- epMack Fagpyt,g,'

‘Tektronix:

COMMITTED TO EXCELLENCE

USING GPIB

OSPI

INSTRUCTION MANUAL

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077 Serial Number

June 23, 1981







00000 BE8E8 PPPPPP IIIII
0 o S P P I
0] 0 s P P I
0 0 55888 PPPPPP I
0 0 s P I
0] 0] S P I

00000 55888 P IIIIT

OPERATING SYSTEM FOR PROGRAMMABLE INSTRUMENTS

Date: May 5, 1981
Robert Bretl
Robert Fitzsimmons
Carl Hovey

Steve Tuttle

x 1118 or 1104

An introduction to this document 'Designing With GPIB" is available
from Terry Lang, Ext. 1164 WR, Del. Sta. 92-716. I also have more
information on using GPIB in your instruments. Please feel free to
call me anytime.

This is a preliminary document and is subject to change. A record
of changes to the design is maintained and we encourage everyone that
implements OSPI to call us to find out about changes since this
distribution.

Note:

Sections of this document which have been modified since the last
distribution are flagged in the table of contents and index with the
string "#####" .




Introduction

This document is intended to describe the internal operating system
designed for the TM500 programmable instruments. The design of this
system is based upon the following premises:

1. The instrument internal operating system must never ignore
other responsibilities because it is busy waiting for some
event to occur. For example, it should not ignore inputs
from the front panel or GPIB interface because it is
monitoring some hardware function.

2. The instruments must be easy to operate in current
programmable instrument systems.

a) They must use protocols similar to those of existing
instruments.

b) The instrument language takes into consideration
existing and future controller capabilities to generate
the language constructs.

3. The system must provide the user with a set of primitive
operations which provide control over the basic functions of
the instrument. These primitive operations are defined so
that the user can combine them to perform more complex
operations and in some cases macros are provided which make
certain sequences of operations easier to specify.

4. The design of the operating system is intended to be modular
and general enough to apply to most instrument design
problems. It provides a framework for instrument firmware in
that it can be reused by changing device dependent portions
(command tables, command handlers, hardware drivers, etc.)
without entirely redesigning the system.

External features of the operating system are described in a related
document titled "Programmable Instruments Firmware Features" ( PIFF).
It is assumed that the reader of this document has some knowledge of
these features and the specifications for GPIB compatable instruments
as described in the "IEEE Standard Digital Interface for Programmable
Instrumentation' (IEEE Std. 488-1975) and the Tektronix '"Codes and
Formats Standard for the General Purpose Interface Bus (GPIB)".



P

TABLE OF CONTENTS

Introduction © 6606660600600 060©606660666660666086060606606E60H0 0_0

Overview of the Operating System e

1.1

1.2

1.3

1.4

Control Structure @ 6666008 600000006000O6G06660600GOGOCGEE l“l

Structure Chart ® 060000600600 0©000O0EE600S20 0090 eC0000 1_4

System Monitor Initialization © 006060060060 0000€0CS6O0O0C 1—5
Interrupt Handling © 060600600000 0000600600060C0E0OCGCGCECGCEE 1-6

Data Flow Diagram cecccecsccccesscscsccssssssacsnsscss 1=7

Message ProcesSSOT secccoscossssoscscssscossssssssossssosses 2=l

2.1

2.3

2.4

Overview of Message Processor Operation S |

Functional Description ® ©0 0009006000 ECED0O0SEOOCEOOEEOCEOEC 0TS 2-1
Command Processing © ©60000€0000600CO00ED0000C0 60O 0L 2—1

Command EXecUtion eecsscecccssceccsccsscccsssncsse 2=2

Types Of Commands © 06 060©0000000C0©OE0 0065000000606 660060 2-4

Setting Commands © 0 ® 00 000 6006060000066 080600 0OOOEEEDLS 2-4
Output Commands © 6000000 0C0000600606000006060000GC0000DL 2‘4
Operational COmmandS © 800600006008 5C0060600000000EOGES 2-5

REMOTE ONLY COmmandS s 00000 0L NsROCENRREREOLESIESDLOSDS 2-5

Implementation of the Message ProcesSsSOr ececesssses 2-6

Interactions With Other Tasks eeceesesscsssssssee 2=6
Message Processor VariablesS ceeecesscscsssccssss 2=7
MSGPROC s evsssnssveosssscsscsssssscscssnsssscssse 2=9
EXECUTE eevecssocesccnsosessscssssncsscssscssnnss 2=11
ABORTMSG eeoosssssscsccnscscssescssssssssssssss 2=13
SCANFRMT ecocosossscsscosscsescsassscscssccscsss 2=-14
GETCHR ccceeceacoosossosccscccscsacssacscssasscssssanes 2=-15

HDRSRCH © 00060 6P 00CEE0 0000060600050 0000SCEILINOEEPSEOSEOSTOSIEOSEOIDTS 2-16

Table Structure © 060600060006 006060000000C00OEOCLELSEOEOLEESEESOSDODS 2—18

Table Search © 0000060000000 0000000600C0O0CCCOCCOIEEOGEESIOTD 2-19




TABLE OF CONTENTS

2.5 Rules for Writing Command Handlers cecocecosossses 2=21
Rules for Setting Commands seesesssssossoscovos 2=21

Setting Command EXamplesS ceeesccccscssccccasoas 2~22

Rules for Changing Pending Settings ececscsecos 2=25

Rules for Output.Commands ©secsssseccccscscanse 2=25

Rules for Operational Command Handlers cceseceo 2=27

2.6 Utility Routines for Command Handlers eccccsoscss 2-28
HDRDELIﬁ ©0c0s0sccossesccscessesssssocssossaces 2—28

ARGDELIM ccceocooocococaocossssscosscocsssscsssss 2=28

CHRPROC cocccocssoccccsassoscsssanssscssosscssas 2=29

NUMePROC cccovsoosacccosocscsoscscsnoanssasssonscss 2=30

BIN.PROC ccccoecoccocoscosososcsscsssocssnscsses 2=31

GETBIN cccccccossccososccssccosasssascssssasosses 2=32

SEND .BIN «svveennnneneennnneeeeennnneesnnecenns 2-33

REMeTST ecoecocsoccscoscceescscoscsoasacssasssase 2=34

OUTP.HDR ccccccssoossccescsncscsssscssscsnnscssss 2=34

OUTP<ARG ccccccossosssscssssasosasssssosasnsssss 2=35

OUTP.CHR ........;...........0................. 2-35

3. Key ProcesSSOr ssecssccccscssccccssccsososssscsonssossssssss 3=l
3.1 Functional Description sccescoceccscccossssassssse 3=1
Frént Panel SyntaxX cecccceccscesccosssscossscssoass 3=l

State Machine cccocccscsscccsscccsscossssoccaans 3=2

3.2 DM5010 Key ProcesSOr ceoccscssscccossoscsccososasss 3=3
DM5010 Front Panel Indicators ..............;... 3-3

Front Panel KeyStrokesS ccececcosssocccsascsossses 3=4
Description of KEYPROC ccccsocscscocccsccscsoacse 3=6

KEYPROC cococccocccssscocsoscscoosasavoessssoncssce 3=7
Subroutines Called cccseccscsoesssscsssccccsosce 3=9

3-3 FGSOIO and PSSO].O Key Processor ® 2060006000000 0060600 3—10



TABLE OF CONTENTS

KPEXEC cocscocosoossccscoscsccscosoocoscsssocsoo
KPERROR ccovecsoocococcocsoscsosossccosscsccsonssss
Numeric Entry Variables cccsccscsscscoscsscccss
Numeric Entry State Table ccscccccvscccccsoocsces
STORCHR cccecococsoooososcososccsssoscsosconssoass
GETKEY occccccococcsosoessaososocoscsnsoscsosscoscs

BLNKLITE © 0066006006000 000G600©0600000606600©0000O6©0ECO0Q

Hardware Monitor © 0© 0006000000000 00600©000000©0000©O©60060@0€C06 06066066

Hardware SettingS © 6009000020000 0600@®©000O00CO0E00000CO©0C06000600©O0OSH O

5.1

5.2

5.3

Update Display ®© 0060060000000 000060000O00©000000CS6E000C0
Display Buffer Update ® ¢ 00009 €E600©065Q20000060660065006 0

Display Buffer Builder cocccsccecsccoccscccsscocscnce

GPIB Driver © 90 © 0009000000066 0 000000006000 0C00O00C0E©E0COEEO60000E0CO0

6.1

6.2

6.3

6.4

Driver Specification sccccecccscsccscscccccccccssocon
INPUT ccosecescceosscesccacsonosososcssscnsscocsss
OUTPUT ccecocsecsosccscsconscsscsscssscoscsocscesss
Status Reporting ececcceccececcccoscscscsoscsosoce
Interrupt Handlers and Miscellaneous ccececscesccoce

GPIB Variables cocescescscescscsscsccsocsoscoscssos

GPIB Input ecccececcccecccscscocscoscscccsscssccconnse
Tests Performed on the Input Buffer cccceocscccce
BYTEIN cccecccosccsscccccsscscossoscsosccscscsasos
GETBYTE ccccccococcccssssoscscsossssccacooooosos
LOADBYTE ccoccoccscoccsccscnososasscsssooossoss
FREESPACE ccccccosccoccsososacsccscssssscossssocs
NEXTMSG ......................;................
CONTBIN cccscocsccccooeccoocoooscoesccooscoassse
Input Buffer Initialization eccescccssscessocss

GPIB Output © ©9 0000600000000 0C060506006006©0606000E6E0 600

3=11

3-12

3-13

3-14

3-17

3-18

3-19

41

6=1

6-1

6-2

6-2

6-2

6=3

6-8

6-9

6-10

6-14

6-15

6-16

6-18

6-19

6-20

6-21




TABLE OF CONTENTS

GPIB Task eecsevessscoecocscncncsnscsncnsascsses 0=22
BYTEOUT ¢eeccoacscocosscoscscsccssosssosscssssssonss 0=23
PUTBYTE cecescocsocacscsossnscecscsoscescncssess 0=26
PUTEOL cecovococsasacsacsccsosacscsenosnssssssses 0=28
INITOUTBUF cceoeosccocscsnccssccscsssscssscsossscsses 0=29
6.5 Status and Error Reporting eeeceecsescscsccssscsee 6-30
Use O0f Status ByteS eseesecescesscssescsssesanesss 6=30
Use of ERROR? Command eceecceoccsscccsscsnsssse 6=32
Status Table ecsececsecscocscssccssssssnssssssses 0-33
Problems imposed by TI 9914 Chip eesccesccesees 6=36
Implementation OVerview eescesscscccsccssscsses 6=38
NEWEVENT «ccesococcccccccsccoscssscscscascsssssscsecs 6=39
STORESTB ecoeeccsoeoccscssscscscscsscsccsscscsses 0-40
CHNGBUSY cececososcescscscssssssscssessssssoses 0-41
INITSTAT cevococovoccosscscssscccsescnsseascssscsse 0=42
6.6 Interrﬁpt Handlers and Miscellaneous escceeseseces 6=43
GPIB Interrupt Dispatch eccececcescsceccscoseses 6=43
REMOTE /LOCAL ProceSSing eececcecesssssccecssssces 0=44
RTLPROC csosccecsevsoscccscscssssscacssssscnncscss 0-46
RLC Service ROULINE secesoccccccscssscsssssssss 6=47
My Address Service Routine ceececeesvccccccccnces 6=49

Device Clear
selected Device Clear eeee v 6-50

Device Trigger Function (GET) ceccecvoccssccose 6=52
Interaction of GET with other tasks secessceeeces 6=54
GET Interrupt Service Routine eceescceecsccsscess 6-58
Interface Clear ceececsscscessccssscsccssscssecss 6-60
Parallel POll eeeecescscccassanccssccsscscssssecs O=61

GPIB Driver Initialization eeeececccccceccsccese 6=62

70 DiagnOStiCS ® 0 000 0000000000008 000000000600000000000000000000 7"1



TABLE OF CONTENTS

7-1 DiagnOStiC Commands ©© 50000006000 060060060000©020000o000 0O 7—3
702 DiagnostiCTaSk ©© 00600060006 0600600600©0E060000EO0006OCO6O0OCEO 7“"4
80 Utility ROutines © 0900000000000 000000 OO0 006000000000 e00 008 0S 8=1

8.1 Copy Current To Pending cecceccccccccscccsccscssoes 8=1

A, OSPI vS COS cccosocecccsocoosccooosssssssssosososcssscssnnne A=l
A1l Control StructuUre eccescesccscsccccscsssoscsccscscns A=l

System Monitor Initialization ceccceccesccosocoes A=l

Interrupt Handling cececccccccoscccsccccccssscasse A=2

A.2 Message ProcesSSOr ccecccscscsscsccscsscssossonsssepe A=3
ARGPROC cccoososssocscosacsonscosssossscssssscsssee A=l

A.3 REMOTE/LOCAL Considerations ecececcscocecscsosscsssses A=D

A4 GPIB Task ccesccceccocscocscossscsosssssssnosscasass A=6

B. REAL*32 FLOATING POINT ccccesccecccssccssosssosscssosscssossse B=l
B.1 Storage Format ceccececcscccocccecccscccsceoconses B—l
Exponeﬁt Table (Abbreviated) eecececescescsscsoss B=2

B.2 Calling Sequence ExamplesS ecesceccccccsscossssccsss B=3

B.3 OSPI vs TESLA Implementation of REAL*32 .ceeeseeece B=4

B.4 Structure Chart and Stack Depth c¢eesescescesceeces B=5

B.5‘ | VARIABLES FOR REAL*32 MATH ¢ececcesssssssscscccces B=6

B.6 Formatting for REALSTR ccececcecccccccccccccossass B=8

Format Examples for REALSTR ecesecscscesscsssss B=10

B.7 Error Handling For REAL*32 Mathpack ceeceecesseeses B-11

Error Codes issued by REAL*32 .ceseessncssecess B=11

INDEX © 66 000 000 ONCEPOOPNOECOOSP0POE 0060000600080 000CN0C0SBLEIOONNGOGESOSEOSEDDIOEOEES IND-l







P

PN

1.1 Overview of the Operating System ' 1-1
Control Structure

1.1 Control Structure

The firmware in a programmable instrument is responsible for
performing a number of functions. Examples of these are: Input and
execute commands from the GPIB interface, Monitor hardware operations
to maintain performance specifications, determine when front panel
buttons are pushed and perform the required functions, etc.. To
perform these functions it is often necessary to wait for some event to
occur before processing is continued, and this waiting interferes with
the performance of other functions which must continue to occur. For
example, the fact that the GPIB interface did not transmit a byte
should not prevent the processor from recognizing that the operator has
pushed a front panel button.

THE PRIMARY GOAL OF OSPI IS TO PROVIDE A STRUCTURE IN WHICH SEVERAL
FUNCTIONS CAN BE PROCESSED IN A WAY WHICH PREVENTS THE FUNCTIONS FROM
INTERFERING WITH EACH OTHER.

To achieve such a system, the functions to be performmed are
partitioned into Tasks. The partitioning is done on the basis of
whether or not the functions must wait for an event to occur, and if so
whether the waiting interferes with the performance of another
function. The result of the partitioning is several groups of
functions ( Tasks ) and each of these tasks must be performed
concurrently.

In the operating system for the TM500 programmable instruments,
there are five basic tasks. They are:

1. The Message Processor is responsible for decoding and
executing all commands received over the GPIB interface.

2. The Key Processor task works in conjunction with the front
panel interrupt handler (if the interrupt handler is
implemented) to decode the front panel button pushes and
execute the instrument functions.

3. The Hardware Monitor task performs the device dependent
hardware support functions. For example, the "bit diddler"
in the Function Generator, determining the regulation of the
Power Supplies, reading a measurement from the DMM hardware.

4o The Hardware Settings task is activated by either the Message
Proccessor or by the Front Panel task. The function
performed by this task is to copy the pending settings to the
current settings and to the hardware as well as update the
front panel display.

5. The GPIB Task performs those functions required to drive the
GPIB interface which cannot be performed in the interrupt
handler due to execution time constraints. The primary
activity here is to determine when the instrument should
enable its talker function to transmit the "talked with
nothing to say" message.




1.1 Overview of the Operating System 1-2
Control Structure

Fach task is an independent process and shares the processor
resource within the instrument. Because there is no clock in the
instruments to arbitrarily decide how long any task should execute
before giving up the processor to another, the tasks in OSPI must give
up the processor resource voluntarily. This is in contrast to most
operating systems in which the monitor is in complete control.

When a task reaches a point in its execution at which it must wait
for an external asychronous event (such as waiting for the user to
press a button), the task saves its status and passes control to the
monitor. This passing of control has been named SUSPEND, and may be
thought of as a return to the monitor. However, on a structure chart,
it appears as a call to the monitor since the monitor returns control
back to the point of the suspend in the task. For the 6800 processor
the saving of status and passing of control is accomplished with the
software interrupt (explained further below) and although it may be
referred to as "return to monitor" or "call the monitor" or '"suspend"
or "software interrupt", the important concept is that A TASK EXECUTES
UNTIL IT REACHES A CONVENIENT POINT, THEN SAVES ITS STATUS AND PASSES
CONTROL TO THE MONITOR. ‘

In OSPI, the Monitor (the routine which controls which task is
executing) is called by the tasks and this is normally done when the
task encounters some event it must wait for. Those tasks which do not
have to wait for some event, are implemented so that they give up the
processor at least once in their main loop.

Each task then is an independent process and is written as a "loop
forever" module. Because it is an independent process and must suspend
its execution temporarily, EACH TASK IS ASSIGNED ITS OWN STACK AREA.
This stack is used in the normal fashion, and maintains the state of
the task while it is suspended. A well known use of the stack for this
type of operation is to handle interrupts. When an interrupt occurs,
the current state of the process is saved on the stack and can be
resumed when the interrupt handler has completed its operation.

The mechanism used to call the Monmitor in OSPI is very similar and
is called the Software Interrupt (SWI). The SWI was chosen because it
automatically saves the processor state on the task stack and
simplifies the function of the monitor.

To switch execution from one task to another the monitor maintains a
Stack Table containing the stack pointers for each task and a pointer
to the Active Task. The tasks call the monitor by executing the
software interrupt instruction ( SWI ) which sets the interrupt mask
and saves the processor state on the task stack. The monitor then
saves the task stack pointer in the table entry indexed by the Active
Task Pointer. The next task to be activated is determined using a
simple "round robin" scheduling algorithm, and its stack pointer is
fetched and loaded into the processor stack. The activation of the
next task is accomplished by executing a return from interrupt ( RTI )
instruction.



P

1.1 Overview of the Operating System 1-3
Control Structure

The other major components of the operating system are the Hardware
Handlers and the Instrument Status area.

The Hardware Handlers ( Drivers ) are the modules that interface the
hardware to the functional tasks in the system. These modules may or
may not be interrupt driven, depending upon the device dependent
requirements. They provide the system with information from three
primary sources: the GPIB interface, the device dependent hardware, and
the instrument front panel. In addition, these drivers also handle the
transfer of data from the Instrument Status area to the output device.
For example, the GPIB driver puts characters into the Output Buffer,
changes the Instrument Status (whether Talked, Listened, etc.) and
handles the transfer of bytes from the Output Buffer to the GPIB chip.

The Instrument Status is the data area (in RAM) which defines the
current state of the instrument. This data is partitioned into a
number of sections which are used to specify the state of a subsystem.
For example, Instrument Settings, Front panel display status, results
of measurements, Task stacks, and GPIB status are defined as
subsections of the Instrument Status.

The Instrument Status area is also used to communicate the control
information between elements of the system. Below is a block diagram
or structure chart which shows the major components of the system and
how they are related to each other.




1.1 Overview of the Operating System 1-4

Control Structure

Structure Chart

RkkhkkRhhk khhkhhhhhhhhhkhk hhkRhhkhkhkk
* * % * % * Hardware
* GPIB * * HARDWARE * % FRONT *
* * * * % PANEL * Handlers
kkkkhkkhkk KrkARRXRARKRE R A%k kkkhdhkkhk ok

1 1 1

1 1 1

1 1 1
AARAKIKRARARAARRRARARARRARARRARK AR AR DR AR Ak hhhhhdhhhhk
* . *
* _ INSTRUMENT STATUS *
* *

KRAIARARKIAAKIARAKAKRAARARAKR AR ARE XA XA R AR AR R AR LR AR AR NS

Message Hardware
Processor Settings

° °

zséssssss$$$$§$sss$$é$$$$$s$$éssssss$sé$s

$ SYSTEM

$

Hardware Key GPIB
Monitor Processor Task TASKS

$
MONITOR $

$

S e N R EEEE SRR EEEEEEEEEE

Note that the tasks may pass control to the monitor from anywhere
within its code and that the monitor passes control back to that same
point. On the structure chart the passing of control has been shown as

a call to the monitor.

For the 6800 processor the passing of control

is implemented with a software interrupt and is referred to as a

SUSPEND .



PN

1.2 Overview of the Operating System 1-5
System Monitor Initialization

1.2 System Monitor Imnitialization

The processor powers up with interrupts masked. To start the
system, the task Stack Table must be initialized to contain all task
stack pointers. Each task stack pointer is set to (top of task stack
area) = 7, the task stacks are initialized with the program counter
locations set to the task’s power-on initialization routine, and the
condition code locations are initialized so that interrupts are masked
when the task is executed the first time. Then the Active Task Pointer
is set to the top of the Stack Table. Finally the System Monitor is
activated by loading the stack pointer register with the Stack Table
entry pointed to by the Active Task Pointer. Control is passed to the
first task by executing an RTI instruction.

Each task is structured so that it:
1. Executes its individual power=-on initialization
2. Executes a SWI (Suspend).
3. Executes a CLI (Clear Interrupt Instruction).
4o Executes its main idle loop.
Each task then executes its own power=-on initialization and suspends
with interrupts disabled. When all tasks are initialized (after the

first pass through the monitor), each task unmasks the interrupts (in
the second pass) and the system is running.




1.3 Overview of the Operating System 1-6
Interrupt Handling

1.3 Interrupt Handling

Because the SWI is used to suspend tasks, interrupts become just
another way to suspend task execution. The only difference between an
interrupt suspending a task and the task suspending itself is that the
interrupt is asynchronous. The result is that tasks can share
subroutines (if the subroutine does not suspend) without the subroutine
being re-entrant. Interrupt handlers can only share subroutines with
tasks if they are re-entrant.

Interrupt handlers need the capability to reset certain tasks (the
GPIB handler resets the Message Processor on DCL). Resetting a task to
its power on state is accomplished by resetting the task stack pointer
and storing the task’s initialization entry point in the location where
the PC is saved for recovery by the RTI instruction. Because the
interrupt handler may need to reset the stack of the task it
interrupted, it cannot use the task stack for its operations. To solve
this problem we have allocated another stack, the Interrupt Stack. All
interrupt handlers are written so that they:

1. Save the processor stack in the Stack Table entry indexed by
the Active Task Pointer.

2. Load the base address of the interrupt stack pointer into the
pProcessor.

3. Perform the interrupt handlers function.
4. Recover the current task stack.

5. Execute an RTI instruction.

Notes:

The overhead required by this system is that each task’s stack area
must contain sufficient space for its deepest level of subroutine
nesting, plus the seven bytes required to save the processor state when
either an interrupt occurs or a task is suspended.

The interrupt handler definition implies that there is only one
level of interrupt service -- a new interrupt event cannot interrupt
another service routine. This approach is used to save RAM required
for nesting the interrupt service routines since there is no need in
the TM500 programmable instruments for the extra capability.

A side effect of having an independent stack for the interrupt
service routines is that it also saves RAM since this space does not
have to be duplicated in each task’s stack area.

Use of the SWI instruction with the 6800 precludes the use of NMI
since the 6800 has a bug which if NMI and a SWI occur at the same time,
the processor incorrectly goes to the IRQ vector.



1.4 Overview of the Operating System 1-7
Data Flow Diagram

1.4 Data Flow Diagram

The Data Flow Diagram below provides a very simplified view of the
data flow within the instruments. There are two different types of
data being transmitted to/from the GPIB interface or front panel.
These are Instrument Settings and for measurement instruments, the
measurement data. Measurement data is transmitted from the hardware to
storage area in RAM and from there it is tranferred to the front panel
and GPIB interface. The important concept portrayed in the diagram is
a system philosophy based upon multiple copies of the instrument
settings. The instrument hardware itself contains one representation
of the instrument settings. Because the hardware is usually
implemented as a set of write only registers, a copy of the instrument
state is maintained in the Current Settings buffer. Another copy of
the settings is maintained in what is called the Pending Settings
buffer. As its name implies, the Pending Settings buffer stores
settings processed by the instrument operating system (whether they
came from the Front Panel or the GPIB interface) until they are
executed —-- that is, until the settings are copied into the Current
Settings buffer and the hardware.

khkkkkhrhhhkhhhhk khkkhkrhAhhhhhhhhhihikk kkkkkkkkkikhikihk
* * * * * *
* GPIB * * PENDING * *  FRONT *
* [ T QU p— Y, [ C—} *
* INTERFACE * * SETTINGS * *  PANEL *
* *a * * * *
kxkkkhhkhhhhkikk kkkkkkkhkhkhhhhhhkkkhk khkhkkhkrhhhkkk
1 1 1
1 1 1
1 1 1
1 v 1
1 kkkhhkhkkhrhhhkhhhhihk 1
1 * * 1
1 * CURRENT * 1
1< * K >1
* SETTINGS *
* *

Kkdkkkhkkkkkkkkkkhhkhkk
1
1
1

v
kkkkhhhhhhhhhhhhhrhkk

HARDWARE

* % ¥ ¥ ¥
¥ % ¥ ¥ ¥

gy khhkhhhhhhhhhhhhhhhik




1.4 Overview of the Operating System 1-8
Data Flow Diagram

The reasons for this approach are:

1. By building pending settings a message (or portion of a
message) can be processed and the new state can be evaluated
to determine if it is legal before executing. This technique
prevents signal sourcing instruments such as the power supply
or function generator from entering illegal intermediate
states.

2. The ability to scan the message for syntax errors before
executing settings is greatly simplified. (This is one of
the "friendly" instrument features.)

In normal operation of the instrument, hardware settings are updated
when:

1. An entire command is entered from the Front Panel (for
multiple keystroke commands this occurs when the ENTER button
is pressed).

2. The Message Processor completes the decoding of the entire
message.

3. Before any operational or output command.

For a more complete discussion of when hardware settings are
updated, see the section titled Execution of Settings.

The Pending Settings and Current Settings are stored in the image of
the hardware register’s format. This is done to minimize the response
time to GET. In some cases, this data format is not convenient for
performing Pending Settings verification. When this is true some of
the settings are also saved in a format more applicable to the data
processing required (floating point or unscrambled binary).

To make it easy to identify when Pending Settings are lost, a flag
is associated with the Pending Settings buffer which indicates '"new
settings pending'" NSP. This flag is set by any routine which alters
the Pending Settings and cleared by the Hardware Settings task when the
settings are copied to the Current Settings or by any routine which
resets the Pending Settings by copying the Current Settings to the
Pending Settings buffer (as is done in DCL).



2.1 Message Processor 2-1
Overview of Message Processor Operation

2.1 Overview of Message Processor Operation

Functional Description

The Message Processor task is responsible for decoding and executing
all commands received over the GPIB interface. It gets messages from
the Input Buffer and parses them to verify their syntax. Commands
(message units) are processed sequentially and the message processor
suspends itself between the processing of commands to allow other tasks
time to execute. As the commands are processed, they are taken out of
the Input Buffer to allow further input. When an error is detected in
a message, the remainder of the message is flushed before the error is
reported and the SRQ is asserted.

Command Processing

GPIB command processing includes fetching the characters from the
Input Buffer, decoding the headers and arguments, detecting the
delimiters and reporting the syntax errors detected in parsing a
message unit. The commands are scanned sequentially, in the order they
are received.

First the optional format characters allowed at the beginning of a
message unit are skipped. Then the header is decoded and the address
of the command handler is determined. The HWSETR is checked, and the
Message Processor suspends until it is clear before dispatching to the
command handler. The Message Processor suspends here to prevent
modifications to the Pending Settings while the settings are being
updated, to prevent queries from returning settings which are in the
process of being modified by the Hardware Settings Task, and to prevent
operational commands from performing their function during the time th

hardware is in an unstable state.

If the command type is QUERYONLY, the Message Processor saves the
Current Settings in a buffer which is used to generate the query
response. This is done to prevent conflicting settings from being
returned in a query due to the fact that a setting was changed (from
the front panel) while the data was being output.

The command handlers decode the arguments and perform the function
requested. For Operational Commands, this implies performing some
operation on the hardware. Output commands generate the response from
the data in the Current Settings buffer, and put it into the Output
Buffer. The settings are processed by placing their binary
representation which defines the new instrument state in the Pending
Settings buffer.

When the particular command handler has completed its operation, it
returns through the dispatcher to the Message Processor, which handles
the message unit delimiter. If another message unit is in the buffer,
the Message Processor processes it, otherwise it performs the end of
message processing and returns to the idle state waiting for the first




2.1 ‘ Message Processor 2-2
Overview of Message Processor Operation

byte of the next message.
Command Execution

The description of command processing above is general in nature and
doesn’t deal with some of the specific cases which cause difficulty.
One of the problems which needs to be resolved is when commands are
EXECUTED. The word "executed" means "to follow out", "perform",
"fulfill", or "carry into effect'". As described above, it is evident
that the operational and output commands are clearly '"executed" in the
order in which they occur. Due to the possibility of introducing
invalid intermediate states, it is not desirable to "execute" the
settings in this order -- we can make the instruments more friendly by
managing this problem for the user. For this reason, the execution of
the settings is defined to be the act of copying Pending Settings to
the Current Settings and to the hardware. Since this is not an
instantaneous operation, the HWSETR flag is set to perform this
function and is cleared when it is complete.

As pointed out in the discussion of the Data Flow Diagram, the
execution of settings normally occurs:

1. When an entire command is entered from the front panel (for
multiple keystroke commands, this occurs when the ENTER
button is pressed). The reason for doing the execution here
is obvious, the operator just entered a new setting and
implicitly wants the instrument to reflect the new state.

2. When the Message Processor completes the processing of the
entire message. Here again an implicit execution of settings
is implied, since the end of message indicates that the
controller has communicated one complete set of actioms to be
performed.

3. Before processing of any operational or output commands. In
this case, it is assumed that the operator wants to make a
measurement, generate some output, or read the new instrument
status. If the settings were not executed before these
commands were processed, the operational or output functions
would be performed using potentially "old" settings.

The time at which the settings are excecuted defaults (at Power On)
to the three conditions described above. The operator can change this
by using the Device Trigger function. This is accomplished by sending
the instrument the "DT SETTINGS" command, which explicitly instructs
the instrument to ignore its default mode of execution and only execute
settings when it receives a GET and is in the REMOTE state.

Notes:

Query command handlers must obtain all necessary information from
the Current Settings buffer before suspending (due to Output Buffer
full, for example). This is because the Key Processor may change the
Pending Settings and set the HWSETR flag while the query command
handler is suspended.



2.1 Message Processor 2-3
Overview of Message Processor Operation

In DT SETTINGS mode, many messages may be processed before a GET
occurs. In this case, the Message Processor must not copy the Current
Settings to Pending Settings each time a new message is processed. If
it did, the Pending Settings from previous messages would be lost.
Instead, the Message Processor must assume that Pending Settings are in
a valid state. For this reason, any event that might cause Pending
Settings to be invalid must perform- (or force another routine to
perform) a copy of Current Settings to Pending Settings. This includes
the following events:

Device Clear ( DCL )

Return to LOCAL from the front panel ( RTLPROC )

Transition to REMOTE ( RLC )

Setting range error (from Key Processor or Message Processor )

Setting Conflict error (from Key Processor or Message Processor )

Message syntax error

Message Processor Restart




2.2 Message Processor 2-4
Types of Commands

2.2 Types of Commands

There are several types of commands that are handled by the Message
Processor.

Setting Commands

These commands are used to change the instrument settings. They
typically consist of a header and one or more arguments, which specify
the desired state for that function. The setting commands are
sometimes further partitioned into Device Dependent and System Setting
commands. The System Setting commands are those commands with common
mnemonics which change the way the instrument operates in the GPIB
system environment (RQS ON/OFF, DT SETTING, etc.).

Examples:
VOLTS 5;
LEVEL 247;
SLOPE POS;

Output Commands

This second type of commands includes all of the commands which
generate output. Most of these are Query commands, which are questions
directed to the instrument concerning the settings or some other
instrument state. Typical query commands are set command headers to
which a "?" has been appended. Another form are Query Only commands,
which return some instrument status information that cannot be set (for
example, the power supply regulation). The response to all query
commands is a header and argument list which defines the state of the
queried function.

The other output command used is the SEND command. This command
tells the instrument to send a particular measurement. If an
instrument has more than one type of value, then a device dependent
argument is included to define the particular measurement or value
requested.

Examples:
LEVEL?
SLOPE?
SEND;



2.2 ) Message Processor 2=5
Types of Commands

Operational Commands

Operational commands are a group of commands which direct the
instrument to perform a particular action. These commands typically

consist of only a header, and the header describes the action to be
performed.

Example:
TRIGGER;
ARM A;
START ;
STOP;

REMOTE ONLY Commands

These are commands which are only executed in the REMOTE state and
in LOCAL they generate an error message. They are usually those
setting or operational commands which change the front panel state of
the instrument. All device dependent setting commands are REMOTE Only.




Message Processor 2-6
Implementation of the Message Processor

2.3 Implementation of the Message Processor

Interactions With Other Tasks

The Scan Format routine must return with the GBPIR pointing
to the first non-format character.

The Header Table Search routine must return with GBPTR
pointing to the first character after the header.

The command handlers must return an EVENTCOD in a variable
called ERR. The command handlers should NOT call NEWEVENT.

The PUTEOI routine must not put a message terminator in the
Output Buffer if the Output Buffer is empty. This allows the
GPIB Task to determine if a measurement result should be
placed in the buffer or the "Talked with nothing to say"
message.

The ABORTMSG subroutine must clear the NSP flag by calling
COPYC2P. This prevents the EXECUTE routine from asserting
the HWSETR flag in the case of a message error.

All argument processors must return with GBPTR pointing to an
argument delimiter or a message unit delimiter. Command
handlers that do not need arguments can leave the GBPTR where
the Message Processor HDRSRCH routine left it. The string
argument processor scans over extra characters at the end of
the valid string until an argument delimiter, a message unit
delimiter or EOM is found. If an invalid argument string is
encountered, then the ERR variable is set, so it does not
matter where GBPTR is. The numeric argument processor does a
pre-scan on the number, and leaves the GBPTR pointing to the
first non-numeric character. If this character is not an
argument delimiter or a message unit delimiter, then ERR is
set by either the command handler or the Message Processor.

Command handlers must not suspend after the ERR variable is
set since it is a variable shared by the Message Processor
and Key Processor. In addition, the task which calls a
command handler must save the value of ERR if it needs it
after a suspend. This is because the other task might use
the variable while the task is suspended.



2.3

ERR

MPERRCD

CONFLICT

EOM

CMDTYPE

CMDINDEX

COMMAND

MSGREM

Message Processor 2=7
Implementation of the Message Processor

Message Processor Variables

Used to return the EVENTCOD from the command handlers.
ERR = 0 implies that no error occurred.

Stores the EVENTCOD that the Message Processor detects
in parsing the message. The ABORTMSG routine reports
the error by copying MPERRCD to EVENTCOD and calling
NEWEVENT.

An error indicator returned from the Pending Setting
Verify Routine. The value of CONFLICT indicates which
pair of settings are conflicting. CONFLICT = 0 implies
that no conflict exists.

End-of -Message flag, which when true indicates that all
of the first message in the Input Buffer has been read.
It is set and cleared by the GETBYTE routine.

The command type variable is returned from the header
search routine and indicates whether the command is: a
REMOTE ONLY type command, a Setting Command, an Output
Command, or an Operational Command. It is derived from
the tag byte in the Command Table -- see the section on
Command Table Structure. :

The Command Index is returned from the Header Search
Routine, and is used as an index into a table of command

handler routine addresses.

An array of addresses used to dispatch to the command
handlers. This array is twice as large as the number of
commands, with the first set of entries being those
which handle SETONLY commands, the set function of
SETQUERYcommands, OUTPUT, and Operational Commands. The
second half of the array contains the addresses of the
Query Command Handlers. (This was not the original
design, but we found that the code could be reduced
considerably for instruments with greater than one third
of the commands of SETQUERY type by using this table
structure.)

The Message Remote flag, when true indicates that the
current message is to be processed as if the instrument
is in REMOTE state. It is set by BYTEIN and cleared by
RTLPROC and NEXTMSG.




2.3

FPCNTRL

INCHAR

OUTCHAR

MLHLDOFF

Message Processor 2-8

Implementation of the Message Processor

The Front
the front

settings.
This flag

Panel Control flag, when true indicates that
panel user has control over the instrument’s

It is set by RTLPROC and cleared by MSGPROC.
is needed to determine (in the RLC interrupt

service routine) whether there are settings pending
execution due to waiting for a GET from the GPIB

interface.

HWSETR

The Hardware Settings Request Flag. When
true, this flag indicates to the Hardware
Settings task that a Pending Settings
execution has been requested. It also is
used to indicate to other tasks in the
system that a setting change is still imn
progress. The flag is set in MSGPROC,
KEYPROC , and GET.IH. It is cleared only
by the Hardware Settings task.

The last character that the GETBYTE routine read from
the Input Buffer.

The variable in which a character to be output is passed
to the PUTBYTE routine.

Mag-latch holdoff is a time delay counter that is used
to limit the duty-cycle of the mag-latch relay coil
current in the FG5010.



2.3 Message Processor
Implementation of the Message Processor

MSGPROC

Pseudo code for the Message Processor task.

MSGPROC

# ROUTINES CALLED: SCANFRMT, HDRSRCH, ABORTMSG, EXECUTE
# COMMAND HANDLERS, PUTEOI, NEXTMSG

#CALLED BY: SYSTEM MONITOR ACTIVATING THE TASK

SUSPEND
CLEAR INTERRUPT MASK

REPEAT {#FOR EACH MESSAGE
MPERRCD = O # NO ERRORS IN MESSAGE

REPEAT #FOR EACH COMMAND IN THE MESSAGE.
SCANFRMT #SCAN OVER FORMAT
EXITR WHEN EOM

HDRSRCH #IDENTIFY COMMAND HEADER AND TYPE

IF MPERRCD <> 0 THEN #HEADER SYNTAX ERROR
ABORTMSG #FLUSH MESSAGE AND REPORT ERROR
EXITR

ENDI

IF REMOTE ONLY COMMAND THEN
IF MSGREM THEN #PROCESS AS IF IN REMOTE
#fINDICATE THAT GPIB HAS CONTROL OF SETTINGS
FPCNTRL = FALSE
ELSE #IN LOCAL SO ISSUE ERROR
MPERRCD = REMONLY
ABORTMSG
EXITR
ENDI
ENDI

IF ( CMDTYPE = OPERATIONAL ) OR ( CMDTYPE = OUTPUT ) OR
( CMDTYPE = QUERYONLY ) THEN
EXECUTE #VERIFY AND EXECUTE ANY PENDING SETTINGS.
IF MPERRCD <> 0 THEN
ABORTMSG
EXITR
ENDI
ENDI

#MSGPROC MUST SUSPEND AT LEAST ONCE BETWEEN COMMANDS.
REPEAT

SUSPEND

#WAIT FOR SETTINGS UPDATE TO COMPLETE.

UNTIL NOT( HWSETR )
ENDR

IF CMDTYPE = QUERYONLY THEN




2.3 Message Processor 2-10
Implementation of the Message Processor

SAVE CURRENT SETTINGS FOR QUERY RESPONSE
ENDI

CALL( COMMAND ( INDEX ) ) #DISPATCH TO COMMAND HANDLERS
IF MPERRCD <> 0 THEN #COMMAND HANDLER DETECTED AN ERROR
ABORTMSG
EXITR
ENDI

#L0OOK FOR MESSAGE UNIT DELIMITER
UNTIL ( INCHAR <> SEMICOLON ) OR EOM
THENDO
IF ( INCHAR = SPACE ) OR ( INCHAR = LF )
OR ( INCHAR = CR ) THEN
SCANFRMT #SKIP OVER FORMAT AT END OF MESSAGE.
ENDI .
IF NOT ( EOM ) THEN
#REPORT INVALID MESSAGE UNIT DELIMITER.
MPERRCD = MSGDEL
ABORTMSG
ENDI
ENDR

PUTEOI #TERMINATE OUTPUT MESSAGE (IF ANY).
EXECUTE #VERIFY AND EXECUTE ANY PENDING SETTINGS.

IF MPERRCD <> O THEN
#REPORT SETTINGS CONFLICT ERROR.
ABORTMSG

ENDI

#WAIT FOR SETTINGS UPDATE TO COMPLETE
REPEAT
SUSPEND #AT LEAST ONCE BETWEEN MESSAGES
UNTIL NOT( HWSETR )
ENDR

NEXTMSG # PREPARE FOR NEXT MESSAGE.
ENDR



2.3 Message Processor 2-11
Implementation of the Message Processor

EXECUTE

This routine verifies the validity of any Pending Settings that came
from the GPIB and then executes those settings if the instrument does
not have to wait for a < GET > command. It returns only one error
type: settings conflict error. It holds off settings execution in the
FG until the mag-latch relay timer runs to zero in order to limit the
relay coil current duty-cycle.

Pseudo code for the EXECUTE subroutine.

EXECUTE
#ROUTINES CALLED: VERIFY
#CALLED BY: MSGPROC

IF NOT ( FPCNTRL OR HWSETR ) AND NSP THEN
# NEW SETTINGS PENDING ARE FROM GPIB
VERIFY #PENDING SETTINGS
IF CONFLICT = O THEN
#EXECUTE THE PENDING SETTINGS IF THE PENDING DT
#STATE IS NOT "SETTINGS" OR IF THE CURRENT DT
#STATE IS NOT "SETTINGS"

HWSETR = PDT <> SETTINGS OR CDT <> SETTINGS
ELSE MPERRCD = CONFLICT
ENDI
ENDI

RETURN

Note:

Some instruments need to suspend between the time the FPCNTRL flag
is tested and the HWSETR flag is set true. In this case the EXECUTE
subroutine should make sure that the instrument still has GPIB settings
to execute since during the time that the task is suspended the KEYPROC
task could reset the Pending Settings and execute a front panel
command .

For example, in the FG5010, the mag-latch relays have a limit on how
often they can be cycled and the firmware must hold off the execution
of settings if it could violate this limit. The delay could be put in
the Hardware Settings task, but this would affect the response time to
a Group Execute Trigger. Therefore it is desirable to put it in the
EXECUTE subroutine, and since we only want to delay if the settings
were from the GPIB, the suspend is inserted between the test of FPCNTRL
and the setting of HWSETR. (Note that the EXECUTE routine is executed
every pass through the Message Processor so an unconditional delay is
not desireable.)




2.3 Message Processor 2-12
Implementation of the Message Processor

In this case, an additional test of the FPCNTRL flag is required so

that the HWSETR flag is not set if the settings were not from the GPIB.
The resulting code is:

IF CONFLICT = O THEN
WHILE MLHLDOFF <> 0 DO
SUSPEND
ENDW

IF NOT( FPCNTRL ) THEN #FRONT PANEL HAS NOT TAKEN CONTROL
#SET HWSETR TRUE IF PENDING DT STATE <> CURRENT

#DT STATE OR IF CURRENT DT STATE <> SETTINGS.
HWSETR = ° o e 00
ENDI



2.3 Message Processor 2=13
Implementation of the Message Processor

ABORTMSG

The abort message routine performs three major functions:
1. Flush the Imput Buffer to the end of the first message.

2. Restore the Pending Settings buffer to the current state of
the instrument. This also clears the New Settings Pending
flag ( NSP ).

3. Report the error in the message to the status processor.
Pseudo code for the ABORTMSG routine.

ABORTMSG

#ROUTINES CALLED: FREESPACE, GETBYTE, COPYC2P, NEWEVENT

#CALLED BY: MSGPROC

REPEAT #FLUSH MESSAGE
FREESPACE
GETBYTE
UNTIL EOM
ENDR
IF NOT( FPCNTRL ) THEN
COPYC2P #RESTORE PENDING SETTINGS

ENDI

EVENTCOD = MPERRCD
NEWEVENT

MPERRCD = 0

RETURN




2.3 Message Processor 2-14
Implementation of the Message Processor

SCANFRMT

This routine scans the Input Buffer for format characters <SP>,
<CR>, <LF> and returns with the GBPIR pointing to the first non-format
character. The character is returned in the variable INCHAR.

Pseudo code for the SCANFRMT routine.

SCANFRMT
#ROUTINES CALLED: FREESPACE, GETCHR
#CALLED BY: MSGPROC, BYTE.CMD, CHR.PROC, NUM.PROC, BIN.PROC

REPEAT

#FREESPACE IS CALLED BEFORE EACH CALL TO GEICHR

#SO WE CAN BACK UP TO THE LAST CHARACTER READ.

FREESPACE

GETCHR

EXITR WHEN EOM :
UNTIL ( INCHAR <> SPACE) AND ( INCHAR <> LF) AND ( INCHAR <> CR)
THENDO

GBPTR = BUPTR #BACK UP ONE CHARACTER.

BYTAVAIL = TRUE
ENDR

RETURN



2.3 Message Processor 2=15
Implementation of the Message Processor

GETCHR

The GETCHR subroutine can be used to get header or character type
arguments from the Input Buffer. It calls GETBYIE and strips off the
parity bit, converts lower to upper case, and sets the INVALCHR flag
TRUE if the character is not legal for headers or character arguments.

Pseudo code for the GEICHR routine.
GETCHR
#ROUTINES CALLED: GETBYTE
#CALLED BY: SCANFRMT, HDRSRCH, TABLESRCH, NUM.PROC

INVALCHR = FALSE
GETBYTE
INCHAR = INCHAR AND 7FH #STRIP OFF PARITY BIT
IF INCHAR > 60H AND INCHAR <= 7AH THEN
#CONVERT LOWER TO UPPER CASE
INCHAR = IRCHAR - 20H
ELSE #CHECK FOR RUBOUT
IF INCHAR = 7FH THEN
INVALCHR = TRUE
ENDI
ENDI
IF INCHAR <= QUES.MRK THEN ,
IF ( IRCHAR <= SPACE ) #CONTROL CHARACTER
OR ( IRCHAR = COMMA )

OR ( INCHAR = SEMICOLN )
OR ( INCHAR = QUES.MRK )
OR ( INCHAR = COLON) THEN

INVALCHR = TRUE
ENDI
ENDI

RETURN



2.3 Message Processor 2-16
Implementation of the Message Processor

HDRSRCH

The header search routine scans the Input Buffer looking for a
matching entry in the HDRTABLE. The HDRTABLE must be defined as
outlined in the section " Table Structure ". HDRSRCH uses a hash table
( HASH.TBL ) to speed up the search. Since the table is organized
alphabetically and all headers must begin with an alpha character, the
first character is used as an index into the hash table. . The hash
table contains an offset from the beginning of the HDRTABLE, from which
a search for the command starting with that character can begin.

The header search routine begins its processing by checking the
first character to make sure it is an alpha and determines where in the
table to begin the search. Then it calls the table search, which
returns the command type and index into the dispatch table. If a
header was found, it does some additional checking to determine whether
it is a setting or query command and sets the CMDTYPE variable with the
appropriate information. If the command is a query, the header search
routine offsets the index so that it points into the query command
handlers portion of the dispatch table. 1If a legal header was not
found in the table search, an eventcode is returned in the MPERRCD
variable.

Definitions used in header search:

SETONLY = OOH
SETQUERY = 10H
QUERYONLY = 20H
OUTPUT = 30H
OPERATIONL = 40H

HDRSRCH
#ROUTINES CALLED: TABLSRCH, GETCHR
#fCALLED BY: MSGPROC

IF ( INCHAR >= "A" ) AND ( INCHAR <= "Z" ) THEN
#CHARACTER IS UPPER CASE ALPHA

#SET UP VARIABLES FOR TABLE SEARCH

TABLEPTR = HASH.TBL ( INCHAR - 40H )

INDEX = LSR( TBLPTR.HI , 2 )

TABLEPTR = ~ HDRTABLE + ( TABLEPTR AND 3FFH )

TABLSRCH

IF TYPE <> 0 THEN #HEADER WAS FOUND
CMDTYPE = TYPE AND 70H #SELECT TYPE INFO. FROM TAG BYTE
IF CMDTYPE = SETQUERY THEN
IF INCHAR = QUES.MRK THEN
#fCLEAR REMOTE ONLY BIT IN TYPE
TYPE = TYPE AND 7FH
CMDTYPE = QUERYONLY



L

2.3 - Message Processor 2-17
Implementation of the Message Processor

ELSE
CMDTYPE = SETONLY
ENDI
ENDI
IF CMDTYPE = QUERYONLY THEN
IF INCHAR = QUES.MRK THEN
GETCHR
INDEX = INDEX + NUM.CMDS
ELSE
MPERRCD = CMDHDR
ENDI
ENDI
#PICK UP REMOTE ONLY BIT
CMDTYPE = CMDTYPE OR ( TYPE AND 80H )
ELSE #INDICATE HEADER NOT FOUND
MPERRCD = CMDHDR
ENDI
ELSE #INDICATE FIRST CHAR NOT ALPHA
MPERRCD = CMDHDR
ENDI

RETURN




2.4 Message Processor 2-18
Table Structure

2.4 Table Structure

The design of the table incorporates features which aid in searching
the table and returning information about the command or argument to be
processed. Each table entry consists of a 1 byte Tag and N bytes which
define its name. The Tag byte contains the following information:

Bit Meaning
B7 Remote Only Flag

B6,B5,B4 Type (for command tables)

0 Setting only
Setting/Query
Query Only
Output
Operational
Unused
Unused
Unused

N oUW

(In argument tables, the type field may be encoded with any
information the designer wishes, since the TABLSRCH routine
returns this data.)

B3,82,B1,B0
Number of bytes in the name (value of 1 thru 15).

A Tag byte equal to "00" hex indicates the end of the table.

The ASCII string contains the characters in the name. If M is the
length of the unique substring of the name, then the first M characters
in the name must have the MSB (B7) asserted. This is used by the Table
Search algorithm so that the user can specify any unique substring of
the name.

The table is organized alphabetically by name and a speed up
technique may be used to start the table search based upon the first
character in the command header or argument.



2.4 Message Processor 2-19
Table Structure

Table Search
The Table Search algorithm is based upon the table format as
described in the preceding section. It expects the following inputs:

GBPTR
string.

BUPTIR = A pointer to the first character in the input

INDEX = Starting index in table minus one. (That is, to start a
search from the beginning of a table the index should be set to
0.)

TBLPTR = A pointer to the tag byte for the table entry where the
search is to start.

The Table Search routine generates the following outputs:

BUPTR may be changed if the string length is greater than the
table entry length.

GBPTR points one character past the terminator character.
INCHAR holds the terminator character.
INDEX is the table index (1 through N) where the string was found.

TYPE holds the tag byte for the table entry where the string was
found. TYPE = 0 implies the string was not found.




2.4 , Message Processor 2-20
Table Structure

Pseudo code for the Table Search routine:

TABLSRCH
#ROUTINES CALLED: GETCHR, FREESPACE
#CALLED BY: HDRSRCH, CHR.PROC

LENGTH = O
REPEAT #FOR EACH TABLE ENTRY
INDEX = INDEX + 1
TBLPTR = TBLPTR + LENGTH
TYPE = BYTE[ TBLPTIR ]
EXITR WHEN TYPE = O # END OF TABLE
LENGTH = TYPE AND OFH

REPEAT #FOR EACH CHARACTER
GETCHR
IF EOM OR INVCHAR THEN
TBLPTR = TBLPIR + 1
EXITR WHEN LENGTH <> 0 AND BYTE[ TBLPTR ] < O THEN
RETURN
ENDI
IF LENGTH <> 0 THEN
TBLPTR = TBLPTR + 1
EXITR WHEN (( INCHAR XOR BYTE[ TBLPTR ] ) AND 7FH)
<> 0
LENGTH = LENGTH - 1
ELSE
FREESPACE
ENDI
ENDR
GBPTR = BUPTR
BYTAVAIL = TRUE
ENDR
RETURN



2.5 Message Processor 2-21
Rules for Writing Command Handlers

2.5 Rules for Writing Command Handlers

Rules for Setting Commands

Setting commands with no arguments may simply call a routine to
perform the requested function (change the appropriate bits in the
Pending Setting buffer.

Setting commands that call argument processors must perform as
follows to provide adaquate syntax checking:

1. The command handler must call HDRDELIM (to check for a legal
header delimiter) and test MPERRCD on its return. This must
be done before calling any argument processor and if MPERRCD
is non-zero, then the command handler should return to the
dispatcher without calling any argument processors.

2. After each call to an argument processor, the MPERRCD
variable must be checked and if it is non-zero control
returned to the command dispatcher.

. 3. For commands with more than one argument, the ARGDELIM
subroutine must be called to check for a valid argument
delimiter. Again, the MPERRCD variable must be tested after
each call to ARGDELIM and control returned to the dispatcher
if it is non=-zero.

Since it is possible for the command handlers to suspend the Message
Processor (by decoding arguments, etc.) all commands which might
suspend must test the MSGREM flag before they put the new setting into
the Pending Settings buffer. This test is done to make sure that the
REMOTE ONLY settings function is not performed while the instrument is
in LOCAL state (it only can go to LOCAL if the Message Processor task
is suspended).

If MSGREM is FALSE the MPERRCD variable should be assigned the
eventcode which indicates that this command is not executable in LOCAL
state and control should be returned to the command dispatcher. If the
MSGREM flag is TRUE, it is then safe to change the Pending Settings
buffer.




2.5 Message Processor 2-22
Rules for Writing Command Handlers

Setting Command Examples

The first example is a command which decodes a single numeric
argument.

ADDR .CMD

#THIS COMMAND DECODES A SINGLE ARGUMENT AND STORES THE 16 BIT
#VALUE INTO THE CURRENT SETTING BUFFER.

#ROUTINES CALLED: HDRDELIM, NUM.PROC
#CALLED BY: MSGPROC IN COMMAND DISPATCH
HDRDELIM #CHECK FOR HEADER DELIMITER
NUM.PROC #DECODE THE NUMERIC ARGUMENT
IF MPERRCD = 0 THEN
CADDR = FIX( NUM.ARG )
ENDI

RETURN



2.5 Message Processor 2-23
Rules for Writing Command Handlers

The second example is a routine which inputs one or optional}y more
numeric arguments.

BYTE . CMD

#THE BYTE COMMAND INPUTS ONE OR MORE DECIMAL VALUES
#(BETWEEN O AND 255) AND STORES THEM IN THE LOCATION
#SPECIFIED BY THE ADDRESS ENTRY IN THE CURRENT
#SETTINGS BUFFER.

#NOTE THAT THIS IMPLEMENTATION DOES NOT STRICTLY FOLLOW
#THE RULES FOR SETTING COMMANDS IN THAT IT "EXECUTES".THE
#FUNCTION (STORING THE BYTES) IMMEDIATELY.

#WE DECIDED TO ACCEPT MULTIPLE BYTES FOR EASE OF USE =--
#THE COMMAND CAN BE MADE TO STRICTLY CONFORM BY RESTRICTING
#THE NUMBER OF ARGUMENTS ACCEPTED TO ONE, BUT FOR A
#DIAGNOSTIC COMMAND EASE OF USE IS PROBABLY MORE

#IMPORTANT THAN STRICT ADHERANCE TO THE RULES FOR

#SETTING COMMANDS .

#ROUTINES CALLED: HDRDELIM, NUM.PROC, SCANFRMT
#fCALLED BY: MSGPROC IN COMMAND DISPATCH

HDRDELIM #CHECK FOR A HEADER DELIMITER
REPEAT
NUM.PROC
EXITR WHEN MPERRCD <> 0
BYTE[ CADDR ] = FIX( NUM.ARG )
CADDR = CADDR + 1
IF INCHAR = SPACE THEN
SCANFRMT #EXPECT EOM OR MORE ARGUMENTS
ELSE .
EXITR WHEN INCHAR <> COMMA
ENDI
UNTIL EOM
ENDR

RETURN



2.5 Message Processor 2-24
Rules for Writing Command Handlers

The third example is a command which has a single optional argument.
This is is different than the example above because of the special case
of format characters (spaces) which are allowed at the end of a
message. The DM5010 has several actual commands of this form -- this
example shows the general structure.

XXXX.CMD

IF NOT( EOM ) AND ( INCHAR = SPACE ) THEN
#COMMAND HAS A VALID HEADER DELIMITER

NUM.PROC
IF MPERRCD = MISSARG THEN
MPERRCD = 0

SUBROUTINE CALL TO PERFORM FUNCTION REQUIRED
WHEN ARGUMENT IS NOT PRESENT

ENDI
PERFORM FUNCTION USING ARGUMENT VALUE FOUND IN NUM.ARG
ELSE {#fOPTIONAL ARGUMENT NOT SENT

SUBROUTINE CALL TO PERFORM FUNCTION REQUIRED
WHEN ARGUMENT IS NOT PRESENT

ENDI
RETURN

The final example for this section is to implement a command which
decodes a character argument. ’

RQS.CMD
#ROUTINES CALLED: HDRDELIM, CHR.PROC
#CALLED BY: MSGPROC IN THE COMMAND DISPATCH

HDRDELIM #CHECK FOR HEADER DELIMITER
CHR.PROC #DECODE CHARACTER ARGUMENT
IF MPERRCD = O THEN
NSP = TRUE
IF INDEX = OFF.IDX THEN
P.RQS = FALSE
ELSEIF INDEX = ON.IDX THEN
P.RQS = TRUE
ELSE
MPERRCD = CMDARG
ENDI
ENDI

RETURN



2.5 Message Processor 2-25
Rules for Writing Command Handlers

Rules for Changing Pending Settings

The code which acutally changes the value of the Pending Settings
buffer is probably a subroutine that is shared by the Message Processor
and the Key Processor. There are several rules which must be followed
in order to assure proper operation.

Since there is often some checking done on the parameter to be set,
a method of passing error codes back to the Message Processor or Key
Processor must be arranged so that each task will report only errors
detected when they called the setting routine. To handle this a
variable shared by both tasks ( EER ) is cleared on entry to the
subroutine and is assigned an eventcode if an error is detected. The
command handler then must check this variable and report it to the GPIB
Driver before it suspends (which prevents the Key Processor from
calling a routine which would change its value while the Message
Processor was suspended. The way the error is reported is to assign it
to MPERRCD and return to the command dispatcher.

Once the parameters to be set in the Pending Settings buffer have
been checked and are determined to be valid, the New Settings Pending
flag ( NSP ) must be set before they are assigned to the Pending
Settings buffer. This is done to assure that the system can determine
whether Pending Settings are equal to Current Settings simply by
testing the NSP flag.

Rules for Output Commands

The output commands should make sure that the data for output is
saved in an area which will not be altered by another task. For
queries, the settings are automatically saved by the Message Processor
before the dispatch. This solves the problem of the settings changing
while the query response is generated, but since it is not the form in
which the data is output, the designer should assure that the variables
used to store the characters for output are not shared by other tasks.

Example of an output command (query):
RQS.QRY
#ROUTINES ‘CALLED: OUTP.HDR, OUTP.ARG
#fCALLED BY: MSGPROC AND SET.QRY IN COMMAND DISPATCH

#SETTINGS ARE SAVED BY THE MESSAGE PROCESSOR
TAGPTR = ~RQS.TAG
OUTP.HDR #OUTPUT THE HEADER
IF Q.RQS THEN

TAGPTR = “ON.TAG
ELSE

TAGPTR
ENDI

“OFF.TAG




2.5 Message Processor 2-26
Rules for Writing Command Handlers

OUTP.ARG
RETURN

The second example given for output commands is the command handler
which generates the error query response.

The error query (ERR?) provides the operator a means of obtaining
additional information corresponding to the most recent status byte
sent with the RQS message asserted. After a status byte has been sent
via the serial poll response, CRNEVENT (the event code for that status
byte) is transferred to EQRES (the error query response code). Then
when the instrument receives the "ERR?" command is uses EQREC to find
the 16 bit error query response in the Status Table and converts this
to ASCII decimal for output.

The error query also allows the user to determine error conditions
when the SRQ is disabled with the RQS OFF command. In this mode, the
error query returns the highest priority error condition pending, and
clears the condition so that it is not reported again.

Problems:

Because the TMS 9914 does not tell the processor when it sends a
status byte with rsv = 0, the EQRES is updated only for those status
bytes with RQS asserted.

If ,two errors occur simultanously, the controller may poll the
instrument for the second status before it issues the ERR? query. In
this case it looses the information about the first error reported.

Pseudo code for the ERRO.QRY.

ERRO.QRY

#fROUTINES CALLED: OUTP.HDR, OUTP.INT, PUTBYTE
#CALLED BY: MSGPROC IN COMMAND DISPATCH

IF NOT( C.RQS ) THEN #SRQ DISABLED
#GET HIGHEST PRIORITY FROM PENDSTAT
TABLEPTR = -~ PENDSTAT (1)
WHILE BYTE[ TABLEPTR ] = O DO

TABLEPTR = TABLEPTR + 1
ENDW
EQRES = BYTE[ TABLEPTR ]
IF TABLEPTR <> ~ NDDSTAT THEN
BYTE[ TABLEPTR ] = 0
ENDI
ENDI

#OUTPUT THE RESPONSE

NUM.ARG = 0.0

IF EQRES < 80H THEN #EVENTCODE
NUM.ARG = FLT( EQTBL ( EQRES ) )

ENDI



2.5 Message Processor 2-27
Rules for Writing Command Handlers

EQRES = 80H
TAGPTR = ~ERRO.TAG
OUTP.HDR

OUTP.INT #0UTPUT INTEGER VALUE OF NUM.ARG
OUTCHAR = SEMICOLN
PUTBYTE

RETURN

Rules for Operational Command Handlers

The only general rule that applies to operational commands is that
they must test the MSGREM flag if they suspend (for decoding arguments,
etc.) since its value may change and all operational commands are
REMOTE ONLY type.




2.6 Message Processor 2-28
Utility Routines for Command Handlers

2.6 Utility Routines for Command Handlers

HDRDELIM

This subroutine is used to check for the header delimiter. If the
character in INCHAR is not a valid header delimiter, it sets MPERRCD
with the header delimiter error eventcode.

HDRDELIM
#ROUTINES CALLED: NONE
#CALLED BY: COMMAND HANDLERS WITH ARGUMENTS (ADDR.CMD, BYTE.CMD, ETC.)
IF INCHAR <> SPACE THEN
MPERRCD = HDRDLM
ENDI

RETURN
ARGDELIM

This subroutine is used to check for argument delimiters. If the
character in INCHAR is not a valid argument delimiter (comma or space),
then it sets MPERRCD with the argument delimiter error eventcode.
ARGDELIM
#ROUTINES CALLED: NONE
#fCALLED BY: COMMAND HANDLERS WITH MULTIPLE ARGUMENTS

IF ( INCHAR <> COMMA ) AND ( INCHAR <> SPACE ) THEN
MPERRCD = ARGDLM
ENDI

RETURN



2.6

Message Processor 2-29
Utility Routines for Command Handlers

CHR.PROC

The Character Argument Processor is used to decode character

arguments from the Input Buffer. If an error was detected in a
previous routine, then it simply returns. Otherwise, it skips over any
leading format characters and then uses the table search routine to

det
buf

ermine the index of the argument. If the character string in the
fer does not match one of the character arguments in the table, the

command error eventcode is stored in MPERRCD.

CHR.PROC

#RO

UTINES CALLED: SCANFRMT, TABLSRCH, REM.TST

#fCALLED BY: COMMAND HANDLERS WITH CHARACTER ARGUMENTS (RQS.CMD)

#INPUT: TABLEPTR - POINTER TO THE DESIRED ARGUMENT TABLE

f#ou

RET

TPUT: TYPE - CONTAINS THE ARGUMENT TYPE INFORMATION FROM
#THE TAG BYTE IN THE ARGUMENT TABLE ENTRY. TYPE
#fCONTAINS ATHE BYTE AFTER 4 ASR OPERATIONS. IF THE
#4 MSB’S OF THE TAG ARE 0 OR F THEN THE TYPE VARIABLE
#RETURNED IS A OOH OR FFH WHICH CAN BE DIRECTLY
#ASSIGNED TO ANY LOGICAL VARIBLE. THE 4 MSB’S OF
#THE TAG BYTE MAY ALSO CONTAIN AN ARRAY INDEX FROM
#0 TO 7.

IF MPERRCD = 0 THEN
SCANFRMT
IF NOT( EOM ) THEN
INDEX = 0
TABLSRCH
IF TYPE <> 0 THEN
ARGTYPE = ASR( TYPE )
ELSE #VALID ARGUMENT NOT FOUND
MPERRCD = CMDARG

ENDI
REM. TST
ELSE
MPERRCD = MISSARG
ENDI
ENDI
URN




2.6 ~ Message Processor 2-30
Utility Routines for Command Handlers

NUM.PROC

The numeric argument processor is used to decode numeric arguments
from the Input Buffer. It returns to the calling routine if an error
had already been detected. If no error exists, it skips over any
leading format characters and then prescans the Input Buffer to insure
that the entire number string is in the buffer. This is required to
prevent the floating point REALVAL routine from suspending during
numeric string conversion, which removes the requirement that it be
re—entrant. The value of the number is returned as a floating point
value in NUM.ARG. If an error is detected in the conversion, the
appropriate eventcode is returned in MPERRCD.

NUM.PROC
#ROUTINES CALLED: SCANFRMT, GETCHR, REALVAL, REM.TST
#CALLED BY: COMMAND HANDLERS WITH NUMERIC ARGUMENTS

IF MPERRCD = O THEN

SCANFRMT
IF NOT( EOM ) THEN
REPEAT
GETCHR
EXITR WHEN MPERRCD <> 0
UNTIL EOM OR INVALCHR
THENDO
FPERR = 0
EOM = FALSE
NUM.ARG = REALVAL ( BYTE[ BUPIR ] )
IF ( FPERR <> 0 ) OR ( GBPTR <> PTRASCII ) THEN
MPERRCD = CMDARG
FPERR = 0
ENDI
ENDR

ELSE {NULL ARGUMENT
MPERRCD = MISSARG
ENDI
REM. TST
ENDI

RETURN



2.6 Message Processor 2-31
Utility Routines for Command Handlers

BIN.PROC

#THIS ROUTINE PROCESSES BINARY BLOCK ARGUMENTS

#INPUT:
#TABLEPTR = POINTER TO THE DESTINATION AREA FOR THE BINARY DATA.
#BINCNT = THE EXPECTED BYTECOUNT

#OUTPUT:
#A BLOCK OF BINARY DATA AT THE SPECIFIED LOCATION.
#INCHAR = CHARACTER AFTER THE CHECKSUM.

#ROUTINES CALLED: SCANFRMT, GETBYTE, GETBIN, FREESPACE, REM.TST
#CALLED BY: COMMAND HANDLERS THAT INPUT BINARY DATA

IF MPERRCD = O THEN
SCANFRMT
IF NOT( EOM ) THEN
GETBYTE
IF INCHAR = PERCENT THEN
CKSUM = 0 #INITIALIZE CHECKSUM
GETBIN #READ 1ST BYTE AND ADD TO CKSUM
BCNT.HI = INCHAR #SAVE BYTE COUNT IN BNCT
GETBIN
BCNT.LO = INCHAR
IF BCNT = BINCNT THEN #BYTE COUNT IS CORRECT
BCNT = BCNT =~ 1
WHILE BCNT <> 0 DO
FREESPACE
GETBIN
EXITW WHEN MPERRCD <> O
BYTE[ TABLEPTR ] = INCHAR
TABLEPTR = TABLEPTR + 1
BCNT = BCNT - 1
THENDO
GETBIN #READ CHECKSUM BYTE
IF CKSUM <> 0 THEN #CHECKSUM ERROR
MPERRCD = CKSUMERR
ELSE #READ BYTE FOLLOWING CHECKSUM

GETBYTE
REM.TST #CHECK FOR REMOTE STATE
ENDI
ENDW
ELSE MPERRCD = BCNTERR #REPORT BYTE COUNT ERROR

ENDI :
ELSE #REPORT PERCENT CHARACTER NOT FOUND
MPERRCD = CMDARG ‘
ENDI
ELSE MPERRCD = MISSARG #REPORT MISSING ARGUMENT
ENDI
ENDI

RETURN




2.6 Message Processor 2-32
Utility Routines for Command Handlers

GETBIN

#THIS ROUTINE READS THE NEXT BYTE FROM THE INPUT BUFFER AND ADDS
#IT TO THE CKSUM VARIABLE. IF AN EOM OCCURS IN LINE-FEED MODE,
#THEN CONTINUE BINARY INPUT IS CALLED TO START THE INPUT GOING
#AGAIN. IF EOM IS STILL TRUE AFTER CONTBIN IS CALLED, THEN AN
#ARGUMENT ERROR IS ISSUED. THIS ROUTINE IS USED FOR BINARY BLOCK
#DATA INPUT, SO A REAL EOM SHOULD NEVER OCCUR.

#INPUT:
#CKSUM - THE BINARY CHECKSUM (8 BIT)

#fOUTPUT:
#CKSUM - THE BINARY CHECKSUM
#INCHAR - THE BYTE READ FROM THE INPUT BUFFER

#fROUTINES CALLED: GETBYTE, CONTBIN

#CALLED BY: BIN.PROC

GETIBYTE

IF EOM AND LFMODE THEN
CONTBIN
GETBYTE

ENDI

IF EOM THEN MPERRCD = CMDARG #REPORT EOM ERROR
ELSE CKSUM = CKSUM + INCHAR
ENDI

RETURN



2.6 Message Processor 2-33
Utility Routines for Command Handlers

SEND .BIN

#THIS ROUTINE SENDS A BINARY BLOCK ARGUMENT TO THE GPIB OUTPUT BUFFER

#INPUT:
#QRY.BUFR(BINCNT) - BINCNT BYTES OF DATA TO BE OUTPUT

#OUTPUT: NONE
#fROUTINES CALLED: PUTBYTE

#CALLED BY: COMMAND HANDLERS THAT OUTPUT BINARY BLOCKS

OUTCHAR = PERCENT #OUTPUT PERCENT SIGN

PUTBYTE

OUTCHAR = 0 #OUTPUT HIGH BYTE OF BYTE COUNT
PUTBYTE

OUTCHAR = BINCNT #OUTPUT LOW BYTE OF BYTE COUNT
PUTBYTE

TABLEPTR = ~ QRY.BUFR (1) #INITIALIZE BINARY OUTPUT POINTER
CRKSUM', BCNT.LO = BINCNT #INITIALIZE CHECKSUM AND LOOP COUNT

REPEAT
BCNT.LO = BCNT.LO - 1
EXITR WHEN BCNT.LO = O
OUTCHAR = BYTE[ TABLEPTR ]
CKSUM = CKSUM + OUTCHAR
PUTBYTE
TABLEPTR = TABLEPTR + 1
ENDR

OUTCHAR = -( CKSUM ) #NEGATE CHECKSUM AND OUTPUT
PUTBYTE

RETURN




2.6 Message Processor 2=-34
Utility Routines for Command Handlers

REM.TST

This subroutine must be called by any REMOTE ONLY command handler
that suspends (argument processor may suspend). REM.TST must be called
after the last suspend has been executed. The reason for this is that
while the Message Processor is suspended, the Key Processor may receive
an rtl and execute a command handler that alters the Pending Settings.
Therefore the state of the Pending Settings buffer cannot be guaranteed
when the Message Processor resumes execution. Since an rtl sets MSGREM
, MSGREM = TRUE indicates that Pending Settings are still intact.

#ROUTINES CALLED: NONE

#fCALLED BY: ALL REMOTE ONLY COMMAND HANDLERS

REM. TST
IF REMTYPE AND NOT( MSGREM ) THEN
MPERRCD = REMONLY
ENDI

RETURN
OUTP.HDR

This routine is used to output the header for a query response. As
input it requires that the variable TAGPTR be assigned a pointer to the
tag byte of the command in the command header table and the INDEX of
the command header which is to be output.

HDRLEN is an array containing the number of characters to be output
for the query response.

#ROUTINES CALLED: OUTP.CHR, PUTBYTE

#CALLED BY: ALL QUERY COMMANDS

OUTP.HDR
TAGPTR = TAGPIR + 1
LENGTH = HDRLEN ( INDEX - NUM.CMDS. )
OUTP.CHR
OUTCHAR = SPACE
PUTBYTE

RETURN



2.6 Message Processor 2-35
Utility Routines for Command Handlers

OUTP.ARG

This subroutine is used to put a character argument and the message
unit delimiter into the Output Buffer. It requires that the variable
TAGPTR be assigned the address of the tag byte of the argument.

OUTP.ARG

LENGTH
TAGPTR
OUTP.CHR

OUTCHAR = SEMICOLN
PUTBYTE

TBLBYTE [ TAGPTR ] AND OFH
TAGPTR + 1

]

RETURN

OUTP.CHR

This routine outputs the number of bytes indicated by the variable
LENGTH from the character string pointed to by TAGPTR.

OUTP.CHR

REPEAT
OUTCHAR = TBLBYTE [ TAGPTR ] AND 7FH
PUTBYTE :
TAGPTR = TAGPIR + 1
LENGTH = LENGTH - 1
UNTIL LENGTH = O

ENDR

RETURN






3.1 ) Key Processor 3=-1
Functional Description

3.1 Functional Description

The Key Processor task handles all input from the instrument front
panel. It polls the hardware for the key (button) pushes and when a
legal set of keys are entered, performs the function specified. The
operations are performed by putting the new setting into the Pending
Setting Buffer. Then the pending settings are checked for validity.
If the new setting introduced an error, the setting remains in the
display, the error indicator is lit, and the parameter which conflicts
with the new entry (if any) is displayed by blinking its indicator
light. When the validity check passes, the HWSETR flag is set and the
execution of the function requested is initiated on the next pass
through the Hardware Settings task.

Front Panel Syntax

The ID key is always enabled and may be used at any time without
effecting the operation of the instrument. The ID key displays the
instrument’s GPIB address on the front panel display and generates an
SRQ interrupt if that function is enabled by the controller.

When entering multiple keystroke commands, invalid keys are ignored
and the entry may be continued. If an error condition is detected in
an entry, it can be cleared with the CLEAR or CLEAR ENTRY keys. All
other keys are ignored (except for the ID key). The clear entry key
puts the display back to the current setting of the selected parameter.
If there is no current setting to display, then a value of zero is
displayed.

When a number is entered that is out of the instruments range, the
error light is 1lit and the display retains the out-of-range value. '
Keyboard entries are rounded off to the nearest unit of resolution
before being checked for out-of-range. A number entered that is
between two valid parameter settings is rounded off to the nearest unit
of resolution (this is consistent with operation from GPIB interface).

Numbers displayed on the front panel are right justified to the
least significant digit of resolution. On instruments with values
which require exponents, an exponent is chosen such that the mantissa
is greater than or equal to 1 and the number of mantissa digits matches
the resolution of the displayed parameter -- that is, a parameter with
4 digit resolution would look like "1.000E3" as opposed to "00l.O0E3"
with suppressed leading zeros. The reason for this is that when a
parameter is incremented or decremented, it is desirable to have the
decimal point shift as little as possible.

As digit keys are pushed, the display fills from the left to right,

starting with a digit position which allows only enough digits for the
selected parameter’s resolution =-- the right-most digit is filled by
the Nth digit of an N digit parameter. Digit keys pushed after the
display is filled are ignored (except in the DM5010).

On instruments with exponents, digit keys pushed after the EEX
(Enter EXponent) key fill the display from right to left. Digit keys




3.1 Key Processor 3-2
Functional Description

pushed after the exponent display is filled roll the exponent one digit
left. 1If EEX is the first numeric key pushed, then "1.0" is displayed
in the mantissa (left justified).

Non-numeric keys do not perform an implied enter function, the ENTER
key must be explicitly pressed by the user. This is done because it is
dangerous for a signal source instrument to make the assumption that
the user wants the number entered, when he may have simply changed his
mind about which parameter he wants to program. When a number is keyed
in but not entered and a non-numeric key is pressed, (except for CLEAR
ENTRY and ID), then the non-numeric key is ignored. At this point the
user may push a numeric key, ENTER key, CLEAR ENTRY key or ID.

State Machine

The Key Processor is a sequential state machine which validates key
sequences and dispatches to service routines. The state is determined
by a combination of flags, pointers and program control flow.

KEYPROC repeats until the instrument goes to the REMOTE GPIB state
which causes an RLC interrupt. The RLC interrupt service routine
reinitializes the KEYPROC by resetting the KEYPROC task stack.

Each time around the outer repeat loop, KEYPROC may service one key,
no keys (may ignore numeric), or a sequence of several keys. The
series of IF-THEN-ENDI control blocks allows an easy way to handle key
sequences without having to set many flags or save copies of previous
keys or test for previous keys or having to conditionally bypass the
GETKEY at the top of the repeat loop. Because the indivudual
instruments have different requirements for the control of front panel
features, a description of the DM key processor and one used for both
the FG and PS are included.



3.2 Key Processor 3-3
DM5010 Key Processor -

3.2 DM5010 Key Processor

DM5010 Front Panel Indicators

The DM has a signed four and one-~half digit seven segment numeric
display, eleven backlit ennunnciators, and eleven lit push buttons.
The numeric display may show five kinds of data:

1. The result of a measurement (may include math calculations).
2. The value of a programmable parameter.

3. The numeric entry for altering parameters.

4. An error message.

5. The GPIB listen address.

A variable named DSPMODE controls which of the first four kinds of
data is displayed. DSPMODE is normally set by the front panel buttonms,

but if the processor encounters trouble it may display an error
message. ILf the DM is remotely controlled by the GPIB, the numeric

display normally shows the result of a measurement.

The DM may display numbers from one ten millionth (l. E~7 =
".0001lm") to ninteen-billion nine-hundred ninty-nine million (1.9999 E
10 = "19999M") by shifting the decimal point and lighting the '"m", "K",
or "M" backlit ennunciators.

To indicate over range due to a measurement overflow, the display
flashes '"19999" and "ERROR" leaving the decimal point and m, K or M
steady. If the over range is due to a calculation, the display flashes
"19.E99" and the "ERROR" light.



3.2 Key Processor 3-4
DM5010 Key Processor

Front Panel Keystrokes
The DM has 40 keys (buttons) which are grouped into the following
types:

TYPE KEYS

1D INST ID
FUNCTION DCV, OHM, DIODETEST, ACV, AC+DCV, NULL, 10HZ,
AUTO, STEP, RUN, TRIG, FAST, AVERAGE,
RATIO((X-B)/A), DBM, DBR, COMPARE, REAR.
RECALL RECALL

PARAMETER A, B, LIMIT1, LIMIT2, N,R

ENTER ENTER

CLEAR CLEAR

NUMERIC CHANGE SIGN, DECIMAL POINT, 0, 1, 2, 3, 4, 5,
6, 7, 8, 9

The INST ID key always responds by displaying the GPIB listen
address as set by the internal switches. This key is never dsabled so
that the user may assure himself that the processor has not crashed.
The ID key is the only key serviced inside the GETKEY subroutine,
because it must always respond and because it is the only key that must
be monitored for release. When the ID key is released, the front panel
displays what was displayed before the ID key was pushed. The ID key
also generates a user SRQ if the GPIB commands "RQS ON; USER ON" have
been received.

All of the function keys have single stroke responses. The function
keys are ignored during recall or numeric entry sequences; any other
time, the display provides feedback to indicate that a function key was
serviced.

The RECALL key is used to display the value of any of the
programmable parameters. Pushing the RECALL key begins the RECALL
sequence. The key immediately following the RECALL key must be a
parameter key or the CLEAR key (function keys and numeric keys are
ignored). Pressing a parameter key causes the processor to display the
value of the selected parameter. Additional parameters may be
displayed without additional RECALL key strokes. Numeric keys may be
entered to change the value of a parameter, as described below. The
RECALL sequence is terminated by any function key or the CLEAR key.

The value of a parameter may be equated to the result of a
measurement or may be set with the numeric keys. The sequence to
equate a parameter to the result of a measurement is to obtain the
desired measurement in the display, then press a parameter key followed



3.2 Key Processor 3-5
DM5010 Key Processor

by ENTER. The sequence to set the value of a parameter with the
numeric eys is to select a parameter followed by the appropriate
numeric keys and ending with ENTER.

The function of the CLEAR key is to cancel a sequence and to control
the data to be displayed. The CLEAR key is misnamed as it does not
clear the display nor does it alter any of the parameters. When
pressed during a numeric entry sequence, the clear key displays the
value of the selected parameter and cancels the numeric entry. At this
point the processor may accept more numeric keys, or any other key. If
the CLEAR key is pressed a second time, the DM displays measurements
and numeric keys are ignored. Thus pressing the CLEAR key twice
returns the front panel to its normal state, unless the GPIB controller
has locked out the front panel.




3.2

Key Processor 3-6
DM5010 Key Processor

Description of KEYPROC

The Key Processor is a sequential state machine which validates key
sequences and dispatches to service routines. The state is determined
by a combination of flags, pointers and program control flow.

FLAGS

STATERCL

STATENUM

POINTERS

PTRPARM

DISPMODE

=TRUE

=FALSE

=TRUE

=FALSE

MEANING

Set when the RECALL key is serviced to enable
displaying the value of a parameter when a
parameter key is pressed. Cleared by the
function keys and CLEAR key.

To allow the display to continue to show the
result of a measurement after a parameter key
is pressed so that the parameter may be equated
to the measurement by pressing ENTER.

Set by parameter keys to enable the numeric
keys.

Cleared by function keys or CLEAR key to
disable numeric entry.

MEANING

Points to the parameter selected for display or edit. Set
by parameter keys.

Selects the kind of data to be shown in the numeric display
(measurement, parameter, numeric, error message, GPIB
listen address) set by all keys.



3.2 Key Processor 3=-7
DM5010 Key Processor

KEYPROC

Pseudo code for the DM Key Processor

KEYPROC
DISPMODE = DISPMEAS
STATERCL = FALSE #DISABLE RECALL
STATENUM = FALSE #DISABLE NUMERIC ENTRY

REPEAT #UNTIL GPIB REMOTE INTERRUPT RESETS KEYPROC
GETKEY #RETURNS KEYCODE AND TYPE, WAITS FOR HWSETR FALSE
IF TYPE = TYPEFUNC THEN #SERVICE FUNCTION KEYS
STATERCL = FALSE

STATENUM = FALSE
DISPMODE = DISPMEAS
CALL COMMAND HANDLER ( KEYCODE )

ENDI

SAVE TRIGGER MODE STATUS
# FOR ENTERING A MEASUREMENT INTO A PARAMETER

IF KEYCODE = KEYRECAL THEN #SERVICE RECALL KEY
STATERCL = TRUE
REPEAT #WAIT FOR A PARAMETER KEY
GETKEY
UNTIL TYPE = TYPEPARM OR KEYCODE = KEYNULL OR
KEYCODE = KEYCLEAR
ENDR
IF KEYCODE = KEYNULL THEN #ALLOW RECALL NULL
TYPE = TYPEPARM
ENDI
ENDI

IF TYPE = TYPEPARM THEN #SERVICE PARAMETER KEYS
PTRPARM =ADDRESS (PARAMETER( KEYCODE )) #PONT TO
PARAMETER
LOAD VALUE OF SELECTED PARAMETER INTO PARAMETER PORTION
OF DISPLAY BUFFER
IF STATERCL = TRUE THEN #RECALL PARAMETER
DSPCHNG = TRUE
DISPMODE = DISPPARM
ELSE
DISABLE AUTOMATIC TRIGGERS #HOLD DISPLAY
REPEAT
GETKEY
UNTIL TYPE = TYPENUM OR KEYCODE = KEYENTER OR
KEYCODE = KEYRCL OR KEYCODE = KEYCLEAR
ENDR
IF KEYCODE = KEYRCL THEN
STATERCL = TRUE
DISPMODE = DISPPARM #RECALL PARAMETER

DSPCHNG = TRUE




3.2

ENDR

Key Processor 3-8
DM5010 Key Processor

ENDI
ENDI
STATENUM = TRUE #ENABLE NUMERIC ENTRY
ENDI

IF KEYCODE = KEYENTER AND STATENUM = TRUE THEN #ENTER A
MEASUREMENT INTO A PARAMETER
#NOTE; THIS KEYENTER IS NOT THE ENTER FOR NUMERIC ENTRY
PARAMETER ( PTRPARM ) = VALUE IN DISPLAY
ENDI
IF KEYCODE = KEYCLEAR THEN
STATENUM = STATERCL = FALSE #RETURN TO DISPLAYING
MEASUREMENTS .
DISPMODE = DISPMEAS #DISPLAY MEASUREMENTS
ENDI
IF TYPE = TYPENUM AND STATENUM = TRUE THEN #SERVICE NUMERIC
ENTRY
CALL NUMERIC ENTRY #CALLS GETKEY AND RETURNS ON CLEAR OR
ENTER
ENDI

RESTORE TRIGGER MODE STATUS



3.2

GETKEY

Command
handlers

Numeric Entry

Key Processor 3-9
DM5010 Key Processor

Subroutines Called

Suspends until a key is ready. Returns KEYCODE and TYPE
( KBYCODE ). Suspends if hardware settings are being
updated.

The command handlers service the functioni keys,
including changing hardware settings, triggering a
measurement, and setting front panel indicators. Most
of these routines share common code with the Message
Processor .

Displays digits as the numeric keys are pressed, calls
GETKEY, converts the number entered into floating point
format, and stores it into the parameter selected by
PTRPARM.




3.3 Key Processor 3-10
FG5010 and PS5010 Key Processor

3.3 FG5010 and PS5010 Key Processor

Pseudo code for the FG key processor.

FGKEYPROC
BLINK = 0
RTLTIME = 0
NESTATE = O #RESET NUMERIC ENTRY

RESET KEYBOARD

RESET DISPLAY
SUSPEND

CLEAR INTERRUPT MASK

REPEAT FOREVER
GETKEY #GETKEY WAITS FOR HWSETR = FALSE

CASE KEYTYPE OF

[ FUNCTION ]
CALL COMMAND HANDLER( KEY )
IF NOT( ERR ) THEN
KPEXEC
ELSE #FLASH ONLY ERROR LIGHT
KPERROR ( 0 )
ENDI

[ INCDEC ]
IF ACTPARAM <> STEPSIZ THEN
INCRDECR
ENDI

[ NUMERIC ]
NUMENTRY
IF NESTATE <> 0 THEN #PERFORM FUNCTION
NESTATE = 0 #INDICATE TO OTHER TASKS THAT
THE NUMERIC ENTRY
#IS COMPLETE, SO THE DISPLAY
MAY NOW BE CHANGED.
NUM.ARG = VAL( NEBUFFER )
CALL COMMAND HANDLER( ACTPARAM )
IF NOT( ERR ) THEN
KPEXEC
ELSE #FLASH ERROR LIGHT
KPERROR ( 0 )
ENDI
ENDI

ENDC
IF RTLTIME <> 0 THEN RTLTIME = 1 ENDI

ENDR



3.3 Key Processor 3=-11
FG5010 and PS5010 Key Processor

KPEXEC

This routine verifies the validity of any pending settings that came
from the Key Processor, and then executes those settings. If a
settings conflict is found, then the conflicting setting is passed to
the key processor error handler. The KPERROR routine flashes the
conflicting parameters lights until the user pushes CLEAR or the
instrument goes to REMOTE.

Pseudo code for the FG Key Processor Execution Routine.

KPEXEC

CONFLICT = 0 #IN CASE OF REMOTE CONTROL
IF FPCNTRL AND NSP THEN
VERIFY PENDING SETTINGS
IF CONFLICT = O THEN
HWSETR = TRUE
ELSE
KPERROR ( CONFLICT )
ENDI
ENDI

RETURN



3.3

Key Processor
FG5010 and PS5010 Key Processor

KPERROR

Pseudo code for the FG Key Processor Error Routine.

KPERROR ( KPERR ) #KPERR IS PASSED PARAMETER

TURN ON ERROR LIGHT IN DISPLAY BUFFER
DSPCHNG = TRUE

#BLINK CONFLICTING SETTINGS LIGHTS (IF ANY)
IF KPERR <> O THEN

BLINK = BLNKRATE
ENDI

REPEAT
GETKEY :
#ONLY CLEAR KEY CANCELS AN ERROR
UNTIL KEY = CLRKEY

ENDR

#RESTORE DISPLAY TO OLD VALUE(S) AND TURN OFF ERROR LIGHTS.
BUILD DISPLAY BUFFER
BLINK = O

RETURN

3-12



3.3

RESOLN

NECOUNT

NESTATE

NEBUFFER

NEPTR

Key Processor 3=13
FG5010 and PS5010 Key Processor

Numeric Entry Variables

Is the resolution of the active parameter in number of
digits.

Is the number of mantissa digits entered.

Is the state variable for the numeric entry process.
NESTATE <> 0 indicates that numeric entry is in
progress, and that the display buffer is not to be
changed. However, any portion of the display buffer not
used for numeric entry may be changed. NESTATE
indicates the following numeric entry states:

0 Idle state

1 Mantissa before decimal point
2 Mantissa after decimal point
3 Mantissa full

4 After enter exponent

Is a buffer which holds the ASCII equivalents of the
keys pushed. This buffer is copied into the display
buffer after each key 1is pushed, to give the user
feedback as to what has been keyed in. NEBUFFER is also
passed to the ASCII-Floating Point converter to get a
numeric argument when the user pushes the ENTER key.

'This buffer must be filled with blanks when numeric

entry begins so that unused digits are blanked and so
that the ASCII-Floating Point routine terminates
properly.

Is a pointer to the next empty position in the numeric
buffer.




3.3, Key Processor
FG5010 and PS5010 Key Processor
Numeric Entry State Table
STATE > 0 1 2 3 4
DIGIT DISPLAY DISPLAY DISPLAY IGNORE ROLL EXP
DIGIT DIGIT DIGIT DIGIT
ST =1 IF FULL IF FULL
THEN ST=3 THEN ST=3
DP DISPLAY DISPLAY IGNORE IGNORE IGNORE
"Oo " 11 R "
ST = 2 ST = 2
EEX DISPLAY DISPLAY DISPLAY DISPLAY IGNORE
Hl .OE 1" "E " "E 1" "E "
ST = 4 ST = 4 ST = 4 ST = 4
CHS DISPLAY IF ND<4 IF ND<4 IF ND<4  TOGGLE
" THEN THEN THEN EXP SIGN
ST =1 TOGGLE TOGGLE TOGGLE
SIGN SIGN SIGN
ENTER RETURN RETURN RETURN RETURN RETURN
CLEAR ST =0 ST =0 ST =0 ST =0 ST =0
RESET RESET RESET RESET RESET
DISPLAY DISPLAY DISPLAY DISPLAY DISPLAY
RETURN RETURN RETURN RETURN RETURN

3-14



3.3 Key Processor 3-15
FG5010 and PS5010 Key Processor

Pseudo code for Numeric Entry

NUMENTRY

NESTATE = 0
NEPTR = = NEBUFFER + 4 - RESOLN
FILL NEBUFFER WITH BLANKS

NECOUNT = 0
WHILE KEY <> ENTER DO
CASE KEY OF
["O" TO llgll]
IF NESTATE = O THEN
NESTATE = 1
ENDI
IF NESTATE <> 3 THEN
STORECHR ( KEY )
IF NESTATE > 3 THEN
NEPTR = NEPTR - 1
ELSE
IF NECOUNT = RESOLN THEN
NESTATE = 3
ENDI
ENDI
ENDI
[H."]
IF NESTATE < 2 THEN
IF NESTATE = Q0 THEN
STORCHR ("0'")
ENDI
NESTATE = 2
IF NECOUNT = RESOLN THEN
NESTATE = 3
ENDI
STORCHR (".")
ENDI
[ EXX ]

IF RESTATE < 4 THEN
IF RESTATE = O THEN
STORCHR ("1")
STORCHR (".')
IF NECOUNT < RESOLN THEN
STORCHR ("0")
ENDI
ENDI
STORCHR ("E")
NEPTR = NEPIR + 1
NESTATE = 4
ENDI

[ CHS ]




3.3 Key Processor 3-16
FG5010 and PS5010 Key Processor

IF NESTATE = 0 THEN
NESTATE 1
ENDI
IF NESTATE 4 THEN
PTR = NEPIR - 1
ELSE
PTR = = NEBUFFER + 3 - RESOLN
ENDI
IF RESOLN < 4 THEN

IF NEBUFFER ( PTR ) = SPACE THEN
NEBUFFER ( PIR ) = "-"
ELSE
NEBUFFER ( PTR ) = SPACE
ENDI
ENDI
[ CLEAR ]
NESTATE = 0O
RESET DISPLAY
EXITW ’
EXITC

DISPLAY NUMBER IN NUMERIC BUFFER
GETKEY

ENDW

RETURN



3.3 Key Processor
FG5010 and PS5010 Key Processor

STORCHR

Pseudo code for the Store Character routine.

STORCHR ( INCHAR )

NEBUFFER ( NEPTR ) = INCHAR

NEPTR = NEPIR + 1 )

IF INCHAR > = "0" AND INCHAR < = "9" THEN
NECOUNT = NECOUNT + 1

ENDI

RETURN

3-17




3.3 . Key Processor ' 3-18
FG5010 and PS5010 Key Processor

GETKEY
The Key Processor initialization routine must set RTLTIME = O.

Pseudo code for the GETKEY routine:

GETKEY

REPEAT
KEY

0

#MAKE SURE THAT KEY<>IDKEY SO DISPLAY
#UPDATE CAN CHANGE THE DISPLAY
WHILE (KEY NOT AVAILABLE) DO
SUSPEND
IF RTILTIME <> O THEN
RTLTIME = RTLTIME - 1
IF RTLTIME = O THEN
#RE-ENABLE A TRANSITION TO REMOTE
STORE RTL AUXILLARY COMMAND WITH C/S
ENDI

L]
o

ENDI
BLNKLITE
ENDW
KEY = KEYCODE FROM HARDWARE
IF KEY = IDKEY THEN
IDPROC
ELSE
RTLPROC
ENDI
UNTIL ( KEY <> IDKEY ) AND NOT ( REMOTE )
#TMS 9914 CHIP IGNORES RTL IN LOCKOUT STATE, SO REMOTE REMAINS
TRUE

RTLTIME = (5 SECONDS) / (TIME FOR ONE PASS THROUGH THE MONITOR)
KEYMAP

#WAIT FOR HARDWARE SETTINGS CHANGE IN PROGRESS TO COMPLETE
#BEFORE RETURNING THE KEY TO THE CALLING ROUTINE.
WHILE HWSETR = TRUE
SUSPEND
ENDW

RETURN

Note: GETKEY must call RTLPROC unconditionally when servicing any
key. The reason for this is that if it is only called when the
instrument is in remote, a transition to LOCAL caused by a GTL or
REMOTE ENABLE false transitionfollowed by a key press would not set
FPCNTRL since that is done in RTLPROC. Since FPCNTRL is clear and the
Key Processor thinks it has control of the Pending Setting buffer, it
is possible for both the Message Processor and Key Processor to write
into the Pending Settings buffer at the same time. This must be
prevented, and the easies way is to call RTLPROC for each front panel
key press.



3.3 Key Processor 3-19

FG5010 and PS5010 Key Processor

BLNKLITE

Blinking light routine

BLNKLITE

IF BLINK <> O THEN BLINK = BLINK - 1
IF BLINK = 0 THEN
BLINK = BLNKRATE
DETERMINE LIGHT TO BLINK
TOGGLE LIGHT IN DISPLAY BUFFER
DSPCHNG = TRUE
ENDI
ENDI

RETURN







o

T

4o Hardware Monitor 4-1

The function of the Hardware Monitor Task is to perform those
operations which support the device dependent hardware. Examples of
the operations performed are:

1. Monitor the frequency actually output by the FG to increase
its accuracy.

2. Determine when a measurement in the DMM is complete and
update the display.

3. Monitor the regulation status of the PS and report changes
(if enabled) over the GPIB interface.

In addition, the Hardware Monitor Task also performs device
dependent hardware tests during power on initialization.

Pseudo code for the Hardware Monitor Task.

HWMONITR
HARDWARE MONITOR INITIALIZATION
POWER UP TESTS
SUSPEND
CLEAR INTERRUPT MASK
REPEAT #FOREVER
#f{DEVICE DEPENDENT FUNCTION

ENDR







5. Hardware Settings 5=1

The Hardware Settings task performs the function of copying the
Pending Settings to the Current Settings buffer and to the hardware
registers as well as updating the front panel display. This function
is activated by another task or interrupt handler in the system setting
the HWSETR flag, which then remains set until the hardware has been
updated.

The HWSETR flag is also used to lock out any changes to the Pending
Settings during the Hardware Settings update processing. That is, if a
routine needs to change Pending Settings, it must first check the
HWSETR flag. If the flag is set, the task must suspend itself until
the update is complete (the flag is cleared).

The Hardware Settings task also updates the front panel ADDRESSED
and REMOTE indicators whenever necessary, and reports any floating
point package errors by displaying the system error code on the front
panel.

Pseudo code for the Hardware' Settings task is:

HWSET
HARDWARE SETTINGS TASK INITIALIZATION
SUSPEND

CLEAR INTERRUPT MASK
REPEAT #FOREVER

SUSPEND

IF HWSETR THEN
COPY PENDING SETTINGS TO HARDWARE
COPY PENDING SETTINGS TO CURRENT SETTINGS

EVENTCOD = NDDSTAT #REPORT UPDATED STATUS
NEWEVENT #(POSSIBLE RQS CHANGE)

HWSETR = FALSE
BUILD DISPLAY BUFFER
(sets DSPCHNG if needed)
ENDI
REMOTE INDICATOR = REMBIT IN TMS 9914
ADDRESSED INDICATOR = LADS OR TADS

IF DSPCHNG AND NOT( DSPINHBT ) THEN
DSPCHNG = FALSE
UPDATE DISPLAY

ENDI

#REPORT SYSTEM ERRORS
IF FPERR <> 0 AND SAV.SYSERR = 0 THEN
SAV.SYSERR = FPERR
FPERR = 0
EVENTCOD = SYS.ERR
NREWEVENT




5. ' Hardware Settings 5-2

WRITE SYSTEM ERROR CODE (302) TO DISPLAYS
DSPINHBT = TRUE
ENDI

ENDR

Note:

The DSPINHBT (display inhibit) flag is set by IDPROC or any other

routine that writes directly to the displays and needs to control when
it is updated.



5.1 Hardware Settings 5=3
Update Display

5.1 Update Display

The Front Panel Update Display routine copies data from the Display
Buffer in RAM to the display hardware. The Display Buffer is formatted
to contain the information required for a direct copy to the display
hardware.

A Update Display is initiated when the DSPCHNG flag is set and the
ID key is not pressed. The display is not updated when the ID key is
pressed because the ID key handler changes the display hardware
directly and does not modify the Display Buffer. When the ID key is
released, the display is restored by setting the DSPCHNG flag. Any
changes to the Display Buffer which occurred while the ID key is
depressed are then displayed automatically.

Any routine, including the interrupt handlers may change the display
by setting up the Display Buffer with the new information and setting
the DSPCHNG flag.

Note:

The DSPCHNG flag is reset before the display hardware is updated.
This allows an interrupt handler to change the Display Buffer and set
the DSPCHNG flag without it being missed because a Update Display had
been initiated by some other routine. That is, if an interrupt handler
set the DSPCHNG flag during the hardware update and it were cleared
after the update, the new information may not get in the display
because the DSPCHNG flag got cleared.




5.2 Hardware Settings 5-4
Display Buffer Update

5.2 Display Buffer Update

There are two ways that the front panel display may be altered. The
first way is by changing the Display Buffer and setting the DSPCHNG
flag. On the next pass through the Hardware Settings task the Display
Buffer is copied to the display hardware. The second way to change the
display is to call a routine that builds all or part of the Display
Buffer from the Current Settings and status information.

The Display Buffer is changed by the following:

1. The Key Processor when a numeric entry is in progress or when
executing the CLEAR ENTRY function.

2. The Key Processor initialization, (caused by LOCAL to REMOTE
transitions).

3. The Hardware Monitor task when a new result or status is to
be displayed.

4 The Hardware Settings task when a setting change is made.

5. The GPIB interrupt handler when REMOTE/LOCAL or addressed
state changes occur.

6. The Key Processor when error indicators must be flashed.



5.3 Hardware Settings 5=5
Display Buffer Builder

5.3 Display Buffer Builder

The Display Buffer Builder is used to construct the Display Buffer
from the Current Settings. It consists of a series of calls to a set
of partial buffer builders. Each partial buffer builder has its own
inhibit flag which, when set, inhibits any change to that portion of
the Display Buffer controlled by this partial builder. The reason for
this structure is to allow the Key Processor to inhibit other tasks
from changing the portion of the display that is in use during numeric
entry or error display. Instruments with multiple displays have a
Display Buffer build routine (and inhibit flag) for each display. The
Key Processor initialization clears all inhibit flags and then builds
the entire Display Buffer.

After the Display Buffer Builder builds the Display Buffer, it sets
the DSPCHNG flag and then returns to the calling routine. The display
hardware is changed in the next pass through the Hardware Settings
task.

The CLEAR ENTRY function must reset the portion of the display being
used for numeric entry, but must not clear the inhibit flag. The
inhibit flag is cleared when a number is entered and accepted (mno
error). In the case of the Power Supply, which remains in the program
mode after a number is entered, the inhibit flag is cleared when the
CLEAR ENTRY key causes a transition out of program mode.







6.1 GPIB Driver 6-1
Driver Specification

6.1 Driver Specification
This driver is a software interface between the TMS 9914 GPIB chip
and the Operating System for Programmable Instruments (OSPI).

It uses approximately 1.5 K bytes of ROM (Coded in TESLA).

Requires approximately 40 bytes of RAM plus allocation for I/0
Buffers. (minimum I/O buffer size is 16 bytes each)

It handles all REMOTE/LOCAL transitions -- Messages received in
REMOTE are processed as if the instrument is in REMOTE upon
asynchronous Remote Enable False transitions and GTL commands.

Message I/0 features:

1. Always listens —-- only asserts NRFD hold when the Input
Buffer is full or when two messages are in the buffer and
processing on the first is not complete. (This has the
effect of increasing system throughput and makes the
instrument more friendly to operate by allowing a new message

to terminate the previous message output.)

2. Maintains a one-to-one correspondence between messages input
and output messages generated.

3. Handles the generation of the Talked with nothing to say
response.

4o I1/0 deadlock is detected and broken by terminating output.

5 Allows prescan and backup in the Input Buffer under system
control to ease parsing messages.

Resets I/0 buffers, status and message processing on Device Clear.
Handles both firmware and hardware controlled GET responses.
Status and Error reporting features:

1. Prioritized status reporting.

2. Synchronization of error query response to status bytes.

3. Supports reporting of error status through the error query
with the instrument in the RQS OFF mode.

Written in Pseudo code and implemented in TESLA.

Handles both EOI only and <LF> character message terminators.

The GPIB Driver performs four major functions: Input, OQutput, Status
Reporting, and handling of Interface messages and lines. The

functional groups are partitioned into software modules which are
listed below with a short description of what they do.




BYTEIN

GETBYTE

FREESPACE

NEXTMSG

CONTBIN

INITINBUF

GPIB Task

BYTEOUT

PUTBYTE

PUTEOL

INITOUTBUF

NEWEVENT

GPIB Driver 6-2
Driver Specification

INPUT

An interrupt service routine which takes device
dependent data bytes from the TMS 9914 chip and
puts them into the Input Buffer.

A service routine called by the operating system to
fetch the next available byte from the buffer.

This routine is called from the operating system to
return bytes to the freespace area in the Input
Buffer.

Called by the Message Processor to start processing
on the next message in the buffer.

Called when inputing binary data in the line feed
mode to allow input to continue (it was terminated
by a line feed character in the binary data).

This subroutine is used by the system during
initialization and the processing of the DCL
interface message. It sets up the pointers and
flags associated with the Input Buffer.

OUTPUT

The GPIB Task is used to determine when there is
data ready for output and generates the '"talked
with nothing to say response' when appropriate.

The interrupt service routine that takes bytes from
the Output Buffer and writes them into the TMS 9914
for transmission on the GPIB interface.

Called by the command handlers or the system to put
characters into the Output Buffer.

Called by the Message Processor to terminate the
message being output. PUTEOI outputs the last byte
of the message with the appropriate message
terminator.

This subroutine is used to initialize the Output
Buffer pointers and flags.

Status Reporting

Called by the system or a command handler to report
any change in status over the GPIB interface.



6.1

STORESTB

CHNGBUSY

INITSTAT

GPIBDSP

RTLPROC

DCAS

HWGET .EN

GET.IH

INITGPIB

GPIB Driver 6-3
Driver Specification

Transfers the highest priority status byte from the
Pending status table into the TMS 9914 chip.

Is called by the Message Processor to report any
changes in the instruments 'busy" status.
This routine initializes the status reporting
section of the system. It clears the Status
Pending Buffer except for POWERON and Normal Device
Dependent status entries.

Interrupt Handlers and Miscellaneous

This is the interrupt dispatcher which determines
which GPIB related interrupts occurred and calls
the appropriate service routines.

The Return To Local Processor is called from the
Key Processor to report the fact that a front panel
button was pressed.

The Remote Local Change interrupt service routine
handles the transitions from Local to Remote.

The My Address interrupt handler recognizes the
special case of receiving MTA (my talk address)
without being untalked and resets the Output Buffer

The Device Clear Active State interrupt handler
performs the instrument Device clear function.

This routine handles the special problems
associated with enabling the Group Execute Trigger
function which controls hardware directly with the
output of the TMS 9914 chip.

The Group Execute Trigger interrupt handler
performs the device dependent firmware function
which is to be initiated by a GET.

This routine is called during system initialization
to set up the TMS 9914 chip and all of the data
structures required to operate the GPIB interface
in this system.




6.2

GPIB Driver 6-4
GPIB Variables

6.2 GPIB Variables

The following constants, pointers and flags are used in the
definition and management of the Input Buffer:

*%%* Constant Pointers **%*

INBUF

INBEND

OUTBUF

OUTBEND

This is the name used to define the address of the first
physical byte in the Input Buffer.

The name which defines the physical end of the Input
Buffer. It is assigned the address one after the last
physical byte in the Input Buffer.

Points to the first physical byte in the Output Buffer

Points to one location after the last physical byte in
the Output Buffer.

*%% Variable Pointers **%

BIPTR

GBPTR

BUPTR

EOMPTR

EOMPTR2

BOPTR

PBPTR

Points to the first byte in free space, where the BYTEIN
interrupt service routine stores the next byte.
Initialized to INBUF value. BIPTR must never = 0.

Defines the location from which GETBYTE fetches the next
byte. Initialized to INBUF value.

The Backup Pointer defines the location of the first
logical byte in tﬁg Input Buffer, as well as the end of
the freespace in the Input Buffer. BUPTR is initialized
to INBUF value. The Input Buffer is full when BIPTR is
incremented to = BUPTR.

Points to the byte following the last byte of the first
message in the Input Buffer. If EOMPTR = 0 then the end
of the first message is not in the Input Buffer.

Points to the byte following the last byte of the second
message in the Input Buffer. If EOMPTR2 = 0 then the
end of the second message is not in the Input Buffer.

Points to the byte which is being output by the BYTEOUT
interrupt service routine via TMS 9914 chip. BOPITR is
incremented after the byte is placed in the TMS 9914
data out register. It is initialized to the physical
beginning of the Output Buffer.

Points to the location in the Output Buffer where
PUTBYTE stores the next byte. It is initialized to the
physical beginning of the Output Buffer.



6.2

GPIB Driver 6-5
GPIB Variables

* k% F]_ags * Kk

INBUFUL

MSGREM

MSGREM2

MPBUSY

MVALID2

EOM

BYTAVAIL

DUMPOUT

OBEMPTY

SENDEOIL

TRUE if the Input Buffer is full, FALSE otherwise. Set
in the BYTEIN interrupt service routine and cleared by
FREESPACE .

The Message Remote flag is used by the Message Processor
to determine how it should process the message. If
TRUE, the message is processed as though the instrument
is in the Remote state. The MSGREM flag is set TRUE by
BYTEIN if the first byte of the first message is
received when the instrument is in REMOTE state. It is
set FALSE if the first byte of the first message is
received while the instrument is in LOCAL state or a
transition from REMOTE to LOCAL occurred which was
initiated by an rtl (front panel button push).

This flag strores the REMOTE/LOCAL state of the
instrument at the time the first byte of the second
message is received. It is copied to MSGREM by the
NEXTMSG routine.

This flag is TRUE whenever the Message Processor is busy
parsing a message. It is set by BYTEIN when the first
byte of the first message is received. It is set FALSE
in NEXTMSG when there is no message waiting for
execution.

FALSE if the first byte of the second message has not
been received. Copied to MPBUSY by NEXTMSG.

Set by GETBYTE routine when the End-of-Message condition
is encountered. Cleared by GETBYTE otherwise.

Indicates whether there are any bytes available in the
first message. Is set TRUE by BYTEIN to indicate when
GETBYTE can return characters from the buffer. It is
set FALSE by GETBYTE when GBPTR is incremented and
becomes equal to BIPIR.

This flag is used to indicate to the POUTBYTE routine
when it should not put the bytes into the Output Buffer.
It is set by the BYTEIN interrupt service routine when
the first byte of the second message is received or when
it detects that both the Input Buffer and the Output
Buffer are full. DUMPOUT is tested and set in the
PUTBYTE routine and cleared by NEXTMSG.

Is used to distinguish between buffer full and buffer
empty. If set, the buffer is empty but there may be a
hidden byte. Set TRUE by INITOUTBUF and when BYTEOUT
empties the buffer. Set to FALSE when PUTBYTE stores
bytes into the buffer.

‘Set TRUE by PUTEOI to indicate to BYTEOUT that it may

send the HIDDEN byte. Set FALSE by INITOUTBUF.




602

EOION

EOISENT

OUTBUSY

FLAGLOST

GPIB Driver 6-6
GPIB Variables

Set by BYTEOUT to indicate that the EOI line is

asserted. This is used by BYTEOUT to determine when to
set EOISENT.

This flag is set by the BYTEOUT interrupt service
routine when the message terminator is accepted by the
listening device(s). It is cleared by INITOUTBUF and
the Talk Addressed interrupt service routine. EOISENT =
TRUE prevents the GPIB Task from sending the talked with
nothing to say message after EOIL has been transmitted.

Indicates whether the Output Buffer was used since it
was initialized. It is set by the PUTBYTE routine when
the first byte is placed in the buffer and is cleared
when the instrument is talk addressed after EOISENT
becomes true. or by INITOUTBUF. This prevents the GPIB
Task from transmitting the "talked with nothing to say"
response.

Is set TRUE when the BYTEOUT interrupt flag was set and
cleared but not serviced. FLAGLOST is cleared when a
data byte is stored into the data out register in the
TMS 9914. For further description of the problem, see
the descussion of BYTEOUT.

*%% Variable Storage *#%

HIDDEN

INCHAR

OUTCHAR

GPINT

STATQUO

CRNEVENT

EQRES

C.RQS

Saves bytes sent to PUTBYTE until it has been determined
whether EOI should be asserted with this byte. After
PUTEOI has set SENDEOI and BYTEOUT has emptied the
buffer, BYTEOUT asserts EOI and sends the hidden byte.

The variable in which GETBYTE returns the byte fetched
from the Input Buffer.

The variable used to pass the byte to be placed in the
Output Buffer. The value must be stored in OUTCHAR
before PUTBYTE is called.

The variable used to store the value of the TMS 9914
interrupt status register. Required because the reading
the register clears the interrupt occurred flags.

Status quo is a copy of the serial poll register of the
TMS 9914, that is, the current status byte.

Current Event is a copy of the EVENTCOD that was used to
generate the STATQUO. It is set and used by the
STORESTB routine.

Is a copy of the EVENTCOD for the most recently reported
status byte in which the RQS message was asserted. It
is used to generate the error query (ERR?) response.

The current state of the RQS command setting. Set by
the "RQS ON" command and cleared by "RQS OFF" It is used
to disable service requests and force the reporting of



6.2

EVENTCOD

PENDSTAT

NDDSTAT

GPIB Driver 67
GPIB Variables

normal device dependent status.

A temporary storage area (may be a register in the
processor) used to pass event codes from one routine to
another or within a routine.

The Status Pending Buffer which is an array containing
one byte of RAM for each of the priority classes
identified in the Status Table. It saves one eventcode
for each priority level and is referenced in STORESTB to
determine which status byte to output.

The entry in the Pending Status Table in which the
Normal Device Dependent status is stored. It is given a
separate name so that it 1s easier to reference, but it
must be located at the end of the Pending Status Table.




6.3 GPIB Driver 6-~8
GPIB Input

6.3 GPIB Input

All input to the system from the GPIB interface is handled by the
GPIB driver. The driver contains a BYTEIN interrupt service routine
which puts bytes from the TMS 9914 GPIB chip into the Input Buffer
whenever the chip generates a BI (Byte In) interrupt. The GETBYTE
routine takes a byte out of the buffer and returns it to the calling
routine. FREESPACE releases the Input Buffer data area which was
scanned so that more bytes may be placed in the buffer. The NEXTMSG
subroutine manages the message pointers and transfers message 2 to
message l. CONTBIN continues the input of binary data in the case of
terminating prematurely on a line feed character embedded in the data
stream while the instrument is in the line feed termination mode. All
Input Buffer pointers and flags are initialized by the INITINBUF
routine.

The Input Buffer is a circular buffer structure which may contain up
to two complete messages. Further input to the instrument is prevented
only when the Input Buffer becomes full or when two message terminators
‘are marked in the buffer. The reason more than one message is allowed
in the buffer is to satisfy the design goal of making the instruments
always listen, which increases the system throughput and makes the
instrument more friendly to operate. By limiting the number of
messages to two, the overhead required to manage the messages is
minimized and the benifits remain approximately the same. Pointers are
used to mark the End-Of-Message position in the buffer so that the
driver allows binary I/0.

Notes:

The flag MPBUSY was originally called MVALID. The reason for the
change is that MPBUSY needed to have the same value, ie. MPBUSY must
be set when the first byte of the first message is received in order to
prevent the following situation:

Message Processor is suspended waiting for the first byte of a
message.

A fast controller sends a query message and makes the instrument a
talker.

The GPIB Task is activated and finds the MPBUSY flag FALSE, so it
starts the generation of output.

The Message Processor is reactivated and also calls PUTBYTE, which
is not re-entrant.

Setting MPBUSY when the first byte of the message is received solves
the problem because the GPIB Task does not generate the "talked with
nothing to say" response if the Message Processor is busy.

There are two RFD holdoff modes in the TMS 9914 chip. These modes
may be set or cleared independently and they provide a holdoff after
receiving EOI ( EOI HOLDOFF ) or a holdoff after every data byte ( DATA
HOLDOFF ). Both holdoff modes are released by a release RFD holdoff
command to the TMS 9914 chip.



6.3

GPIB Driver
GPIB Input

Tests Performed on the Input Buffer

TEST
Is byte received the
First byte of first message

Is the byte received the
First byte of second message

Instrument in line feed mode
Physical end-of-buffer
Input Buffer full

EOI received with byte

HOW DETERMINED

MPBUSY = FALSE
EOMPTR = BIPTR
LFMODE = TRUE

PTR = INBEND
IRBUFUL = TRUE

Status read from TMS 9914 chip

First Message terminator in buffer EOMPTR <> 0

Input Buffer not full

Is the byte received the
Last byte of first message

End of first message

Byte Available

IRBUFUL = FALSE

BIPTR = EOMPTR

GBPTR

EOMPTR

BYTAVAIL = TRUE

Can bytes be returned to freespace BUPTR <> GBPTR

6-9

Note to Message Processor, in scanning to End-of-Message (for format,
error, etc.) the FREESPACE routine must be called between every byte.

This prevents GETBYIE from suspending on a "buffer empty" condition

when in reality the buffer is full, but bytes not returned to

freespace.




6.3 GPIB Driver 6-10
GPIB Imnput

BYTEIN

The BYTEIN interrupt service routine assumes that the TMS 9914 chip
is initialized to the EOI HOLDOFF mode. If the LFMODE flag is TRUE, it
additionally assumes that the chip is in the DATA HOLDOFF after every
byte mode.

The function of the BYTEIN interrupt service routine is to:

1. Set the MPBUSY, MVALID2, MSGREM and MSGREM2 flags on the
first byte of the first and second message.

2. Detect the deadlock condition of Input Buffer and Output
Buffer being full and break the deadlock. If only the Input
Buffer is full, holdoff on all data.

3. Input the data byte.
4, Indicate whether there is new data available.
5. Set the End-of-Message pointers.

6. Release the RFD holdoff if necessary.

The BYTEIN interrupt service routine is called (dispatched to) when
the GPIB interrupt handler detects a BI interrupt from the TMS 9914.

The first thing the BYTEIN routine checks is whether this is the
first byte of a message, which must be done before the byte is taken
from the chip ( while the holdoff is active ). This is done by testing
the MPBUSY flag, which is FALSE if there is no message being processed.
Therefore, if it is FALSE, MPBUSY is set TRUE and the new status is
reported, the Output Buffer is initialized, the GPIB Task is restarted,
and MSGREM is set to the REMOTE/LOCAL state of the instrument.

The GPIB Task is restarted by the BYTEIN interrupt service routine
when the first byte of the first message 1s received in order to
prevent the GPIB Task from generating a response at the same time the
Message Processor is. For example, if the instrument was a talker and
the controller sent a DCL followed by the instrument’s listen address
and a message, then the instrument is talked with nothing to say during
the time between the DCL and the first data byte of the message being
received. Since this can be arbitrarily long, the GPIB Task may have
started generating output and therefore must be reset along with the
Output Buffer when the new message is received.

If MPBUSY is TRUE and BIPTR = EOMPTR, then this is the first byte of
the second message, so MSGREM2 is set to the REMOTE/LOCAL state of the
instrument, the MVALID2 flag is set TRUE, the Output Buffer is cleared
(by calling IRITOUTBUF) and the DOUMPOUT flag is set true. Note that
IRITOUTBUF clears the DUMPOUT flag, so DUMPOUT must be set TRUE after
initializing the buffer. This doesn’t cause any problems because



6.3 GPIB Driver 6-11
GPIB Input

interrupts are masked during the execution of BYTEIN.

The location into which the byte will be stored is saved and the
buffer pointer is advanced. If it is at the end of the circular buffer
then the pointer is set to the physical beginning of the buffer.

Next BYTEIN determines if the Input Buffer becomes full when the
current byte is put in the buffer. If so, INBUFUL is set, RFD holdoff
is set and the Output Buffer is tested to see if it is full. If full,
then the OQutput Buffer is initialized and the DUMPOUT flag is set to
break the deadlock of input and output buffers being full. Then the
condition is reported by updating the GPIB status.

Once all pre-processing to determine if the RFD holdoff should be
set is accomplished, the byte is read from the TMS 9914 chip and stored
in the Input Buffer. If this byte is part of the first message, then a
new byte is being made accessable to the GEIBYTE routines, so BYTAVAIL
is set TRUE to indicate this. Then BYTEIN determines if an
End-of-Message occurred with the last byte (either EOI received
concurrent with the byte or the byte was a LF when the instrument was
strapped for the LFMODE). If so, then the appropriate End-of-Message
pointer is updated.

Finally, BYTEIN checks to see if it needs to release the RFD holdoff
. This is done in LFMODE when the Input Buffer is not full and doesn’t
contain a second message terminator. When in EOI message termination
mode, the RFD holdoff is released only if the byte stored was the last
byte of the first message.

Note that releasing the holdoff when the TMS 9914 chip is not
actively holding off data can cause the loss of a data byte.




6.3 GPIB Driver 6-12
GPIB Input

Pseudo code for the BYTEIN interrupt service routine.

BYTEIN
#ROUTINES CALLED: CHNGBUSY, INITOUTBUF, NEWEVENT
#CALLED BY: GPIBDSP

#SET THE MSGREM AND MSGREM2 FLAGS.
IF NOT( MPBUSY ) THEN #FIRST BYTE OF FIRST MESSAGE
MPBUSY = TRUE
DISABLE HARDWARE TRIGGERS WHILE BUSY
CHNGBUSY
INITOUTBUF
RESETGP #RESTART THE GPIB TASK
MSGREM = REMOTE
ELSE #CHECK FOR FIRST BYTE OF SECOND MESSAGE
IF EOMPTR = BIPTR THEN #FIRST BYTE
MVALID2 = TRUE
MSGREM2 = REMOTE
INITOUTBUF
DUMPOUT = TRUE
ENDI
ENDI
TEMPBI = BIPTR

#ADVANCE POINTER (CIRCULAR BUFFER)
BIPTR = BIPTR + 1
IF BIPTR = ~ INBEND THEN #AT END OF BUFFER
BIPTR = ~ INBUF (1)
ENDI
#CHECK FOR BUFFER FULL
IF BIPTR = BUPTR THEN
INBUFUL = TRUE
TMSAUXCM = HDFA.SET #SET DATA HOLDOFF MODE
IF NOT( OBEMPTY ) AND ( PBPTR = BOPTR ) THEN #OUTBUF FULL
INITOUTBUF
DUMPOUT = TRUE
SAVE EVENTCOD ON STACK
EVENTCOD = DEADLOCK #ERROR CODE = 203
NEWEVENT
RECOVER SAVED EVENTCOD
ENDI
ENDI

#READ DATA BYTE FROM THE CHIP
BYTE[ TEMPBI ] = TMSDATA

IF EOMPTR = O THEN #PART OF FIRST MESSAGE
BYTAVAIL = TRUE
ENDI

##SET END OF MESSAGE POINTERS
IF EOIRECEIVED OR ( LFMODE AND BYTE[ TEMPBI ] = LF ) THEN
IF EOMPTR = 0 THEN #END OF FIRST MESSAGE
EOMPTR = BIPTR



6.3

GPIB Driver
GPIB Input

ELSE #ENDI OF SECOND MESSAGE
EOMPTR2 = BIPTR
ENDI
ENDI

#DECIDE WHETHER TO RELEASE RFD HOLDOFF

IF LFMODE THEN
IF EOMPTR2 = 0 AND NOT( INBUFUL ) THEN

TMSAUXCM = RHDF #RELEASE RFD HOLDOFF

ENDI

ELSE #EOI ONLY MODE
IF BIPTR = EOMPTR AND NOT( INBUFUL ) THEN
TMSAUXCM = RHDF #RELEASE RFD HOLDOFF

ENDI

RETURN




6.3 GPIB Driver 6-14
GPIB Input

GETBYTE

The GETBYTE subroutine is called by the system in the Message
Processor to fetch the next byte from the Input Buffer. If the next
byte of the message is not available, GETBYIE suspends until it is
available. 1If it encounters the End-of-Message, then it returns with
EOM set TRUE. If it detects that the buffer is full and there is no
byte available it sets the EOM flag and error code #203. Otherwise it
returns the byte in variable INCHAR after advancing the GBPTR and
clearing the EOM flag.

Pseudo code for GETBYTE.

GETBYTE
‘#ROUTINES CALLED: LOADBYTE

#CALLED BY: SCANFRMT, GETCHR, LLSE.CMD AND
# ANY OTHER ROUTINES THAT INPUT DATA FROM THE BUFFER.

EOM = FALSE
MASK INTERRUPTS
IF BYTAVAIL THEN

LOADBYTE
ELSE
IF GBPIR = EOMPTR THEN #END OF MESSAGE ENCOUNTERED.
EOM = TRUE

ELSE #NO BYTE AVAILABLE IN BUFFER
IF INBUFUL THEN #ISSUE ERROR
MPERRCD = DEADLOCK
ELSE #WAIT FOR NEXT BYTE
REPEAT
SUSPEND
UNTIL BYTAVAIL
ENDR
LOADBYTE
ENDI :
ENDI
ENDI
ENABLE INTERRRUPTS

RETURN

Note:

Interrupts must be masked during the execution of GETBYTE to prevent
a controller from filling the Input Buffer between the time BYTAVAIL is
tested and the test on INBUFUL is performed.



6.3 GPIB Driver 6-15
GPIB Input

LOADBYTE

This subroutine loads a byte from the circular Input Buffer into the
variable INCHAR. After getting the byte, it advances the GBPIR to the
next available byte. It also indicates whether there are any more
bytes available for the next call to GETBYTE.

LOADBYTE
#ROUTINES CALLED: NONE
#CALLED BY: GETBYTE

IRCHAR = BYTE[ GBPTR ]

GBPTR = GBPIR +1

IF GBPTR = ~ INBEND THEN #AT END OF CIRCULAR BUFFER
GBPTR = ~ INBUF (1)

ENDI

#TEST TO SEE IF ANY MORE BYTES ARE AVAILABLE

IF GBPTR = BIPTR OR GBPTR = EOMPTR THEN
BYTAVAIL = FALSE

ENDI

RETURN
Note that interrupts must be masked during the tests to determine if

BYTAVAIL should be set FALSE because the BYTEIN interrupt service
routine also tests and changes the state of these variables.




6.3 GPIB Driver 6-16
GPIB Input

FREESPACE

FREESPACE is the routine called by the Message Processor to return
bytes that are no longer needed to the free area in the circular Input
Buffer. FREESPACE releases the bytes by setting BUPTR equal to GBPTR.
If the Input Buffer is not full when FREESPACE is called, FREESPACE
simply releases the space to the buffer. When the buffer is full the
holdoff on all data is asserted and the instrument does not accept any
more data. In this case FREESPACE must determine whether or not bytes
are freed and if so enable more input by releasing the holdoff.

There are two conditions in which the holdoff must be released. One
is when BUPTR <> GBPTR. That is, when the pointers are indicating that
bytes are definitely released. The other condition is one in which the
Input Buffer is full of the first message and it has all been read.
This condition is detected when BUPTR = GBPTR and both BYTAVAIL and
MVALID2 are FALSE. MVALID2 false indicates that the instrument never
received any bytes in the second message and BYTAVAIL false qualifies
the condition of having read all of the first message.

The following information may be helpfull in understanding the
states of the Input Buffer flags when GBPTR = BUPTR.

States of the Input Buffer
1. Buffer Empty
2. Buffer Full and First message UNREAD
3. Buffer Full of Second message and First message READ
4. Buffer Full of only First message and all READ

State 1 INBUFUL 1 BYTAVAIL 1 MVALID2

1 1 1

1 1 FALSE 1 FALSE 1 FALSE
1 1 1
1 1 1

2 1 TRUE 1 TRUE 1 TRUE/FALSE
1 1 1
1 1 , 1

3 1 TRUE 1 FALSE 1 TRUE
1 1 1
1 1 1

4 1 .TRUE 1 FALSE 1 FALSE
1 1 1




6.3 GPIB Driver 6-17
GPIB Input

Pseudo code for FREESPACE.

 FREESPACE
#ROUTINES CALLED: NONE
#fCALLED BY: SCANFRMT, ABORTMSG, TABLSRCH, NEXTMSG

##fCHECK IF RELEASE OF RFD HOLDOFF IS REQUIRED
IF INBUFUL THEN
IF GBPTR <> BUPTR OR NOT( BYTAVAIL OR MVALID2 ) THEN
#THESE ASSIGNMENTS MUST BE DONE BEFORE THE HOLDOFF
#IS RELEASED BECAUSE THE HOLDOFF IS PREVENTING ANOTHER
# BI INTERRUPT.
INBUFUL = FALSE
BUPTR = GBPTR
IF EOMPTR2 = 0 THEN #SECOND MESSAGE NOT IN BUFFER, SO
IF NOT ( LFMODE ) THEN #TURN OFF HOLDOFF MODE
TMSAUXCM = HDFA.CLR
ENDI
TMSAUXCM = RHDF.CLR #RELEASE RFD HOLDOFF
ENDI
ENDI
ELSE #SIMPLY RELEASE SPACE TO BUFFER
BUPTR = GBPTR
ENDI

RETURN




6.3 GPIB Driver 6-18
GPIB Input

NEXTMSG

The NEXTMSG subroutine manages the Input Buffer pointers and flags
associated with having two messages in the Input Buffer. It is called

by the Message Processor when it is ready to start processing a new
message.

Pseudo code for NEXTMSG

NEXTMSG
#ROUTINES CALLED: FREESPACE, HWGET.EN, CHNGBUSY
#fCALLED BY: MSGPROC

FREESPACE

DISABLE INTERRUPTS

EOMPTR = EOMPTR2

EOMPTR2 = 0

MSGREM = MSGREM2

#IF FIRST BYTE OF 2ND MESSAGE RECEIVED THEN

#SET BYTAVAIL, MPBUSY TRUE, ELSE SET THEM FALSE.
BYTAVAIL, MPBUSY = MVALID2

HWGET .EN #CONDITIONALLY ENABLE HARDWARE TRIGGER

CHNGBUSY
MVALID2 = FALSE
DUMPOUT = FALSE

IF NOT( INBUFUL ) AND EOMPTR <> O THEN

{WHEN EOMPTR = O THE MESSAGE TERMINATOR

# HAS NOT BEEN RECEIVED.

IF NOT( LFMODE ) THEN #TURN OFF HOLDOFF MODE

TMSAUXCM = HDFA.CLR

ENDI

TMSAUXCM = RHDF.CLR #RELEASE RFD HOLDOFF
ENDI
ENABLE INTERRUPTS

RETURN

Note:

Interrupts must be disabled to prevent BYTEIN interrupts while the
pointers and flags are being updated.



o

6.3 GPIB Driver 6-19
GPIB Input

CONTBIN

This routine is used by command handlers that input binary data
while the instrument is set to delimit on an ASCII character (like
<LF>).

Note that commands which input binary data may not be in the same
message as output commands since BYTEIN clears the Output Buffer when
it receives the first byte after a terminator.

Pseudo code for the Continue Binary Input Routine.

CONTBIN
#ROUTINES CALLED: FREESPACE
#fCALLED BY: BIN.PROC

FREESPACE

DISABLE INTERRUPTS

EOMPTR = EOMPTR2

EOMPTR2 = 0

MVALID2 = FALSE

IF NOT( INBUFUL ) AND ( EOMPTR <> 0 ) THEN
TMSAUXCM = RHDF.CLR #RELEASE RFD HOLDOFF

ENDI

ENABLE INTERRUPTS

RETURN




6.3 GPIB Driver 6-20
GPIB Input

Input Buffer Initialization ¢

This subroutine is used to initialize the Input Buffer pointers and
flags to their power-on state.

INTERRUPTS MUST BE MASKED BY THE CALLING ROUTINE.

Pseudo code for INITINBUF.

INITINBUF
#ROUTINES CALLED: CHNGBUSY
#fCALLED BY: DCAS (DEVICE CLEAR)

INBUFUL = FALSE

BYTAVAIL = FALSE

DUMPOUT = FALSE

MPBUSY = FALSE

MVALID2 = FALSE

BIPTR = ~ INBUF (1)

GBPTR = ~ INBUF (1)

BUPTR = ~ INBUF (1)

EOMPTR = 0

EOMPTR2 = 0

CHNGBUSY

IF NOT( LFMODE ) THEN
TAKE OUT OF HOLDOFF ON ALL DATA MODE
#IN CASE THE BUFFER WAS FULL WHEN DCL OCCURRED.

non

ENDI
RELEASE RFD HOLDOFF

RETURN



6.4 GPIB Driver 6-21
. GPIB Output

6.4 GPIB QOutput

All messages output to the GPIB interface from the operating system
are handled by the GPIB Driver. Because the Message Processor task
doesn’t know whether EOI is to be transmitted at the time it puts bytes
into the Output Buffer, the PUTBYTE routine hides this byte from the
BYTEOUT interrupt service routine and exposes the previously hidden
byte. PUTEOIL then exposes the "hidden byte" and in doing so indicates
that the EOI is to be transmitted with the last byte.

The BYTEOUT interrupt service routine takes bytes from the Output
Buffer and puts them into the TMS 9914 GPIB interface chip. The BO
interrupts are always enabled. When a BO interrupt occurs and there is
no data ready for output, the FLAGLOST variable is set TRUE to indicate
that the interrupt occurred. When data becomes available, the
interrupt is serviced by faking a BO interrupt (by calling the BYTEOUT
interrupt service routine). In a normal software system the control
for the BO interrupt would be achieved by disabling the interrupt while
the Output Buffer was empty. In the TMS 9914 driver however, this
technique does not work because the TMS 9914 chip clears the interrupt
occurred bit when the interrupt status register is read (whether or not
the interrupt was masked). Therefore, all interrupts must be serviced
when the register is read and the interrupt lost information must be
maintained by the firmware.

The Output Buffer is a circular buffer which at any time contains at
most one message for output. The GPIB Output Buffer management
routines include:

GPIB Task The GPIB Task is used to determine when there is data
ready for output and generates the "talked with nothing
to say response'" when appropriate.

BYTEOUT an interrupt service routine which takes bytes from the
Output Buffer and puts them into the TMS 9914 GPIB
interface chip.

PUTBYTE The subroutine which is called by the operating system
and stores a byte in the Output Buffer.

PUTEOIL terminates the output message.

IRITOUTBUF initializes the Output Buffer pointers and flags.




6.4 GPIB Driver 6-22
GPIB Output

GPIB Task

The GPIB Task is called in a round robin fashion with the other
tasks in the system. It performs two major functions:

1. Determines when the instrument is "talked with nothing to
say" and outputs the appropriate response. (For acquisition
instruments this is the measurement -- other instruments send

the hex byte "FF" along with the appropriate message
terminator.

2. Fakes a BYTEOUT interrupt when the BO interrupt occurred flag
is lost in the chip. See the BYTEOUT interrupt service
routine for more information.

Pseudo code for the GPIB Task:

GPIBTASK
#ROUTINES CALLED: BYTEOUT
#CALLED BY: SYSTEM MONITOR
SUSPEND
CLEAR INTERRUPT MASK
REPEAT #FOREVER
SUSPEND

IF (Talk Addressed) THEN
IF NOT( OUTBUSY OR MPBUSY ) THEN
#THE OUTPUT BUFFER WAS NOT USED SINCE LAST TALKED
#AND MSGPROC IS NOT GENERATING ANY OUTPUT.
GENERATE "TALKED WITH NOTHING TO SAY" RESPONSE
ENDI
IF FLAGLOST AND (NOT( OBEMPTY ) OR SENDEOI ) THEN
#RESTART OUTPUT BY FAKING BYTEOUT INTERRUPT
MASK INTERRUPTS
BYTEOUT
ENABLE INTERRUPTS
ENDI
ENDI

ENDR

RETURN

Note: Testing for Message Processor not busy insures that it is not
in the process of generating output or dumping output.



EOI.

6.4 GPIB Driver 6-23
GPIB Output

Talked With Nothing To Say

The intent of this feature is to prevent a controller from getting
hung in an input statement when it addresses an instrument as a talker
without instructing it to do anything. In an attempt to make our
acquisition instruments "easier to use", we send the measurement result
in this condition. For example, with the DM or Counter it is nice to
have a system in which the controller need only input the measurement
result.

There is a conflict between the features described above in
practical applications. The intent of sending the measurement result
is to give an accurate value =- but suppose the controller has already
read the result. Surely it is not interrested in getting an "old"
result (one that it had read previously) but what should the instrument
do if no new result is ready? 1In the case of the counters this could
be a long time, particularly if the instrument is not being triggered.
Clearly simply waiting for a new result would violate the intent of the
"talked with nothing to say" response.

The solution for instruments that have this conflict is to:
1. Send the latest measurement if not previously transmitted.

2. If no result is ready, wait one "typical" measurement cycle
(ie. in the DC approximately 1/3 to 1/2 second).

3. If still waiting for the result after the time has expired,
send the FF

BYTEOUT

The BYTEOUT interrupt service routine’s function is to select the
next byte to output and put it into the TMS 9914 Data Out Register.

If there are no bytes in the Output Buffer, BYTEOUT checks SENDEOIL
and EOION and EOISENT to determine if it should send the HIDDEN byte.
Otherwise it disables the BO interrupt and if the previous bye was sent
with EOI, it also sets the EOISENT flag.

The BYTEOUT interrupt service routine is dispatched to when the GPIB

"interrupt handler detects a BO interrupt. The BO interrupt is enabled

by the GPIB Task when a byte is available for output.

The BO interrupt occured flag in the TMS 9914 chip is set if the
source handshake sends a byte, or by MTA if there is no byte available
for output in the data out register. The BO interrupt occurred flag is
cleared by a read of the interrupt flag register, or by a write to the
data out register.

In an early version of the TMS 9914 chip, it was possible for a
controller to lose a byte in the transfer of data from the instrument
due to the fact that the chip did not clear the BO interrupt occurred
flag when data was written to the Data Out register. The following
example illustrates the problem:




6.4 GPIB Driver 6-24
GPIB Output f

1. The controller sends MTA which sets the BO and MA flags (or
perhaps a device dependent interrupt occurs).

2. The processor vectors to the interrupt dispatch routine due
to the MA interrupt, but since reading the interrupt register
clears the BO flag, and since there is no data yet generated,
the processor sets a flag to indicate that a BO interrupt has
come and gone, unserviced.

3. If the controller times out while waiting for the instrument
to talk or decides to service an SRQ interrupt, or for any
other reason sends an UNT and later MTA, the BO interrupt
occurred flag is set again.

4. Eventually the processor has data ready to send and sees that
the BO interrupt has come and gone unserviced, so it fakes a
BO interrupt.

5. Note that there is a small window of time between the call to
the BYTEOUT interrupt service routine and when the data byte
is stored in the data out register. During this time, a MTA
message from the controller sets the BO interrupt flag and it
is not cleared by the store to the data out register. This
could result in a second store to the data out register
before the listener reads the first byte and thus a byte is
lost.

*%*% The above sequence is no problem now because the new mask of the
TMS 9914 chip clears the interrupt occurred flag when a data byte is
stored into the Data Out register.

Description of BYTEOUT operation.

The BYTEOUT interrupt service routine begins by clearing the
FLAGLOST variable in anticipation of storing a new byte into the chip.

If there are no bytes in the Output Buffer, BYTEOUT checks SENDEOI
to determine if it should send the HIDDEN byte. Otherwise it tests
EOION to determine if the previous byte was sent with EOI. If EOION is
set, then it sets EOISENT TRUE to indicate that the transfer is
complete. If it was not set, then it sets FLAGLOST to indicate that it
did not store a byte in the chip and that no more BO interrupts will

.occur until an interrupt is faked by the GPIB Task.

If the Output Buffer is not empty, it stores the next byte into the
chip, advances the pointer to the next available byte and if there are
no more bytes available it sets the OBEMPTY flag TRUE.



P
i

6.4 GPIB Driver
GPIB Output

Pseudo code for the BYTEOUT interrupt service routine.

BYTEOUT
#ROUTINES CALLED: NONE
#CALLED BY: GPIBTASK, GPIBDSP

FLAGLOST = FALSE
IF OBEMPTY THEN
IF SENDEOI THEN #TRANSMIT THE LAST BYTE
TMSAUXCM = FEOI #FORCE EOI WITH NEXT BYTE
EOION = TRUE #SHOW EOI ASSERTED
SENDEOI = FALSE
TMSDATA = HIDDEN
ELSE #WAIT FOR MORE OUTPUT
IF EOION THEN
EOISENT = TRUE #SHOW EOI BYTE ACCEPTED
ELSE
FLAGLOST = TRUE #INTERRUPT LOST (THANKS TI)
ENDI
ENDI
ELSE #SEND A BYTE
TMSDATA = BYTE [ BOPTR ]
BOPTR = BOPTR + 1
IF BOPTR = ~ OUTBEND THEN
BOPTR = ~ OUTBUF (1)
ENDI
IF BOPTR = PBPTR THEN #BUFFER EMPTY
OBEMPTY = TRUE
ENDI
ENDI

RETURN

6=25




6.4 GPIB Driver 6-26
GPIB Output

PUTBYTE

This is the subroutine that is used to store a single byte into the
Output Buffer. It is called by the Message Processor and the GPIB Task
(when the GPIB Task determines that the instrument is talked with
nothing to say).

Because the Message Processor doesn’t know whether EOI is to be
transmitted with bytes it puts into the Output Buffer until it scans
the entire input message, the PUTBYTE routine cleverly hides one byte
from the BYTEOUT interrupt service routine until PUTEOI is called.

In normal operation, PUIBYTE stores the hidden byte into the Output
Buffer, transfers the byte passed in the variable OUTCHAR into the
HIDDEN byte and returns. If the Output Buffer is full, then PUTBYTE
checks to see if the Input Buffer is also full. If the Input Buffer is
not full, then PUTBYTE suspends itself, waiting for available space in
‘the Output Buffer. If both the Input Buffer and the Output Buffer are
full, then PUTBYTE clears the Output Buffer sets the DUMPOUT flag to
break the deadlock detected and also sets an error code to report the
error condition to the controller.

Note: The MPBUSY flag prevents the GPIB Task from calling PUTBYTE
when the Message Processor is using it, and the GPIB Task is restarted
whenever MPBUSY is set. Therefore PUTBYTE does not need to be
re-entrant, but interrupts must be masked to prevent BYTEIN from
changing the Input Buffer variables ( and DUMPOUT ) during the
execution of PUTBYTE.

Pseudo code for the PUTBYTE subroutine.

PUTBYTE
#ROUTINES CALLED: NEWEVENT, INITOUTBUF
#CALLED BY: OUTPUT ROUTINES IN MSGPROC AND GPIBTASK
MASK INTERRUPTS #SO THAT BYTEIN CAN’T CHANGE VARIABLES

IF PBPTR = BOPTR AND NOT( OBEMPTY OR DUMPOUT ) THEN #OUTBUF FULL
IF INBUFUL THEN #BOTH BUFFERS FULL
EVENTCOD = DEADLOCK
NEWEVENT
INITOUTBUF
DUMPOUT = TRUE
ELSE #ONLY OUPUT BUFFER FULL
WHILE #0UTPUT BUFFER FULL
PBPTR = BOPTR AND NOT( OBEMPTY OR DUMPOUT ) DO
SUSPEND
ENDW
ENDI
ENDI



6.4 GPIB Driver
GPIB Output

IF NOT( DOUMPOUT ) THEN
IF OUTBUSY THEN
BYTE[ PBPTR ] = HIDDEN
PBPTR = PBPTR + 1
IF PBPTR = ~ OUTBEND THEN
PBPTR = ~ OUTBUF (1)
ENDI
OBEMPTY = FALSE
ELSE #FIRST BYTE OF MESSAGE
OUTBUSY = TRUE
ENDI
HIDDEN = OUTCHAR
ENDI

ENABLE INTERRUPTS

RETURN

6=27




6.4 GPIB Driver 6-28
GPIB Output

PUTEOI

The PUTEOI routine is called by the Message Processor and the GPIB
Task to terminate the message in the Output Buffer. Its function is to
add the alternate message delimiter (if strapped for the LF mode) and
set the SENDEOI flag to allow BYTEOUT to send the HIDDEN byte with EOI.

Pseudo code for the PUTEOI routine.

PUTEOI
#ROUTINES CALLED: PUTBYTE
#CALLED BY: MSGPROC, GPIBTASK

IF OUTBUSY THEN
IF LFMODE THEN
OUTCHAR = CR
PUTBYTE
OUTCHAR
PUTBYTE
ENDI

LF

#EXPOSE HIDDEN BYTE

MASK INTERRUPTS

SENDEOI = OUTBUSY

ENABLE INTERRUPTS
ENDI

RETURN

Note:

The interrupt masking is done to prevent the value of the OUTBUSY
flag from changing while being copied to SENDEOI. If the processor can
perform a memory-to-memory data transfer without being interrupted,
then the interrupt mask is not necessary. The reason this must be
protected is that a DCL interrupt changes the state of OUTBUSY and if
the interrupt occurred during the assignment, SENDEOI could end up in
an invalid state.



6.4

GPIB Driver
GPIB Output

INITOUTBUF

Pseudo code for the INITOUTBUF routine.

INITOUTBUF

#ROUTINES CALLED: NONE

#CALLED BY: DCAS, BYTEIN, PUTBYTE, MA

OUTBUSY = FALSE
EOISENT = FALSE
SENDEOI = FALSE

EOION = FALSE
DUMPOUT = FALSE
OBEMPTY = TRUE

#FORCE TMS 9914 SOURCE HANDSHAKE IDLE WITH
#NEW BYTE AVAILABLE FALSE

TMSAUXCM = NBAF
PBPTIR
BOPTR

RETURN

~ OUTBUF (1)
~ OUTBUF (1)

6=29

The INITOUTBUF routine resets all of the Output Buffer pointers and
flags to their power on state.




6.5 GPIB Driver 6-30
Status and Error Reporting

6.5 Status and Error Reporting

In general, Status and Error reporting are among the most difficult
cummunications that need to be accomplished in a programmable
instrument system. The reasons for this are:

1. Status/Errors that need to be reported typically occur
asynchronous to the "normal" communication between an
instrument and a controller.

2. As a result of #l above, the number of events that can occur
between transmissions is impossible to predict and therefore
the management of these events within the instrument has a
direct impact upon the information that it can report to the
controller.

3. Within the definition of the IEEE-488 (GPIB) there is an
interface function (SRQ) which provides the instrument with
the capability to alert the controller that it needs
"service". A method of reporting a minimmal amount of
information (7 bits) concerning the reason for the ReQuest
for Service (RQS) is also included in the standard as the
Serial Poll response byte.

A set of protocols which govern how status and errors are reported
have been established. These protocols are intended to provide a
framework for the communication of status and errors through the use of
the SRQ. Since the status byte returned in the Serial Poll response is
difficult to decode and doesn’t provide all of the information about
the condition an alternate approach to the SRQ and Serial Poll was
developed using a device dependent message =-- the ERROR? command.

Use of Status Bytes

The Codes and Formats Standard specifies the coding for the status
byte when used to report various commmonly occurring instrument
conditions and also indicates codes which are available to a device
designer for reporting device dependent status.



6.5

Status and Error Reporting

GPIB Driver

6-31

The following is a summary of the status bytes and the conditions

they represent:

SYSTEM EVENTS
SRQ Query Request
Power On
Operation Complete
User Request

"SYSTEM ERRORS
Command Error
Execution Error
Internal Error
Execution Warning
Internal Warning

DEVICE DEPENDENT EVENTS
Channel A Overflow
Channel B Overflow

DEVICE DEPENDENT STATUS
Status Byte
Where Y

1 ~———-> RQS
11 “==> Error
111 > Busy Bit
1111 ,
010X 00O
010X 0O
010X 0O
010X 00
011X 00O
011X 00O
011X 00O
011X 01
011X 01
(Examples)
110X 00
110X 00O
(Examples)

100X Y Z

1 if waiting for trigger

Z =1 if reading available

== O O
= O = O

— O O

------ > Device Dependent

O = O =

[a—y

See the Codes and Formats Standard for descriptions of the errors.

The coding scheme provided by the Codes and Formats Standard implies

that only one condition may be reported in any status byte.
than one condition may exist in the instrument at any given time,
provision must be made for a means of determining which status is
reported when a Serial Poll is performed.
included in the Codes and Formats Standard, therefore the following

Since more

This specification is not

rules are used in the TM5000 programmable instruments to report status:

1. The first condition to occur which is to be reported with the

RQS message asserted is written into the TMS 9914 chip.

2. When a status byte is read by the controller, the status byte
is updated with the highest priority status condition which
had not been sent.

3. All status conditions which occurred but have not been

reported (except power on) can be cleared by a device clear (

DCL ).

4. The Busy Bit represents the status of the Message Processor.




6.5 GPIB Driver 6-32
Status and Error Reporting

Use of ERROR? Command

Not all applications of programmable instruments using the GPIB need
the capability provided by the SRQ function and the Serial Poll
sequence. Very often the complexity of an interrupt service routine
for the SRQ is more than the application demands. For this reason the
RQS (Request for Service) command is implemented in all of the
instruments to allow the controller to shut off the ability of the
instrument to assert SRQ. In this mode of operation, another mechanism
is provided to transmit the error conditions detected. The ERROR?
command performs this function.

The scope of the error query was also expanded to provide
information about some conditions which are not specifically errors,
but are a status condition or event that the instrument needs to
report. As a result of this broader definition for the response to the
ERROR? command, the controller programmer has a simple way to acquire
information about both error and status conditions.

In addition, the ERROR? command provides more information about the
cause of the error or event than can be encoded in the Serial Poll
Status Byte. For this reason, the error query can be useful in both
the RQS ON and RQS OFF modes.

The ERROR? command always returns a single code which defines the
event -- the codes are defined in the table below. In the RQS OFF
mode, the ERROR? command returns the highest priority event waiting to
be transmitted and clears the event from the pending event table. With
RQS ON, the ERROR? command returns the code corresponding to the last
event reported in the Serial Poll Status Byte.

In both modes, all pending events (except POWERON ) can be cleared
by a DCL or SDC.



6.5

EVENTCODE PRIORITY STATUS
BYTE

Command E

CMDHDR
HDRDLM
CMDARG
ARGDLM
NONNUM
MISSARG
MSGDLM
CKSUMERR
BCNTERR

Execution Errors

REMONLY
NSPLOST
DEADLOCK
SETCONFL
ARGRANGE
GETLOST

CAL .MODE
CANT.CAL

SYM.FRQ
AMP .OFF
AMP .AM
HLD . PHS
HLD.FRQ
PHS . FM
PHS . VCF
GATE .MOD

Internal

INTFAULT
SYS.ERR
MATH .ERR

MEAS . ERR
OVRFL.ERR
SR.ERR

MLSTRB. ERR

STAT .ERR

rrors

MMM

WWwWwwwww

w W

LWWWLWwWLWwww

Errors

S

EoIE S

GPIB Driver

6-33

Status and Error Reporting

$61
$61
$61
§61
$61
$61
$61
$61
$61

$62
$62
$62
$62
$62
$62

'$62

$62

$62
$62
$62
$62
$62
$62
$62
$62

$63
$63
$63

$63
$63
$63
$63
$63

Status Table

ERROR
CODE

101
102
103
104
105
106
107
108
109

201
202
203
204
205
206

231
232

251
252
253
254
255
256
257
258

301
302
303

311
312
313
314
315

DESCRIPTION

Command Header Error

Header Delimiter Error

Command Argument Error

Argument Delimiter Error
Non-numeric Arg. (numeric expected)
Missing Argument

Invalid Message Unit Delimiter
Checksum Error

Bytecount Error

Command Not Executable in LOCAL
Settings lost due to rtl

I/0 Buffers Full, output dumped
Settings Conflicts

Argument out of range

Group Execute Trigger Ignored

Not in Calibrate Mode
Beyond Calibration Capability

Symmetry/Frequency Conflict
Amplitude/Offset Conflict
Amplitude/AM Conflict
Hold/Phase lock Conflict
Hold /Frequency Conflict
Phase lock/FM Conflict
Phase lock/VCF Conflict
Gate/Mode Conflict

Interrupt Fault
System Error
Math Pack Error

Timeout (measurement not completed)
Measurement Overflow

Serial I/0 Fault

Mag-latch relay strobe too long
Phase lock Range Error




6.5 GPIB Driver 6-34
Status and Error Reporting

AFCRANGE 4 $63 316 Frequency correction range exceeded
FRONT . TO 4 $63 317 Front Panel Time out
BAD.CAL 4 $63 318 Bad Calibration Constant
4 $63 320
4 $63 . Device Dependent Errors
4 $63 339
* * * 340 System RAM Error
* * * 341 System RAM Error (low nibble)
* * * 342
* * * . Reserved for Additional RAM Errors
* * * 349
* * * 350 CPU RAM Error
* * * 351 Calibration RAM Checksum Error
* * * 360 0000 ROM Placement Error
* * * 361 1000 ROM Placement Error
* * * 362 2000 ROM Placement Error
* * * 363 3000 ROM Placement Error
* * * 364 4000 ROM Placement Error
* * * 365 5000 ROM Placement Error
* * * 366 6000 ROM Placement Error
* * * 367 7000 ROM Placement Error
* * * 368 8000 ROM Placement Error
* -k * 369 9000 ROM Placement Error
* * * 370 AO00 ROM Placement Error
* * * 371 BO0OO ROM Placement Error
* * * 372 C000 ROM Placement Error
* * * 373 DOOO ROM Placement Error
* * * 374 EO0O0 ROM Placement Error
* * * 375 FOOO ROM Placement Error
* * * 380 0000 ROM Checksum Error
* * * 381 1000 ROM Checksum Error
* * * 382 2000 ROM Checksum Error
* * * 383 3000 ROM Checksum Error
* * * 384 4000 ROM Checksum Error
* * * 385 5000 ROM Checksum Error
* * * 386 6000 ROM Checksum Error
* * * 387 7000 ROM Checksum Error
* * * 388 8000 ROM Checksum Error
* * * 389 9000 ROM Checksum Error
* * * 390 A000 ROM Checksum Error
* * * 391 BO00 ROM Checksum Error
* * * 392 CO000 ROM Checksum Error
* * * 393 D000 ROM Checksum Error
* * * 394 EO000 ROM Checksum Error
* * * 395 FO0OO ROM Checksum Error
System Events
POWERON 1 $41 401 Power On

OPCOM # $42 402  Operation Complete



6.5 GPIB Driver 6-35
Status and Error Reporting

IDREQ it $43 403 User Request

Execution Warning

* * * 521 Displayed During Signature Analysis

Internal Warning

OVERRANGE # $66 601 Overrange

CHAPROT i $66 602 Channel A Protect
CHBPROT # $66 603 Channel B Protect
NOPRESCL # $66 604 No Prescaler

Device Status

BELOWLIM # $C1 701 Below Limits

ABOVELIM # $C3 703 Above Limits

CHAOVF # s$cl 711 Channel A Overflow

CHBOVF i# $C2 712  Channel B Overflow

NEGVCHNG it $C5 721  Neg. Supply Change to Voltage Reg.
NEGICHNG # $C6 722 Neg. Supply Change to Current Reg.
NEGUCHNG # $c7 723 Neg. Supply Change to Unregulated
POSVCHNG i $D9 724  Pos. Supply Change to Voltage Reg.
POS ICHNG # "~ $DA 725  Pos. Supply Change to Current Reg.
POSUCHNG # $DB 726  Pos. Supply Change to Unregulated
LOGVCHNG it $DD 727 Log. Supply Change to Voltage Reg.
LOGICHNG # $DE 728 Log. Supply Change to Current Reg.
LOGUCHNG # $DF 729  Log. Supply Change to Unregulated
INLOC it $ccC 731 In lock

OUTLOC # $C8 732  Not locked

* Not reported over GPIB so no entry in Status Table Required.
(Error Code displayed on Front Panel)

$ Hex Data

# Priority dependent upon device requirements.

Note that the BUSY Bit is shown false in all of the status bytes in
the table. The instruments, however, set it depending upon their state
at the time the status bye is stored into the TMS 9914.



6.5 GPIB Driver 6-36
Status and Error Reporting

Problems imposed by TI 9914 Chip

Because of limitations imposed by the TMS 9914 chip design, any
status byte written into the chip with the rsv bit set (the device’s
request for service message) cannot be changed until after it is read
by the controller.

If the firmware does attempt to change this status, it is possible
that the high priority status could be lost and the chip would report
the low priority status twice. To demonstrate how this could occur,
suppose:

1. An instrument puts some status with rsv = 1 into the chip.

2, The instrument has some new, higher priority status to
report.

3. Just prior to storing the new status code in the chip, the
controller starts a serial poll.

4, The controller reads the low priority status byte.
5. The processor finishes storing the byte in the chip.

6. The instrument firmware services the SPAS interrupt and has
no way of knowing which status was read -- it must assume
that the controller got the higher priority status.
Therefore, it puts the low priority status (which it thinks
the controller didn’t get) into the chip.

7. The controller reads the low priority status a second time
(with RQS asserted) and never gets the higher priority
status.

As a result, any new higher priority status cannot be reported until
the first status byte is read by the controller. However, the busy bit
can be changed at any time since it does not affect the status
condition (event) being reported. To summarize: the first occurance of
a status condition for which the RQS message is asserted is reported.
If other conditions occur before the status byte is read, they are held
until the byte is read, and then the highest priority condition which
is waiting to be reported is put into the chip.

Another problem in the TMS 9914 was discovered. The symptom of the
problem is that events waiting to be reported with RQS asserted are
lost when the controller performs part of the poll sequence very slowly
or reads the status byte more than once. The reason this occurs is
that the firmware in the instrument gets an SPAS interupt as soon as
the status byte with RQS asserted is read. If the firmware writes a
new status byte into the chip before the controller asserts ATN or if
the controller reads the status byte more than once, a new SPAS
interrupt occurs each time the status byte is read or ATN is asserted.
Since the firmware cannot tell whether the controller has read the
previous byte or the new byte, or is just toggling the ATN line, it



6.5 GPIB Driver 6-37
Status and Error Reporting

continues to put new status bytes into the master serial poll register
in the chip. They are lost because the chip never transfers them to
the slave register and thus they never get to the controller. There is
no way to fix or even help this problem in the instrument firmware --—
it must be fixed in the chip.

If the operator sends the instrument an RQS OFF command, the
instrument only reports its normal device dependent status. This is
due to the fact that there is no way to tell when a status byte with
the rsv bit clear is read from the TMS 9914 chip. When the instrument
is in the RQS OFF mode, the status conditions which require the SRQ
line asserted are saved and can be reported when the SRQ function is
re-enabled if the events were not cleared by the device clear ( DCL )
message. When the instrument receives the RQS OFF command, it turns
off the SRQ line by reporting normal device dependent status.

The instruments may also have other individual controls over whether
a condition should be reported with SRQ. These may be turned ON or OFF
at any time, however, the RQS OFF command has priority over the other
ON conditions. That is, if the instrument is in the RQS OFF mode, no
conditions with SRQ asserted are reported even though that conditon may
be turned ON. One other constraint which applies to these functions is
that if a status byte had been written into the chip to report a
condition before the condition was disabled, the pending status is not
modified, and only new occurances of the condition are not reported.
This is because the TMS 9914 chip has too many possibilities for
problems when replacing a status byte with the rsv bit set.




6.5 GPIB Driver . 6~38
Status and Error Reporting

Implementation Overview

For each condition which is reported in a status byte, there is an
associated EVENTCOD. These codes are 8 bit integer values which start
at 1 and indicate the priority of the condition, with 1 being highest
priority. A Status Table in ROM is used to look up status bytes,
status priority class and error query responses, using the EVENTCOD as
an index. EVENTCODs which are greater than 128 are reserved for
reporting normal device dependent status. There are no entries in the
Status Table for these EVENTCODs. This is due to the fact that, for
normal device dependent status, the EVENTCOD is equal to the status
byte, and the priority class and error query response usually
associated with the EVENTCOD are not required. An EVENTCOD equal to
zero indicates that there is no status to report.

To report a change in status, an EVENTCOD is passed to the NEWEVENT
routine, which enters that code into the Status Pending Buffer. If
‘this event can be reported at this time, then NEWEVENT calls the
STORESTB routine, which puts a status byte into the serial poll
register of the TMS 9914 GPIB interface chip. Otherwise, the event is
reported after the controller performs enough serial polls and it
becomes the highest priority status not reported.

Each time the controller polls and receives a status byte with the
RQS message asserted, STORESTB is called by the interrupt .dispatcher to
remove the EVENTCOD associated with that service request from the
Status Pending Buffer, store the EVENTCOD for the error query response,
and store a new status byte into the TMS 9914 chip.



6.5 GPIB Driver 6-39
Status and Error Reporting

NEWEVENT

The NEWEVENT routine is called from any routine that has status
changes to report to the GPIB interface. The calling routine passes an
EVENTCOD and NEWEVENT stores the EVENTCOD in the appropriate slot in
the Status Pending Buffer If the current status in the TMS 9914 has the
RQS message unasserted, NEWEVENT calls STORESTB.

To change the state of the BUSYBIT being reported, call the NEWEVENT
routine with the current normal device dependent EVENTCOD which can be
found in the Status Pending Buffer.

To report a change in one of the bits of the normal device dependent
status, load the current normal device dependent EVENTCOD from the
Status Pending Buffer, change the desired bit and call NEWEVENT with
this new EVENTCOD.

Pseudo code for NEWEVENT.

NEWEVENT

#fROUTINES CALLED: STORESTB

#CALLED BY: MSGPROC, KEYPROC, OR ANY ROUTINE WITH STATUS TO REPORT
SAVE AND MASK INTERRUPTS

IF EVENTCOD >= 80H THEN #NORMAL DEVICE DEPENDENT STATUS

#CLEAR RQS AND BUSY BIT '

_NDDSTAT = EVENTCOD AND NOTRQSBUSY
ELSE' #EVENTCOD IS AN INDEX INTO PENDING STATUS

IF EVENTCOD > NUMEVENTS THEN

EVENTCOD = SYS.ERR

ENDI

PSPTR = ~ PENDSTAT ( PRIORITY ( EVENTCOD ) )

IF BYTE[ PSPTR ] = O THEN #PRIORITY LEVEL IS EMPTY

BYTE[ PSPTR ] EVENTCOD
ENDI
ENDI
IF ( STATQUO AND RQSBIT ) = 0 OR NOT( CRQS ) THEN
STORESTB
ENDI

RESTORE INTERRUPT MASK

RETURN



6.5 GPIB Driver 6-40
Status and Error Reporting

STORESTB

The STORESTB routine finds the highest priority status in the Status
Pending Buffer, looks up the associated status byte in the Status Table
» adds the Message Processor Busy Bit ( MPBUSY ) and stores it into the
TMS 9914 serial poll register. If the instrument is in the "RQS OFF"
mode, the STORESTB routine reports normal device dependent status,
regardless of other pending status conditions.

Called from NEWEVENT and INITSTAT.

Pseudo code for STORESTB

STORESTB
#ROUTINES CALLED: NONE
#CALLED BY: NEWEVENT, GPIBDSP

SAVE AND MASK SPAS INTERRUPTS
IF CRQS THEN #SRQ SHOULD BE REPORTED
IF ( STATQUO AND RQSBIT ) <> O THEN
#CURRENT STATUS BYTE HAS RQS ASSERTED
#CLEAR RQSBIT IN CHIP AND INDICATE STATUS WAS REPORTED
TMSSPOLL = BUSYBIT AND MPBUSY
PENDSTAT ( PRIORITY ( CRNEVENT ) ) = 0
EQRES = CRNEVENT
ENDI

#SEARCH TABLE FOR HIGHEST PRIORITY STATUS
#NOTE THAT NDDSTAT <> 0 SO SEARCH DOESN’T FAIL
PSPTR = ~ PENDSTAT (1)
WHILE BYTE[ PSPTR ] = 0 DO
PSPTR = PSPTR + 1
. ENDW
ELSE #DON’T REPORT SRQ‘S
PSPTR = ~ NDDSTAT
ENDI
CRNEVENT = BYTE[ PSPTR ]
IF CRNEVENT < 80H THEN
#LOOK UP NEW STATUS BYTE IN Status Table
STATQUO = STATTBL ( CRNEVENT )
ELSE #NORMAL DEVICE DEPENDENT STATUS
STATQUO = CRNEVENT
ENDI
TMSSPOLL = STATQUO OR ( MPBUSY AND BUSYBIT )
RESTORE INTERRUPT MASK

RETURN



-

6.5 GPIB Driver 6-41
Status and Error Reporting

CHNGBUSY

The Change Busy routine is used to update the status of the BUSY bit
reported in the GPIB Status Byte. The current state of the MPBUSY flag
is stored into the TMS 9914 chip as the new status for the BUSY bit in
the Status Byte.

Pseudo code for the CHNGBUSY routine.

CHNGBUSY
#ROUTINES CALLED: NONE
#CALLED BY: BYTEIN, INITINBUF, NEXTMSG
SAVE THE INTERRUPT MASK
MASK ALL INTERRUPTS
TMSSPOLL = STATQUO OR ( MPBUSY AND BUSYBIT )
RESTORE THE INTERRUPT MASK
RETURN

Note that the interrupt mask must be saved because this routine is
called by interrupt handlers and active tasks.




6.5 GPIB Driver 6-42
Status and Error Reporting

INITSTAT

This routine initializes the status reporting section of the system.
It clears the Status Pending Buffer except for power on and normal
device dependent status.

It is called by the Device Clear interrupt service routine ( DCAS ).

INITSTAT
#fROUTINES CALLED: STORESTB
#fCALLED BY: DCAS (DEVICE CLEAR)
#CLEAR STATUS PENDING EXCEPT FOR POWER ON AND NDDSTAT.

PSPTR = ~ PENDSTAT (2)
REPEAT

BYTE[ PSPTIR ] = 0
PSPTR = PSPTR + 1
UNTIL PSPTR = =~ NDDSTAT

ENDR

IF CRNEVENT <> POWERON THEN

STORESTB #SERVICE HANDLER TO PUT STATUS BYTE IN CHIP
ENDI
EQRES = 80H #NO NORMAL DEVICE STATUS

RETURN
Note that NDDSTAT is not initialized here. It could be set to 80H in

this code, but it is probably more appropriate to set it to some device
dependent status during HWMONITR initialization.



6.6 GPIB Driver 6-43
Interrupt Handlers and Miscellaneous

6.6 Interrupt Handlers and Miscellaneous

GPIB Interrupt Dispatch

The GPIB Interrupt Dispatcher reads the TMS 9914 interrupt register
0 and saves it, since reading the flags clears the interrupts. It then
drops into a repeat loop which continues to service GPIB interrupts
until there are no more pendinge.

The dispatch routine is optimized to provide optimal service time
for BYTEIN interrupts. This is done on the assumption that the
controller is almost always faster than the instruments and we can
increase the system throughput most by getting the message into the
buffer.

Note that all of the interrupts currently enabled in interrupt
register 1 holdoff on NDAC. For this reason, once the condition
causing the interrupt is determined, no other tests must be performed
for the other conditions in register 1.

Pseudo code for GPIB dispatche.

GPIBDSP

#ROUTINES CALLED: BYTEIN, BYTEOUT, STORESTB, RLC, MA, DCAS, GET
#CALLED BY: IRQ.DSP

GPINT = TMSINTO
REPEAT #AS LONG AS IRQ IS ASSERTED BY TMS 9914
IF ( GPINT AND BIBIT ) <> O THEN BYTEIN ENDI
#BYTEIN TAKES CARE OF END INTERRUPTS AND MUST BE
#CALLED BEFORE DCAS (TO RELEASE THE HOLDOFF)
IF ( GPINT AND NOT.BI ) <> 0 THEN
IF ( GPINT AND BOBIT ) <> O THEN BYTEOUT ENDI
IF ( GPINT AND SPASBIT ) <> 0 THEN STORESTB ENDI
IF ( GPINT AND RLCBIT ) <> O THEN RLC ENDI
ENDI
IF ( GPINT AND INTIBIT ) <> O THEN #LOOK IN REGISTER 1
GPINT = TMSINTI
IF ( GPINT AND MABIT ) <> 0 THEN MA
ELSEIF ( GPINT AND DCASBIT ) <> O THEN DCAS
ELSEIF ( GPINT AND GETBIT ) <> O THEN GET
ENDI
TMSAUXCM = DACR.CLR
ENDI
GPINT = TMSINTO
UNTIL ( GPINT AND (INTOBIT + INTIBIT)) = O
ENDR

RETURN #TO IRQ HANDLER




6.6 GPIB Driver 6-44
Interrupt Handlers and Miscellaneous

REMOTE/LOCAL Processing
LOCAL to REMOTE

The instruments power up in the LOCAL state. A transition is made
from the LOCAL to REMOTE state if the Remote Enable line of the GPIB
interface is asserted when MLA (my listen address) is received.
Whenever a transition from LOCAL to REMOTE occurs, the Key Processor
Task is reset to its power on state. Therefore, any partially entered
front panel commands are aborted and front panel buttons pressed at the
time of the transition are ignored. Front panel entries are considered
complete when the Key Processor Task.

On a transition from LOCAL to REMOTE state the Key Processor task is
reset, possibly leaving the Pending Settings buffer in an invalid
state. However, the Pending Settings are valid if they are a result of
the Message Processor’s normal sequence of command execution.
Therefore, information must be provided to the REMOTE/LOCAL interrupt
‘handler to indicate where the Pending Settings came from. A flag
called FPCNTRL is used to indicate that the Front Panel user has
control over the instrument settings. The REMOTE/LOCAL status cannot
provide this function because the instrument may be in LOCAL state as a
result of a Remote Enable false transition, in which case a succeeding
transition from LOCAL to REMOTE should not cause a copy of Current
Settings to Pending Settings.

The FPCNTRL flag is set by the rtl processor when any key (except ID
) is pushed. FPCNTRL is reset by the Message Processor before any
command that changes Pending Settings is processed. If FPCNTRL is set,
then the LOCAL to REMOTE transition handler ( RLC ) calls the COPYC2P
routine.

To make it easier for front panel operators to input multiple
keystroke commands while a controller program is accessing instrument
settings (with queries), the rtl which occurs when a user presses a
front panel button is treated as a level which goes false only after a
time out of approximately five seconds. This prevents the controller
from taking the instrument to REMOTE state if a front panel operator is
actively using the front panel. If the controller wants absolute
control, then it can use the LLO command.



6.6 GPIB Driver 6-45
Interrupt Handlers and Miscellaneous

REMOTE to LOCAL

The REMOTE to LOCAL transition is initiated by either the Remote
Enable line of the GPIB becoming unasserted, the controller issuing a
GTL (go to local) interface message, or an operator pressing any of the
front panel buttons except the ID button when the instrument is not in
a LOCKOUT state. In each case the instrument immediately goes to its
LOCAL state.

The Message Processor function is complicated by the asychronous
occurance of REMOTE/LOCAL transitions in that some commmands
(operational or setting commands) cannot be processed when the
instrument is in LOCAL state, and it is possible (although unlikely)
for several REMOTE to LOCAL, LOCAL to REMOTE cycles to occur during the
processing of a single message. To simplify the situation for the
operator and the Message Processor function, a variable is defined and
associated with each message input. This variable is assigned the
REMOTE /LOCAL state of the instrument at the time the first byte of the
message 1s received. Since this variable is only modified by the rtl
process, any subsequent transitions from LOCAL to REMOTE do not affect
the processing of that message.

When an rtl occurs, (operator pressing a front panel button) the
variable associated with each message in the Input Buffer ( MSGREM and
MSGREM2 ) is set to LOCAL. When the Message Processor encounters a
REMOTE ONLY type command and MSGREM is set to LOCAL, it issues an
execution error (number 201) to indicate that a command was processed
which is not executable in LOCAL state.

Upon detecting either a Remote Enable false transition or a GTL
interface message in the GPIB driver, the instrument state is set to
LOCAL, but the variables associated with the messages in the input
buffer are NOT changed. This is done to accomodate controllers like
the 4051 which unassert the Remote Enable line when they are not busy.
In this case the instrument processes the entire message as though it
were in REMOTE. Notes:

1. A distinction between keys that change Pending Settings and
keys that do not change Pending Settings cannot be made. The
reason is that all keys (except ID) must force an rtl to
occur and set the Message Processor status to LOCAL. Any
Pending Settings set up before the rtl occurred must not be
executed at the end of message processing because the
instrument is now in LOCAL state, (under Front Panel
control).

2. If any Pending Settings exist which have not been copied to
Current Settings (indicated by NSP '"New Settings Pending"
flag) when an rtl occurs, then error #202 is issued and
Current Settings are copied to Pending Settings. The NSP -
flag is set by any routine that alters the Pending Settings.
It is cleared by: copying Pending Settings to Current
Settings , copying Current Settings to Pending Settings , a
DCL.




6.6 GPIB Driver 6-46
Interrupt Handlers and Miscellaneous

RTLPROC

This is pseudo code for the rtl processor, which performs the front
panel return to LOCAL function. It handles transitions from REMOTE to
LOCAL initiated by front panel button presses and is called from the
GETKEY routine. This function is not included in the RLC interrupt
service routine because the processor cannot tell rtl transition from

the GTL or REN false, and we don’t want to do this for these other
transitions.

RTLPROC

#THIS ROUTINE PERFORMS THE FRONT PANEL RETURN TO LOCAL FUNCTION

.#ROUTINES CALLED: NEWEVENT, COPYC2P
#CALLED BY: GETKEY (IN KEYPROC)

MASK INTERRUPTS

#FORCE AN RTL TO INHIBIT FURTHER TRANSITIONS TO REMOTE
FORCE RTL AUX COMMAND WITH C/S =1
#NOW CHECK IF IT WENT TO LOCAL. IF NOT, THEN INSTRUMENT IS
#IN THE REMOTE WITH LOCKOUT STATE, SO THE FUNCTION
#OF RTLPROC IS IGNORED.
IF LOCAL THEN {#MESSAGES ARE TO BE PROCESSED IN LOCAL
MSGREM = FALSE
MSGREM2 = FALSE

IF NSP AND NOT( HWSETR) OR FPCNTRL THEN #SETTINGS FROM GPIB
LOST

EVENTCOD = NSPLOST #ERRORCODE = 202
NEWEVENT
ENDI
COPYC2P
FPCNTRL = TRUE
ELSE #IN RWLS SO SET RTL PULSE
TMSAUXCM = RTL.CLR
ENDI
UNMASK INTERRUPTS

RETURN

Note:

The routine COPYC2P '"Copy Current Settings to Pending Settings"
never suspends.



6.6 GPIB Driver 6-=47
Interrupt Handlers and Miscellaneous

RLC Service Routine

The RLC interrupt is set by a LOCAL to REMOTE transition (REN AND
MLA AND NOT rtl) or by a REMOTE to LOCAL transition (((NOT REN) OR GTL
OR (rtl AND (NOT LLO))) while REMOTE). The MLA, LLO, GTL, rtl or REN
FALSE messages do not cause a RLC interrupt unless they cause a
transition from REMOTE to LOCAL or LOCAL to REMOTE. The REMOTE to
LOCAL transition is not handled in the interrupt service routine
because the processor cannot tell the cause of the transition. The rtl
device message is handled by the GETKEY routine. GTL and REN FALSE are
handled by the TMS 9914.

The operation of an instrument with the Group Execute Trigger
directly (in hardware) controlling the device dependent function
imposes an additional constraint upon the RLC routine. This is a
result of the fact that the hardware trigger is disabled when the
instrument is in the LOCAL state and is conditionally enabled on a
transition to REMOTE state. There is a problem with this in that a
controller may send MLA along with Remote Enable true, followed by a
GET command. In this case, the TMS 9914 trigger pulse may occur before
the instrument has enabled the hardware trigger. This will cause loss
of synchronization with the other instruments.

To solve this problem, the My Address interrupt in the TMS 9914 must
always be enabled. This causes an ACDS holdoff on MLA, preventing the
controller from sending GET. Then the interrupt handler must service
the RLC interrupt (if any) before releasing the ACDS holdoff on MLA.
This allow the Processor to enable the hardware trigger before the
controller sends GET. ' :

Whenever a RLC interrupt occurs, the processor must check if the TMS
9914 chip is in the Remote With Lockout State (RWLS). If it is, then
the rtl pulse command must be written into the TMS 9914 auxiliary
command register. This prevents the instrument from getting locked in
LOCAL state if the instrument is taken to REMOTE immediately after a
front panel button push (which sets the rtl level mode). The reason it
gets locked in the LOCAL state is that the transition to REMOTE resets
the Key Processor, preventing it from timing out =- the usual way out
of the rtl level mode, -- and any Remote enable false transition puts
the instrument back into LOCAL with the rtl level active so MA and
Remote Enable asserted does not take the chip to REMOTE.




6.6 GPIB Driver 6-48
Interrupt Handlers and Miscellaneous

Pseudo code for the RLC interrupt service routine.

RLC
#ROUTINES CALLED: COPYC2P, HWGET.EN, RESETKP
#fCALLED BY: GPIBDSP

IF RWLS THEN
TMSAUXCM = RTL.CLR
ENDIL
IF REMOTE THEN
IF FPCNTRL THEN
COPYC2P
fIMESSAGE PROCESSOR SETS FPCNTRL FALSE
ENDI
HWGET .EN #CONDITIONALLY ENABLE HARDWARE TRIGGER
RESETKP #RESET KEY PROCESSOR
ELSE #NOW IN LOCAL STATE
DISABLE HARDWARE TRIGGER
ENDI

RETURN



6.6 GPIB Driver 6-49
Interrupt Handlers and Miscellaneous

My Address Service Routine

The only function this service routine has to perform is to
initialize the Output Buffer if the end of message terminator had been
transmitted so that a new response will be generated.

Pseudo code for the MA Interrupt Service Routine

MA
#ROUTINES CALLED: INITOUTBUF
#CALLED BY: GPIBDSP
#THIS ALLOWS A NEW MEASUREMENT TO BE SENT FOR EACH MTA RECEIVED
IF TALKADDR AND EOISENT THEN
INITOUTBUF
ENDI
TURN ON "ADDRESSED" LED

RETURN

Note:

The TMS 9914 chip doesn’t generate a BO interrupt when talk
addressed if the previous byte has not been sent.




6.6 GPIB Driver
Interrupt Handlers and Miscellaneous

Device Clear & Selected Device Clear

6-50

The purpose of the Device Clear ( DCL ) or Selective Device Clear (

SDC ) functions is to restart communication with the instrument.

It

does not cause the instrument to change any of its current settings,

(these can be queried by the user when communication is
re-established).

The TMS 9914 Chip is initialized to generate an interrupt on DCL and
also to perform a ACDS holdoff on the DCL or SDC message. All device

clear processing is performed before the holdoff is released.

When the DCL or SDC interface message is received, the following

actions are taken:

1‘

Notes:

All command processing is terminated. This is accomplished
by restarting the Message Processor.

Clear the Input Buffer and the Output Buffer. Reset the
Message Processor and the GPIB Task. Input is disabled by
setting the RFD holdoff and output is terminated by disabling
the BO interrupt in the TMS 9914 and aborting the Source
Handshake with nbaf (new byte available false) auxillary
command.

Reset the instrument status (clear SRQ and the status byte
which caused it to be asserted -- except POWERON).

If the front panel is idle ( FPCNTRL = FALSE ) then Call the
COPYC2P routine to make sure that the Pending Setting Buffer
and the hardware pending setting registers are in the proper
state to begin processing a new message.

Restarting the Message Processor and GPIB Task is accomplished by
re-initializing their stacks.

Clearing the SRQ requires writing the new status byte without the
rsv bit set into the TMS 9914 chip.

The DCL interrupt service routine must prevent the BI and BO
interrupts which were pending from executing their service routines.
This assures that the instrument doesn’t transmit a spurious byte or
think that it got a byte after the DCL occurred when the byte really
arrived before the DCL.



6.6 GPIB Driver 6-51
Interrupt Handlers and Miscellaneous

Pseudo code for the DCAS interrupt service routine.

DCAS

#ROUTINES CALLED: RESETMP, RESETGP, INITINBUF, INITOUTBUF,
COPYC2P, HWGET.EN, INITSTAT

#CALLED BY: GPIBDSP, INITGPIB
RESETMP #RESET MESSAGE PROCESSOR STACK

RESETGP #RESET GPIB TASK
INITINBUF
INITOUTBUF
#fCLEARING OF SOURCE HANDSHAKE AND ACCEPTOR HANDSHAKE HAS ALREADY
#BEEN DONE SINCE THE INTERRUPT DISPATCHER CALLS THE BO AND BI
#SERVICE ROUTINES BEFORE DCAS.
IF NOT( FPCNTRL ) THEN
COPYC2P
ENDI
HWGET .EN #CONDITIONALLY ENABLE HARDWARE TRIGGER
INITSTAT

RETURN




6.6 GPIB Driver 6-52
Interrupt Handlers and Miscellaneous

Device Trigger Function (GET)
Overview of GET Operation

The Device Trigger function is implemented in this operating system
and the feature is enabled or disabled with the DT command. In the
device trigger active state, the device dependent function is not
executed until the Group Execute Trigger ( GET ) interface message is
received. The DT OFF command is used to disable the Device Trigger
function.

Since there may be more than one device function in an instrument
which may be initiated by the GET message, the DT command accepts
arguments which define the event or events to be initiated when the GET
message is received. This approach also resolves problems in
communicating to the instrument operator the fact that some events
cannot be synchronized. This is a result of the fact that some of the
events are initiated by firmware and others are initiated by the
‘hardware signal generated by the TMS 9914 chip when a GET message is
received.

There are two basic classifications of functions which are often
controlled by the GET. These are TRIGGER events, which for example
determine when a measurement is made, or SETTINGS, which specifies a
non-standard mode of executing a previously defined group of settings.

The implementation of the GPIB driver routine to handle the DT
TRIGGER mode is device dependent and the firmware performs the
appropriate action to implement the trigger. In DT TRIGGER mode, the
GET is ignored if the instrument is in the LOCAL state.

The GPIB driver responds to GET when in the SETTINGS mode by testing
to see if the instrument is busy processing REMOTE message, in LOCAL
state, or NSP is false. If any of these conditions is true, then the
GET is ignored since it has not completed building the pending settings
or in LOCAL control, in which case the operator does not expect the
settings to change. If neither condition is true, the interrupt
handler then simply sets the HWSETR flag and the execution of the
settings is initiated upon the next pass through the Hardware Settings
task.



6.6

GPIB Driver 6-53
Interrupt Handlers and Miscellaneous

Using the TMS 9914 GET Pulse

The hardware GET pulse from the TMS 9914 chip is enabled only if all
of the following conditions are true:

The instrument is in the REMOTE state.

The Message Processor is not busy.

A hardware setting change is not in progress.
The device trigger mode is not '"DT OFF"

The front panel user does not have control of the settings.
This condition only applies in the DT SETTING mode.

The hardware trigger must be disabled when any of the following
events occur.

1.

20

3.

4o

The BYTEIN interrupt service routine sets MPBUSY TRUE.

The rtl processor forces a transition to LOCAL (and therefore
sets FPCNTRL TRUE).

The RLC interrupt service routine detects a transition to
LOCAL state.

The GET interrupt service routine sets HWSETR TRUE.

The hardware trigger is conditionally enabled when any of the
following events occur.

1.

2.

3.

4o

The RLC interrupt service routine detects a transition to
REMOTE state. '

The NEXTMSG routine sets the MPBUSY flag FALSE.

.

The Hardware Settings task sets the HWSETR flag FALSE.

The DCL interrupt service routine sets the MPBUSY flag FALSE.
Hardware Considerations

In order to use the GET pulse provided by the TMS 9914, additional
hardware must be included to provide the following features:

l.

2.

The ability to prevent the TMS 9914 GET pulse from triggering
the instrument.

The ability to determine whether a GET pulse occurred before
or after the trigger was enabled or disabled. That is, when
a GET interrupt occurs, the micro-processor must determine if
the instrument really received this trigger.

The ability to force a trigger from the micro-processor.




A.

GPIB Driver 6-54
Interrupt Handlers and Miscellaneous

Interaction of GET with other tasks

REMOTE /LOCAL processor.

1.

The hardware trigger is disabled in the LOCAL state and
conditionally enabled on a transition to REMOTE state.
When the instrument receives a MLA and REN (and goes to
REMOTE ) followed by a GET, the TMS 9914 trigger pulse
may occur before the instrument has enabled the hardware
trigger. This causes loss of synchronization with other
instruments. To solve this problem, the MA interrupt in
the TMS 9914 must always be enabled. This causes an
ACDS holdoff on MLA, thus preventing the controller from
sending the GET. Then the interrupt handler services
the REMOTE/LOCAL change interrupt (if any) before
releasing the ACDS holdoff on MLA. This allows the
processor to enable the hardware trigger before the
controller sends GET.

The rtl processor disables the hardware trigger to
prevent triggers from occurring in LOCAL state.

The RLC interrupt service routine, upon detecting a
transition to REMOTE, performs the call to COPYC2P
before calling HWGET.EN. This insures that the NSP flag
is cleared if the Key Processor had control of the
settings buffers.

Hardware Settings task.

1.

The new settings pending flag ( NSP ) is cleared before
the HWGET.EN is called to enable the hardware trigger.
This prevents the trigger from being enabled in the case
where no New Settings Pending execution exist.

Message Processor

1.

The hardware trigger enable routine ( HWGET.EN ) is
called when the End-of-Message is processed. The MPBUSY
flag must be cleared to enable the trigger, but the busy
bit in the status byte must not be changed until the
hardware trigger has been conditionally enabled. The
busy status may be cleared upon return from the HWGET.EN
routine.

The Message Processor must wait for HWSETR to go FALSE
before calling HWGET.EN. This insures that the busy bit
remains asserted until the hardware trigger has been
enabled.



606

GPIB Driver 6=55
Interrupt Handlers and Miscellaneous

The device trigger mode can only be changed in the
Message Processor while MPBUSY is TRUE. Device trigger
mode must be set before HWGET.EN is called (this
simplifies the Hardware Settings task).

GET Interrupt Service Routine

1.

The GET interrupt must be enabled at all times. This is
done for two reasons; 1) It becomes easier to determine
if an ACDS holdoff must be released, and 2) a GET may
occur before the hardware trigger is disabled, but not
serviced until after the hardware trigger is disabled.
(see section on hardware considerations).

DCL Interrupt Service Routine ( DCAS ).

1.

The DCL Interrupt service routine must set MPBUSY FALSE,
then call HWGET.EN and then clear the Busy bit in the
status byte. This conditionally enables the hardware
trigger before the controller sees the busy go false.




6.6 GPIB Driver 6-56
Interrupt Handlers and Miscellaneous

HWGET .EN

This routine is used to conditionally enable the hardware trigger to
be pulsed by the TMS 9914 GET output.

Pseudo code for HWGET.EN.
NOTE:

This routine is for the general case of an instrument with a
hardware trigger for everything. It is modified slightly for the
PS5010 and the FG5010. The FG uses a mix of hardware and firmware
triggers.

HWGET .EN

SAVE THE INTERRUPT MASK
MASK ALL INTERRUPTS

#INTERRUPTS ARE MASKED TO PREVENT A TRANSITION TO LOCAL
# OR DCL INTERRUPT BETWEEN THE TIME REMOTE AND MPBUSY
# ARE TESTED AND THE TRIGGER IS ENABLED.

IF DT <> OFF THEN
IF REMOTE AND NOT ( MPBUSY OR HWSETR ) THEN
IF DT <> SET OR ( NSP AND NOT ( FPCNTRL ) ) THEN
GET.EN = 1
ENDI
ENDI
ENDI
RESTORE INTERRUPT MASK

RETURN

Pseudo code for the FG5010 HWGET.EN routine

FGHWGET .EN
SAVE INTERRUPT MASK
MASK ALL INTERRUPTS
IF REMOTE AND NOT ( MPBUSY OR HWSETR ) THEN

CASE (SFLGS.CS AND DT.STAT) OF

[ DT.TRIG ]
IF (MODE.CS = TRIG.MODE) OR (MODE.CS = BRS.MODE)
THEN
TRIG.CR = TRIG.CR OR GET.ENBL
ENDI
[ DT.GATE ]

IF MODE.CS = GAT.MODE THEN
IF GAT.CS THEN
TRIG.CR = (TRIG.CR AND OEFH) OR GET.ENBL
ELSE



6.6 GPIB Driver 6=57
Interrupt Handlers and Miscellaneous

TRIG.CR = TRIG.CR OR GATE.LVL LOR
GET .ENBL
ENDI
ENDI

ENDC
ENDI
RESTORE INTERRUPT MASK

RETURN




6.6 GPIB Driver 6-58
Interrupt Handlers and Miscellaneous

GET Interrupt Service Routine

The GET Interrupt Service routine is implemented differently in each
instrument, depending upon the individual hardware features. Examples
of the code for the interrupt service routines for several applications
follow.

For the DM:

DMGET . IH
IF DT = TRIG AND REMOTE THEN

GOTGET = TRUE #SET FLAG FOR THE HARDWARE MONITOR
ENDI

RETURN

For the PS5010

The GET interrupt should be enabled at all times, so we know that
the ACDS holdoff must be released unconditionally.

PSGET . IH

IF ( REMOTE AND NSP AND CDT )

AND NOT( MPBUSY OR HWSETR OR FPCNTRL ) THEN

HWSETR = TRUE #THIS UPDATES CURRENT SETTINGS BUFFER
ELSE

SAVE EVENTCOD

EVENTCOD = GETLOST

RECOVER EVENTCOD
ENDI

RETURN



6.6 GPIB Driver 6-59
Interrupt Handlers and Miscellaneous

For the FG5010:

The GET interrupt should be enabled at all times, so we know that
the ACDS holdoff can be released unconditionally.

FGGET .IH
IF NOT( HWSETR ) THEN #IGNORE GET’S WHILE UPDATING HARDWARE
CASE (SFLGS.CS AND DT.STAT) OF

[ DT.GATE ]
IF (MODE.CS = GAT.MODE) AND ( NSP = 0) THEN
IF (STROBE AND GAT.STAT)<>0 THEN
#THE CURRNET GATE IS HI
GATE .PS,GATE .CS=TRUE
#SET PENDING GATE LOW
TRIG.CR=TRIG.CR AND OEFH
ELSE #THE CURRENT GATE IS LOW
GATE .PS,GATE.CS=FALSE
#SET PENDING GATE HIGH
TRIG.CR=TRIG.CR OR GATE.LVL
ENDI
ELSE GET.LOST #REPORT TRIGGER IGNORED
ENDI

[ DT.SET ]

IF REMOTE AND ( NSP <> 0) AND
NOT ( MPBUSY OR FPCNTRL ) THEN
HWSETR = TRUE {#BEGIN SETTINGS EXECUTION NOW
TRIG.CR=TRIG.CR AND GET.DSBL #DISABLE HW
TRIGGERS
{WHILE THE SETTING CHANGE IS IN PROGRESS

ELSE GET.LOST

ENDI

[ DT.TRIG ]
#PULSE THE TRIGGERED LIGHT OF A TRIGGER OCCURRED
IF (TRIG.CR AND GET.ENBL) <> O THEN PULS.LIT=1AH
ELSE GET.LOST
ENDI

[ ELSE ] {#DT IS OFF
GET .LOST #REPORT TRIGGER IGNORED

ENDC
ELSE GET.LOST
ENDI

RETURN




6.6 GPIB Driver 6-60
Interrupt Handlers and Miscellaneous

Interface Clear

The Interface Clear function ( IFC ) takes the instrument to an
unaddressed state. No other action is taken in the instrument to reset
any other status. The IFC is handled by the TMS 9914.

Hopefully this includes releasing the RFD holdoff and the new byte
available false (see MAC or MA for recovery of a lost byte). 1Is it
possible to loose bytes??

No code is necessary for the Interface Clear function, since the
ADDRESSED light change is handled by the Hardware Settings task.



6.6 GPIB Driver 6-61
Interrupt Handlers and Miscellaneous

Parallel Poll

The following changes would be required to implement the Parallel
Poll function for the TM500 instruments:

Hardware
PE must be tied low on the 75160 buffers to allow a wired
"OR" capability during a Parallel Poll.

4051 A Parallel Poll routine in a rompack.

Instrument Firmware
The GPIB Interrupt Dispatch routine must recognize the PPC,
PPE, PPD, and PPU interface messages by means of an
unrecognized command interrupt from the TMS 9914 chip.

The PPC routine stores a '"pass next secondary" and a "release
ACDS holdoff" auxillary command into the TMS 9914 chip.

The PPE routine saves the interface message so that the
processor knows which line to program when there is a reason
to request service. The chip doesn’t set up the Parallel
Poll register, so the processor must use the PPE message and
the CRNEVENT status to build a byte to store into the
Parallel Poll register.

The PPU and PPD routines set a flag to disable reporting
information via the Parallel Poll and clear the Parallel Poll
register. The TMS 9914 chip does not do this automatically.

The status reporting routine must update the Parallel Poll
register as necessary.-

Note:

There is no automatic link in the TMS 9914 chip between the Serial
Poll and the Parallel Poll.

A good use for the Parallel Poll function is to report Busy Status.

Conclusions:

Implementing the Parallel Poll function would slow down every GPIB
interrupt since the dispatcher has to check for the Unrecognized
Command interrupt.

The status reporting routines would have extra work if they must
drive both the Serial Poll and the Parallel Poll functions.

Four extra interface messages (single bytes) must be decoded and
handled by the processor.




6.6 GPIB Driver 6-62
Interrupt Handlers and Miscellaneous

GPIB Driver Initialization

Pseudo code for power on initialization of the GPIB Driver.

INITGPIB
#ROUTINES CALLED: DCAS

#fCALLED BY: POWERUP

TMSAUXCM SWRST .SET #GIVE THE CHIP A HARDWARE RESET
FLAGLOST FALSE
IF ( SWITCHES AND 1FH ) <> 31 THEN
TMSADREG = SWITCHES AND 1FH
TMSAUXCM = RTL.CLR #LOCAL STATE WITH PULSE MODE
TMSAUXC = HDFE.SET #HOLDOFF ON EOI
TMSPOLL , STATQUO = STATTBL ( POWERON )
CRNEVENT, PENDSTAT (1) = POWERON
DCAS

IF LFMODE THEN #SET HOLDOFF ON EVERY BYTE
TMSAUXCM = HDFA.SET
ENDI

#ENABLE RLC,SPAS, BI, BO, MA, DCAS, AND GET INTERRUPTS
TMSMASKO = BIBIT + BOBIT + SPASBIT + RLCBIT
TMSMASK1 = MABIT + DCASBIT + GETBIT

[

TMSAUXCM
ENDI

SWRST.CLR #GIVE TMS9914 CHIP A SOFTWARE RESET

RETURN



A

AT

7. Diagnostics 7=1

There are two types of "firmware diagnostics'" included in the TM500
instrument operating system:

1. Firmware which directly performs some diagnostic function.

2. Firmware features within the instrument which aid in the
diagnosis of problems by performing a more general function
which in itself is not a "diagnostic'.

The following is a list of the diagnostic features. The
implementation of items in the list is of course subject to the
availability of adaquate ROM space to perform these functions, and each
instrument implements as much as its space allows.

l. TFirmware provision for extended diagnostics with "MISTY" box.
This is done at power on by testing the contents of address
7FFE hex. If the result has the high order bit clear, the
firmware jumps to the address specified in the location 7FFE
(ie. it uses the vector provided by the ROM in the MISTY box
- reserved address space is 4000 to 7FFF).

2. At power on, if the MISTY box is not attached, a RAM test is
executed (for details of the test, see section titled RAM
Test). If the test fails an error code is displayed on the
front panel and the instrument will not operate.

3. Following the RAM test which is performed by executing code
only from the ROM containing the power up vectors, the other
ROMs in the instrument are checked for correct placement. If
they are not installed correctly, an error code is displayed
in the front panel and the instrument will not operate.

4o After the Placement tests all of the ROMs are checksummed,
and again if an error is detected an error code is displayed
and the instrument will not operate.

5. Next any tests that can be performed on the device dependent
hardware are executed and the appropriate error codes are
displayed if a problem is found. Whether the instrument will
operate is dependent upon the nature of the failure. These
tests may also be available by execution of the TEST command
or initiated from the front panel.

6. Finally the settings of switches 7 and 8 of the GPIB address
switch group are examined and the appropriate function
(outlined below) is performed.




7 Diagnostics 7-2

SWITCH
FUNCTION

7 8w -

0 0 Normal Operation

0 1 Signature Analysis

1 0 Calibration Mode

1 1 * Extra test, calibration or excercise
program

* This is an extra function which is dependent upon the
instrument. For example, a special set of power on
settings which place the PS5010 in a maximum power
disapation mode so that the cycle rack tests are easier
to perform.

The above decoding is recommended as a minimum provision. If
additional capabilities are needed, they can be added by using the "*"
switch position to activate a program which uses the front panel for
input to select the test or operation to be performed.



T

7.1 Diagnostics 7=3
Diagnostic Commands

7.1 Diagnostic Commands

The following '"diagnostic'" commands are included in all instruments
in the system.

ADDRESS <NR1> The ADDRESS command sets the address for the BYTE
command to operate upon. The argument must be a
decimal value between 0 and 65535 decimal.

ADDRESS ? Returns the address to be used in the next BYTE
command executed.

BYTE <NR1> Deposits the data specified by the argument into
the address defined by the ADDRESS command. The
argument must be a decimal number between 0 and
255. The address is automatically incremented by
one after the data is stored.

BYTE? Returns the data read from the location specified
by the ADDRESS command. The number returned is a
decimal number between 0 and 255. The address is
automatically incremented by one after the data has
been read.

JSR <NR1> The JSR command allows a way to start diagnostic
routines (signature analysis, etc.) included in the
instrument ROM from the GPIB interface. It
performs a Jump to SubRoutine at the address
specified by the argument. The argument must be a
decimal number between 0 and 65535.

Note:

The ADDRESS command may be abbreviated to ADDR. The other commands
must be entered with exactly the characters shown ("BYTE" and "JSR").




7.2 Diagnostics 74
Diagnostic Task

7.2 Diagnostic Task

Another function included in some of the instruments (those with
enough free RAM space) is the ability to add a "diagnostic' task to the
tasks currently executing in the instrument. In this way diagnostic
routines can be written to monitor certain operations, etc.. on an
on-going basis and share the processor resource with the other tasks in
the instrument.

This is done by downloading the code for the task and the definitiom
of the new task stack, initializing a pointer to the task stack in the
reserved area of the task stack table (ie. set BSTKTBL = “STACKTBL(1l))
and activating the task by modifying the top-of-task-stack-table
variable (this is all done using the ADDRESS and BYTE commands.

Clearly the ability to do this requires an intimate knowledge of the
instrument firmware and is not recommended that this be attemped by a
customer.



8.1 Utility Routines 8~-1
Copy Current To Pending

8.1 Copy Current To Pending

This subroutine is called from the Message Processor during
initialization and error processing, as well as from the Key Processor
during rtl processing. The GPIB REMOTE/LOCAL interrupt service routine
also calls the Copy Current To Pending subroutine when it makes a
transition from LOCAL to REMOTE and the FPCNTRL flag is set.

Pseudo code for the Copy Current Settings to Pending Settings routine.

COPYC2P

SAVE AND MASK INTERRUPTS

IF NOT ( HWSETR ) THEN
MOVE Current Settings TO Pending Settings
MOVE Current Settings TO HARDWARE REGISTERS

NSP = FALSE

ENDI

RESTORE INTERRUPT MASK

RETURN






A.l OSPI wvs COS A-1
Control Structure

APPENDIX A

A.1 Control Structure

The counters do not have enough RAM to implement OSPI directly.

" Instead OSPI is emulated in the archtecture of the counters. OSPI uses
a stack for each independent task, the SWI instruction to suspend tasks
and the RTI to re-activate them. The operating system used in the
counters (COS) maintains a single stack for the whole system and can
suspend in only one task. All other tasks in the COS are polled -- in
other words, a monitor loop calls each task in a predetermined order
and starts execution from the same position in the task each time.

The task chosen to suspend is the Message Processor because it
requires waiting for indefinite amounts of time for certain events to
occur. Examples are: waiting for a byte from the GPIB interface,
waiting for space in the output buffer, waiting for a measurement to
complete, etc. By suspending in the Message Processor task we are able
to make the COS look like OSPI when viewed by the user and therfore
maintain compatibility across the TM500 programmable line. The only
waiting allowed in other tasks is for events that will appear within a
definite period of time or can be tested at the highest level in the
module called by the monitor. For example, the relays have a maximum
duty cycle and a wait loop is used to assure that the duty cycle is
below the maximum. In this case, the waiting time is constant and
SHORT enough to be unnoticed by the user.

The mechanism used to cause a suspend is the JSR instruction and the
re-activation is accomplished with an RTS. The subroutine called
SUSPEND pushes the X and Y registers on the stack and performs a JSR to
the beginning of the monitor. The monitor polls the other tasks and as
the last action performs an RTS. This returns control to the routine
called SUSPEND, which restores registers X and Y and returns control to
the point in the Message Processor just after the call to SUSPEND.

Notice that the Message Processor shares the same processor status
as the rest of the system, unlike OSPI, which allows each task to have
its own processor status. Care must be taken to assure that interrupts
are not disabled when a SUSPEND is called because this could easily
"hang" the instrument in a state waiting for BYTEIN interrupts, and the
front panel buttons would not be active because interrupts are used to
initiate the front panel button scans.

System Monitor Initialization

The COS has no Stack Table or Active Task Pointer since there is
only one stack shared between the tasks. At power up the stack is
initiated with the address of the beginning of the Message Processor so
that the execution of the RTS at the end of the monitor loop transfers
control to the Message Processor task.




A.1 OSPI vs COS A-2
) Control Structure !

Interrupt Handling

Most interrupts are serviced and control is returned to the point of
the interrupt. There are two exceptions to this normal interrupt
handling, however, for the DCL and the GET interrupts from the TMS
9914. These interrupts require certain actions to be taken that must
be synchronized with the operating system.

The DCL interrupt is supposed to restart the Message Processor, but
this can only be done by resetting the return address pushed on the
stack by the SUSPEND subroutine to the beginning of the Message
Processor task. Because the stack is shared by the other tasks, it
cannot be modified until just prior to returning control to the Message
Processor.

The GET needs to call routines used in the hardware request
processor. These routines are not re-entrant and therefore the
‘execution of them must be synchronized with the hardware request
processor. '

The synchronization for both the DCL and the GET is handled in the
GPIB task. The GPIB Task is informed by flags that a DCL or GET
occurred and it calls the appropriate routines to reset the Message
Processor or to START, STOP, or RESET the measurement in progress.
Once the function is performed, the GPIB task also releases the data
acceptor holdoff which was automatically set by the TMS 9914.



A.2 OSPI vs COS : A=3
Message Processor

A.2 Message Processor

COS sets the New Settings Pending flag at a higher level than done
in OSPI. COS sets the New Settings Pending flag when the Message
Processor determines that the command was of '"settings" type. OSPI
doesn’t set the New Settings Pending flag until the new setting is
about to be stored in the buffer. The main reason for this deviation
from OSPI is to decrease the code size. The only side effect is that
the flag gets set even if there is an error in the message and no new
settings are put in the buffer.

COS processes arguments in a different fashion also. In COS the
arguments are decoded in the Message Processor before the command
handler is called, while OSPI calls the argument decoders from the
command handlers (a more general approach to allow multiple arguements
and binary block arguments). This saves code since the arguments are
decoded in one place instead of in the many command handlers. To
enable argument decoding by the Message Processor, a table of argument
types required for each command is used. A limitation on the COS
approach is that it does not handle multiple arguments, although this
could be added by providing more information about the number and type
of arguments to the argument processor.

Information is passed from the argument processor to the command
handle using ARGKEY and NBUF. ARGKEY contains a zero if there was no
argument or the argument table index of the character argument found.
NBUF is three bytes and hold the numeric argument in a floating point
format

The use of this method of communication is easy and allows the
argument in the tables to be arranged so that the conversion of the
argument to the hardware format required is simplified. For example,
in the pending and current settings buffers, the ON and OFF status are
stored with zero representing OFF and one representing ON. The
argument table has the OFF argument first. Then ARGKEY contains a one
when the argument is OFF and a two when the argument is ON, which only
needs to be decremented to get the correct bit state. This implies of
course that the argument tables cannot be re-arranged indiscriminately,
but any change to the table must be offset by a change to the command
handlers that expect to see that arguments key in ARGKEY.

Because the same GPIB board is used in the DC509P and DC5010 the
Message Processor must determine if the command found in the command
table is an executable command for that particular instrument. There
are commands in the DC509P that are not in the DC5010 and visa versa.
This is accomplished by maintaining two tables, one table contains the
indexes of the DC509P commands that are not executable in the DC501 and
the other table contains the indexes of the DC5010 commands that are
not executable in the DC509P. When the table search finds a command in
the command table, it looks to see which instrument type it is and
looks for that index in the other instruments "only" command index
table. If it is found in the other instruments table, MPERRCD is set
to show an invalid command header.




A.2 OSPI vs COS A-4
Message Processor

ARGPROC

ARGPROC

SAVEINDEX = INDEX
IF ARGTYPTBL ( INDEX ) = O THEN
ARGKEY = 0 #NO ARGUMENT
ELSETF ARGTYPTBL ( INDEX ) =0FFH THEN
HDRDELIM
IF MPERRCD = 0 THEN
SCANFRMT
IF EOM THEN #NO OPTIONAL NUMERIC ARGUMENTS
MPERRCD = MISSARG
ELSE
GETCHR
NUMPROC
ENDI
ENDI
ELSE
IF INCHAR <> SPACE THEN
ARGKEY = 0 #OPTIONAL CHARACTER ARGUMENT
ELSE
SCANFRMT
IF EOM THEN #OPTIONAL CHARACTER ARGUMENT
TBLPTR = ARGTYPTBL ( INDEX ) #CHARACTER ARGUMENT
INDEX = O
TBLSRCH
IF TYPE = 0 THEN #INVALID ARGUMENT
MPERRCD = CMDARG
ELSE
ARGKEY = INDEX
ENDI
ENDI
ENDI
ENDI
INDEX = SAVEINDEX

RETURN



A.3 OSPI vs COS A=5
REMOTE/LOCAL Considerations

A.3 REMOTE/LOCAL Considerations

Because the DC509P has front panel memory elements, ie. push buttons
that are bi-stable push=-push type, the transition from REMOTE to LOCAL
is handled differently than in OSPI. A special provision is in COS to
prevent a 4051 controller from taking the instrument to its front panel
settings when it is not busy (the 4051 drops REN when not busy).
Basically the counters do not go to front panel settings until a button
is pushed.

The REMOTE led indicates the state that is controlling the settings
and not necessarily the state of the instrument. For example, if the
instrument is in REMOTE and receives a GTL command from the bus, it
will go to the LOCAL state but the settings remain at their REMOTE
states and the REMOTE led remains lighted. Over the GPIB interface the
INIT command is used to set the instrument to the front panel state
(note that INIT also resets system flags to their power on state).

At this point you may be wondering why a GTL interface command does
not send the instrument (the DC509P) to its front panel settings since
a GTL is a definite attempt by the user to got to local settings. The
reason is simply because the TMS 9914 does not provide a way to
distinguish between REN false and a GTL. Since we do not want to got
to local settings on a REN false transition (due to the 4051 problem)
we are forced to handle the GTL in the same manner.




A4 OSPI vs COS A-6
GPIB Task

A.4 GPIB Task

As mentioned previously, the GPIB Task is used as the synchronizing
routine for the device clear and group execute trigger. It also
performs the talked-with-nothing-to-say processing as described in
OSPI.

OSPI, however, resets the GPIBTASK when the first byte of the first
message is received. This prevents a part of the talked with nothing
to say message from being generated if the first byte of the first
message comes in while the instrument is outputing the talked with
nothing to say message.

COS cannot reset the GPIBTASK because the task does not have a
‘separate stack. Instead, COS gets a flag DUMPNTS (dump nothing to say)
when the first byte of the first message comes in. The flag 1is tested
in PUTBYTE to determine if the byte should be put in the buffer. The
flag is unconditionally set false at the end of the GPIBTASK to prevent
‘the flag from dumping a message other than the talked with nothing to
say message.



P i

o

B.1l REAL*32 FLOATING POINT B=1
Storage Format

APPENDIX B

B.1 Storage Format

The floating point format for TESLA’s REAL*32 variables is similar
to the single precision format for the proposed IEEE standard (see
January 1980 COMPUTER magazine, pp. 68-79, published by IEEE). The
most significant bit of the first byte of the floating point number is
the sign of the mantissa, where "0" is positive and "1" is negative.
The rest of the first byte is the 7 most significant bits of the
exponent. The most significant bit of the second byte is the least
significant bit of the exponent. The exponent is a power of 2 biased
by 127 (for examples, see the abbreviated table of exponents).

The remaining 23 bits are the lower bits of the mantissa, where the
most significant bit of the mantisa is assumed to be a "1" as the
numbers are normalized. A binary point is implied between this implied
most significant bit and the lower 23 bits of the mantissa, so that 1
<= mantissa < 2.

Examples of floating point numbers (in hex).

7F8XXXXX = Positive Infinity

FF8XXXXX = Negative Infinity

7F7FFFFF = 3.4 E+38 (largest value)

4BFFFFFF = 2724 - 1 (largest exact integer, approximately
1.678 E+7)

49742400 = 1076

42C80000 = 100

41200000 = 10

40800000 = 4

40000000 = 2

3F800000 = 1

3F000000 = .5

3DCCCCCD = 0.1 (not exact)

00800000 = 2°-126 (smallest non-zero number, approximately
1.18 E=38)

000XXXXX = +0




O NWPEEULOY

| UL L
SN WN -

Exponent Table (Abbreviated)

REAL*32 FLOATING POINT
Storage Format

Storage FPACC

43
43
42
42
41
41
40
40
3F
3F
3E
3E
3D
3D
3C

0 O0WO0WO OO O WO

87
86
85
84
83
82
81
80
7F
7E
7D
7C
78
7A
79

B-2



T

B.2 REAL*32 FLOATING POINT B-3
Calling Sequence Examples

B.2 Calling Sequence Examples

This section describes how to call the REAL*32 floating point
functions from a TESLA program. The following is an example program
which uses all of the functions.

PROCEDURE /EXAMPLE/

EXT
REALSTR #EXTERNAL PROCEDURE
REAL*32: REALINT, LOG2, REALVAL #FUNCTIONS THAT RETURN
# REAL*32 VALUES
ENDE

VAR
#ALL REAL CONSTANTS MUST HAVE "."
REAL*32: A,B,C/2., 4.2E+6, 60000./
CHAR*8: STRING(15)/"1.2345"/
BINARY*16: X

ORIGIN OBH
#fFORMAT FOR REALSTR
BINARY*8: SIGDIG, EXPFIX, DECPNT, DIGITOUT, OPTIONS

ORIGIN 1AH
BINARY*8: FPERR {#FLOATING POINT ERROR
ENDV

FPERR = 0

=A+B*C/(5.~A) #USES ADD,SUB,MUL,DIV,LOD,STO

X= FIX (C) #CONVERT REAL*32 TO BINARY*16

C= FLT (X) #CONVERT BINARY*16 TO REAL*32
A= REALVAL (STRING(1)) #CONVERT ASCII STRING TO REAL*32
A= REALINT (A+0.5) #ROUND TO NEAREST INTEGER

IF ABS (A~5.) > 2. THEN #USES ABS AND CMP

A=0.30103* LOG2 (A) #FIND COMMON LOG USING LOG2

ENDI

SIGDIG=4H #4 SIGNIFICANT PLACES

OPTIONS=63H #ENGINEERING FORMAT
REALSTR (A, STRING(1)) #CONVERT REAL*32 TO ASCII

IF FPERR <> O THEN #CHECK FOR ERRORS

@@ 60080 0

ENDI

END.




B.3 OSPI

1.

7.

Source

REAL#*32 FLOATING POINT B-4
OSPI vs TESLA Implementation of REAL*32

vs TESLA Implementation of REAL#*32

REALSTR for OSPI has formatted output. Standard TESLA
assumes 6 digits of scientific output.

FIX and FLT assume unsigned binary for OSPI rather than two’s
complement integers for TESLA.

Error codes are different and are stored in FPERR in OSPI.
Also, there is no need for ZZABORT.

REALVAL uses a circular buffer defined by INBUF and INBEND,
and checks for end-of-message pointed to by EOMPTR. After
REALVAL is called, ASCIIPTR (at address 14H) points to the
character following the character that caused REALVAL to
terminate. This information will be lost after calls to
DIVIDE, LOG2 or REALSTR.

Code size has been reduced and speed enhanced by using direct
memory (locations 0 - 1AH) for REAL#*32°s variables.

The object code for the OSPI version of REAL*32 must be
appended to the users object code generated by the TESLA
compiler before linking to the TESLA library.

Fuzzy compare says that numbers within 4 counts of each other
are equal.

for the OSPI version of REAL*32 Math may be found on file:
DMMATH /UN=LOVECAH

and object code assembled for some fixed address between C000 and FFF8
is in file:

OBJMATH /UN=LOVECAH

A bug list with fixes for REAL#*32 Math pack is available from:

Bob Bretl, ext 1118 or

Carl

Hovey, ext 1104.



B.4

B.4 Structure

ROUTINE

ZZRSSABS
ZZRSSADD
ZZRSSASR
ZZRSSCMP
ZZRSSDIV
ZZRSSFIX
ZZRSSFLT
REALINT

ZZRSSLOD

LOG2

ZZRSSMUL
ZZRSSNEG
ZZRSSNRM

ZZRSSSTO
REALSTR

ZZRSSSUB
ZZRSST10
ZZRSSTST
REALVAL

STACK
DEPTH

wubkrpoOpPrENDODN

NWOSYWL,

o M~

REAL#*32 FLOATING POINT
Structure Chart and Stack Depth

Chart and Stack Depth

ROM SIZE
CALLS CALLED FROM (BYTES)
COMPILER 4
LOD,ASR,NRM  COMPILER 219
ADD,FIX,INT,STR25
STR 190
NRM COMPILER 189
ASR COMPILER 55
NRM COMPILER 25
LOD,ASR,NRM  USER 40
ADD, INT, 40
COMPILER
10D, NRM USER 349
NRM COMPILER 164
COMPILER 13
ADD,DIV,FLT, 99
INT ,MUL
COMPILER 27
ASR,CMP,MUL,  USER 603
T10,LOD, NRM
ADD,NEG COMPILER 9
STR, VAL 62
COMPILER 30
MUL,NRM, T10 USER 312
TOTAL 2448

APPROXIMATE
MAX TIME
(CYCLES)

20
1282
777
155
2404
614
690
1905
82

11000
2160
38
996

73
8714

1320
118
55
6469




REAL#*32 FLOATING POINT B-6
VARTABLES FOR REAL*32 MATH

B.5 VARIABLES FOR REAL*32 MATH

ABSOLUTE
LOCATION

00-05

00

01

02,03,04

05

06,07,08
09, 0A

0B

0oc
0D

OE

OF

NAME

FPACC

SIGN

EXPONENT

MANTISSA

GUARD

REGISTER

POINTER

SIGDIG

EXPFIX
DECPNT

DIGOUT

OPTIONS

HOW USED

6 bytes are used for the floating point accumulator
(it is left in unpacked format to simplify
programs).

Most significant bit is "1" for negative, "0" for
positive. Other bits change randomly.

8 bits of exponent, offset by 127
FF = Infinity

FE = 27127 (approximately 1.7E+39)
80 = 271 = 2

JF = 270 =1

7JE = 27-1 = 0.5

01 = 27-126 (approximately 1.17E-38)
00 = ZERO (regardless of mantissa)

24 bits of mantissa, implicit bit explicitly set
and binary point assumed after most significant bit
so that 1 <= mantissa < 2 when normalized.

An 8 bit extention of the mantissa which is used
for rounding and extra precision during
intermediate operations. The most significant bit
is the guard bit, the next bit is round bit, and
the least significant bit is STICKY bit.

Used by ADD, CMP, DIV, LOG2, MUL, STR, VAL

Used by ADD, DIV, LOG2, MUL

Number of significant digits (see formatted
REALSTR)

Exponent to fix to (see formatted REALSTR)
Position of Decimal Point (see formatted REALSTR)

Number of columns of output for digits (see
formatted REALSTR)

Packed flags for formatted REALSTR
BO - Delete "O0" in exponent
Bl - Delete "E+00"

B2 - Delete trailing "."
B3 - Right justify
B4 - Delete Trailing "0"s

B5 - Delete all trailing "O0"s except ".0"
B6,B7 0 0 — Scientific Notation

0 1 — Engineering Notation

1 0 —— Floating Point

1 1 — Fixed Point



10

10
11
12
13
14
15
16
17
18
19

1A

ZZSHARE

QUOTIENT

ASCIIPTR

FPERR

REAL#32 FLOATING POINT B-7
VARTIABLES FOR REAL*32 MATH

Ten bytes of shared memory, which may be used for
temps by routines other than the mathpack. Use in
the mathpack is as follows:

DIV, LOG2, STR, VAL

DIV, LOG2, VAL

DIV, LOG2, STR

DIV, STR

DIV, LOG2, STR, VAL

DIV, LOG2, STR, VAL

LOG2, STR, VAL

LOG2, STR, VAL

LOG2, STR

LOG2, STR

Error Code indicating type of error and subroutine
that detected the error. Subsequent errors will
overwrite previous errors. The mathpack will never
store a value 0 which is reserved for ''NO ERROR".
If used, this variable must be cleared by the
routine calling the mathpack (see table of
errorcodes).

The 6800 processor accumulators (A and B) are both clobbered by:

ASR, FLT, NRM, FIX, STR, VAL, T10, LOG2.

The processor index register is clobbered by: INT, LOG2, STR, VAL.

The FPACC is modified by all routines except: LOD, STO, CMP, TST.

It is clobbered by LOG2, STR, and VAL.




B.6 REAL*32 FLOATING POINT B-8
Formatting for REALSTR

B.6 Formatting for REALSTR

A new version of REALSTR allows one to specify the format, number of
significant digits, delete trailing zeros and right justify. There are
5 bytes used to specify the format: SIGDIG, EXPFIX, DECPNT, DIGITOUT,
and OPTIONS.

SIGDIG, the number of significant digits to generate, must be
specified for all formats. SIGDIG should be >= 1 and as a practical
limit <= 7, since this is the limit of precision with the REAL%*32
variables. If SIGDIG is not >= 1 and <= 127, then an error is
generated and "1E+99" is output.

EXPFIX, the exponent to fix to. EXPFIX is a binary integer that
specifies the power of 10 to appear in the output. For example, if the
output should be expressed in milivolts then EXPFIX=$FD (-3) is used.
Normally EXPFIX is equal to zero.

DECPNT, the position of the decimal point, must be specified for
FIXED format only, however, the other formats automatically change
DECPNT. DECPNT indicates the column of hte output after which the
decimal point appears. For example, if DECPNT = 1 then the decimal
point is after the first column (the sign appears in column 0). DECPNT
must be >= 1 and <= SIGDIG, which means that the decimal point cannot
appear before the first column.

DIGITOUT, the number of columns for digits, is used only with the
right justify option, which may be used with any format. DIGITOUT must
be >= SIGDIG and <= 127. Normally DIGITOUT = SIGDIG. Note that the
sign, decimal point, and exponent are not included in the column count
for DIGITOUT.

OPTIONS contains several fields defined as follows:

(00XX XXXX) SCIENTIFIC Has the decimal point after the first
digit.

(01XX XXXX) ENGINEERING Has an exponent of an integer multiple of
3 with a decimal point after the first,
second or third digit. Generally SIGDIG
should be >= 3.

(10XX XXXX) FLOATING POINT Automatically places the decimal point.
EXPFIX must be specified. SIGDIG must be
large enough so that the decimal point
may appear in the field of digits. For
example, if the number to be output is
one million and EXPFIX=3, then SIGDIG
must be >= 3.

(11XX XXXX) FIXED POINT Allows one to specify the position of the
decimal point and the value of exponent,
making REALSTR shift the digits so that
the decimal point appears in the desired
column. This feature is used in the
digital voltmeter as the position of the



B.6 REAL*32 FLOATING POINT B-9
Formatting for REALSTR

decimal point and indicates the range in
use. Both DECPNT and EXPFIX must be
specified. For example: for a 4.5 digit
meter on the 200 milivolt range,
SIGDIG=5, DECPNT=3, and EXPFIX=-3, giving

"XXX.XXE-3".

(XX0X XXXX) Output Trailing zeros, for example:
'"1.0000".

(XX11 XXXX) Delete all trailing zeros, for example:
"10"0

(XX10 XXXX) Delete trailing zeros except for the one

: after the decimal point, for example:

"1.0"'

(XXXX 1XXX) Right justify to DIGITOUT columns (not

counting the columns for the sign and the
decimal point) by inserting DIGITOUT -
SIGDIG spaces after the sign.

(XXXX X1XX) Delete trailing decimal point, for

example: "1".
(XXXX XX1X) Delete '"E+00"
(XXXX XXX1) Delete leading zero in exponent, for

example: "E+1".




B.6 REAL#*32 FLOATING POINT B-10

Formatting for REALSTR

Format Examples for REALSTR

SIGDIG EXPFIX DECPNT DIGITOUT OPTIONS OUTPUT RESULT

1 to 7 0 - - 43H Scientific (ala 4051)
1 to 7 0 - - 00H Scientific with all
: digits shown
1 to 7 0 - - 63H Engineering
1 to 7 0 - >=SIGDIG 7FH Engineering right
justified
1 to 7 0 - - A3H Floating point
1 to 7 0 =SIGDIG =~ F7H Fixed point, integers
1 to 7 0 =SIGDIG-2 >=SIGDIG CBH Dollars and cents,
right justified
5 -3 4 5 CBH 1 to 2000.0 milivolts
5 0 2 5 CBH 1 to 20.000 volts
5 +3 3 5 CBH 1 to 200.00 K ohms



B.7 REAL*32 FLOATING POINT B-11
Error Handling For RFEAL*32 Mathpack

B.7 Error Handling For REAL*32 Mathpack

When any of the REAL*32 floating point routines detects an error, it
stores an errorcode into location FPERR, generates a default output,
and returns to the calling routine. If more errors occur during
subsequent calls to the mathpack, the first errorcode is overwritten
and thus lost. FPERR = 0 is reserved to mean that no error has
occurred. This must be cleared before calling the mathpack if it is to
be useful upon return.

Note that there are no calls to ZZABORT, and also that the error
codes are different than for the standard TESLA REAL#*32 floating point
routines.

Error codes are formed by adding a code to identify the routine
issuing the error to another code which indicates the class of error.
Only two classes of errors are reported: Invalid inputs and Overflow
during processing. Underflow is converted to true zero but is not
reported as an error.

Error Codes issued by REAL*32

FPERR ISSUED BY DEFAULT OUTPUT DESCRIPTION OF ERROR

0 NONE NO ERROR

1 ADD +-INFINITY INFINITY+X OR X+INFINITY

2 COMPARE  V (OVERFLOW BIT) SET INPUT IS INFINITY

IN CONDITION CODE

3 DIVIDE +-INFINITY INFINITY/X OR X/INFINITY

4 FIX FFFFH ABS (INPUT)>=2"16

5 LOG2 +INFINITY INPUT<=0 OR INPUT =+INFINITY

6 MULTIPLY +-INFINITY INFINITY*X OR X*INFINITY (BUT NOT
O*INFINITY)

7 REALSTR  "I1E+99~@" INPUT = INFINITY

8 TST V (OVERFLOW BIT) SET INPUT = INFINITY

IN CONDITION CODE

9 REALVAL  +-INFINITY NO DIGITS FOUND IN INPUT STRING.
(REALVAL DOESN’T SCAN OVER
ANYTHING BUT SPACES)

10 NORMALIZE +~-INFINITY OVERFLOW WHILE ROUNDING

11 ADD +-INFINITY OVERFLOW

12 not used ‘

13 DIVIDE +-INFINITY OVERFLOW OR DIVIDE BY 0

14 not used

15 not used

16 MULTIPLY +-INFINITY OVERFLOW

17 REALSTR "1E+997@" REQUESTED FORMAT IS INCOMPATABLE
WITH FLOATING POINT VALUE
(PROBABLY SIGDIG IS TO SMALL) .

18 not used

19 REALVAL +-INFINITY EXPONENT TOO LARGE OR TOO MANY
DIGITS.







INDEX IND-1

ABORTMSG ccocscecccoccccascossncsscssncnsse 2-6,2-7,2-9,2-10,2-13
ABOVELIM c¢ccoccesocccssoscccscsoassccsssonsss 0=35
ABS cccsocccesccccsosssssosscssccssessseses B=3
ACDS ccccososssccsosssscsscosssosssnscnsse 0=~50,6-54,6-556-58,6-59,
6-61
ACTPARAM ¢ oecoccecossossocssccscscescsscsce 3=10
ADDR.CMD scoscossscscossscsoscsoosscosceonace 2=22
ADDRESS eeeceosoccacoascccocsoossassssscos 7=3,7=4
ADDRESS? cecscoccccocscsoscsessscoscascocas /=3
ADDRESSED «eoeescaccncccscassssssscoccsses 5=1,6=60
AFCRANGE cccccccvosssossscssssocccsssssosss 0=34
AMPoAM o cveccessosososscoccoscssscccossons 0=33
AMP.OFF ccocscoccacososcsssccsssscscnsccssss 0—=33
APPENDTIX A ccecccscoccosscescsosssoscssssosce A=l
APPENDIX B cccoescccccccsccavssssssscsocse B=l
ARGDELIM ccccoccccoscssscocccosscssscssses 2—21,2=28
ARGDLM cccesscscoscssccsoscscsssscscssssscoce 2-28,6=33
ARCGKEY «veveveoccccossscccaccscanssnassnce A=3,A=4
ARGPROC ccoscssccccccssoccosssasososscossse A=l
ARGRANGE ccccosocsscccsscsccescsnssosscsss 0=33
ARGTYPE cocesocsocccscsccsscossscscsocssces 2=29
ARGTYPTBL cccoccccssscssccescccccessccocssos A=4
ASCITPTR ccococcccoccscscscoscscssosocssssss B=7
Active Task ecceccccsccscccsscscsscssscssoe 1=2
Active Task Pointer eecsscecccesccescccsses 1=2,1=5A-1

BADCAL ccccecoscccacscscsassccsscsscscnsscee 0=34

BCNT ccceccesocsscsccaccscsssossossossoscoas 231

BCNT.HI ccoceccocoscsonsoasscnsscsnssscesssss 2—31

BONToLO eevesceesocnncsonsacnscsasnaonsess 2=31,2-33

BCNTERR «eevoeeencennssnnseonsesaasenncens 2-31,6-33

BELOWLIM «veveevnoesaccnnsanssssnscensacns 635

BL eevveescensensensesassscanssnsenaseaces 6=8,6=10,6=50

BINGPROC cccecoscccosscsssccscssansasccccsnss 2=31

BINCNT o eoeeveenosooosncnnseansensensensees 2=31,2-33

BIPTR oeescevcencensenssnsnonsanosnsansees 6=4,6=5,6-9,6-10,6-12,
6-13, 6-15,6-20

BLINK «ccoeenceonscenasenseenansnscasseees 3=10,3-12,3-19

BLNKLITE oesccococsceccosanscassocscasscees 3-18,3-19

BLNKRATE o eecevocescensoncassansenscassass 3=12,3-19

BO evvsevncencencensensnnsennnonseseensees 6=21,6=22,6-23,6-24,6=49,
6-50

BOPTR e eoecvncosncennssnscennncnnsasnnanns 6=b,6=12,6-25,6-26,6-29

BUPTR e eeeevsenncnncencnsoencsnsenssensens b6=b,6=9,2-14,2-19,2-20,
2-30,6-12, 6-16,6-17,6-20

BUSYBIT o coeveeeseecsosensensssaconcensees 6=39,6=40

BYTAVATL +evecovooncencansonssansenseansens 6=5,6-9,2-14,2-20,6-11,
6-12,6-14,6-15,6-16,6-17,
6-18,6-20

BYTE eecveocececacccasssascscacscsasssnsee 7=3,7-4

BYTE«CMD cocecscecscscsscscsscssscscsssesssss 2=23

BYTE? © €0 00000000 POLNEIOPOLP00E00L00LO0DEELEDSLS

BYTEIN «eoeecencnaansnosnsnnansonsncansnas 2=7,6=2,6=4,6=5,6=8,A~1
0,6-11,6-12,6-15,6-18,
9,6-26,6-43,6-53
6-4,6-5,6-6,6-21,
,6=23, 6=2

-24,6-25,6-26,

3
7
1
1
BYTEOUT cccssccoscocscsososccscessncsssocsnsnas 2,
22

7=
2~
6~
6-
6-
6-




INDEX IND-2

6-28,6=43

CeRQS eeeevereonccasnsancssosnsssasacscses 6=6,2-26

CALMODE sceeoccsccnscssccnsesccncssacasas 6=33

CANT.CAL coccecccncsncccovsscncsssnssssscsse 0=33

CDT ccoscoecosososccsonsososscscsscacsssscocs 0=58

CHAOVF ceesscsvsoccsosscsscsscsassssscasssanss 0=35

CHAPROT ce¢eeossesccscesccscrnscsscssccases 6=35

CHBOVF cccececoccosasccsssscessssssnssesase 0=35

CHBPROT eoeecessoccescccscscsensasscassnsasce 0=35

CHNGBUSY eevcessccesssscsssscsssessssccssse 6=-3,6-12,6~18,6-20,6-41

CHR.PROC cecosevsosoessseccosccnasssssssocs 2=24,2=29

CHS cecovvvcesscossssancscssnssssosssssssssss 3=15

CKSUM eeveesevecncscsacscsososssccsscsonssses 2-31,2-32,2-33

CKSUMERR secsevssnnncssssesasocsasnccasees 2=31,6=33

CLEAR scesevevscsoscsonconccsccssossssssceas 3—=1,3-16

CLEAR ENTRY sevescsssasssascasasssanssnes 3=1,3-2,5-4,5=5

CLI ¢eceecovcovessanvssscsasscscscssssonsnas 1=5

CLRKEY cosceccsceosscossoscncosocnscsscssssse 3=12

CMDARG seesssssossssassssssasasssssesssses A-4,2-24,2-29,2-30,2-31,
: 2-32,6-33

CMDHDR sesesseconvsosvcsscsoscsaccncscanes 2=17,6=33

CMDINDEX ccecocsoscocsssscscseascscssoscneo 2=7

CMDTYPE cevsecesscssncccssossccssssscsssse 2=7,2=9,2-16,2-17

COMMAND ¢eeosvecscsccesncsssosnccasassnssss 2=7,2=10

CONFLICT eececeoccocceccoccsacnssesnnnsens 2=7,2=-11,2-12,3-11

CONTBIN eseossecceccscsscscssccsossscsasncsass 6=2,6=8,2=-32,6-19

COPYC2P seecessccesscconccosscesscnsnscoes 2—6,8-1,2-13,6-44,6-46,

6-48,6-50,6-51,6=-54
CR cececosscnesassssssasosscsesossnsssssnsnes 2=10
CRNEVENT ¢sssesssccsosssscccnssssscncnsess 6=6,2-26,6-40,6-42,6-61,
6-62

CRQS ceseveeccsassscosccceassenscsssssccosss 6=39,6=-40

Calling Sequence Examples cecsccescesassss

Codes and FOrmatsS cessccsvesoscscscosasnscs

Command EXYoOrsS ecocsesescscsccsscsscsssacccos

Command Execution cecscsccsccossscscscssss

Command ProcessSing sesececccececssesssscscsce

Command Table cecsesessscsscccccsosssscssos

Command Table Structure ecscsessscessescscce

Control StrUCLUTE evscescssscsscssccsscssse

Copy Current To Pending cececscsecccscccccns

Current SettingsS ceeveseescccescossccscans

»6-31

wo

O\Ulh‘a)h'N N N N>0\O\T
D-#~\Jh‘h‘\l\lh‘h)u)u>hb

e

-

O’\
bvv

DACRQCLR ® 900600 0000606606000000000606000800600060
DATA HOLDOFF ® 0 0000000000000 00000000088 DS

DCAS © 0000000600000 00030008000003008060600600000e0H

w

-10,6-12
-42,6-43,6-51,6-55,

O\O\

N v

»1-8,2-3,A-2,6-10,
1 6-37,6-45,6-50,6-53,

DCL @000 0000080909000 00606008690000006000600606600Ss

Ul

DEADLOCK «ocovcsovssoncsaacsosscscssseacascsscs
DECPNT ccsecscocsosssccsosossocsasesanscans
DIGITOUT eeeocscosccosccccnoeccosssasnnnas
DIGOUT socoescsocscsscvosososssossonssssossnna

-12,6-14,6-26,6-33
B 8 ’

WWWG\O\O\D—'O\O\C\O\
O\CDG\)—'U'ILDO\O'\wm-L\



DISPMEAS «tseocssococnsessccconsonnacancas 3=7,3=8

DISPMODE «coeeassoosccsoosnssssansoncacans 3=7,3=8

DISPPARM ccccecoccocssssoconoossoocccnnsnns 3=7

DM5010 coecsceccccccccoccscccasocnonoooonss 3=1,2=24

DM5010 Front Panel Indicators eeesscessess 3=3

DM5010 Key ProcesSSOr esecsccccsscccscscsse 3=3

DMGET «TH cesceccccoccoscccsoscsooccsaccnss 6=58

DSPCHNG cccooooococoscocsosscsonocosoonoonss 3-7,5-1,5-3,5-4,5=-5,3=12,
3=19

DSPINHBT ¢ecocoocacosacsooscosscsnancanans 5=1,5=2

DSPMODE cceccesoccscossssocsconconscnnsnsoe 3=3

DT veesccoscoceooceosscecsooccssacnconcnnse 6=52,6-56,6=58

DT SETTINGS socecoscssccceccccccoscccsccnae 2=2

DT TRIGGER ccccccccscsosocnsccsssesscannnae =52

DT.GATE cccecovcnscessocsososccosossoscsss 6=56,6=59

DT<SET ccoccocscsoscscesscscsssscssasccsace H6=59

DT.TRIG cccccccecscescsscasscocnscscsscsae 6=56,6=59

DUMPNTS ccccvcoccccosossoscosceccovccocsosoone A=B

DUMPOUT cccccoosoecccsasoscccssosccccsosss 6-5,6-10,6~11,6-12,6-18,
6-20,6-26,6-27,6-29

Data Flow Diagram eeccceceocsccccccosscsssss 1=7,2=2

Description of KEYPROC ¢ceveosccsscosccces 3=6

Device Clear cccoccceccsssssscsoscsococosoe B=50

Device Clear

Selected Device Clear seees 6=50

Device Status ccesscecssecsssoccssonoccass 6=35

Device Trigger eeececscescecocsesosesncses 2=2,6=52

Device Trigger Function (GET) eeeevesccces 6=52

Diagnostic Commands eecsesssccsscscocssses 7=3

Diagnostic Task cececssesesocscosscscacccas [

DiagnosticsS cecesscccsssccscssccsoccosssas Tm

Display Buffer eceevescecsccaceencnccesses 5=3,5-4,5-5

Display Buffer Builder «eeceeescscccccsess 5=

Display Buffer Update ceecveescesseccscenss 5=

Driver Specification cecevcesssccceccccoccee 6=
1-

W= »~UW S

Drivers © 0000000060005 000C0O0CELO0OOLOGCOLECEOOC 6 O

EEX © 0000000060000 0060€EC0DOCO®6060G6CO6OG60 002660006 O 3-1

ENTER «eeveccececcsoosoncsonansnassensonas 1=8,3=-2,3=15
EOT tieeeencconvnnscsnnscsesnnnssnnscanans 6=8,6-11,6=26
EOI HOLDOFF ccoccesscesoscscoscssnsncsossse 6-8,6-10 .
EOTON eoeeeercncsnasncseccsnscnsonsnnsnnas 6=6,6-23,6=24,6=25,6-29
EOISENT cevcecececncsncasacessasscncncnsss 6=6,6-23,6-24,6=25,6-29,
6-49
EOM ccvoeoenenonansncnsuseoscnsnsncnnnnnnns 2=6,2-7,2-9,6=5A=4,2-10,
: 2-13,2-14,2-20,2-23,2-24,
2-29,2-30,2-31,2-32,6-14
EOMPTR «eceseconcscsnsacscscasosoncascnses 6=4,6-9,6-10,6-12,6-13,
6-14,6-15,6-18,6-19,6-20
EOMPTR2 ¢ocevcvcnconsasasncsonsanacaseses 6=4,6-13,6-17,6=18,6-19,
6=20
, EQREC ¢eoecervscoscsncossoscancsscssonncase 2=26
{ EQRES «eveevccnonsenncsncosnnocascannsnnns 6=6,2-26,2-27,6=40,6-42
o EQTBL ccvccocccocccossccssoonssscsccossoncss 2=26
ERR tovucvoenceccsnncsnsoonaccnnsonnseess 2=6,2=7,2=25,3=10
ERROCQRY cccooeeoncosscscssnssoscsscsncnses 2=26
ERROR? «eveverooaccnnnsssossoncsnssscoscns 6=30,6=32
EVENTCOD +eevevcsncescnsacsessssnsancnsnas 2=6,2=7,5-1,6-6,6-7,2-13,

INDEX IND-3




INDEX IND-4

6-12,6-26,6-38,6-39,6-46,
6-58

EXECUTE o ecoesoscancosasasncscseacesessass 2=6,2=9,2-10,2-11

EXPFIX eoseoocceesncecsosccssssssssscssses B=6,B=8

EXPONENT ceceessessssssssssccssesasesscsssess B=6

EXX coveccocncsssssssssassssssssscssscesoee 3=15

End—0f ~MeSSage sesesesesesocscccsssessssss 2=7,6-9,6-10,6-11,6-14,
6-54

Error Codes issued by REAL*32 «ceeseeseeees Bll

Error Handling For REAL*32 Mathpack «<e.... Bll

Execution EYTOrsS eeessccscsscsssssssssssss 6-33

Execution Warning eeseeceescesscesssccessss 6=35

Execution of Settings ceccecesessesssscsee 1-8

Exponent Table (Abbreviated) seecsessecess B=2

FEOL eocovosssccscsasncsssascssossssssnsanses 0=25

FG5010 ceeeeensssssssccssssscsssssessssene 2=8

FG5010 and PS5010 Key ProcesSOr esveseseces 3-10

FGGET «TH eoeeusscsscssosscscasssscsessssss 0=59

FGHWGET ¢EN ceevsssscccsssssccscsossssasses 0=56

FGKEYPROC scosoosssosccsoscsssscsccsccccsee 3—10

FIX eeeccesssccssssscecssscsscsnsssasnscssassse B=3

FLAGLOST eevcesceccsaccssscosscseassssesass 0=6,6-21,6-22,6-24,6-25,
6-62

FLT eesoessconscssccsscseasscssscsscssscsssscs B=3

FPACC oeoceeceesncanssescsssesssssssssssss B=6,B=7

FPCNTRL eccevecccvosssnssssssscacsscossses 2-8,2-9,8-1,2-11,2-12,
2-13,3-11,3-18,6-44,6-46,
6-48,6-50,6-51,6-53,6-56,
6-58,6-59

FPERR eseoeosossacescesesscsoescesssssssas 5=1,B=-7,B11,2-30

FREESPACE ecccecccsoscnossscssscosassccnsees 0-2,6=5,6-8,6-9,2-13,
2-14,2-20,2-31,6-16,6-17,
6-18,6~19

FRONT«TO <cosecccscsssosssscscsvoscsscssssass 0=34

FUNCTION cececessssscssssssacnsscssassssss 3=10

Format Examples for REALSTR «eeveesssssees BLO

Formatting for REALSTR eccececeessccssscss B=8

Front Panel KeysStrokes ececeseesssccccsssss 3=4

Front Panel SyntaxX eeescccesccccscscesssss 3—1

Functional Description eeeececsescceccsseces 2=1,3=1

GATEMOD ceesessccacsasscccossesssscnsnsss 0=33

GBPTR eecvecccsccoscsscsssssscssessassesse 2=6,6-4,6=-5,6-9,2-14,
2-19,2-20,2-30,6-14,6-15,
6-16,6-17,6=20

GBPTRe ecececascossssscnscscsscscsncssssssss 0-=16

GET eecescsesocessssssasossoscassasscssess 1=-8,2-2,2-8,A-2,2-11,
6-43,6-52,6-53,6-54,6-55,
6-56,6-58,6-59

GET Interrupt Service Routine seeesesssees 6-55,6-58

GET<EN setoccccccsoccsosscscssossscssscssnsss 0-56

GET eIH sevecesscsscsesssscccccsssssssacnese 2=8,6=3

GET .LOST ceeecescsaccsccsssssssssssssssssss 6=59

GETBIN ceceeocsscsssssscsssscscsssenccesee 2=31,2=-32

GETBYTE eecceessccsccasssassssccssccoscsns 2-7,2-8,6=2,6-4,6-5,6-6,
6-8,6-9,2-13,2-15,2-31,



INDEX

GETCHR @ ©©0000000O6500600©0 0000006000600 0600 06
GETKEY © @0 00000060 OH06000606006C0060CO000CE6EGEEO0OCEEDOE

GETLOST cccccssocscsscsscssssocoscsccscacsns
GOTGET cccccocococcocscososssocssoocsnocss
GPIB cccoscoococsoscscssososscsoossssconssncasse
GPIB Driver ccecocecccccssccscssscsassscscscs
GPIB Driver Initialization ecececcccccoccccse
GPIB INpUL coccccscccccsososcsescsocsosccsooas
GPIB Interrupt Dispatch ececescsscccccsccss
GPIB Output oececccccoccsssccscoscsccssscscscocse
GPIB TasSk occocscsccuscscscccoscncscscsssans

GPIB VariablesS cceccccccoscscscscsccoccscocss
GPIBDSP cccccccccscscscsooscssssscscasossos
GPIBTASK ceocccossossssssosossoscoscassoess
0 ) O
GTL ccoccoeccscccocsosccconocsascoscossscssssss

GUARD @ ©© © 0006006006000 00C00060000GCEO0OCEOCO0OCO60CECSH6 O

HASH.TBL cccccccceccoscccscosososcscsonsnce
HDFACCLR ¢cccoosvecscsscascsancassosscscscsans
HDFACSET ceccsesccoscscssosscssscssososossnso
HDFE.SET cccccccscsoscecsssoscescsscsacsnssns
HDRDELIM ccocvsccascnsscscoscsoscanssssasnss

HDRDLM ccscccosscacocccscscascscsssascasse
HDRLEN ccccocecscocsccesssssscsssscsnssonscnse
HDRSRCH cccesooessecococossscscsosscsncnsnno
HDRTABLE ¢covsescocccococosscscconcnssncose
HIDDEN ccccocecscccooseascscsosososconsnce

HLDQFRQ © 00 0®8C0OPOGOLOLOIOOENOIDRNOIORESIOINOEONPOEOPINOOOSEDSDO
HLDOPHS © 960000000 0EO0L0000OEISENICOIOODOEOGEOOG
HWGETOEN © ¢ 0860060000005 060060D8000SCELSEELELELEOGEOE

HWMONITR © 0600000066000 060000C00060600060E00CG0CGOGEOECEC
HWSET © 090000000000 000600 EEOOONE00000000LGGE

HWSETR © 00 06000 00009 DOO0L 00D EOO0O00000TS

Hardware Handlers cececccscccsscsvccocscoscs
Hardware MonitOr eceveoecscosscccsssssssscssce
Hardware SettingS ceceecscccsccoccsosnccsse

ID e evevoenovocncososscsassnsasssasssannns
IDKEY e oeeeeeceacesesscsssassosssssossoses
IDPROC o evvevecesccnscasssncsssssssnnnonns
IDREQ «eeoevooasssasssossnassonsssccnasses

IFC © 20009 00900000 OGO00000800 0000000600006 0O

INBEND © 000 0006000000000 00CO0O00C0006ESSCOGECDL

IND=-5

2-32,6-11,6-14,6-15
A=4,2-14,2-15,2-17,2-20,
2-30
3-2,3-4,3-7,3-9,3-10,
3-12,3-16,3-18,6-46,6-47
6-33, 6-58
6-58
1-7,5-4,6-8,8-1,6-10
-1,6-21

2
3,6-61
=21
»2=6,6=2,6-6,6~8,A=2,
,6-10,6-21,6-22,6-23,
4,6-26,6-28,6=50

6-4
6-2
64

wnN W

6-1
6-6
6-8
6-4
6-2
1-1
A-6
6-2
64
6-3,
A-6,

6-6,

318, 6=45, 6-46,6=47

B-6

2-16

6-17,6-18

6-12,6-62

6-62

A=k, 2-21,2-22,2-23,2-24,
2-28

2-28, 6-33

2-34

2-6,2-9,2-16

2-16

6-5,6-6,6-23, 6=24,6-25,
6-26,6-27,6-28

6-33

6-33
6-3,6-18,6-48,6=51, 6=54,
6-55, b=56

4-1,6-42

5-1
2-1,2-2,2-6,2-8,2-9, 3-1,
5-1,8-1,2-10,2-11,2-12,
3-11, 3-18, 6~46, 6=52, 6=53,
654, 6=56 , 6=58 , 6=59

1-1,4=1,5-4,4-0
1-1,1-8,2-1,2-8, 3-1,5-1,
5-4,5-5,6-53,6-54,6=55,
6-60

3-1,3-2,5=3,6-44,6=45
3-18

5-2,3-18

6-35

6-60
6-4,6-9,6-12,6~15




INDEX IND-6

INBUF «eeeevsosncesnsncncncncncacacacncnns 6=b,6=12,6=15,6-20

INBUFUL «eovevencnsnssssocnsanansacannnens 6=5,6=9,6-11,6-12,6-13,
6-14,6-17,6-18,6-19, 6-20,
6-26

INCDEC ¢cocecocosnnsosssoonnssssossssseoss 3=10

INCHAR +evveeeencnonsnsnssonsnonsacncanans 2=8,6=6,A=4,2-10,2-14,,
2-14

INCRDECR ccvcececsascocsscscsasssscscssssccas 3=10

INDEX evevesoncssecensocnssssosssanansnnss Amk,2-10,2-16,2-17,2-19,
2-20,2-24,2-29, 2-34

INITGPIB eevevocscssoccossnnssnsassceccees 6=3,6=62

INITINBUF o evesosnsncncasacsaocsoncananees 6=2,6=8,6-20,6-51

INITOUTBUF «eveeeeescncososnsosnsnsnnnnnes 6=2,6=5,6=6,6-10,6-12,

1,6-26,6-29,6-49, 651

,6-40,6-42,6=51

5

INLOC ® 000000000 PN P ELREOLIOEOELIOLEOERNONOSEOROIOOLOEOOECEES -

6—
62

INITSTAT ceoecesccescosscsssosssansannsess 6=3
6-3

INPUT ececccccessocscsccscscscssnsnsocscses O=2
INTFAULT «ceeeccccoscesososoonsssosassccsss 6=33

INVALCHR ecesssacsossosscccscsssccsssnsnes 2=15,2=30

INVCHAR ceccocescsoscossocssonssssenasscses 2=20

TRQ cecvoeescnsesosnnsssssccssassassscccsae 1=6

Implementation OVerview sscececccescecesss 6=38

Implementation of the Message Processor .. 2-6

Input Buffer eeceeceseecescensescncennnees 6-2,6-4,6-5,6-6,6-8,2-13,,

2-1,2-7,2-8,2~14

Input Buffer Initialization eceeceessceess 6=20

Instrument StatuS eceoeecccccccccsesscesans 1=3

Interaction of GET with other tasks «.e... 6=54

Interactions With Other TasksS eesssecesess 2=6

Interface Clear scescecescessccsscassssnee 6=60

Internal Errors ecsececessssocosssccsasses 6=33

Internal Warning secceeecscecesssscccsecsce 6
Interrupt Handlers and Miscellaneous «.... 6
Interrupt Handling eesecscecccessecssscnee l=
Interrupt Stack cececcscsscceccssarsecnsssse 1
Introduction esececescecccccssscsscccssssee 0

JSR © 0050000003800 000606000060C000600600060606060000000 7-3

KEY coceccccvecceccacessoesssesccscssssess 3-10,3-12,3-15,3-18

KEYCLEAR ¢cccsecececcocccscoscccnceneosoanes 3=7,3=8

KEYCODE eececeecscscesssoscccessscscscesss 3=7,3-8,3-9

KEYENTER «ceceescceccccosesoosscncencooncae 3=7,3-8

KEYMAP socveccscocccsassoscsssossoscnsnsssos 3=18

KEYNULL ¢ceocecsccececoccossoscssasacosscscess 3=7

KEYPROC eecvecccoccesccscncoscossassnsscss 2=8,3=2,3=7

KEYRCL ccoeccocacssocsscsossessscosassscsse 3=7

KEYRECAL «cecesececccssacscssocsasssscsasses 3=7

KEYTYPE ccececcecocesssossosccosssssssscsse 3=10

KPERR eccosecccoscocsscssossscscsnssccnsnsee 3=12

KPERROR ccseccoccccesosescssnsnsocnssesnss 3=10,3-11,3-12

KPEXEC eeecececccscesssssssesscsscncnssoss 3=10,3-11

Key Processor ceceeeccecccccccecscnssnacss 1=-1,2-2,2-3,2-6,3-1,3-2,
3-6,5-4,5-5,6-3,8-1,2-25,
2-34,3-11,3-18,6-44,6~47,
6-54



INDEX

LADS © 0060000600000 06E0600000C660CO 0800000608660
LENGTH © © @ ©° 0660600066000 60000000C06EO0CCEO0COOOC O O

LF © © 000 0COO0E00000000EE@OC00O900000CG6OCGEOE O O

LFMODE © 006000000606 00606000060©0COEOCKO0OGEE O @600 0e0ee

LLO ©0 6060600600000 0606000006 00606 6000CQ®O0GC OOEEO O
LOADBYTE © 0@ 0060006600600 0060060000CO000C€O0GECROGCES O

LOCAL © 0000000000000 00606OO0O000006000L 66 O

LOCAL to REMOTE cccsoccccsosocosccsccasvos
LOCKOUT oceoscccocosssscscessscososossssncsa
LOG2Z ceccoccocscccoososcssossssoscassoscoccss
LOGICHNG coccescsscoococsoacescsaosncsosss
LOGUCHNG coceocoscosscscscsssococasasscnnos
LOGVCHNG «cosecccooocsosccocosscssssoososcosae

MA © 009000000 EO0O6 0000006000 0C00600O00EEO6S 006060606

MANTISSA ceccecoccoscscocssosccsonsnscsnncs
MATH.ERR ccooooococcosscacsonssssossonncasse
MEAS.ERR cocoocscoocoosoosccosoasconssscss
MISSARG ccococconssocsscosccssosasoscsocncocs

MLA @0 00©000 0000006000006 0OCOOCEGCO600©060660600S66 00

MLHLDOFF © © 000000000020 0000060COOOEO0COE0000CGECEEESE
MLSTRB.ERR ® 000000000000 COOCEO0O6O00CE00600COCEOEOCEOE
MPBUSY © ©0°©0 0000606650000 006CEECEOCOOOEO0O0GEEEOOOOCE

MPERRCD © 6000000000000 0C0OCOE00O®OC00 OGS COC0E6E6G OO

MSGDEL ccsscecocscoscsccccsossscscssccscnss
MSGDLM ceccocscccsccosscseccosssasnssosssccscs
MSGPROC cccccccassssocscocsssosnncnssaconse
MSGREM ccccscoscoscocooscscsconasasnssosoos

MSGREMZ © 0060000060000 000C0CG6E660060C0600C0C€CO0OCECELE

MTA © 090000000 €C0600600CECEO000EL00000CEH6000COECGO O

MVALID © 0606000600900 0000000060O6000000O06600GE6 O
MVALIDZ © 0006066000060 0006000000660©0606OCOREO 0GOS SO

Message Processor 0600000000 c00000000CCO0S0

Message Processor VariableS ceesceccssccscse
Monitor © 06 000000 000000000 OGO O O OO0 O E0Q 6O OO
My AddreSS Service Routine e06co00co0006000 00

NBAF © 00600060000 000C000©0000E 000600600600 ECOCOC606E 00

NBUF © 000060600005 00660000600C00OCO00O00C00OC060000CGO6 O

NDDSTAT © 0600000060006 0C06006000O0O0D0000CEEEO0OGEOLEE SO

5=1

2-20,2=-34,2-35
2-10,6-11,6-28
6-9,2-32,6-10,6-11,6-12,
6-13,6-17,6-18,6-20,6-28,
6-62

6-44,6-47

6=-14,6-15
2-3,6-5,2-21,3-18,6-44,

6~ 45 6-46 6-47,6-52,6-53,
6~ 54

=1,6=44,6-45,6-47

56-24,6-43,6-49,6-54

32=24,2-29,2-30,2-31,

6-44,6-47,6~54

2=-8,2=12

6=33
6-5,6-8,6-9,6~10,6-12,
6-18,6-20,6-22,6-26,6-40,
6-41,6-53,6=54,6-55, 6-56,
6-58,6~59
2-7,2=9,A=3,A~4, 2~ 10,,
2-7,2-9,2-10

2-10

6=33

2-8,2-9
2-7,2-9,6-5,2-21,2-27,
2-34,6-10,6-12,6-18,6-45,
6-46
6-5,6-10,6-12,6-18,6-45,
6-46

6=24

6-8
6-5,6-10,6-12,6-16,6-17,
6-18,6-19,6-20
6-3,6=5,6-

1-1,1-6, 1=

b

2-4,2-6,2-7
2-21,2-25, 2234
2-7

1-2

6-49 ¢

6-29

A-3
5-1,6-7,2-26,6-39,6-40,
6=42




INDEX

NEBUFFER +eveeencsasnssncnnsnssacsncsasons
NECOUNT «eeesesacnccassncossnscncsacacnns
NEGICHNG +evvevnssasascassasassnssnsansans
NEGUCHNG + eveevoensasescasasessasacassnnns
NEGVCHNG +evaeensoneossassscassoscasonsons
NEPTR e eevevsasecsncassasnsasessasasoncaons
NESTATE «ceeeeocenceccansacsassscnsonsonce
NEWEVENT «oeoeencsosnsensoncoscnscasoncans

NEXTMSG ® 6000000000000 000000000 0GESIOIEINOEIESIOGEDOIE

NMI © 0929600000000 00CNGOILOENOISIOGEOINOEBSRONOIOOSEOSTDOS OGS

NONNUM © 0000609008000 0000080000000 00000CLEDIIDO
NOPRESCL © e 0 08 0000000000000 SIOCNISIOGESIPSEOIOCOETOETODE

NSP 9 000000000000 OCLEELOLOLOERIROIEOELNOIESIREIOECOIEOEOBDORTOIEDPDREEOE

NSPLOST covoocecccsossseocssssascsanccanens
NUMARG occoceccscscescsssoscsessncsssnsnne
NUMeCMDS cecoceccsccvsssscssasssossoncsanss
NUMePROC «ccevcecoscscscsscssossncasoncanes
NUMENTRY ccoceeccecsccosccsocssnssasccascas
NUMERIC eocecccocccscssncssnsssossocssnsos
NUMPROG occecccsssoscssssssssncascsnsssassce
New Settings Pending eececescecscsscacacese
Numeric Entry State Table sccesccesccssces
Numeric Entry Variables ececececscecsscsces

OBEMPTY @0 00 0P E OGP OESEDNSIEOESINOISIESEOOIEPROEOECOIEORNOSNONOEORNEOEEOETDS

OPCOM ®© 9 0 00000000000 000000000OROESSIEEOENDOIOSETOOS

OPERATIONL ceesvocsccccssssosscccsnsssoncosne
OPTIONS ceescsscccsssccsasasssscscsscsssnns
OSPI vS COS seceesssccsssosonsssssssssssas
OSPI vs TESLA Implementation of REAL*32 ..
OUTBEND cccsccsccccasecccssscccnscsncscssssacese
OUTBUF e cevocssoscsesscsssscsscsscsssssssssss
OUTBUSY ceosecccccosscscssosescssssssoscsnscs
OUTCHAR cccoscccssososccssssscscsssscscocnssse

OUTLOC seeecscccsossscsossssscssascscsncanscs
OUTP.ARG ccossceccscsccssssascscsccsasnsnssos
OUTPeCHR c¢oeeccoscosccsscsccscrsosassccssnse
OUTP.HDR eooscecccecsscccssscosnsscosnssasne
OUTP.INT ecceccocccssccccsssssasassossssnse
OUTPUT ceceovcosovesccsccssccscssccsncsanss
OVERRANGE ceosccsosvcccscssssocsssasscsssssss
OVRFL.ERR ccesccccosscccossccossssossonsnsoe
Operational Command ceeccesscsccscsscoccns
Operational CommandsS eeceeesecsosscscsasaas
Output Buffer ceceececscccccceccasesssssnns

Output Command @000 0 0000000000000 00 000000
Output Commands e0 0000000 enseROGOLBIOISLIOEBSOIOSETLOE

IND-8

3-10, 3-13, 3-15,3-16,3-17
3-13,3-15,3-17

6-35

6-35

6-35

3-13,3-15,3-16,3~17
3-10, 3-13, 3-15,3=~16
2-6,2-7,5-1,6-2,2-13,
6-12,6-26,6-38,6-39,6-40,
6-46
2-7,6-2,6-5,6-8,2-10,
6-18,6-53

1-6

6-33

6-35
1-8,2-6,8-1,2-11,2-13,
2-24,2-25,3-11,6-45,6~46,
6-52,6~54,6-56,6-58, 6~59
6-33, 6-46
2-22,2-23,2-26,2-30,3-10
2-34

2-22,2-23,2-24,2-30
3-10,3-15

3-10

A=4

A-3,6-54

3-14

3-13

6-5,6-12,6-22,6-24,6-25,
6-26,6-27,6-29

6-34

2-16

,B-8

»6-27
»6-27,6-29
,6-27,6-28,6-29
2-27,2-33,2-34,
26,6=27,6-28

25
25
22
6,

B~
A=~
B-
6-4,6-
6-4,6-
6-6,6-
2-8,6~
2-

6
1
4
-4,
-4,
-6,
-8,
35,6~
6-35
2-26,2-35
2-34,2-35
2-25,2-27,2-34
2=-27
2-7,6-2,2=16

6-35

6-33

2-7

2-1,2-5,2~7
1-3,2-1,2-2,2-6,6-2,6-3,
6-4,6-5,6-6,2-35,6-10,
6-11,6~19,6-21,6~23,6-24,
6-26,6-28,6-29,6-49,6~50
2-7

2-4




INDEX

output Comands ®© 00 06 © 00 © OO0 Q000 0000 OQO0OE6 OO
Overview of Message Processor Operation ..
Overview of the Operating System ccoscesse

PBPTR © 5 e 0006006666005 6060600666©08666666668e668e606e

PENDSTAT © @5 006060008 0660060000@0600EE06000C0600EG6 OO

PHSoFM ccccccococccoococococcsosssascsosascs
PHS.VCF cocccsccccccoccsccsssonsnsccssscnocs
PIFF ccccccoscssssssccseccsesossosccssscssca
POINTER cceccscecccccscsscocccssoscsccsasos
POSICHNG cocococcecsccoscccossccsosossesssscs
POSUCHNG cccocsosceosscsocnscesssossocscsss
POSVCHNG ccoscccccsccccsosccsscscsosocsscss
POWERON sccccoscscccocsscsscascsoscsscccososn

PPC © ©© 0000600 000600©0600©000060606060600ECOGOEOELCOS O
PPD © 9600606060060 0000060C006000°0C00Q060000E66060600¢©CGS6 O
PPE © ©© 0606 060606000006000©60C000000C000COCOEO60O00EO0

PPU © © 2006000060000 0000© 0000600060060 06006006GCD0SOCOCG S

PRIORITY ©© 0000606000006 00000000CE0OR2E0G000O0 06O
PSGETIIH ©© 0000060060000 0CECO 20000000 EE 0060 OO0
PSPTR © 6060600000600 006000C00000000000C000O0OECED

PTR © ©©60600C0EE0ECE000C000060O0O00O0OG066000FECESEOGOCO

PTRASCII © 060000 06060600060 066006006000060©06006000660€GO6GOC
PTRPARM © 0 9606006060000 060000C0000S$00COLLOOEOCES
PUTBYTE © 0 © 0006000000600 00O6000066060C00000OCECOC S

PUTEOI 2 ©0 0000000000000 06608 0000600600006 0°D0O0SC

Parallel POll cccceocccccccceccocscscssacss
Pending Setting ececcscosscccssscsccsssnss
Pending Setting Buffer cceccecescccscsccss
Pending Setting Verify eeceeecececececnnces
Pending SettingsS eececcescsccccorsocscsocss

Pending status Table ® 0 0 50 006 PP O OO O eSO PSPOLE
Problems imposed by TI 9914 Chip eeecsecess

QRY.BUFR cccccsosccsccsscsacsossscosscssanas
QUERYONLY cccocccocscocosccccscsoscscoscscs
QUOTIENT ccceccecccsccscosocscscscosnscasnsce
QUETY cceccsceccsecscescscocsscsccssccscosss

Query Only © 02 0600060006060 000606006000060066000080

RAM © © 0000600500000 860600860C060C08CEESESO0000600ECSEC

REAL*32 FLOATING POINT cecececocceevcccces
REALINT cccccecscccccecsoescsnssosscsccscsss
REALSTR cccscecesccsesccccosossesscscssase
REALVAL cccococscccoosconccossoscoscsassccs
REGISTER ccccescccccosscccesscscscscsccscnce
REMcTST sccccecccccnnconcacccacasnsssasses
REMBIT cccceccccoscsccccccscsoscccaccnsccsonscs
REMONLY ccccccccescsocsoscocescccocscccsnse
REMOTE ¢cccecccsoscscsccscesocccseosossssnsss

IND-9

-
2-
1

et

6-4,6-12,6-25,6-26,6-27,
6=29
6=-7,2-26,6-39,6-40,6-42,
6=-62
6-33

o i
W
w

w1

6-32,6~34,6-42,6-50,

|
= - RO

AN WWWWo

?\0\0\0\0\0\?\0\0\Wn0(m
—

6-39, 6-40

6-58

6~39, 6-40, 6-42

3-16

2-30

3-7,3-8,3-9
2-8,6-2,6-4,6-5,6-6,6-8,
A-6,2-27,2-33,2-34,2-35,
6-21,6-26,6-28
2-6,6-2,6=5, 6-6,2-10,
6-21,6-26,6-28

6-61

2-21,3-18

3-1,6-50

2-7
1-7,1-8,2-1,2-2,2-3,2-8,,
1-7

6-7
6-36

2-33
2-1,2-9,2-16,2-17
B-7

2-4

2-4

-29,2-30,2-31,2-34

-9,2=34,6-33

6

1

3

3
-3,2-30

6

2

1

9
-2,2-3,2=7,3=2,5-1,6-5,




INDEX IND-12

, 6-39,6-40,6-43,6-50,6-60

TMSADREG ¢ecocescccscccscsscscessscscssnses 0=62

TMSAUXC eoeesscsssscsscscscscsscassessssssecs 0=62

TMSAUXCM o cecesascesscccssssscnsscscsssses 6-12,6-13,6-17,6-18,6-19,
6-25,6~29,6-43,6-46,6-48,
6-62

TMSDATA s ececcccscsesasssscsssssccscssssee 0=25

TMSINTO ececessessesscssvsossscscasscssesees 0=43

TMSINTL cececsescsccsosscssccsssssccsscsnses 0~43

TMSMASKOD eeosesssssossccscscsssscssscssssees 0=62

TMSMASK] ceeeeessccccsccsssssasessssnsnssssse 0=62

TMSPOLL ecsesccssscessssscsssssecsssscssss 0=62

TMSSPOLL ceeeevoscocsscsocasscsccsssscssses 0=40,6-41

TRIG ceveosssessscesssccccssasanssssssssss 0=58

TRIGGER sseccecsccsccsossscscssncssscssesses 0=52

TYPE eoececsscssososscenseosceccncccsnssassee 3-7,3~8,3-9,A~4,2-16,
2-17,2-19,2-20,2-29

TYPEFUNC eeoescascscsssccscsscssscsssssess 3=7

TYPENUM «eeeeoccooccassesscscscssnsassanse 3=7,3=8

TYPEPARM ¢ cceocosscescscccssssssccssssccses 3—7

Table Search ceeccessesccccscscsssesssssees 2=19

Table SETUCLUYE ecoeescsscssssssscsscsssess 2~16,2-18

TAE ecevocoscossssscssenosssssscncnensssess 218

Talk Addressed ccecscsccssccsscccssssocses 0=0

Task eececesscscocessesssssscssscasnssesce 1=1

Tests Performed on the Input Buffer ......

Types of CommandS esscccessscssccsscscenss

UNT © 0 000000 POEEOPOENOONINBLOIOLOESIOINOEPSEOSEOSEOEEOCES

6-2
UPDATE DISPLAY cceovccsccssscscscssosssscsse D=1
Update DiSplay eececececsesesecesessssanssess 5=3
Use of ERROR? Command e.cceecessessssocces 6=3
Use of Status ByteS eccecsccsesccsessanaes 6=3
Utility Routines eeeeesesccecscsesssssscces 8-1
Utility Routines for Command Handlers .... 2-2

VARIABLES FOR REAL*32 MATH 0000000000000 B-6
VERIFY e e e s 0000000 0sesseeGOGOOOOGEOIOEOOIOEDNITTOSETETODO 2—11

ZZABORT ®© 00 00 0000000000050 03000000000000s00 Bll
ZZSHARE S 06000 0000000000000 0000C00CROLESIRENINESEOEN B_7

nbaf 006000000000 0000000006000 0000000000s000 6—50
Out'of—range © 0000200 0000600e60800000000000000F0 3-1

TSV oceececssscessosssscscoscsssscsssscscsacssoss 2-26,6—36,6-37,6-50
rtl 00 0020000000060 0000000606000006000006000s0 6-5,8-1,2-34,6_44,6~45,



