All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are war ranted for the life of the instrument.
Any questions with respect to the waranty mentioned above should be taken up with your Tektronix Field Engineer.
Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replace ment parts should be directed to the Tek tronix Field Office or Representative in your area. This procedure will assure you the area. This procedure wossible service. Please include the instrument Type and Serial number with all requests for parts or service.
Specifications and price change privleges reserved.

Copyright © 1960 by Tektronix, Inc. Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.

General

The Tektronix Type 532 Oscilloscope is high-performance medium-speed, laboratory instrument with plug-in preamplifiers. It is specially engineered to get extra dependability through circuit simplicity and conservative tube loading. While achieving the extra depend ability obtainable with fewer tubes more con ervatively loaded, the Type 532 has retained he same precision and stability expected of Tektronix oscilloscopes, combined will the ormance of most of the demands of a laboratory

Letter Series plug-in units fit the Type 532. All the versatility of these plug-in units is thus available limited only by the 5 -megacycle pass band of the Type 532

Vertical Deflection System

Output Amplifier

> Frequency Response -dc to 5 mc . Risetime - .06 microseconds.

Linear Deflection - 8 cm .

Horizontal Deflection System

Sweep Range
Twenty-one calibrated speeds from 1 $\mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$.

Accuracy - 3 per cent.
Continuously variable, uncalibrated between ranges and to $12 \mathrm{sec} / \mathrm{cm}$.

Magnifier
Expands sweep 5 times to right and left
f screen center. Extends fastest sweep speed to $.2 \mu \mathrm{sec} / \mathrm{cm}$.
Accuracy - 5 per cent.
Unblanking - DC coupled.
Trigger Requirements
internal -2 mm of deflection.
External - .2 volts to 40 volts
Frequency range - dc to 5 mc .
Horizontal Input
Deflection Factor
Continuously variable, . $2 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$.

Frequency Response - dc to 300 kc .

Other Characteristics

Cathode-Ray Tube
Type T52P2
P1, P7 and P11 phosphors optional Accelerating Potential - 4,000 volts Deflection Factor at Plates

> Vertical $-9 \mathrm{v} / \mathrm{cm}$. Horizontal $-22 \mathrm{v} / \mathrm{c}$

Voltage Calibrator
Eighteen fixed voltages from . 2 millivolts to 100 volts, peak-to-peak.

Accuracy - 3 per cent.
Waveform - square wave at about 1 kc

Positive gate of same duration as sweep, 20 volts.
Sweep Sawtooth waveform, 150 volts.
Delayed gate with delay adjustable throughout the period of the sweep and lasting for the duration of the sweep, 20 volts.

A sample of the vertical signal, passband dc to 2.5 mc with a $50 \mu \mu \mathrm{f}$ capacitive load. Output: .9 volts per cm of deflection.

Vertical Beam-Position Indicators
Indicator lights show direction of beam
when it is positioned off the screen

Power Supply
Electronic Regulation
Power Requirements - 105 to 125 , or 210 to $250 \mathrm{~V}, 50-60$ cycles, 475 watts with the Type D Plug-In Unit

Mechanical Specifications

Ventilation - filtered forced-air ventilation. Finish - photo-etched, anodized panel, blue wrinkle enameled cabinet.

Dimensions - $25^{\prime \prime}$ long, $13^{\prime \prime}$ wide, $163 / 4$ high.

Weight - 52 pounds

Unctions MODE (red knob)

RIGGER
SLOPE

TRIGGER
INPUT
STABILITY

TIME/CM

MULTIPLIER

5X MAGNIFIER
(red knob)
HORIZONTAL
DISPLAY

Four-position switch arranges trigger circuits for four kinds of triggering: AUTOMATIC, AC FAST, AC SLOW and DC.

Six-position switch selects source of trigger signal and converts to negative-going output, either negative-going or positive going input.

Coaxial connector to triggering circuits through EXT. positions of TRIGGER SLOPE switch.

Control for adjusting the stability of the sweep circuits for a stable supply. The control has a PRESET position suitable for most triggering applications.

Eight-position switch selects timing capacitors to determine sweep speeds, and determine duration of trigger-holdoff period.
Six-position switch. Three positions place precision charging resistors in series with timing capacitors to determine sweep speeds in conjunction with selected timing capacitor. Three positions, marked in red, place adjustable charging voltages in series with timing capacitors for continuous control of sweep speeds.
Two-position switch removes or inserts attenuator in sweep ampiifier to change sweep speeds by a factor of five.

Three-position switch connects sweep amplifier to internal sweep generator in one position, or to front panel connector directly or through 10-1 fixed attenuator in second and third positions.

EXTERNAL SWEEP ATENUATOR, 10-1

EXTERNAL
SWEEP IN

HORIZONTAL POSITION
SQUARE-WAVE CALIBRATOR (black knob) MILLIVOLTS VOLTS

CAL OUT
VERT SIG OUT
+GATE OUT

SAWTOOTH
OUT

GATE DELAY

DELAYED GATE

POWER

FOCUS
INTENSITY
ASTIGMATISM
SCALE ILLUM
$=$
[]

Continuously adjustable gain control on horizontal amplifier Switched out of circuit for internal sweeps.

Front-panel connector to horizontal amplifier through HORIZONTAL DISPLAY switch. Magnifier must be switched to ON for undistorted $10-\mathrm{cm}$ deflection.

Positions trace along horizontal axis

Nine-position switch selects nine taps on precision voltage divider in calibrator circuit. Provides accurate voltages of .2 , $.5,1,2,5,10,20,50$, and 100 volts in VOLTS position, or milliolts in the MILLIVOLTS position of the red concentric control nnob.

1000-to-1 voltage divider to give either volts or millivolts output.

UHF coax front-panel connector from the calibrator.
Front-panel binding post supplies a sample of the vertical signal for operation of auxiliary equipment.

Front-panel binding post supplies positive 20 -volt square pulse, dc coupled through cathode follower, synchronized with the internal sweep.

Front-panel binding post supplies 150 -volt positive-going sawtooth dc coupled through cathode follower, synchronized with the internal sweep.

Front-panel control adjusts delay time of delayed gate. Delay is adjustable by any percentage of the sweep-sawtooth time.

Front-panel connector dc connected to cathode-follower output delivers 20 -volt positive-going gate delayed according to the setting of the GATE DELAY control.

On-off switch primary of power transformer and ventilatingfan lead.

Adjustable voltage for the cathode-ray tube focusing grid.
Bias adjustment to cathode-ray tube control grid.
Adjustable voltage for the astigmatism grid of the cathoderay tube.
Adjustable series resistor controls the voltage across the graticule lights.

Beam-position indicators, unlabeled marked with arrows. The arrow nearest the illuminated indicator shows which way the beam is off the screen if it cannot be seen.

Binding post connects to crt cathode through high-voltage capacitor. Input impedance 8 k to 15 k . Discharge time constant about 15 milliseconds.

Preliminary Instructions

Cooling

The Type 532 Oscilloscope is cooled by filtered, forced-air ventilation. The instrument must therefore be placed so the air intake is not blocked, and the filter must be clean is not blocked, and the filter must be clean enough to permit adequate air circulation.
If the interior temperature does rise too high If the interior temperature does rise too high
for some reason, a thermal cutout switch will disconnect the power and keep it disconnected until the temperature drops to a safe value

Cathode-Ray Tube Controls

The Tektronix Type T52 Cathode-ray tube in this instrument has a total accelerating voltage of 4,000 volts. The spot intensity with this amount of acceleration can be bright enough to damage the screen if the spot is left in one place. Be careful not to leave a fixed bright spot on the screen. Turn the INTENSITY control counterclockwise so that the spot is dim whenever you leave the instrument unattended.
The separate FOCUS, ASTIGMATISM and INTENSITY controls are somewhat interdependent, and may require readjustment for different INTENSITY control settings

Illuminated Graticule

The adjustable graticule-lighting control, labeled SCALE ILLUM., can be adjusted to labeled SCALE ILLUM., can be adjusted to colored filter supplied is colored to provide colored maximum trace contrast for the P2 phosphor in the presence of room light.

The graticule is accurately scribed in centimeters and fifths of centimeters. These scale markings and the calibrated fixed vertical deflection sensitivities and sweep times, can

2

OPERATING INSTRUCTIONS

be used to convert deflections in centimeters be used to convert deflections in centimeters into volts and seconds. Vertical sensitivities
are calibrated in volts per centimeter, and are calibrated in volts per centimeter, and onds per centimeter which if multiplied by centimeters of deflection, give volts and seconds.

The graticule can be mounted in either of two positions rotated 180 degrees from each other. In one position, the graticule illumination is colored red, and in the other position in white. The white will reproduce well photographically.

First-Time Operation

First get a trace on the screen by the simplest method, and then proceed with the presentation you want after you get an idea of the functions of the controls. To get a trace on the screen, insert a preamplifier, for example the Type D, and proceed as follows:

Turn the POWER switch to OFF. Connect the power cord to a source of 117 -volt, $60-$ cycle power. Then set the front-panel controls as follows:
INTENSITY

FOCUS
ASTIGMATISM
POWER
TRIGGERING LEVEL
CCW

CW (S/N 101-5419) CCW (S/N 5420-5665) PRESET (S/N 5666-up)

TRIGGER SLOPE

SQUARE-WAVE
CALIBRATOR

Connect a lead from the INPUT A terminal Connect a lead from the INPUT A termina terminal.

INPUT SELECTOR INPUT A, AC
MILLIVOLTS/CM 100

VERTICAL POSITION center
MV/CM MULTIPLIER 50
VARIABLE
Clockwise (CW)
When the POWER switch has been turned on for about one minute, turn the INTENSITY control clockwise until you can see a trace on the screen. Now back off the redSTABILITY knob at the top center of the oscilloscope until the waveform is stable (S / N 101-5419). Adjust the FOCUS, INTENSITY and ASTIGMATISM controls for a sharp line. Position the trace near the screen center with the HORIZONTAL POSITION and the VERTICAL POSITION controls.

Triggering Modes

Automatic
You are now displaying the calibrator waveform, whose repetition rate is about one kilocycle, and whose amplitude is two volts, peak-to-peak, with the AUTOMATIC mode of triggering. This is the simplest mode of triggering. will operate satisfactorily for a wide variety
of trigger signals whose repetition rates are between sixty cycles and about two megacycles. AC Slow

When you have a good, well focused trace of the calibrating waveform by the AUTOMATIC mode of triggering, try the other three TRIGGERING MODE switch positions. Turn the switch to the AC SLOW position. Leave the the AC AUTO triggering you had it set for the AC AUTO triggering or advance it until degrees (S/N 101 -5665), Advance the about ten ING LEVEL control clockwise until you get ING LEVEL control clockwise until you get a stable trace again. There may be a con-
siderable range of the TRIGGERING LEVEL siderable range of the TRIGGERING LEVEL control over which you can get a stable trace,
and the start of the trace will move up and and the start of the trace will move up and down the edge of the square wave within this
range. Notice that the trace starts on the upgoing part of the calibrator square wave.

Now turn the TRIGGER SLOPE switch to the -INT. position, and readjust the TRIGGERING LEVEL to obtain a stable trace again. Notice now that the trace starts on the down-going portion of the trace and that the position of the start can again be changed somewhat with the TRIGGERING LEVEL control.

DC Triggering

Now turn the TRIGGERING MODE switch to DC. Adjust the LEVEL control for straight triggering, and then position the trace with the VERTICAL POSITION control. You will notice that triggering occurs at a vertical level on the screen selected by the LEVEL control and that the triggering point changes relative to the waveform as the waveform is positioned vertically. This effect will be more noticeable if you look at a low-frequency sine wave.

This triggering position is most useful for low-frequency signals. It is not suitable for applications where the dc level is changing such as when the Type CA Dual-Trace Unit is being used.

AC Fast

In the AC FAST position of the TRIGGERING MODE switch, the circuit is quite similar MODE switch, the circuit is quite similar
to that in the AC SLOW position, and you
will notice no difference when displaying the calibrator waveform. The only difference is that an rc filter is inserted in the circuit making it insensitive to low frequencies, and allowing it to recover quickly from dc level changes. This is the position to use when there is low-frequency hum present or when you are using the alternate sweep feature f the Type CA Dual-Trace unit, and you are looking at high-frequency signals.

General Triggering Instructions

The triggering system is very flexible and stable. Once you get the feel of the instrument you will find it will trigger successfully on the most difficult triggering waveforms. It will probably help if you go through the four procedures again a time or two.

If you are already familiar with the Tektronix Type 315 Oscilloscope triggering system, you will know how to operate the controls of the Type 532. If you have not had experience with this kind of triggering system, however, you will probably need some explanation, particularly if you have been using Tektronix Type 511, 512,513 or 524 Oscilloscopes

In the new triggering circuits, the TRIGGERING LEVEL control determines at what point on the instantaneous triggering voltage triggering will occur. This control is therefore not a sensitivity control. For small trigger signals and with ac coupling, the TRIGGERING LEVEL controw will need to be set near zero. Setting when the triggering voltage is negative, with respect to its average level. Positive settings will cause triggering only at a time when the triggering voltage is positive.

The red STABILITY control knob controls he bias on the sweep multivibrator. It thereore performs about the same function as the tability controls in other Tektronix oscilloscopes. For recurrent operation, advance the ontrol clockwise until a recurrent trace appears. For triggered operation, retard the control from this position counterclockwis en or fifeen degrees. For most triggering table display without the noed for adjusting the STABILITY control (S/N 5666-up).

For triggered operation, you will also need to adjust other trigger controls to select the source of trigger signals, and the level, speed and direction of slope of the triggering waveform.

The TRIGGER SLOPE switch selects the source of trigger signals and determines whether triggering will occur on the positive-going or the negative-going portions of the triggering waveform.

Simplified Trigger Circuit Diagrams

The simplified diagrams of the triggering circuits showing the method of trigger-slope inversion and the circuit changes performed by the TRIGGERING MODE switch may help you to understand the use of the functions available in the Type 532 Oscilloscope. The following describes the circuit operations in terms of the simplified diagrams:
The trigger inverter stage is a cathode coupled amplifier. The slope polarity of the output pulse must be negative to suit the rest of the circuits that follow, so the trigger signal is connected to the amplifier so as to produce inverted output for positive signals, or in-phase oupput for negative signals. The TRIGGER SLOPE switch determines whether necting either one grid or the other to trigger source
.
The trigger-shaper circuit makes a sharp pulse out of the trigger signal, and determines at what voltage level on the trigger signal The trigger shaper shown on the right is a two-stage amplifier circuit with two tubes coupled together through a common cathode resistor. The biases of the two tubes are set so the the input is conducting while she output tube is not when no triggering the output tube is not when no triggering signal is preset. When the triggering signal pulls the input grid downward far enough it
passes the level of the grid of the output passes the level of the grid of the output
section. Then the output section conducts and the input section cuts off, as the grid goes on below the cathode.

The dc level of the cathode is established by the dc input grid voltage when no triggering signal is preset. The input grid voltage is LEVEL control, which sets the plate voltage
of the trigger inverting stage and thereby sets the grid voltage of the trigger shaping stage. The trigger input signal to the shaper stage thus consists of the dc level which can be adjusted, plus the amplified signal from the inverter stage. By adjusting the TRIGGERING part of trigger signal will operate the shaping stage and produce a pulse at its output plate.

Additional functions of the TRIGGERING MODE switch rearrange the circuits to accommodate dc-coupled triggering, and slow or fast ac-coupled triggering.

The trigger shaper is a type of multivibrator in which regeneration causes fast transition between two stable states, regardless of how slowly the triggering signal passes the triggering level.
For dc coupling, the trigger-inverter grid is dc coupled to the input signal. For ac coupling, the trigger-inverter grid is coupled through a capacitor. For SLOW AC, the time constant of the coupling circuit is relatively long, about a milhisecond. For FAST AC, the 10 microseconds so that the circuit will not 10 microseconds, so that the circuit will not respond the FAST circuit will reject 60 -cycle hum comFonents, and trigger successfully on a desired higher frequency when both are present in the triggering waveform.

For the dc-triggering position, the input grid of the inverter stage assumes the actual potential of the input signal, including both the TRIGGERING LEVEL control will therefore need to be set to include the dc level of the trigger signal.

When the TRIGGERING MODE switch is in the AUTOMATIC position (AC AUTO position S / N 101-5419), the input grid of the inverter stage is separated from the dc level of the trigger signal, and the input grid of the trigger shaper stage is separated from the dc level is thus no dc coupling between the There input and the shaper. The trigger-shaper stage has a large (3 -megohm) resistor connected between plate and grid in this switch position, so that the stage oscillates at about 50 cycles
per second, depending on the time constant of the coupling capacitor into the input grid and the 3 -megohm resistor.

The input grid rises and falls about five volts in roughly a sawtooth waveform at the fifty-cycle rate. Each time the grid reverts from the negative-going direction to the positivegoing direction, the output plate triggers the sweep on the scope, so that at least a zeroline trace is present whether an external source of trigger signal is present or not.

At any time during the negative-going excursion of the sawtooth, a superimposed negative trigger signal can drive the input grid of the shaper tube to cut-off and start a triggered sweep at that instant. Recurrent pulses between sixty cycles and 2 mc will synchronize the sweep in the AUTOMATIC position (AC AUTO position S/N 101-5419).
This triggering mode is useful because it will maintain a sweep, so that any signal appearing in the vertical amplifier can be displayed whether it triggers the sweep or not, and because it will provide a synchronized sweep over a wide range of trigger repetition rates with no need for readjustment of the controls.

Triggering Controls

Stability
This control sets the sweep multivibrator bias one side or the other in the region of recurrent operation. As you advance the control from the counterclockwise position, you will pass a setting at which a trace will appear in the absence of any triggering waveform. Usually you will want to trigger the sweep, and for triggered sweeps you should back the STABILITY control counterclockwise from this point five or ten degrees. Or turn the control to the PRESET position (S/N 5666 up). If you want to stop the sweep from being triggered at all, you can turn this control counterclockwise to the stop.

Triggering Level

This control selects the point on the triggerng waveform at which triggering will occu Turning the TRIGGERIN
to be triggered during positive amplitudes of the triggering waveform. Turning the TRIGGERING LEVEL control in the - direction causes the sweep
amplitudes.

Trigger Slope

This control selects the source of triggering signals, and determines whether the sweep is triggered during positive-going or negativegoing portions of the triggering waveform. Used in conjunction with the TRIGGERING LEVEL control the polarity functions of this switch permit you to select any part of a triggering waveform for triggering the sweep.
How far you must turn the LEVEL control to trigger at the peak of a triggering waveform depends on the amplitude of the signal. For small signals, the LEVEL control setting will always need to be near zero, or near the dc level if there is a dc component. Increas ing the amplitude of the trigger waveform while the LEVEL control remains constant will cause he triggering point to phase along the triggering waveform.

Triggering Mode

This switch arranges the circuits for singlesweep triggering on three kinds of triggering waveforms, and for recurrent sweeps which can be synchronized. The AC SLOW position s suitable for signals with a risetime around a microsecond or slower. The DC position is the same except that it includes The AC FAST position is suitable for risetimes faster than 10 microseconds, although there is considerable overlap between the capabilities of the circuits in the SLOW and FAST switch positions.

The AUTOMATIC position (AC AUTO position S/N 101-5419) makes a recurrent trigger signal at about a 50 -cycle rate. However, it will synchronize easily with recurrent trigger sig nals from 60 cycles to 2 megacycles. It is a useful function for displaying signals differing widely in amplitude and triggering speed for example, in signal-tracing techniques, and also for maintaining a base line to show that the oscilloscope is functioning when there is no signal. (In this mode, the STABILITY control is not used. Instead, an internal control
is connected into the circuit that has been preset for optimum triggering over a wide ange of triggering signals. S/N 5666 -up) (The for this function as for other triggered operation about five or ten degrees counter clockwise from the point where the multivibrator runs recurrently. At the fastest sweep speeds the base line will be just discernible when there is no signal because of the low duty cycle. S/N 101-5665).

Sweep Operation

Time/CM and Multiplier
The TIME/CM and MULTIPLIER controls determine the speed of the horizontal trace. The time per centimeter of horizontal deflection s equal to the produce of the MULTIPLIER setting and the TIME/CM setting. Times per centimeter from 1 microsecond to 1 second in steps of 10 can be selected, with the TIME/ CM switch, and accurate, fixed multipliers of 1,2 , and 5 times can be selected with the MULTPLIER switch. The sweep times so elected can be depended $n 3$ per cen of their indicated value.

Magnifier

The MAGNIFIER control inserts or removes a feedback network in the sweep amplifier that changes the gain five times. The linearity of the amplifier is somewhat better when the feedback circuit is included. The center one fifth of the trace is extended to fill the graticule when the magnifier is switched on When the sweep magnifier is on the fastest sweep speed is increased to .2 microseconds per centimeter. The intensity of the trace is reduced when the magnifier is on because of the reduced duty cycle.

External Sweep

In the X10 and X1 positions of the HORI ZONTAL DISPLAY switch, the EXTERNAL SWEEP IN binding post is connected to the horizontal amplifier. In both of these positions the 5X MAGNIFIER must be switched to ON to keep the input amplifier within its linear range. The EXTERNAL SWEEP ATTENUATOR $10-1$ can be used in conjunction with the step attenuator to give a 100-1 attenuation range.

Square Wave Calibrator

Accuracy of the open-circuit voltage of the calibrator is within 3 per cent of the indicated voltage. However, since the output impedance at the CAL. OUT terminal varies with the setting of the voltage-selector switch, you must be careful that the load impedance you connect it to does not change the output voltage. The output impedance reaches a maximum of about 5,000 ohms at the 50 -volt tap. The frequency of the calibrator multivibrator is nominally 1,000 cycles, but may vary 30 per cent either way.

Vertical Signal Out

The signal applied to the vertical amplifier is available at the front-panel VERT. SIGN. OUT binding post. A signal which will cause one centimeter of deflection will produce a signal of about .9 volts, peak-to-peak, at the binding post. The passband is dependent on the external load. With a capacitive load of $50 \mu \mu \mathrm{f}$, it extends from dc to 2.5 megacycles at the 3 db point.

Trace-Brightness Modulation

To couple markers or the signals into the crt cathode for brightness information, disconnect the ground strap at the rear of the instrument and connect the signal to the CRT CATHODE binding post. The input impedance is about 15,000 ohms. The circuit is ac coupled through a high-voltage capacitor with an rc time constant of about 15 milliseconds.

Direct Connection to Deflection Plates (SN 5666 up

A plastic plate and mounting bracket is available from the factory for making direct
connections to the crt vertical-deflection plates. The mounting bracket is designed to clamp a round the neck of the crt shield, adjacent to deflection-plate connections. When through the crt deflection-plate access hole in the left side-panel. The bracket and plate may be ordered with or without the necessary parts for vertical-positioning voltages. Specify part number 013-008 for the unwired unit, or part number 013-007 for the wired unit.

Holes can be drilled in the plastic plate for mounting coaxial or other connectors. The two pins on the left-hand side of the crt neck are the vertical-deflection plates.

S/N 101-5665 the plastic cover on the side of the case allows low capacitance direction connection to the deflection plates. Wire guides in the center hold the leads away from the case. The two pins on the side of the crt are the vertical deflection plates and the two on the top are the horizontal deflection plates.

To avoid distortion, the average dc potential on the vertical-deflection plates should be between 150 and 250 volts. If you use a different voltage, the distortion can be minimized by adjusting the GEOM. ADJ. control at the rear of the sweep chassis.
(Unless dc coupling is required, connect coupling capacitors in series with the leads to the deflection plates and connect one-megohm resistors from the deflection plates to the leads from the vertical amplifier. With this connection the plates are maintained at the proper operating potential, and positioning control is retained for the front-panel VERTICAL POSITION control.) S/N 5420 -up.

Block Diagram

The Block Diagram shows interconnections of the functional parts of the oscilloscope, except the power supplies. Functions of the switches are shown instead of their actual connections.

Vertical Amplifier

Plug-In Preamplifiers

In the upper left of the Block Diagram is shown the vertical-deflection system. The block labeled "plug-ins" represents one of the several plug-in preamplifiers available. Units are available with a wide pass band, with reduced pass band and higher sensitivity, with differential input, with channel switching for alternate brated gain controls and vertical position trols. Connections for power in and signal out are made through a multiple-contact mating plug and socket. Output from these units is push-pull at low impedance.

Main Unit

The main unit contains all the power supplies, the sweep system, the high-level portions of the vertical amplifier and its associated circuits, the calibrator, and the cathode-ray tube.

The driver stage feeds the vertical-deflection signal to the trigger-pickoff circuits that supply an internally derived trigger signal to trip the sweep circuits with the observed signal.

Trigger Pickoff

The pickoff circuit supplies a sample of the vertical-deflection signal to the TRIGGER SLOPE switch for triggering purposes.

CIRCUIT DESCRIPTION

Vertical Output Amplifier

This amplifier raises the signal to the level needed for the vertical-deflection plates at low impedance.

Calibrator

The calibrator has no internal connection to the vertical-amplifier system. It consists of a symmetrical multivibrator with a cathodefollower output tube whose cathode resistor is a calibrated voltage divider.

sweep

Trigger Mode and Trigger Slope Selectors

At the left of the diagram are shown the functions of the switches that select the source and slope of trigger signals and arrange the circuits to accommodate the trigger character istics.

Trigger Phase Inverter

This stage provides either in-phase or inverted output so as to provide negativeoing output for either negative-going or posi-tive-going input trigger signals.

Trigger Shaper

The trigger-shaper amplifier makes a sharp pulse from the trigger signal at a time during the sloping part of the trigger signal determined by the setting of the triggering-level control. A sharpened negative-going pulse triggers the multivibrator.

Multivibrator

The multivibrator turns on the sweep generator and generates the crt-tube unblanking pulse when it is switched from its quiescent
tate. The sharp negative-going trigger signal from the trigger-shaper circuit trips the multi from the trigger-shaper circuit trips the mult butil the sweep generator reverts it to its quiescent state.

Sweep Generato

The sweep generator is a Miller integrator hat produces a positive-going sawtooth about 50 volts peak -to-peak. The sweep generato urns itself off when it reaches a prescribed level determined by the sweep-length control by transmitting a signal through the trigger holdoff circuits to the multivibrator.

Trigger Holdoff

The trigger-holdoff circuit transmits the weep turn-off signal to the multivibrator but briefly holds off subsequent trigger signals from starting the sweep again until all part states.

Sweep Amplifier

The sweep amplifier converts the sawtooth output of the sweep generator into push-pull output at low impedance at the level required to sweep the beam across the crt-tube screen The amplifier gain can be increased by factor of five for sweep magnification. The horizontal-positioning control operates on this stage.

Unblanking

The multivibrator generates the positive oing unblanking pulse at the same time urns on the sweep generator. The positive pulse is transmitted by means of two cathod ollowers through a floating high-voltage nega tive supply to the control grid of the crt tube

Delayed-Gate Circuit

The delayed-gate circuit is a bistable multi vibrator which changes state when its inpu grid is raised above the triggering point by the sawtooth wave of the sweep generator
n adjustable bias added to the sawtooth can move the triggering point to any position along the sawtooth. A positive pulse generated by
the multivibrator is transmitted to a frontpanel connector by means of a cathode-follower. The positive pulse is terminated when the sawtooth returns negative.

External-Sweep Amplifier

The external-sweep amplifier provides a means of using external sweep voltage. It ncludes a fixed attenuator and an adjustable attenuation control. Choice of internal or xternal sweep can be made by means of the HORIZONTAL DISPLAY switch. The sweep magnifier must be used with external sweeps.

Power Supply

Plate and Heater Power

The 60-cycle 117-234-volt transformer has four separate high-voltage windings. AC output from each winding is rectified by means of fullwave rectifiers. Rectified dc output is filtered with capacitors and regulated by means of series regulator tubes. Three positive voltages of 350,225 and 100 volts are referred to -150 volts for their regulation. The negative 150 -volt supply is referred to a 60 -volt glow ube for its regulation.

Cathode-Ray Tube High-Voltage

A $60-\mathrm{kc}$ vacuum-tube oscillator has the primary of a step-up transformer for its oscillator inductance. A sample of the rectified secondary voltage is compared to a stable dc source, and the difference is kept constant by an electronic circuit that adjusts the oscillator amplitude of oscillation in the direction to reduce any change.

Three vacuum diodes rectify stepped-up vol tages at three secondary windings. Two recti fiers supply positive and negative accelerating potentials to the crt tube. The third supplies a nearly equal negative potential to the control grid of the crt tube. This supply floats on top of the unblanking pulse, with is comected in series with it to ground at its positive end

Color Coding

We use color coded wires in this instrument to help you identify the various circuits. The ac power leads are yellow and coded 1-1-0 (brown-brown-brow) fors white beginning with the widest stripe) The 150 beghning is black cond 1 . The heater leads are coded 6 , $6-2$, 1 c , , to indicate the the voltages aredifferent but to differentiat that the All signal leads have single stripe. A few wire colors are indicated by small, lower case letters on the diagrams.

Air Filter

The Type 532 Oscilloscope is cooled by filtered forced air. If the filter gets too dirty it will restrict the flow of cooling air and filter should be inspected every three or four months and cleaned or replaced if necessary.

Two types of air filters can be used with your Tektronix equipment. A washable air filter constructed of aluminum wool coated with an adhesive is usually supplied with your instrument. A disposable glass-wool is available through your local Tektronix field office or direct from the factory. If you are replacing an aluminum-type filter with the disposable which includes two back-up screens that help to prevent damage to the filter. For future replacements of the glass-wool filter only order No. 378-012.

To clean the aluminum filter, run hot water through it from the side that was inside. Or slosh it around in hot soapy water and rinse it in clean water. Then dry it thoroughly and coat it with "Filter Coat", a product of the Research Products Corporation. Pint

MAINTENANCE

ans are available under the name "Handi Koter" from some air-conditioner suppliers Other adhesive materials are no doubt satis factory.

Fan Moto

The fan motor bearings will require oiling every few months or every thousand hours of peration. Use a good grade of light machin oil, and apply only a drop or two.

Soldering and Ceramic Strip

Many of the components in your Tektronix instrument are mounted on ceramic terminal strips. The notches in these strips are lined with a silver alloy. Repeated use of excessive heat, or use of ordinary tin-lead solder will break down the silver-to-ceramic bond. Occasional use of tin-lead solder will not break the bond if excessive heat is not applied.

If you are responsible for the maintenance of a large number of Tektronix instruments or if you contemplate frequent parts changes we recommend that you keep on hand a stock tly in printed circuitry and is used frequily avalable from radio-supply houses if you prefer you can order the solder directly from Tektronix in one-pound rolls. Order by Tektronix part num ber 251-514.

Because of the shape of the terminals on the ceramic strips it is advisable to use wedge-shaped tip on your soldering iron when you are installing or removing parts from the strips. Fig. $4-1$ will show you the correct shape for the tip of the soldering iron. Be sure and file smooth all surfaces of the iron which will be tinned. This prevents solder from building up on rough spots where it will quickly oxidize.

When removing or replacing components mounted on the ceramic strips you will find that satisfactory results are obtained if you proceed in the manner outlined below.

1. Use a soldering iron of about 75 -watt rating.

Fig. $4-1$. Soldering iron tip correctly shaped
and tinned
2. Prepare the tip of the iron as shown in Fig. 4-1.
3. Tin only the first $1 / 16$ to $1 / 8$ inch of the tip. For soldering to ceramic termina strips tin the iron with solder containing about 3% silver.
4. Apply one corner of the tip to the notch where you wish to solder (see Fig. 4-2).

Fits. 4-2. Merhod of applying heat to ceramic
Fig. 4
strip.
5. Apply only enough heat to make the solder flow freely.
6. Do not attempt to fill the notch on the strip with solder; instead, apply only enough solder to cover the wires adequately, and to form a slight fillet on the wire as shown in Fig. 4-3.

In soldering to metal terminals (for example, pins on a tube socket) a slightly different technique should be employed. Prepare the iron as outlined above, but tin with ordinary tin-lead solder. Apply the iron to the part only enough heat to allow the solder to flow freely along the wire so that a slight fillet will be formed as shown in Fig. 4-3

121

Fig. 4-3. Note the slight fillet formed on a

General Soldering Considerations

When replacing wires in terminal slots clip the ends neatly as close to the solder joint as possible. In clipping the ends of wires take care the end removed does not fly across the room as it is clipped.

Fig. 4-4. Soldering to a meral pin.
Occasionally you will wish to hold a bare wire in place as it is being soldered. A handy device for this purpose is a short length of wooden dowel, with one end shaped as shown in Fig. 4-5. In soldering to terminals pins mounted in plastic rods it is necessary to use some form of "heat sink" to avoid melting the plastic. A pair of long-nosed pliers (see

Fig 4-6) makes a convenient tool for this purpose.

Fig. 4-5. A wooden dowel shaped for use as

Ceramic Strips

Two distinct types of ceramic strips have been used in Tektronix instruments. The earlier type mounted on the chassis by means of \#4-40 bolts and nuts. The later is mounted with snap-in, plastic fittings. Both styles are shown in Fig. 4-7.

To replace ceramic strips which bolt to the chassis, screw a $\# 4-40$ nut onto each mounting bolt positioning the bolt so that the distance between the bottom of the bolt and the bottom of the ceramic strip equals the height at which you wish to mount the strip above the chassis. Secure the nuts to the bolts with a drop of red glyptal. Insert the bolts througn the holes in the chassis where the original strip was mounted, placing a \#4-40 lockwasher between each nut and the chassis. Place a second set of \#4-40 lock washers on the protruding ends of the bolts

Fig. 4-6. Long-nosed pliers used as a heat sink.
and fasten them firmly with another set of \#4-40 nuts. Place a drop of red glyptal over each of the second set of nuts after fastening

Mounting Later Ceramic Strips

To replace strips which mount with snapin plastic fittings, first remove the original fittings from the chassis. Assemble the mounting post on the ceramic strip. Insert the nylon collar into the mounting holes in the chassis. Carefully force the mounting post into the nylon collars. Snip off the portion of the mounting post which protrudes below the nylon collar on the reverse side of the chassis.

NOTE

Considerable force may be nec essary to push the mounting rods nto the nylon collars. Be sure per ends of the mounting rods ther the ceramic

Fig. $4-7$. Old and new styles of ceramic strips. The newer ceramic strips mount in nylon collars.

Trauble Shooting

If the instrument fails to operate at all including the fan and the pilot light, check the source of power and determine that the power cord plug is firmly in place. Then check the $5-\mathrm{amp}$ fuse at the back of the instrument near the power receptacle.

If the fan and pilot light operate but there is no spot visible, there is a possibility that
the spot is positioned off the screen for some reason Check whether the beam-positionindicator lights are operating and if the positioning controls produce any effect. Advance the INTENSITY control and see if there is some unfocused glow on the screen to indicate the presence of beam current. If there is an indication that there is a beam positioned off the screen, look for a dc component in one of the input signals.

This is a complex electronic instrument. There is no simple way of locating troubles An understanding of the functions of the circuit is the best help. With an understanding of the circuits, you will be able to make a good guess at the general source of troubles from their symptoms. Be doubly sure that the difficulty you are having is not caused by some misadjustment on the front-panel controls. I not, you will need to take the case off for further checks:

Each side panel and the bottom panel are individually removable when service becomes necessary. To remove a side panel, release the fasteners near the front and back and swing the top of the panel out until the bottom hinge releases. To remove the bottom panel release the four fasteners and lift the panel off.

To replace the panels, reverse the process above. Each fastener is designed so that the first one-quarter turn engages an ear on the fastener with the oscilloscope frame. Further turning of the screw locks the ear in place.

Warning: When you have the case off the instrument, be careful of high voltages. The lower-voltage buses are potentially more dangerous than the crt accelerating voltage because of the higher current capabilities and rather large filter capacitors in these supplies. When you reach into the instrument while it is turned on, do not hold the metal frame with the other hand. If possible, stand on an insulated floor and use insulated tools

Troubles are usually caused by tube failure, and you can frequently correct them by finding the bad tube and replacing it with a good one. However, sometimes a tube burns up resistors or overstresses capacitors when it fails, and in these cases you will also have to find the bad components. Sometimes you can find them by visual inspection. One way to find bad tubes is to try replacing suspected tubes with good ones. If possible, replace all suspected tubes at one time, and if the trouble is helped, return the old ones one at a time until the offending one is discovered.

Tube failure will often show up in the voltage readings of the power supply. So another early step to take when you look for troubles is to check voltages and currents from the regulated power supplies. The voltages can be measured at the ceramic strip mounted on the right side of the center bulkhead. The -150 -volt terminal should read within two per cent of 150 volts. The remainder of the voltages should be within three to five per centor their indicated voltages. Keep in mind that these are quite erance. Very few portable voltmeters have comparable accuracy, so be sure that any small discrepancy you may find is not due to volt meter error.

All of the positive voltage supplies refer All of the positive voltage supplies refer is off, all other voltages will also be off. The -150-volt supply can be adjusted by means of a screwdriver control marked - 150 ADJ. on the power supply chassis near the rear. The remaining supplies cannot be adjusted and any large discrepancy you find in them will probably be caused by tube deterioration, or by unusual loads in the rest of the instrument. Be sure the plug-in unit is plugged in and the series dc heaters are lighted or the power supplies will not regulate.

CALIBRATION PROCEDURE

The Type 532 is a stable instrument and should not require frequent calibration. However, it will be necessary to calibrate certain parts of the instrument when tubes or components are changed, and periodic calibration is desirable from the standpoint of preventive maintenance.

In the instructions that follow, the steps are arranged in the proper sequence for ful calibration. Each numbered step contains the information necessary to make one adjustment. If a complete calibration is not necessary you may perform individual steps, PROVIDING that the steps performed do not affect other adjustments. It is most important that you are fully aware of the interaction of adjustments. Generally speaking, the interaction of controls will be apparent in the schematic diagram. If you are in doubt, check the calibration of the entire section on which you are working.
If you make any adjustments on the power supplies, you will have to check the calibration of the entire instrument. In particular the sweep rates and vertical deflection factors must be checked.

Equipment Required

The following equipment is necessary for the complete calibration of the Type 532 Oscilloscope:
(1). A DC voltmeter having a sensitivity of at least $5000 \Omega / \mathrm{v}$ and calibrated for an accuracy of at least 1% at $100,150,225$ and 350 volts, and for an accuracy of at least 3 per cent at 1650 volts. Portable multimeters should be regularly checked against an accurate standard and corrected readings noted, where necessary, at the above listed voltages. BE SURE YOUR METER IS ACCURATE.
(2). An accurate rms -reading ac voltmeter having a range of $0-150$ volts. ($0-250$ or $0-300$ for 234 v operation.)
(3). Variable auto-transformer (e.g. Powerstat or Variac) having a rating of at least 6.25 amperes.
(4). Time-mark Generator, Tektronix Type $180,180 \mathrm{~A}$ or equivalent, having markers at $1 \mu \mathrm{sec}, 10 \mu \mathrm{sec}, 50 \mu \mathrm{sec}, 100 \mu \mathrm{sec}, 1 \mathrm{msec}$, $5 \mathrm{msec}, 10 \mathrm{msec}, 100 \mathrm{msec}, 1 \mathrm{sec}$ and 5 sec . and sine-wave outputs of 50 kc and 5 mc , all having an accuracy of at least 1%.
(5). Square-Wave Generator, Tektronix Type 105 or equivalent, having a risetime of no more than .02 microseconds and a frequency of approximately 100 kc . The top of the square wave must be free of overshoot and wrinkles. A type P93 Coaxial Cable and a Type B93-R Terminating Resistor is required with the Type 105.
(6). Constant-amplitude Signal Generator with frequencies to 50 kc and 5 mc ., accurate within at least 2%
(7). Tektronix Type K or other appropriate Plug-In Unit.
(8). Low-Capacitance Recalibration Tools: Tektronix part numbers 003-000, 003-007, and 003-301.
(9). Test Oscilloscope, Tektronix Type 316 or equivalent, providing triggered sweeps and a bandpass of at least dc to 10 mc

Preliminary

Remove the side covers and bottom plate from the instrument to be calibrated and install
the Plug-In Unit.

Set the front-panel controls as follows INTENSITY
full left
horizontal DISPLAY
TRIGGERING MODE TRIGGER SLOPE STABILITY

TIME/CM
MULTIPLIER

CALIBRATOR
PLUG-IN UNIT
AC/DC
VOLTS/CM
VARIABLE
Internal Sweep

AC Slow

+ INT
full left, but not PRESET

1 MILLISEC
CALIBRATED (full right)

OFF

DC
.05

CALIBRATED (full right)

NOTE

Settings for all controls not listed above are not pertinent to this part of the procedure and the con trols may be left in any position

Check the rear panel of the instrument to be sure the metal strap between CRT CATHODE and GND binding posts is in place. Connect the instrument and the ac meter to the autotransformer output and turn on all equipment. Adjust the autotransformer to the design-center voltage for which your instrument is wired (117 or 234 v.) and allow at least 5 minutes warmup before making any adjustments.

Procedure

1. Low-Voltage Power Supplies

Measure the output voltage of the -150 v , $100 \mathrm{v},+225 \mathrm{v}$ and +350 v supplies at the points indicated on the bottom view, Fig. 5-1. Be sure your meter is accurate. The output voltage of the -150 v supply must be between -147 v and -153 v , and the other regulated supplies

must be within 2% of their rated values. You should be able to set the - 150 ADJ. control (see Right Side View, Fig. 5-2) so that all of these voltages are within the specified tolerance. Bear in mind that the calibration in the entire instrument is affected by changes in the power supply voltages. Don't adjust
the -150 v unless one or more of the supplies is actually out of tolerance.

To check the above supplies for proper regulation, vary the autotransformer voltage between 105 v and 125 v (or from 210 v to 250 v if the power transformer is connected for 234 v operation). All of the regulated voltages should remain essentially constant.
The ripple present on any of the regulated supplies, as measured with a test scope at the voltage check points, will be well under 10 mv ., with CALIBRATOR OFF and the Type 532 sweep not operating.

2. SQUARE-WAVE CALIBRATOR Adiustment

The Cal. Adj. control should be set to provide a dc output of 100 volts when the VOLTS-

MILLIVOLTS-OFF switch is in the OFF position Under these conditions, the calibrator output will be within 3% of the front-panel readings

To make this adjustment connect the volt meter between the Cal. Test Point jack and ground (see Right Side View, Fig. 5-2), turn the VOLTS-MILLIVOLTS-OFF switch to the OFF position, and adjust the Cal. Adj. control for a reading of exactly 100 volts. To assure suitable symmetry of the calibrator waveform the reading at this point should not be less than 45 v or more than 55 v when the calibrator is turned on to any of the output voltage settings. Readings putside this range are generally caused by unbalanced multivibrator tubes (V205 or V215).

3. High-Voltage Power Supply Adiustment

This adjustment determines the total accelerating potential on the crt, and thus affects erating potential on the

Connect the voltmeter between ground and the high-voltage check point (see Top View Fig. 5-3) and set the H.V. Adj (see Right

4. CRT Alignment

If the crt has been replaced, or if, due to considerable handling, the trace does not align with the graticule, you should make this adjustment before proceeding with the calibration.

Push the crt forward until it rests snugly against the graticule, and tighten the crt base clamp. Turn the STABILITY control full right to free-run the sweep. Position the trace directly behind the center graticule line. By View Fig. 5-4) align the trace with the graticule line.
5. CRT Geometry

Geometry of the crt display is adjusted by means of the GEOMETRY control. To achieve optimum linearity, vertical lines are displayed on the crt and the GEOMETRY control is adjusted for minimum curvature of the lines. Nonelinearity is most noticeable at the edges of the graticule.

Set the front panel controls as follows:
HORIZONTAL INTERNAL SWEEP DISPLAY

TRIGGERING MODE
TRIGGER SLOPE
TIME/CM + INT

100 MICROSEC

Fig. 5-3. Type 532, Top view

5-4
Calibration Procedure - Type 532

MULTIPLIER 5
VOLTS/CM (Plug-In) . 2
Connect $500 \mu \mathrm{sec}$ from the Type 180 markers to the INPUT connector and position the baseline of the timing comb below the bottom of CEO LRY so trol (s) for straight vertical lines running parallel to the left and edges the graticul to the left and right edges of the graticule. See Fig. 5-6

NOTE

The square-wave calibrator may be used for this step, but due be used for this step, but due to the low intensity of the vertical more difficult.
6. Vertical Amplifier Balance

To balance the output stage of the Vertical Amplifier, place a screwdriver across the crt leads labeled "Blue (Upper)" and "Brown (Lower)" and observing the vertical position of the display.

CAUTION

In shorting the crt vertical deflection plate leads by this means, be extremely careful that your screwdriver OOT

After noting the position of the trace with vertical deflection plates shorted, place a short

Fig. 5-4. Type 532, Left side viem.

Fig. 5-5. Type 532, Top left. Triggering
control adjustment points.
clip lead between the grids, pins 9, of V151 and V152, and again observe the vertical position of the trace. If it has moved more than 1 cm 6CL6 tubes for V151 and V152.

Next, remove the clip lead and set the VERTICAL POSITION control on the Plug-In unit to top center. Adjust AMP. BAL. control see Left Side View) to center the trace vertically.

7. Vertical GAIN ADJ.

Set Plug-In VOLTS/CM control to . 1 and from the SOUARE-WAVE CALIBRATOR, apply .2 volts of signal to the INPUT. Set GAIN ADJ. (see Left Side View) for 2 cm of vertical deflection.

8. Triggering Level

Set the TRIGGERING MODE control to DC TRIGGER SLOPE to + INT. Connect the dc voltmeter from the junction of R316 and R317 (470K resistors on the TRIGGER MODE switch see Fig. 5-5) to ground. Set the voltmeter on its lowest range, and adjust TRIGGERING LEVEL so that the meter reads exactly zero volts. Note the position of the TRIGGERING LEVEL control. If it is at any position other
than zero loosen and set screw and re-position the knob so that the TRIGGERING LEVEL knob is at zero when the dc voltmeter reads zero fter setting it, leave the TRIGGERING LEVEL control at zero volts during the trigger circuit adjustments as follow.

9. Internal Trigger DC Level

Leaving the scope controls as before, shift the dc voltmeter probe to R308, 100Ω resistor to pin 9 of V308. (See Fig. 5-5). Switch the TRIGGER SLOPE from + INT. to -INT. and set INT. TRIG. DC LEVEL ADJ. (Seed zero volts.

0. Trigger Level Centering and Trigger

 SensitivitySet the TRIGGERING MODE switch to AC Set the TRIGGERING MODE switch to AC Set the Test Scope VOLTS/CM switch to .2 , AC. Connect the test scope probe to pin 1 , V320 (see Fig. 5-5) on the scope being cali brated, and adjust TRIGGERING LEVEL CEN TERING (see Top View) so that the waveform on the test scope is symmetrical. For adjustment, swich the lly portion of the waverm. Switch the TRICGER

SLOPE switch of the scope under calibratio back and forth from + LINE to -LINE, and at the same time re-adjust the TRIGGERING bo horizontal shifting of the switching portio no horizontal shing ing on the Test Scope.

With all controls left unchanged advance TRIG SENS control (see Top View) until he TRIG. SENS. control (see Top View) unti edges of the Test Scope waveform. This is evidenced by spikes forming at the leading and trailing edges and lengthening as the TRIG. SENS. control is turned further clockwise, finally breaking into oscillation. Note the amplitude of the spikes at the point of oscillation, and back off the TRIG. SENS. control until the spikes are at slightly less than half of the amplitude they show at the oscillating point.

11. Adjust Preset Stability

Turn the triggering controls to AUTOMATIC LINE. Turn the PRESET STABILITY control
(see Fig 5-6) until the sweep just triggers. When this occurs, a trace first appears on STABILITY Continue to advance the PRESET brightens, indicating free-running of the sweep. With the dc voltmeter connect from the center arm of the STABILITY pot (see Fig 5-5) to ground the triggering point should read about -80 volts on the meter, the free run point from 15 to 25 volts higher. After determining the voltages of the two points, turn the PRESET STABILITY control to obtain meter reading halfway between them.

12. Adjust External Sweep Amplifier D
 Balance

Connect the SAWTOOTH OUT to the Plug-In Vertical INPUT. Switch the HORIZONTAL DISPLAY to EXT. SWEEP XI, 5X MAGNIFIER to ON. Turn the EXTERNAL SWEEP ATTENUATOR 10-1 back and forth, and adjust EXT. SWP. AMPL. D.C. BAL. so that there is no horizontal shift of the vertical trace displayed when the EXTERNAL SWEEP ATTENUATOR $10-1$ is rotated
13. Compensate External Sweep and Check

External Sweep Attenuation

Set the SQUARE-WAVE CALIBRATOR for .5 volts of signal and connect CAL OUT to EXTERNAL SWEEP IN. With SAWTOOTH OUT connected to vertical INPUT, set trigger controls for EXTERNAL triggering and connect a jumper from either CAL. OUT or SAWTOOTH OUT to TRIGGER INPUT. Adjust triggering controls for a triggered display. Set VOLTS/ CM to 10, and adjust C546 (see Top View) for a flat top square-wave display. Increase the Calibrator square-wave signal to 5 volts and set EXI. SWEEP ATIEN. to X10. Stabilize the display again and note the 10 times attenuation of display. Adjust C505 (see Right Side View) for a flat top display. Rotate EXTERNAL SWEEP ATTENUATOR 10-1 and check for at least 10 times attenuation.

Fig. 5 - 6 Adjusting CRT Geometry. Compensate to obtain
the display in the center illustration.
Adiust Sweep Calibration
Set HORIZONTAL DISPLAY to INTERNAL SWEEP, TIME/CM to 1 MILLISEC and MAGNIFIER to OFF. From the Type 180A, apply 1 millisecond Markers to vertical INPUT Adjust SWP. CAL. (see Top View) for 1 marker per cm of display. Whenever timing adjust make them between the 1 cm ad 9 cm line make them between the 1 cm and 9 cm lines on the graticule.

15. Set Sweep Length

Adjust HORIZONTAL POSITION control so that the sweep starts at the left edge of the graticule. Set SWP. LENGTH control (see Top View) so that the sweep runs for approximately 10.5 cm .

Set TIME/CM to 1 MILLISEC. Apply 1 millisecond and 100μ second time markers millisecond and 100μ second time markers from the Type 180A to the vertical CAL. (see Top View) so that 1 large mark is displayed every 5 cm , and 2 small markers every cm . Check to see that the display is linear over its entire length.

17. Adjust Sweep Magnifier Register

Leaving all controls as in the preceding step, position the trace so that the first time marker falls on the center line of the graticule. Turn the MAGNIFIER to OFF and adjust the SWP./MAG. REGIS. (see Top View) so that the first mark again falls on the center line of the graticule. Check to see that the MAGNIFIER ON and MAGNIFIER OFF positions register properly at the middle and the end of the sweep.

18. Check Sweep Rates, 5 seconds/CM to 100 mseconds/CM

Adjust oscilloscope controls as follows:
HORIZONTAL
INTERNAL SWEEP
DISPLAY
TRIGGERING MODE A
TRIGGER SLOPE $+{ }^{\text {NT }}$

MAGNIFIER OFF
VOLTS/CM 2
(Plug-In)
Check Sweep Rates in accordance with the table below:

TIME/CM TIME-MARK
GENERATOR

MARKERS
1 MILLISEC 1 MILLISEC 1 per cm
2 MILLISEC 1 MILLISEC 2 per cm
5 MILLISEC 5 MILLISEC $\quad 1$ per cm
10 MILLISEC
10 MILLISEC 1 per cm
100 MILLISEC
10 MILLISEC
10 MILLISE

$1 \operatorname{SEC}$	1 SEC	1 per cm
2 SEC	1 SEC	2 per cm
5 SEC	5 SEC	1 per cm
$100 \mu \mathrm{SEC}$	$100 \mu \mathrm{SEC}$	1 per cm

19. Check Sweep Rate Variable Multiplier

 ControlWith TIME/CM set to 1 MILLISEC and 1 millisecond markers inserted from the Type 180 A , set the MULTIPLIER to $2.5-1$ and rotate the red MULTIPLIER knob counterclockwise. By observing the compression of the time markers as the MULTIPLIER check for a MULTIPLIER range of at leas setting settings of the MULTIPLIER control
20. Adiust Sweep Rates, $10 \mu \mathrm{sec}$ to $.2 \mu \mathrm{sec} / \mathrm{cm}$

Set TIME/CM to 10μ SEC. Adjust the sweep for triggered operation on + INT and AC SLOW. Apply 10μ second markers from the TimeMark Generator to the vertical INPUT, and adjust C490F (see Right Side View) to display one marker per cm . Check the starting point of the sweep by rotating the TRIGGERING LEVEL control back and forth. If there is
any horizontal shift in the starting point of any horizontal shift in the starting point of the sweep, re-adjust
to eliminate any shift in sweep start.

Next, switch TIME/CM to 1μ SEC and apply 1μ second markers to the vertical INPUT. Adjust C490G (see Right Side View) to display 1 marker per cm, and C561 (see Top View) for linearity at the start of the sweep. These adjustments will interact, and some shifting back and forth between them may be necessary to obtain optimum results.
Switch the MAGNIFIER to ON, and re-set triggering controls to + INT and AC FAST. From the Time-Mark Generator, insert a 5 mc sine-wave signal to the vertical INPUT. Set controls for triggered operation and horizontally position the display so that either the tops or the bottoms of the sine waves fall behind vertical graticule markers. Then adjust C568 (see Top View) so that 1 cycle $/ \mathrm{cm}$ is displayed The first two cycles of the display can be disregarded in making this adjustment.

21. Check EXTERNAL SWEEP IN Horizontal Deflection Factor

Switch the HORIZONTAL DISPLAY to EXT SWEEP ATEN. X1 and turn the MAGNIFIER to ON. Apply . 2 volts of calibrator Square wave to EXTERNAL SWEEP IN. Check fo between 1.25 and 1.6 cm of horizontal deflection

22. Adiust Vertical Amplifier High Frequency

 CompensationsFrom the Type 105 Square-Wave Generator, apply a 100 kc signal to the vertical INPUT of vertical deflection. Adjust L123 124 L153 and L154 so that the displayed square wave has an optimum square front corner Switch the Type 105 and 1 kc and connect the 10 X
probe from the test scope to the VERT. SIG. OUT connector on the scope under test. Adjus C 175 (see Left Side View) to produce approxmately a 3% spike on the leading edge of the vertical signal out waveform displayed on the test scope. Switch the Type 105 back to 100 kc and recheck the high frequency compensations previously made.

23. Check Vertical Frequency Response

From a Type 190A Constant Amplitude Sine Wave Generator, apply a 50 kc signal to the vertical INPUT. Adjust amplitude for 4 cm f deflection. Without adjusting other controls witch the Type 190A to a 5 mc output. Check for at least 2.8 cm of vertical deflection stil remaining.

Typen

The Type N Sampling Unit is designed for use with Tektronix plug-in type Oscilloscopes. The sampling system thus formed permits the display of repetitive signals with fractional By taking (10 secon or in aige. By taking successive samples at a slighty luder obe under observation Ty Nots the pulse on a relatively long time-base. Specifications of the Type N include a risetime of 0.6 nsec , corresponding to a maximum bandpas $10 \mathrm{mv} / \mathrm{cm}$ with 2 mv or less noise; and dymic 120 mv minimum linear range before overloading results.

Accidental overload of tor- 4 volts dc is permissible.

Type \mathbf{P}

The Type P Plug-In Unit generates a fast rise step-function test signal of known waveform, simulating the output of an ideally compensated Type K Unit driven with a Tektronix Type 107 Square-Wave Generator. The Type P permits the standardization of the mainunit vertical amplifier transient response of a Tektronix convertible oscilloscope. Pulse with function between 0 and 3 major graticule divisions.

Type Q

The Type Q Plug-In Unit permits any Tektronix convertible oscilloscope such as the Type 532 to be operated with strain gages and other transducers. Excitation voltages for the strain gages and transducers are provided by the plug-in unit. The unit provides high gain, low noise, and extremely low drift. Frequency response of the Type Q Plug-In Unit
is DC to 6 kc ; risetime is approximately is DC to 6 kc ; risetime is approximately 60 microseconds.

Strain sensitivity is calibrated in 10 steps from 10 microstrain per major graticule division to 10,000 microstrain per division, and is continuously variable between steps

Type R

The Type R Plug-In Unit is a combined power supply and pulse generator which is used to measure the high-frequency characteristics of junction transistors by the pulse-response method, When the Type R is used in an oscillo scope having a delay line. delay time risetime storage time and falltime may be displayed simultaneously. A pushbutton switch connects a front-panel terminal directly to the input of the oscilloscope for observing externally derived waveforms.

Pulse risetime of the Type R Unit is less than 5 nanoseconds, so measurements depend on the risetime of the oscilloscope used. Pulse amplitudes are in 8 fixed, calibrated steps from .05 to 10 volts, adjustable between steps. Pulse recurrence frequency is 120 pulses per second.

Types

The Type S Plug-In Unit is designed for use with Tektronix Wide-Band convertibleoscilloscopes. Using the Type S, voltage across a test diode is displayed as a function of time.

Certain diode parameters, such as junction resistance, junction capacitance, and the stored charge at the junction, can be measured readily and reliable from the display. Performance of a diode in a particular circuit can be predicted by analyzing the recovery and the "turn-on" characteristics. Since it is essentially a means for plotting voltage across an element while passing constant current through it, the unit can be used for other applications as well For example: observing the junction characteristics of transistors, or measuring the resis tance, capacitance, or inductance of circuit components.

The Type S offers calibrated forward currents in five fixed steps from 1 to 20 milliamps, and reverse currents calibrated in six steps from 0 to 2 millamps. Dlode shunt capacitance is 9 picofarads, and deflection
factors are $0.05 \mathrm{v} / \mathrm{cm}$ and $0.5 \mathrm{v} / \mathrm{cm}$, calibrated.

	PLUG-IN PREAMPLIFIER CHARACTERISTICS WITH TYPE 532 OSCILLOSCOPE				
	PLUG-IN TYPE	CALIBRATOR DEFLECTION FACTOR	PASSBAND	RISETIME	$\begin{gathered} \text { INPUT } \\ \text { CAPACITANCE } \end{gathered}$
	TYPE A Wide-Band DC Coupled	$0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	47 pf
${ }^{1}$	TYPE B Wide-Band High-Gain	$\begin{aligned} & 5 \mathrm{mv} / \mathrm{cm} \text { to } 0.05 \mathrm{v} / \mathrm{cm} \\ & 0.05 \mathrm{v} / \mathrm{cm} \text { to } 20 \mathrm{v} / \mathrm{cm} \end{aligned}$	$\begin{aligned} & 2 \mathrm{c} \text { to } 5 \mathrm{mc} \\ & \text { dc to } 5 \mathrm{mc} \end{aligned}$	70 nsec	47 pf
	TYPE CA Dual-Trace DC Coupled	$0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	20 pf
	TYPE D High-Gain DC Coupled Differential	$1 \mathrm{mv} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$	dc to 2 mc	$0.18 \mu \mathrm{sec}$	47 pf
	TYPE E Low-Level AC Coupled Differential	$50 \mu \mathrm{v} / \mathrm{cm}$ to $10 \mathrm{mv} / \mathrm{cm}$	0.06 cycles to 60 kc	$6 \mu \mathrm{sec}$	50 pf
	TYPE G Wide-Band DC Coupled Differential	$0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	47 pf
$\left[\begin{array}{ll} 1 \\ \hline \end{array}\right]$	TYPE H DC Coupled High-Gain Wide-Band	$0.005 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	47 pf
$[\cdots$	TYPE K Fast-Rise DC Coupled	$0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	20 pf
$\left[\begin{array}{ll} 1 \end{array}\right]$	TYPE L Fast-Rise High-Gain	$5 \mathrm{mv} / \mathrm{cm}$ to $2 \mathrm{v} / \mathrm{cm}$ $0.05 \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$	$\begin{aligned} & 3 \mathrm{c} \text { to } 5 \mathrm{mc} \\ & \mathrm{dc} \text { to } 5 \mathrm{mc} \end{aligned}$	70 nsec	20 pf
$[\cdots$	TYPE N^{*} Pulse Sampling	$10 \mathrm{mv} / \mathrm{cm}$	600 mc	0.6 nsec	Input Impedance 50 ohms
	TYPE P^{*} is a fas	e step-function test signal			
	TYPE Q* Strain Gage	10μ strain/div to 10,000 μ strain/div	dc to 6 kc	$60 \mu \mathrm{sec}$	Adjustable
	TYPE R* Transistor Risetime	$0.5 \mathrm{ma} / \mathrm{cm}$ to $100 \mathrm{ma} / \mathrm{cm}$		70 nsec	
d	TYPE S* Semiconductor Diode Recovery	$0.05 \mathrm{v} / \mathrm{cm}$ and $0.5 \mathrm{v} / \mathrm{cm}$			
1	TYPE T*	Time-Base Generator			
	TYPE Z* Differential Comparator	$0.05 \mathrm{v} / \mathrm{cm}$ to $25 \mathrm{v} / \mathrm{cm}$	dc to 5 mc	70 nsec	27 pf

*More data available on the special purpose plug-in units in the accompanying paragraphs.

Type T

The Type T Time-Base Generator provides sawtooth sweep voltages from $0.2 \mu \mathrm{sec} / \mathrm{div}$ sawtooth sweep voltages from $0.2 \mu \mathrm{sec} / \mathrm{div}$ to $2 \mathrm{sec} / \mathrm{div}$. The trigger source may be line of high-frequency sync. The triggering point can be on either rising or falling slope of the can be on either rising or falling slope of the A signal of 0.2 volts to 50 volts is required for triggering.

Type z

The Type Z Plug-In Unit extends the accuracy of oscilloscope voltage measurements. It can be used in three modes of operation: (1) as a conventional preamplifier, (2) as a differential input preamplifier, or (3) as a calibrated differential comparator. With sensitivity of $50 \mathrm{mv} / \mathrm{cm}$ and insertion voltage range of
+or- 100 volts, the effective scale range is +or- 2000 cm . Maximum resolution of the Type Z Unit is $.005 \%$.

As a conventional preamplifier, the Type As a conventional preamplifier, the Type
Z Unit offers a passband of dc to 5 mc with the Type 532 for passband of dc to 5 mc with the the screen. The deflection factors are 0.05 volts/cm to $25 \mathrm{v} / \mathrm{cm}$ in 9 fixed, calibrated steps.

As a differential input preamplifier, the Type Z accepts a common-mode signal the the Type Z accepts a common-mode signal level
+or- 100 volts with input attenuation X1, and offers a common-mode rejection ratio of 40,000 to 1 . Maximum input signal is +1 volt $/ 7 \mathrm{nsec}$, or - 1 volt $/ 5 \mathrm{nsec}$.

As a calibrated differential comparator, the Type Z makes available three comparison voltage ranges; from zero to +or- 1 volt, zero to + or- 10 volts, and zero to + or- 100 volts.

$[$]

SECTION 3

ACCESSORIES

General Information

Your Tektronix instrument has been designed and built to give you maximum performance and versatility. However, available which will increase the versatility of your instru-
ment even more. The accessories which are particularly suited to this instrument are listed in this section. Accessories should be ordered from your Tektronix Field Eektronix part number. Complete, up-to-date price informa tion is also available through your Tektronix Field Engineer or Field Office.

PROBES

P6000 Low-Capacitance High-Performance Probe-Th P6000 to P6005 probes preserve the transient response of ektronix tast-rise, wide-bandpass instruments. These probe quency response. They are easy to handle, of rugged con struction, and weigh about one ounce. Compensation is accomplished by the rotation of a tubular capacitor; no tools are necessary. Physical dimensions of the probe body are $7 / 16$ inch in
diameter and 35 inches in length without the tip. The diameter and $3 / 8$ inches in len

Five interchangeable tips--two straight, one hooked, one with the probe. Phiv, and a 12 inch ground lead are also included.

PROBE SPECIFICATIONS

Probe \& Connector	Cable Length	Atten. Ratio	Input Impedance			Voltage Rating (Max.)
			Resist. $\operatorname{Meg} \Omega$	Capacitance-pf		
				Min. *	Max.**	
P6000-UHF P6003-BNC	42 inch	10x	10	11.5	14.5	600
	6 foot			12.5	15.5	
	9 foot			15.0	18.0	
$\begin{aligned} & \text { P6001-UHF } \\ & \text { P6004-BNC } \end{aligned}$	12 foot	1 X	1			600
	42 inch			${ }_{6}^{68}$	121	
	6 foot			120	147	
				146	173	
$\begin{aligned} & \text { P6002-UHF } \\ & \text { P6005-BNC } \end{aligned}$		100x	9.1	2.5	2.8	2000
	6 foot			2.8	3.25	
	9 foot			3.5	4.0	

[^0]*W Whe

	P6000	P6001	P6002	P6003	P6004	P6005
42 inch	010-020	010-023	010-024	010.027	010.028	010-029
6 foot	010.030	010-032	010-034	010-031	010.047	010-050
9 foot	010-035	010-033	010-043	010-045	010.048	010-051
12 foot	010-041	010-042	010-044	010-046	010.049	010.052

P6017 Attenuator Probe-Provides an attenuation of ten times when used wih Tektronix oscilloscopes and amplifiers. The P6017 is small and streamlined, and presents an input impedance of 10 megohms paralleled by 14 pt . Probe has maximum.

Probe \& Connector	Cable Length	$\begin{array}{\|l\|l\|} \text { Anten. } \\ \text { Rotio } \end{array}$	Input Impedance			Voltage Rating (Max.)
			$\begin{array}{\|l} \text { Resist. } \\ \text { Meg } . \end{array}$	Capacitance-pf		
				Min. *	Max. **	
P6017-UHFP6022-BNC	42 inch	10 x	10	14	14	600
	6 foot			17	17	
	9 foot			20	20	
	12 foot			23	23	
$\left\|\begin{array}{\|l\|} \hline \text { P6027-UHF } \\ \text { P6028-BNC } \end{array}\right\|$	42 inch	1X	1	67	94	600
	6 foot			93	120	
	9 foot			120	147	
	12 foot			146	173	

* When connected to instruments with 20 pf input capacitance.
$* *$ When connected to instruments with input capacitance up to 50 pf.
tektronix part numbers

	P6017	P6022	P6027	P6028
42 inch	010.038	010.064	010.070	010.074
6 foot	010.056	010.066	000.071	010.075
9 toot	010.007	000.067	010.072	010.076
12 foot	010.058	010.068	010.073	010.077

P6016 AC Current Probe Systems-The P6016 AC Current Probe and Type 131 Amplifier constitute a current detecting system for use with any wide-band oscilloscope. This system provides accurate displays for observation and mea-
surement of a-c current waveforms. Current range extends from less than one milliampere to 15 amperes. Use of the current probe and amplifier combination will cause risetime and bandpass figures to deteriorate somewhat from those advertised in the manual for the oscilloscope with which the
current probe system is being used.

A second system comprises the P6016 AC current probe
with a Passive Termination. Although less versatile than the Type 131 amplifier system. Al passhive termination arrange ment does provide slightly better bandpass. typh does provide slighy bener bondpass.
Long narrow shape and convenient thumb control make the P6016 easy to use. Just place probe slot over conductor and close slide with thumb-no direct electrical connection is required. Wiping action keeps core surfaces clean. Loading introduced is so light that it can almost always be disregarded. For increased sensitivity, loop the conductor around the probe sloo two or three times.
ORDER PART NUMBER 010-037

The Type P6014 High-Voltage Probe-This new probe forms of high amplitudes and relatively short duty cycle DC amplitudes up to 12 kv or short pulses with peak amplitudes up to 25 kv can be measured without damage to the probe.
Attenuation Ratio- 1000 to
Frequency Response-dc to over 30 mc .
Input Impedance- 10 megohms and 3 p
Pulse Rating- 10% or less duty cycle with maximum pulse duration of 0.1 sec .

A compensating box on the oscilloscope end enables the P6014 probe to be properly compensated to any oscillo-
probe introduces no ringing or overshoot.
Probe body length is 12 inches, coaxial cable length is
The probe includes 2 banana-plug tips, an alligator-clip assembly, and an attached $71 / 2$ inch ground lead. ORDER PART NUMBER

Replacement Attenuator Head

PAX-I Attenuator Head for PITOCF, attenuation can be varied between 4 times and 40 times ORDER PART NUMBER varied between 20 times and 200 times. ORDER PART NUMBER

PAX-III Attenuator Head for P170CF, attenuation can be Paried between 200 times and 2000 times. orded part number

P500CF Cathode-Follower Probe-Presents low capacitance with minimum attenuation. Input impedance is 40 megohms paralleled by 4 pf , gain 0.8 to 0.85 . Input to

5 cycles. Amplitude distortion is less than 3\% on unidirecwith probe, and should be used on signals exceeding a few volts to minimize amplitude distortion. With the attenuator head attached, the probe input impedance is approximately positive, making it necessary to use the output level is 11 v positive, making it necessary to use the ac-coupled position
of the oscilloscope $A C$-DC switch. Probe cable is $42^{\prime \prime}$ long. of the oscilioscope AC-DC switch. Probe cable is $42^{\prime \prime}$ long.
ORDER PART NUMBER 010 . 105

TYPE 128 PROBE POWER SUPPLY

Type 128 Probe Power Supply--For P500CF and PI70CF cathode-follower probes. The Type 128 supplies the neces-

sary plate and filament voltages for one or two probes, mak ing it possible to use the cathode-follower probes with oscilDC Output Voltages
$+120 \vee$ regulated, at 25 ma
Two +6.3 v unregulated, at 150 ma

The two cathode-follower probe connections have separate +6.3 vdc voltage supplies,
When a P170CF probe is to be used with an instrument other than the Tektronix Type 517, a 170 -ohm terminating resistor is required. The Tektronix 011-016, 170 ohms, 0.5 Terminating Resistor is recommended for this purpose.
Ripple on the 120 v supply is not more than 5 mv peak-
to-peak, and not more than 75 mv peak-to-peak on the 6.3 v supplies.
Power Requirements- 105 to 125 v or 210 to $250 \mathrm{v}, 50$ to 60 cycles, 25 watts using two P500CF probes.

Dimensions-43/4" wide, $73 / 4$ " high, $9^{\prime \prime}$ overall depth. Weight-6 lbs.
Includes: 1-3-conductor power cord (161-010

Probe Power-Cable Exiension-A 24" 3-conductor ower-cable extension for Tektronix cathode-follower probes, Permits wider separation of the probe power source from the instrument signal input.

ORDER PART NUMBER
$012-030$

CALIBRATION ACCESSORIES

The Type TU-2 Test-Load Plug-In Unit is a convenien special-purpose test tool for the maintenance of Tektronix Type $530,530 \mathrm{~A}, 540,540 \mathrm{~A}$-Series Oscilloscopes. The unit is low load demands of all A to Z plug-in units. It can also

used to check vertical amplifier balance, vertical ampli fier gain, and dual-trace function of the oscilloscope. It maintenance area to make these checks.
ORDER PART NUMBER
$015-012$

ATTENUATORS and TERMINATION

part No

DESCRIPTION

011-001 52-ohm termination, 1.5 w
$011-00252$-ohm 'L' attenuator, 5 to 1 voltage ratio, 1.5 w
$011-00352$-ohm 'L' attenuator, 10 to 1 voltage ratio, 1.5
011-004 Minimum-loss fermination, 52 ohms to 75 ohms
011.005 Minimum-loss termination, 52 ohms to 170 ohms
$011-027$ 52-ohm 'T' attenuator, 5 to 1 voltage ratio, 1.5 w
$017-00652$-ohm 'T' attenuator, 10 to 1 voltage ratio, 1.5 w

011-026 52 -ohm to 170 ohm fermination, 10 to 1 voltage $011-007$ ratio, 1.5 w
$011-008$ 75-ohm '1. 011.008 . 75 . 011010 75- ' 'T' atenator 10 to voltage ratio, 1.5 w $011-011 \quad 93$-ohm termination, 1.5 w w 011.012 93-hm 'L' attenuctor 5 to
$011-012 \quad 93$-ohm 'L attenuator, 5 tol voltage ratio, 1.5 W 011.014 M3-ommeloss termination 93 ohms to 52 ohm 1.5 w $011-01593$-ohm ' T ' attenuator, 10 to 7 voltage ratio, 1.5 w $011-016 \quad 170-$ ohm termination, 0.5 w

Deflection Plate Connectors For Type 530,540 530 and 540 A -Series Oscilloscopes. A convenient means of mak ing a connection directly to the cathode-ray tube vertical ng a connection directly to the cartion plates to realize the maximum frequency re ponse of the crt. Designed for use with high-frquency, tast-rise pulses or transient signals. Under these conditions
$[$

$[$

52-ohms nominal impedance, 42 inches long
ORDER PART NUMBER
75 -ohms nominal impedance, 42 inches long
93 -ohms nominal impedance, 42 inches long 012-002
ORDER PART NUMBER

$$
93 \text {-ohms, } 42 \text { inches long, terminated with variable atten- }
$$

ORDER PART NUMBER
93 -ohms, 42 inches long, terminated with $1 / 2$ watt 93 ohm
ORDER PART NUMBER
012-005
ORDER PART
012-006

ADAPTERS

STANDARDIZERS

47 pf Input Capacitance Standardizer-For use with Type A to Z Plug-In Preamplifiers having an input capacitance of 47 pf . With this accessory the input capacitance of each preamplifier can be standardized to 47 ORDER PART NUMBER
the function of the vertical position control of the oscillo5 -ohm cables. The connectors are not recommended for use with frequencies below 8 kc or pulses with correspondingly

For instruments with serial number below 5001 ORDER PART NUMBE
For instruments with serial numbers 5001 and above,

INTERCONNECTING CABLES
[

20 pf Input Capacitance Standardizer-Similar to 011 21 for use with the Types CA, K and L Plug-ln Preamplifiers
order part number

Plug-in Extension-Six inches long and allows the plug in preamplifier unit for the Type $530,530 \mathrm{~A}, 540,540 \mathrm{~A}$-Series ORDER PART Number

Gain Adjust Adapter-Permits an external calibrating signal to bypass the plug-in preamplifer, for calibrating the ensitivity of the main amplifier of Type $530,530 \mathrm{~A}, 540$, A-Series Oscilloscopes.
order part number

SCOPEMOBILES

TYPE 500/53A
The Tektronix Type 500/53A Scope-Mobile is a sturdy, mobile support for Tektronix $5^{\prime \prime}$ Oscilloscopes. Convenient observation of the crt face is achieved by a 20 -degree backward tilt of the top surface. The front panel has two
supporting cradles to accommodate Tektronix Preamplifier supporting cradles to accommodate Tektronix Preampifier
Plug-In units. A drawer, felt-lined and operating on roller bearings, provides handy storage for probes, cables, manuals etc. An open shelf, $145 / 8^{\prime \prime}$ wide, $121 /{ }^{\prime \prime}$ high, and $235 / /^{\prime \prime}$ deep, topped with tough linoleum, is located at the bottom. Power input and three convenience outlets are mounted at
the rear. Total weight is 35 pounds. Dimensions are $17^{3 / 4} /{ }^{\prime \prime}$ wide, $38^{\prime \prime}$ high and $27^{\prime \prime}$ deep. Space requirements for height and depth will vary with the type of instrument being used.

Includes: 1-3-conductor power cord (161-014 Scope-Mobile Panel-for Type 500A Scope-Mobiles. Converts the Type 500A
the standard blank panel.
order part number
$014-005$

TYPE 500A
The Tektronix Type 500A Scope-Mobile is identical to the Type $500 / 53 \mathrm{~A}$, except for the front panel. Auxiliary equipment can be mounted behind the blank front panel in a space $133 / 4$ " wide, and $81 / 2^{\prime \prime}$ high for the first $51 / /^{\prime \prime}$ of depth
and tapering in height from this point, on a 20 degree angle and tapering in height from this point, on a 20 degree angle

Scopemobile fan kit
to a minimum height of $2 \frac{1}{2} 2^{\prime \prime}$ at a depth of $191 / 2^{\prime \prime}$. It will usually be necessary to provide forced-air ventilation for the equipment compartment. A fan kit, 040-161, is recommended for this purpose.

Includes: 1-3-conductior power cord (161-014)
Scope-Mobile Panel-For Type 500 Scope-Mobiles only. Converts the earlier Type 500 model to a Type $500 / 53$ by replacing the standard blank panel.
ORDER PART NUMBER
$014-004$
Scope-Mobile Fan Kit-for forced-air ventilation of the equipment compartment of the Type 500A Scope-Mobile. Provides an air flow of 84 cfm with the Scope-Mobile
drawer in place. With- the drawer removed and a panel covering the drawer opening the air flow is increased to 94 cfm . Contains motor, $5^{\prime \prime}$ blade, filter and mounting hardware
order part number
040-161

Plug-In Preamplifier Storage Cabinet-Mounts in standard rack, holds three Tektronix Plug-In Preamplifiers. Dimensions: $19^{\prime \prime}$ wide, $83 / 4^{\prime \prime}$ high, $93 / 8^{\prime \prime}$ deep.
ORDER PART NUMBER .
437-031

Bezel-For mounting camera on Tektronix $5^{\prime \prime}$ oscilloscopes. Dimensions- $57 / \mathrm{s}^{\prime \prime}$ square; ring $7 / 8^{\prime \prime}$ deep, diameter $5 / /^{\prime \prime}$ outside, $51 / 8^{\prime \prime}$ inside. Die-cast construction, wrinkle finish, felt lined.
ORDER PART NUMBER

Viewing Hood-For Tektronix $5^{\prime \prime}$ Oscilloscopes. In ves molded rubber eye-piece and aluminum light shield. ORDER PART NUMBER

Cradle-Mount-For rack mounting cabinet-type oscillo-Cradle-Mount-For rack mounting cabine-type oscillo-
scopes. Each cradle-mount consists of a cradie (or "shelf") to support the instrument in any standard $19^{\prime \prime}$ relay rack, and a mask to fit over the regular instrument panel. Tek
blue wrinkle finish. For wrinkle finish. For Type 530 -series, Type 540 -series with serial numbers above numbers.
ORDER PART NUMBER

Blank Plug-In Skeleton
ORDER PART NUMBER.
040.065

General Information

The oscilloscope for which this manual was prepared is a standard Type 532 specially modified for rack mounting. Electrically, the instrument is in every way identical with the standard Type 532. All information in the manua concerning circuit descriptions, operation the Type RM32. Front panel controls are located in exactly the same place with respect to each other. The silk-screened contro descriptions on the front panel have merely been rotated 90° left so that the instrument may be operated in the rack-mount position with the longest dimension in a horizontal plane. Parts list and circuit diagrams are also equally applicable to either the "upright" or rack-mounted instruments.

Rack-Mounting Procedure

The Type RM32 comes to you ready for quick and easy permanent mounting in a standard relay rack. Installation of only four mounting screws will give a solid installation with easy accessibility to all parts of the instrument In selecting a location for mounting, it is wel to allow for $31 / 2$ to 4 feet of clearance on the front of the rack to permit extending of the instrument fully out of the cabinet fo will permit tilting the oscilloscope up or down in the Chassis-Traks, and still allow working room in front. The Type RM32 cabinet extends 21 and three-quarter inches from the face of the rack to the back of the air filter when the instrument is fully engaged within the cabinet and locked in place. It is also necessary to allow additional clearance to the rear for purposes of air circulation. The Type RM32 is cooled by a fan at the rear of the instrument and sufficient air circulation is an absolute necessity for protection of operating components within the oscilloscope

SPECIAL TYPE RM32 INFORMATION

 This is done by first releasing the four locking This is done by first releasing the four locking screws at the corners of the front panel, thenmerely sliding the instrument out as far as it will go and pressing the slide release buttons to disengage the Chassis-Trak brackets on either side.

Next, select the height on the rack where you want the top of the cabinet to come. Then measure down one and seven-sixteenths inches on each side of the rack. This will be the location for the center of the top mounting screw. Center-to-center measurement from this point down to the lower mounting screw holes is exactly 11 inches. After holes for mounting screws are properly located, hold the cabinet in place behind the rack and mount the screws. If your relay rack does not pro vide for support of the Type RM32 cabine at the rear, it may be advisable to use more than four mounting screws for additional support and rigidity.

After the cabinet is mounted and firmly anchored into the relay rack, it is merely necessary to re-mount the instrument within the Chassis-Traks and slide it back into the cabinet. When the locking screws on the front panel are tightened, your oscilloscope should be ready for operation as soon as power is supplied.
The Chassis-Traks are properly mounted with the Type RM32 cabinet at the factory It should not be necessary for you to change their adjustments within the cabinet.

Operation

It may sometimes be desirable or necessary to operate your Type RM32 in an extended position outside the cabinet. To do so, it will be necessary to plug in a 3 -wire-power cord between the cabinet power outlet and the

instrument proper. Be sure that this cord is long enough to allow for extending the instrument all the way out of the cabinet, and for any tilting upward or downward. The added power cord can easily be installed from the rear when the instrument is extended.

Modification Information

From time to time, Tektronix Oscilloscopes are modified by changing or adding circuit
components for the purpose of improving their performance and reliability. Your instruction manual indicates these changes in the Parts List and Circuit Diagrams where applicable showing the Serial Numbers at which changes have occured. While the same improvements are added to your rack-mounting instruments as to standard scopes, they generally occur at different Serial Numbers. These Serial Number changes are hand-corrected in red ink in your Instruction Manual

TYPE 532 , TENT. S/N 7170
TYPE RM 32 , TENT. S/N 500 MOD. 5224

This instrument has been modified to eliminate selecting of Vertical Position indication neon bulbs.
PARTS LIST

R163
ADD
820K
1/2w
10%
comp 302-824

TYPE 532 Tent. S/N 7168
TYPE RM532 Tent. S/N 490 Mod. 5068

This instrument has been modified to reduce sweep length shortening with trigger variations.

D426 Add
PARTS LIST

T12G
152-008

Resistors (continued)

			Resistors	ned)			Tektronix Part Number		
R116	101-418	33 k	2 w	Var.		WW		306-333	
	419-up	15 k	10 w				5\%	308-024	
R120	X419-up	100Ω	2 w				Amp. Bal	311-003	
R121		1.5 k	1/2w				5\%	301-152	
R122		1.5 k	1/2 w				5\%	301-152	
R123	101-418	2.7 k	1/2w					302-272	
	419-up	33 k	1/2w					302-333	
R124	101-418	2.7 k	1/2w					302-272	
	419-up	3.9 k	1/2w					302-392	
R126	101-418	4.7 k	$1 / 2 w$					302-472	
	419-up	8.2 k	1 w					304-822	
		100Ω	1/2w					302-101	
R132		100Ω	1/2w					302-101	
R133	101-418	33 k	1 w					304-333	-1
	419-up	18 k	2 w					306-183	
R134	101-418	33 k	1 w					304-333	
	419-up	18k	2 w					306-183	
R141		47Ω	1/2w					302-470	
R142		47Ω	1/2w					302-470	
R143		1 k	$1 / 2 w$					302-102	
R144		1 k	1/2w					302-102	
		2.5 k	10 w			WW	5\%	308-018	
R146		200Ω	2 w	Var.			Gain Adjust	$311-004$	
R150	101-418	3.9 k	1 w					304-392	
	419-up	8.2 k	1 w					$304-822$	
R153	101-6324	5 k	5 w		Mica	Plate	1\%	*310-511	
	6325 -up	4 k	5 w		Mica	Plate	1\%	*310-508	
R154	101-6324	5 k	5 w		Mica	Plate	1\%	*310-511	
	6325-up	4 k	5 w		Mica	Plate	1\%	*310-508	
R156	$101-6324$ $6325-u p$	$\begin{aligned} & 2.5 \mathrm{k} \end{aligned}$	10 w			WW	5\%	$308-018$ $308-220$	-
R1		180 k	$1 / 2 \mathrm{w}$					302-184	
R162	101-5744	180 k	1/2w					302-184	
	5745-up	22 meg	$1 / 2 \mathrm{w}$					302-226	
R164	101-418	220 k	$1 / 2 \mathrm{w}$					302-224	
	419-up $\times 419-\mathrm{up}$	47 k 68 k	$\frac{1 / 2 w}{1 / 2 w}$					$302-473$ $302-683$	
	X419-up	68 k	1/2w					302-683	
R166	X419-up	2.2 meg	$1 / 2 \mathrm{w}$					302-225	
R167	101-418	100 k	1/2w					302-104	\square
	419-5744	5.6 k	$1 / 2 \mathrm{w}$					302.562	
	5745-up	8.2 k	1/2w					302-822	
R168	101-418	100 k	1/2w					302-104	-
	419-5744	47 k	$1 / 2 \mathrm{w}$					302-473	
	5745-up	22 k	1 w					304-223	
R169	101-418X	220 k	1/2w					302-224	
	101-418X	220 k	1/2w					302-224	
R175	101-418	820 k	$1 / 2 \mathrm{w}$				5\%	$301-824$	
	419-up $101-418$	820 k 560 k	$\frac{1 / 2 w}{1 / 2 w}$				5\%	$302-824$ $301-564$	
R176	419-up	470 k	$1 / 2 \mathrm{w}$					302-474	
R177	101-418	470 k	$1 / 2 \mathrm{w}$				5\%	301-474	
	419-up	470 k	1/2w					302-474	-
7			Parts lis	PE 532				(A)(4) ${ }^{\text {I }}$	

CAP, FUSE

CHASSIS F \& I SN 101-5000
CHASSIS F \& I SN 5001-up
CHASSIS POWER
CHASSIS VA SN 419-up
CHASSIS SWEEP SN 419-up
CLAMP CABLE $1 / 8$ PLASTIC
CLAMP CABLE $3 / 16$ PLASTIC
CLAMP CABLE $5 / 16$ PLASTIC
CLAMP CABLE $3 / 8$ PLASTIC
CLIAMP STN. STEEL $1 / 2$ SN 101-5744
CLAMP CRT SOCKET SN 101-5000
CLAMP ACCESS PANEL 25/8 SN 5001-554
CLAMP CRT 27/32 SN 5001-6519
CLAMP CABLE 5/16 PLASTIC (HALF)
CONNECTOR BINDING POST ADAPTOR
CONNECTOR 2 WIRE/2 CONNS. CHAS. MNT. SN 101-6149 CONNECTOR 16 CONN

CONECTOR CLIP ANODE SN 101-5918
CONNECTOR CHAS. MNT. (83 IRTY)
CONNECTOR CHAS. MNT. COAX SN 5001-up
CONNECTOR CABLE 31" ANODE
CONNECTOR 3 WIRE CHAS. MNT. SN 6150-up
CORD, PATCH $18^{\prime \prime}$ BANANA PLUG BOTH ENDS
COUPLING, POT WIRE STEEL . 04
COVER ANODE RUBBER SN 101-5918
cover graticule
COVER CRT ANODE ASSEMBLY
Eyelet, tapered barrel
FAN, 7"
FILTER AIR $10 \times 10 \times 1$ SN 101-5000
FILTER AIR $10 \times 10 \times 1$ MOD. SN 5001-up
FILTER LIGHT PLEXI $5^{\prime \prime}$

$$
\begin{array}{llcl}
\text { FRAME } & \text { LEFT } & \text { SN 101-5000 } \\
\text { FRAME } & \text { LIGHT } & \text { SN 101-5000 } \\
\text { FRAME } & \text { FAN MOTOR } & S N \text { 5001-Up }
\end{array}
$$

[.]
[.]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

	Part Number
Graticule, 5"	331-026
GROMMET, RUBBER 1/4	348-002
GROMMET RUBBER 5/16	348-003
GROMMET RUBBER 3/8	348.004
GROMMET RUBBER $1 / 2$	348-005
GROMMET RUBBER 5/8	348-012
HOLDER NYLON MOLDED (DOUBLE)	352-006
HOLDER FUSE	352-010
HOUSING AIR FILTER SN 101-5000	380-006
HOUSING AIR FILTER SN 5001-6709	380-008
HOUSING AIR FILTER SN 6710-up	380-018
JEWEL, LIGHT PILOT (RED)	378.518
KNOB SM. RED $3 / 16$ INSERT HOLE	366-032
KNOB SM. BLK. $1 / 4$ HOLE PART WAY SN 101-5400	366-044
KNOB SM. BLK. $1 / 4$ INSERT HOLE SN 5401 -up	366-033
KNOB SM. RED $1 / 8$ HOLE PART WAY	366-038
KNOB SM. RED $3 / 16$ HOLE PART WAY	366-039
kNOB LRG. BlK. 1/4 HOLE THRU	366-040
KNOB LRG. BLK. 1/4 HOLE PART WAY	366-042
KNOB LRG. BLK. $7 / 16$ HOLE PART WAY	366-046
LOCKWASHER INT. \#4	210-004
LOCKWASHER INT. \#6	210-006
LOCKWASHER EXT. \#8	210-007
LOCKWASHER INT. \#8	210-008
LOCKWASHER INT. \#10	210-010
LOCKWASHER POT INT. $3 / 8 \times 1 / 2$	210-012
LOCKWASHER INT. $3 / 8 \times 11 / 16$	210.013
lug solder SE6 W/2 Wire holes	210-202
lug Solder deg	210-204
LUG SOLDER SEIO LONG	210-206
LUG SOLDER POT PLAIN $3 / 8$	210-207
LUG SOLDER \#10 NON-LOCKING $7 / 8$ LONG	210-224
lug Solder Se8 long	210-228
NUT CAP HEX $8-32 \times 5 / 16$	210-402
NUT HEX $4-40 \times 3 / 16$	210-406
NUT HEX $6.32 \times 1 / 4$	210-407

SHIELD CRT
SHIELD CAL. SWITCH $063 \times 2 \frac{9}{16} \times 1 \frac{1 / 16}{} \times 13 / 1$
337-114
SHIELD F \& I (\&) H. V.
337-148
337-151
SHIELD H. V. $\quad \mathrm{SN} 5001$-up
SHIELD GRATICULE LIGHT 5"
337-187
SHOCKMOUNT, RUBBER $1 / 2 \times 1 / 2 \quad 348-008$
SOCKET GRAT. LAMP 136-00
SOCKET STM7G 136-008
SOCKET STM8 GROUND $\quad 136.011$
SOCKET STMI4

SOCKET LIGHT ASSEMBLY $\quad 136-025$
SOCKET TIP JACK BLK. SN 5001-up 136-037
SPACER TUBE $1 / 2 \times 5 / 8 \times 1 / 4 \quad$ SN $101-5000 \quad 166-057$
SPACER TUBE TRANS. SUPP. $364 \times 1 / 2 \times 29 / 32$ SN 101-5000 166-061
SPACE TUBE TRANS. SUPP. $245 \times 3 / 8 \times 219 / 32$ SN 5001-up 166 -105
SPACER TUBE $180 \times 1 / 4 \times 7 / 32$ ONE END CSK SN 5001-up 166-107
SPACER TUBE $245 \times 3 / 8 \times 1 / 4$ SN 5001 -up
SPACER NYLON MLD. FOR CERAMIC STRIPS SN 6370-up
166-110

STRAP, MOUNTING
STRIP FELT $1 / 8 \times 1 \times 53 / 4$ GREY
346.00

SRR CRAMC 4×7 NOTCS
STRIP CERAMIC $3 / 4 \times 7$ NOTCHES, CLIP MOUNTED 124.089
STRIP CERAMIC $3 / 4 \times 11$ NOTCHES, CLIP MOUNTED 124-091
STRIP CERAMIC $7 / 16 \times 5$ NOTCHES, CLIP MOUNTED 124-093
STUD STEEL $10-32 \times 27 / 16$
355-04
STUD CRT ROTATOR $10-32 \times 3 / 16 \times 31 / 4 \quad$ SN 6520-up 355.049
tag, voltage rating
WASHER STEEL $6 L \times 3 / 8 \times .032$
210-803
WASHER STEEL $85 \times 3 / 8 \times .032$
210-804
WASHER BRASS CENTERING 2OW RESISTOR
WASHER BRASS CENTERING 25W RESISTOR 210-809
WASHER FIBER \#6 SHOULDERED $210-81$

V320

VERTICAL AMPLIFIER CHASSIS

TYPE 532 OSCILLOSCOPE

[^0]: * When connected to instruments with 20 pf input capacitance

