate voltages on the same die—these are particularly
valuable for custom circuits.

R



Nothing, including SOS, is perfect, but the relatively minor
technical disadvantages of SOS—higher leakage current within
a device and higher flicker noise—do not affect digital applica-
tions. And the higher cost of SOS materials compared to bulk
is not a significant drawback. So, for highly reliable and fast
digital applications, SOS is a very good choice.

Why CMOS Isn’t More Widely Used

Why then, if CMOS/SOS has these powerful characteristics,
hasn't it been more widely adopted by other semiconductor
manufacturers? This is the question most frequently asked by
companies considering a custom integrated-circuit solution for
their product. The evolution of CMOS/SOS provides the answers.

Historically, semiconductor manufacturers have based their
business on standard rather than custom components. (They
have done custom work mostly as an internal research and
development effort.) Standard circuits are produced in volume
and have survived well in price-competitive environments.

Until recent years, silicon-on-sapphire circuits have not been
price-competitive with bulk. They cost more to make because
dicing saws and photomasks, for example, wear out faster. The
wafers themselves have been more expensive. And few com-
panies have been competing for the sapphire market. This will
change for the better when more semiconductor manufacturers
move into SOS to achieve its technical advantages. In manu-
facturing, projection printing and laser cutters are eliminating
the costs of frequent saw and photomask replacement.

A SILICON GATE SILICON GATE

GATE OXIDE GATE OXIDE

SAPPHIRE SUBSTRATE

N-CHANNEL P-CHANNEL
B GATE GATE
GATE OXIDE ORAIN GATE OXIDE
SOURCE — SOURCE
N+ N+ Pt pt
WELL
P GUARD BAND

N-TYPE SILICON SUBSTRATE

P74 oxioe Bl ven

CMOS/SOS has been a working process for making integrated
circuits since 1967, but it is only now that CMOS/SOS has be-

come accepted as a major process. Three factors have forced
this acceptance: increasing complexity, the need for fewer de-
sign constraints such as latch-up worries and multiple voltages
on the same die, and increased demand for application-specific
integrated circuits (ASIC).

A few major electronic companies have adapted and improved
CMOS/SOS for their own use. They have done so to produce
more performance-competitive commercial products or to fulfill
stringent military requirements. Most of these self-developed
circuits are application specific—that is, ASICs.

Tradition has been a restraining factor too. Most custom houses
are break-offs from standard-circuit manufacturers. Their pro-
cess engineers and designers have carried over their familiari-
ty with the bulk processes to their new employers. Because of
this inertia there has been no concerted effort to explore the
advantages of SOS for custom applications.

CMOS/SOS came along around 1967, about four years after
bulk CMOS, and cannot be expected to achieve market ac-
ceptance before or even simultaneously with bulk CMOS. But
it is clear that the trend is toward using custom circuits over
standard circuits. This will accelerate the use of CMOS/SOS
as the best process for custom digital applications (see Table).
Using CMOS on a silicon substrate is only the first step;
CMOS/SOS is the next.

Comparing Costs—
CMOS/SOS Against Silicon “Bulk” CMOS

Let's compare two typical process lines for custom integrated
circuit production—one for bulk and the other for CMOS/SOS.
To make this comparison fair, we will make these assumptions:
Both processes use 3-to-4 micron design rules and 4-inch
wafers. And moderate numbers of wafers per design will be run.

The cost of one oxide-isolated silicon-gate bulk CMOS wafer is
about $350. A sapphire wafer costs about $450, about 30 per-
cent higher than bulk silicon. SOS has fewer process steps
than bulk, but then its blank wafer costs more.

Figure 1. The isolating saphire substrate of
CMOS/SOS (A) does not require the silicon-
consuming guardbands and the P- and N-wells
of bulk CMOS (B).

SOS vs. Silicon Bulk CMOS

Parameter S0Ss Bulk
Design Flexibility Higher Lower
Speed Higher  Lower
Power Dissipation Lower Higher
Flicker Noise Higher Lower
Leakage Current Higher  Lower
High-temperature Performance Better Worse
Latch-up No Yes
Radiation Tolerance Higher  Lower
Packing Density Higher  Lower
Wafer Material Cost Higher  Lower
Yield (4-micron) Equal Equal
Yield (2-micron) Higher  Lower

gl



On the other hand, the packing density for the CMOS/SOS cir-

cuits is typically 10 percent higher than for bulk. If both pro-
cesses have identical yields, the real cost difference per chip
will favor bulk silicon by about 10 percent; this, however, does
not take into account the technical advantages of SOS. Below
3 microns, the situation favors SOS. SOS yields exceed bulk,
so at 3 microns and smaller, CMOS/SOS circuits cost less to
produce even though sapphire, itself, costs more than silicon.

Comparing Technical Characteristics

Design flexibility and packing density: CMOS is better because
of its superb noise immunity, speed, and power efficiency. And
CMOS tolerates variations in supply voltage and ambient tem-
perature better than silicon. CMOS/SOS is even better, offering
many technical advantages and it is even more design-tolerant
than the bulk processes. This tolerance shortens the time neces-
sary to bring an SOS circuit to market. It is the sapphire sub-
strate that makes CMOS/SOS superior. By isolating devices
from one another, it eliminates the need—inherent in bulk
processes—for guard bands and P and N wells. Both of
which consume chip area and restrict layout flexibility.

Because of the “ideal” isolation between devices on the sap-
phire substrate, diodes can be arbitrarily connected without
any risk of forming parasitic bipolar transistors. This is not the
case for bulk circuits. It's also quite practical to use several
supply voltages for an SOS circuit—again because of the
isolation. SOS circuits can be galvanically isolated (pure insula-
tion due to dissimiliar materials) from each other on the same
chip, a major SOS feature.

Speed and power -dissipation: Basically, these characteristics
in a CMOS circuit are set—that is limited—by parasitic capaci-
tances. They are smaller in SOS than in bulk, resulting in
higher 'speed and lower power dissipation in the SOS circuit.

Flicker noise and leakage current: The quality of 600-nm-thick
silicon film on a sapphire surface is not as good as that in the
other CMOS processes because the match between the
silicon and the sapphire crystal is not perfect. This, in turn,
creates somewhat more noise and leakage currents in the
sapphire circuits, making SOS less adaptive for analog func-
tions. However, digital qualities are not affected except that

dynamic logic on SOS needs a higher refresh rate at room
temperature than bulk. The difference in refresh rate lessens
at higher temperatures.

Latch-up, radiation tolerance and high-temperature perfor-
mance: Because PNPN junctions always exist in bulk CMOS
circuits, applying certain voltages to a circuit could start a
thyristor effect (latch-up) that could destroy the chip. No
thyristors can exist in SOS. Because of the isolating character-
istics of the sapphire substrate, latch-up can't occur, not even
when circuit features are scaled down to the fundamental
limits. In bulk CMOS, the latch-up problem worsens as circuit
dimensions shrink.

The freedom from latch-up means that SOS circuits tolerate
transient—momentary—radiation much better than bulk cir-
cuits. Such damaging radiation can come from momentary
nuclear exposure and solar flares, or from alpha particles in
the IC package itself. By changing the process, all CMOS cir-
cuits can be hardened to low background radiation. However,
for resistance to transient radiation, SOS is superior.

SOS circuits can work at much higher temperatures (300°C)
than bulk circuits (125°C) because the complete isolation be-
tween the transistors means no leakage current between
devices, even at very high temperatures.

Yield: The small mismatch in the interface between silicon and
sapphire lowers the yield of SOS to some extent. On the other
hand, the SOS yield doesn't suffer from pinhole problems.
Pinholes in the oxide under interconnects overlying pure sap-
phire have no effect on the circuit's functions. In bulk, pinholes
are catastrophic. The SOS process contains fewer steps than
the silicon-gate bulk process, which, of course, gives SOS a
yield advantage. At 4-micron design rules, the yields for oxide-
isolated silicon-gate bulk CMOS and CMOS/SOS are about the
same per unit area. However, when dimensions are scaled
down, SOS yields are better than bulk. As densities increase,
this better yield will be a determining factor in the develop-
ment of wider market acceptance of CMOS/SOS circuits.

For More Information
For more information, call Wes Bruning 629-1488 (94-520).

COMPANY CONFIDENTIAL
NOT AVAILABLE TO FIELD OFFICES

140434 A9DTONHIOIL

TTIUNGTD I OYVHII ¥

GBZ-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer.



