FACTORYCALIBRATIONPROCEDURE

CONTENTS:
General 1

Equipment required 2
Factory test limits 1A, 1B, 1C
Factory calibration procedure 2A, 2B, 5C

INTRODUCTION:

This is the guide for calibrating brand-new instruments, it therefore, calls out many procedures and adjustments that are rarely required for subsequent recalibration. This procedure is company confidential. In this procedure, all front panel control labels or Tektronix equipment names are in capital letters (VOLTS/DIV, etc.) internal adjustment labels are capitalized only (Gain Adj, etc.).

Tek form number:
0-403
November 1966
For all serial numbers.

FACTORY TEST LIMITS:

We initially calibrate the instrument to Factory Test Limits. These limits are often more stringent than advertised performance requirements. This helps insure that the instrument will meet advertised requirements after shipment, allows for inaccuracies of test equipment used, and may allow for changes in environmental conditions.

QUALIFICATION:

Factory test limits are qualified by the conditions specified in the main body of the calibration procedure. The numbers and letters to the left of the limits correspond to the factory calibration procedure steps where the check or adjustment is made. Instruments may not meet factory test limits if calibration or check-out methods and test equipment differ substantially from those in this procedure.

ABBREVIATIONS:

Abbreviations in this procedure will be found listed in TEKTRONIX STANDARD A-100.

CHANGE INFORMATION:

This procedure has been prepared by Product Manufacturing Staff Engineering. For information on changes that have been made to this procedure, to make suggestions for changing this procedure, or to order additional copies: please contact PMSE, 47-261. (DC)

EQUIPMENT REQUIRED:
The following equipment is necessary to complete this procedure:
A Indicates equipment required for honeycomb calibration.
B Indicates equipment required for phase lock calibration.
C Indicates equipment required for complete TYPE 491 calibration.
a. TEKTRONIX Instruments

A 1 TYPE 547 OSCILLOSCOPE (plug-in scope)
ABC 1 TYPE 547 OSCILLOSCOPE (test scope)
ABC 1 TYPE IA. DUAL TRACE PLUG-IN UNIT
C 1 TYPE D PLUG-IN UNIT

* C 1 TYPE 184 TIME MARK GENERATOR

A 1 TYPE $1 L 30$ SPECTRUM ANALYZER PLUG-IN UNIT (calibrated test plug-in)
B 1 TYPE 491 (calibrated test instrument)
C 1 TYPE 76 TU Line Voltage Control Unit
A 2 TYPE P6040 PROBES
ABC 1 TYPE P6006 PASSIVE PROBE
C 1 TYPE P6011 1X PASSIVE PROBE
b. Test Fixtures and Accessories

ABC 250Ω cables, BNC (012-0059-00)
C 1 BNC T connector (103-0030-00)
A C 1 N male to BNC female adapter (103-0045-00)
ABC 2 GR to BNC male adapters (017-0064-00)
A C 1 Clip lead adapter, BNC (013-0076-00)
A C 150Ω termination (011-0049-00)
A 1 11' lossy cable (175-0364-00)
B $12^{\prime \prime}$ lossy cable (175-0308-00)
A 1 1L20-1L30 square pin connector extension cable
(see PMPE Dwg \#1438-A)
B 1 TYPE 491 phase lock test jig (see PMPE Dwg \#1513-A)
C 1 600 1 load cable for TO RECORDER output (see PMPE Dwg 非1439-A)
C 1 Harmonic Modulator (067-0518-00)
C 1 STANDARD AMPLITUDE CALIBRATOR (SAC) (067-0502-00)
A $\quad 1$ Flexible extension (012-0038-00)
c. Other Equipment

* $\mathrm{ABC} 122,000 \Omega / \mathrm{V}$ Multimeter (Simpson 262 or equivalent)
(067-0045-00)
* A C 1 MC (Measurements Corporation) Mode1 111B Crystal Calibrator
* A C 1 Kay Model 121C Multi-sweep generator
* ABC 1 HP (Hewlett-Packard) 355C UHF Attenuator 0-12dB in 1 dB steps
* ABC 1 HP (Hewlett-Packard) 355D UHF Attenuator 0-120dB in 10dB steps
* ABC 1 HP (Hewlett-Packard) 241A Oscillator, 10 Hz to 1 MHz
* ABC 1 HP (Hewlett-Packard) 608D UHF signal generator, 10 MHz
to 480 MHz
* C 1 HP (Hewlett-Packard) 612A UHF signal generator, 450 MHz
to 1230 MHz
* C 1 HP (Hewlett-Packard) 8614A UHF signal generator, 800 MHz to 2400 MHz
* C 1 HP (Hewlett-Packard) 8616A UHF signal generator, 1800 MHz to 4500 MHz

EQUIPMENT REQUIRED: (c. cont'd)

* C 1 Polarad 1107 microwave signal generatox, 3.8 GHz to 8.2 GHz
* C 1 Polarad 1108 microwave signal generator. 6.95 GHz to 11.0 GHz

C 1 HP (Hewlett-Packard) 626A SHF signal generator, 10.0 GHz
to 15.5 GHz

* C 1 HP (Hewlett-Packard) 628A SHF signal generator, 15.0 GHz
to 21.0 GHz
* C 1 HP (Hewlett-Packard) 938 Frequency doubler set, 18.0 GHz
to 26.5 GHz
* C 1 HP (Hewlett-Packard) 940 Frequency doubler set, 26.5 GHz to 40.0 GHz
C 1 HP (Hewlett-Packard) X281 wave-guide to coax adapter
C 2 HP (Hewlett-Packard) NP292A wave-guide to coax adapter
C 2 HP (Hewlett-Packard) MX292B wave-guide to coax adapter
C 2 HP (Hewlett-Packard) MP292B wave-guide to coax adapter
C 2 HP (Hewlett-Packard) NK292A wave-guide to coax adapter
C 3 HP (Hewlett-Packard) 11503A Flexible wave-guide
C 3 HP (Hewlett-Packard) 11504A flexible wave-guide
* This equipment must be traceable to NBS for instrument certification.

Substitute test equipment may be used. The Plant Staff Engineer must approve any substitutions. All equipment listed must perform within its manufacturer's specifications, unless otherwise stated.
A. HONEYCOMB SUBASSEMBLY

Factory test limits are qualified by the conditions specified in the maln body of the calibration procedure. The numbers and letters to the left of the limits corxespond to the factory calibration procedure steps where the check or adjustment is made. Instruments may not meet factory test limits if calibration or checkout methods and test equipment differ substantially from those in this procedure.

1. PRELIMINARY INSPECTION
2. PRESET CONTROLS
3. RESISTANCE CHECK
4. SWEEPER
5. 70 MHz OSCILLATOR
6. IF RESPONSE

THE END
7. SWEEPER LINEARITY
b. Adjust sweeper linearity $\pm 3 \%$, max
8. IF CENTER FREQ CONTROL RANGE $\pm 25 \mathrm{MHz}$, min
9. DISPERSION RANGE $\mathrm{kHz} / \mathrm{cm}$
10. VARIABLE RESOLUTION AMPLIFIER
A. HONEYCOMB SUBASSEMBLY

1. PRELIMINARY INSPECTION

Check for unsoldered joints, rosin joints, proper lead dress and long wire ends.
Check for reversed diodes, shorted or open transformers and orientation of transistors in sockets. Correct all defects found.
2. PRESET CONTROLS

TYPE 1L30

SW 201 (rear pane1)	100V SAWTOOTH
GAIN	ccw
VIDEO FILTER	$0 F F$
VERTICAL DISPLAY	LIN
DISPERSION RANGE	$\mathrm{MHz} / \mathrm{CM}$
DISPERSION	10
RESOLUTION	COUPLED
IF CENTER FREQ	$0-0-0$
FINE	midr
VERTICAL POSITION	midr

3. RESISTANCE CHECK

Set multimeter to $\Omega \times 10 k$ and check
resistance between honeycomb connector
strip pins and chassis as in the following
table:

Terminal	Approximate Reading	Approximate Reading (Reverse Meter Polarity)
A	0Ω	0Ω
B	inf	inf
C	inf	inf
D	inf	inf
E	4k	4k
F	2.7k	2.7k
G	inf	3k
H	inf	5 k
U	inf	3k
J	30k	30k
K	20k	20k
L	inf	4k
M	12k	12k
N	inf	3k
0	inf	3 k
P	100k	100k

a. Setup

Plug the TYPE 1A1 into the test scope. Set the test scope TIME/CM to 10 mSEC and TRIGGERING to EXT AC. Set the plug-in scope TRIGGERING to INT AC. Connect the test scope +GATE to plug-in scope TRIGGER INPUT.

Connect the Honeycomb chassis to test plug-in with a square-pin extension cable. Connect the test plug-in to plug-in scope with a flexible extension. Turn test scope and plug-in scope POWER ON.
b. Check and adjust sweeper

Adjust the RF AMPL, R290 for approximately -0.9 VDC at pin P of the square-pin connector strip. Connect a 10 X probe from pin M of the square pin connector strip to TYPE 1A1 PLUG-IN INPUT. Check for a waveform similar to Fig. 1A.

5. 70 MHz OSCILLATOR

a. Setup

Connect the $150-250 \mathrm{MHz}$ bandpass filter to the IF amplifiers and the IF attenuator. J109 to J120, J147 to J151, J148 to J363, and J188 to J401. Connect the HP608D RF OUTPUT - N to BNC adapter -- 50Ω cable -- BNC to GR adapter - P6040 probe - to the input of the $150-250 \mathrm{MHz}$ bandpass filter, J100. Set the HP608D FREQUENCY to 200MC. Connect a P6006 probe from INPUT A of the TYPE 1AI to the collector of $Q 450$ (narrow band amplifier).
b. Adjust 70 MHz oscillator (L444)

Adjust L 444 to a point where the oscillator locks in with the 70 MHz crystal.
6. IF RESPONSE
a. Setup

Set TYPE 1A1 VOLTS/CM to .5, AC coupled. Connect a 10 X probe from the output of the Variable Resolution Amplifier (coax end of C534) to TYPE 1A1 INPUT. Set the test

Fig. 1A
b. The crystal mode will not necessarily produce the largest amplitude signal on the test scope CRT, but it will be the most stable.

6a. (cont'd)
scope TIME/CM to .5mSEC. Set the plug-in
scope TIME/CM to . 2 mSEC . Set test plug-in
DISPERSION RANGE to $\mathrm{MHz} / \mathrm{CM}$, DISPERSION to
. 2 and RESOLUTION full cw.
b. Adjust IF amplifier response

Make adjustments as in the following table:
b. Use the 200 MHz IF feed through signal to make IF amplifier response adjustments.
ckt symbol location conditions adjust for

L144 wide band 20dB ATTEN ON amplifier GAIN full cw max signal
C425 narrow band 20dB ATTEN ON
C435 amplifier GAIN full cw max noise ampl
T454 narrow band 20dB ATTEN ON
T464 amplifier GAIN full cw max signal
L444 narrow band set to a
amplifier stable mode max signal
Repeat the above adjustments as they interact.

7. SWEEPER LINEARITY

a. Setup

Connect TYPE 184 output -- 50Ω cable -- BNC to GR adapter -- P6040 probe -- J100. Set TYPE 184 for . $1 \mu \mathrm{~s}$ (10 MHz) markers.
b. Adjust sweeper Iinearity:

Non-Zinearity $\pm 3 \%$, max
Set test plug-in DISPERSION CAL for 1 mark/cm. Adjust C358 (sweeper circuit) for best linearity over the center 8 cm of the display area. Monitor pin M and recheck sawtooth.
8. IF CENTER FREQ CONTROL RANGE $\pm 25 \mathrm{MHz}, \mathrm{min}$

Set test plug-in DISPERSION control to 5 $\mathrm{MHz} / \mathrm{cm}$, COUPLED RESOLUTION. Turn IF CENTER FREQ fully ccw. Turn IF CENTER FREQ slowly cw while counting the time marks that pass under the center graticule line of the plug-in scope.

Adjust IF CF RANGE (R290) for at least 5 time marks from full ccw to full cw on the IF CENTER FREQ dial.
12. If R290 is adjusted it will be necessary to repeat step 7 .
9. DISPERSION RANGE $\mathrm{kHz} / \mathrm{cm}$
a. Setup

HP608D RF OUTPUT -N to BNC adapter $-\infty 50 \Omega$ cable -- BNC to GR adapter P 6040 probe J100. Set HP608D FREQUENCY to 200MC. Set the test plug-in DISPERSION RANGE to $\mathrm{kHz} / \mathrm{cm}$ and DISPERSION to 500 .

Preset 0384 three turns from completely in and C385 four and one-half turns from completely in. (Sweeper Circuit)
b. Adjust center frequency to 200 MHz

Locate the center frequency by changing the HP608D FREQUENCY. Adjust C384 and C385 to center 200 MHz on the plug-in scope graticule.

Disconnect the 50Ω cable from the BNC adapter at HP608D RF Output.

c. Adjust $\mathrm{kHz} / \mathrm{cm}$

Connect the 50 cable to the TYPE 184 MARKER OUTPUT. Set the TYPE 184 MARKER SELECTOR to $1 \mu \mathrm{~s}$. Adjust C384 and C385 for $500 \mathrm{kHz} / \mathrm{cm}$ (1 mark/2cm). Check linearity over the center 8 cm of the plug-in scope graticule. Disconnect the 50Ω cable from the TYPE 184 and check center frequency adjustment as in the previous step.
b. Move C384 and C395 in together to lower the frequency or out to raise the frequency. Spurious frequencies will appear as spikes. The 200 MHz center frequency will be larger in amplitude and wider at the base line. (See Fig. 2A and 3A.)

Fig. 2A spurious responses

Fig. 3A 200 MHz center frequency
c. Rotate C384 and C385 in opposite directions to adjust dispersion.
10. VARIABLE RESOLUTION AMPLIFIER
a. Setup

Connect TYPE 184 -- BNC to GR adapter -P6040 cable -- J501 of the Honeycomb Subassembly. Press TYPE 184 10nS MARKER SELECTOR.

Connect the plug-in scope SWEEP A to test scope TRIGGER INPUT. Set both TIME/CM switches to 20 mSEC . Set the test scope and plug-in scope TRIGGERING SOURCE to EXT and plug-in scope TRIGGERING LEVEL for a free running sweep. Connect a 10X probe from pin B of the honeycomb connector strip to test scope plug-in input.

b. Adjust Variable Resolution amplifier response: symmetrical waveform

Adjust C504 and C508 for the most symmetrical waveform on the test scope (see Fig. 4A).
11. 75 MHz and 65 MHz TRAPS
a. Setup

Set HP608D VHF CENTER FREQ to 75MC. Connect HP608D output -- N to BNC adapter -50Ω cable -- BNC to GR adapter -- P6040 probe -- J120.

b. Adjust 75 MHz trap

Spread wires of L124 (wide band amplifier) for minimum deflection on test scope and plug-in scope CRT's.
c. Adjust 65 MHz trap

Change HP608D VHF CENTER FREQ to 65MC. Adjust L147 for minimum deflection on test scope and plug-in scope CRT's.
a. Setup

Remove the HP608D signal connection from J120 and reconnect the cable from J109 to J120. Connect HP608D -- HP355C -- HP355D - 50Ω cable -- 50Ω Xl0 attenuator -- test plug-in RF INPUT. Set the HP608D ATTEN to -30 dBm and frequency to 200 MHz . Set the test plug-in DISPERSION RANGE to $\mathrm{kHz} / \mathrm{cm}$ and GAIN and DISPERSION for a 6 cm display.
b. Check IF ATTENUATOR accuracy: $51 d B$ in $1 d B$ steps $\pm 0.1 d B / d B$

Progressively switch in each IF ATTENUATOR and switch out the corresponding HP355C or HP355D attenuator. Compare the amplitude in each position to the 6 cm reference as in the following table:

IF ATTENUATOR
$1 \mathrm{~dB} \quad 0.9-1.1 \mathrm{~dB}$
$2 \mathrm{~dB} \quad 1.8-2.2 \mathrm{~dB}$
$4 \mathrm{~dB} \quad 3.6-4.4 \mathrm{~dB}$
$8 \mathrm{~dB} \quad 7.2-8.8 \mathrm{~dB}$
$16 \mathrm{~dB} \quad 14.4-17.6 \mathrm{~dB}$
$20 \mathrm{~dB} \quad 18.0-22.0 \mathrm{~dB}$

13. IF SENSITIVITY

a. Setup

Connect HP608D RF OUT -- TYPE N to BNC adapter -- 50 cable -- BNC to GR adapter -P6040 - J100. Set HP608D UHF CENTER FREQ to 200MC.
b. Check IF Sensitivity -110 to $-115 d B m$

Adjust the test plug-in GAIN for a display of 1 cm of noise. Turn the HP608D ATTEN ccw until the signal amplitude is twice the noise amplitude, (see Fig. 5A). Read IF sensitivity from the HP608D ATTEN dial.

Fig 5A
a. Setup

Make connections as shown below:

Set KAY 121B VHF CENTER FREQ control to display the 100 MC markers; second harmonic at the center of the test scope CRT. Connect KAY 121B RF OUT 50Ω and DET IN leads together and set VAR RF LEVEL ADJ for 6 cm of vertical deflection. Preset C101, C102, C104, C106, C107 and C108 to minimum capacitance. Reconnect KAY 121B RF OUT 50 and DET IN leads to J100 and J109 on the 150-250 MHz bandpass filter chassis.
b. Set 150-250 MHz bandpass fitter center frequency (L105)
Set center frequency to $185-190 \mathrm{MHz}$ by adjusting the length of L105.
c. Adjust $150-250 \mathrm{MHz}$ filter response:

Insertion loss: approx $0.5 d B$;
Flatness $0.4 d B P$ to P
Adjust C101, C102, C104, C106, C107 and C108 for a display similar to Fig. 6A.

It will be necessary to switch the KAY 121B HARMONIC MARKER back and forth between 100MC and 10MC to keep track of the center frequency relative to the filter response.
d. Check 280 MHz filter response

Connect KAY 121B RF OUT 50Ω to J 80 and DET IN to J94.

Check for $\approx 0.5 \mathrm{~dB}$ insertion loss, smooth rolloff starting at 250 MHz and $\approx-4 \mathrm{~dB}$ at 280 MHz .
c. Less than -1.5 dB at 150
$\mathrm{MHz}-250 \mathrm{MHz}$ points; -6 to -10 dB at $140 \mathrm{MHz}-270 \mathrm{MHz}$ points.

Fig. 6A

15. COMBINED FILTERS

a. Setup

Make connections as in the following diagram:

b. Check 280 MHz filter and bandpass filter response
Compromise the filter adjustments as necessary for the smoothest overall response of the 150 MHz to 250 MHz detected display. Work for the smoothest overall response consistent with $\leq 1.5 \mathrm{~dB}$ down at 150 MHz and 250 MHz .
c. Check overall system flatness: $\pm 1.5 d B$ from 870 MHz to 2050 MHz

Make all connections between the honeycomb chassis and the test plug-in. Connect the test plug-in to the plug-in scope with a flexible extension and turn the POWER ON.

Set the test plug-in IF CENTER FREQ to 000, and DISPERSION RANGE to $\mathrm{MHz} / \mathrm{CM}$. Set the HP608D frequency to 200 MHz and connect it to the test plug-in RF INPUT. Switch the DISPERSION between 10 and .2 keeping the trace centered at each step by adjusting Center Freq Cal, R253. Return the DISPERSION to 10. Center the trace by adjusting Swp Center, R204. Remove the HP608D connection and connect the TYPE 184. Set the TYPE 184 for . $1 \mu \mathrm{~s}$ (10 MHz) marks. Adjust the DISP CAL for 1 mark $/ \mathrm{cm}$.

15c. (cont'd)

Remove the TYPE 184 connection and connect the Kay 121B RF OUT to RF INPUT. Change the plug-in scope TIME/CM to 20mSEC. Set the Kay 121B RF ATTEN to -50dB. Adjust C137 and L134 for optimum flatness. If the flatness is not within $\pm 1 \mathrm{~dB}$ repeat steps 15a through c, or compromise the filter adjustments slightly. Remove the Kay 121B connection and connect the HP8614A to RF INPUT. Set the plug-in scope TIME/CM to 5mSEC. Set the RF CENTER FREQ to 870 MHz and HP 8614 A frequency to 910 MHz . The signal should be displayed at the left edge of the graticule. Tune the RF CENTER FREQ to move the trace to the right edge of the graticule while checking the amplitude of the display. Continue in this manner, shifting the trace to the left with the HP8614A frequency control, then to the right with the TYPE 1L30 RF CENTER FREQ control. Check the flatness from 870 MHz to 2050 MHz .

Make the final evaluation of overall system flatness with the honeycomb chassis resting bottom down on a metal plate to duplicate assembled conditions.

THE END

QUALIFICATION
Factory test limits are qualifled by the conditions specified in the main body of the calibration procedure. The numbers and letters to the left of the limits correspond to the factory calibration procedure steps where the check or adjustment is made. Instruments may not meet factory test limits if
calibration or checkout methods and test equipment differ substantially from those in this procedure.

1. PRELIMINARY INSPECTION
2. RESISTANCE
3. PRESET ADJUSTMENTS
4. OSCILLATOR
b. Adjust INT REF FREQ range: at least 200 kHz
5. BALANCE
6. AVALANCHE VOLTS
7. INT REF FREQ ACCURACY
b. Check INT REF FREQ accuracy

Error: $\pm 0.1 \%$, max with INT REF FREQ control fully cw.

THE END

B. PHASE LOCK SUBASSEMBLY

1. PRELIMINARY INSPECTION

Check for unsoldered joints, rosin joints and long wire ends. Check for loose hardware and protruding parts. Check that transistors and diodes are properly oriented in their sockets. Check for broken or distorted diode and capacitor clips. Correct all defects found.
2. RESISTANCE

Measure resistance from the outside foil to the points indicated in the following diagram: (Low resistance values measured on the $\Omega \times 1 \mathrm{~K}$ scale, high resistance values measured on the $\Omega \times 100 \mathrm{~K}$ scale.)

Approximate resistance measurements.

3. PRESET ADJUSTMENTS

Preset R1131 - avalanche volts, R1150 Bands A and B balance and R1140-B and C balance to midrange. Preset L1104 and L1108 approximately $3 / 4$ of the way in.
4. OSCILLATOR
a. Setup

Remove the leads from the phase lock square pin connector strip on the TYPE 491 (calibrated test instrument). Connect the leads to the proper pins on the TYPE 491 phase lock test jig. Insert the phase lock subassembly into the TYPE 491 Phase lock test jig and connect the leads as in the following diagram:

Connect the cables from TYPE 491 oscillators to J1150 (Band B) and J1140 (high oscillator). Connect a 50Ω cable between the 1 MHz MARKERS OUT OR EXT REF FREQ IN connectors on the TYPE 491 phase lock test j ig and the TYPE 491.
4. (cont ${ }^{1}$ d)
b. Adjust INT REF FREQ range: at least 200 kHz

Set DISPERSION RANGE to $\mathrm{kHz} / \mathrm{DIV}$ and DISPERSION to 50. Adjust L1104 for a minimum of 4 div of movement of the display as the INT REF FREQ is rotated through its range. Turn the INT REF FREQ on and off while adjusting L1108 for minimum delay in markers starting.
5. BALANCE

Turn INT REF FREQ OFF. Adjust FINE RF CENTER FREQ to its electrical center. (0 volts at the base of Q1180). Place the band selector in the band C position.

Depress the LOCK CHECK button. Adjust Band C Bal, R1140 to center the display on the TYPE 491 graticule. Change the Band Selector to Band B. Adjust Band A and B Bal to center the display on the TYPE 491 graticule.

Change the Band Selector to Band A. Check that display is centered on the TYPE 491 graticule.
6. AVALANCHE VOLTS
a. Adjust Avalanohe Volts, R1131

Connect a 10X probe from the collector of Q1121 to the input of the TYPE 1A1 in the test scope. Turn the INT REF FREQ on and adjust R1131, avalanche volts for a display of negative pulses of uniform amplitude (see Fig. 1B and 2B).

Turn the INT REF FREQ OFF and check that the oscillator does not free run (display of 1 MHz markers on test scope must disappear).
b. Check EXT REF FREQ IN function

Connect TYPE $191-50 \Omega$ GR to BNC Termination -- 50Ω cable -- TYPE 491 Phase lock 1 MHz MARKERS OUT or EXT REF FREQ IN. Set the TYPE 191 for $1 V$ of signal.

Correct adjustment of R1131 2V/CM - 10X probe - . $5 \mu \mathrm{~s} / \mathrm{cm}$

Incorrect adjustment of R1131 $2 \mathrm{~V} / \mathrm{CM}-10 \mathrm{X}$ probe $-.5 \mu \mathrm{~S} / \mathrm{cm}$

6b. ($\left.\operatorname{con} t^{\prime} d\right)$

Vary the TYPE 191 from 1 MHz to 5 MHz and check the test scope display for no frequency count down.

Remove the 10X probe from the collector of Q1121. Set the TYPE 191 frequency to 5 MHz and check for beat frequency displays on the TYPE 491 as the RF CENTER FREQUENCY is tuned throughout its range on all bands. Remove the TYPE 191 signal and turn on the INT REF FREQ again. Check for beat frequencies displayed as the RF CENTER FREQUENCY is tuned throughout its range on all bands.

7. INT REF FREQ ACCURACY

a. Setup

Connect the TYPE 184 MARKER OUTPUT to TYPE 1A1 INPUT CHANNEL 1. Connect a 50Ω cable from the TYPE 491 phase lock test jig 1 MHz MARKER OUT OR EXT REF FREQ IN connector to TYPE 1A1 CHANNEL 2 INPUT. Adjust CHANNEL 1 and 2 VOLTS/CM for equal deflection on the test scope, then set TYPE IA1 MODE to ADD. Set the test scope TIME/CM to 1mSEC and trigger the test scope.
b. Check INT REF FREQ accuracy

Error: $\pm 0.1 \%$ max with INT REF FREQ control fully ow

Turn the TYPE 491 phase lock test jig INT REF FREQ control fully cw and check for a maximum of 10 zero crossings on the test scope CRT.

6b. If adjustment of R1131 fails to stop count down it may be necessary to select Q1121.

Excessive noise on the INT REF FREQ display may be due to defective matched diodes.

Diode impedance in Band C can prevent vertical positioning of trace during lock tests. Reverse diodes, or exchange with A or B Band, or install a new set as required.

Factory test limits are qualified by the conditions specified in the main body of the calibration procedure. The numbers and letters to the left of the limits correspond to the factory calibration procedure steps where the check or adjustment is made. Instruments may not meet factory test limits if calibration or checkout methods and test equipment differ substantially from those in this procedure.

Power Supply	(cont'd)			Test Point		
	Sele	tor	(VAC)	blanking	Max	rip-
	LO	M	HI	board	Error	ple
-10V	90	104	112	$\operatorname{Pin} \mathrm{L}$	$\pm 1 \%$ (-9.9	1 mV
	110	126	136		to $-10.1 \mathrm{~V})$	
+10V	90	104	112	Pin M	$\pm 3 \% \quad(+9.7$	2mV
	110	126	136		to $+10.3 \mathrm{~V})$	
+150V	90	104	112	Pin N	$\pm 3 \%(+145.5$	
	110	126	136		to $+154.5 \mathrm{~V})$	5 mV

1. PRELIMINARY INSPECTION

2. RESISTANCE

3. TYPE 491 PRESETS
4. POWER SELECTOR AND FUSES
5. POWER SUPPLIES
a. Check and adjust low voltage power supplies as in the following table:

Test Point
VA \& B1anking

Supply	Board	Adjust	Max Error
-10V	Pin L	R968	$\pm 1 \%$ (-9.9V
		(P.S. board)	to -10.1v)
+10V	Pin M	---	$\pm 3 \% \quad(+9.7 \mathrm{~V}$
			to $+10.3 \mathrm{~V})$
+150V	Pin N	---	$\pm 3 \% ~(+145.5$
			to $+154.5 \mathrm{~V})$

6. TRACE ALIGNMENT
a. Adjust Trace Rotation, R672

Range: 6°, min
b. Check vertical geometry: curvature 0.5 minor div, max
c. Check horizontal geometry:
curvature 0.5 minor div, max
7. CRT
8. SCALE ILLUM
ccw - no illumination
cw - full illumination
9. GAIN
a. Check Vert Gain adjustment range: $\pm 10 \%$, min
Adjust Vert Gain, R672
Error: $\pm 2 \%$, max
b. Adjust high voltage power supply Voltage: $-3670 \mathrm{~V} \pm 5 \%$
c. Adjust intensity range, R1032 $800 \mathrm{~mA} \pm 2 \%$
d. Check power supply ripple and regulation as in the following table:
10. \downarrow POSIIION $+\&-9$ div, min from graticule center
11. TRIGGER
b. Adjust Trig Level Center, R724 and check internal trigger sensitivity: $+\&-t r i g g e r i n g$ on 0.2 div, max
11. (cont $^{\prime}$ d)
c. Check external trigger sensitivity 0.2 V , $\max -20 \mathrm{~Hz}$ to 100 kHz
d. Check line triggering: proper slope $+\&-$

* b. Check MHz/DIV accuracy and linearity

12. SWEEP CALIBRATION
a. Adjust sweep length, R759: 7.5V $\pm 6 \%$ sawtooth at Q800 emitter
b. Adjust Gain, R813 and sweep Ca1, R787 Sweep length: $10.5 \mathrm{div} \pm 0.2 \mathrm{div}$, max sweep cal error: $\pm 2 \%$, max over center 8 graticule divisions
c. Check TIME/DIV accuracy and linearity

Accuracy error: $\pm 2 \%$ over center 8
graticule divisions
linearity error: $\pm 2 \%$, max over any 1 div segment of center 8 divisions
d. Check TIME/DIV VARIABLE range: 2.5:1, min

* d. Check $\mathrm{kHz} / \mathrm{DIV}$ ranges

13. POSITION $\leftrightarrow \quad$ Min range: ends of sweep to graticule center

17. DISPERSION

a. Adjust DISPERSION CAL, R308 and 10 MHz linearity, C358: Dispersion error $\pm 2 \%$, max; linearity error $\pm 2 \%$, max

* b DISPERSION (MHz/DIV) Max Error

10	$\pm 2 \%$
5	$\pm 2.5 \%$
2	$\pm 4 \%$
1	$\pm 5 \%$
.5	$\pm 8 \%$
.2	$\pm 10 \%$

Non-1inearity $\pm 2 \%$, max over the center 8 div of a 10 div display
c. Adjust kHz/DIV Cal, R399 and C384-C385
Dispersion error: $\pm 2 \%$, max Linearity error: $\pm 2 \%$, max

Error: $\pm 2.5 \%$, max

18. AMPLIFIER RESPONSE

14. SAWTOOTH OUT 0.08 V P to $\mathrm{P} \pm 10 \%$, max
15. SWEEPER
a. Set RF Amplitude, R356 Approx -0.9VDC
c. Check sweeper latch-up: no latch-up $+\&-2$ major div of IF CENTER FREQ dial on all DISPERSION settings.

16. IF CENTER FREQUENCY

a. Adjust Center Frequency Balance, R341: stable display as DISPERSION is changed
b. Adjust Sweep Center, R303: Display centered with DISPERSION RANGE at $\mathrm{MHz} /$ DIV and DISPERSION at 10.
b. Adjust Variable resolution amplifier response: symmetrical waveform
c. Adjust resolution filter and 100 kHz Cal Dip -3 dB max Display width $100-120 \mathrm{kHz}$ at 6 dB point with RESOLUTION fully cw .
19. INCIDENTAL FM

* b. Check IF for incidental FM: less than 200 Hz
* c. Check range A LO + IF without phase lock for incidental FM: less than 2 kHz
* d. Check range B LO + IF without phase lock for incidental FM: less than 2 kHz
* e. Check range C LO + IF without phase lock for incidental FM: less than 2 kHz
* f. Check LO + IF with phase lock for incidental FM : less than 300 Hz
* 20. If CENTER FREQ AND FINE
DISPERSION
RANGE $\mathrm{MHz} / \mathrm{DIV}$

DISPERSION $\quad+\&-25 \mathrm{MHz}+\&-1 \mathrm{MHz}$
.2 to 5
DISPERSION 10
DISPERSION
RANGE kHz/DIV
DISPERSION to $500+\&-2.5 \mathrm{MHz}+\&-50 \mathrm{kHz}$

* 21. RF CENTER FREQUENCY DIAL ACCURACY
IF CENTER FREQ FINE
$+\&-25 \mathrm{MHz}+\&-1 \mathrm{MHz}$
$+\&-10 \mathrm{MHz}+\&-1 \mathrm{MHz}$
$+\&-2.5 \mathrm{MHz}+\&-50 \mathrm{kHz}$

25. SENSITIVITY

Check sensitivity as in the following table:
22. DISPLAY FLATNESS

* b. Check band 1 display flatness $\pm 1.5 \mathrm{~dB}+$ and -25 MHz of RF CENTER FREQUENCY
* c. Check bands 2 through 8 for display flatness: $\pm 1.5 \mathrm{~dB}+\&-50 \mathrm{MHz}$ of RF CENTER FREQUENCY

26. SPURIOUS SIGNALS

* a. Check Band A spurious response spurious signals: 2 X noise, max
* b. Check Band B \& C spurious response spurious signals: 2X noise, max

27. IF ATTENUATOR

* b. Check IF ATTENUATOR accuracy: 51 dB in 1 dB steps $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$
* 28. GAIN CONTROL 50dB, min

29. DISPLAY FUNCTIONS

* a. Check LOG dynamic range: 40 dB , min
* b. Check LIN dynamic range: 26 dB , min Check SQ LAW dynamic range: 13 dB total range, min.

30. TO RECORDER

Check TO RECORDER output; 50 mV
P to P, min into a 600Ω load with 8 div display

* Indicates measurement characteristic; test equipment used must be traceable to the NBS for instrument certification.

31. CONTRAST
b. Contrast between upper and lower halves of screen $\pm 1 \mathrm{div}$
32. MIXER PEAKING

1. PRELIMINARY INSPECTION

a. General

Check for unsoldered joints, rosin joints, poor lead dress and long wire ends. Check for loose hardware and protruding parts. Check controls for smooth mechanical operation, proper indexing and clearance between knob and front panel.
b. $C R T$

Inspect the CRT for phosphor defects, scratches, chips and cracks around neck pins. Check that the neck pin connectors are on the proper neck pins and are tight. Check graticule alignment and face plate tilt. Check that CRT hardware is tightened. Correct all defects found.

2. RESISTANCE

Check power supply resistance to ground as follows:

	Test Point VA \& Blanking Board	Approximate resistance
$\frac{\text { Supply }}{+10 \mathrm{~V}}$	$\frac{\text { Pin M }}{-10 \mathrm{~V}}$	Pin L
+150 V	Pin N	

3. TYPE 491 PRESETS

INTENSITY	ccw
FOCUS	ccw
SCALE ILLUM	ccw
ASTIGMATISM	ccw
INTENSIFIER	ccw
TIME/DIV	1 mS
TIME/DIV VARIABLE	cw (CAL)
BAND SELECTOR	B MHz
TRIGGER LEVEL	FREE RUN
DISPERSION RANGE	MHz/DIV
DISPERSION	10 (outer scale)
RESOLUTION	coupled
VIDEO FILTER	DOWN (OUT)
CONTRAST	ccw
INTENSITY RANGE (int)	ccw

3. Do not preset the honeycomb adjustments. The honeycomb subassembly has been pretuned.
4. POWER SELECTOR AND FUSES
a. Check fuses

Remove the power selector cover and check that the proper fuses are installed. Set the power selector RANGE to 230 and M (see Fig. 1C). Replace the power selector cover.
b. Check power selector

Connect the TYPE 491 power cord to the TYPE 76 TU outlet. Adjust the TYPE 76 TU for 115 VAC line. Turn the TYPE 491 POWER ON and measure the AC voltage between T900 terminals 13 and 14 (approximately 84 VAC). Remove the TYPE 491 power cord from the TYPE 76 TU outlet. Remove the power selector cover and set RANGE to 115 . Reconnect the TYPE 491 power cord to TYPE 76 TU outlet. Check that the AC voltage between T900 terminals 13 and 14 is twice that previously measured.

5. POWER SUPPLIES

a. Check and adjust low voltage power supplies
Check and adjust supplies as in the following table:

Supply	Test Point VA \& blanking board	adjust	max error
-10V	Pin L	$\begin{gathered} \text { R968 } \\ \text { (P.S. bo } \end{gathered}$	$\begin{aligned} & \pm 1 \%(-9.9 \mathrm{~V} \text { to } \\ & -10.1 \mathrm{~V}) \end{aligned}$
+10V	Pin M	--	$\begin{aligned} & \pm 3 \%(+9.7 \mathrm{~V} \text { to } \\ & +10.3 \mathrm{~V}) \end{aligned}$
+150V	Pin N	--	$\begin{aligned} & \pm 3 \%(+145.5 \mathrm{~V} \\ & \text { to }+154.5 \mathrm{~V}) \end{aligned}$

Test Point
VA \& blanking

b. Adjust high voltage power supply Voltage: $-3670 \mathrm{~V} \pm 5 \%$
Turn the TYPE 491 POWER OFF. Remove the white cover from the CRT socket. Set the multimeter to a range suitable to measure 3670 VDC and connect the multimeter between CRT pin 14 and ground. Turn the TYPE 491 POWER ON. Adjust R1000 (on power supply board), for -3670 volts. Turn the TYPE 491 POWER OFF. Replace the CRT socket cover.

Fig. 1C
a. The high voltage supply must be operating before the +150 V supply will regulate. If the high voltage supply is not operating, connect a 30 V battery between the +150 V supply and the HV supply as follows: + lead to $A Q$

- lead to $A L$] on power supply board

5. $\left(\operatorname{cont}^{\prime} d\right)$
c. Adjust intensity range, R1032 $800 \mathrm{~mA} \pm 2 \%$

Remove the high voltage fuse, F1008, located inside the rear panel near the power supply board. Set the multimeter to a range suitable to measure 800 mA and connect the meter leads between the fuse clips. (Black lead to the end having the white-orange wire and red lead to the remaining fuse clip.) Turn the TYPE 491 POWER ON. Turn the INTENSITY full cw . Adjust the intensity range, R1032, (rear panel), for an 800 mA reading on the multimeter. Turn the TYPE 491 POWER OFF. Remove the meter leads. Check that the fuse is a 1 amp, fast blo and reinstall the fuse in the holder. Turn INTENSITY control ccw, then turn the TYPE 491 POWER ON.
d. Check power supply ripple and regulation

Check ripple and regulation as in the following table:

Power

	Power		
Supply	Selector		(VAC)
LO	M	HI	
-10 V	90	104	112
	110	126	136
+10 V	90	104	112
	110	126	136
+150 V	90	104	112
	110	126	136

d. Use the TYPE 76 TU to vary the AC line voltage, the multimeter to check regulation and the test scope with TYPE D plug-in to check ripple.

6. TRACE ALIGNMENT

a. Adjust Trace Rotation, R672:

$$
\text { Range } 6^{\circ} \text {, min }
$$

Set TRIGGER LEVEL to FREE RUN. Center the trace vertically. Rotate the Trace Rotation control from full ccw to full cw and check the Trace Rotation control range (see Fig. 2C). Adjust the Trace Rotation control to align the trace with the center graticule line.
b. Check Vertical Geometry: curvature 0.5 minor div, max

Connect the TYPE 184 MARKER OUTPUT through a 1 X probe to pin H on the VA \& blanking board. Press the .1 ms and 1 ms buttons on the TYPE 184. Adjust TYPE 491 TRIGGER LEVEL for a stable display and adjust

Fig. 2C

6b. ($\operatorname{cont}^{\mathrm{d}} \mathrm{d}$)
GAIN for an 8 div display. Adjust FOCUS, ASTIGMATISM and INTENSITY for a well defined display. Check that the curvature of the trace at the 0 and 10 div graticule lines does not exceed 0.5 minor div.
c. Check Horizontal Geometry: curvature 0.5 minor div, max
Disconnect the 1 X probe from pin 11 on the VA \& blanking board. Position the trace to the top and bottom graticule lines and note the deviation from a straight inne.

7. CRT

Check the CRT for double peaking, flare, grid emission, cathode interface, charging, burrs and adequate scan area.

8. SCALE ILLUM

$c \mathrm{cw}$ - no illumination
cw - maximum illumination

Rotate the SCALE ILLUM control through its range. Check for a smooth change in illumindion with no illumination ccw and maximum illumination cw.
9. GAIN
a. Check Vert Gain Adjustment range: $\pm 10 \%$, min
Connect a 0.5 V SAC signal via a 1 X probe to pin H on the VA \& Blanking board. Rotate the Vertical Gain, R672 from full cow to full cw and check the TYPE 491 display for a minimum change of from 4.5 div to 5.5 div of deflection.
7. CRT defects

This is a simple description of CRT defects. For a more detailed description see the CRT checkout procedure or consult with a trained CRT checker.
9. (cont $^{\text {i }} \mathrm{d}$)
b. Adjust Vert Gain, R672

Error: $\pm 2 \%$, max
Adjust R672 for exactly 5 div of deflection.
c. Check vertical compression and expansion: ± 0.5 minor div, max

Change the SAC AMPLITUDE to .2 VOLTS. Move the display to the top, center and bottom of the graticule and check for 2 major div ± 0.5 minor div of display amplitude.
10. $~ I ~ P O S I T I O N ~$
$+\&-9 \mathrm{div}$, min from graticule center

Remove the 1 X probe from pin H of the Vertical Amp \& Blanking board. Center the trace. Set the multimeter to a range suitable for reading 150 VDC and connect the red multimeter lead to pin A and the black multimeter lead to pin B of the Vertical Amp \& Blanking board. Note the meter reading. Move the trace to the top graticule line and again note the meter reading. Continue moving the trace upward until the cw limit of the \uparrow POSITION control is reached. Check for a change of at least twice the difference in the two meter readings noted. Return the trace to graticule center. Reverse the meter polarity and repeat the above procedure while moving the trace in a downward direction. Center the trace and check that the index mark on the knob is approximately at the center of the arrow.

11. TRIGGER

```
a. Setup
TRIGGER SLOPE +
TRIGGER SOURCE INT
TRIGGER LEVEL centered
TIME/DIV .5mS
Set the SAC AMPLITUDE to . 2 VOLTS and
connect SAC OUTPUT -- 50\Omega cable -- BNC T --
TRIG IN -- 1X probe -- pin H of Vertical
Amp & Blanking board.
```

11. ($\left.\operatorname{cont}^{8} d\right)$
b. Adjust Trig Lev Center, R784 and cheok internal trigger sensitivity: $+\&-$ triggering 0.2 div, max
Connect a jumper between the junction of R702, C702, R703 and ground. Adjust the Trig Lev Center, R724 for stable triggering. Progressively reduce the SAC AMPLITUDE to 20 m VOLTS while adjusting R724 for stable triggerling on both + and - settings of the SLOPE switch.
c. Check External Trigger Sensitivity: 0.2V, max - 20 Hz to 100 kHz

Change the TYPE 491 TRIGGER SOURCE to EXT. Remove the 50Ω cable from the SAC OUTPUT. Remove the jumper from the junction of R702, C702, R703 and ground. Connect the 50Ω cable to the HP241A with a clip lead adapter. Monitor the signal amplitude at pin H of the Trigger, Sweep Gen \& Horiz Amp board with the test scope. Check TYPE 491 at several frequencies from 20 Hz to 100 kHz for stable triggering on a 0.2 V signal.
d. Check line triggering: proper slope + and -
Remove the cables and BNC T connector from TYPE 491 TRIG IN. Change the TRIGGER SOURCE switch to LINE. Use a 10 X probe and clip lead adapter to connect from Transformer terminal 17 to Vertical Amp \& Blanking board pin H. Set TIME/DIV to 2 mS . Move the SLOPE switch to + and - and check that the sweep triggers on the proper slope.

12. SWEEP CALIBRATION

a. Adjust Sweep Length, R759: $7.5 \mathrm{~V} \pm 6 \%$ sowtooth at Q800 emitter

Set Gain, R813 and sweep cal, R786 to midr. Set TYPE 1A1 VOLTS/CM to .2 and connect a 10X probe from pin W of TYPE 491 trigger, Sweep Gen and Horiz Amp board to TYPE 1Al INPUT. Set Sweep Length, R759 for 3.75 cm of vercical deflection.
d. Use caution to avoid short circuiting Vertical Amp pins with the clip lead adapter.
12. (cont ${ }^{\circ}$ d)
b. Adjust Gain, R813 and Sweep Cal, R787 Sweep length: 10.5 div ± 0.2 div, max Sweep Cal error: $\pm 2 \%$, max over the center 8 graticule divisions

Comnect TYPE 184 MARKER OUTPUT -- IX probe -TYPE 491 Vertical Amp and Blanking board pin H. Set the TYPE 184 for lmS and . 1 mS markers. Set the TYPE 491 TIME/DIV to 1mS. Adjust the Sweep Cal, R787 for one 1mS and ten .1 mS marks/div between the 1 div and 9 div graticule lines (see Fig. 3C). Adjust R813 to produce a display that is 10.5 div in length.
c. Check TIME/DIV accuracy \& linearity Calibration error: $\pm 2 \%$, max over the center 8 graticule divisions
Linearity error: $\pm 2 \%$, max over any 1 div segment of the center 8 div
Check TIME/DIV accuracy as in the following table:

TIME/DIV	TYPE 184	Check for
10ヶS	10 $\mathrm{S}^{\text {S }}$	1 mark/div
$20 \mu \mathrm{~S}$	10ヶS	2 marks/div
50ıS	50^S	1 mark/div
. 1 mS	. 1 mS	1 mark/div
. 2 mS	. 1 mS	2 marks/div
. 5 mS	. 5 mS	1 mark/div
1 mS	1 mS	1 mark/div
2 mS	1 mS	2 marks/div
5 mS	5 mS	$1 \mathrm{mark} / \mathrm{div}$
10 mS	10mS	1 mark/div
20 mS	10 mS	2 marks/div
50 mS	50mS	1 mark/div
. 1 S	. 1 S	1 mark/div
. 2 S	. 1 S	2 marks/div
. 5 S	. 5 S	1 mark/div

d. Check TIME/DIV VARIABLE

Range: 2.5:1, min
Press the TYPE 184 10mS MARKER SELECTOR. Set the TYPE 491 TIME/DIV to 1 mS and turn the TIME/DIV VARIABLE control full ccw. Check for at least 4 markers in 10 divisions.
13. POSITION \leftrightarrow

Min range: ends of the sweep to graticule center

Rotate the POSITION \leftrightarrow control full cw. Check that the left edge of the trace may be positioned to graticule center. Rotate the POSITION \leftrightarrow control full ccw. Check that the right edge of the trace may be positioned to graticule center.

14. SAWT00TH OUT 0.08 V P to $\mathrm{P} \pm 10 \%$, max

Connect a 50Ω cable from the SAW OUT connector at the rear of the TYPE 491 to the test scope plug-in input. Set the plugin for $.01 \mathrm{~V} / \mathrm{cm}$ deflection factor. Check for a sawtooth waveform 8 cm in amplitude.

15. SWEEPER

a. Set RF amplitude, R356: -0.9V $\pm 0.1 \mathrm{~V}$ max

Set the test scope TYPE IA1 CHANNEL 1 VOLTS/ CM to . 02 and INPUT SELECTOR to DC. Connect a compensated 10X probe to TYPE 1A1 CHANNEL 1 INPUT. Establish zero volts by grounding the probe tip, then connect the pin P of the honeycomb connector strip. Adjust R356 (IF contro1 board) for -0.9 V .

b. Check Sweeper Waveform

Move the probe to pin M of the honeycomb connector strip. Check for a waveform similar to Fig. 4C.
c. Check sweeper Zatch-up: no Zatch up + \& - 2 major div of IF CENTER FREQ dial

Set the IF CENTER FREQ dial 2 major div cw from 000. Change the DISPERSION RANGE from $\mathrm{MHz} / \mathrm{DIV}$ to $\mathrm{kHz} / \mathrm{DIV}$ and check that the sweeper waveform is present.

Set the IF CENTER FREQ dial 2 major div cow from 000 and again check that the sweeper waveform is present as the DISPERSION RANGE is switched from MHz/DIV to $\mathrm{kHz} / \mathrm{DIV}$. Check on several DISPERSION settings.
13. The movement of the trace should be smooth as the POSITION \leftrightarrow control is rotated.

a. Adjust Center Frequency Balance, R341: stable display when DISPERSION is changed

Connect HP608D -- N to BNC adapter -- 50Ω cable -- TYPE 491 BAND B INPUT. Turn IF CENTER FREQ to $0-0-0$ and center the FINE control. Change VIDEO FILTER to OFF.

Set the HP608D for a 200 MHz signal. Rotate the DISPERSION switch through its range and adjust R341 for no display movement.
b. Adjust Sweep Center, R303: Display centered with DISPERSION RANGE at MHz/DIV and DISPERSION at 10

Set the DISPERSION RANGE to MHz/DIV and DISPERSION to 10 (outer scale). Adjust R303 to place the display at graticule center.
17. DISPERSION
a. Adjust DISPERSION CAL, R308 and

10 MHz Lineainty, C358.
Dispersion error: $\pm 2 \%$, max
Linearity error: $\pm 2 \%$, max
Set the MC Model 111B for 10 MHz markers and connect it to TYPE 491 RF INPUT B. Adjust the DISPERSION CAL to the left of BAL on TYPE 491 front panel for 1 mark/ div ± 1 minor div (2 MHz) over the center 8 div of a 10 div display. Adjust C358 for optimum linearity.
b. Check MHz/DIV accuracy and linearity Check dispersion accuracy and linearity as in the following table:

DISPERSION (MHz/DIV)	MC Model 111B	Max error	display
10	10 MHz	$\pm 2 \%$ (2 MHz)	1 mark/div
5	10 MHz	$\pm 2.5 \%$ (1.25 MHz)	2 marks/div
2	1 MHz	$\pm 4 \%$ (0.8 MHz)	$1 \mathrm{mark} / 2 \mathrm{div}$
1	1 MHz	$\pm 5 \%$ (0.5 MHz)	1 mark/div
. 5	. 1 MHz	$\pm 8 \%$ (0.4 MHz)	2 marks/div
. 2	. 1 MHz	$\pm 10 \%$ (0.2 MHz)	1 mark/2 div

a. It may be necessary to select cables in the wide band discriminator to obtain optimum linearity.
b. Dispersion accuracy and linearity in the $\mathrm{MHz} / \mathrm{DIV}$ range is measured over the center 8 div of a 10 div display + and 25 MHz of $0-0-0$ on the IF CENTER FREQ dial (+ and - $2 \frac{1}{2}$ turns).

Non-1inearity: $\pm 2 \%$ over the center 8 div of a 10 div display.
17. (cont'd)
c. Adjust $\mathrm{kHz} / \mathrm{DIV}$ Cal, R399 and C384-C385:

Dispersion error $\ddagger 2 \%$, max
Linearity error $\pm 2 \%$, max
Remove the MC Model 111B connection from the TYPE 491 RF INPUT B. Make connections and set controls as in the following diagram:

Change the DISPERSION RANGE to $\mathrm{kHz} / \mathrm{DIV}$ and DISPERSION to 500. Center 200 MHz (4th harmonic of 20ns marker) with IF CENTER FREQ control. Adjust the HP241A for a 500 kHz signal. Adjust C 384 and C 385 simultaneously in opposite directions to obtain one mark/div while keeping 200 MHz centered. Adjust R399 for optimum linearity on the left side of the display.
d. Check $\mathrm{kHz} / \mathrm{DIV}$ ranges:

Error $\pm 2.5 \%$, max
Check all $\mathrm{kHz} / \mathrm{DIV}$ ranges as in the following table:

DISPERSION ($\mathrm{kHz} / \mathrm{DIV}$)	Modulation frequency	display
500	500 kHz	1 mark/div
200	200 kHz	1 mark/div
100	400 kHz	4 marks/div
50	200 kHz	4 marks/div
20	80 kHz	4 marks/div
10	40 kHz	4 marks/div
5	20 kHz	4 marks/div
2	8 kHz	4 marks/div
1	4 kHz	4 marks/div

18. AMPLIFIER RESPONSE
a. Setup

Make connections as in the following diagram:

TYPE 184

Connect a 50Ω cable from TYPE 491 SAW OUT to test scope TRIGGER INPUT. Set the test scope TIME/CM and TYPE 491 TIME/DIV to 20 mS . Set the test scope TRIGGERING SOURCE to EXT and TYPE 491 TRIGGER LEVEL to FREE RUN. Connect a 10X probe from pin B of the honeycomb connector strip to test scope plug-in input.
b. Adjust Variable Resolution Amplifier response: symmetrical waveform
Adjust C504 and C508 for the most symmetrical waveform on the test scope (see Fig. 5C).
c. Adjust resolution filter and 100 kHz Cal: Dip $-3 d B$, max
Display width 100-120 kHz at $6 d B$ point with RESOLUTION fully cw.
Set the TYPE 491 DISPERSION RANGE to $\mathrm{kHz} /$ DIV and DISPERSION to 50. Uncouple the RESOLUTION knob and set it full cw (min). Set C601, C604, C607 and C610 for the most symmetrical waveform and maximum deflection consistent with not more than a 3 dB dip in the center of the waveform. Adjust the $100 \mathrm{kHz} \mathrm{Cal}$, R343 for a display that is 100 kHz to 120 kHz wide at the half-amplitude point (see Fig. 6C).

Set the RESOLUTION one position ccw and check that the display is from 50 kHz to 60 kHz wide at the half-amplitude point (see Fig. 7C).
b. The adjustment of C504 and C508 interact.

Fig. 5C

Fig. 6C

a. Setup

Preset the TYPE 491 controls as follows:
DISPERSION RANGE kHz/DIV
DISPERSION
IF ATTENUATOR dB
INT REF FREQ
TIME/DIV
Band Selector

1 (inner scale)
OFF
OFF-OR EXT REF FREQ IN
.5 S
A MHz

Connect TYPE 184 MARKER OUTPUT to TYPE 491 RF INPUT A and press the 10 nS MARKER SELECTOR. Center the IF feed-through signal and adjust GAIN for 8 div of deflection.
b. Check IF for incidental $F M$: less than 200 Hz
Check that horizontal movement of the trace is less than 1 minor graticule division (see Fig. 8C).
c. Check range A LO + IF without phase lock for incidental FM: less than 2 kHz

Tune the RF CENTER FREQUENCY to 50 MHz . Check that horizontal movement of the trace is less than 2 major graticule divisions.
d. Check range B $L O+I F$ without phase lock for incidental FM : less than 2 kHz

Move the signal connection from TYPE 184 MARKER OUTPUT to OUTPUT > 0.3 V INTO 50Ω and from TYPE 491 RF INPUT A to RF INPUT B. Set TYPE 184 HF SELECTOR to 2 nS . Set Band Selector to B MHz and tune the TYPE 491 RF CENTER FREQUENCY to the second harmonic of the TYPE 184 signal (1 GHz).

Check that horizontal movement of the trace is less than 2 major graticule divisions.
e. Check range C LO + IF without phase lock for incidental $F M$: less than 2 kHz
Move the TYPE 184 signal from RF INPUT B to RF INPUT C. Set Band Selector to C GHz and tune the RF CENTER FREQUENCY to the 8th harmonic of the TYPE 184 signal (4 GHz). Check that horizontal movement of the trace is less than 2 major graticule divisions.
19. (cont ${ }^{8}$ d)
f. Check LO + IF with phase lock for incidental FM: Zess than 300 Hz

Press the LOCK CHECK button and tune the FTNE RF CENTER FREQ for a zero beat as evidenced by widening of the trace. Release the LOCK CHECK button and position the display with IF CENTER FREQUENCY and FTNE controls. Check that horizontal movement of the trace is less than 1.5 minor graticule division.
20. IF CENTER FREQ AND FINE

Check IF CENTER FREQ and FTNE controls range as in the table following:

DISPERSION	Minimum range		
RANGE MHz/DIV	IF	CENTER FREQ	FINE
DISPERSION . 2	$+$	\& - 25 MHz	+ \& - 1 MHz
DISPERSTON 10	$+$	$\&-10 \mathrm{MHz}$	$+\&-1 \mathrm{MHz}$
DISPERSION RANGE $\mathrm{kHz} / \mathrm{DIV}$			
DISPERSION	+	$\&-2.5 \mathrm{MHz}$	$+\&-50 \mathrm{kHz}$

21. RF CENTER FREQUENCY DIAL ACCUPACY

$$
\begin{gathered}
\pm(2 \mathrm{MHz}+1 \% \text { of dial reading }) \\
\text { RF INPUT } A \text {, Band } 1
\end{gathered}
$$

RF CENTER FREQUENCY
dial setting

10	HP608D
20	HP608D
30	HP608D
50	HP608D
80	HP608D
140	HP608D
170	HP608D
200	HP608D
220	HP608D
240	HP608D
250	HP608D
260	HP608D
270	HP608D
275	HP608D

$7.9-12.1 \mathrm{MHz}$
$17.8-22.2 \mathrm{MHz}$
$27.7-32.2 \mathrm{MHz}$
$47.5-52.5 \mathrm{MHz}$
$77.2-82.8 \mathrm{MHz}$
$136.6-143.4 \mathrm{MHz}$
$166.3-173.7 \mathrm{MHz}$
$196-204 \mathrm{MHz}$
$215.8-224.2 \mathrm{MHz}$
$235.6-244.4 \mathrm{MHz}$
$245.5-254.5 \mathrm{MHz}$
$255.4-264.6 \mathrm{MHz}$
$265.3-274.7 \mathrm{MHz}$
$270.25-279.75 \mathrm{MHz}$

RF INPUT B, Bands 2-3
HP608D $\quad 265.3-274.7 \mathrm{MHz}$
HP608D $\quad 295-305 \mathrm{MHz}$
HP608D $\quad 394-406 \mathrm{MHz}$
HP608D $\quad 493-507 \mathrm{MHz}$
HP612A $\quad 592-608 \mathrm{MHz}$
HP612A $\quad 691-709 \mathrm{MHz}$
HP612A $\quad 790-810 \mathrm{MHz}$
HP612A $\quad 889-911 \mathrm{MHz}$
RF INPUT C , Bands $4-8$

1.5	HP8614A	$1.483-1.517 \mathrm{GHz}$
2	HP8614A	$1.987-2.022 \mathrm{GHz}$
2.5	HP8616A	$2.473-2.527 \mathrm{GHz}$
3	HP8616A	$2.968-3.032 \mathrm{GHz}$
3.5	HP8616A	$3.463-3.537 \mathrm{GHz}$
4	HP8616A	$3.958-4.042 \mathrm{GHz}$

22. DISPLAY FLATNESS
a. Setup

RF CENTER FREQUENCY DISPERSION RANGE DISPERSION
Band switch

10 MHz MHz/DIV
5
A MHz

Set the HP608D frequency to 35 MHz and connect the HP608D signal to RF INPUT A.
22. Each time the signal generator frequency is changed it will be necessary to standardize the output amplitude.
22. ($\left.\operatorname{cont}^{\prime} \mathrm{d}\right)$
b. Check Band 1 display fllatness:
$\pm 1.5 d B+\&-25 \mathrm{MHz}$ of $R F$ CENTER FREQUENCY

Check Band 1 display flatness as in the following chart:

TYPE 491 RF INPUT A, Band 1 RF CENTER FREQUENCY
b. Set the signal source for an 8 div display then use the $1 d B$ and 2 dB IF ATTENUATORS to establish the -3 dB point.
Move the display from the left edge of graticule to the right edge of the graticule with the RF CENTER FREQUENCY control. Check for no more than a $\pm 1.5 \mathrm{~dB}$ change in display amplitude.

HP6090 prequency
c. Check Bands 2 through 8 for display flatness: $\pm 1.5 d B+\&-50 \mathrm{MHz}$ of RF CENTER FREQUENCY

Change the DISPERSION to 10 . Check Bands 2 to 8 for display flatness as in the following charts:

TYPE 491 RF INPUT B Band 2 RF CENTER FREQUENCY

Continue in a similar manner checking flatness on all bands using the appropriate RF INPUT and signal source.
23. VIDEO FILTER
a. Setup

TYPE 491
TIME/DIV 5mS
DISPERSION RANGE $\mathrm{kHz} / \mathrm{DIV}$
DISPERSION 100
RESOLUTION (uncoupled) 5 (outer scale)
VIDEO FILTER
OFF
Band Selector
A MHz

23a. ($\operatorname{cont}^{\prime} \mathrm{d}$)
Set the HP608D for a 200 MHz signal and connect to TYPE 491 RF INPUT A. Tune the RF CENTER FREQUENCY to center the 200 MHz signal.
b. Check VIDEO FILTER operation: Integrated signal display
Change the VIDEO FILTER switch position to up (on). Check for an integrated signal display (see Fig. 9C). Change the TIME/DIV switch to .5 S . Change the VIDEO FILTER switch to OFF. There should be no appreciable change in the signal display with VIDEO FILTER on or off.

24. PHASE LOCK CIRCUIT

a. Check 1 MHz oscillator starting and adjust L1108: minimum delay in oscillator starting. No signal in OFF position
Connect 1 MHz MARKERS OUT -- 50Ω cable -RF INPUT A. Turn the INT REF FREQ control CW to the VARIABLE position and observe a display of 1 MHz markers on the TYPE 491. Turn the INT REF FREQ off and on several times and adjust L 1108 for minimum starting delay.
b. Adjust and check INT REF FREQ range: 2 kHz , min

Connect TYPE 184 MARKER OUTPUT to TYPE 491 RF INPUT A. Press TYPE 184 1 $\mu \mathrm{s}$ MARKER SELECTOR. Set TYPE 491 Band Selector to $B \mathrm{MHz}$, DISPERSTON RANGE to $\mathrm{kHz} / \mathrm{DIV}$ and DISPERSION to 100. Tune the RF CENTER FREQUENCY to the 200 th harmonic of the TYPE 184 signal (200 MHz). Rotate the INT REF FREQ control through its range and adjust L1104 for a range of 2 kHz (signal display should move 4 div as INT REF FREQ control is rotated through its range).
c. Check INT REF FREQ accuracy Error: $\pm 0.1 \%$, max with INT REF FREQ control fully cw
Remove the TYPE 184 signal from TYPE 491 RF INPUT A and connect it to TYPE 1A1 CHANNEL 1. Connect TYPE 4911 MHz MARKERS OUT to TYPE IA1 CHANNEL 2. Adjust

Fig. 9C
b. Typical INT REF FREQ range is: $1 \mathrm{MHz}+300 \mathrm{~Hz}$ to +2300 Hz . The display is the 200th harmonic of the 1 MHz signal. The range of the INT REF FREQ control will also be related to the 200 th harmonic, so $2000 \mathrm{~Hz} \mathrm{X} 200=$ 400 kHz with 100 kHz dispersion $4 \mathrm{div}=2000 \mathrm{~Hz}$ of range.

24c. (cont ${ }^{1}$ d)
CHANNEL 1 \& 2 VOLTS/CM for equal deflection, then set TYPE 1A1 MODE to ADD. Set the test scope TIME/CM to 1 mSEC and trigger the test scope. Turn the TYPE 491 INT REF FREQ full cw and check for a maximum of 10 zero crossings on the test scope CRT.
d. Check LOCK CHECK function: Beat frequencies throughout range of $R F$ CENTER FREQUENCY

Tum the INT REF FREQ control cw into the VARIABLE region. Press the LOCK CHECK button and check for beat frequencies displayed at intervals as the RF CENTER FREQUENCY is tuned through the full range of B and A, Band B and Band C.
e. Check EXT REF FREQ IN: Phase Zock from 1-5 MHz and 1-5V P to P

Set the TYPE 191 FREQ RANGE to $.75-1.6 \mathrm{MHz}$, vernier to 1 , AMPLITUDE RANGE to $.5-5 \mathrm{~V}$, AMPLITUDE to 10 and VARIABLE to CAL.

Connect TYPE 191 OUTPUT -- GR to BNC adapter -50Ω cable - - 50Ω Termination - EXT REF FREQ IN. Connect the TYPE 184 -- HARMONIC MODULATOR RF -... MODU HARM OUT -- TYPE 491 RF INPUT A. Press the TYPE 184 20ns MARKER SELECTOR. Tune the 50 MHz signal on screen with the RF CENTER FREQUENCY control and check for phase lock by varying the FINE RF CENTER FREQ and checking that the display pauses in its movement across the screen as the TYPE 491 local oscillator locks with the external signal. Check at several frequencies between 1 MHz and 5 MHz .

25. SENSITIVITY

Measure overall system sensitivity. To measure sensitivity, set the signal source for a display of signal plus noise equal to two times noise (see Fig. 10C). Read the sensitivity from the signal generator attenuator dial. Check sensitivity as in the following table:

Fig. 10C
25. ($\left.\operatorname{cont}^{\prime} d\right)$

Band	Frequency	Test Limit		Signal Sourc
		1 kHz Resolution	100 kHz Resolution	
	10 MHz	$-100 \mathrm{dBm}, \mathrm{min}$	-80 dBm , min	HP608D
	140 MHz	-100 dBm , min	-80 dBm , min	HP608D
	275 MHz	-100 dBm , min	-80 dBm , min	HP608D
Band 2				
	270 MHz	$-110 \mathrm{dBm}, \mathrm{min}$	-90dBm, min	HP608D
	500 MHz	-110 dBm , min	-90 dBm , min	HP612A
	900 MHz	-110dBm, min	-90 dBm , min	HP612A
Band 3				
	800 MHz	$-105 \mathrm{dBm}, \mathrm{min}$	-85 dBm , min	HP 8614A
	1500 MHz	-105 dBm, min	-85 dBm , min	HP8614A
	2000 MHz	-105 dBm , min	-85 dBm , min	HP 8614A
Band 4				
	1.5 GHz	$-110 \mathrm{dBm}, \min$	-90dBm, min	HP 8614A
	2.5 GHz	-110 dBm , min	-90dBm, min	HP 8614A
	4 GHz	-110 dBm , min	-90dBm, min	HP 8614A

Band 5

3.8 GHz	$-100 \mathrm{dBm}, \min$	$-80 \mathrm{dBm}, \min$
5 GHz	$-100 \mathrm{dBm}, \min$	-80 dBm, min
8.2 GHz	$-100 \mathrm{dBm}, \min$	$-80 \mathrm{dBm}, \mathrm{min}$

Band 6

8 GHz	$-95 \mathrm{dBm}, \min$	-75 dBm, min
10 GHz	$-95 \mathrm{dBm}, \min$	-75 dBm, min
12.4 GHz	$-95 \mathrm{dBm}, \min$	$-75 \mathrm{dBm}, \mathrm{min}$

Band 7

12.4 GHz	-90 dBm, min	-70 dBm, min
15 GHz	-90 dBm, min	-70 dBm, min

$18 \mathrm{GHz}-90 \mathrm{dBm}$, min -70 dBm , min

Band 8

18 GHz	$-80 \mathrm{dBm}, \min$	$-60 \mathrm{dBm}, \min$	HP628A
26.5 GHz	$-80 \mathrm{dBm}, \min$	$-60 \mathrm{dBm}, \min$	HP628A/HP938
40 GHz	$-70 \mathrm{dBm}, \min$	$-50 \mathrm{dBm}, \min$	HP628A/HP940

26. SPURIOUS SIGNALS
a. Check Band A spurious response: spurious signals $2 X$ noise, max
Place a 50Ω Termination on RF INPUT A. Set DISPERSION RANGE to $\mathrm{kHz} / \mathrm{DIV}$ and DISPERSION to 500. Set Band Selector to A and adjust the GAIN control for a display of 1 div of noise. Tune the RF CENTER FREQUENCY across the entire range and check that no spurious signal is greater than 2 div in amplitude.
a. Normally a spurious response will appear at 38 MHz , adjusting capacitors in Band A mixer will eliminate this spurious signal.
Spurious responses appearing between 100 and 150 MHz will respond to changes in mixer cable dress.
27. ($\operatorname{cont}^{i} \mathrm{~d}$)
b. Check Band B \& C spuxious response: spurious signals $2 X$ noise, max

Move the 50Ω Termination to RF INPUT B. Change the DISPERSION RANGE to MHz/DIV and DISPERSION to 10. Change the Band Selector to Band B and adjust the GAIN control for a display of 1 div of noise. Tune across the entire range of Band B and check that no spurious signal is greater than 2 div in amplitude. Move the 50Ω Termination to RF INPUT C. Change Band Selector to Band C. Measure Band C spurious signals.

27. IF ATTENUATOR

a. Setup		
Connect HP608D -- 508 cable -- HP355C --		
HP355D -- 50 < cable - 50Ω X10 attenuator		
TYPE 491 RF INPUT A. Set HP608D ATTEN to		
20 and frequency controls for a 200 MHz		
signal. Set TYPE 491 DISPERSION RANGE to		
$\mathrm{kHz} / \mathrm{DIV}$ and DISPERSION and GAIN for an		
8 div display.		
b. Check IF ATTENUATOR accuracy: $51 d B$ in $1 d B$ steps $\pm 0.1 d B / d B$		
Progressively switch in each IF ATTENUATOR and switch out the corresponding HP355C or		
HP355D attenuators. Compare the amplitude		
in each position to the 8 div reference as		
in the following table:		
If ATTENUATOR	Tolerance	
1 dB	.9-1.1dB	
2 dB	$1.8-2.2 \mathrm{~dB}$	
4 dB	3.6-4.4dB	
8 dB	7.2-8.88B	
16 dB	$14.4-17.6 \mathrm{~dB}$	
20 dB	$1.8 .0-22.0 \mathrm{~dB}$	

b. Spurious response at 270 MHz and sometimes $500-600 \mathrm{MHz}$ may require changing the local oscillator.
28. GAIN CONTROL 50 dB , min

With the same signal setup as in step 27 turn the TYPE 491 GAIN control full ccw. Adjust the HP355C, HP355D and HP608D ATTEN for an 8 div display. Switch in 50 dB of attenuation. Turn the TYPE 491 GAIN control full cw. Check for at least 8 div of signal deflection. Remove the HP355C, HP355D and connect HP608D - 50Ω cable -- TYPE 491 RF INPUT A.
a. Check LOG dynamic range: $40 d B$, min

Set the TYPE 491 VERTICAL DISPLAY switch to LOG. Apply a 200 MHz signal from HP608D to RF INPUT A. Set the HP608D to -60 dBm . Adjust TYPE 491 GAIN for an 8 div display of the 200 MHz signal. Set the HP608D ATTEN to -100 dBm . Check that signal is still discernable.
b. Check LIN dynamic range: 26 dB , min

Set the TYPE 491 VERTICAL DISPLAY switch to LIN. Adjust GAIN and HP608D ATTEN for an 8 div display. Increase the HP608D ATTEN setting 26 dBm . Check that signal is still discernable.
c. Check $S Q$ LAW dynamic range: $13 d B$ total range, min
Set the TYPE 491 VERTICAL DISPLAY switch to SQ LAW. Set the HP608D ATTEN to -50 dBm and obtain an 8 div display with TYPE 491 GAIN control. Increase the HP608D ATTEN setting until the signal amplitude drops to 4 div , must be $-53 \mathrm{dBm} \pm 1 \mathrm{dBm}$. Increase the HP608D ATTEN setting until the signal amplitude falls to 2 div, must be -56 dBm $\pm 1 \mathrm{dBm}$. Increase the HP608D ATTEN setting to -63 dBm . Check that the signal is still discernable.
30. TO RECORDER

50 mV P to P , min with 8 div display
Connect a 600Ω load cable between TYPE 491 TO RECORDER jack and TYPE 1A1 CHANNEL 1 INPUT. Set TYPE 1A1 MODE to CHANNEL 1 and CHANNEL 1 VOLTS/CM to . 01 . Adjust TYPE 491 for an 8 div display. Check the test scope for 5 cm deflection, minimum.

Remove the 600Ω load cable from TYPE 491 TO RECORDER jack and TYPE 1A1 INPUT.
31. CONTRAST
a. Setup

VERTICAL DISPLAY
DISPERSION RANGE
LOG
DISPERSION
$\mathrm{kHz} / \mathrm{DIV}$
RESOLUTION
50
coupled
INTENSTEIER

Adjust the HP608D and TYPE 491 controls for an 8 div display.
b. Adjust CONIRAST contrast between upper and Zower halves of screen ± 1 div

Adjust the CONTRAST so the upper half of the display is brighter than the lower half. See Fig 11C. Turn the INTENSIFIER through its range and observe a change in the relative brightness of the upper and lower halves of the display. Remove the HP608D signal from TYPE 491 RF INPUT A.
32. MIXER PEAKING
a. Setup

Change the TYPE 491 VERTICAL DISPLAY to LIN and DISPERSION to 500. Connect the HP8614A signal to TYPE 491 RF INPUT B. Set the HP8614A frequency to 1100 MHz . Set TYPE 491 band selector to B MHz and adjust the RF CENTER FREQUENCY for a display of the 1100 MHz signal.
b. Check mixer peaking

Check that the amplitude of the display changes as MIXER PEAKING is adjusted.

c. Cheok SEARCH

Switch the MTXER PEAKING control to SEARCH. Move the display to the left edge of the graticule with the RF CENTER FREQUENCY control. Check that the display amplitude peaks then maintains constant amplitude as the display is moved across the graticule with RF CENTER FREQUENCY control.
See rig. 12C.

Fig. 12C

