COMPANY
CONFIDENTIAL

-FORUM[-
REPORTW

PRODUCT DEVELOPMENT

IMPLEMENTATION

DESIGN SYSTEM TESTING

SPECIFICATION MAINTENANCE & MODIFICATION

P g

|CATION
RETURN THIS PUBL
PLEASE LIBRARY

I. TO WILS.

TOOL DEVELOPMENT

Through Its Life Cycle -

Managing Firmware
Through Its Life Cycle

The Engineering Activities Council provides Tektronix
engineers and scientists with a forum in which to present
directly, to multiple levels of management, what engineers
and scientists themselves consider important in technology.

Forum 13, “Managing Firmware Through Its Life Cycle,”
was held in April 1979 in the Technical Center (building 50)
auditorium.

Speaking at the forum were: Doug Bingham (Copier/
Plotter Product Development), Bob Edge (Graphic Computing
Systems Advanced Development Firmware), Jack Grimes
(Graphic Computing Systems Engineering), Rick Potter
(Digital Service Instruments Software Engineering), and
Rik Smoody (Graphic Computing Systems Evaluation).

The chairpersons for Forum 13 were: Dave Armstrong
(Digital Accessories Design), Lynn Saunders (Scientific
Computer Center, Software Engineering), and Jim Tallman
(7000 Series Electrical Engineering).

Dave Armstrong Lynn Saunders Jim Tallman

CHAIRPERSONS

2 Copyright © 1979, Tektronix, Inc. All Rights Reserved. Tektronix Is An Equal Opportunity Employer.

HIRING AND PLACING PEO

A projectin itself

GCS Advanced
Development Firmware, ext. 2590
(Wilsonville).

Bob Edge,

A HIRING TRAP

Hiring and placing new software
people can be a major project in itself
unless the hiring manager keeps a few
simple guidelines in mind: allow
plenty of time to hire the right
people, clearly identify the skills and
personalities of the people already in
the group as well as the skills and
personalities required for the new
member, use interviews as well as
resumes for a complete picture of
applicants, use Professional
Placement’s services, and be
prepared to reassign people who
don't fit their jobs.

The biggest trap to avoid when
building a new staff is thinking that
the right people are easy to find. You
may need as much as six months to
find the right people. If you require
several people for a large project, hire
a few very early to get a feel for the
current employment market.

The same hiring methods and ideas
apply to hiring one person or a whole
new staff. First, develop a job
description for each position. A list
of knowledge, skills, and abilities
required will pay off many times over
as you consider the candidates.

Identify the skills and personalities of
existing staff members and
determine what kind of new working
and interpersonal relationships will
benefit your group. You will need
different kinds of people for team
efforts and for individual assigments.
Some people work well in both
environments, but they are not easy
to find.

THE INTERVIEW

The applicant’s experience is
important in terms of both amount
and quality of experience. Be aware
of the difference between five years’
experience and one year’s experience
five times. With careful questioning,
determine if the candidate’s part in a
project was larger or smaller than the
candidate claims.

Nonwork-related experience can
have value. For someone fresh out of
school, find out what kind of projects
the candidate was involved in.
Someone who makes the most of
educational opportunities will
probably make the most of a job.

Education is important, but you
must still question every candidate
carefully. Candidates who have
earned degrees have proved an
ability to earn degrees; you must find
out if candidates also learned
something about their fields of study.
Someone who has been out of school
for several years will have a real-
world performance record.
Acquiring an education informally
may indicate a strong personal
motivation that could contribute
significantly to job performance.

Personal goals are very important to
an employee’s long-term
effectiveness. A person with goals
clearly contradictory to yours and
those of the project may be difficult
to work with. Most people are quite
flexible, however, and are usually
willing to work on any project that
has clearly defined goals.

GENERAL BACKGROUND,,

While specific experie{n“éJéﬂfﬁ'ﬁmble\,
it can also be to your advantage to
consider someone with a broader
background. Such a person will be
more likely to take an interest in
many aspects of a job. It is to your
benefit to encourage sharing
information and ideas between
working groups.

A person with a broad background
has another major advantage. When
one project is finished and you are
ready to start the next, flexible
people will make the transition that
much simpler.

PROFESSIONAL
PLACEMENT HELP

The people in Professional
Placement and College Relations are
glad to help with staffing problems.
Professional Placement people are
experienced in evaluating candidates
for their personal qualities.

It is best not to decide upon a
candidate until the Professional
Placement interviewer’s meeting.
The interviewer will provide
additional information and
comments that can greatly affect
your decision.

UPDATE KNOWLEDGE

An employee who has stopped
learning is a big problem. As
technology changes, an employee
must continue to learn. Without a
motivation to learn and grow, an
employee becomes useless to you and
your group.

Tektronix has an excellent education
program, but it is not your only
option. There are numerous
organizations that offer short
seminars on many subjects. They are
a good way to give an employee a
charge of new thinking.

Continued on page 4

3

Continued from page 4
UNSUITED PERSONNEL

Another serious problem is an
employee who does not believe in
project goals. There are two things
you can do. The first is to convince
the person to change direction (or to
change yours). This requires a great
deal of coaching, but it can be done.
The second choice is to find a job that
fits the person’s goals, perhaps in
another group. Solving this problem

satisfactorily is one of a manager’s .

most important responsibilities.
KEY PERSON

It can be a serious mistake to give one
key person full responsibility for a
project. With the life of the project in
one person’s hands, the project will
be seriously threatened if that person
leaves. This does not mean that you
should avoid strong team members,

but you should balance
responsibility and expertise as much
as possible.

As a manager you may be required to
coach team members so that they will
understand all aspects of a project.
Most people appreciate help with
their work. If your group is
organized as a team effort, this
interaction will seem quite natural.d

IMPLEMENT

Rick Potter, Service

Digital
Instruments Software Engineering,
ext. 1933 (Walker Road).

A software project’s implementa-
tion phase can be straight-forward
and a small part of the entire
software job, if the project manager
has a thorough understanding of
four major aspects of software
implementation: (1) using a
methodology, (2) defining a realistic
schedule, (3) developing code, and
(4) monitoring progress.

METHODOLOGIES

Because software methodologies
have recently received much
publicity, many people incorrectly
view methodologies as cure-alls for
software problems.Webster’s
Dictionary defines methodology as
”a body of methods, rules, and
postulates employed by a
discipline.” More informally,
software methodology is a recipe
for developing software.

4

A methodology must be task-
specific. A different methodology is
required for developing scientific
programs than for developing
business programs. Just as either a
house or a boat could be built from
wood depending on the method
used, different software
methodologies produce different
types of programs.

Software designers should select a
methodology at the beginning of
the project. Early selection and
adoption of a methodology
encourages designers to begin
planning, documenting, and
defining specifications early in the
project cycle.

Currently Tek Labs, Information
Display Division, and Digital
Service Instrument’s Software
Engineering Group are investigating
software = methodologies. From
these efforts, Tektronix may be able
to develop a stereotyped
methodology that will fit into the
new product introduction process.

SCHEDULES

Several factors make developing
realistic schedules difficult.

Programmer optimism: most
programmers underrate the
difficulty of new projects.

Management optimism: most
managers overrate their software
people.

Management restrictions: at times,
managers set unrealistic goals (for
example, ”“We must finish by
WESCON?).

Not allowing designers time to
respond to criticisms presented in
design reviews: most schedules

include design reviews, but not time
for redesign.

Creeping feature creature: adding
features part way through
development requires an adjustment
to the schedule.

Not revising schedules: a scheduled
12-week project that slips one week
after only three weeks will probably
be a 16-week project, not a 13-week
project.

Over Emphasis on coding: contrary
to what many designers think, coding
requires only about 20% of project
labor.

Not identifying programmer
productivity: figure 1 shows the wide
range of productivity from
programmer to programmer and
language to language.

To overcome these problems,
software project managers can
make schedules more accurate by
(1) collecting data about projects
completed (how far off were the
results from the first estimates?
what factors caused the delays?); (2)
defining project specifications
before developing a project
schedule; (3) studying books and
articles that describe software
design, workload estimating, and
scheduling (example books are:
Frederick Brooks, Mythical Man
Month, Richard C. Gunther’s
Management Methodology for
Software Product Engineering, and
Philip W. Metzger's Managing a
Programming Project); and (4)

developing schedules based on data
and phase ratios derived from
published information and from the
manager’s own experience (an
example of a phase ratio is
20:10:5:3 for hours spent in

analysis - and - design: implementa-
tion:testing:documentation).

CODE GENERATION

Once designers select a
methodology and define a schedule,
they can turn their attention to code
generation. Though many designers
consider code generation to be the
toughest part of a software project,
code generation shouldn’t take
more than 20% of project labor ... if’
the software design is good and if
the project specifications are firm
and clearly defined. The rest of the
project should be devoted to
designing, planning, debugging, and
integrating the software.

TOOLS

Having appropriate tools
(hardware, task-specific software,
and development methodology
tools) makes designers’ efforts much
more productive. An ideal situation
at Tek would be for the
programmers to use the Scientific
Computer Center’s Cyber system
for number crunching and for high
throughput tasks and smaller
computers for emulation and text
editing. Task-specific tools include
high-level languages, linkers, and
loaders. Designers should tailor
their development methodology to
their task.

MONITORING PROGRESS

A software manager is responsible
for monitoring the progress of the
project. Like the gentlemen in
figure 2, managers should not rely
on miracles to complete projects on
time, but should instead use the
tools available to them.

PERT (network analysis) charts
show the interactions between
various parts of a task. GANTT
charts depict individual assignments
throughout the project. Along with
GANTT charts, managers can set
development milestones at two to
four-week intervals and ask
designers to write milestone reports.

SOFTWARE PRODUCTIVITY

10,000

ah

4

o

—

OF 1.000

2=

=

Hho

z=

w3

== 100

(&S]

<

=
10

1955 1970 1985
PRIMARILY PRIMARILY STRUCTURED
MACHINE FORTRAN, PROGRAMMING

LANGUAGE JOVIAL. ETC. APPROACHES

Figure 1. Although the average productivity of programmers has increased
over the last twenty-five years, the continuing wide range of efficiency makes
accurate project scheduling difficult without concrete knowledge of how
productive a particular group’s programmers are.

“| THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO.”

Figure 2. Managers shouldn’t rely on miracles to complete projects on time,
but should use monitoring tools such as PERT and GANTT charts and

development milestones.

RIO (Responsibilities, Indicators,
and Objectives) documents and
individual work plans are
management-by-objective tools that
establish measurable criteria for
evaluating each assigned task.

SUMMARY

To keep software implementation
straight-forward and a small part of
the overall job, managers must
develop firm specifications, task-
specific methodologies, realistic
schedules, and methods for
monitoring progress. O

5

VERIFICATION OF SOFTWARE

Rik Smoody, Graphic Computing

Systems Evaluation, ext. 2422
(Wilsonville).

We all want to create a quality
product. Evaluation is a vital part of
producing effective, reliable
software; evaluation is not an
adversary to design. The evaluator’s
job is helping the designer find bugs,
but that shouldn’t be threatening to
the designer. Look at it this way: each
of us makes mistakes, each of us
knows it, and everyone knows
everyone else does too. The question
to ask is: do you want an evaluator to
find mistakes now, or have
customers find them later?

Errors are less expensive to correct in
early phases of product
development: the software is fresh in
the designer’s mind, and only a few
people need worry about an error. In
later design stages, attempts to
retrofit a software system to correct a
bug may introduce more serious
bugs.

A mistake designed into a product,
but not corrected, must be lived with.
People use it as a feature and you
must maintain upward compati-
bility. At Tektronix, our software
should reflect our commitment to
excellence.

BLACK-BOX TESTING

Black-box testing of software by an
independent verification team is

6

often intuitively appealing to
marketing people. Snappy demo
programs show what the box can do,
but meaningful testing is made
difficult by the lack of access to
internal operations. A simple real-
number sorter or a comparator, for

example, cannot be tested
exhaustively with a black-box
approach.

For a customer using a product in a
configuration not anticipated by the
tester, there is no way to guarantee
quality. Since the internal operation
of such a system is unknown to the
tester, the customer pushes unknown
limits.

Only an experienced computer
scientist can understand a complex
system. A computer scientist quickly
tires of black-box test programs,
because they are trivial and boring,
and soon seeks other duties. This
migration of computer scientists has
been a major problem at Wilsonville.
Even junior programmers know
there has to be a better way to test,
but they often don’t know how, or
lack the authority, to change things.

Testing is especially difficult when
testers aren’t sure which parts of the
system they are testing. Testers may
evaluate some parts but not even
touch other parts. This approach can
amount to nothing more than
monkey-testing. Many monkeys and
many typewriters still take a long
time to produce the complete works
of William Shakespeare.

EVALUATION AS PART OF
THE DESIGN EFFORT

Communication between designers
and evaluators is essential if an
evaluation team is to avoid playing a
guessing game. An evaluation team
provides expertise in testing
methodology; evaluators are the
testing gurus of the project and can
develop new tools.

As evaluation becomes part of the
design process, reliability and
testability become design factors.

Evaluators can thoroughly test
modules as they are built, while
functions and design criteria are still
fresh in the designer’s mind. Thus,
designers can fix errors more easily.
The evaluator can generate test data
while the designer can still remember
possible trouble spots and can
recognize correct answers. The
evaluator can run each module
through its paces to see if it performs
as expected and to make sure all code
is tested.

Evaluators may find their jobs more
enjoyable and certainly more
educational if they work closely with
designers. For many people,
evaluation is an entry-level position;
they would like to be designers’
apprentices. Evaluation groups can
provide a training ground, but
should never be holding-pens.

AUTOMATED TEST TOOLS

Commercially-available testing tools
are usually not adequate for
Tektronix software evaluation. They
are usually limited to one language,
such as FORTRAN or COBOL, or
one assembler. What if we don’t
happen to be programming in that
language?

Some testing tools are trivial. Other
tools are limited by lack of structure,
or they do a lot of work to
compensate for an inadequate
compiler. For example, a tool may
test for definition of variables. Better
languages, such as PASCAL, do not
allow undeclared variables.

Some tools may be so general that
specific constraints are lost. For
example, if a program never uses
Labelled Common, it is wasteful to
use a test system which requires a lot
of cumbersome code to see that there
are no Labelled Common errors.

Commercially-available tools are
often cumbersome for the small
amount of useful work they do. They
are not worth what they cost.

In the literature and at conferences,
we discover tools used in other
groups. They are often tailored to

INCIDENCE
OF ERRORS

WITH EVALUATION

TIME

WITHOUT EVALUATION

RTINS

Figure 1. Software evaluation enables project designers to release a product earlier, or release a product having fewer errors,

or both.

those groups’ applications and don't
fit our needs. Even if competitors do
have tools which we could use, they
are unlikely to sell them. Since
efficient testing tools are not readily
available outside Tektronix, we may
have to develop our own tools. This
can be done most effectively by
maintaining a staff of tool-building
experts. TSL, the Tina System
Language, and RAID, a debugging
aid used with TSL, are two examples
of Tek-built tools. They are a
significant step towards reducing
bugs in software designs. Tektronix
needs to develop more tools for
quality assurance.

Effective tool use requires planning.
Test tools deserve the same kind of
consideration that other
development tools, such as compilers
and simulators, receive. Test tools
should be defined at the early stages
of development, when everyone has
planning fever. At the same time, the
evaluation strategy must be
developed. Parallel to other design
efforts, evaluators should define
what tests a program must pass to be
considered "fit”.

No tool can solve all problems, nor
can it be state-of-the-art forever.
Consider the advancements in
programming languages in the last
few years. Test tools are only a little
way behind, and are constantly
advancing.

SOME TOOLS

Well-designed high-level system
languages help make high-powered
tools practical and help designers
write programs more quickly and
more legibly. In that sense, the
language itself is a very important
tool.

A structured walkthrough can help
spot many errors in early design
stages. In walkthroughs, a few
people, other than the designer, read
the code and documentation and try
to understand how the program
works. They also point out parts of a
design they believe may not work.
High-level languages and effective
coding standards help make this a
miaiiessprodUctiver Spractice:.
Evaluators on a new computer
terminal project in our area are
performing walkthroughs as a
service to the designers.

A control flow analyzer helps
determine if there are any funny
program jumps. A data flow analyzer
points out if a routine is a Peeping
Tom, a burglar, or an exhibitionist.
Such program behavior may be
intentional (if so, it should be
documented in the source code), but
it should be watched as a potential
trouble spot.

Coverage testing is testing a/l code in
a program. This alone will not ensure
quality, but it is a necessary step in
that direction. Tek-built RAID can
keep track of whether there are
untested pieces.

Test set generators may either: (1)
look directly at the source code and
define a set of data which will test the
module, or (2) be given a shorthand
description of the test data and
generate the entire set. The first kind
is very hard to build. The second kind
is common.

Test fixtures are driver routines
which feed data to the module in
question. Results are then formatted
or saved.

Automatic log book keepers and
report generators help manage
software design projects.

CONCLUSION

Evaluators must work closely with
designers from the very beginning of
a project. Testing should be well
planned and methodical so that
testing can be automated wherever
possible. O

Doug Bingham (Copier/Plotter
Product Development) discussed
firmware production and
maintenance.

Jack Grimes (Graphic Computing

Systems

Engineering)

discussed

firmware in the design stage of
firmware development.

To add your name to the Forum
Report mailing list, or change your
delivery station, fill out the coupon
inside.

Forum Reports can not be WOW'd.
However, unused Forum Reports
may be sent along with other non-
WOWable paper, in large quantity,
to Material Evaluation at D.S. 71-
474. Non-WO Wable paper should be
marked "SALVAGE.”

Managing editor: Burgess Laughlin, ext. 6795,
d.s. 19-313. Compiled and edited by the
Technical Publications Department for the
benefit of the Tektronix engineering, software,
and scientific community in Beaverton, Grass
Valley, Walker Road, and Wilsonville.

Copyright © 1979; Tektronix, Inc. All rights
reserved.

Cover and Graphic Design: Joan Metcalf.
Graphic Assistance: Jackie Miner.
Typesetting: Jean Bunker.

MAILING LIST
COUPON

-l

Forum Reports

ADD

15 1 S [
k)
m
=
o
<
m

(2]
I
>
<
(2]
m

Z
o
=!
o

: Old Delivery Station:

: New Delivery Station:
] Payroll Code:

| (Required for the data processing com-
| puter that maintains the mailing list) |

--------——-d

Not available to field offices. Allow four I
weeks for change. '

MAIL COUPON TO: 19-313 :

COMPANY CONFIDENTIAL

8l B

140d3d

WNadd

LIOHM23 Vv I83HI

Forum Reports Not Available To Field Offices

