6 VERTICAL AMPLIFIER TYPE 'H'

6.1 GENERAL

The vertical amplifier type 'H' is a dual range, general purpose amplifier with switch selected input sockets. It has a frequency response from DC = 25Mc/s ($\pm 3db$) at 100Mv/cm, with less than 1% overshoot, and from DC = 5Mc/s ($\pm 3db$) at 10Mv/cm.

Direct coupling is used to minimise phase shift, and except in the input stage, transistors are used to reduce the total heat dissipation.

6.2 CIRCUIT DESCRIPTION

The vertical amplifier type 'H' is shown in fig. 3.8 and is balanced throughout.

V21 and V22 constitute the input stage, and act as a long tailed pair to provide a balanced push pull output from a single ended input. Shift is applied to V22 grid via RV38 and the attenuator network R35, R34. In the X10 gain position, the shift is attenuated ten times by the addition of R37.

The signal is applied to V21 grid via a two stage step attenuator and RV24 varies the gain by approx. $2\frac{1}{2}$:1 to give a continuous variation of gain between steps. The network C20, R27, R29 is used to maintain the input capacity of V21 constant, despite changes in gain.

The push pull output at the anodes of V21 and V22 drive emitter followers TR21 and TR22.

In the X1 position of gain control, transistors TR23 and 24 are shorted out, so the signal at the emitters of TR21 and 22 is connected to the output amplifier TR25 and 26.

This is a long tailed pair, with feed back in the emitter circuit to obtain the required high frequency bandwidth, and the emitter followers TR27 and 28 couple the signal to the 'Y' plates.

Sync signals are taken from the emitter of TR27.

In the X10 position of the GAIN SWITCH, transistors TR21 through to 24 act as complementary pair connected asscode circuit. The loop gain is very high and a large amount of feedback is provided to maintain the gain constant at X10.

A negative supply is provided for the input stage tail and shift circuit, by MR21, C26, R62 and C27.

6.3 'H' AMPLIFIER TEST PROCEDURE

Set DC Balance

Adjust the 'Y' SHIFT, in the X1 position, to centre the trace, then switch to X10 gain and recentre the trace using the DC BAL, control. Repeat this procedure until there is no change in trace position when switching from X1 to X10 settings.

Set Goin

Connect the CAL signal to a selected input socket, switch to 0.2v/cm, X1 gain setting, and adjust the SET GAIN X1 to give 5 cms of trace height.

Switch to X10 gain setting and 2v/cm and adjust RV43 to give 5 cms of trace height.

Repeat the above procedure until both settings are correct.

Variable Gain

Variation of the <u>GAIN CONTROL</u> will cause the trace to shift vertically. RV26 should be adjusted, so that a signal expands symmetrically about the centre of the screen as the gain control is rotated.

Set Attenuator

The eight trimmer capacitors of the <u>INPUT ATTENUATOR SWITCH C12</u>, C13, C4, C8, C9, C5, C2 and C3 are accessible for adjustment when the righhand side plate is removed from the instrument. They are situated at the front of the Vertical Deflection Amplifier in two parallel rows of four, separated by a metal screen.

In order to carry out this adjustment a squarewave generator is required, giving a frequency of approximately 2Kc/s; its output must be variable between 0.2V and 100V. The rise time of the squarewave need not be particularly fast, but it must have good, flat tops and bottoms. The adjustment procedure is as follows:

- a. Connect the squarewave generator to the <u>INPUT</u> socket and adjust its output to approximately 0.2V.
- b. Set the INPUT ATTENUATOR to 0.1 volt/cm. Adjust the sweep controls to display three cycles of the squarewave on the screen.
- c. Adjust each capacitor in turn, to give square corners to the waveform. The INPUT ATTENUATOR switch should be turned to the appropriate setting as shown in the table below. At the same time, adjust the output of the squarewave generator to give a trace of 2 3 cm amplitude in each case.

INPUT AT	TEN		Capacitor to be adjusted		
0.2	volt,	/cm	C12		
0.5	" (n'	C13		
1.0	G	И	. C4		
2.0	11	O	⊂8		
5.0		н	C9		
10.0	И	н	C5		

When this procedure is correctly carried out, the 20 volts/cm and 50 volts/cm ranges are automatically correct.

d. The capacitors C2 and C3 affect compensation only when the High Impedance probe is in use. To adjust them proceed as follows:

- e. Remove the squarewave generator from the input socket and plug in the High Impedance probe. Connect the output of the generator to the probe tip.
- f. Set the <u>INPUT ATTENUATOR</u> to 0.1 volt/cm and the squarewave generator output to give approximately 2 cm vertical deflection.
- g. Adjust the probe trimmer, which is accessible through a hole in the probe body, to give a flat top to the squarewave.
- h. Switch the INPUT ATTENUATOR to the 1 voit/cm range. Readjust the squarewave generator output as before, and adjust C2. Set the attenuator to the 10 voits/cm range and adjust C3. All other ranges will automatically be correct.

Adjustment of High Impedance Probe Compensation Trimmer

This adjustment is best carried out with a squarewave generator at an output frequency of 1Kc/s. Connect the probe to the INPUT socket and apply to the signal generator output. The compensation trimmer is accessible through the hole in the body of the probe and should be adjusted to give square wave corners to a few cycles of the 1Kc/s squarewave displayed on the screen.

Set H.F. Response

Switch to 0.1V/cm sensitivity and X1 gain setting.

Adjust cores in L21 and L22 so that they are nearly out.

Adjust RV51 to be maximum resistance (fully clockwise).

Then adjust C22 for optimum pulse response.

Reduce RV51, this will round off the corner, so readjust C22 to bring the corner back.

Repeat this procedure, of reducing RV51 and restoring the pulse response with C22. The rise time of the pulse will be abserved to reduce to an optimum value and then as RV51 is still further reduced, the rise time will increase again. When the optimum rise time has been achieved, adjust L21 and L22 for fastest edge.

If necessary repeat this procedure, to obtain the required bandwidth.

VERTICAL AMPLIFIER TYPE 'H' (continued)

INPUT ATTENUATOR TYPE 'H'

12M	Part <u>No .</u>	C.C.T. Ref.	Value	Description	Tolerance	Rating @7 0 °C	Part No.	C.C.T. Ref.	Value	Description	Tolerance	Rating @70°C
11M	1244			· · · · · · · · · · · · · · · · · · ·		<u> </u>	510110	P21	100	C	10%	ł.w
18M						1 1 1						
20M						₩				_		4"
14AN											an XI	1,4
13M						¹ ₄w				C	10%	,
10M						₫w				Potentiometer Preset 'Bol '	.070	
17M						dw ₄w					10%	I W
10M					1%	₫w						
S10410						₫w				Č		
\$18010 R11 18 C 10% ±w \$47010 R31 47 C 10% ±w \$57010 R31 47 C 10% ±w \$1010 R31 100 C 10% ±w \$10110 R33 100 C 10% ±w \$10110 R34 120K C 10% ±w \$10110 R34 120K C 10% ±w \$10110 R31 100 C 100% ±w \$10110 R31 100 C 100 C 100% ±w \$10110 R31 100 C						₫w				č		
\$18010 R12 18 C 10% \$\frac{1}{4}\top{10\text{ R}}\$ \$\frac{1}{4				c	10%	łw.				Č		
\$18010 R13 18 C 10% \$\frac{1}{2}\times \text{S10110} \text{R33} 100 C 10% \$\frac{1}{2}\times \text{S10110} \text{R33} 100 C 10% \$\frac{1}{2}\times \text{S10110} \text{R34} 120K C 10% \$\frac{1}{2}\times Local control of the co				С	10%	aw .				č		
16K				С	10%	l w				č		
16K	218010	R13	18	c	10%					č		
16K										č		
16J	16K	C 1	0.1	PO I	000					Č		
16J					20%							
16J											1076	
16J											1094	
Solution										-		4 W
61K C 7 1000pf SM 10% 350v S58210 R42 5.6K C 10% 4w 16J C 8 6-30pf CER TRIMMER 350v S6C RV43 2.2K Potentiometer Preset 8w 16J C 9 6-30pf CER " 350v S56210 R44 5.6K C 10% 4w 64X C11 20pf SM 5% 350v S56210 R45 5.6K C 10% 4w 64X C11 20pf SM 5% 350v 122L R46 33K MO 5% 1.5w 16J C12 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 1.5w 65X C14 30pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% 4w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 8w 518010 R53 18 C 10% 4w 518010 R53 18 C 10% 4w 518010 R53 18 C				CLA								
16J C 8 6-30pf CER TRIMMER 350v 56C RV43 2.2K Potentiometer Preset 8w 16J C 9 6-30pf CER " 350v S56210 R44 5.6K C 10% 4w 63X C10 15pf SM 5% 350v S56210 R45 5.6K C 10% 4w 64X C11 20pf SM 5% 350v 122L R46 33K MO 5% 1.5w 16J C12 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 66X C14 30pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% 4w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 9w 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 4w 518010 R53 18 C 10% 4w 57D S 1 Switch AC/DC					•							
16J C 9 6-30pf CER " 350v S56210 R44 5.6K C 10% 2w 63X C10 15pf SM 5% 350v S56210 R45 5.6K C 10% 4w 64X C11 20pf SM 5% 350v S56210 R45 5.6K C 10% 4w 16J C12 6-30pf CER TRIMMER 350v 122L R46 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 65X C14 30pf SM 5% 350v S12110 R49 120 C 10% 2w 63X C15 15pf SM 5% 350v S12110 R49 120 C 10% 2w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 2w 57D S 1 Switch AC/DC					10%					-	10%	
63X C10 15pf SM 5% 350v S56210 R45 5.6K C 10% 4w 64X C11 20pf SM 5% 350v 122L R46 33K MO 5% 1.5w 16J C12 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 1.5w 65X C14 30pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R49 120 C 10% 4w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 10% 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 4w 57D S 1 Switch AC/DC										• • • • • • • • • • • • • • • • • • • •	1007	
64X CII 20pf SM 5% 350v 122L R46 33K MO 5% 1.5w 16J C12 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 1.5w 65X C14 30pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% 4w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 1 w 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 4w 57D S 1 Switch AC/DC												
16J C12 6-30pf CER TRIMMER 350v 122L R47 33K MO 5% 1.5w 16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 6w 65X C14 30pf SM 5% 350v S12110 R49 120 C 10% 10% 10% 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% 10% 10% 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 10% 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 10% 57D S 1 Switch AC/DC Switch AC/DC S18010 R53 18 C 10% 10%												
16J C13 6-30pf CER " 350v 155L R48 3.9K MO 5% 66X C14 30pf SM 5% 350v S12110 R49 120 C 10% 4w 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% 4w 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% 4w 518010 R53 18 C 10% 4w 518010 R53 18 C 10% 4w 518010 R53 18 C					5%							
65X C14 30pf SM 5% 350v S12110 R49 120 C 10% dw 63X C15 15pf SM 5% 350v S12110 R50 120 C 10% dw 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% dw 518010 R53 18 C 10% dw 518010 R53 18 C 10% dw 518010 R53 18 C												
63X C15 15pf SM 5% 350v S12110 R50 120 C 10% \(\frac{1}{4}\times\) 67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset \(\frac{1}{2}\times\) 16K C17 0.1 POL 10% 400v S18010 R52 18 C 10% \(\frac{1}{2}\times\) 57D S 1 Switch AC/DC												
67J C16 0.01 PCL 10% 400v 113C RV51 100 Potentiometer Preset 10% 400v 518010 R52 18 C 10% 4w 518010 R53 18 C 10% 4w 518010 R53 18 C 10% 4w												
16K C17 0.1 POL 10% 400v \$18010 R52 18 C 10% 4w \$18010 R53 18 C 10% 4w \$18010 R53 18 C 10% 4w										-	10%	
57D S 1 Switch AC/DC												- (
57D S 1 Switch AC/DC	TOIX	CIZ	0.1	POL	10%	400√						
and Acype							\$18010	R53	18	С	10%	à₩
	57D	S 1		Switch AC/DC								
	36P	S 2										

VERTICAL AMPLIFIER TYPE 'H' (continued)

Part	C.C.T.				D_4!
No.	Ref.	<u>Value</u>	Description	Tolerance	Rating @70°C
1 24L	R54	1.5K	МО	5%	3łw
124L	R55	1.5K	MO	5%	3 1 w
102M	R56	22K	MO	<i>5</i> %	3 1 w
152L	R57	1.8K	MÓ	5%	1.5w
152L	R58	1.8K	MO	5%	1.5w
102M	R59	22K	MO	5%	34w
\$15210	R60	1.5K	c ¯	10%	3zw źw
113L	R61	7.5K	MO	5%	-
S47110	R62	470	C	10%	1.5w 1 w
527110	R63	270	С	10%	aw aw
158L	R64	1.5K	MO	5%	
				376	3¼w
43K	C20	2.2pf	CER	5%	750√
891	C21	0.47	PE	20%	100v
75J	C22	10-40pf	CER TRIMMER		
16K	C23	0.1	PE	20%	400√
1801	C24	40	ELEC		100v
39X	C25	8	ELEC		300v
109J	C26	500	ELEC		18 _v
109J	C27	5 00	ELEC		18v
56X	C28	8	ELEC (Reversible)		25v
261	V î		FE194 W-L 44. H . I		
26T	v 2		EF184 Valve Mullard EF184 Valve Mullard		
	· -		culor Agine Whilaid		
1 19T	TR21		Transistor LB293 Motorola		
119T	TR22		Transistor LB293 Motorola		
116T	TR23		Transistor 2N3702 Texas		
1161	TR24		Transistor 2N3702 Texas		

ATTENUATOR CIRCUIT TYPE H

