Tektronix

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

AA 501 DISTORTION ANALYZER

WITH OPTIONS

INSTRUCTION MANபAL

Tektronix, Inc
P.O. Box 500

Beaverton, Oregon 97077
070-2958-00
Product Group 75
\qquad

Scans
 By
 Artek Media

Artek Media
1042 Plumper Cir. SW
Rochester, MN 55902

www.artekmedia.com

"High resolution scans of obsolete technical manuals"
If your looking for a quality scanned technical manual in PDF format please visit our WEB site at www.artekmedia.com or drop us an email at manuals@artekmedia.com and we will be happy to email you a current list of the manuals we have available.

If you don't see the manual you need on the list drop us a line anyway we may still be able to point you to other sources. If you have an existing manual you would like scanned please write for details, This can often be done very reasonably in consideration for adding your manual to our library.

Typically the scans in our manuals are done as follows;

1) Typed text pages are typically scanned in black and white at 300 dpi.
2) Photo pages are typically scanned in gray scale mode at 600 dpi
3) Schematic diagram pages are typically scanned in black and white at 600 dpi unless the original manual had colored high lighting (as is the case for some 70's vintage Tektronix manuals).

If you purchased this manual from us (typically through our Ebay name of ArtekMedia) thank you very much. If you received this from a well-meaning "friend" for free we would appreciate your treating this much like you would "share ware". By that we mean a donation of at least $\$ 5-10$ per manual is appreciated in recognition of the time (a manual can take as much as 40 hours to reproduce, book, link etc.), energy and quality of effort that went into preserving this manual. Donations via PayPal go to: manuals@artekmedia.com or can be mailed to us the address above.

Dave \& Lynn Henderson
Artek Media

Copyright © 1980 Tektronix，Inc．All rights reserved． Contents of this publication may not be reproduced in any form without the written permission of Tektronix，Inc．

Products of Tektronix，Inc．and its subsidiaries are covered by U．S．and foreign patents and／or pending patents．

TEKTRONIX，TEK，SCOPE－MOBILE，and istered trademarks of Tektronix，Inc．

Printed in U．S．A．Specification and price change privileges are reserved．

Copyright © 1980 durch Tektronix，Inc．Alle Rechte vorbe－ halten．Der innalt dieser Publikation dart ohne Genehmigung von Tektronix，Inc．nicht weitergegeben werden．

Produkte von Tektronix，Inc．und seinen Tochtergesellschaften sind durch US－und Auslandspatente und／oder schwebende Patente abgedeckt．
TEKTRONIX，TEK，SCOPE－MOBILE und sind geschützte Warenzeichen von Tektronix，Inc．

Gedruckt in U．S．A．Spezifikations－und Preisänderungen bleiben vorbehalten．

```
```

(C)1980年版勧所有テクトロニクス社。不許祬裂。

```
```

(C)1980年版勧所有テクトロニクス社。不許祬裂。
TEKTRONIX, TEK, SCOPE-MOBILE,
TEKTRONIX, TEK, SCOPE-MOBILE,
笽はテクトロニクス社の登録商梪です。
笽はテクトロニクス社の登録商梪です。
米国にて印刷。仕榚及U価格は予告なく変更する場
米国にて印刷。仕榚及U価格は予告なく変更する場
合かあります。

```
```

合かあります。

```
```

Copyright（C） 1980 TEKTRONIX INC．Tous droits réservés． Le contenu de ce manuel ne peut ètre reproduit sous quelque tor－ me que ce soit sans l＇accord de Tektronix Inc．

Tous les produits TEKTRONIX sont brevetés US et Etranger et les logotypes TEKTRONIX，TEK SCOPE MOBILE，sont déposés．

Imprimé aux USA．TEKTRONIX se réserve le droit de modifier caractéristiques et prix dans le cadre de développements techno－ logiques．

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS iv
LIST OF TABLES v
OPERATOR'S SAFETY SUMMARY VI
SERVICE SAFETY SUMMARY vii
Section 1 SPECIFICATION
Instrument Description 1-1
Performance Conditions 1-1
Electrical Characteristics 1-2
Environmental Characteristics $1-7$
Physical Characteristics 1.8
English Version
Section 2 OPERATING INSTRUCTIONS
Preparation for Use 2-1
Repackaging Information 2-1
Controls, Connectors, and Indicators 2-2
Instrument Connections 2-4
Level Measurements 2-5
Distortion Measurements 2-6
Distortion Measurement Procedure 2-7
IM Distortion Measurements (Option 01) 2-9
IM Distortion Measurement Procedure (Option 01) 2-11
Filters 2-11
Displays 2-12
Monitoring 2-13
Page Page
French Version
CHAPITRE 2 INSTRUCTIONS D'UTILISATION
Instructions de réemballage pour expédition $2 \cdot 1$
Commandes, connecteurs et témoins lumineux 2.2
Connexions de l'appareil $2 \cdot 4$
Mesures de distorsion $2 \cdot 6$
Méthode de mesure de distorsion $2-8$
Mesures de distorsion d'intermodula- tion (option 01) $2-9$
Méthode de mesure de la distorsion par intermodulation (option 01) 2-11
Filtres 2-11
Affichages 2-13
Contrôle 2-13
German Version
Kapitel 2 BEDIENUNGSANLEITUNG 2-1
Inbetriebnahme 2-1
Verpackung des Gerates 2-1
Bedienungselemente, Anschlüsse und Anzeigen 2-2
Anschlüsse an das Instrument 2-4
Pegelmessungen 2-5
Verzerrungsmessungen 2-6
Durchführung der
Verzerrungsmessung 2-7
Intermodulationsverzerrungs-
Messung (Option 01) 2-9
Messung von Intermodulations- verzerrungen (Durchführung) 2-11
Filter 2-11
Darstellungen 2-12
Überwachung 2-13

TABLE OF CONTENTS（cont）

Japanese Version Page
第2章 取扱説明 2•1
ご使用の前に $2 \cdot 1$
相包方法 2－1
コントロール，コネクタおよびインジケータ…．．．2－2－
機器の接続• 24
レペル測定 $2 \cdot 5$
ひずみ率測定 2－6
ひずみ率測定の手順 2－7
混（相互）変調ひずみ率測定（オブション吅型）……29
混変調ひずみ羍測定の手順（オプション01型）－ $2 \cdot 11$
フィルタ $2-11$
表示 212
入出力コネクタ $2 \cdot 13$
WARNING
THE FOLLOWING SERVICING INSTRUCTIONS AREFOR USE BY QUALIFIED PERSONNEL ONLY．TO AVOIDPERSONAL INJURY，DO NOT PERFORM ANY SER－VICING OTHER THAN THAT CONTAINED INOPERATING INSTRUCTIONS UNLESS YOU AREQUALIFIED TO DO SO．
Section 3 THEORY OF OPERATION
Introduction 3－1
Input Amplifier 3－1
Automatic Gain Control 3－2
Notch Filter 3－2
Frequency Band Discriminator 3－3
Notch Filter Control 3－4
Distortion Amplifier 3－4
Filters and AC－DC Converters 3－5
dB Converter 3－5
dB Offset Generator 3－5
dB Ratio Circuitry 3－6
6 V Reference 3－6
Dvm 3－6
Display Board 3－6
Logic Circuitry 3－6
Power Supplies 3－7
－15 V Supply 3－7
IM Option 3－8

Page

Section 4 CALIBRATION

Performance Check Procedure 4－1
Introduction 4－1
Test Equipment Required 4－1
List of Check and Adjustment Steps 4－3
Performance Check Summary Sheet 4－4
Internal Adjustment Procedure 4－18
Introduction 4－18
Services Available 4－18
Test Equipment Required 4－18
Adjustment Access 4－18
Section 5 MAINTENANCE
General Maintenance Information 5－1
Static－Sensitive Components 5－1
Cleaning 5－1
Obtaining Replacement Parts 5－2
Soldering Techniques 5－2
Semiconductors 5－3
Interconnecting Pins 5－3
Coaxial Cables 5－3
Square Pin Assemblies 5－3
Multipin Connectors 5－3
Circuit Board Removal 5－3
Front Panel Latch Removal 5－5
Magnetic Shield 5－5
Jumper Selection for CCIF，AUTO， or SMPTEIDIN Measurements 5－5
30 kHz Filter Modification 5－5
Rear Interface Information 5－6
Functions Available at Rear Connector 5－6
Section 6 OPTIONS
Section 7 REPLACEABLE ELECTRICAL PARTS

TABLE OF CONTENTS (cont)

Section 8 DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS
 Adjustment Locations
 Component Reference Charts
 Schematic Diagrams

Section 9 REPLACEABLE MECHANICAL PARTS
Fig. 1 Exploded View
Accessories
CHANGE INFORMATION

LIST OF ILLUSTRATIONS

Fig. Page
No.
AA 501 Distortion Analyzer ix
2-1 Installation and removal 2-1
2-2 Front panel controls and connectors 2-3
2-3 Typical connections for distortion measurements. See text 2-5
2-4 Block diagram of a basic harmonic distortion analyzer 2-7
2-5 Transfer characteristics of an audio device 2-7
2-6 THD test of transfer characteristics 2-8
2-7 Block diagram of a basic IM analyzer 2-9
2-8 IM test of transfer characteristics in time and frequency domain 2-10
2-9 Response curves for AA 501 filters 2-12
2-10 Oscilloscope display of deviation from linearity 2-13
3-1 Simplified notch filter and control loop 3-2
3-2 Typical frequency discriminator waveforms at about 800 Hz 3-3
3-3 Intermodulation distortion option block diagram 3-8
4-1 Check step 1. Input impedance 4-5
4-2 Check step 2. Common mode rejection 4-6
4-3 Check step 3. Level function accuracy 4-7
4-4 Check step 4. Bandwidth 4-8
4-5 Check step 5. Residual noise 4-9
4-6 Check steps 6, 9, 10, 11 and adjustment steps 9,10 , and 11. Total harmonic, SMPTE and CCIF distortion and CCIF residual IM distortion 4-9
4-7 Check step 7. Residual THD +N 4-10
Fig. Page
No.
4-8 Check step 8 and adjustment step 8. SMPTE residual intermodulation distortion 4-11
4-9 Check step 11A and adjustment step 11A. Alternate CCIF IM distortion accuracy 4-13
4-10 Check step 12. Filter accuracy 4-14
4-11 Check step 13. Input monitor 4-15
4-12 Check step 14. Function output 4-16
4-13 Check step 15. Auxiliary input 4-17
4-14 Adjustment test setup for steps 1 and 2 4-18
4-15 Adjustment test setup for steps 3, 4, 5, 6, and 7. 4-19
5-1 Typical square pin assembly 5-3
5-2 Orientation and disassembly of multipin connectors 5-3
5-3 Side cover removal or replacement 5-3
5-4 Top and rear panel removal 5-4
5-5 Screws attaching the board assemblies to the plug-in frame 5-5
5-6 Rear interface connector assignments 5-7
8-1 Adjustment location illustration for Main, Input and Notch dvm boards.
8-2 Adjustment location iliustration for Control and IMD Option boards.
8-3 Input board (A14) parts location grid.
8-4 Main board (A15) parts location grid.
8-5 Logic board (A12) parts location grid.
8-6 Dvm board (A11) parts location grid.
8-7 Display board (A10) parts location grid.
8-8 IMD option board (A13) parts location grid.

LIST OF TABLES

Table PageNo.
1-1 Electrical Characteristics 1-2
1-2 Environmental Characteristics 1-6
1-3 Physical Characteristics 1-7
2-1 Gains from INPUT terminals to FUNCTION OUTPUT connector for various settings of the INPUT LEVEL RANGE control 2-13
3-1 Truth Table for U1400 Outputs 3-4
3-2 Internal Connections in U1000 Depending on Logic States of pins 10 and 11 3-4
3-3 Gain and Switching through U1210 3-4
4-1 Suggested Test Equipment 4-1
4-2 Common Mode Rejection Check 4-6
4-3 Level Function Accuracy 4-6
5-1 Relative Susceptibility to Static Discharge Damage 5-1
NOTE
The following tables are located in the diagramsfoldout section at the rear of this manual.
8-1 Input Board (A14) Component Reference Chart.
8-2 Input Board (A14) Component Reference Chart.
8-3 Main Board (A15) Component ReferenceChart.8-4 Input Board (A14) Component ReferenceChart.

No.
8-5 Input Board (A14) Component Reference Chart.
8-6 Main Board (A15) Component Reference Chart.
8-7 Logic Board (A12) Component Reference Chart.
8-8 Dvm Board (A11) Component Reference Chart.
8-9 Display Board (A10) Component Reference Chart.
8-10 Logic Board (A12) Component Reference Chart.
Input Board (A14) Component Reference Chart.
Main Board (A15) Component Reference Chart.
8-11 Logic Board (A12) Component Reference Chart.
8-12 Logic Board (A12) Component Reference Chart.
8-13 Main Board (A15) Component Reference Chart.
8-14 IMD Option Board (A13) Component Reference Chart.

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

DANGER - High voltage.
Protective ground (earth) terminal.
ATTENTION - refer to manual.

Power Source

This product is intended to operate from a power module connected to a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type, voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Operate Without Covers

To avoid personal injury, do not operate this product without covers or panels installed. Do not apply power to the plug-in via a plug-in extender.

SERVICE SAFETY SUMMARY
 for Qualified service personnel only

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages may exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate in a power module connected to a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

SPECIFICATION

Instrument Description

The AA 501 is a fully automatic distortion analyzer, packaged as a two-wide TM 500 plug-in. Total harmonic distortion is measured with the standard instrument. Option 01 instruments also measure SMPTE/DIN intermodulation distortion and CCIF two-tone difference frequency distortion. Option 02 instruments permit noise measurements in accordance with CCIR recommendation 468-2 or DIN 45405.

Distortion set level, frequency tuning and nulling are fully automatic, requiring no operator adjustment. Input level range and distortion measurement range selections are fully automatic or may be manually selected. Distortion readout is provided in percent or $d B$.

The AA 501 is also a high sensitivity, autoranging, audio frequency voltmeter. Readings may be in volts, dBm , or dB relative to any arbitrary reference.

Filters are included which allow measurement of noise to IHF and FCC specifications. Option 02 instruments provide a quasi-peak detector for noise measurements in accordance with CCIR or DIN standards. A hum rejection filter is provided as are provisions for external filters.

All readings are displayed on a $31 / 2$ digit readout. An uncalibrated analog readout is also provided to aid in nulling and peaking applications.
$A c$ to $d c$ conversion is either average or true rms responding, allowing conformance with most standards. Op-
tion 02 instruments provide quasi-peak or true rms detection. This feature permits comparison with readings obtained on other instruments.

Ac input and output connections are available on both the front panel and the rear interface. Dc signals, corresponding to the displayed reading, are availablethrough the rear interface. This allows flexibility in interconnection with other instruments such as filters, chart recorders, spectrum analyzers, oscilloscopes, etc.

Performance Conditions

The electrical characteristics in this specification are valid only if the AA 501 has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The instrument must be in a noncondensing environment whose limits are described under the environmental part. Allow twenty minutes warm-up time for operation to specified accuracy; sixty minutes after exposure to or storage in a high humidity (condensing) environment. Any conditions that are unique to a particular characteristic are expressly stated as part of that characteristic.

The electrical and environmental performance limits, together with their related validation procedures, comprise a complete statement of the electrical and environmental performance of a calibrated instrument.

Items listed in the Performance Requirements column of the Electrical Characteristics are verified by completing the Performance Check in the Calibration section of this manual. Items listed in the Supplemental Information column are not verified in this manual.

Table 1-1
ELECTRICAL CHARACTERISTICS

Characteristics		
INPUT (all functions)		
Impedance		Supplemental Information

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
Bandwidth Residual noise (Source resistance $\leqslant 1 \mathrm{k} \Omega$)	At least 300 kHz with no filters selected. $\leqslant 3.0 \mu \mathrm{~V}(-108 \mathrm{dBm})$ with 80 kHz , 400 Hz filters and rms response $\leqslant 1.5 \mu \mathrm{~V}(-114 \mathrm{dBm})$ with A weighting filter and rms response (standard and Option 01 instruments only) $\leqslant 5.0 \mu \mathrm{~V}(-104 \mathrm{dBm})$ with CCIR weighting filter and quasi-peak response (Option 02 only)	
TOTAL HARMONIC DISTORTION PLUS NOISE FUNCTION Fundamental frequency range	10 Hz to 100 kHz	Fully automatic tuning and nulling. For proper tuning THD $+\mathrm{N} \leqslant 10 \%$. After initial tuning THD +N can degrade to 30% without loss of lock for SINAD testing. Typical nulling time is less than 5 s above 20 Hz .
Minimum input level Distortion ranges	$60 \mathrm{mV}(-22 \mathrm{dBm})$	Autorange, $20 \%, 2 \%, 0.2 \%$, and dB . dB is internally autoranging with single effective display range. Autorange allows measurements above 20\%.
Accuracy (THD $\leqslant 30 \%$ and readings $\geqslant 4 \%$ of selected distortion range) 20 Hz to 20 kHz 10 Hz to 100 kHz	Within $\pm 10 \%(\pm 1 \mathrm{~dB})$ for harmonics $\leqslant 100 \mathrm{kHz}$. Within $+10 \%,-30 \%(+1 \mathrm{~dB},-3 \mathrm{~dB})$ for harmonics $\leqslant 300 \mathrm{kHz}$.	Accuracy is limited by residual THD $+N$ and filter selection. Not applicable with quasi-peak response (Option 02 only).
Residual THD $+\mathrm{N}\left(\mathrm{V}_{\mathrm{in}} \geqslant 250 \mathrm{mV}\right.$. source resistance $\leqslant 1 \mathrm{k} \Omega$) 20 Hz to 20 kHz with 80 kHz noise limiting filter and $\mathrm{T} \leqslant+40^{\circ} \mathrm{C}$ 10 Hz to 50 kHz 50 kHz to 100 kHz	$\leqslant 0.0025 \%$ (-92 dB) average response $\leqslant 0.0032 \%$ (-90 dB) rms response $\leqslant 0.0071 \%$ (-83 dB), rms response $\leqslant 0.010 \%(-80 \mathrm{~dB})$, rms response	Measured with SG 505 oscillator. All distortion, noise, and nulling error sources combined.
Typical fundamental rejection		At least 10 dB below specified residual THD +N or the actual signal THD, whichever is greater.

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
INTERMODULATION DISTORTION FUNCTION Operation		Fully automatic SMPTE, DIN, or CCIF difference tone tests depending upon actual input signal whenever respective IMD $\leqslant 20 \%$. Distortion ranges are same as THD + N function.
SMPTE and DIN tests Lower frequency range Upper frequency range Level ratio range Residual IMD ($\mathrm{V}_{\text {in }} \geqslant 250 \mathrm{mV}$, source resistance $\leqslant 1 \mathrm{k} \Omega$, $\leqslant 40^{\circ} \mathrm{C}$)	$\leqslant 0.0025 \%$ (-92 dB) for $60 \mathrm{~Hz}-7 \mathrm{kHz}$ or $250 \mathrm{~Hz}-8 \mathrm{kHz}, 4: 1$ signals, rms response	50 Hz to 250 Hz 3 kHz to 100 kHz 1:1 to $5: 1$ (lower : upper)
CCIF difference tone test (IM components $\leqslant 1 \mathrm{kHz}$) Frequency range Difference frequency range Residual IMD ($\mathrm{V}_{\mathrm{in}} \geqslant 250 \mathrm{mV}$, source resistance $\leqslant 1 \mathrm{k} \Omega$, $\leqslant+40^{\circ} \mathrm{C}$)	$\leqslant 0.0018 \%(-95 \mathrm{~dB})$ with 14 kHz and 15 kHz, rms response	4 kHz to 100 kHz 80 Hz to 1 kHz
Minimum input level	$60 \mathrm{mV}(-22 \mathrm{dBm})$	
Accuracy (IMD $\leqslant 30 \%$ and readings $\geqslant 4 \%$ of selected distortion range)	Within $\pm 10 \%(\pm 1 \mathrm{~dB})$	Accuracy is limited by residual IMD and filter selection. Not applicable with quasipeak response (Option 02 only)
FILTERS 400 Hz high pass	-3 dB at $400 \mathrm{~Hz}, \pm 5 \%$; at least -40 dB rejection at 60 Hz	3 pole Butterworth response
80 kHz low pass	-3 dB at $80 \mathrm{kHz}, \pm 5 \%$	3 pole Butterworth response
30 kHz low pass (standard and Option 01 only)	-3 dB at $30 \mathrm{kHz}, \pm 5 \%$	3 pole Butterworth response
$22.4 \mathrm{~Hz}-22.4 \mathrm{kHz}$ (Option 02 only)	-3 dB at $22.4 \mathrm{~Hz}, \pm 5 \%$ and $22.4 \mathrm{kHz}, \pm 5 \%$	Within specifications of CCIR Recommendation $468-2$ and DIN 45405 for unweighted measurement response.
A weighting (standard and Option 01 only)		Within specifications for type 1 sound level meters listed in ANSI S 1.41971 (revised 1976) and IEC Recommendation 179.
CCIR WTG (Option 02 only)		Within specifications of CCIR Recommendation 468-2 and DIN 45405 for noise measurements. Functional only with qua-si-peak detector (response).

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
Auxiliary		Selects front panel AUXILIARY INPUT allowing connection of external filter between it and FUNCTION OUTPUT.
FRONT PANEL SIGNALS		
MONITOR OUTPUT		
$V_{\text {in }} \geqslant 50 \mathrm{mV}$	$1 \mathrm{Vrms}, \pm 10 \%$	Constant amplitude (average response) version of differential input signal. THD is typically $\leqslant 0.0010 \%(-100 \mathrm{~dB}$) from 20 Hz to 20 kHz .
$V_{\text {in }} \geqslant 50 \mathrm{mV}$		Approximately 20 times input signal.
Impedance	$1 \mathrm{k} \Omega, \pm 5 \%$	
FUNCTION OUTPUT		
Signal	$1 \mathrm{~V}, \pm 3 \%$, for 1000 count volts or $\%$ display.	Selected and filtered ac signal actually being measured.
Impedance	$1 \mathrm{k} \Omega, \pm 5 \%$	
AUXILIARY INPUT		
Sensitivity	$1 \mathrm{~V}, \pm 3 \%$, for 1000 count volts or \% display.	Loop-through accuracy from FUNCTION OUTPUT is $\pm 3 \%$.
Maximum Input Voltage		15 V peak, 6 V peak for linear response.
Impedance	$100 \mathrm{k} \Omega, \pm 5 \%$	Ac coupled.
DETECTORS AND DISPLAYS		
Detectors (Response)		
RMS		True rms detection.
AVG (standard and Option 01)		Average detection, rms calibrated for sinewaves. Typically reads 1 to 2 dB lower than true rms detection for noise, THD $+N$, and IMD measurements.
Q-PK (Option 02 only)		Quasi-peak detection, rms calibrated for sinewaves. Within specifications of CCIR Recommendation 468-2 and DIN 45405. Due to the peak hold nature of its response readings considerably higher than rms response will occur with large crest factor signals such as noise. The input range indicators should be ignored and auto-ranging avoided with these types of signals.

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
Displays Digital Analog bar graph		$31 / 2$ digit, 2000 count LED. Overrange indication is 1 , blank, blank, blank. 10 segment LED intensity modulated bar graph display of digital readout. Segments are logarithmically activated with approximately $2.5 \mathrm{~dB} /$ segment.
MISCELLANEOUS Power consumption		≈ 24 watts
Internal Power Supplies $\begin{aligned} & +15 \\ & -15 \\ & +5 \end{aligned}$		Nominally $+15.1 \mathrm{~V}, \pm 3 \%$ Nominally $-15.1 \mathrm{~V}, \pm 5 \%$ Nominally $+5.0 \mathrm{~V}, \pm 5 \%$
Fuse Data F1610 F1620 F1621		3 AG, $1 \mathrm{~A}, 250 \mathrm{~V}$, fast blow 3 AG, 1 A, 250 V , fast blow 3 AG, 1 A, 250 V , fast blow
Recommended adjustment interval		1000 hours or 6 months whichever occurs first
Warm-up time		20 minutes (60 minutes after storage in high humidity environment)

Table 1-2
ENVIRONMENTAL CHARACTERISTICS ${ }^{\text {a }}$

Characteristics	Description	
Temperature	Meets MIL-T-28800B, class 5.	
Operating	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	
Non-operating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Humidity	Exceeds MIL-T-28800B, class 5.	
	$\begin{aligned} & 95 \% \mathrm{RH}, 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & 45 \% \text { RH, to }+50^{\circ} \mathrm{C} \end{aligned}$	
Altitude	Exceeds MIL-T-28800B, class 5.	
Operating	4.6 km (15,000 feet)	
Non-operating	15 km (50,000 feet)	
Vibration	Exceeds MIL-T-28800B, class 5, when installed in qualified power modules ${ }^{\text {b }}$.	
	$0.38 \mathrm{~mm}\left(0.015^{\prime \prime}\right)$ peak-to-peak, 5 Hz to $55 \mathrm{~Hz}, 75$ minutes.	
Shock	Meets MIL-T-028800B, class 5, when installed in qualified power modules ${ }^{\text {b }}$.	
	30 g 's ($1 / 2$ sine) 11 ms duration, 3 shocks in each direction along 3 major axes, 18 total shocks.	
Bench handling ${ }^{\text {c }}$	Meets MIL-T-28800B, class 5.	
	12 drops from 45@, 4' or equilibrium, whichever occurs first.	
Transportation ${ }^{\text {c }}$	Qualified under National Safe Transit Association Preshipment Test Procedure 1A-B-1 and 1A-B-2.	
EMC	Within limits of MIL-461A.	
Electrical discharge	20 kV maximum charge applied to instrument case.	

${ }^{*}$ With power module.

${ }^{\text {b }}$ Refer to TM $\mathbf{5 0 0}$ power module specifications.
${ }^{\text {chithout power module. }}$

Table 1-3
PHYSICAL CHARACTERISTICS

Characteristics	
Maximum Overall Dimensions	$126.0 \mathrm{~mm}(4.96$ inches $)$
Height	$131.2 \mathrm{~mm}(5.16$ inches $)$
Width	$285.5 \mathrm{~mm}(11.24$ inches $)$
Length	$\approx 1.7 \mathrm{~kg}(3.75 \mathrm{lbs})$
Net Weight	Plastic-aluminum laminate
Finish	Anodized aluminum
Front Panel	

OPERATING INSTRUCTIONS

Preparation For Use

The AA 501 is calibrated and ready for use when received. It operates in any two compartments of a TM 500-Series power module. See the power module instruction manual for line voltage requirements and power module operation. Figure 2-1 shows the AA 501 installation and removal procedure.

Turn the power module off before inserting the AA 501. Otherwise, arcing may occur at the rear interface connectors, reducing their useful life and damage may result to the plug-in circuitry.

Check to see that the plastic barriers on the interconnecting jack of the selected power module compartment match the cutouts in the AA 501 circuit board edge
connector. Align the AA 501 chassis with the upper and lower guides of the selected compartment. Press the AA 501 in, to firmly seat the circuit board in the interconnecting jack.

To remove the AA 501 pull the release latch (located in the lower left corner) until the interconnecting jack disengages and the AA 501 slides out.

Check that the AA 501 is fully inserted in the power module. Pull the power switch on the power module. One or more characters in the LED display should now be visible.

Repackaging Information

If the Tektronix instrument is to be shipped to a Tektronix Service Center for service or repair, attach atag

Fig. 2-1. Installation and removal.
showing the owner (with address) and the name of an individual at your firm that can be contacted. Include the complete instrument serial number and a description of the service required.

Save and reuse the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the finish of the instrument. Obtain a carton of corrugated cardboard of the correct carton strength and having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument on all sides. Seal the carton with shipping tape or an industrial stapler.

The carton test strength for this instrument is 200 pounds per square inch.

Controls, Connectors, and Indicators

All controls, connectors and indicators (except for the rear interface connector) required for operation of the AA 501 are located on the front panel. Figure 2-2 provides a brief description of all front panel controls, connectors, and indicators.

(1) INPUT LEVEL RANGE

Selects input voltage range or AUTORANGE. The three most sensitive ranges operate in the LEVEL FUNCTION only.

DECREASE RANGE

When this light is illuminated, reduce the INPUT LEVEL RANGE until the light goes out.

INCREASE RANGE

When this light is illuminated, increase the INPUT LEVEL RANGE until the light goes out.

INPUT

Differential input terminal. Positive going input signal provides positive going output signal at INPUT MONITOR.

INPUT

Differential input terminal. Negative going input signal provides positive going output at INPUT MONITOR.

(6) Release Latch

(7) LEVEL

Button in selects input level measuring function.
(8) VOLTS

Button in selects voltage units for level function.
(9) $\mathrm{dBm} 600 \Omega$

Button in selects dBm (reference is 1 mW into 600Ω) units for level function.

(10) dB RATIO

Button in selects dB ratio, with respect to preset level, as units for level function.

PUSH TO SET 0 dB REF

Push button to set display to 0 with input signal applied to INPUT terminals in LEVEL function. dB RATIO and LEVEL pushbuttons must be in for this feature to operate.

REAR INTFC-INPUT

Button in selects rear interface input; button out selects front panel input.

(13) RESPONSE

Button in gives RMS detection (responds to the rms value of the input waveform). Button out gives average detection (rms calibrated for sinewaves).

(14) $T H D+N$

Button in selects total harmonic distortion FUNCTION.

IMD (Option 01 instruments only)

Button in selects intermodulation distortion function.

(16)
 AUTO RANGE

Button in selects automatic distortion range selection (0.2% to 100% full scale).

Fig. 2-2. Froni panel controls and connectors.
(17) 20%

Button in selects full scale distortion readout of 20% with 0.01% resolution.
(18) 2%

Button in selects full scale distortion readout of 2% with 0.001% resolution.
0.2\%

Button in selects full scale distortion readout of 0.2% with 0.0001% resolution.

dB

Selects single equivalent 0 dB to -100 dB distortion display range with 0.1 dB resolution.

400 Hz HI PASS
Button in connects filter before detector circuit in all functions.

80 kHz LO PASS

Button in connects filter before detector circuit in all functions.

30 kHz LO PASS
Button in connects filter before detector circuit in all functions.
(24) 'A' WEIGHTING

Button in connects filter before detector circuit in all functions.

EXT FILTER

Button in allows connection of external filter between FUNCTION OUTPUT and AUXILIARY INPUT in all functions.

INPUT MONITOR

Provides a sample of the input signal.

FUNCTION OUTPUT

Provides a sample of the selected FUNCTION signal.

(28) AUXILIARY INPUT

Provides input to the detector circuit when the EXT FILTER button is pressed.

Ground

Provides front panel chassis ground connection.
(30) LED Bar Graph

Provides approximate analog display of the digital display for nulling and peaking. Each segment represents about 2.5 dB .

Digital Display

$31 / 2$ digits. Overrange indication is a blanked display with the numeral 1 in the most significant digit position.

(32) VOLTS

Illuminated when display units are volts.

(33) mVOLTS

Illuminated when display units are millivolts.

μ VOLTS

Illuminated when display units are microvolts.
(35) \%

Illuminated when display units are percent.

dBm

Illuminated when display units are dBm.

Illuminated when display units are dB.

Instrument Connections

To make connections to the AA 501, refer to Fig. 2-3. Connections can be made to the rear interface connector. However, due to possible crosstalk, low level or distortion measurements made through the rear interface may be degraded. To measure signals connected to the front panel make certain the INPUT pushbutton is out. To select the rear interface signal input press the INPUT pushbutton.

Fig. 2-3. Typical connections for distortion measurements. See text.

Maximum front panel input voltage is 300 V peak, 200 V rms either input to ground or differentially. Maximum rear interface input is 42 V peak and 30 V rms.

The AA 501 input circuitry is protected against accidental overloading. This circuitry will recover without damage from continuous 120 Vrms (30 minutes at 200 V rms) overloads in any INPUT LEVEL RANGE setting.

In most cases, for maximum hum rejection, follow the cabling and grounding as shown in the figure. Shielded, twisted pair offers maximum hum and radio frequency interference rejection. Cable shielding, if used, should be grounded only at the AA 501 front panel ground post. Use shielded cable to connect the output of an oscillator, external to the device under test, to the input of the device. Generally, if the device under test has one side of the input grounded, float the output of the external oscillator to avoid possible ground loops. If the input to the device under test is floating (not chassis grounded) then select the grounded mode for the output of the oscillator. Terminate the output of the device under test in its
recommended load impedance, or the load impedance specified in the appropriate standard.

The illustration shows an optional oscilloscope for visual monitoring. If connected as shown in the illustration, channel 1 displays a sample of the input signal and channel 2 displays the distortion components when in the IM or THD +N function.

Level Measurements

In the LEVEL function the AA 501 operates as a wide band ac voltmeter. The Specification section of this manual contains operating parameters for this meter. The meter is rms calibrated and either rms or average responding, depending on the position of the RESPONSE pushbutton.

Press the FUNCTION LEVEL pushbutton. The top three buttons to the left of the FUNCTION pushbuttons select readout units as VOLTS, dBm 600Ω, or dB RATIO. An LED to the right of the display indicates the display units. To measure voltage press the VOLTS pushbutton. If the INCREASE RANGE LED is illuminated, adjust the INPUT LEVEL RANGE control to higher ranges until the

Operating Instructions-AA 501

LED goes out. If the DECREASE RANGE LED is illuminated, turn the INPUT LEVEL RANGE control counterclockwise to a lower range until the DECREASE RANGE LED goes out. For specified instrument accuracy adjust the INPUT LEVEL RANGE as just described, However, readings are usable as long as the display is not overranged. Overrange is indicated by a blank display with the numeral 1 in the most significant digit slot. If the INPUT LEVEL RANGE switch is placed in the AUTO RANGE position, the input level adjustment is accomplished automatically. The LED's (VOLTS, mVOLTS or μ VOLTS) automatically illuminate showing the proper display units. Notice that the three most sensitive ranges on the INPUT LEVEL RANGE control operate in the LEVEL FUNCTION only.

When the $\mathrm{dBm} 600 \Omega$ pushbutton is pressed, the LED opposite dBm on the display indicates the display units. The reference level for this measurement, 0 dBm , is 1 mW dissipated in 600Ω. This is equivalent to 0.7746 V rms developed across a 600Ω resistor. The INPUT LEVEL RANGE switch operates in the same manner as previously described.

The dB RATIO mode permits direct ratio measurements of two input signal amplitudes. When the dB RATIO pushbutton is pressed, the LED opposite the dB nomenclature on the display is illuminated. To use this feature, press the dB RATIO pushbutton. To establish the input signal as 0 dB reference, push the PUSH TO SET 0 dB REF pushbutton and notice that the display reads all zeros. As the amplitude of the input signal is changed, the display will read the $d B$ ratio of the input signal to the reference signal amplitudes.

There are many useful applications for the dB RATIO mode in measurements of gain-loss, frequency response, S / N ratio, etc. For example, the corner frequency of a filter may be quickly checked. Set the test frequency to some midband value and set the zero dB reference. Adjust the test frequency until the display reads -3.0 dB ; this is the corner frequency of the filter.

Gain measurements may be similarly simplified by using this feature. Set the device to be tested as desired and connect the AA 501 input to the input of the device under test. Press the PUSH TO SET 0 dB REF pushbutton. Connect the input of the AA 501 to the device output and read the gain or loss directly from the display. When using the SG 505 oscillator and the TM 500 rear interface feature, changing of external connections to establish the 0 dB input level reference is not necessary. Interconnect the Buffered Main Output of the SG 505 and the rear interface input of the AA 501. Pressing the REAR INTFC pushbutton will conveniently allow direct measurement of the signal level going to the input of the device under test.

When measuring signal to noise ratio or making noise level measurements, it is often desired to employ a frequency dependent weighting network. The AA 501 provides several internal filters as well as facilities for connecting external filters. For information on their operation and use, see the text under Filters in this section of the manual.

Distortion Measurements

Distortion is a measure of signal impurity. It is usually expressed as a percentage or dB ratio of the undesired components to the desired components of a signal. Harmonic distortion is simply the presence of harmonically related or integral multiples of a single pure tone called the fundamental, and can be expressed for each particular harmonic. Total harmonic distortion, or THD, expresses the ratio of the total power in all significant harmonics to that in the fundamental.

A distortion analyzer removes the fundamental of the signal to be investigated and measures the remainder. See Fig. 2-4. Because of the notch filter response, any signal other than the fundamental will influence the measurement. A total harmonic distortion measurement will inevitably include effects from noise or hum. The term THD +N has been recommended' to distinguish distortion measurements made with a distortion analyzer from those made with a spectrum analyzer. A spectrum analyzer allows direct measurement of each harmonic. However, it is relatively complex, time consuming, and requires interpretation of a graphic display.

All distortion analyzers are limited ultimately by their internal distortion and noise. Traditionally, distortion analyzer residual noise and distortion have been specified separately. However, because an actual measurement always includes both effects, both residuals must be combined to determine the minimum valid reading. For example, an analyzer rated at 0.002% residual distortion and 0.002% noise may exhibit a THD+N reading of 0.0028% and still be within specification. Also, average responding analyzers may read up to 25% lower than true rms responding analyzers. The AA 501 specifies the combined residual effect with rms response and offers selection of rms or average response.

Distortion analyzers can quantify the nonlinearity of a device or system. The transfer (input vs output) characteristic of a typical device is shown in Fig. 2-5. ideally this is a straight line. A change in the input produces a proportional change in the output. Since the actual transfer characteristic is nonlinear, a distorted

[^0]

Fig. 2-4. Block diagram of a basic harmonic distortion analyzer.
version of the input waveshape appears at the output. The output waveform is the projection of the input sine wave on the device transfer characteristic as shown in Fig. 2-6. The output waveform is no longer sinusoidal, due to the nonlinearity of the transfer characteristic. Using Fourier series it can be shown that the output waveform consists of the original input sine wave, plus sine waves at integer multiples of the input frequency. These harmonics represent nonlinearity in the device under test. Their amplitudes are related to the degree of nonlinearity.

Distortion Measurement Procedure

All of the controls found on a traditional distortion analyzer are automated on the AA 501. It is only necessary to set the INPUT LEVEL RANGE and distortion range switches to AUTO RANGE, press THD $+N$ and wait briefly for a reading. Minimum input signal amplitude for distortion measurements is 60 mV . To provide greater flexibility the instrument may be manually operated as described in the following paragraphs.

Fig. 2-5. Transfer characteristics of an audio device.

Fig. 2-6. THD test of transfer characteristics.

Adjustment of the input level range control is the same as for level measurements. Manually setting the INPUT LEVEL RANGE control to the correct scale ensures that the input is within the 10 to 12 dB range of the internal auto set-level circuitry. The range lights must be extinguished to make readings to specified accuracy. The $200 \mu \mathrm{~V}, 2 \mathrm{mV}$ and 20 mV ranges do not operate in the distortion function.

To manually select a distortion range, press the THD $+N$ button and the desired range button. Selection of AUTO RANGE causes the instrument to autorange the distortion readout. The remaining range pushbuttons cause the instrument to stay in these ranges without autoranging. This can reduce the measurement time slightly if the approximate reading is already known. This is useful in production line testing or in the testing of low distortion equipment. The dB display is effectively a single
range; however, internal instrument operation is identical to AUTO RANGE.

When making distortion measurements, the RESPONSE button should normally be in the RMS position. Current distortion measurement standards require the use of rms reading instruments by specifying power summation of each of the components. The AVG mode may be used when making comparisons with readings taken with traditional distortion analyzers. However, it may read up to 25% (2 dB) lower than rms response.

For frequencies below 20 kHz the residual noise in the measurement may be improved by activating the 80 kHz LO PASS filter. If hum (line related components) are interfering with the measurement, they may be removed
with the 400 Hz HI PASS filter. This filter should not be employed at frequencies below 1 kHz as erroneous readings will result. For more information see text under Filters in this section of this manual.

A distortion analyzer must tune out the fundamental frequency. In the AA 501 all tuning of frequency is done automatically. For input signals with greater than about 20\% noise and distortion, care must be taken to ensure proper locking of this circuitry. In most applications which require higher distortion measurements (for example, SINAD ${ }^{2}$ testing) the circuitry remains locked after it is initially given a clean signal. To perform a SINAD test, the receiver under test is first given a high level input. The AA 501 will lock onto the audio signal at the output. The rf level feeding the receiver is then reduced until a-12 dB distortion reading is obtained on the AA 501.

[^1]
IM Distortion Measurements (Option 01)

Another measurement of distortion is the interaction of two or more signals. Many tests have been devised to measure this interaction. Three standards are SMPTE ${ }^{3}$, DIN ${ }^{4}$, and CClF^{5}. The Option 01 AA 501 is capable of automatically selecting and performing all three tests.

To measure intermodulation distortion (IM), according to SMPTE and DIN standards, the device under test is excited with a low frequency and high frequency signal simultaneously (Fig. 2-7). The output signal is high-pass filtered to remove the low frequency component. The high frequency tone is then demodulated, as an AM radio signal. The demodulator output is low-pass filtered to
${ }^{3}$ Society of Motion Picture and Television Engineers, Standard No. TH 22.51, 862 Scarsdale Avenue, Scarsdale, N.Y. 10583.
${ }^{4}$ Deutsches Institut fur Normung e V, No. 45403 Blatt 3 and 4, January 1975, Beuth Verlag GmbH, Berlin 30 and Koln 1.
${ }^{5}$ International Telephone Consultative Committee.

Fig. 2-7. Block diagram of basic IM analyzer.
remove the residual carrier (high frequency) components. The amplitude of the low frequency modulation is displayed as a percentage of the high frequency level.

As shown in Fig. 2-8, when this composite signal is applied to the device, the output waveform is distorted. As the high frequency tone is moved along the transfer characteristic, by the low frequency tone, its amplitude changes. This results in low frequency amplitude modulation of the high frequency tone. This modulation is apparent in the frequency domain as sidebands around the high frequency tone. The power in these sidebands represents nonlinearity in the device under test.

The amplitude ratio of low to high frequencies should be between $4: 1$ and 1:1. The AA 501 circuitry automatically adjusts calibration to compensate for the selected test signal ratio. Some additional range is provided in this circuitry to enable measurement of devices with nonflat frequency response.

SMPTE standard test frequencies are 60 Hz and 7 kHz . The DIN standard is virtually identical to the SMPTE standard except for the two frequencies used. They may be any pair of octave band center frequencies, with the upper at least eight times as high as the lower (250 Hz and 8 kHz are common). The AA 501 can accept a wide range of test frequencies as shown in the Specification section.

CCIF difference frequency distortion is measured with two high frequency sine waves driving the device under test. Both are of equal level and closely spaced in frequency. Nonlinearities in the device under test cause the sine waves to cross modulate. This creates new signals at various sum and difference frequencies from the inputs. For example, the commonly used 14 kHz and 15 kHz test frequencies produce $1 \mathrm{kHz}, 13 \mathrm{kHz}, 14 \mathrm{kHz}, 15 \mathrm{kHz}$, $16 \mathrm{kHz}, 28 \mathrm{kHz}$, etc. Ideally, one would measure each new component with a tunable filter such as a spectrum analyzer. However, this is usually limited to an 80 dB dynamic range and is very tedious. A good measure of this

Fig. 2-8. IM test of transfer characteristics in time and frequency domain.
distortion may be obtained by measuring only the difference frequency (in this example 1 kHz). If only the low frequency component is measured, it is called a CCIF second order difference frequency distortion test.

To measure two tone difference frequency distortion the device is excited with two input signals as described above. The output of the device is low-pass filtered to extract the difference frequency. The level of this component is expressed as a percentage of the high frequency signals and is another measure of nonlinearity.

The AA 501 CCIF difference frequency mode will accept any pair of input frequencies which are within limits as listed in the Specification section. The amplitudes of the two signals should be equal.

IM Distortion Measurement Procedure (Option 01)

Intermodulation and THD testing are similar, using the AA 501 (Option 01 only). After connecting the appropriate signal source to the device under test, set the INPUT LEVEL RANGE as described in the THD section. Press the IMD FUNCTION button and select a distortion range. Selecting AUTO RANGE or dB provides automatic ranging. The AA 501 accepts either a SMPTE, DIN, or a CCIF difference frequency test signal. Selection between the necessary analyzing circuits is accomplished automatically.

There is a moveable jumper inside the AA 501 to allow selection of SMPTE-DIN, CCIF or automatic selection between the two modes. Defeating the automatic test selection circuitry is recommended if making intermodulation distortion measurements greater than 20%. Refer any jumper changes to qualified service personnel.

The LO PASS filters may be selected inthe IM mode but will have little effect. The 400 Hz HI PASS and the 'A' WEIGHTING filters will cause erroneous readings because the IM components of interest generated by the tests fall between 50 Hz and 1 kHz . These filters, when activated in the IM mode attenuate some of the frequency components being measured.

Filters

The five buttons along the right edge of the instrument allow selection of four built-in frequency weighting filters plus an external filter, as desired. See Fig. 2-9 for response curves of the various filters. The $400 \mathrm{~Hz}, 30 \mathrm{kHz}$ and 80 kHz filters are all 3 -pole (18 dB per octave rolloff) Butterworth alignment. They are placed in the measuring circuitry immediately before the average or rms detectors. These filters are functional in all modes of operation and affect the signal at the FUNCTION OUTPUT connector.

Check the position of all filter pushbuttons before making measurements to prevent inaccurate results. Filtering takes place after all gain circuits. It is possible to overload part of the instrument, when operating in the manual distortion ranges with a filter selected, even though the display is not overranged. This may be checked by releasing the filter pushbuttons and checking the display for overrange or by pressing the AUTO RANGE pushbutton.

The 400 Hz HI PASS filter is used to reduce the effects of hum on the measurement. Although the differential input and common mode rejection of the AA 501 reduce the effects of ground loops, extremely bad measurement conditions may require use of this filter. The device under test may also generate an undesirable amount of hum, limiting the noise and distortion residuals obtainable. This filter may be used when measuring level or harmonic distortion of signals at about 1 kHz or greater. This filter should not be used when measuring signals less than 1 kHz nor when measuring intermodulation distortion.

Use of the 80 kHz LO PASS filter reduces the effects of wideband noise and permits measurement of lower THD +N for input signals up to 20 kHz . For 20 kHz inputs, it allows measurement of harmonics up to the fourth order. Do not use this filter if harmonic components above 80 kHz are of interest. When checking noise the 80 kHz filter may be used to reduce the measurement bandwidth. However, for most noise measurements, the 30 kHz LO PASS or 'A' WEIGHTING filters are recommended as they correlate better with the perceived noise level.

The 30 kHz LO PASS filter provides bandwidth limiting for broadcast proof of performance testing. It is also useful for unweighted noise measurements on audio equipment, providing an equivalent noise bandwidth of 31.5 kHz . When the 30 kHz filter is used, the 80 kHz filter is disabled. It may be desirable to modify the 30 kHz filter so that it conforms to the 22.4 kHz IEC standard for audio noise measurements. This may be performed by qualified service personnel as described in the Service section of this manual.

The ' A ' weighting filter is used when measuring the subjective noisiness of audio equipment. It conforms to the noise measurement standards of the institute of High Fidelity (IHF). The filter shape is within ANSI, DIN, and IEC' standards for class 1 sound level meters.

[^2]

Fig. 2-9. Response curves for AA 501 filters.

Connections for an external filter are also provided. Press the EXT FILTER pushbutton. Connect the external filter between the FUNCTION OUTPUT and the AUXILIARY INPUT. One application for the external filter is selective measurement of individual harmonics or components of an input signal. This may be accomplished using a TEKTRONIX AF 501 bandpass filter as an external filter. Adjust the AF 501 to the desired harmonic frequency; set the mode switch to NARROW and the gain to 1.

Another application, using the external filter, is the measurement of noise according to the CCIR/ARM ${ }^{7}$ method. A CCIR ${ }^{*}$ filter is inserted as an external filter with the response button in the AVG position.

[^3]When the AA 501 is used as a sound level meter, an octave or one-third octave filter set may be used to measure sound spectra. Therear interface outputs may be used to drive a storage oscilloscope or chart recorder for plots, as desired.

Displays

The AA 501 provides two forms of display for measurements. The digital readout displays the selected function with units. Overrange indication blanks all digits and displays a 1 in the most significant digit slot.

For rapid nulling or peaking applications, the digital display is supplemented by an uncalibrated LED bar graph for an analog meter-like display. The bar graph responds logarithmically, with each segment representing approximately a 2.5 dB change in the selected function. Additionally, the intensity of the segments is modulated between steps permitting resolution of changes as small as 0.5 dB . The range of the bar graph is determined by the
measurement range in use. When using this feature it may be desirable to select a manual range to prevent confusing displays caused by autoranging.

Monitoring

The interface capabilities of the AA 501 may aid considerably in the interpretation of measurements.

The INPUT MONITOR connector provides a fixed amplitude version ($\approx 1 \mathrm{Vrms}$) of the input signal for input signals of 50 mV or greater. This allows display of the input signal on an oscilloscope, without constantly readjusting the oscilloscope sensitivity. At input levels below about 50 mV the INPUT MONITOR signal is approximately $26 \mathrm{~dB}(\mathrm{~A} \approx 20)$ above the input signal level.

The FUNCTION OUTPUT is taken after the distortion measurement and high gain amplifier circuitry. It can be used for monitoring the signal read on the display. The signal at the FUNCTION OUTPUT connector is 2 V for a full scale reading on the display. In the level function this connector becomes an amplified version of the input signal. The gain from the input to this output is dependent on the LEVEL RANGE switch, and is given in Table 2-1. When the AA 501 is used as a constant gain differential amplifier the INPUT LEVEL RANGE switch must be set to a fixed range. In the distortion function this output can be displayed on an oscilloscope to view the distortion components. This output may also be used to drive a spectrum analyzer or selective voltmeter for examining the individual harmonics or modulation products. When an oscilloscope is used, the triggering signal is best taken from the sync output on the oscillator. If this is not possible (for example in tape recorder or Telco link testing) it should be obtained from the INPUT MONITOR connector on the AA 501.

Table 2-1

Gains from INPUT terminals to FUNCTION OUTPUT connector for various settings of the INPUT LEVEL RANGE control

LEVEL RANGE Setting Gainto FUNCTION OUTPUT

200 V	-40 dB
60 V	-30 dB
20 V	-20 dB
6 V	-10 dB
2 V	0 dB
600 mV	+10 dB
200 mV	+20 dB
20 mV	+40 dB
2 mV	+60 dB
$200 \mu \mathrm{~V}$	+80 dB

A procedure which may be used in the THD +N mode is to plot the transfer function of the device under test. For this measurement the FUNCTION OUTPUT drives the vertical input of an oscilloscope while the INPUT MONITOR drives the horizontal. The resulting display is similar to Fig. 2-10, and represents the deviation from linearity of the transfer characteristic. In other words, it represents the transfer characteristic after the best fit straight line is removed. If the device under test has large amounts of phase shift at the test frequencies it may be necessary to introduce a compensating phase shift into the horizontal channel. Since the FUNCTION OUTPUT is taken after the filters, they will affect the signal seen at this connector. The vertical scale is the deviation from the best fit line and is related to the distortion range and vertical sensitivity of the oscilloscope.

Fig. 2-10. Oscilloscope display of deviation from linearity.

A similar procedure may be employed in the SMPTE IM mode. The vertical signal is derived as before, but the horizontal is obtained from the low frequency input test signal (not the actual input test signal). Onthe SG 505 this signal is available at the SYNC OUTPUT connector. The display is interpreted as in the THD method, while the units are calculated as above. If two oscillators are summed to obtain the IM test signal, the horizontal drive is taken from the output of the low frequency oscillator. Transfer function testing is not possible in the CCIF difference tone mode.

THEORY OF OPERATION

Introduction

Refer to the block diagram located in the foldout pages of this manual for a brief description and overall view of the AA 501 operation. A detailed circuit description follows.

Input Amplifier

The input amplifier is designed for low noise and distortion. The input is differential with single-ended output. This circuit provides good common mode rejection for suppression of ground loop currents and other unwanted signals which may be present on both input leads. The input stage is protected to withstand at least 200 V rms on any input range.

The input amplifier gain is set by the logic circuitry at 0 dB (unity), +10 dB or +20 dB . The logic circuitry controls the gain so that the signal voltage at the output of the input amplifier remains between 0.75 V and 3.0 V rms. An attenuator, prior to the amplifier, additionally provides gain settings from -10 dB to -40 dB in 10 dB steps. The actual gain or attenuation selected depends on the input voltage level (or the setting of the INPUT LEVEL RANGE switch if not in AUTO RANGE). A full scale reading of 200 V corresponds to 40 dB of attenuation and 2 V full scale for unity gain.

The input signal, from the front panel connections or the rear interface input (selected by SOURCE switch S1531) enters the input amplifier through P1620/J1620. Each input is ac coupled through C1630 or C1631. The signal then passes to the differential input attenuator hybrid, R1510. These resistors are laser trimmed and ratioed to maintain gain accuracy and good common mode rejection. Relays K1412, K1510, K1511, K1512, and $K 1610$ select attenuation from 0 dB (unity gain) to 40 dB , respectively in 10 dB steps. Frequency compensation of the attenuator is provided by C1433 and C1520.

When there is no attenuation (0 dB), DS1520 and DS1521 limit the input current. The current passing through the lamps warms their filaments, increasing their resistance from a fairly low value. These lamps can handle 120 Vac indefinitely and 200 Vac for at least 30 minutes. If the AA 501 is subjected to greater overloads in the 0 dB attenuator position, the lamps act as fuses to prevent damage to the input circuitry. When any attenuation other than 0 dB is selected, the resistance in the hybrid network provides current limiting. The inputs are clamped by Zener diodes VR1620 and VR1621 through eight diodes,

CR1520 through CR1626. When the post attenuator voltage on any scale exceeds about $\pm 10 \mathrm{~V}$, one set of clamp diodes turns on to limit the voltage at U1420A and B. The effect of the nonlinear capacitance of clamp diodes CR1620, CR1621, CR1624 and CR1625 is eliminated by maintaining a constant voltage across the diodes via a bootstrap arrangement.

The input signal is buffered by low noise amplifiers U1520A and U1420B. On the 0 dB through 40 dB attenuation ranges, these buffers provide unity gain. Relays K 1410 and K1411 change the gain to +20 dB or +10 dB , respectively, by adding resistors R1420D or R1420E. Capacitors C1423 and C1520 provide frequency compensation.

The buffer outputs are combined into a single-ended output signal by U1432 (gain=1.5). The output of U1432 pin 6 is ac coupled by C1421 to remove any dc offsets caused by U1420A, B and U1432. This signal is then routed to the automatic gain control circuitry (agc) and input amplifier level detector.

The gains of the combining stage and the buffers are controlled by hybrid resistor R1420. These resistors are laser trimmed and ratioed to insure gain accuracy and good common mode rejection.

The signal level at the output of the input amplifier is detected by active rectifier U1320 in conjunction with CR1330 and CR1331. This full wave rectified signal is filtered by U1330A with C1420 and routed to the logic circuitry through $J 1500$, pin 1 . Recovery from overload is provided by VR1320. Resistor R1322 sets the filter gain so that, with 2 V into the AA 501 input on the 2 V scale (3 V at pin 6 of U1432) the output at pin 1 of U1330A is 6 Vdc .

The gain setting relays K1410through K1610 are driven by transistors Q1400 through Q1600. Control signals from the logic circuitry enter the input board through P1500J1500, pins 2 through 9 , with one line at a time high (about +12 V). This logic high at the base of a transistor turns the transistor on and closes the relay. When either 0 dB , +10 dB or +20 dB (pins 6,7 or 8) is activated, Q1402, is also activated closing K1412. In AUTORANGE, the logic circuitry selects the proper input attenuation or gain to maintain 0.75 V to 3.0 V at U 1432 pin 6 for inputs greater than about 50 mV . Below 50 mV the range is 0.3 V to 3.0 V .

Automatic Gain Control

The output of the input amplifier feeds the agc circuitry at levels between 0.75 V and 3.0 V for inputs greater than 50 mV , and the agc automatically adjusts the signal to a constant 2 Vac . This is the reference level for the subsequent distortion measuring circuits.

The agc circuitry is composed of attenuator R1431, U1331, U1431, R1432, and amplifier U1430. The control element in the agc is a pair of light-dependent resistors (LDR's), U1331 and U1431. These devices consist of alight emitting diode and a semiconduct or resistance cell in one package. As more control current is forced through the LED's, the cells are illuminated more brightly and their cell's resistance decreases. This shunts more signal to ground. Two LDRs are used in series with shunting resistors R1338 and R1339 to minimize distortion at the signal levels present.

The control circuitry for the agc consists of active rectifier, U1330B with diodes CR1332 and CR1333. The filters are composed of U1530A and U1530B and associated components. The circuitry seeks to keep the voltage at the out-
put pin 6 of low noise operational amplifier U1430 at about 2.0 V . This output voltage is varied to standardize the THD measurements by adjusting R1330, the DIST CAL control. The output of U1430 is fullwave rectified by U1330B with diodes CR1332, CR1333 and integrated by U1530A and C1533 with the reference current from R1330. Amplifier U1530B in conjunction with C1530, C1534, R1530 and R1531 provides additional filtering of the rectified voltage to reduce distortion introduced by the agc action. Transistor Q1530 provides the current drive necessary for the LDRs, while VR1430 linearizes the open loop gain of the agc loop to optimize transient response at all signal amplitudes.

Notch Filter

The leveled output from the agc (U1430) provides the input for the notch filter. The notch is formed by summing the output of an inverting band pass filter with the input signal. See Fig. 3-1. Operational amplifiers U1130, U1131 and their associated resistors and capacitors comprise the band pass filter. Amplifier U1020A is an inverting summer. Filter tuning is accomplished in half decade bands by switching both resistors and capacitors. Capacitors are switched each decade. Relay K1232 is energized for input

Fig. 3-1. Simplified notch filter and control loop.
frequencies below about 10 kHz . Below about 1 kHz K 1231 is also activated, while below about $100 \mathrm{~Hz} \mathrm{K1230}$, K1231, and K1232 are used. K1030 is energized in the upper half of each decade reducing resistances by a factor of three and scaling up frequency by three. Continuous tuning within each half decade is achieved by adjusting the impedance of an electronic resistor (U1131) with LDR opto isolators U1031 and U1032. As the LDR resistance rises, the electronic resistor value decreases, at the junction of U1031 and R1132, raising the filter frequency. Minor variations in the gain of the band pass filter (which would cause incomplete cancellation of the fundamental) are compensated by a third LDR, U1030. Drive signals for the LDRs come from the control loop circuitry. Synchronization signals to run the control loops come from the outputs of U1130 and U1120A.

Frequency Band Discriminator

The signal from U1120B is squared by a Schmitt trigger, composed of Q1400 and Q1401. The frequency band is determined by measuring the period of the resulting squarewave. When the input goes high, the outputs of U1500 change state. Assume the Q outputs have just gone high, starting the four re networks, connected to Q outputs of U1500, changing. The capacitor voltage on each network is compared via U 1610 to a reference voltage
developed across R1610, R1611, and R1612. When the input signal again goes high, the outputs of the comparators are latched in U1410. Simultaneously, the outputs of U1500 go low to discharge the capacitors in the re networks preparing for the next cycle.

If the period of the input is more than half the re time constant, the capacitor voltage will be above the threshold and the comparator output is high at the transition. See Fig. 3-2. Discrimination of half decades is obtained by selecting the appropriate rc network via a CMOS switch (U1600) and comparing it to a higher reference voltage at pin 6 of U1610B. The last column in Table 3-1 shows the inputs for U1600. If the input frequency is below the ban switch point of the selected decade (about 2.8 kHz for the 1 kHz to 10 kHz band) the output of U 1610 B is low. Resistors R1510, R1512, R1514 and R1518 provide a slight hysteresis at each decade edge, while R1515 provides hysteresis at the half decade points. This hysteresis prevents random band switching when measuring signals close to the transition frequencies.

A bounce eliminator, U1400, prevents random band changes caused by grossly nonperiodic signals. Capacitor C1400 sets the internal clock frequency of U1400 at about 100 Hz . The input state to U 1400 must be stable for four clock cycles or 0.04 seconds for any change in output to occur.

2958-11

Fig. 3-2. Typical frequency discriminator waveforms at about 800 Hz .

Table 3-1
TRUTH TABLE FOR U1400 OUTPUTS

Fin (Hz)	\bar{Q} U1410A pin 3	U1410C pin 10	Q U1410D pin 15	Q1410B pin 7	U1600 input pin no.
$9.5-28$	L	H	H	H	4
$28-95$	H	H	H	H	4
$95-280$	L	H	H	L	12
$280-950$	H	H	H	L	12
$950-2.8 \mathrm{k}$	L	H	L	L	14
$2.8 \mathrm{k}-9.5 \mathrm{k}$	H	H	L	L	14
$9.5 \mathrm{k}-28 \mathrm{k}$	L	L	L	L	13
$28 \mathrm{k}-110 \mathrm{k}$	H	L	L	L	13

Notch Filter Control

The notch filter is tuned by in-phase and quadrature phase (shifted 90°) components of the input fundamental signal. See Fig. 3-1. The in-phase component inputs to pin 2 of U1002A while the quadrature component inputs at pin 6 of U1002B. When the notch frequency is correctly tuned, there is no quadrature phase component at the notch filter output. When the fundamental null (maximum amplitude rejection) is adjusted correctly, there is no in-phase component in the notch filter output.

The notch filter output is amplified by U1020B and U1001B. A total of 50 dB of gain is provided by these amplifiers. Differential input to U 1000 is provided by U1001A. The output of the 50 dB amplifier stage is rectified by CR1001 and CR1002. This signal is amplified by Q1010 and filtered by C1013 to contro! the attenuation of Q1011. This automatic gain control loop serves to level the input to the phase detector at about 5 V peak or less. The amplifier gain is reduced by Q1012 in the lowest fundamental frequency decade.

As stated earlier the in-phase component of the output of the notch filter feeds pin 2 of U1002A. This circuitry forms a CMOS compatible logic signal to drive the CMOS multiplexer, U1000. The 90° phase shifted component similarly feeds pin 6 of U1002B. The switching arrangements of U1000 are shown in Table 3-2. The input to U1100A is switched betweenthe inverted (pins 1 and 13) and the normal (pins 2 and 12) output of the notched filter at a rate and phase determined by the in-phase signal at pin 10. The input to U1100B is also switched between the normal and inverted inputs to $\cup 1000$ at a rate and phase determined by the quadrature signal at pin 11.

The outputs of the synchronous demodulator are integrated by U1100A, for the amplitude control loop and U11008 for the frequency controlloop, buffered by Q1001 and Q1110, to drive the LDR opto-isolators in the notch filter. The net dc polarity of the signals at pins 15 and 14
determine, after passing through integrators U1100A and U1100B, the direction of frequency change and amplitude change necessary to properly set the notch frequency and null the fundamental. Adjustments R1100 and R1101 trim out the effects of offsets in the operational amplifiers enabling adjustment of the loops for best nulling of the fundamental frequency. When stabilized, the dc signal at pins 14 and 15 of U 1000 is essentially 0 V .

Table 3-2
INTERNAL CONNECTIONS IN U1000 DEPENDING ON LOGIC STATES OF PINS 10 AND 11

	11	10	Pins
	0	0	$12 \& 2$ to $14 \& 15$
	1	0	$13 \& 1$ to $14 ; 2 \& 12$ to 15
Logic	0	1	$12 \& 2$ to $14 ; 13 \& 1$ to 15
States	1	1	$13 \& 1$ to $14 \& 15$

Distortion Amplifier

This circuitry amplifies the distortion components from the THD notch filter or the IMD section, as well as providing additional gain for the three lowest input level ranges.

Multiplexer U1300, selects the input source for the distortion amplifier. The four sources are: input stage pins 5 and 14, input stage less 10 dB pins 1 and 13 (through R1212 and R1213) THD notch filter pins 2 and 4, and IMD pins 12 and 15. Control of U1300 is through the level and IMD switches, as well as the output of U1012A. In the IMD mode Q1300 turns on through Q1602. This action shorts the THD input to U1300 to prevent possible crosstalk.

The distortion amplifier gain is controlled by multiplexer U1210. The input to U1101B, attenuated by R1216, R1217 or R1218 is supplied from U1210. See Table 3-1. A gain of +46 dB is provided by U1101A and B. The output of U1101A supplies a 4 V rms full scale signal to the filters.

Table 3-3
GAIN AND SWITCHING THROUGH U1210

Pins 9	Gain through Dist Amp	U1310 gain	Internal connections pins
$0 \quad 0$	+6 dB	0 dB	13 to 2 and 1 to 3
0	1	+26 dB	0 dB
1	0	+46 dB	0 dB
1	1	+66 dB	13 to 2 and 5 to 3

Filters and Ac-Dc Converters

The output of the distortion amplifier enters the main board through P and $J 1300$ to drive the weighting filters and the distortion amplifier ranging level detector. The detector, composed of U1121A and U1121B full wave rectifies and filters the distortion amplifier output. This dc signal goes to the logic board to control auto-ranging of the distortion amplifier.

The weighting filters consist of U1210A, U1220 and U1321. Switch S1100B routes the signal through R1111, R1113, R1211, C1101 and C1211. These components comprise the 3 pole 80 kHz Butterworth low pass filter. Pressing S1100C routes the signal through R1110, R1112, R1210, C1102 and C1210 which comprise the 30 kHz low pass filter. Switch S1100D connects the 30 kHz low pass filter to the input of U1210A and inserts U1321 and associated components to supply the extra low and high frequency poles for " A " weighting response. A three pole 400 Hz Butterworth high pass composed of U1220 and associated components is activated by S1100A. An external filter connects into the circuit via S1100E through U1210B and the AUXILIARY INPUT at pin 5. Pin 6 of U1220 provides signal to the FUNCTION OUTPUT connector, through R1100.

After filtering, the signal is converted to a dc voltage by both rms and average techniques. Rms conversion is accomplished in U1201 (pin 10 out) using an implicit computing approach. The averaging capacitor is C1213. A low pass filter, U1310B, reduces noise in the readout.

The averaging rectifier is U1301 along with CR1301 and CR1302. The output from this rectifier is smoothed and filtered by U1310A, C1301, and associated components.

The average detector output connects to U1310B via Q1310 in the average response mode, overriding the rms converter.

dB Converter

The $d B$ section is fed by the dc output voltage from the rms or average detector. Shown on this schematic are the $d B$ converter, $d B / V$ olts switch, offset generator, $d B$ ratio circuit, and a voltage reference.

The $d B$ converter consists of quad operational amplifier U1312, transistor array U1222 and associated circuitry. The input to the converter is a $0-4 \mathrm{~V}$ dc signal from the rms or average detectors and the 6 V reference. The output is a dc signal at U1312A pin 1. This signal is
proportional to the log of the ratio of the dc input signal to the reference voltage as described in the relationship:

$$
E=C \cdot \log _{10} \frac{\text { IC for U1222A }}{\text { IC for U1222B }}
$$

C is a constant and Ic is the noted collector current. The converter output is zero when the input voltage is 1.55 V , with a scale factor of $-100 \mathrm{mV} / \mathrm{dB}$.

Operational amplifier U1312D provides a constant collector current in U1222B while holding the collector voltage at 0 . The collector of U1222A is held at 0 V by the action of U1312C. The collector current in U1222A varies with the input voltage. When the two collector currents are equal (at Vin $=1.550$ Volts), U1222A pin 2 is at 0 V and U1312C pin 8 is at 0 V . The offset voltage of the differential pair and U1312A is adjusted by R1341, which sets the 0 dB output level. Compensation for the offset voltage of U1312C is provided by R1245. This provides correct log conformity at low input voltages. Inversion of the dB output is provided by U1312A. Pin 1 of U1312A also provides the $d B$ voltage to the bar graph display.

The three remaining transistors in U1222 serve as heaters to maintain the differential pair (U1222A and B) at a constant temperature. The voltage at $U 1222$ pin 3 is proportional to the temperature of U1222B. This voltage is compared with the reference voltage and any error is amplified by U1312B. The amplified error signal drives Q1311 which supplies current to the heater transistors. The -20 dB Adjust, R1501, sets the temperature of the differential pair for the correct scale factor.

dB Ofisel Generator

The offset generator consists of U13130, U1231, and R1332. This circuitry provides a dc offset voltage that is added to the log converter output at the input of operational amplifier U1313C. This voltage is set by input from the logic section which indicates the gain in the signal path.

The reference voltage is divided by R1332into six offset voltages. Multiplexer U1231 selects one of these six voltages (or ground) and supplies it to U1313D. The gain setting resistor for U1313D, as well as a resistor in series with its output, is included in R1332. The offset output is supplied to U1313C through R1246.

This signal is routed to U1407, a multiplexer, which selects the dB-processed voltage ($+10 \mathrm{mV} / \mathrm{dB}$) or the voltage directly from the rms-average detectors. This voltage is supplied to the dvm section. In the distortion modes, R1400 provides a small offset so that the 0 dB reference is changed from . $775 \mathrm{~V}(0 \mathrm{dBm}$) to $1 \mathrm{~V}(100 \%)$. In the dB ratio mode, U1313C also adds the stored reference voltage from the dBr section.

dB Ratio Circuitry

The dB ratio circuitry allows selection of any input voltage as 0 dB . This is accomplished by adding a dc offset voltage from pin 15 of R1333 to pin 9 of U1313C. This causes 0 V at pin 8 of U1313C at the desired AA 501 input voltage.

Amplifiers U1331C and D with resistor network R1333 form a digital to analog converter which supplies the dc offset to the input of U1313C. This converter is driven by an 11 bit binary counter composed of U1321 and U1332. This counter is controlled by dual flip-flop U1531B which is supplied with a clock signal from the gated oscillator composed of U1431A and B.

When the $d B$ ratio button is pushed (grounded) a debounce circuit composed of U1431C and D causes pin 3 of U1531A to go high. A short time later, determined by R1441 and C1445, pin 4 of U1531A goes high terminating the high at pin 1. A positive pulse appears at $U 1531$ pin 1, resetting counters U1321 and U1332 and flip-flop U1531B. This allows the oscillator to start. The oscillator increments the counters changing the voltage offset. When the 0 dB reference button is pushed the counter starts with the most negative voltage offset and increments in the positive direction. The output of U1313C connects to comparator U1331B. When the output of U1313C is 0 V , U1331B pin 7 goes high. causing U1531B pin 12 to go low at the next clock pulse. This action stops the oscillator. Future dBr readings are referenced to this voltage. Pin 1 of U1331A goes positive a short time before U1331B pin 7. This switches the oscillator of a lower frequency through Q1447 and C1433 to prevent the circuits from overshooting the correct value.

6 V Reference

A $6 \vee$ reference voltage to the $d B$ converter, offset generator, dBr section, and dvm is provided by U1313A and VR1406.

Dvm

The dvm section accepts the dc voltage from the $d B$ converter or directly from the ac to dc converter and drives the digital display. The dvm input is proportional to the input signal voltage, the percent distortion or the $\log (\mathrm{dB})$ of the selected function. An LSI analog to digital converter with display drivers, U1111, drives the respective segments in LED display. Overrange indication is supplied internally in U1111. Reference voltage adjustment for the correct full scale reading is provided by R1218. Other external components support the internal operation of U1111.

The most significant LED module, DS1022, is controlled by U1201D and Q1201. This digit displays blank, 1 or 0 . The 0 is displayed only in the 0.2% distortion range.

If a decimal point is needed in LED display DS1020, pin 2 of U1201A is low. This assures that pin 11 of U1201D is also low and illuminates the two segments comprising the one (1) in the most significant digit module, DS1022. Pin 19 of U1111 is high when a 0 is required and low when a 1 is required. The one is changed to a zero by illuminating an additional four segments of DS1022. The minus sign to the left of the most significant digit module is used only in the dB mode. Q1210 prevents the minus sign from if luminating in any other mode.

The ten operational amplifiers, U1030A, B, U1130 and U1230 comprise the drivers for the bar graph display. The analog signal from the $d B$ converter is applied to the negative inputs of these amplifiers. The input resistance dividers are selected so that only one operational amplifier at a time is operating in the linear region. There is approximately 2.5 dB between each segment, with a slight overlap from one segment to the next.

Display Board

The four LED digit display modules and the sign module are illuminated by lowering the cathode voltages. The display module anodes and the state LEDs are operated from +5 V .

Pins 11 through 20 of DS1010, the bar graph display, are connected to -15 V . Pins 1 through 10 are driven by operational amplifiers in conformance with the anlog signal strength.

Logic Circuitry

The input signals to the logic section come from the front panel switches, the input stage level detector, and the distortion amplifier level detector. The logic circuitry controls the gain of the input stage and distortion amplifier, the dB offset generator, location of the decimal points and the function annunicator L.EDs.

Schematic 10 shows the logic switching circuitry.

On schematic 11 a presettable up-down counter, U1031, controls and gain of the input stage. In the manual ranges, the preset inputs are enabled by S1521-4. The proper input level range signals are supplied by S1521-1, 2 , and 3 . In the auto range position, the counter accepts clock inputs from level comparators U1221A and B. These signals pass from U1031 to U1011. They are decoded in U1011, a bcd to decimal decoder, to drive the input stage gain control lines.

A dc signal, proportional to the input signal amplitude appears at pin 4 of U1221A. The bias voltages on pins 5 and 6 of U1221A and B are such that pin 2 of U1221A goes low when the input signal is higher than the range the input stage is presently in. This low appears at pin 10 of U1031 which causes the binary up-down counter to count down. If the input attenuator is in the least sensitive range, a high exists on pin 1 of U1032A. A low then exists on pin 3 of U1032A which prevents the underrange LED from being illuminated. Pin 1 of U1221B is low when the input signal is lower than the input attenuator range. Pin 6 of U1032B is high in the most sensitive range. The up-down counter counts only when pin 5 is low. This occurs when the input signal level is higher than the attenuator range and the unit is not in the least sensitive position, or when the input signal is lower than the input attenuator range and the unit is not in the most sensitive range. The over-range and underrange LEDs are illuminated through Q1508 and Q1509 respectively. When the bases of these transistors are high, through the outputs of U1032A and U1032B, the lights are illuminated. The overrange and underrange lights are also controlled by the distortion amplifier gain in the level mode. These inputs, from U1407, are shown at the bases of transistors Q1509 and Q1508.

U1012A decodes the odd 10 dB steps in the input stage gain and supplies this information to the distortion amplifier control and to U1021 for decimal point and offset formatting purposes.

Distortion amplifier gain is controlled in a manner similar to the input circuitry gain. U1221C, and U1221D are the level comparator and U1132A, U1132B, and U1132D perform the enable gating function.

The gain control input for the distortion amplifier is selected by U1033, a 4 bit and/or selector. In the level mode pin 9 is high, pin 14 is low, and pins 6, 4, and 2 are routed to the outputs. This selects the Input Level Range Switch, S1521, as the gain control input. In the distortion modes, pin 14 is high, 9 is low and pins 7,5 and 3 are connected to the output. The distortion range switches now control the gain.

The signals from and to U1032C control the switching of U1033. A dc voltage proportional to the output of the distortion amplifier connects to pin 11 of U1221D. The operation of U1221 and U1132 are identical as described for the input stage up/down counter. These gates control up/down counter, U1131, for the distortion amplifier gain. A three to eight decoder driver, U1124, supplies decimal output for the distortion amplifier gain control circuitry.

A binary adder, U1021, shown on schematic 12, sums the gain of the input stage and the distortion amplifier. Pins 7, 53 and 6 provide input stage gain information. Pins

4 and 2 provide distortion amplifier gain information. This sum is decoded by U1022, and passes through CR1022, CR1025 and CR1028. These diodes drive U1012B and U1111 to operate the $\mu \mathrm{V}, \mathrm{mV}$, and Volts annunicator LEDs. The control source for the decimal points is selected by U1013, a 4 bit and/or selector which operates as a multiplexer. In the volts mode, the decimal points are controlled by the decoded decimal information from U1022 and the diodes. In the distortion modes, the decimal points are controlled by the distortion amplifier gain. Gain information from the distortion amplifier appears at pins $1,3,5$ and 7 . In the dB modes, U1013 is disabled, and Q1106 is turned on by U1112A or U1112B. This illuminates the proper decimal point for all dB displays.

A 4 bit and/or selector (U1123) operating as a mutliplexer, selects the control source for the dB offset generator. In the level mode, the offset is controlled by the sum at the output of U1021. In the distortion modes U1123 is controlled by the distortion amplifier gain.

Power Supplies

There are three operating voltages in the AA 501: + and -15 V dc and +5 V dc. The $\pm 15 \mathrm{~V}$ supplies the operational amplifiers, linear circuitry and CMOS, while $+V$ is used for the logic and display circuitry.

The +5 V dc supply is derived from the +11.5 V dc supply in the mainframe. A three terminal votlage regulator, U1523, provides +5 V and includes built-in current limiting. Additional overcurrent protection is provided by F1621.

The +15 V dc supply is regulated from the +33 V dc mainframe supply. The reference voltage, against which the regulator output, divided down by R1425 and R1426 is compared, is supplied by VR1401. Errors between the reference voltage and divided output are amplified by U1420B and Q1510. The mainframe NPN transistor and Q1513 form a Darlington series-pass transitor. Frequency compensation for stability is provided by R1521 and C1510. Current limiting is accomplished by Q1511 which senses the voltage across R1519. When the current delivered by the +15 volt supply exceeds about 500 mA , Q1511 turns on. This shunts base drive current from Q1513 lowering the output voltage. Fuse F1610 provides additional protection.

-15 V Supply

The -15 V is supplied from the -33 V dc in the mainframe. Amplifier U1420A compares the regulated +15 V supply with the -15 V through R1420 and R1421. Voltage differences are amplified by U1420A and Q1520.

Theory of Operation-AA 501

The mainframe PNP transistor and Q1522 form a Darlington series-pass transistor. Frequency compensation for stability is provided by R1520 and C1413. Current limiting is accomplished by Q1521 which senses the current through R1526. When the current delivered by the -15 volt supply exceeds about 500 mA , Q1521 turns on. This shunts base drive current away from Q1522 and lowers the output voltage of the power supply. Fuse F1620 provides additional protection.

Im Option

The IM analyzer is block diagramed in Fig. 3-3. In the difference frequency distortion mode (CCIF) the analyzer is a 9 pole Butterworth low pass filter at 1.1 kHz . Two poles of this filter are provided by U1310B and associated components. The CCIF signal then passes to the level sensor composed of Q1231, CR1325 and C1331. Depending on the position of jumper P1131 and the amplitude of low frequency components at the anode of CR135, multiplexer $\cup 1240$ selects the SMPTE signal at pin 2 or the CCIF signal at pin 3 . If 1 V of low frequency signal ($\leqslant 1.1 \mathrm{kHz}$) is present at the anode of CR1325, Q1231 turns on. If the jumper is in the automatic position, the collector of U1231 goes low. This lowers pins 9, 10, and 11 of U1240 and connects pin 2 to pin 14, the output. In the CCIF mode,
there is little power below 1.1 kHz . Under these conditions Q1231 is off, and pin 3 is connected to pin 14 of U1240.

The output of U1240 feeds buffer U1230B. The signals then pass through the remaining 7 poles of the 1.1 kHz low pass filter, comprised of U1230A, U1130A and U1130B, to the distortion amplifier.

In the SMPTE modes, the input signal passes through 7 poles of a 2 kHz high pass filter. This filter is composed of U1310A, U1215A and U1215B. The signal is full-wave rectified by U1115A and applied to the input of a voltage controlled amplifier U1115B. To maintain a constant signal amplitude of 3.6 V dc U1110A integrates the difference between this signal and a dc reference voltage. The current through the LED in gain control resistor U1100 maintains the gain of U1115B so that the output signal is at 3.6 Vdc . The rectified signal passes through a 30 Hz two pole high pass filter comprised of C1111, C1012, R1012 and R1013 to the input of U1110B. This ampiifier, along with C1023, C1024, C1025, R1111 and R1112, forms the first two poles of the 1.1 kHz low pass filter. Pin 7 of U1110B connects to multiplexer U1240. From this point, the signal is processed exactly the same as the CCIF signal.

Fig. 3-3. Intermodulation distortion option block diagram.

CALIBRATION

PERFORMANCE CHECK PROCEDURE

Introduction

This procedure checks the Electrical Performance Requirements as listed in the Specification section in this manual. Perform the internal adjustment procedure if the instrument fails to meet these checks. If recalibration does not correct the discrepancy, circuit troubleshooting is indicated. Also, use this procedure to determine acceptibility of performance in an incoming inspection facility. For convenience, many steps in this procedure check the performance of this instrument at only one value in the specified performance range. Any value within the specified range, within appropriate limits, may be sub-
stituted. The performance check may be done at any ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$.

Test Equipment Required

The test equipment listed in Table 4-1, or equivalent, is suggested to perform the performance check and the adjustment procedure.

WARNING

Exercise caution as dangerous voltages may be encountered in some of the following steps.

Table 4-1

SUGGESTED TEST EQUIPMENT

Description	Minimum Requirements	Performance Check Step	Adjustment Procedure Step	Recommended Equipment
Low distortion sinewave oscillator with IM test signal	$\leqslant 0.0008 \%$ THD 20 Hz to $20 \mathrm{kHz} ; \leqslant 0.0018 \%$, 10 Hz to 20 kHz and 20 kHz to 50 kHz ; $\leqslant 0.0032 \% 50 \mathrm{kHz}$ to 100 kHz .60 mV to $\geqslant 6 \mathrm{~V}$ rms, 10 Hz to 100 kHz . IM test signal capability.	$\begin{aligned} & 6,7,8,9,10,11 \\ & 11 A, 12,13,14 \end{aligned}$	8, 9, 10, 11, 11A	TEKTRONIX SG 505
Sinewave oscillator (2 required for alternate Step 11A)	Sinewave $600 \mu \mathrm{~V}$ to $\geqslant 5 \mathrm{~V}$ rms Frequency 20 Hz to $>300 \mathrm{kHz}$.	$\begin{aligned} & 4,6,9,10,11 \\ & 11 A, 12 \end{aligned}$	9, 10, 11, 11A	TEKTRONIX SG 502
Ac voltage calibrator	$\begin{aligned} & 100 \mu \mathrm{~V} \text { to } 180 \mathrm{~V} \\ & 10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \end{aligned}$	1, 2, 3, 15	$3,4,5,6,7$	Fluke 5200A and 5205A
Dvm	1 mV to 2 V	2, 13, 14		TEKTRONIX DM 505
Counter	60 Hz to 84 kHz @ 0.9 V	12		TEKTRONIX DC504
Bnc male to dual binding post adapter		$1,2,5,13,14,15$		

Table 4-1 (cont)

Description	Minimum Requirements	Performance Check Step	Adjustment Procedure Step	Recommended Equipment
50Ω coaxial cable with bnc connectors, 2 ea. (3 required for alternate Step 11A)		$\begin{aligned} & 4,6,7,8,9,10,11 \\ & 11 A, 12,13,14 \end{aligned}$	$8,9,10,11,11 \mathrm{~A}$	Tektronix Part No. 012-0057-01
Bnc female to dual banana adapter		$\begin{aligned} & 1,4,5,6,7,8,9 \\ & 10,11,11 A, 12,13 \\ & 14 \end{aligned}$	$8,9,10,11,11 \mathrm{~A}$	Tektronix Part No. 103-0090-00
Bnc T-adapter (2 ea. required for alternate Step 11A)		$6,9,10,11,11 \mathrm{~A}$	$9,10,11,11 \mathrm{~A}$	Tektronix Part No. 103-0030-00
Banana to alligator test leads to voltage calibrator		1, 2, 3, 15	$3,4,5,6,7$	Tektronix Part Nos. 012-0014-00 (black) and 012-0015-00 (red), $30^{\prime \prime}$
$18^{\prime \prime}$ banana test leads		2, 13, 14		Tektronix Part Nos. 012-0039-00 (black) and 012-0031-00 (red)
6" banana to banana patch cord		1, 3		Tektronix Part No. 012-0024-00
$1 \mathrm{k} \Omega$ resistor	0.1\%	$5,13,14$		Tektronix Part No. 321-0193-00
$100 \mathrm{k} \Omega$ resistor	0.1\%	1, 15		Tektronix Part No. 321-0385-04
Shorting plug		2	1, 2	Tektronix Part No. 134-0012-00

Performance Check Steps

Performance Check Steps

1. Check Input Impedance
2. Check Common Mode Rejection
3. Check Level Function Accuracy
4. Check Bandwidth
5. Check Residual Noise
6. Check Total Harmonic Distortion Accuracy
7. Check Residual Total Harmonic Distortion + Noise
8. Check Residual Intermodulation Distortion in the SMPTE/DIN Mode (Option 01 only)
9. Check Residual Intermodulation Distortion in the Check Residual Intermodulation Distortion in the
CCIF Difference Tone Test Mode (Option 01 only)
10. Check IM Distortion Accuracy, SMPTE Test (Option 01 only) - Option OT only)
11. Check IM Distortion Accuracy, CCIF Difference Tone Test (Option 01 only)
11A. Check IM Distortion Accuracy, CCIF Difference Tone Test (alternate procedure, omit if step 11 is Tone Test (alternate proced
performed, Option 01 only)
12. Check Filter Accuracy
13. Check INPUT MONITOR

List of Check and Adjustment Steps

14. Check FUNCTION OUTPUT

15. Check AUXILIARY INPUT

Adjustment Procedure Steps

1. Adjust Dist Amp Offset
2. Adjust Rms and Avg Zero
3. Adjust Volts and Avg Cal
4. Adjust Attn Comp
5. Adjust 0 dB Adj, -20 dB Adj and Input Zero
6. Adjust Offset Gain
7. Adjust dBr Zero
8. Adjust Null, Freq Trim and 3 H Null
9. Adjust Dist Cal
10. Adjust SMPTE Cal (Option 01 only)
11. Adjust Diff Freq Cal (Option 01 only)

11A. Check IM Distortion Accuracy, CCIF Difference Tone Test (alternate procedure, omit if step 11 is performed, Option 01 only)

NOTE
The AA 501 has selectable average or true rms measurement response. Unless specifically noted all performance checks may be performed using either response.

PERFORMANCE CHECK SUMMARY SHEET

This sheet may be duplicated and used as a short form performance check procedure. Perform the check and record the reading in the "Measured" column. Compare the reading with the upper and lower limits. After maintenance or adjustment again perform the procedure and compare the readings.

Date
Serial Number
Tested by

Step	Description	Minimum	Measured	Maximum
-				

1. Check Input Impedance

a. Connect the ac voltage calibrator to the input terminals of the AA 501 as shown in Fig. 4-1. Connect the black clip lead to the low terminal and the red clip lead to the high terminal of the voltage calibrator.
b. Make certain the FUNCTION LEVEL and VOLTS pushbuttons are pressed. All other pushbuttons out.
c. Set the INPUT LEVEL RANGE switch to the 2 V position.
d. Set the ac voltage calibrator to any frequency from 400 Hz to 1 kHz .
e. Set the ac voltage calibrator amplitude for an AA 501 display reading of 1.800 V .
f. Move the red clip lead from the red binding post to the free end of the $100 \mathrm{k} \Omega$ resistor.
g. CHECK—that the display reads between 0.891 and 0.909 .
h. Reverse the connector at the INPUT terminals of the AA 501.
i. CHECK-that the reading is between 0.891 and 0.909 .
j. Remove these connections from the front panel INPUT connector for the next step.

2. Check Common Mode Rejection

a. Set the ac voltage calibrator for an output frequency of 50 Hz .
b. Connect the test equipment as shown in Fig. 4-2.
c. Press the FUNCTION LEVEL and VOLTS pushbuttons. All other pushbuttons out.
d. Refer to Table 4-2.
e. CHECK-that the dvm reads according to the table for the listed input conditions.
f. Remove these connections for the next step.

Fig. 4-1. Check step 1. Input impedance.

Fig. 4-2. Check step 2. Common mode rejection.

Table 4-2
COMMON MODE REJECTION CHECK

INPUT LEVEL RANGE	Input Voltage $@ \mathbf{5 0 ~ H z}$	Maximum dvm Reading
$200 \mu \mathrm{~V}$	50 mV	1.580 V
2 mV	50 mV	158 mV
20 mV	50 mV	15.8 mV
200 mV	0.1 V	3.2 mV
600 mV	0.3 V	1 mV
2 V	1 V	3.2 mV
6 V	3 V	1.0 mV
20 V	10 V	3.2 mV
60 V	30 V	1.0 mV
200 V	100 V	3.2 mV

3. Check Level Function Accuracy

a. Connect the test equipment as shown in Fig. 4-3.
b. Set the voltage output of the ac calibrator and the INPUT LEVEL RANGE switch as listed in Table 4-3.
c. Press the FUNCTION LEVEL and VOLTS pushbuttons. All other pushbuttons out.

Table 4-3
LEVEL FUNCTION ACCURACY

Calibrator	INPUT LEVEL Voltage RANGE	Limits of Reading	
		$\begin{gathered} 20 \mathrm{~Hz}-20 \mathrm{kHz} \\ \pm 2 \% \end{gathered}$	$\begin{aligned} & 10 \mathrm{~Hz}-100 \mathrm{kHz}, \\ & \pm 4 \% \end{aligned}$
$100.0 \mu \mathrm{~V}$	$200 \mu \mathrm{~V}$	98.0 to 102.0	96.0 to 104.0
1.800 mV	2 mV	1.764 to 1.836	1.728 to 1.872
18 mV	20 mV	17.64 to 18.36	17.28 to 18.72
180 mV	200 mV	176.4 to 183.6	172.8 to 187.2
500 mV	600 mV	490 to 510	480 to 520
1.800 V	2 V	1.764 to 1.836	1.728 to 1.872
5.00 V	6 V	4.90 to 5.10	4.80 to 5.20
18.00 V	20 V	17.64 to 18.36	17.28 to 18.72
50.0 V	60 V	49.0 to 51.0	48.0 to 52.0
180.0 V	200 V	176.4 to 183.6	172.8 to 187.2
		- 94.0 to 104.0 above 50 kHz .	

The specified accuracy of commercially available ac calibrators is not adequate to directly check AA 501 performance at $100 \mu \mathrm{~V}$. To obtain an accurate $100 \mu \mathrm{~V}$ signal, connect a $1 \mathrm{~K} \Omega 0.1 \%$ resistor across the input of the AA 501 and a $100 \mathrm{~K} \mathrm{\Omega} 0.1 \%$ resistor in series

Fig. 4-3. Check step 3. Level function accuracy.
with the ac calibrator. These connections are similar to the test setups shown in Fig. 4-1 except that the + lead from the calibrator is connected to the free end of the 100 KQ resistor. As this comprises a 102 to 1 voltage divider (including AA 501 input impedance effects) setting the ac calibrator for 10.20 mV will cause the required $100 \mu \mathrm{~V}$ at the AA 501 input terminals.
d. CHECK-that the display reads within the limits as shown in Table 4-2.
e. Set the output of the voltage calibrator to 0.7746 V at any frequency from 20 Hz to 20 kHz .
f. Set the INPUT LEVEL RANGE switch to the 2 V position.
g. Make certain the FUNCTION LEVEL and dBm 600Ω pushbuttons are pressed.
h. CHECK-that the display reads within +0.3 dBm to -0.3 dBm .
i. Set the input voltage amplitude to any voltage $\geqslant 100 \mu \mathrm{~V}$ at any frequency from 20 Hz to 20 kHz .
j. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
k. Calculate the dBm equivalent of the input voltage using the formula

$$
\mathrm{dBm}=20 \times \log _{1} \quad \frac{\text { Input } V}{0.7746}
$$

I. CHECK—that the display reads within $\pm 0.3 \mathrm{~dB}$ of the calculated result.
m. Repeat parts e through k with the out put frequency of the generator set to any frequency between 10 Hz and 100 kHz .
n. CHECK—that the dBm readings are within $\pm 0.5 \mathrm{~dB}$.
o. Remove all connections from the front panel for the next step.

4. Check Bandwidth

a. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
b. Press the FUNCTION LEVEL and VOLTS pushbuttons. All other pushbuttons out.
c. Connect the SG 502 as shown in Fig. 4-4.
d. Set the SG 502 output frequency to 1 kHz at any convenient amplitude within the input range of the AA 501 such as 1 V .
e. Press the dB RATIO pushbutton and push and release the PUSH TO SET 0 dB REF pushbutton.

Fig. 4-4. Check step 4. Bandwidth.
f. Increase the frequency of the SG 502 until the display reads -3 dB .
g. CHECK-that the frequency of the SG 502 is $\geqslant 300 \mathrm{kHz}$.
h. Remove all connections from the front panel for the next step.

5. Check Residual Noise

a. Connect the test equipment as shown in Fig. 4-5.
b. Set the INPUT LEVEL RANGE to the $200 \mu \mathrm{~V}$ or the AUTO RANGE position. Press the 80 kHz LO PASS, 400 Hz HI PASS. FUNCTION LEVEL, VOLTS and RESPONSE pushbuttons. All other pushbuttons out.
c. CHECK-that the display reads $\leqslant 3.0 \mu \mathrm{~V}$.
d. Release the 80 kHz LO PASS and 400 Hz HI PASS pushbuttons.
e. Press the ' A ' weighting pushbutton.
f. CHECK-that the display reads $\leqslant 1.5 \mu \mathrm{~V}$.
g. Remove the male bnc to dual binding post adapter and $1 \mathrm{k} \Omega$ resistor for the next step.

6. Check Total Harmonic Distortion Accuracy

a. Connect the test equipment as shown in Fig. 4-6.
b. Make certain the SG 505 output is off.
c. Set the SG 505 output to any frequency from 20 Hz to 20 kHz .
d. Set the SG 505 output to the floating mode.
e. Set the SG 502 exactly to any harmonic frequency from 40 Hz to 100 kHz .
f. Set the INPUT LEVEL RANGE switch to the 2 mV position.
g. Press the FUNCTION LEVEL and VOLTS pushbuttons. All other pushbuttons out.

Fig. 4-5. Check step 5. Residual noise.

Fig. 4-6. Check steps 6, 9, 10, 11 and adjustment steps 9,10 , and 11. Total harmonic SMPTE and CCIF distortion and CCIF residual $I M$ distortion.
h. Set the output amplitude of the SG 502 for a display reading of $.600(600 \mu \mathrm{~V})$.
i. Change the INPUT LEVEL RANGE switch to the 200 mV position.
j. Turn on the SG 505 output.
k. Adjust the output amplitude of the SG 505 for a display reading of $60.0(60 \mathrm{mV})$.
I. Press the FUNCTION THD + N pushbutton.
m. CHECK—that the display reads from .9 to 1.1%.
n. Change the SG 505 output to any frequency from 10 Hz to 100 kHz .
o. Change the SG 502 to any harmonic frequency of the SG 505 between 20 Hz and 300 kHz .
p. CHECK-that the display reads within . 7 to 1.1%.
q. Remove all connections for the next step.

7. Check Residual Total Harmonic Distortion + Noise

NOTE

Care must be taken to minimize common mode signals appearing with signals to be analyzed. The AA 501 and SG 505, used in this step, must be properly installed in the same power module.
a. Connect the test equipment as shown in Fig. 4-7.
b. Press the FUNCTION LEVEL and VOLTS pushbuttons. All other pushbuttons out.
c. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
d. Set the SG 505 output amplitude $\geqslant 250 \mathrm{mV}$, the frequency from 20 Hz to 20 kHz and float the output.
e. Press the THD $+\mathrm{N}, 80 \mathrm{kHz}$ LOPASS, AUTORANGE, and VOLTS pushbuttons. All other pushbuttons out.

Fig. 4-7. Check step 7. Residual THD + N.
f. CHECK-that the display reads $\leqslant 0.0025 \%$.
g. Press the RESPONSE pushbutton.
h. CHECK-that the display reads $\leqslant 0.0032 \%$.
i. Release the 80 kHz LO PASS pushbutton.
j. Change the output frequency of the SG 505 to any frequency from 10 Hz to 50 kHz .
k. CHECK—that the display reads $\leqslant .0071 \%$.

1. Change the output frequency of the SG 505 to any frequency from 50 kHz to 100 kHz .
m. CHECK-that the display reads $\leqslant 0.010 \%$.
n. Leave this setup for the next step.
2. Check Residual Intermodulation Distortion in the SMPTE/DIN Mode (Option 01 only)
a. Connect the test equipment as shown in Fig. 4-8.
b. Make certain the INPUT LEVEL RANGE switch is in the AUTO RANGE position.
c. Make certain the FUNCTION LEVEL, VOLTS, and AUTO RANGE pushbuttons are pressed. All other pushbuttons out.
d. Set the output of the SG 505 to 7 kHz and turn on the intermodulation test signal set to 60 Hz or the output to 8 kHz and the intermodulation test signal to 250 Hz . See the Maintenance section for jumper selection information.
e. Set the output amplitude of the SG 505 to any value $\geqslant 250 \mathrm{mV}$.
f. Press the IMD pushbutton.
g. CHECK-that the display reads $\leqslant 0.0025 \%$.
h. Remove these connections for the next step.

9. Check Residual Intermodulation Distortion in the CCIF Difference Tone Test Mode (Option 01 only)

a. Connect the test equipment as shown in Fig. 4-6.
b. Turn the SG 505 output off.
c. Make certain the 60 Hz or 250 Hz IM test signal is off.

Fig. 4-8. Check step 8 and adjustment step 8. SMPTE residual intermodulation distortion.
d. Set the output frequency of the SG 502 to 14 kHz .
e. Set the INPUT LEVEL RANGE to the AUTO RANGE position.
f. Press the FUNCTION LEVEL, VOLTS, AUTO RANGE and RESPONSE RMS pushbuttons. All other pushbuttons out.
g. Set the output amplitude of the SG 502 to any voltage above 177 mV . Note the output amplitude as read on the AA 501 display.
h. Turn the SG 505 output on.
i. Set the output frequency of the SG 505 to 15 kHz and the output amplitude so the AA 501 display reads 1.414 times the amplitude noted in step g .
j. Press the IMD pushbutton.
k. CHECK-that the display reads $\leqslant 0.0025 \%$.
I. Leave these connections for the next step.

10. Check IM Distortion Accuracy, SMPTE Test (Option 01 only)

a. Connect the test equipment as shown in Fig. 4-6.
b. Set the Option 01 SG 505 for a 60 Hz IM test signal. Float the output.
c. Adjust the SG 502 output level for maximum attenuation.
d. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
e. Press the VOLTS, FUNCTION LEVEL, AUTO RANGE, and RESPONSE pushbuttons. All other pushbuttons out.
f. Adjust the SG 505 for an output frequency of 7 kHz and a 60 mV or greater composite test signal level as read on the AA 501 display.
g. Press the 400 Hz HI PASS pushbutton.
h. Note the AA 501 display reading.

1. Turn off the SG 505 output.
j. Adjust the SG 502 output frequency to 7.2 kHz with an output amplitude of exactly 10% of the reading noted in step h.
k. Turn on the SG 505 output.
I. Press the IMD pushbutton and release the 400 Hz HI PASS pushbutton.
m. CHECK-that the display reading is 9.00% to 11.00%.
n. Leave this setup for the next step.

11. Check IM Distortion Accuracy, CCIF Difference Tone Test (Option 01 only)

NOTE

Abstract

CCIF distortion is referenced to the level of either component of two equal amplitude test tones. The following procedure simplifies test instrumentation requirements and minimizes sources of potential error by omitting one of the two test tones. Because only one test tone is present the averaging response of the internal automatic set-level circuitry will cause readings to be high by a factor of exactly 1.273 $(4 \div \pi)$. If desired, the alternate procedure given in step 11A may be followed. This procedure provides two equal amplitude test tones. However, it requires an additional SG 505 or equivalent oscillator and extra cabling.

a. Connect the test equipment as shown in Fig. 4-6.
b. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
c. Make certain the VOLTS, LEVEL, AUTO RANGE, and RESPONSE pushbuttons are in. All other pushbuttons out.
d. Turn off the SG 505 output. Make certain the IM test signal is off. Float the output.
e. Adjust the SG 502 for a $250 \mathrm{~Hz}, 6.00 \mathrm{mV}$ output signal as indicated on the AA 501 display.
f. Press the 400 Hz HI PASS pushbutton.
g. Turn on the SG 505 output and adjust for an output frequency of 14 kHz , and a 60 mV output signal amplitude as displayed on the AA 501.
h. Press the IMD pushbutton and release the 400 Hz HI PASS pushbutton.
i. CHECK-that the display reads from 11.46% to 14.00\%.
j. Remove all connections for the next step.

11A. Check IM Distortion Accuracy, CCIF Difference Tone Test (alternate procedure, omit if step 11 is performed, Option 01 only)
a. Connect the test equipment as shown in Fig. 4-9.
b. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
c. Make certain the VOLTS, LEVEL, AUTO RANGE, and RESPONSE pushbuttons are in. All other pushbuttons out.
d. Turn off both SG 505 outputs. Make certain both outputs are floating.
e. Adjust the SG 502 for a $250 \mathrm{~Hz}, 4.24 \mathrm{mV}$ output signal as read on the AA 501 display.
f. Press the $400 \mathrm{~Hz} \mathrm{HI} \mathrm{PASS} \mathrm{pushbutton}$.
g. Turn on one SG 505 output and adjust this SG 505 for an output frequency of 14 kHz , with an amplitude of 42.4 mV as displayed on the AA 501.
h. Turn off this SG 505 output and turn on the remaining SG 505 output.
i. Adjust this SG 505 output for a frequency of 15 kHz , with an amplitude of 42.4 mV as displayed on the AA 501.
j. Turn on the first SG 505 output and note that the composite amplitude is approximately 60 mV .

Fig. 4-9. Check step 11A and adjustment step 11A. Alternate CCIF IM distortion accuracy.
k. Press the IMD pushbutton and release the 400 Hz HI PASS pushbutton.

1. CHECK-that the display reads from 9.00% to 11.00\%.
m. Remove all connections for the next step.

12. Check Filter Accuracy

a. Connect the test equipment as shown in Fig. 4-10.
b. Adjust the counter to read the input frequency.
c. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
d. Press the FUNCTION LEVEL, 400 Hz HI PASS and VOLTS pushbuttons. All other pushbuttons out. Set the output frequency of the SG 505 to 1 kHz and the output amplitude to 1 V .
e. Press the dB RATIO pushbutton.
f. Press and release the PUSH TO SET 0 dB REF pushbutton. Note that the display goes to all zeros.
g. Lower the frequency of the SG 505 until the display reads exactly -3.0 dB .
h. CHECK-that the frequency counter reading is from 380 Hz to 420 Hz .
i. Lower the output frequency of the SG 505 to 60 Hz .
j. CHECK-that the AA 501 display reads -40 dB or greater.
k. Return the SG 505 frequency to 1 kHz .
I. Release the 400 Hz HI PASS pushbutton and press the 30 kHz LO PASS pushbutton.
m. Raise the frequency of the SG 505 until the display reads -3.0 dB .
n. CHECK-that the counter reads from 28.5 kHz to 31.5 kHz .
o. Release the 30 kHz LO PASS pushbutton and press the 80 kHz LO PASS pushbutton.

Fig. 4-10. Check step 12. Filter accuracy.
p. Raise the frequency of the SG 505 until the AA 501 display reads -3.0 dB .
q. CHECK—that the oscillator frequency is from 76 kHz to 84 kHz .
r. Leave these connections for the next step.

13. Check INPUT MONITOR

a. Connect the test equipment as shown in Fig. 4-11.
b. Set the output amplitude of the oscillator to any voltage $\geqslant 50 \mathrm{mV}$ within the specified range of the instrument.
c. Set the output frequency to 1 kHz .
d. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
e. CHECK-that the output voltage is from .9 V to 1.1 V rms.
f. Connect a $1 \mathrm{k} \Omega 0.1 \%$ resistor in parallel with the INPUT MONITOR.
g. CHECK - that the dvm reading is one half of the value noted in step e within $\pm 2.5 \%$.
h. Leave the connection to the INPUT terminals for the next step.

14. Check FUNCTION OUTPUT

a. Connect the test equipment as shown in Fig. 4-12.
b. Set the INPUT LEVEL RANGE switch to the 2 V position.
c. Press the FUNCTION LEVEL and VOLTS pushbuttons.
d. Adjust the output amplitude of the SG 505 so that the AA 501 display reads 1.000 V .
e. CHECK -that the dvm reads from 0.95 to 1.05 V rms.

Fig. 4-11. Check step 13. Input monitor.

Fig. 4-12. Check step 14. Function output.
f. Connect a $1 \mathrm{k} \Omega 0.1 \%$ resistor in parallel with the FUNCTION OUTPUT.
g. CHECK-that the dvm reading is one half of the value noted in step f within $\pm 2.5 \%$.
h. Remove these connections for the next step.

15. Check AUXILIARY INPUT

a. Connect the test equipment as shown in Fig. 4-13.
b. Press the EXT FILTER pushbutton.
c. Adjust the voltage of the calibrator so that the display reads 1.000 V .
d. CHECK-that the voltage of the calibrator is from 0.97 V to 1.03 V .
e. Connect a $100 \mathrm{k} \Omega 0.1 \%$ resistor in series with the AUXILIARY INPUT.
f. CHECK-that the display reads from 0.488 V to 0.513 V .
g. Remove all connections.

This completes the Performance Check procedure.

Fig. 4-13. Check step 15. Auxiliary input.

INTERNAL ADJUSTMENT PROCEDURE

Introduction

This procedure should be performed if the instrument fails to meet the performance requirements of the electrical characteristics listed in the Specification section of this manual. To insure continued instrument accuracyit is recommended that adjustment be performed every 1000 hours of operation or every six to twelve months if used infrequently. Adjustment is also recommended following instrument repair or modification. Adjustments must be made at an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$.

Services Available

Tektronix, Inc. provides complete instrument repair and adjustment at local field service centers and at the factory service center. Contact your local Tektronix Field Office or representative for further information.

Test Equipment Required

The test equipment (or equivalent) listed in Table 4-1 is required for adjustment of the AA 501 . Specifications given for the test equipment are the minimum necessary for accurate adjustment. All test equipment is assumed to be correctly calibrated and oper ating within specification.

If other test equipment is substituted, the calibration setup may need to be altered to meet the requirements of the equipment used.

Adjustment Access

Use an extender cable (Tektronix Part No. 067-064502) to operate the plug-in outside the power module. Remove the top and both side covers of the AA 501 to gain access to the adjustments. All adjustments on the Input board are accessed from the top of the instrument. See the Adjustment Location illustration in the pullout pages at the back of this manual

1. Adjust Dist Amp Offset

a. Press the FUNCTION LEVEL and VOLTS pushbuttons.
b. Set the INPUT LEVEL RANGE switch to the $200 \mu \mathrm{~V}$ position
c. Short the INPUT terminals with the dual banana shorting bar. See Fig. 4-14.

Shorting bar

Fig. 4-14. Adjusiment test setup for steps 1 and 2.
d. Connect the test dvm set to read 0.0 mV to TP1310.
h. Remove the shorting bar for the next step.
e. ADJUST-R1320, Dist Amp Offset, for 0.0 mV $\pm 1 \mathrm{mV}$ on the dvm .
f. Leave the shorting bar for the next step.

2. Adjust Rms and Avg Zero

a. Make certain the INPUT is shorted. See Fig. 4-14.
b. Make certain the FUNCTION LEVEL and VOLTS pushbuttons are pressed.
c. Set the INPUT LEVEL RANGE switch to the 2 V position.
d. Press the RESPONSE pushbutton.
e. ADJUST-R1201, Rms Zero, for a reading of exactly .000 on the display.
f. Release the RESPONSE pushbutton.
g. ADJUST-R1300, Avg Zero, for a display reading of exactly 000.

3. Adjust Volts and Avg Cal

a. Make certain the FUNCTION LEVEL and VOLTS pushbuttons are pressed.
b. Make certain the INPUT LEVEL RANGE is set to the 2 V position.
c. Press the RESPONSE pushbutton.
d. Apply a 1 kHz sinewave of exactly 1.800 Vrms from the ac calibrator to the INPUT terminals. See Fig. 4-15.
e. ADJUST-R1218, Volts Cal, for a display reading of 1.800 ± 0.001.
f. Release the RESPONSE pushbutton.
g. ADJUST-R1301, Avg Cal, for a display reading of 1.800 ± 0.001.
h. Leave this setup for the next step.

Fig. 4-15. Adjustment test selup for steps 3, 4, 5, 6, and 7 .

Calibration-AA 501

4. Adjust Atin Comp

a. Make certain the FUNCTION LEVEL and VOLTS pushbuttons are pressed. All other pushbuttons out.
b. Make certain the INPUT LEVEL RANGE is set to the 2 V position.
c. Apply a 1.00 V 50 kHz sinewave from the ac voltage calibrator to the INPUT terminals. See Fig. 4-15.
d. Note the display reading.
e. Select the 20 V INPUT LEVEL RANGE position.
f. Set the ac voltage calibrator for a 10.00 V 50 kHz sinewave.
g. ADJUST-C1400, Attn Comp, for a display reading exactly ten times the reading noted in step d. Use an insulated low capacitance screwdriver for this adjustment.
h. Leave this setup for the next step.

5. Adjust $0 \mathrm{~dB} \mathbf{A d j},-20 \mathrm{~dB}$ Adj and Input Zero

a. Make certain the FUNCTION LEVEL pushbutton is pressed.
b. Press the $d B m 600 \Omega$ pushbutton.
c. Make certain the INPUT LEVEL RANGE switch is in the 2 V position.
d. Press the RESPONSE pushbutton.
e. Apply a 0.7746 V rms 1 kHz signal from the ac calibrator to the INPUT terminals. See Fig. 4-15.
f. ADJUST-R1341, 0 dB Adj, for a reading of exactly 00.0 .
g. Reduce the calibrator amplitude to 77.46 mV rms .
h. ADJUST-R1501, -20 dB Adj, for a reading of exactly -20.0.
i. Reduce the calibrator amplitude to 7.746 mV rms .
j. ADJUST-R1245, Input Zero, for a reading of $\mathbf{- 4 0 . 0}$ ± 0.2.
k. INTERACTION-Repeat steps e through juntil readings are correct.
I. Leave these connections for the next step.

6. Adjust Offset Gain

a. Use the same control settings as in the previous step except change the INPUT LEVEL RANGE switch to the 6 V position.
b. Apply a 0.7746 V rms 1 kHz signal from the ac calibrator to the FRONT PANELINPUT terminals. See Fig. 4-15.
c. ADJUST-R1246, Offset Gain, for a display reading of exactly 00.0.
d. Leave this setup for the next step.

7. Adjust dBr Zero

a. Use the same front panel control settings as in the previous step except press the dB RATIO pushbutton.
b. Make certain the output of the ac calibrator is 0.7746 V rms at 1 kHz . See Fig. 4-15.
c. Press and release the PUSH TO SET 0 dB REF pushbutton.
d. ADJUST-If the display does not read 00.0 adjust R1445, dBr Zero, slightly clockwise to correct a - error or counterclockwise for a + error.
e. INTERACTION-Repeat steps c and d until the display reads 00.0.
f. Remove all connections for the next step.

8. Adjust Null, Freq Trim and 3 H Null

NOTE

Although not necessary to perform this step, a dual channel oscilloscope may be of help. Connect the INPUT MONITOR to channel 1 and the FUNCTION OUTPUT to channel 2. Trigger on the channel 1 signal. Channel 1 shows the fundamental. R1101 and R1100 are adjusted for minimum fundamental at the FUNCTION OUTPUT while R1038 is adjusted for minimum 3rd harmonic.
a. Use the same AA501 control settings as for the previous step except change the INPUT LEVEL RANGE switch to 2 V . Press the 400 Hz HI PASS, THD $+\mathrm{n}, 0.2 \%$ and 30 KHz LO PASS pushbuttons.
b. Connect the test equipment as shown in Fig. 4-8.
c. Set the output frequency of the SG 505 for 500 Hz .
d. Make certain that the output level control on the SG 505 is at the 0 dBm position (1.55 V rms).
e. ADJUST-R1101, Null Trim, for the lowest display reading.
f. ADJUST-R1100, Freq Trim, for the lowest display reading.
g. Change the SG 505 frequency to 2.5 kHz .
h. ADJUST-R1038, 3 H Null, for the lowest display reading.
i. INTERACTION—repeat steps c, d, e, f, g and h to obtain the lowest possible reading.
j. Disconnect the SG 505 from the AA 501.

9. Adjust Dist Cal

a. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
b. Press the FUNCTION LEVEL, VOLTS, and AUTO RANGE pushbuttons. All other pushbuttons out.
c. Connect the test equipment as shown in Fig. 4-6.
d. Turn off the SG 505 output.
e. Adjust the SG 502 for an AA 501 display reading of 10 mV at 7 kHz .
f. Turn on the SG 505 output and set the frequency to 900 Hz .
g. Adjust the SG 505 output level to 1 V as displayed on the AA 501. Press the THD $+N$ pushbutton.
h. ADJUST-R1330, Dist Cal, for a reading of 1.000\%.
i. Leave these connections for the next step.

10. Adjust SMPTE Cal (Option 01)

a. Connect the test equipment as shown in Fig. 4-6.
b. Set the Option 01 SG 505 for a 60 Hz IM test signal. Float the output.
c. Adjust the SG 502 output level for maximum attenuation.
d. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
e. Press the VOLTS, FUNCTION LEVEL, AUTO RANGE, and RESPONSE pushbuttons. All other pushbuttons out.
f. Adjust the SG 505 for an output frequency of 7 kHz and a 60 mV or greater composite test signal level as read on the AA 501 display.
g. Press the 400 Hz HI PASS pushbutton.
h. Note the AA 501 display reading.
i. Turn off the SG 505 output.
j. Adjust the SG 502 output frequency to 7.2 kHz with an output amplitude of exactly 10% of the reading noted in step h.
k. Turn on the SG 505 output.
I. Press the IMD pushbutton and release the 400 Hz HI PASS pushbutton.
m. ADJUST-R1001, SMPTE Cal, for a display reading of 10.00%.
n. Leave this setup for the next step.

11. Adjust Diff Freq Cal (Option 01)

NOTE

CCIF distortion is referenced to the level of either component of two equal amplitude test tones. The following procedure simplifies test instrumentation requirements and minimizes sources of potential error by omitting one of the two test tones. Because only one test tone is present the averaging response of the internal automatic set-level circuitry will cause readings to be high by a factor of exactly 1.273 ($4 \div \pi$). If desired, the alternate procedure given in step 11A may be followed. This procedure provides two equal amplitude test tones. However, it requires an additional SG 505 or equivalent oscillator and extra cabling.
a. Connect the test equipment as shown in Fig. 4-6.
b. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
c. Make certain the VOLTS, LEVEL, 20\%, and RESPONSE pushbuttons are in. All other pushbuttons out.
d. Turn off the SG 505 output. Make certain the IM test signal is off. Float the output.
e. Adjust the SG 502 for a $250 \mathrm{~Hz}, 6.00 \mathrm{mV}$ output signal as indicated on the AA 501 display.
f. Press the $400 \mathrm{~Hz} \mathrm{HI} \mathrm{PASS} \mathrm{pushbutton}$.
g. Turn on the SG 505 output and adjust for an output frequency of 14 kHz , and a 60 mV output signal amplitude as displayed on the AA 501.
h. Press the IMD and release the 400 Hz HI PASS pushbuttons.
i. ADJUST-R1421, Diff Freq Cal, for a display reading of 12.73%.
J. This completes the AA501 Internal Adjustment procedure.

11A. Adjust Diff Freq Cal (alternate procedure, omit if step 11 is performed, Option 01 only)

a. Connect the test equipment as shown in Fig. 4-9.
b. Set the INPUT LEVEL RANGE switch to the AUTO RANGE position.
c. Make certain the VOLTS, LEVEL, 20%, and response pushbuttons are in. All other pushbuttons out.
d. Turn off both SG 505 outputs. Make certain both outputs are floating.
e. Adjust the SG 502 for a $250 \mathrm{~Hz}, 4.24 \mathrm{mV}$ output signal as read on the AA 501 display.
f. Press the $400 \mathrm{~Hz} \mathrm{HI} \mathrm{PASS} \mathrm{pushbutton}$.
g. Turn on one SG 505 output and adjust this SG 505 for an output frequency of 14 kHz , with an amplitude of 42.4 mV as displayed on the AA 501.
h. Turn off this SG 505 output and turn on the remaining SG 505 output.
i. Adjust this SG 505 output for a frequency of 15 kHz , with an amplitude of 42.4 mV as displayed on the AA 501.
j. Turn on the first SG 505 output and note that the composite amplitude is approximately 60 mV .
k. Press the IMD pushbutton and release the 400 Hz HI PASS pushbutton.
I. ADJUST一R1421, Diff Freq Cal, for a display reading of 10.00%.

[^4]
MAINTENANCE

GENERAL MAINTENANCE INFORMATION

Static-Sensitive Components

Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 5-1 for relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

Observe the following precautions to avoid damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers, on metal rail, or on conductive foam. Label any package that contains static-sensitive assemblies or components.
3. Discharge the static voltage from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies or components should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by the body, never by the leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only special antistatic suction type or wick type desoldering tools.

Table 5-1
RELATIVE SUSCEPTIBILITY TO STATIC DISCHARGE DAMAGE

Semiconductor Classes	Relative Susceptibility Levels
MOS or CMOS microcircuits or discretes. or linear microcircuits with MOS (Most Sensitive)	1
ECL	2
Schottky signal diodes	3
Schottky TTL	4
High-frequency bipolar transistors	5
JFETs	6
Linear microcircuits	7
Low-power Schottky TTL	8
TTL	9

${ }^{\text {a }}$ Voltage equivalent for levels:

$1=100$ to $500 \vee$	$4=500 \vee$	7	$=400$ to $1000 \vee$ (est.)
$2=200$ to $500 \vee$	$5=400$ to $600 \vee$	$8=900 \vee$	
$3=250 \vee$	6	$=600$ to $800 \vee$	$9=1200 \vee$

(Voltage discharged from a 100 pF capacit or through a resistance of 100 ohms.)

Cleaning

This instrument should be cleaned as often as operating conditions require. Loose dust accumulated on the outside of the instrument can be removed with a soft

Maintenance-AA 501

cloth or small brush. Remove dirt that remains with a soft cloth dampened in a mild detergent and water solution. Do not use abrasive cleaners.

```
CAUTION
```

To clean the front panel use freon, isopropyl alcohol, or denatured ethyl alcohol. Do not use petroleum based cleansing agents. Before using any other type of cleaner, consult your Tektronix Service Center or representative.

The best way to clean the interior is to blow off the accumulated dust with dry, low-velocity air (approximately $5 \mathrm{lb} / \mathrm{in}^{2}$) or use a soft brush or cloth dampened with a mild detergent and water solution.

Hold the board so the cleaning residue runs away from the connectors. Do not scrape or use an er aser to clean the edge connector contacts. Abrasive cleaning can remove the gold plating.

Circuit boards and components must be dry before applying power.

Obtaining Replacement Parts

Electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, it may be possible to obtain many of the standard electronic components from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, Inc., check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

note

When selecting replacement parts, remember that the physical size and shape of a component may affect its performance in the instrument.

Some parts are manufactured or selected by Tektronix, Inc., to satisfy particular requirements or are manufactured for Tektronix, Inc., to our specifications. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. To determine the manufacturer, refer to the Replaceable Parts list and the Cross Reference index, Mfr. Code Number to Manufacturer.

When ordering replacement parts from Tektronix, Inc., include the following information:

1. Instrument type and option number.
2. Instrument serial number.
3. A description of the part (if electrical, include complete circuit number).
4. Tektronix part number.

Soldering Techniques

WARNING

To avoid electric-shock hazard, disconnect the instrument from the power source before soldering.

The reliability and accuray of this instrument can be maintained only if proper soldering techniques are used when repairing or replacing parts. General soldering techniques which apply to maintenance of any precision electronic equipment should be used when working on this instrument. Use only $60 / 40$ rosin-core, electronic grade solder. The choice of soldering iron is determined by the repair to be made.

One circuit board in the AA 501 is a multilayer type board with a conductive path laminated between the top and bottom board layers. All soldering on this board should be done with extreme care to prevent breaking the connections to this conductive path. Only experienced maintenance personnel should attempt to repair the Input board. Do not allow solder or solder flux to llow under printed circuit board switches. The printed circuit board is part of the switch contacts; intermittent switch operation can occur if the contacts are contaminated.

When soldering on circuit boards or small wiring, use only a 15 watt, pencil type soldring iron. A higher wattage soldering iron can cause the etched circuit wiring to separate from the board base material and melt the insulation from small wiring. Always keep the soldering iron tip properly tinned to ensure the best head transfer to the solder joint. Apply only enough heat to remove the component or to make a good solder joint. To protect heat sensitive components, hold the component lead with a pair of long-nose pliers between the component body and the solder joint. Use a solder removing wick to remove excess solder from connections or to clean circuit board pads.

Semiconductors

To remove in-line integrated circuits use an extracting oool. This tool is available from Tektronix, Inc.; order Tektronix Part Number 003-0619-00. If an extracting tool is not available, use care to avoid damaging the pins. Pull slowly and evenly on both ends of the integrated circuit. Try to avoid disengaging one end before the other end

Interconnecting Pins

Several methods of interconnection including square pin and coaxial cable, are used to electrically connect the circuit boards with other boards and components.

Coaxial Cables

If the coaxial cable to the FUNCTION OUTPUT front panel connector is damaged replace the entire cable assembly. Other coaxial cables in the AA 501 can be replaced or repaired as necessary.

Square Pin Assemblies

See Fig. 5-1. These pins are of various lengths. They are attached to each other with a plastic strip. To remove them, simply unsoider from the circuit board.

Fig. 5-1. Typical square pin assembly.

Multipin Connectors

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the wires. To replace damaged mutlipin connectors, remove the old pin connector from the holder. Do this by inserting a scribe between the connector and the holder and prying the connector from the holder. Clamp the replacement connector to the wire. Reinstall the connector in the holder.

If the individual end lead pin connectors are removed from the plastic holder, note the order of the individual wires for correct replacement in the hoider. For proper replacement see Fig. 5-2.

Fig. 5-2. Orientation and disassembly of multipin connectors.

Circuit Board Removal

Fig. 5-3 shows the removal and replacement of instrument side covers. Next remove the six screws attaching the top cover and rear panel as shown in Fig. 5-4. Next unsolder the leads from the circuit board to the INPUT connectors. Remove the INPUT LEVEL RANGE knob.

Fig. 5-3. Side cover removal or replacement.

Fig. 5-4. Top and rear panel removal.

Disconnect all cables attached to the front panel display board. Finally, remove the two screws attaching the main board and one screw attaching the logic board to the plugin frame as shown in Fig. 5-5. After the remaining cables to the front panel have been removed, all boards can now be lifted from the plug-in frame. To further disassemble the boards, remove the interconnecting cables and the screws holding the boards to each other via spacers.

2958-48

Fig. 5-5. Screws attaching the board assemblies to the plug-in frame.

Assembly is the reverse of disassembly. Make certain that the cables over the tops of the boards are positioned so that the tracks attached to the instrument top do not rest on the cables.

Front Panel Latch Removal

To disassemble the latch, pry up on the pull tab bar attached to the latch assembly. The latch components can now be removed from the instrument.

Magnetic Shield

The shield attached to the rear plate of the AA 501 is heat treated to enhance its magnetic shielding properties. The benefits of this treatment will be destroyed by mechanical stresses applied to this part. As such, care should be taken not to drop or mechanically deform or bend this shield during service operations.

Jumper Selection for CCIF, AUTO, or SMPTE/DIN Measurements

To change the jumper position, remove the left side cover. See Fig. 8-2 for jumper location. With the jumper on the left two pins Option 01 instruments are locked in the CCIFIMD mode. With the jumper on the center two pins, the unit automatically selects either CCIF or SMPTE/DIN modes as determined by the input signals. With the jumper on the right two pins the unit is locked in the SMPTE/DIN mode.

30 kHz Filter Modification

The 3 dB point of the 30 kHz LO PASS can be modified to 22.4 kHz or 20 kHz by changing three resistor values. The 22.4 kHz modification is useful in certain acoustic measurements. The 20 kHz modification is useful in high fidelity audio work. The 30 kHz filter is allowed by the Federal Communications Commission for proof of performance testing of broadcast equipment.

To change the 3 dB point to 22.4 kHz , change the values of R1110, R1112, and R1210 to $21 \mathrm{k} \Omega 1 / 8 \mathrm{~W}, 1 \%$ resistors, Tektronix Part Number 321-0320-00. To change the 3 dB point to 20 kHz , change the values of the same three resistors to $23.7 \mathrm{k} \Omega, 1 / 8 \mathrm{~W}, 1 \%$ resistors, Tektronix Part Number 321-0325-00.

REAR INTERFACE INFORMATION

FUNCTIONS AVAILABLE AT REAR CONNECTOR

Slots exist between pins 17 and 18 and 6 and 7 on the rear interface connector. The slot between pins 6 and 7 identifies the AA 501 as a member of the TM 500 family. Insert a barrier in the corresponding position of the power module jack to prevent noncompatible plug-ins from being inserted in slots wired for the AA 501. This protects the plug-in if specialized connections are made to that compartment. Consult the Building A System section of the power module manual for further information. Signal inputs, outputs, or other specialized connections may be made to the rear interface connectors as shown in the input output assignmentsillustration (Fig. 5-6). A description of these connections follows.

+ and - Input Connectors (28B, 28A)

These terminals are connected to the input of the AA 501 when the REAR INTFC INPUT button on the front panel is pressed. The front panel INPUT connectors are disconnected in this mode. The characteristics of these terminals are identical with the front panel INPUT connectors except the maximum input voltage is limited to 42 V peak or 30 Vrms . Due to the possibility of crosstalk at the rear interface, noise and distortion performance may be degraded.

Input Common (27B, 27A)

These are the common (ground) connections for the rear interface input.

Auxiliary Input (25B)

This terminal is connected in parallel with the front panel AUXILIARY INPUT connector. Maximum input voltage is 15 V peak and limited to 6 V peak for linear operation.

Auxiliary Input Ground (26B)

Use this connection as a ground return for the auxiliary input.

Function Output (23B)

This connector is in parallel with the front panel FUNCTION OUTPUT connector.

Function Output Ground (24B)

Use this connector for the return circuit for the function output.

Input Monitor (24A)

This terminal is in parallel with the front panel INPUT MONITOR connector.

Input Monitor Ground (23A)

Use this connector as the return circuit for the INPUT MONITOR.

SMPTE HF Output (21B)

The high frequency component of a SMPTE test signal is provided at this jack. This signal can be monitored on a spectrum analyzer or oscilloscope. The range is typically from 0.5 V to 3 V . The amplitude varies with the input signal level and the low to high frequency amplitude ratio. The output impedance is $2 \mathrm{k} \Omega$.

SMPTE HF Output Ground (22B)

Use this connector as the ground return for the SMPTE HF output.

Converter Output (20A)

This connector provides a dc output from the ac to dc converter. This level corresponds to the average or rms output as selected on the front panel. The output level is $1 \mathrm{~V} \pm 5 \%$ for a 1000 count display. The source resistance is $500 \Omega \pm 5 \%$.

dB Converter Output (19B)

This connector provides a dc output from the logarithmic dB converter. The output voltage is 10 mV $\pm 5 \%$ for each 1 dB on the display. The source resistance is $1 \mathrm{k} \Omega \pm 5 \%$. Changes in input level range or distortion range will cause brief ac transients.

dB Converter Output Ground (20B)

Use this connector as the ground return for the dB converter output.

Fig. 5-6. Rear interface connector assignments.

OPTIONS

Option 01 instruments measure SMPTE/DIN intermodulation distortion and CCIF two tone difference frequency distortion. Information about this option is located in the appropriate sections of this manual.

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix. Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mir. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS

Abbreviations conform to American National Standard Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

Read: Resistor 1234 of Assembly 23

Example b.

Read: Resistor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly $A 1$ with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates parti number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

Mrr. Code	Manufacturer	Address	City, State, Zip
000GS	A P PRODUCTS, INC.	BOX 110	PAINESVILLE, OHIO 44077
00853	SANGAMO ELECTRIC CO., S. CAROLINA DIV.	P O BOX 128	PICKENS, SC 29671
01002	general electric Company, industrial		
	AND POWER CAPACITOR PRODUCTS DEPARTMENT	JOHN STREET	HUDSON FALLS, NY I2839
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR	P O BOX 5012, 13500 N CENTRAL	
	GROUP	EXPRESSWAY	DALLAS, TX 75222
02111	SPECTROL ELECTRONICS CORPORATION	17070 EAST GALE AVENUE	CITY OF INDUSTRY, CA 91745
02735	RCA CORPORATION, SOLID STATE DIVISION	ROUTE 202	SOMERVILLE, NY 08876
03508	GENERAL ELECTRIC COMPANY, SEMI-CONDUCTOR		
	Products department	ELECTRONICS PARK	SYRACUSE, NY 13201
04222	AVX CERAMICS, DIVISION OF AVX CORP.	P O BOX 867, 19TH AVE. SOUTH	MYRTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
07263	FAIRCHILD SEMICONDUCTOR, A DIV. OF		
	FAIRCHILD CAMERA AND INSTRUMENT CORP.	464 ELLIS STREET	MOUNTAIN VIEW, CA 94042
08806	GENERAL ELECTRIC CO., MINIATURE		
	LAMP PRODUCTS DEPARTMENT	NELA PARK	CLEVELAND, OH 44112
12969	UNITRODE CORPORATION	580 PLEASANT STREET	WATERTOWN, MA 02172
13511	AMPHENOL CARDRE DIV., BUNKER RAMO CORP.		LOS GATOS, CA 95030
14433	1 IT SEMICONDUCTORS	3301 ELECTRONICS WAY	
		P O BOX 3049	WEST PALM BEACH, FL 33402
14552	MICRO SEMICONDUCTOR CORP.	2830 F FAIRVIEW ST.	SANTA ANA, CA 92704
14752	ELECTRO CUBE INC.	1710 S. DEL MAR AVE.	SAN GABRIEL, CA 91776
17856	SILICONIX, INC.	2201 LAURELWOOD DRIVE	SANTA CLARA, CA 95054
18178	VACTEC, INC.	2423 NORTHLINE INDUSTRIAL BLVD.	MARYLAND HEIGHTS, MO 63043
18324	SIGNETICS CORP.	811 E. ARQUES	SUNNYVALE, CA 94086
19396	ILLINOIS TOOL WORKS, INC. PAKTRON DIV.	900 FOLLIN LANE, SE	VIENNA, VA 22180
21317	ELECTRONIC APPLICATIONS COMPANY	2213 EDWARDS AVENUE	SOUTH EL MONTE, CA 91733
22526	BERG ELECTRONICS, INC.	YOUK EXPRESSWAY	NEW CUMBERLAND, PA 17070
24355	ANALOG DEVICES INC.	RT 1 INDUSTRIAL PK, P O BOX 280	NORWOOD, MA 02062
24546	CORNING GLASS WORKS, ELECTRONIC		
	COMPONENTS DIVISION	550 HIGH STREET	BRADFORD, PA 16701
24931	SPECIALITY CONNECTOR CO., INC.	2620 ENDRESS PLACE	GREENWOOD, IN 46142
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	Santa clara, Ca 95051
32293	INTERSIL, INC.	10900 N. TANTAU AVE.	CUPERTINO, CA 95014
32997	BOURNS, INC., TRIMPOT PRODUCTS DIV.	1200 Columbia ave.	RIVERSIDE, CA 92507
50157	MIDWEST COMPONENTS INC.	P. O. BOX 787	
		1981 PORT CITY BLVD.	MUSKEGON, MI 49443
50434	HEWLETT-PACKARD COMPANY	640 Page MILL ROAD	PALO ALTO, CA 94304
50522	MONSANTO CO., ELECTRONIC SPECIAL		
	PRODUCTS	3400 HILLVIEW AVENUE	PALO ALTO, CA 94304
50558	ELECTRONIC CONCEPTS, INC.	526 INDUSTRIAL WAY WEST	EATONTOWN, NJ 07724
50579	LITRONIX INC.	19000 HOMESTEAD RD.	CUPERTINO, CA 95014
54473	MATSUSHITA ELECTRIC, CORP. OF AMERICA	1 PANASONIC WAY	SECAUCUS, NJ 07094
55210	GETTIG ENG. AND MFG. COMPANY	PO BOX 85, OFF ROUTE 45	SPRING MILLS, PA 16875
55680	NLCHICON/AMERICA/CORP.	6435 N PROESEL AVENUE	CHICAGO, IL 60645
56289	SPRAGUE ELECTRIC CO.	87 MARSHALL ST.	NORTH ADAMS, MA 01247
71400	BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO.	2536 W. UNIVERSITY ST.	ST. LOUIS, MO 63107
71590	CENTRALAB ELECTRONICS, DIV. OF		
	GLOBE-UNION, INC.	P 0 Box 858	FORT DODGE, IA 50501
71744	CHICAGO MINIATURE LAMP WORKS	4433 RAVENSWOOD AVE.	CHICAGO, IL 60640
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W .12 TH ST.	ERIE, PA 16512
73138	beckman instruments, inc., helipot div.	2500 HARBOR BLVD.	FULLERTON, CA 92634
78488	Stackpole carbon co.		ST. MARYS, PA 15857
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
90201	MALLORY CAPACITOR CO., DIV. OF	3029 E. WASHINGTON STREET	
	P. R. MALLORY AND CO., INC.	P. O. BOX 372	INDIANAPOLIS, IN 46206
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601
95348	GORDOS CORPORATION	250 GLENWOOD AVENUE	BLOOMFIELD, NJ 07003

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
Al0	670-6525-00		CKT BOARD ASSY:DISPLAY	80009	670-6525-00
All	670-6524-00		CKT BOARD ASSY:DVM	80009	670-6524-00
Al2	--- --		CKT BOARD ASSY:CONTROL LOGIC (NOT REPLACEABLE ORDER 672-0883-00)		
Al3	670-6521-00		CKT BOARD ASSY:IMD (OPTION 01 AND 02 ONLY)	80009	670-6521-00
A14	670-6522-00		CKT BOARD ASSY: INPUT AND NOTCH FILTER	80009	670-6522-00
A15	670-6520-00		CKT BOARD ASSY:MAIN (STANDARD ONLY)	80009	670-6520-00
A15	670-7502-00		CKT BOARD ASSY:MAIN (OPTION O2 ONLY)	80009	670-7502-00

Al 0	------ -----
Al0DS 1010	150-1083-00
Al0DS 1020	150-1053-00
Al0DS 1022	150-1053-00
Al0DS 1030	150-1053-00
Al0DS 1032	150-1053-00
A10DS 1040	150-1053-00
Al0DS 1041	150-1061-00
Al0DS 1042	150-1061-00
Al0DS 1050	150-1061-00
Al0DS 1052	150-1061-00
Al0DS2020	150-1061-00
Al0DS2022	150-1061-00
A10DS2040	150-1061-00
Al0DS2050	150-1061-00
A10J1012	131-1857-00
Al0J 2020	131-1857-00
A10J2030	131-2238-00
A10J2040	131-1857-00
Al0R1040	315-0681-00
Al0R2020	315-0681-00

CKT BOARD ASSY: DISPLAY		
LAMP, LED RDOUT: RED 10 ELEM BAR GRAPH	50579	RBG-1000
LAMP, LED RDOUT:ORANGE, 7 SEG,0.4 DIGIT	58361	Q3411
LAMP, LED RDOUT: ORANGE, 7 SEG,0.4 DIGIT	58361	Q3411
LAMP, LED RDOUT: ORANGE, 7 SEG,0.4 DIGIT	58361	Q3411
LAMP, LED RDOUT:ORANGE, 7 SEG,0.4 DIGIT	58361	Q3411
LAMP, LED RDOUT:ORANGE, 7 SEG,0.4 DIGIT	58361	Q3411
LT EMITTING DIO: RED,660NM,50MA MAX	27014	SJ62775
LT EMITTING DIO:RED,660NM,50MA MAX	27014	SJ62775
LT EMITTING DIO:RED, $660 \mathrm{NM}, 50 \mathrm{MA}$ MAX	27014	SJ62775
LT EMITTING DIO:RED,660NM,50MA MAX	27014	SJ62775
LT EMITTING DIO:RED,660NM,50MA MAX	27014	SJ62775
LT EMITTING DIO:RED,660NM,50MA MAX	27014	SJ62775
LT EMITTING DIO:RED, $660 \mathrm{NM}, 50 \mathrm{MA}$ MAX	27014	SJ62775
LT EMITTING DIO:RED,660NM,50MA MAX	27014	SJ62775
TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
CONN,RCPT, ELEC:CKT BD, $2 \times 20, \mathrm{MALE}$	000Gs	OBD
TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
RES.,FXD, CMPSN: 680 OHM, 5\%,0.25W	01121	CB6815
RES.,FXD, CMPSN: 680 OHM , 5\%,0.25W	01121	CB6815

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
All	- ---		CKT BOARD ASSY:DVM		
AllC1020	285-1098-00		CAP., FXD, PLSTC: $0.22 \mathrm{UF}, 10 \%, 80 \mathrm{~V}$	56289	192P2249R8
Al1C1021	281-0813-00		CAP.,FXD CER DI:0.047UF,20\%,50V	04222	GC705-E-473M
AllCl120	281-0775-00		CAP., FXD, CER DI:0.1UF, 20%, 50V	72982	8005D9AAB25U104M
AllCl220	281-0809-00		CAP., FXD, CER DI: 200PF, $5 \%, 100 \mathrm{~V}$	72982	8013T2ADDClG201J
AllJl111	131-2238-00		CONN, RCPT, ELEC:CKT BD, $2 \times 20, \mathrm{MALE}$	000GS	OBD
AllJ1221	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
AllQ1201	151-0302-00		TRANSISTOR:SILICON,NPN	07263	5038487
Al1Q1210	151-0188-00		TRANSISTOR:SILICON, PNP	04713	SPS6868K
AllR1001	315-0821-00		RES.,FXD, CMPSN: 820 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8215
AllR1002	315-0821-00		RES.,FXD,CMPSN:820 OHM,5\%,0.25W	01121	CB8215
AllR1003	315-0431-00		RES., FXD, CMPSN:430 OHM ,5\%,0.25W	01121	CB4315
AllR1004	315-0431-00		RES., FXD , CMPSN: 430 OHM , 5\%,0.25W	01121	CB4 315
AllR1005	315-0821-00		RES.,FXD,CMPSN: 820 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8215
AllR1006	315-0821-00		RES., FXD, CMPSN: 820 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB82 15
AllR1021	315-0102-00		RES.,FXD,CMPSN: 1 K OHM,5\%,0.25W	01121	CB1025
AllR1022	315-0511-00		RES., FXD, CMPSN: 510 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5115
All 1024	315-0203-00		RES., FXD, CMPSN: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2035
Al1R1025	115-0332-00		RES., FXD, CMPSN: 3.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
AllR1026	315-0332-00		RES., FXD, CMPSN: 3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
AIIRI031	315-0335-00		RES., FXD, CMPSN:3.3M OHM, 5\%, 0.25 W	01121	CB3355
AllR1032	315-0335-00		RES., FXD, CMPSN: 3.3 M OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB3355
AllR1033	315-0474-00		RES.,FXD,CMPSN:470K OHM,5\%,0.25W	01121	CB4745
AllR1034	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
AllR1035	315-0513-00		RES., FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
AllR1036	315-0514-00		RES.,FXD, CMPSN:510K OHM , 5\%,0.25W	01121	CB5 145
AllR1037	315-0335-00		RES.,FXD, CMPSN:3.3M OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB3355
AllR1038	315-0335-00		RES.,FXD, CMPSN:3.3M OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB3355
All 1039	315-0824-00		RES.,FXD, CMPSN:820K OHM , 5\%,0.25W	01121	CB8245
All 1040	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
AllR104 1	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
AllR1042	315-0624-00		RES.,FXD,CMPSN:620K OHM,5\%,0.25W	01121	CB6245
AllR1102	315-0431-00		RES.,FXD, CMPSN: 430 OHM , 5\%,0.25W	01121	CB4315
AllR1103	315-0431-00		RES.,FXD, CMPSN: 430 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4315
AllR1104	315-0431-00		RES., FXD, CMPSN: 430 OHM , 5\%, 0.25W	01121	CB4315
AllR1105	315-0431-00		RES., FXD, CMPSN: 430 OHM , 5\%,0.25W	01121	CB4 315
AllR1121	315-0474-00		RES., FXD, CMPSN:470K OHM, 5\%,0.25W	01121	CB4745
AllR1122	315-0753-00		RES., FXD, CMPSN: 75 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7535
AllR1125	315-0332-00		RES.,FXD, CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
AllR1126	315-0332-00		RES.,FXD, CMPSN:3.3K OHM, 5\%,0.25W	01121	C83325
Al1R1127	315-0332-00		RES.,FXD,CMPSN:3.3K OHM, 5\%,0.25W	01121	CB3325
Al1R1128	315-0332-00		RES.,FXD,CMPSN:3.3K OHM, 5\%,0.25W	01121	CB3325
Al1R1130	315-0335-00		RES., FXD, CMPSN: 3.3 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3355
AllR1131	315-0335-00		RES.,FXD,CMPSN:3.3M OHM,5\%,0.25W	01121	CB3355
Al1R1132	315-0513-00		RES.,FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5 135
Al1R1133	315-0125-00		RES., FXD, CMPSN: $1.2 \mathrm{M} \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1255
Al1R1134	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
AllR1135	315-0225-00		RES., FXD, CMPSN: $2.2 \mathrm{M} \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB2255
Al1R1136	315-0335-00		RES., FXD, CMPSN:3.3M OHM , 5\%,0.25W	01121	CB3355
Al1R1137	315-0335-00		RES. , FXD, CMPSN; 3.3M OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB3355
AllR1138	315-0305-00		RES., FXD, CMPSN: 3 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3055
Al1R1139	316-0156-00		RES., FXD, CMPSN: 15 M OHM, $10 \%, 0.25 \mathrm{~W}$	01121	CB1561
Al1R120]	315-0203-00		RES.,FXD, CMPSN: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2035
Al1R1202	315-0512-00		RES., FXD, CMPSN: 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 125
AllR1212	315-0153-00		RES.,FXD, CMPSN: 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
Al1R1216	321-0199-00		RES.,FXD,FILM: 1.15 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11500F
Al1R1217	321-0269-00		RES.,FXD,FILM:6.19K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G61900F

Component ${ }^{\text {No. }}$	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
Allri2l8	311-1565-00		RES., VAR, NONWIR : 250 OHM, 20\%, 0.50W	73138	91-87-0
Allri225	315-0332-00		RES.,FXD, CMPSN: 3.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
A) 1R1226	315-0332-00		RES., FXD, CMPSN:3.3K OHM , 5\%,0.25W	01121	CB3325
Allri227	315-0332-00		RES.,FXD, CMPSN:3.3K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	Св3325
AllR1228	315-0332-00		RES., FXD, CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
AllR1230	315-0335-00		RES., FXD, CMPSN:3.3M OHM, 5\%,0.25W	01121	CB3355
Allri231	315-0335-00		RES., FXD, CMPSN:3.3M OHM $5 \%, 0.25 \mathrm{~W}$	01121	CB3355
Allri232	315-0513-00		RES.,FXD,CMPSN:51K OHM,5\%,0.25W	01121	CB5135
Allri233	315-0914-00		RES., FXD, CMPSN:910K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB9145
Allri234	315-0135-00		RES., FXD, CMPSN: 1.3 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1355
Allri235	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
Allri236	315-0513-00		RES., FXD, CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al1R1237	315-0513-00		RES., FXD, CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Allul030	156-0495-00		MICROCIRCUIT, LI: OPNL AMPL	27014	LM324N
Allu1111	156-1435-00		microcirlcuit,li:a/d conv,3.5 dicit	32293	ICL7107CPL
Allull30	156-0495-00		microcircuit, Li:OPNL Ampl	27014	LM324N
Allut201	156-0030-00		microcircuit, di quad 2-InPut nand gate	01295	SN7400(N OR J)
A1101230	156-0495-00		MICROCIRCUIT, LI: OPNL AMPL	27014	LM324N

Component No.	Tektronix Part No.	Serial/Model No. Eft Dscont	Name \& Description	Mfr Code	Mif Part Number
Al2	-- ----		CRT BOARD ASSY:CONTROL LOGIC		
Al 2Cl132	281-0775-00		CAP.,FXD, CER DI:0.1UF, 20\%,50V	72982	8005D9AABZ5U104M
Al 2Cl 204	290-0748-00		CAP., FXD, ELCTLT: $10 \cup \mathrm{~F},+50-10 \%, 20 \mathrm{~V}$	56289	500D149
Al2Cl212	281-0775-00		CAP., FXD, CER DI:0.1UF, 20\%,50V	72982	8005D9AAB25U104M
Al2C1220	281-0775-00		CAP., FXD, CER DI:0.1UF,20\%,50V	72982	8005D9AABZ5U104M
A12C1312	281-0775-00		CAP., FXD,CER DI:0.1UF,20\%,50V	72982	8005D9AAB25U104M
Al2C1433	281-0772-00		CAP.,FXD, CER DI : $0.0047 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	GC701C472K
Al2C1434	281-0814-00		CAP.,FXD,CER DI: $100 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	GC70-1-A101K
A12C1445	281-0773-00		CAP.,FXD,CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	GC70-1C103K
Al2CR1021	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
A12CR1022	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
Al2CR1023	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al2CR1024	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1 N4152R
A12CR1025	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al2CR1026	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
Al2CR1027	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1 N4152R
A12CR1028	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1 N4152R
A12CR1029	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
A12CR1121	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
A12CR1220	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
A12CR1400	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al2CR1401	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
Al2CR1431	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
Al2J1001	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
A12J1002	131-1426-00		CONTACT SET, ELE: R ANGLE, $0.250 \mathrm{~L}, \mathrm{STRIP}$ OF 36	22526	65524-136
Al2J1101	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
Al2J1102	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
Al2Jl201	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
Al2J1301	131-1934-00		TERM. SET, PIN: $1 \times 36,0.1$ CTR,0.9 L	22526	65539-001
A12J1401	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS	22526	65500136
A12J1503	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN, ON 0.1 CTRS	22526	65500136
A12J1530	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
A12Q1101	151-0190-00		TRANSISTOR: SILICON, NPN	07263	S032677
A12Q1102	151-0190-00		TRANS ISTOR: SILICON, NPN	07263	S032677
A12Q1103	151-0190-00		TRANSISTOR:SILICON,NPN	07263	S032677
Al2Q1104	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A12Q1105	151-0190-00		TRANSISTOR: SILICON, NPN	07263	S032677
Al2Q1106	151-0190-00		TRANSISTOR: SILICON, NPN	07263	S032677
Al 2 Q1113	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
Al2Ql 203	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
Al2Q1204	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
Al2Q1205	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A12Q1311	151-0301-00		TRANSISTOR:SILICON, PNP	27014	2N2907A
A12Q1447	151-1025-00		TRANSISTOR:SILICON, JFE, N-CHANNEL	01295	SFB8129
Al2Q1508	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487
A1201509	151-0302-00		TRANSISTOR:SILICON, NPN	07263	5038487
Al 2R1002	315-0223-00		RES.,FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1031	315-0512-00		RES.,FXD,CMPSN: 5.1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5125
Al2R1041	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
Al2R1042	315-0513-00		RES.,FXD,CMPSN: 5 IK OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A12R1043	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1101	315-0513-00		RES.,FXD,CMPSN:51K OHM, 5\%, 0.25 W	01121	CB5 135
Al2R1111	315-0223-00		RES.,FXD,CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1112	315-0223-00		RES.,FXD,CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1113	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1114	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
Al2R1115	315-0223-00		RES.,FXD, CMPSN:22K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
A12R1116	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
A12R1117	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1118	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1119	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al 2R1120	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
A12R1130	315-0513-00		RES.,FXD,CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
Al2R1131	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A12R1133	315-0684-00		RES.,FXD,CMPSN: 680 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6845
Al2R1134	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1135	315-0513-00		RES., FXD,CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
AI2R1136	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1137	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
Al2R1138	315-0513-00		RES \therefore, FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al2R1139	315-0684-00		RES., FXD, CMPSN: 680 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6845
Al2R1201	321-0336-00		RES., FXD, FILM:30.9K OHM, 1\%,0.125W	91637	MFF1816G30901F
Al2R1202	315-0223-00		RES.,FXD,CMPSN:22K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1211	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
A12R1212	315-0223-00		RES.,FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
Al2R1213	321-0205-00		RES., FXD, FILM:1.33K OHM, 1\%,0.125W	91637	MFF1816G13300F
Al2R1214	321-0324-00		RES., FXD, FILM: 23.2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G23201F
Al2R1215	321-0222-00		RES.,FXD,FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
Al2R1216	315-0103-00		RES.,FXD,CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al2R1217	315-0513-00		RES., FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5 135
Al2R1218	315-0202-00		RES.,FXD,CMPSN:2K OHM,5\%,0.25W	01121	CB2025
Al2R1219	321-0023-01		RES., FXD, FILM: 16.9 OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816G16R90D
Al2R1221	315-0103-00		RES., FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al2R1222	321-0609-07		RES., FXD, FILM 480 OHM $0.0 .1 \%, 0.125 \mathrm{~W}$	91637	MFFI816C480ROB
Al2R1223	315-0513-00		RES., FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
Al2R1224	315-0202-00		RES.,FXD,CMPSN:2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
Al2R1225	315-0363-00		RES.,FXD, CMPSN:36K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3635
A12R1226	315-0513-00		RES., FXD,CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
Al2R1230	315-0511-00		RES., FXD,CMPSN: $510 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	C85115
A12R1231	315-0511-00		RES.,FXD,CMPSN:510 OHM, 5\%,0.25W	01121	CB5115
Al2R1232	315-0103-00		RES.,FXD,CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A12R1233	315-0103-00		RES.,FXD,CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al2R1234	315-0103-00		RES., FXD,CMPSN:10K ОHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A12R1235	315-0202-00		RES., FXD, CMPSN:2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
A12R1236	321-0153-00		RES., FXD, FILM: 383 OHM, 1\%,0.125	91637	MFF1816G383ROF
A12R1237	321-0777-00		RES.,FXD,FILM: 5.14 K OHM, $1 \%, 0.125 \mathrm{~W}$	24546	NA55D5141F
A12R1240	321-0222-00		RES., FXD, FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
Al2R1241	315-0360-00		RES., FXD, CMPSN: 36 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3605
A12R1242	315-0513-00		RES., FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
A12R1245	311-1556-00		RES., VAR,NONWIR:50K OHM, 20\%,0.50W	73138	91-78-0
Al2R1246	311-1562-00		RES., VAR, NONWIR: 2 K OHM, 20\%,0.50W	73138	91-84-0
Al2R1301	321-0753-06		RES.,FXD,FILM: 9 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816C90000C
Al2R1302	321-0318-07		RES.,FXD,FILM: 20 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	24546	NES5E2002B
Al2R1311	321-0638-00		RES.,FXD,FILM:7.96K ОНM, 1\%,0.125W	24546	NA55D7961F
Al2R1312	315-0475-00		RES., FXD, CMPSN:4.7M ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4755
A12R1313	315-0103-00		RES., FXD,CMPSN:10K OHM, 5\%,0.25W	01121	CB1035
A12R1320	315-0511-00		RES., FXD, CMPSN: 510 OHM, 5\%,0.25W	01121	CB5115
A12R1332	307-0685-00		RES., NTWK, FXD FI: OFFSET	80009	307-0685-00
A12R1333	307-0686-00		RES., NTWK, FXD FI: DBR	80009	307-0686-00
A12R1334	315-0153-00		RES.,FXD,CMPSN: 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
A12R1335	315-0241-00		RES., FXD, CMPSN: 240 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2415
Al2R1341	311-1556-00		RES., VAR, NONWIR: 50 K OHM, 20\%,0.50W	73138	91-78-0
A12R1400	321-0995-00		RES., FXD, FILM: 549 K OHM, $1 \%, 0.125 \mathrm{~W}$	24546	NA55D5493F
A12R1401	321-0323-00		RES., FXD,FILM: 22.6 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G22601F

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mfr Part Number
Al2R1402	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al2R1403	315-0104-00		RES.,FXD,CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al2R1404	321-0193-01		RES.,FXD, FILM: 1 K OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000D
A 12 R 1405	321-0193-01		RES., FXD, FILM: 1 K OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000D
Al2R1406	315-0122-00		RES.,FXD, CMPSN:1.2K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
A 12 R 1407	321-0614-00		RES.,FXD, FILM: 10.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10101F
A) 2R1409	321-0208-00		RES.,FXD,FILM: 1.43 K OHM, 1\%,0.125 W	91637	MFF1816G14300F
Al2R1410	321-0816-03		RES.,FXD,FILM: 5 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D50000C
A12R1411	315-0512-00		RES.,FXD,CMPSN:5.1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5125
A12R1412	321-0318-07		RES.,FXD,FILM: 20 K ОНM, $0.1 \%, 0.125 \mathrm{~W}$	24546	NE55E2002B
Al2R1413	321-0318-07		RES.,FXD,FILM: 20 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	24546	NE55E2002B
A 12 R 1414	321-0312-00		RES.,FXD,FILM: 17.4 K OHM, 1\%,0.125 W	91637	MFFi816G17401F
A12R1420	321-0316-00		RES.,FXD,FILM: 19.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G19101F
A12R1431	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C85135
A12R1432	315-0104-00		RES.,FXD,CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A12R1435	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A12R1436	315-0224-00		RES.,FXD, CMPSN: 220 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2245
A12R1441	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A12R1442	315-0104-00		RES.,FXD,CMPSN:100K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A12R1443	315-0131-00		RES., FXD,CMPSN:130 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C81315
A12R1444	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al2R1445	311-1556-00		RES., VAR, NONWIR:50K OHM, 20\%,0.50W	73138	91-78-0
A12R1501	311-1339-00		RES.,VAR, NONWIR: 5 K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	89-131-1
Al2R1503	321-0397-00		RES.,FXD, FILM:133K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G13302F
A12R1504	315-0362-00		RES., FXD, CMPSN: 3.6 K о $\mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB3625
Al2R1505	321-0960-07		RES., FXD, FILM:513 OHM, $0.1 \%, 0.125 \mathrm{~W}$	24546	NE55E5130B
Al2R1506	315-0392-00		RES., FXD, CMPSN: 3.9 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3925
Al2R1507	315-0362-00		RES., FXD, CMPSN: 3.6 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3625
Al2Rl508	315-0303-00		RES.,FXD, CMPSN:30K OHM, 5\%,0.25W	01121	CB3035
Al2R1509	315-0303-00		RES., FXD, CMPSN: 30 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3035
A12R1510	315-0392-00		RES., FXD, CMPSN: 3.9 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3925
Al2R1511	321-0294-00		RES., FXD, FILM: 11.3 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11301F
Al2R1512	315-0513-00		RES.,FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
Al2R1513	315-0513-00		RES., FXD, CMPSN:51K OHM,5\%,0.25W	01121	CB5 135
Al2R1514	315-0513-00		RES., FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
A12R1515	315-0513-00		RES.,FXD,CMPSN:51K OHM, 5\%,0.25W	01121	CB5 135
Al2S1411	260-1997-00		SWITCH, PUSH: 4 BUtTON, 2 \& 4 POLE,LEVEL M	71590	2KВмо310001302
Al2S1531	260-1996-00		SWITCH, PUSH: 1 BUTTON, 4 POLE, INPUT	71590	2KAB0010001169
Al2TP1200	214-0579-00		TERM, TEST POINT: BRS CD PL	80009	214-0579-00
Al2TP1240	214-0579-00		TERM, TEST POINT: BRS CD PL	80009	214-0579-00
Al2TP1410	214-0579-00		term, TEST POINT: brS CD PL	80009	214-0579-00
Al2U1011	156-0756-00		microcircuit,di:bCD to decimal decoder	80009	156-0756-00
Al201012	156-0575-00		microcircuit, di:3 input nor gate	80009	156-0575-00
Al2U1013	156-0505-00		Microcircuit, di:4 bit and/Or SEl	04713	MC14519BCL
Al2U1021	156-0502-02		microcircuit, di:4 bit adder, SElected	80009	156-0502-02
Al 201022	156-0756-00		microcircuit, di: bCD to decimal decoder	80009	156-0756-00
Al2U1031	156-0582-00		MICROCIRCUIT, Di : Binary up/down Counter	04713	MC14516BCL
Al2U1032	156-0349-01		microcircuit,di:Quad 2-input nor gate	80009	156-0349-01
A12U1033	156-0505-00		microcircuit, di:4 bit and/or sel	04713	MC145198CL
Al201111	156-0577-00		microcircuit, di:quad 2 input and gate	80009	156-0577-00
A1201112	156-0350-01		microcircuit, di quad 2-input nand gate	80009	156-0350-01
Al2U1122	156-0349-01		microcircuit, di: Quad 2-infut nor gate	80009	156-0349-01
A12U1123	156-0505-00		microcircuit, di:4 bit and/or Sel	04713	MC14519BCL
Al2U1124	156-0756-00		microcircuit, di:bCo to decimal decoder	80009	156-0756-00
A1201131	156-0582-00		microcircuit,di binary up/down counter	04713	MC14516BCL
A)2U1132	156-0349-01		microcircuit, di:quad 2-input nor gate	80009	156-0349-01
Al2U1221	156-0411-00		microcircuit,li:QUAD-COMP, SGl SUPPLY	27014	LM339N

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mfr Part Number
Al2U1222	156-0048-00		microcircuit, Li:five npn transistor array	02735	CA3046
Al2U1231	156-0513-00		microcircuit, di:8-chan mux	80009	156-0513-00
Al2U1312	156-1200-00		microcircuit, Li: operational ampl	01295	TL074CN
A1201313	156-1200-00		microcircuit, li:operational ampl	01295	TL074CN
Al2U1321	156-0579-00		Microcircuit, di:dual 4-bit bin counter	04713	MC14520BCL
A12U1331	156-1200-00		microcircuit, Li : operational ampl	01295	TLO74CN
Al2U1332	156-0579-00		MiCROCIRCUIT, di:dUAL 4-bit bin counter	04713	MC14520BCL
Al 2 U 1407	156-0515-00		Microcircuit, di: driple $^{\text {3-Chan mux }}$	80009	156-0515-00
Al2U1431	156-0350-01		microcircuit, di : Quad 2-input nand gate	80009	156-0350-01
A12U1531	156-0366-00		MICROCIRGUIT, Di : DUAL D-TYPE F-F	80009	156-0366-00
Al2VR1203	152-0278-00		SEMICOND DEVICE:2ENER,0.4W,3V,5\%	04713	SZG35009K20
A12VR1406	152-0486-00		SEMICOND DEVICE:ZENER,0.25W,6.2V,5\%	80009	152-0486-00

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mfr Part Number
A13	-		CRT BOARD ASSY: IMD		
A13C1011	290-0804-00		CAP., FXD, ELCTLT: 10UF, +50-10\%, 25V	55680	25ULAIOV-T
Al3C1012	283-0167-00		CAP.,FXD, CER DI:0.1UF, $10 \%, 100 \mathrm{~V}$	72982	8131N145X5R0104K
A13C1021	290-0536-00		CAP., FXD, ELCTLT: 10UF, $20 \%, 25 \mathrm{~V}$	90201	TDC $106 \mathrm{M025FL}$
A13C1022	290-0719-00		CAP, ,FXD, ELCTLT: $47 \mathrm{UF}, 20 \%, 25 \mathrm{~V}$	56289	196D476X0025TE3
Al3C1023	285-0598-00		CAP.,FXD, PLSTC:0.01UF, $5 \%, 100 \mathrm{~V}$	01002	61F10AC103
A13C1024	285-0598-00		CAP., FXD, PLSTC:0.01UF, 5\%, 100V	01002	61F10AC103
Al3C1025	283-0067-00		CAP., FXD, CER DI:0.001UF, 10\%, 200V	72982	835-515B102K
Al3C1031	285-1056-00		CAP., FXD, PLSTC: 1 UF, $2 \%, 50 \mathrm{~V}$	14752	650B1A105G
Al3C1032	290-0524-00		CAP., FXD, ELCTLT: $4.7 \mathrm{UF}, 20 \%$, 10 V	90201	TDC475M010EL
Al3C1041	285-1050-00		CAP., FXD, PLSTC:0.1UF, $1 \%, 200 \mathrm{~V}$	14752	230B1C104F
Al3C1111	283-0167-00		CAP., FXD, CER DI: $0.1 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	72982	8131 N145X5R0104K
Al3C1121	285-1100-00		CAP.,FXD, PLSTC: $0.022 \mathrm{UF}, 5 \%, 200 \mathrm{~V}$	19396	223J02PT485
Al3C1131	285-1130-00		CAP.,FXD, PLSTC: $0.22 \mathrm{UF}, 1 \%, 100 \mathrm{~V}$	50558	MH12D224F
Al3C1145	281-0775-00		CAP., FXD, CER DI:0.1UF, $20 \%, 50 \mathrm{~V}$	72982	$8005 \mathrm{D9AABZ5U104M}$
A13C1146	281-0775-00		CAP., FXD, CER DI: 0.1 l ($, 20 \%, 50 \mathrm{~V}$	72982	8005 D9AAB25U104M
Al3C1201	285-0643-00		CAP., FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
Al3C1202	285-0643-00		CAP, , FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
A13C1203	285-0643-00		CAP., FXD, PLSTC : $0.0047 \mathrm{UF}, 5 \%, \mathrm{~J} 00 \mathrm{~V}$	56289	410 P 374
Al3C1221	285-1066-00		CAP., FXD, PLSTC : $0.05 \mathrm{UF}, 1 \%, 200 \mathrm{~V}$	14752	230B1C503F
A13C1222	285-1130-00		CAP., FXD, PLSTC:0.22UF, $1 \%, 100 \mathrm{~V}$	50558	M ${ }^{\text {1 2 } 2224 F}$
Al3C1223	285-0643-00		CAP., FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
A13C1224	285-0643-00		CAP, , FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
Al3C1231	285-1050-00		CAP., FKD, PLSTC: $0.1 \mathrm{~L}, 1 \%, 200 \mathrm{~V}$	14752	230B1C104F
Al3C1301	285-0643-00		CAP., FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
Al 3Cl 302	285-0643-00		CAP., FXD, PLSTC:0.0047UF, 5%, 100V	56289	410 P 374
Al3C1303	285-1100-00		CAP., FXD, PLSTC : $0.022 \mathrm{UF}, 5 \%, 200 \mathrm{~V}$	19396	223J02PT485
Al3C1311	281-0763-00		CAP., FXD, CER DI: $47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	72982	8035D9AADCIG470K
A13C1312	281-0763-00		CAP.,FXD, CER DI:47PF, $10 \%, 100 \mathrm{~V}$	72982	8035D9AADC1G470K
A13C1321	285-0643-00		CAP., FXD, PLSTC: $0.0047 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 374
A13C1331	290-0804-00		CAP., FXD, ELCTLT: $100 \mathrm{~F},+50-10 \%, 25 \mathrm{~V}$	55680	25ULAIOV-T
Al3C1401	285-0702-00		CAP.,FXD, PLSTC:0.033UF, $5 \%, 100 \mathrm{~V}$	56289	410 P 33351
Al3CR1101	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1 N 4152 R
Al3CR1211	152-0322-00		SEMICOND DEVICE:SILICON,15V, HOT CARRIER	50434	5082-2672
Al3CR1212	152-0322-00		SEMICOND DEVICE:SILICON,15V, HOT CARRIER	50434	5082-2672
Al3CR1325	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1 N 4152 R
A13J1041	131-1426-00		CONTACT SET, ELE:R ANGLE, $0.250 \mathrm{~L}, \mathrm{STRIP}$ OF 36	22526	65524-136
Al3J1101	131-1426-00		CONTACT SET, ELE: R ANGLE, 0.250L, STRIP Of 36	22526	65524-136
A13J1131	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
Al3J1401	131-1426-00		Contact set, ele:r angle, $0.250 \mathrm{~L}, \mathrm{STRIP}$ Of 36	22526	65524-136
A) 3 J 1411	131-1426-00		CONTACT SET, ELE: R ANGLE, $0.250 \mathrm{~L}, \mathrm{STRIP}$ OF 36	22526	65524-136
Al3Q1011	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
Al3Q1231	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A13R1001	311-1245-00		RES.,VAR, NONWIR: 10 K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	72-28-0
Al 3R1002	321-0314-01		RES., FXD, FILM: 18.2 K OHM, $0.5 \%, 0.125 \mathrm{~W}$	91637	MFF1816G18201D
Al 3R1011	321-0371-00		RES.,FXD,FILM: 71.5 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G71501F
Al3R1012	315-0163-00		RES.,FXD, CMPSN: $16 \mathrm{~K} 0 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1635
Al 3R1013	315-0623-00		RES.,FXD, CMPSN:62K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6235
Al 3R1030	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
Al3R1031	321-0237-00		RES.,FXD,FILM: 2.87 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G28700F
Al 3R1032	321-0237-00		RES.,FXD,FILM: 2.87 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G28700F
Al3R1101	301-0361-00		RES.,FXD, CMPSN: 360 OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB3615
Al3R1111	321-0724-00		RES.,FXD,FILM: 13.6 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	CMF110216G13601F
Al3R1112	321-0724-00		RES.,FXD,FILM: 13.6 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	CMF110216G13601F
Al3R1121	321-0926-07		RES.,FXD,FILM: 4 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF $1816 \mathrm{C40000B}$
Al 3 R 1122	321-0926-07		RES., FXD, FILM: 4 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF 1816 C 40000 B
Al3R1123	321-0222-07		RES.,FXD,FILM:2K OHM, 0.1\%,0.125W	91637	MFF1816C20000B

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
Al3R1124	321-0926-07		RES., FXD, FILM: 4 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C40000B
Al3R1131	321-0169-00		RES., FXD, FILM: 562 OHM, 1\%, 0.125 W	91637	MFF1816G562ROF
A13R1132	321-0215-00		RES.,.FXD,FILM:1.69K OHM, 1\%,0.125W	91637	MFF1816G16900F
A13R1135	321-0194-00		RES., FXD, FILM: 1.02 K OHM, 1\%,0.125 W	91637	MFF1816G10200F
Al3R1141	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
Al3R1142	315-0102-00		RES.,FXD,CMPSN:1K OHM, 5\%,0.25W	01121	CB1025
Al3R1201	321-0331-00		RES., FXD, FILM: 27.4 K OHM, 1\%,0.125W	91637	MFF1816G27401F
Al3R1202	321-0291-00		RES.,FXD,FILM: 10.5 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G10501F
Al3R1203	321-0291-00		RES., FXD, FILM: 10.5 K оНM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G10501F
Al3R1211	315-0332-00		RES.,FXD,CMPSN:3.3K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
Al3R1212	315-0202-00		RES.,FXD,CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
Al3R1213	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
Al3R1216	321-0373-00		RES.,FXD,FILM:75K OHM, 1\%,0.125W	91637	MFF1816G75001F
Al3R1217	321-0249-00		RES.,FXD,FILM:3.83K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G38300F
Al3R1219	315-0820-00		RES., FXD, CMPSN: 82 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8205
Al3R1224	315-0152-00		RES., FXD, CMPSN: 1.5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1525
Al3R1231	321-0219-00		RES.,FXD,FILM:1.87K OHM, 1\%,0.125 W	91637	MFF1816G18700F
Al 3 R1233	321-0213-00		RES.,FXD,FILM:1.62K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G16200F
Al3R1234	321-0171-00		RES., FXD, FILM: 590 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G590R0F
Al3R1241	315-0473-00		RES.,FXD,CMPSN:47K OHM,5\%,0.25w	01121	CB4735
Al3R1242	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A13R1320	315-0751-00		RES.,FXD,CMPSN:750 ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7515
Al3R1322	315-0472-00		RES., FXD,CMPSN:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
A13R1323	315-0332-00		RES., FXD, CMPSN:3.3K оНм, $5 \%, 0.25 \mathrm{~W}$	01121	Cb3325
Al3R1324	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A 13 R 1401	321-0331-00		RES.,FXD,FILM: 27.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G27401F
A) 3R1402	321-0234-00		RES.,FXD,FILM:2.67K OHM, 1\%,0.125	91637	MFF1816G26700F
Al3R1403	315-0101-00		RES., FXD, CMPSN: 100 OHM, 5\%,0.25W	01121	CBIO15
Al3R1411	321-0282-00		RES.,FXD,FILM: 8.45 K OHM, 1\%,0.125 W	91637	MFF1816G84500F
A13R1412	321-0326-00		RES.,FXD,FILM: 24.3 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G24301F
A 13 R 1413	321-0282-00		RES.,FXD,FILM: 8.45 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G84500F
Al3R1421	311-1918-00		RES.,VAR, NONWIR: 2 K OHM, 10\%,0.50W	73138	72-199-0
Al301100	307-0700-00		CPLR,OPTOELECTR: 140 OHM, 40 MA	18178	VTL5C4
Al3U1110	156-1191-00		MICROCIRCUIT,LI:DUAL BI-FET OP-AMPL, 8 dip	01295	TL072CP
Al3U1115	156-1272-00		MiCrocircuit,li:dual operational amplifier	18324	NE5532 FE-IIB
A1301130	156-1191-00		MICROCIRCUIT, Li:dUAL BI-FET OP-AMPL, 8 dip	01295	TL072CP
Al301215	156-1272-00		microcircuit, li:dual operational amplifier	18324	NE5532 FE-IIB
Al3U1230	156-1191-00		microcircuit, li: dual bi-FET op-ampl, 8 dip	01295	TLO72CP
Al301240	156-0515-00		Microcircuit, di: TRiple 3-CHan mux	80009	156-0515-00
Al3Ul310	156-1446-00		MICROCIRCUIT, LI: OPNL AMPL, DUAL	18324	NE5533N
Al3vr1041	152-0127-00		SEMICOND DEVICE:ZENER,0.4W,7.5V,5\%	04713	SZG35009K2
Al3VR1042	152-0127-00		SEMICOND DEVICE:ZENER,0.4W,7.5V,5\%	04713	SZG35009K2

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A14	----- -----		CKT BOARD ASSY:INPUT AND NOTCH FILTER		
A 14 C 1000	290-0808-00		CAP., FXD, ELCTLT: $2.7 \mathrm{JF}, 10 \%, 20 \mathrm{~V}$	56289	162D275×9020CD2
A14C1001	283-0051-00		CAP., FXD, CER DI: $0.0033 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	72982	$8131 \mathrm{~N} 145 \mathrm{C0G0332J}$
A14C1004	283-0177-00		CAP., FXD, CER DI: 1 UF, +80-20\%,25V	56289	273 C 5
A14C1010	290-0530-00		CAP., FXD, ELCTLT: 68UF, 20\%, 6V	90201	TDC686M006 NLF
A14C1011	290-0804-00		CAP. , FXD, ELCTLT: 10 UF, $+50-10 \%, 25 \mathrm{~V}$	55680	25 ULA10V-T
A14C1013	290-0523-00		CAP.,FXD, ELCTLT:2.2UF, 20\%, 20V	56289	$196025 \times 0020 H A 1$
A14C1019	281-0759-00		CAP., FXD, CER DI: $22 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	72982	8035D9AADCLG220K
A14C1021	281-0775-00		CAP.,FXD, CER DI:0.1UF, 20\%,50V	72982	8005 D9AAB25U104M
A14C1030	281-0722-00		CAP., FXD, CER DI: $7.5 \mathrm{PF},+/-1 \mathrm{PF}, 500 \mathrm{~V}$	59660	374 018COHO 759B
A14C1100	281-0775-00		CAP.,FXD, CER DI:0.1UF, 20\%,50V	72982	8005 D9AABZ5Ul04M
A14CI101	281-0775-00		CAP., FXD, CER DI :0.1UF, $20 \%, 50 \mathrm{~V}$	72982	$8005 \mathrm{D9AABZ5U104M}$
A14C1102	290-0776-00		CAP., FXD, ELCTLT : 22 UF, $+50-10 \%$, 10 V	55680	10ULA22V-T
A14Cl104	283-0642-00		CAP., FXD,MICA D: $33 \mathrm{PF},+/-0.5 \mathrm{PF}, 300 \mathrm{~V}$	00853	D10-5E330G
A14C1115	290-0512-00		CAP., FXD, ELCTLT: 22UF, 20\%, 15V	56289	196D226X0015KAl
A14C1121	281-0775-00		CAP.,FXD, CER DI:0.1UF,20\%,50V	72982	$8005 \mathrm{D9AABZ5U104M}$
A14C1122	290-0808-00		CAP.,FXD, ELCTLT: $2.7 \mathrm{~T}, 10 \%, 20 \mathrm{~V}$	56289	162D275x9020CD2
A14C1129	281-0763-00	XBO10230	$\begin{aligned} & \text { CAP., FXD, CER DI: } 47 \mathrm{PF}, 10 \%, 100 \mathrm{~V} \\ & \text { (STANDARD ONLY) } \end{aligned}$	72982	8035D9AADCIG470K
A14C1129	281-0763-00	XBO 10240	CAP.,FXD,CER DI:47PF,10\%,100V (OPTION 01 AND 02 ONLY)	72982	$8035 \mathrm{D} 9 \mathrm{AADCIG470K}$
A14C1130	290-0808-00		CAP., FXD, ELCTLT: $2.7 \mathrm{THF}, 10 \%, 20 \mathrm{~V}$	56289	162D275X9020CD2
A14C1131	281-0763-00	B010100 B010229	$\text { CAP., FXD,CER DI : } 47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$ (STANDARD ONLY)	72982	803509AADC1G470K
A14Cl131	281-0762-00	B010230	$\begin{aligned} & \text { CAP., FXD, CER DI: } 27 \mathrm{PF}, 20 \%, 100 \mathrm{~V} \\ & \text { (STANDARD ONLY) } \end{aligned}$	72982	8035D9AADCOG270M
A14C1131	281-0763-00	B010100 8010239	CAP.,FXD, CER DI:47PF,10\%,100V (OPTION 01 AND 02 ONLY)	72982	8035D9AADC1G470K
A14C1131	281-0762-00	B010240	$\text { CAP., FXD, CER DI:27PF, } 20 \%, 100 \mathrm{~V}$ (OPTION 01 AND 02 ONLY)	72982	8035D9AADC0G270M
A14C1132	281-0763-00	B010100 B010229	CAP.,FXD, CER DI: $47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$ (STANDARD ONLY)	72982	803509AADC1G470K
A14C1132	281-0762-00	B010230	CAP.,FXD,CER DI: $27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$ (STANDARD ONLY)	72982	8035D9AADC0G270M
A14C1132	281-0763-00	B010100 8010239	CAP., FXD, CER DI : 47PF, $10 \%, 100 \mathrm{~V}$ (OPTION O1 AND 02 ONLY)	72982	8035D9AADC1G470K
A14C1132	281-0762-00	B010240	CAP., FXD, CER DI: $27 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$ (OPTION O1 AND 02 ONLY)	72982	$8035 \mathrm{D9AADCOG270M}$
A14C1133	283-0631-00		CAP.,FXD,MICA D:95PF, 1\%,100V	00853	D151E950F0
A14C1134	283-0631-00		CAP.,FXD,MICA D:95PF, $1 \%, 100 \mathrm{~V}$	00853	D151E950F0
A14C1135	283-0594-00		CAP.,FXD,MICA D:0.001UF, $1 \%, 100 \mathrm{~V}$	00853	D151F102F0
A14Cl136	283-0594-00		CAP.,FXD,MICA D:0.001UF, $1 \%, 100 \mathrm{~V}$	00853	D151F102F0
A14C1139	283-0773-00		CAP.,FXD,MICA D:578PF,1\%,300V	00853	D15-3F5780F0
A14C1200	290-0755-00		CAP., FXD, ELCTLT: 100UF, +50-10\%, 10V	56289	502D223
A14C1201	290-0536-00		CAP.,FXD, ELCTLT: 10UF, 20\%, 25V	90201	TDC106M025FL
A14C1219	281-0763-00		CAP., FXD, CER DI: $47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	72982	8035D9AADCIG470K
A14C1220	285-1142-00		CAP., FXD, PLSTC:0.01UF, 1\%, 200VDC	19396	$103 \mathrm{F02PP580}$
A14C1221	285-1142-00		CAP.,FXD, PLSTC: $0.01 \mathrm{UF}, 1 \%, 200 \mathrm{VDC}$	19396	103F02PP580
Al4Cl 222	285-1056-00		CAP., FXD, PLSTC: $1 \mathrm{UF}, 2 \%, 50 \mathrm{~V}$	14752	650B1A105G
A14C1223	285-1056-00		CAP., FXD, PLSTC: $1 \mathrm{UF}, 2 \%, 50 \mathrm{~V}$	14752	650B1A105G
A14C1224	285-1221-00		CAP., FXD, MTLZD:0.1UF, 2%, 100V	14752	650D1B104G
A14C1225	285-1221-00		CAP., FXD, MTLZD: $0.1 \mathrm{UF}, 2 \%, 100 \mathrm{~V}$	14752	650D1B104G
A14C1230	281-0792-00	XB010230	$\text { CAP., FXD, CER DI }: 82 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$ (STANDARD ONLY)	72982	8035D2AADC0G820K
A14C1230	281-0792-00	XB010240	CAP.,FXD,CER DI: 82PF, 10\%, 100V (OPTION O1 AND 02 ONLY)	72982	8035D2AADC0G820K
A14C1310	281-0759-00		CAP.,FXD, CER DI: $22 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	72982	8035D9AADC1G220K

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mtr Code	Mir Part Number
A14C1311	290-0523-00		CAP.,FXD, ELCTLT: $2.2 \mathrm{UF}, 20 \%, 20 \mathrm{~V}$	56289	196D225X0020HAI
A14C1330	281-0775-00		CAP., FXD, CER DI:0.1UF,20\%,50V	72982	800509AAB25U104M
A14C1336	281-0823-00		CAP., FXD, CER DI: $470 \mathrm{PF}, 10 \%, 50 \mathrm{~V}$	12969	CGB471KDN
A14C1400	281-0096-00		CAP.,VAR,AIR DI: 5.5-18PF,350V	72982	538-006-A5.5-18
A14C1411	283-0728-00		CAP.,FXD,MICA D: $120 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155F121F03
Al4C1412	283-0642-00		CAP.,FXD,MICA D:33PF,+/-0.5PF,300V	00853	D10-5E330G
A14C1413	283-0728-00		CAP.,FKD, MICA D: $120 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155F121F03
A14C1420	290-0525-00		CAP., FXD, ELCTLT: $4.7 \mathrm{TF}, 20 \%, 50 \mathrm{~V}$	56289	196D475X0050XAI
A14C1421	290-0848-00		CAP., FXD, ELCTLT: 47 UF, $-20+100 \%, 16$ WVDC	56289	OBD
A14C1422	281-0775-00		CAP.,FXD, CER DI:0.1UF,20\%,50V	72982	8005D9AABZ5U104M
A14C1423	281-0819-00		CAP., FXD, CER DI: $33 \mathrm{PF}, 5 \%, 50 \mathrm{~V}$	72982	8035BCOG330
A14C1424	281-0763-00		CAP., EXD, CER DI:47PF, $10 \%, 100 \mathrm{~V}$	72982	8035 D9AADC1G470K
A14C1431	281-0775-00		CAP., FXD, CER DI:0.1UF, 20\%,50V	72982	8005D9AABZ5U104M
A14C1432	283-0625-00		CAP., FXD, MICA D: $220 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D105F221F0
A14C1434	283-0766-00		CAP.,FXD,MICA D:47PF, $1 \%, 500 \mathrm{~V}$	00853	D155E470D0
A14C1435	283-0159-00	XB010230	```CAP.,FXD,CER DI:18PF,5%,50V (STANDARD ONLY)```	72982	81118065C0G0180J
A14C1435	283-0159-00	XB010240	CAP., FXD, CER DI: $18 \mathrm{PF}, 5 \%, 50 \mathrm{~V}$ (OPTION OI AND 02 ONLY)	72982	8111 B065C0G0180J
A14C1500	283-0672-00		CAP.,FXD,MICA D: $200 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155F2010F0
A14C1510	283-0672-00		CAP., FXD, MICA D: $200 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	DI55F2010F0
A14C1520	281-0819-00		CAP.,FXD, CER DI: $33 \mathrm{PF}, 5 \%, 50 \mathrm{~V}$	72982	8035BC0G330
A14C1521	281-0775-00		CAP.,FXD, CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8005D9AABZ5U104M
A14C1522	281-0763-00		CAP., FXD, CER DI: $47 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	72982	8035D9AADCIG470K
A14C1523	281-0823-00		CAP.,FXD, CER DI:470PF, $10 \%, 50 \mathrm{~V}$	12969	CGB471KDN
A14C1530	290-0415-00		CAP.,FXD, ELCTLT : $5.6 \mathrm{~F}, 10 \%, 35 \mathrm{~V}$	56289	150D565×9035B2
A14C1531	281-0775-00		CAP., FXD, CER DI:0.1UF, 20%, 50 V	72982	8005D9AABZ5U104M
A14C1533	290-0284-00		CAP., FXD, ELCTLT: $4.7 \mathrm{JF}, 10 \%, 35 \mathrm{~V}$	56289	150D475×9035 B2
A14C1534	290-0808-00		CAP.,FXD, ELCTLT: $2.7 \mathrm{~T}, 10 \%, 20 \mathrm{~V}$	56289	162D275×9020CD2
A14C1535	290-0512-00		CAP.,FXD, ELCTLT: 22UF, 20\%, 15V	56289	196D226X0015KAI
A14C1630	285-1219-00		CAP.,FXD, MTLZD: $14 \mathrm{~F}, 5 \%, 400 \mathrm{~V}$	14752	230DIEIOSJ
A14C1631	285-1219-00		CAP., FXD, MTLZD: $1 \mathrm{UF}, 5 \%, 400 \mathrm{~V}$	14752	230D1E105J
A14CR1001	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
A14CR1002	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
A14CR1011	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
Al4CR1012	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
Al4CR1013	152-0246-00		SEMICOND DEVICE:SW,SI, $40 \mathrm{~V}, 200 \mathrm{MA}$	03508	DE140
A14CR1020	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
Al4CR1022	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1 N4152R
AJ4CR1032	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1 N4152R
A14CR1033	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150 MA	01295	1N4152R
A14CR1100	152-0246-00		SEMICOND DEVICE:SW,SI, 40V,200MA	03508	DE140
A14CR1110	152-0246-00		SEMICOND DEVICE:SW, SI, 40V, 200MA	03508	DE140
A14CR1221	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
A14CR1222	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
A14CR1223	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
A14CR1300	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
A14CR1330	152-0322-00		SEMICOND DEVICE:SILICON, $15 \mathrm{~V}, \mathrm{HOT}$ CARRIER	50434	5082-2672
A14CR1331	152-0322-00		SEMICOND DEVICE:SILICON, 15 V , HOT CARRIER	50434	5082-2672
A14CR1332	152-0322-00		SEMICOND DEVICE:SILICON, 15 V , HOT CARRIER	50434	5082-2672
A14CR1333	152-0322-00		SEMICOND DEVICE:SILICON, 15 V , HOT CARRIER	50434	5082-2672
A14CR1400	152-0141-02		SEMICOND DEVICE:SILICON,30V,150MA	01295	1N4152R
A14CR1401	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R
Al4CRI 500	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A14CR1501	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
A14CR1502	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
A14CR1531	152-0141-02		SEMICOND DEVICE:SILICON,30V, 150 MA	01295	1N4152R

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
A14CR1600	152-0141-02		SEMICOND DEVICE:SILICON, 30v,150MA	01295	1N4152R
A14CR1601	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
A14CR1602	152-0141-02		SEMICOND DEvICE:SILICON, 30V,150MA	01295	1N4152R
A14CR1620	152-0066-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 750 \mathrm{MA}$	14433	LG4016
A14CR1621	152-0066-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 750 \mathrm{MA}$	14433	LG4016
A14CR 1624	152-0066-00		SEMICOND DEVICE:SILICON,400V,750MA	14433	LG4016
A14CR1625	152-0066-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 750 \mathrm{MA}$	14433	LG4016
A14DS 1520	150-0131-00		LAMP, INCAND: $120 \mathrm{~V}, 0.025 \mathrm{~A}$	71744	120PS
A14DS 1521	150-0131-00		LAMP, INCAND: 120v,0.025A	71744	120PS
A14E1139	276-0596-00	B010100 B010229X	CORE, TOROID, FER:0.09 ID X 0.19 OD X $0.08^{\prime \prime} \mathrm{H}$ (STANDARD ONLY)	78488	57-1657
A14E1139	276-0596-00	B010100 B010239X	CORE,TOROID, FER:0.09 ID X 0.19 OD X 0.08 " H (OPTION OI AND 02 ONLY)	78488	57-1657
A14E1140	276-0596-00	в010100 в010229x	CORE,TOROID,FER:0.09 ID X 0.19 OD X $0.08^{\prime \prime} \mathrm{H}$ (STANDARD ONLY)	78488	57-1657
A14E1140	276-0596-00	B010100 B010239X	CORE,TOROID, FER:0.09 ID X 0.19 OD X 0.08 "H (OPTION 01 AND 02 ONLY)	78488	57-1657
A14J1200	131-1857-00		TERM. SET, PIN:36/0.025 SQ Pin,on 0.1 CTRS	22526	65500136
Al4J1201	131-1426-00		CONTACT SET, ELE: R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
A14J 1300	131-1426-00		Contact set, ele:r angle, 0.250L, strip of 36	22526	65524-136
Al4J1301	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
Al4J1311	131-1857-00		TERM. SET, PIN:36/0.025 SQ PIN, ON 0.1 CTRS	22526	65500136
A14J1430	131-1857-00		TERM. SET, PIN:36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
Al4J1500	131-1857-00		TERM. SET, PIN: 36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
A14J1600	131-1857-00		TERM. SET, PIN:36/0.025 SQ PIN,ON 0.1 CTRS	22526	65500136
A14J1620	131-1939-00		term. SEt, Pin: $1 \times 14,0.15$ Spacing	22526	65561-114
A14K1030	148-0134-00		RELAY,REED: 2 FORM A,5VDCCOIL, 100 MA AT	21317	2A05X250BIAA
A14K1230	148-0134-00		RELAY, REED:2 FORM A,50dCCOIL, 100ma at	21317	2a05X250biaa
A14K1231	148-0134-00		relay, reed 2 form a, 5 didccoil, 100 ma at	21317	$2 \mathrm{~A} 05 \times 250 \mathrm{BIAa}$
A14K1232	148-0134-00		relay, reed: 2 form a, 5vdccoil, 100ma at	21317	$2 \mathrm{AO} \times 250 \mathrm{BIAa}$
A14K1410	148-0122-00		RELAY, REED:1 FORM A, 200V,0.5A,COIL,5Vd	95348	F81-1050-4
A14K1411	148-0122-00		RELAY, REED: 1 FORM A, 200V, 0.5A,COIL, 5VD	95348	F81-1050-4
A14K1412	148-0134-00		RELAY, REED: 2 Form a, 5VdCCOIL, 100 MA at	21317	$2 \mathrm{~A} 05 \times 250 \mathrm{BIAA}$
A14K1510	148-0134-00		RELAY, REED: 2 FORM A, 5VdCCOIL, 100 ma at	21317	$2 \mathrm{~A} 05 \times 250 \mathrm{BIAA}$
A14K1511	148-0134-00		RELAY, REED: 2 FORM A, 5VDCCOIL, 100 MA AT	21317	2A05 2500 BIAA
A14K1512	148-0134-00		RELAY, REED: 2 FORM a, 5VdCCOIL, 100 ma at	21317	$2 \mathrm{~A} 05 \times 250 \mathrm{BIAA}$
A14K1610	148-0134-00		RELAY, REED: 2 FORM A, 5VdCCOIL, 100ma at	21317	$2 \mathrm{~A} 05 \times 250 \mathrm{BIAA}$
A14Q1000	151-1025-00		TRANSISTOR:SILICON, JFE, N-Channel	01295	SFB8129
Al4Q1001	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A14Q1010	151-0220-00		TRANSISTOR:SILICON, PNP	07263	5036228
A14Q1011	151-1021-00		TRANSISTOR: SILICON, JFE	17856	FN815
A14Q1012	151-1025-00		transistor: SILICON, JFE, N -CHANNEL	01295	SFB8129
A14Q1013	151-0220-00		TRANSISTOR:SILICON, PNP	07263	S036228
A14Q1014	151-0220-00		TRANSISTOR:SILICON, PNP	07263	5036228
A14Q1110	151-0190-00		TRANSISTOR: SILICON, NPN	07263	S032677
A14Q1200	151-0220-00		TRANSISTOR:SILICON, PNP	07263	S036228
A14Q1300	151-1021-00		TRANSISTOR:SILICON, JFE	17856	FN815
A14Q1320	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A14Q1321	151-0190-00		TRANSISTOR:SILICON,NPN	07263	5032677
A14Q1322	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A14Q1330	151-0190-00		TRANSISTOR:SILIICON,NPN	07263	S032677
A14Q1400	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
A14Q1401	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
A14Q1402	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
A14Q1500	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487
A14Q1501	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
A14Q1502	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
A14Q1520	151-0198-00		TRANSISTOR:SILICON, NPN, SEL FROM MPS918	04713	SPS8802-1
A14Q1530	151-0342-00		TRANSISTOR:SILICON, PNP	07263	S035928
A14Q1600	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487
A14Q1601	151-0190-00		TRANSISTOR:SILICON,NPN	07263	S032677
A14Q1602	151-0188-00		TRANSISTOR:SILICON, PNP	04713	SPS6868K
A14Q1622	151-0198-00		TRANSISTOR:SILICON,NPN,SEL FROM MPS918	04713	SPS8802-1
A14Q1623	151-0198-00		TRANSISTOR:SILICON, NPN, SEL FROM MPS918	04713	SPS8802-1
A14Q1626	151-0198-00		TRANSISTOR:SILICON,NPN, SEL FROM MPS918	04713	SPS8802-1
A14R1000	315-0683-00		RES.,FXD, CMPSN: 68 K OHM, 5\%,0.25W	01121	CB6835
A14R1001	315-0274-00		RES.,FXD,CMPSN: 270 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2745
A14R1002	315-0243-00		RES.,FXD,CMPSN: 24 K OHM,5\%,0.25W	01121	CB2435
Al4R1003	315-0103-00		RES.,FXD, CMPSN: 10 K OHM,5\%,0.25W	01121	CB1035
A14R1004	315-0103-00		RES . , FXD , CMPSN: 10 K OHM, 5\%,0.25W	01121	CB1035
Al4R1005	315-0561-00		RES.,FXD,CMPSN:560 OHM,5\%,0.25W	01121	CB5615
A14R1006	315-0103-00		RES.,FXD, CMPSN: 10 K OHM, 5\%,0.25W	01121	CB1035
A14R1007	315-0103-00		RES.,FXD,CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A14R1008	315-0204-00		RES., FXD, CMPSN: 200 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2045
A14R1009	315-0103-00		RES.,FXD,CMPSN: 10 K OHM,5\%,0.25W	01121	CB1035
A14R1010	315-0182-00		RES., FXD, CMPSN: 1.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
A14R1011	315-0472-00		RES.,FXD, CMPSN: 4.7 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
Al4R1012	315-0332-00		RES.,FXD, CMPSN: 3.3K OHM, 5\%,0.25W	01121	CB3325
Al4R1013	315-0243-00		RES.,FXD,CMPSN: 24 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2435
A14R1014	315-0105-00		RES., FXD, CMPSN:1M OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
A14R1015	315-0332-00		RES., FXD, CMPSN: 3.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
A14R1016	315-0103-00		RES.,FXD,CMPSN:10K OHM, 5\%,0.25W	01121	CB1035
Al4R1017	315-0122-00		RES.,FXD,CMPSN:1.2K OHM, 5\%,0.25W	01121	CB1225
Al4R1018	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al4R1019	315-0101-00		RES., FXD, CMPSN: 100 OHM , 5\%,0.25W	01121	CB1015
A14R1020	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A 14 R 1021	315-0272-00		RES., FXD, CMPSN: 2.7 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB2725
Al4R1022	315-0303-00		RES., FXD, CMPSN: 30 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3035
Al4R1023	321-0222-00	B010100 B020369	RES.,FXD,FILM:2K ОНM, $1 \%, 0.125 \mathrm{~W}$ (STANDARD ONLY)	91637	MFF1816G20000F
A14R1023	321-0222-07	B020370	$\text { RES.,FXD,FILM: } 2 \mathrm{~K} \text { OHM,0.1\%,0.125W }$ (STANDARD ONLY)	91637	MFF1816C20000B
A14R1023	321-0222-00	B010100 B020389	RES.,FXD, FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	91637	MFF1816G20000F
A14R1023	321-0222-07	B020390	RES., FXD,FILM: 2K OHM, 0. $1 \%, 0.125 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	91637	MFF1816C20000B
A14R1024	321-0336-00		RES.,FXD,FILM: 30.9X OHM, 1\%,0.125W	91637	MFF1816G30901F
A14R1025	321-0299-00		RES.,FXD,FILM: 12.7 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G12701F
A14R1026	315-0102-00		RES., FXD, CMPSN:1K OHM, 5\%,0.25W	01121	CB1025
A14R1030	315-0222-00		RES., FXD, CMPSN: 2.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2225
A14R1031	321-1617-06		RES.,FXD, FILM: 5.85 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816C58500C
A14R1032	321-0233-00		RES., FXD, FILM: 2.61 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G26100F
A14R1033	321-0197-00		RES.,FXD,FILM: 1.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11000F
A14R1034	321-0307-00		RES.,FXD, FILM 15.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15401F
A14R1035	315-0181-00		RES.,FXD, CMPSN: $1800 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1815
A14R1036	315-0181-00		RES., FXD, CMPSN: 180 OHM , 5\%,0.25W	01121	CB1815
A14R1037	315-0104-00		RES., FXD, CMPSN: 100 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A14R1038	311-1240-00		RES.,VAR, NONWIR: 25 K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	72-30-0
A14R1039	321-0344-00		RES.,FXD, FILM: 37.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G37401F
Al4R1100	311-1240-00		RES.,VAR,NONWIR:25K OHM, 10\%,0.50W	73138	72-30-0
Al4RIL01	311-1240-00		RES., VAR, NONWIR: 25 K OHM, $10 \%, 0.50 \mathrm{~W}$	73138	72-30-0
A14R1103	315-0473-00		RES., FXD, CMPSN:47K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4735
A14R1104	315-0510-00		RES., FXD, CMPSN:51 OHM, 5\%, 0.25W	01121	CB5 105
A14R1105	315-0473-00		RES.,FXD,CMPSN:47K OHM,5\%,0.25W	01121	CB4735

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
A14R1106	315-0510-00		RES., FXD, CMPSN: 51 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 105
A14R1111	301-0431-00		RES., FXD, CMPSN:430 0HM, $5 \%, 0.50 \mathrm{~W}$	01121	EB4315
Al4R1112	315-0182-00		RES.,FXD, CMPSN: 1.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1825
Al4R1113	315-0561-00		RES., FXD, CMPSN: 560 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB5615
Al4R1114	315-0241-00		RES.,FXD, CMPSN: 240 OHM, 5\%,0.25W	01121	CB24 15
Al4R1115	315-0472-00		RES.,FXD,CMPSN:4.7K OHM, 5\%,0.25W	01121	CB4725
Al4R1116	315-0103-00		RES., FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al4R1120	315-0103-00		RES.,FXD, CMPSN: 10K ОНM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al4R1121	321-0193-00		RES.,FXD,FILM:IK OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G10000F
Al4R1122	315-0153-00		RES.,FXD,CMPSN: 5 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
Al4R1123	315-0433-00		RES., FXD, CMPSN: 43 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4335
Al4R1125	321-0259-00	B010100 8020369	RES., FXD, FILM: 4.87 K OHM, $1 \%, 0.125 \mathrm{~W}$ (STANDARD ONLY)	91637	MFF1816G48700F
Al4R1125	321-0259-03	B020370	RES.,FXD,FILM:4.87K OHM, 0. $25 \%, 0.125 \mathrm{~W}$ (STANDARD ONLY)	91637	MFF1816D48700C
A14R1125	321-0259-00	$8010100 \quad 8020389$	RES.,FXD, FILM: 4.87 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	91637	MFF1816G48700F
A14R1125	321-0259-03	B020390	RES., FXD, FILM:4.87K OHM, $0.25 \%, 0.125 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	91637	MFFI816048700C
Al4RI126	321-0368-00		RES., FXD, FILM: $66.5 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G66501F
Al4R1130	321-0117-00		RES., FXD, FILM: 162 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G162R0F
Al4R1131	321-0202-00		RES.,FXD,FILM: $1.24 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}$	91637	MFFl816G12400F
A14R1132	321-0131-00		RES., FXD, FILM: 226 OHM, 1\%,0.125W	91637	MFF1816G226R0F
A14R1133	321-0099-00		RES., FXD, FILM: 105 OHM, 1\%,0.125W	91637	MFF1816G105ROF
Al4R1134	315-0101-00	XBO10230	RES., FXD, CMPSN: $1000 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$ (STANDARD ONLY)	01121	CB1015
A14R1134	315-0101-00	XB010240	RES., FXD, CMPSN: 100 OHM, 5\%,0.25W (OPTION OI AND 02 ONLY)	01121	CB1015
A14R1135	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
A14R1136	321-0343-00	B010100 B020369	```RES.,FXD,FILM:36.5K OHM, 1%,0.125W (STANDARD ONLY)```	91637	MFF1816G36501F
A14R1136	321-0622-00	B020370	RES., FXD, FILM: 37.96 K OHM, $0.25 \%, 0.125 \mathrm{~W}$ (STANDARD ONLY)	91637	MFF1816037961C
A14R1136	321-0343-00	B010100 B020389	RES.,FXD, FILM: 36.5 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	91637	MFF1816G36501F
A14R1136	321-0622-00	B020390	$\text { RES., FXD, FILM: } 37.96 \mathrm{~K} \text { OHM }, 0.25 \%, 0.125 \mathrm{~W}$ (OPTION OI AND 02 ONLY)	91637	MFF1816D37961C
A14R1139	321-0380-00	B010100 B020369	$\text { RES., FXD, FILM: } 88.7 \mathrm{~K} \text { OHM, } 1 \%, 0.125 \mathrm{~W}$ (STANDARD ONLY)	91637	MFF1816G88701F
A14R1139	321-0831-03	B020370	RES.,FXD, FILM:92.5K OHM, 0.25\%,0.125W (STANDARD ONLY)	24546	NC55C9252C
A14R1139	321-0380-00	B010100 8020389	$\begin{aligned} & \text { RES., FXD, FILM: } 88.7 \mathrm{~K} \text { OHM, } 1 \%, 0.125 \mathrm{~W} \\ & \text { (OPTION OI AND } 02 \text { ONLY) } \end{aligned}$	91637	MFF1816G88701F
A)4R1139	321-0831-03	B020390	```RES.,FXD,FILM:92.5K OHM,0.25%,0.125W (OPTION 01 AND 02 ONLY)```	24546	NC55C9252C
Al 4 R1201	321-0754-07		RES., FXD, FILM:900 OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C900ROB
Al4R1202	321-0991-03		RES.,FXD, FILM: 18 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	24546	NC5SC1802C
Al4R1203	315-0104-00		RES., FXD, CMPSN: $100 \mathrm{~K} 0 \mathrm{OM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al4R1204	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A14R1205	315-0104-00		RES., FXD, CMPSN: 100 K OHM, 5\%,0.25W	01121	CB1045
A14R1206	315-0104-00		RES , , FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A14R1207	315-0105-00		RES., FXD, CMPSN: IM OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB1055
Al4R1210	321-0774-03		RES., FXD, FILM: 4.5 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D45000C
A14R1211	321-0612-03		RES., FXD, FILM: 500 OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D500R0C
A14R1212	321-1600-07		RES., FXD, FILM: 1.851 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	24546	NESSE18150B
A14R1213	321-0926-07		RES.,FXD,FILM:4K OHM, 0.1\%,0.125W	91637	MFF1816C40000B
A)4R1214	321-0238-00		RES.,FXD, FILM: 2.94 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G29400F

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
A14R1215	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A14R1216	321-0771-03		RES., FXD, FILM: 50 OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D50R00C
A14R1217	321-0749-06		RES., FXD, FILM:450 OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816C450R0C
A14R1218	321-0774-03		RES.,FXD,FILM:4.5K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816D45000C
Al4R1219	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A14R1220	315-0102-00		RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A14R1228	315-0431-00	XB010230	RES.,FXD,CMPSN:430 OHM,5\%,0.25W (STANDARD ONLY)	01121	CB4315
A14R1228	315-0431-00	XBO 10240	$\text { RES., FXD, CMPSN: } 430 \text { OHM , } 5 \%, 0.25 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	01121	CB4 315
A14R1229	315-0431-00	XB010230	$\begin{aligned} & \text { RES., FXD, CMPSN: } 430 \text { OHM, } 5 \%, 0.25 \mathrm{~W} \\ & \text { (STANDARD ONLY) } \end{aligned}$	01121	CB4315
A14R1229	315-0431-00	XB010240	RES., FXD, CMPSN:430 0HM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 01 AND 02 ONLY)	01121	CB4315
A14R1239	315-0221-00	XBO10230	RES.,FXD,CMPSN: 220 OHM,5\%,0.25W (STANDARD ONLY)	01121	CB2215
A14R1239	315-0221-00	XB010240	RES., FXD, CMPSN: 220 OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION OI AND 02 ONLY)	01121	CB2215
A14R1300	315-0103-00		RES., FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB 1035
Al4R1301	315-0103-00		RES.,FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A14R1302	315-0103-00		RES.,FXD, CMPSN: 10K OHM $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A14R1303	315-0103-00		RES.,FXD,CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A14R1305	315-0103-00		RES.,FXD, CMPSN: 10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
Al4R1306	315-0100-00		RES.,FXD, CMPSN: 10 OHM, 5\%,0.25W	01121	CB1005
Al4R1307	315-0153-00		RES., FXD, CMPSN: 15K OHM, 5\%,0.25W	01121	CB1535
Al4R1308	315-0202-00		RES.,FXD,CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
Al4R1309	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A14R1310	315-0751-00		RES.,FXD,CMPSN: 750 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB7515
Al4R1311	315-0223-00		RES.,FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
A14R1320	311-1241-00		RES.,VAR, NONWIR: 100 K OHM, $10 \%, 0.5 \mathrm{~W}$	32997	3386X-T07-104
A14R1321	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
A14R1322	321-0322-00		RES.,FXD,FILM:22.1K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G22101F
Al4R1323	321-0260-00		RES.,FXD,FILM:4.99K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49900F
Al4R1324	321-0289-00		RES., FXD,FILM:10K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
A14R1325	321-0289-00		RES.,FXD,FILM:IOK OHM, 1\%,0.125W	91637	MFF1816G10001F
A14R1326	321-0289-00		RES.,FXD,FILM:10K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
Al4R1327	315-0682-00		RES., FXD, CMPSN: 6.8 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6825
A14R1330	311-1246-00		RES., VAR, NONWIR:50K OHM, $10 \%, 0.50 \mathrm{~W}$	02111	63X-503-T602
A14R1331	321-0401-00		RES.,FXD, FILM: 147 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G14702F
A14R1332	321-0239-00		RES.,FXD,FILM:3.01K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G30100F
A14R1333	321-0318-00		RES.,FXD,FILM: 20 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20001F
A14R1334	321-0289-00		RES.,FXD,FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
A14R1335	321-0239-00		RES.,FXD, FILM: 3.01 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30100F
A14R1336	315-0270-00		RES.,FXD, CMPSN: 27 OHM, 5\%,0.25W	01121	CB2705
A14R1337	315-0100-00		RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1005
A14R1338	317-0182-00		RES., FXD, CMPSN: 1.8 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1825
A14R1339	317-0182-00		RES.,FXD, CMPSN: 1.8 K OHM, $5 \%, 0.125 \mathrm{~W}$	01121	BB1825
A14R1400	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A14R1401	315-0513-00		RES.,FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5135
Al4R1402	321-0409-00		RES.,FXD,FILM: 178 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G17802F
A14R1404	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A14R1420	307-0683-00		RES., NTWK, FXD FI:GAIN SET	80009	307-0683-00
A14R1430	321-0318-00		RES.,FXD,FILM:20K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20001F
A14R1431	321-0256-00		RES.,FXD,FILM:4.53K OHM, 1\%,0.125W	91637	MFFI816G45300F
A14R1432	321-0204-00		RES.,FXD,FILM:1.3K OHM, 1\%,0.125W	91637	MFFI816G13000F
A14R1433	315-0201-00		RES.,FXD, CMPSN: 200 OHM, 5\%,0.25W	01121	CB2015
A14R1434	315-0132-00		RES.,FXD, CMPSN: 1.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1325

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A14R1435	315-0151-00		RES., FXD, CMPSN: 150 OHM, 5\%, 0.25W	01121	CB1515
A14R1436	315-0151-00		RES., FXD, CMPSN: 150 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1515
Al4R1500	315-0513-00		RES.,FXD, CMPSN:51K OHM, 5\%,0.25W	01121	CB5 135
Al4R1501	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
A14R1502	315-0513-00		RES.,FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al4R1503	315-0513-00		RES.,FXD,CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al4R1504	315-0513-00		RES.,FXD, CMPSN:51K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5 135
A14R1510	307-0684-00		RES., NTWK, FXD FI: INPUT ATTENUATOR	80009	307-0684-00
A14R1520	315-0270-00		RES., FXD, CMPSN: 27 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2705
Al4R1530	321-0322-00		RES.,FXD,FILM:22.1K OHM, 1\%,0.125W	91637	MFF1816G22101F
Al4R1531	321-0322-00		RES.,FXD,FILM: 22.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G22101F
A14R1533	315-0202-00		RES.,FXD, CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
Al4R1600	315-0513-00		RES., FXD, CMPSN: 51 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB5135
Al4R1601	315-0273-00		RES., FXD, CMPSN: 27 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2735
A14R1610	315-0104-00		RES.,FXD,CMPSN: 100K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A14R1611	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A14R1620	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A14R1621	315-0102-00		RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A]4RT1030	307-0124-00		RES., THERMAL: 5K OHM, 10\%	50157	1 D1618
Al4S 1600	260-1998-00		SWITCH, PUSH: 4 BUTTON, 2 \& 4 POLE, FUNCTION	71590	2KBM0400001303
A14TP1310	214-0579-00		TERM, TEST POINT: BRS CD PL	80009	214-0579-00
Al4U1000	156-0515-00		MICROCIRCUIT, DI: TRIPLE 3-CHAN MUX	80009	156-0515-00
Al4U1001	156-1191-00		MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP	01295	TL072CP
Al4Ul002	156-1191-00		MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP	01295	TLO72CP
A14U1020	156-1272-00		MICROCIRCUIT, LI: DUAL OPERATIONAL AMPLIFIER	18324	NE5532 FE-IIB
Al4U1030	307-0700-00		CPLR, OPTOELETR: 140 OHM,40MA	18178	VTL5C4
Al4U1031	307-0700-00		CPLR, OPTOELETR: 140 OHM,40MA	18178	VTL5C4
A14U1032	307-0700-00		CPLR, OPTOELETR: 140 OHM, 40 MA	18178	VTL5C4
A14U1100	156-1191-00		MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP	01295	TL072CP
Al4U1101	156-1446-00		MICROCIRCUIT, LI: OPNL AMPL, DUAL	18324	NE533N
A14U1120	156-1191-00		MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP	01295	TL072CP
A14U1130	156-1338-00		MICROCIRCUIT, LI: OPERATIONAL AMPLIFIER	18324	NE5534N
Al4U1131	156-1338-01		MICROCIRCUIT, LI: OPNL AMPL, SELECTED	18324	NE5534AN
A14 U1210	156-0514-00		MICROCIRCUIT, DI: DIFF 4-CHAN MUX	80009	156-0514-00
Al4U1300	156-0513-00		MICROCIRCUIT, DI:8-CHAN MUX	80009	156-0513-00
A14U1310	156-1338-00		MICROCIRCUIT, LI : OPERATIONAL AMPLIFIER	18324	NE5534N
Al4U1320	156-0742-00		MICROCIRCUIT, LI: OPERATIONAL AMPLIFIER	27014	LM318N
Al4U1330	156-1191-00		MICROCIRCUIT, LI: DUAL BI-FET OP-AMPL, 8 DIP	01295	TL072CP
A14U1331	307-0700-00		CPLR, OPTOELETR: 140 OHM,40MA	18178	VTL5C4
A14U1420	156-1446-01		MICROCIRCUIT,LI: OPERATIONAL AMP, SCREENED	18324	NE5533AN
A14U1430	156-1338-01		MICROCIRCUIT, LI: OPNL AMPL, SELECTED	18324	NE5534 AN
A14U1431	307-0700-00		CPLR, OPTOELETR:140 OHM,40MA	18178	VTL5C4
A1401432	156-1338-01		MICROCIRCUIT, LI : OPNL AMPL, SELECTED	18324	NE5534 AN
Al4U1530	156-0158-00		MICROCIRCUIT, LI: DUAL OPERATIONAL AMPLIFIER	18324	MC1458V
Al4VR1000	152-0226-00		SEMICOND DEVICE:ZENER,0.4 $\mathrm{W}, 5.1 \mathrm{~V}, 5 \%$	14552	TD3810980
Al4VR1112	152-0647-00		SEMICOND DEVICE:ZENER,0.4W,6.8V,5\%	80009	152-0647-00
Al4VR1220	152-0647-00		SEMICOND DEVICE: ZENER, $0.4 \mathrm{~W}, 6.8 \mathrm{~V}, 5 \%$	80009	152-0647-00
Al4VR1320	152-0647-00		SEMICOND DEVICE:ZENER, $0.4 \mathrm{~W}, 6.8 \mathrm{~V}, 5 \%$	80009	152-0647-00
A14VR1430	152-0395-00		SEMICOND DEVICE:ZENER, 0.4W,4.3V,5\%	14552	TD332317
Al4VR1620	152-0149-00		SEMICOND DEVICE:ZENER,0.4W, 10V,5\%	04713	SZG35009K3
A14VR1621	152-0149-00		SEMICOND DEVICE:ZENER,0.4W, 10V,5\%	04713	SZG35009K3
A14W1304	131-0566-00		BUS CONDUCTOR: DUMMY RES, $2.375,22$ AWG	55210	L-2007-1
Al4W1500	131-0566-00		BUS CONDUCTOR:DUMMY RES,2.375,22 AWG	55210	L-2007-1
Al4W1501	131-0566-00		BUS CONDUCTOR: DUMMY RES,2.375,22 AWG	55210	L-2007-1

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
Al 5	-------		CKT BOARD ASSY:MAIN		
Al5C1021	290-0782-00		CAP., FXD, ELCTLT: $4.7 \mathrm{UF},+75-10 \%, 35 \mathrm{~V}$	55680	$35 \mathrm{LLA4R7V}$-T
A15C1022	281-0775-00		CAP., FXD, CER DI:0.1UF, 20%,50V	72982	8005D9AABZ5U104M
A15C1030	283-0696-00		$\text { CAP. ,FXD,MICA D:2300PF, } 1 \%, 500 \mathrm{~V}$ $\text { (OPTION } 02 \text { ONLY) }$	00853	D19-5E232F0
A15Cl031	283-0696-00		CAP., FXD, MICA D: 2300PF, $1 \%, 500 \mathrm{~V}$ (OPTION 02 ONLY)	00853	D19-5E232F0
A15C1032	283-0696-00		CAP.,FXD,MICA D:2300PF, $1 \%, 500 \mathrm{~V}$ (OPTION 02 ONLY)	00853	D19-5E232F0
Al5C1033	283-0696-00		```CAP.,FXD,MICA D:2300PF,1%,500V (OPTION O2 ONLY)```	00853	D19-5E232F0
Al5C1100	283-0730-00		CAP.,FXD,MICA D: $274 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155E2740F0
Al5C1101	283-0620-00		CAP.,FXD,MICA D:470PF, 1\%,300V	00853	D153F471F0
Al 5Cl 102	283-0620-00		CAP.,FXD,MICA D:470PF, 1\%,300V	00853	D153F471F0
Al5Cl 103	283-0635-00		CAP.,FXD,MICA D:51PF, $1 \%, 100 \mathrm{~V}$	00853	D151E510F0
Al5Cl110	290-0536-00		CAP., FXD, ELCTLT: 10UF, 20\%, 25V	90201	TDC106M025FL
Al5Cl111	290-0527-00		CAP., FXD, ELCTLT: $15 \mathrm{FF}, 20 \%, 20 \mathrm{~V}$	90201	TDC156M020FL
Al5C1112	290-0527-00		CAP., FXD, ELCTLT: 15 UF, 20\%, 20V	90201	TDC156M020FL
Al5C1121	281-0775-00		CAP., FXD, CER DI:0.1UF,20\%,50V	72982	8005D9AABZ5U104M
Al5C1122	281-0775-00		CAP., FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	72982	8005D9AABZ5U104M
Al5C1123	290-0746-00		$\begin{aligned} & \text { CAP., FXD, ELCTLT: } 47 \mathrm{UF},+50-10 \%, 16 \mathrm{~V} \\ & \text { (STANDARD ONLY) } \end{aligned}$	55680	$16 \mathrm{U}-47 \mathrm{~V}-\mathrm{T}$
Al5C1123	290-0776-00		$\begin{aligned} & \text { CAP., FXD, ELCTLT: } 22 U F,+50-10 \%, 10 \mathrm{~V} \\ & \text { (OPTION } 02 \text { ONLY) } \end{aligned}$	55680	10ULA22V-T
A15C1130	290-0804-00		$\begin{aligned} & \text { CAP., FXD, ELCTLT: } 10 U F,+50-10 \%, 25 \mathrm{~V} \\ & \text { (OPTION } 02 \text { ONLY) } \end{aligned}$	55680	25ULA10V-T
Al5C1131	283-0696-00		CAP., FXD,MICA D: 2300PF, $1 \%, 500 \mathrm{~V}$ (OPTION 02 ONLY)	00853	D19-5E232F0
A15C1132	283-0696-00		```CAP.,FXD,MICA D:2300PF,1%,500V (OPTION 02 ONLY)```	00853	D19-5E232F0
A15C1133	283-0696-00		CAP., FXD, MICA D: 2300PF, $1 \%, 500 \mathrm{~V}$ (OPTION 02 ONLY)	00853	D19-5E232F0
A15Cl134	281-0601-00		CAP.,FXD,CER DI:7.5PF,500V (OPTION 02 ONLY)	59660	301-00C-0H0759D
A15C1135	283-0596-00		$\begin{aligned} & \text { CAP., FXD,MICA D: } 528 \mathrm{PF}, 1 \%, 300 \mathrm{~V} \\ & \text { (OPTION } 02 \text { ONLY) } \end{aligned}$	00853	DI 53F5280F0
Al5Cl 201	290-0267-00		CAP., FXD, ELCTLT: 1UF, 20\%, 35V	56289	162D105x0035CD2
Al5C1210	283-0623-00		```CAP.,FXD,MICA D:1200PF,1%,100V (STANDARD ONLY)```	00853	D191F122F0
Al 5 C 1210	283-0693-00		CAP.,FXD,MICA D: $1730 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$ (OPTION 02 ONLY)	00853	D19-5F1731F0
Al5Cl211	283-0623-00		CAP.,FXD,MICA D: $1200 \mathrm{PF}, 1 \%, 100 \mathrm{~V}$	00853	D191F122F0
Al5C1212	285-0702-00		CAP., FXD, PLSTC: $0.033 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410P33351
Al 5 C 1213	290-0284-00		CAP., FXD, ELCTLT: $4.7 \mathrm{~V}, 10 \%, 35 \mathrm{~V}$	56289	1500475×9035B2
Al5C1220	285-0702-00		CAP., FXD, PLSTC:0.033UF, 5\%, 100V	56289	410P33351
Al5C1221	285-0702-00		CAP.,FXD, PLSTC: $0.033 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 33351
Al5C1230	285-0702-00		$\begin{aligned} & \text { CAP.,FXD, PLSTC: } 0.033 U F, 5 \%, 100 \mathrm{~V} \\ & \text { (OPTION 02 ONLY) } \end{aligned}$	56289	410P33351
A15C1231	285-0702-00		```CAP.,FXD,PLSTC:0.033UF,5%,100V (OPTION 02 ONLY)```	56289	410P33351
A15C1232	285-0702-00		```CAP.,FXD,PLSTC:0.033UF,5%,100V (OPTION O2 ONLY)```	56289	410P33351
Al5C1233	285-1056-00		$\text { CAP.,FXD, PLSTC: } 1 \text { UF , } 2 \%, 50 \mathrm{~V}$ (OPTION 02 ONLY)	14752	650B1A105G
Al5C1234	285-1056-00		$\begin{aligned} & \text { CAP., FXD, PLSTC:1UF, } 2 \%, 50 \mathrm{~V} \\ & \text { (OPTION } 02 \text { ONLY) } \end{aligned}$	14752	650B1A105G
A15C1235	290-0804-00		```CAP.,FXD,ELCTLT:10UF,+50-10%,25V (OPTION O2 ONLY)```	55680	25ULA10V-T

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A15C1236	290-0804-00		CAP., FXD, ELCTLT: 10UF, $+50-10 \%, 25 \mathrm{~V}$ (OPTION 02 ONLY)	55680	25ULAIOU-T
A15C1237	281-0758-00		CAP., FXD, CER DI: $15 \mathrm{PF}, 20 \%, 100 \mathrm{~V}$ (OPTION 02 ONLY)	72982	$314022 \mathrm{COGO150M}$
A15C1300	290-0512-00		CAP.,FXD, ELCTLT: $22 \mathrm{UF}, 20 \%, 15 \mathrm{~V}$	56289	196D226x0015KA1
Al5C1301	290-0517-00		CAP., FXD, ELCTLT: $6.8 \mathrm{UF}, 20 \%, 35 \mathrm{~V}$	56289	$1960685 \times 0035 \mathrm{KAI}$
Al5Cl310	285-1051-00		CAP.,FXD, PLSTC:1UF, $1 \%, 200 \mathrm{~V}$ (STANDARD ONLY)	14752	230B1C105F
A15C1310	285-1056-00		```CAP.,FXD,PLSTC:1UF,2%,50V (OPTION 02 ONLY)```	14752	650B1A105G
A15C1311	281-0509-00		CAP., FXD, CER DI: $15 \mathrm{PF},+/-1.5 \mathrm{PF}, 500 \mathrm{~V}$	59660	301-000C0G0150K
A15C1315	290-0580-00		CAP., FXD, ELCTLT: 0.27 UF , 20\%, 50V	56289	$196 \mathrm{D} 274 \times 0050 \mathrm{HAI}$
A15C1320	285-0650-00		CAP.,FXD, PLSTC: 0.027 UF, $5 \%, 100 \mathrm{~V}$	56289	410 P 104
Al5C1321	285-0683-00		CAP., FXD, PLSTC: $0.022 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	56289	410 P 22351
Al5Cl 322	285-0683-00		CAP, , FXD, PLSTC: $0.022 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	506289	410 P 22351
Alscl323	285-0598-00		CAP., FXD, PLSTC: $0.01 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	01002	61F10AC103
A15C1330	281-0775-00		CAP.,FXD,CER DI:0.1UF, 20\%, 50V (OPTION 02 ONLY)	72982	8005D9AABZ5U104M
A15C1331	281-0616-00		CAP.,FXD,CER DI: 6.8PF, $+/-0.5 \mathrm{PF}, 200 \mathrm{~V}$ (OPTION 02 ONLY)	59660	374001 C0H0689D
A15C1332	281-0775-00		CAP., FXD, CER DI: 0.1UF, 20\%,50V (OPTION 02 ONLY)	72982	8005D9AABZ5U104M
A15C1333	281-0786-00		CAP., FXD, CER DI:150PF,10\%,100V (OPTION 02 ONLY)	72982	8035D2AADX5P15]K
A15C1334	290-0244-00		CAP.,FXD, ELCTLT: $0.47 \mathrm{UF}, 5 \%, 35 \mathrm{~V}$ (OPTION 02 ONLY)	56289	$162 \mathrm{D474} \mathrm{\times 5035BC2}$
A15C1335	290-0246-00		$\begin{aligned} & \text { CAP., FXD, ELCTLT: } 3.3 \mathrm{UF}, 10 \%, 15 \mathrm{~V} \\ & \text { (OPTION } 02 \text { ONLY) } \end{aligned}$	56289	162D335×9015CD2
Al5C1400	283-0198-00		CAP., FXD, CER DI : $0.22 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	$8121 \mathrm{N08325U0224M}$
Al5C1410	285-1049-00		CAP., FXD, PLSTC: $0.01 \mathrm{UF}, 1 \%, 200 \mathrm{~V}$	14752	$230 \mathrm{BlCl03F}$
Al5C1411	281-0775-00		CAP.,FXD,CER DI:0.1UF, 20%, 50 V	72982	800509AABZ5U104M
A15C1412	290-0846-00		CAP., FXD, ELCTLT: $47 \mathrm{UF},-10+75 \%, 35$ WVDC (STANDARD ONLY)	54473	ECE-A35V47LU
A15C1412	290-0943-00		CAP., FXD, ELCTLT:47UF, +50-10\%, 25V (OPTION 02 ONLY)	55680	25ULB47V0T
A15C1413	281-0813-00		CAP., FXD CER DI: $0.047 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
Al5C1421	290-0846-00		CAP.,FXD, ELCTLT: 47UF, $-10+75 \%, 35$ WVDC (STANDARD ONLY)	54473	ECE-A35V47LU
A15C1421	290-0943-00		$\text { CAP., FXD, ELCTLT : } 47 \mathrm{UF},+50-10 \%, 25 \mathrm{~V}$ (OPTION O2 ONLY)	55680	25ULB47VOT
A 15 C 1423	281-0813-00		CAP., FXD CER DI: $0.047 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
Al5C1424	281-0775-00		CAP., FXD, CER DI:0.1UF,20\%, 50 V	72982	8005D9AABZ5U104M
Al5C1430	290-0891-00		CAP., FXD, ELCTLT: IUF, +75-10\%,50V (OPTION 02 ONLY)	55680	25U1A10V-T
A15C1431	290-0525-00		```CAP., FXD, ELCTLT:4.7UF,20%,50V (OPTION 02 ONLY)```	56289	196D475X0050KAl
A15C1501	285-1050-00		CAP., FXD, PLSTC: $0.10 \mathrm{~F}, 1 \%, 200 \mathrm{~V}$	14752	230B1C104F
Al5C1502	281-0775-00		CAP.,FXD, CER DI:0.1UF,20\%, 50V	72982	8005D9AAB25U104M
A 15 C 1510	281-0813-00		CAP., FXD CER DI: $0.047 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
A 15 C 1520	281-0813-00		CAP., FXD CER DI: $0.047 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
Al5C1521	281-0775-00		CAP.,FXD,CER DI:0.1UF,20\%,50V	72982	8005D9AAB25U104M
Al5C1600	283-0594-00		CAP.,FXD,MICA D:0.001UF,1\%,100V	00853	D151F102F0
Al5C1601	283-0594-00		CAP., FXD,MICA D: $0.001 \mathrm{UF}, 1 \%, 100 \mathrm{~V}$	00853	D151F102F0
A 5 C1602	290-0804-00		CAP., FXD, ELCTLT: $10 \mathrm{UF},+50-10 \%, 25 \mathrm{~V}$	55680	25ULA10V-T
A15C1610	281-0775-00		CAP.,FXD,CER DI:0.lUF, 20%, 50V	72982	8005D9AABZ5U104M
A) 5 C 1620	281-0775-00		CAP.,FXD, CER DI: $0.1 \mathrm{UF}, 20 \%$, 50 V	72982	$8005 \mathrm{D} 9 \mathrm{AAB25U104M}$
Al SCRII2I	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N 4152 R

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
A15CR1122	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al 5 CR1230	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA (OPTION 02 ONLY)	01295	1 N 4 152R
Al SCR1231	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA (OPTION 02 ONLY)	01295	1 N4, 52R
A15CR1232	152-0322-00		SEMICOND DEVICE:SILICON, 15v, HOT CARRIER (OPTION 02 ONLY)	50434	5082-2672
A15CR1233	152-0322-00		SEMICOND DEVICE:SILICON,15v,hOT CARRIER (OPTION 02 ONLY)	50434	5082-2672
A15CR1301	152-0141-02		SEMICOND DEVICE:SILICON, 30v,150MA	01295	1 N4.52R
Al5CR1302	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
Al5CR1303	152-0141-02		SEMICOND DEVICE:SILICON, 30v, 150MA	01295	1 N4152R
A15CR1304	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A15CR1331	152-0246-00		SEMICOND DEVICE:SW,SI,40V,200MA (OPTION 02 ONLY)	03508	DE 140
A15CR1332	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA (OPTION 02 ONLY)	01295	1N4152R
AlSCR1401	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
AlSCR1411	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1 N 4152 R
AlSCR1412	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al 5 CR1413	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
Al5CR1414	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1 N4152R
A15CR1420	152-0141-02		SEMICOND DEVICE:SILICON, 30v,150MA	01295	1N4152R
AlSCR1501	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1 N4152R
Al5CR1502	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
A15CR1503	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
Al5CR1521	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
Al5DS1610	150-0077-01		LAMP, INCAND: $14 \mathrm{~V}, 0.08 \mathrm{~A}$	08806	2182 D
Al5DS1611	150-0077-01		LAMP, INCAND: $14 \mathrm{~V}, 0.08 \mathrm{~A}$	08806	2182 D
Al 5 F1610	159-0022-00		FUSE, CARTRIDGE: 3AG, 1A, 250V, FAST-BLOW	71400	AGC 1
A15F1620	159-0022-00		FUSE, CARTRIDGE: 3AG, 1A, 250V, FAST-BLOW	71400	AGC 1
A15F1621	159-0022-00		FUSE, CARTRIDGE:3AG,1A, 250V, FAST-BLOW	71400	AGC 1
Al 5 J 1100	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250 L, STRIP OF 36	22526	65524-136
Al5J1200	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
Al5J1300	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
Al5J 1400	131-1426-00		CONTACT SET, ELE:R ANGLE,0.250L,Strip Of 36	22526	65524-136
Al 5 J 1401	131-1426-00		CONTACT SET, ELE:R ANGLE, 0.250L, STRIP OF 36	22526	65524-136
A15J1500	131-1426-00		CONTACT SET, ELE:R ANGLE, 0. 250L, STRIP OF 36	22526	65524-136
Al5J 1600	131-1426-00		CONTACT SET, ELE:R ANGLE,0.250L, STRIP OF 36	22526	65524-136
AlSQ1310	151-1025-00		TRANSISTOR:SILICON, JFE, N-CHANNEL	01295	SFB8129
A15Q1330	151-0192-00		TRANSISTOR:SILICON,NPN, SEL FROM MPS6521 (OPTION 02 ONLY)	04713	SPS8801
A15Q1400	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A15Q1401	151-0254-00		TRANSISTOR:SILICON,NPN	03508	X38L3118
Al Q $1510^{\text {d }}$	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
A15Q1511	151-0190-00		TRANSISTOR:SILICON,NPN	07263	S032677
Al5Q1513	151-0302-00		TRANSISTOR:SILICON,NPN	07263	S038487
Al5Q 1520	151-0188-00		TRANSISTOR:SILICON, PNP	04713	SPS6868K
Al5Q1521	151-0188-00		TRANSISTOR:SILICON, PNP	04713	SPS6868K
A15Q1522	151-0301-00		TRANSISTOR:SILICON, PNP	27014	2N2907A
A15R1000	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	CB1015
A15R1021	321-0326-00		RES.,FXD,FILM: 24.3 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G24301F
A15R1022	321-0289-00		RES.,FXD,FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
AlSR1023	321-0260-00		RES., FXD, FILM:4.99K OHM, 1\%,0.125W	91637	MFF1816G49900F
A15R1030	321-0240-00		RES.,FXD, FILM: 3.09 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816630900F

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
A1SR1031	321-0290-00		RES.,FXD,FILM: 10.2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10201F
	-----------		(OPTION 02 ONLY)		
A15R1032	321-0222-00		RES.,FXD, FILM: 2K OHM, 1\%,0.125W	91637	MFF1816G20000F
			(OPTION 02 ONLY)		
A15R1033	321-0293-00		RES., FXD,FILM: 11 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 02 ONLY)	91637	MFF1816Gl1001F
Al 5R1034	321-0293-00		RES., FXD, FILM: 11 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G11001F
	----------		(OPTION 02 ONLY)		
A15R1035	321-0222-00		RES., FXD,FILM: 2 K OHM, $1 \%, 0,125 \mathrm{~W}$	91637	MFF1816G20000F
			(OPTION O2 ONLY)		
A15R1036	321-0316-00		RES.,FXD,FILM: 19.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G19101F
	-----------		(OPTION 02 ONLY)		
A15R1037	321-0316-00		RES.,FXD,FILM: 19.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G19101F
			(OPTION 02 ONLY)		
Al5R1038	321-0316-00		RES., FXD, FILM: 19.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G19101F
			(OPTION 02 ONLY)		
A15R1039	321-0291-00		RES.,FXD,FILM 10.5 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10501F
	--- -----		(OPTION O2 ONLY)		
Al SR1100	321-0222-00		RES., FXD, FILM: 2 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
AlSR1101	321-0222-00		RES.,FXD,FILM: 2 K OHM, 1\%,0.125W	91637	MFF1816G20000F
Al5R1102	321-0222-00		RES.,FXD,FILM:2K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
A15R1103	321-0222-00		RES.,FXD,FILM: 2 K OHM, 1\%,0.125W	91637	MFF1816G20000F
Al5R1104	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al5R1105	315-0102-00		RES.,FXD,CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R1106	321-0240-00		RES.,FXD,FILM:3.09K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30900F
Al5R1110	321-0308-00		RES.,FXD, FILM: 15.8 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15801F
Al5R1111	321-0265-00		RES.,FXD,FILM:5.62K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G56200F
Al5R1112	321-0308-00		RES.,FXD,FILM: 15.8 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15801F
Al5R1113	321-0265-00		RES.,FXD,FILM: 5.62 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G56200F
A15R1114	321-0240-00		RES.,FXD, FILM:3.09K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G30900F
Al5R1121	321-0289-00		RES.,FXD, FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
Al5R1122	321-0289-00		RES.,FXD, FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
Al 5R1 130	321-0651-00		RES., FXD, FILM : 15.8 K OHM, $0.25 \%, 0.125 \mathrm{~W}$	91637	MFF1816C15801C
			(OPTION 02 ONLY)		
Al5R1131	315-0364-00		RES.,FXD, CMPSN: 360 K OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION O2 ONLY)	01121	CB3645
Al 5R1132	311-1557-00		RES.,VAR, NONWIR: 25 K OHM, $20 \%, 0.50 \mathrm{~W}$	73138	91-79-0
			(OPTION 02 ONLY)		
Al SR1133	321-0237-00		RES.,FXD,FILM:2.87K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G28700F
			(OPTION 02 ONLY)		
A15R1134	321-0290-00		RES.,FXD,FILM:10.2K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION O2 ONLY)	91637	MFF1816G10201F
Al 5 R1135	321-0222-00		RES.,FXD,FILM:2K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20000F
	----------		(OPTION 02 ONLY)		
Al5R1136	321-0222-00		RES.,FXD,FILM:2K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFl816G20000F
			(OPTION 02 ONLY)		
A15R1137	321-0249-00		RES.,FXD,FILM:3.83K OHM, 1\%,0.125W	91637	MFF1816G38300F
	----------		(OPTION 02 ONLY)		
AISR1200	321-0312-00		RES.,FXD, FTLM: $17.4 \mathrm{~K} 0 \mathrm{HM}, 1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G17401F
			(OPTION 02 ONLY)		
AlSR1201	311-1556-00		RES., VAR, NONWIR: 50 K OHM, $20 \%, 0,50 \mathrm{~W}$	73138	91-78-0
AlSR1202	315-0473-00		RES., FXD, CMPSN: 47 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C84735
Al5R1203	315-0510-00		RES.,FXD, CMPSN:51 OHM, 5\%,0.25W	01121	CB5105
A15R1204	315-0243-00		RES.,FXD, CMPSN: 24 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2435
Al5R1210	321-0308-00		RES.,FXD, FILM: 15.8 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15801F
Al5R1211	321-0265-00		RES.,FXD,FILM: 5.62 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G56200F
A15R1212	321-0289-00		RES.,FXD, FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
Al5R1220	321-0363-00		RES.,FXD, FILM: 59 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G59001F
Al5R1221	321-0244-00		RES., FXD, FILM:3.4K OHM, 1\%, 0.125 W	91637	MFF1816G34000F
Al5R1222	321-0283-00		RES.,FXD,FILM:8.66K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G86600F
Al5R1223	321-0374-00		RES., FXD, FILM $: 76.8 \mathrm{~K}$ OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G76801F
Al5R1224	321-0405-00		RES.,FXD,FILM: 162K OHM, 1\%,0.125W	91637	MFFi8i6G16202F
A15R1230	321-0296-00		```RES.,FXD,FILM:11.8K OHM,1%,0.125W (OPTION O2 ONLY)```	91637	MFF1816G11801F
A15R1231	321-0344-00		RES., FXD, FILM: 37.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G37401F
			(OPTION 02 ONLY)		
A15R1232	321-0261-00		RES., FXD, FILM: 5.11 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G51100F
			(OPTION 02 ONLY)		
A15R1233	321-0308-00		RES.,FXD,FILM: 15.8 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 02 ONLY)	91637	MFF1816G15801F
A15R1234	321-0400-00		RES., FXD, FILM: 143 K OHM, 1\%,0.125W	91637	MFF1816G14302F
	----- -----		(OPTION 02 ONLY)		
Al 5 R1235	321-0289-07		RES., FXD, FILM: 10 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C10001B
			(OPTION 02 ONL.Y)		
A15R1236	321-0306-00		RES., FXD, FILM: 15 K OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 02 ONLY)	91637	MFF1816G15001F
Al 5 R1237	321-0277-00		RES.,FXD,FILM:7.5K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G75000F
			(OPTION 02 ONLY)		
Al SR1238	321-0289-07		RES.,FXD,FILM: 10 K OHM, $0.1 \%, 0.125 \mathrm{~W}$	91637	MFF1816C10001B
			(OPTION 02 ONLY)		
AlSRI300	311-1556-00		RES.,VAR, NONWIR: 50 K OHM, $20 \%, 0.50 \mathrm{~W}$	73138	91-78-0
Al5R1301	311-1749-00		RES.,VAR, NONWIR:TRMR, 1.5K OHM, 0.75 W	73138	91-97-0
Al5R1302	321-0291-00		RES.,FXD,FILM: 10.5 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10501F
Al SR1303	315-0473-00		RES., FXD, CMPSN: 47 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4735
Al5RI306	315-0202-00		RES., FXD, CMPSN: 2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2025
Al5R1310	321-0289-00		RES.,FXD,FILM:10K OHM, 1\%,0.125W	91637	MFF1816G10001F
Al5R1311	321-0289-00		RES., FXD, FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
AlSR1312	321-0260-00		RES.,FXD,FILM:4.99K OHM, 1\%,0.125W	91637	MFF1816G49900F
Al5R1313	315-0101-00		RES., FXD, GMPSN: 100 OHM, 5\%,0.25W	01121	CB 1015
A15R1314	315-0244-00		RES., FXD, CMPSN: 240 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2445
			(STANDARD ONLY)		
A15R1314	315-0684-00		RES.,FXD, CMPSN:680K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6845
			(OPTION 02 ONLY)		
Al 5R1315	315-0243-00		RES.,FXD, CMPSN: 24 K OHM, 5\%,0.25W	01121	CB2435
Al 5 R1320	321-0193-00		RES., FXD, FILM : 1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10000F
Al 5 R1321	321-0289-00		RES.,FXD,FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
Al5R1322	321-0318-00		RES.,FXD,FILM: 20 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20001F
Al5R1323	321-0432-00		RES.,FXD,FILM:309K OHM, 1\%,0.125W	91637	MFF1816G30902F
Al5R1324	321-0289-00		RES.,FXD,FILM: 10 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G10001F
Al 5R1325	321-0312-00		```RES.,FXD,FILM:17.4K OHM, 1%,0.125W (STANDARD ONLY)```	91637	MFF1816G17401F
Al5R1325	321-0405-00		RES., FXD,FILM: 162 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G16202F
	----------		(OPTION 02 ONLY)		
A15R1330	311-1557-00		RES.,VAR, NONWIR:25K OHM, 20\%,0.50W	73138	91-79-0
			(OPTION 02 ONLY)		
A15R1331	315-0512-00		RES., FXD, CMPSN: 5.1K OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	CB5125
A15R1332	315-0302-00		RES.,FXD, CMPSN: 3K OHM, 5\%,0.25W	01121	C83025
			(OPTION 02 ONLY)		
A15R1333	321-0423-00		RES.,FXD, FILM: 249 K OHM, 1\%,0.125W	91637	MFF1816G24902F
			(OPTION 02 ONLY)		
A15R1334	311-1557-00		RES., VAR, NONWIR: 25 K OHM, 20\%, 0.50 W (OPTION 02 ONLY)	73138	91-79-0
A15R1335	321-0382-00		RES.,FXD,FILM:93.1K OHM,1\%,0.125W (OPTION 02 ONLY)	91637	MFF1816G93101F

A15R1336	315-0225-00	RES., FXD, CMPSN: 2.2 M OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	CB2255
A15R1337	321-0156-00	RES., FXD, FILM:412 OHM, $1 \%, 0.125 \mathrm{~W}$ (OPTION 02 ONLY)	91637	MFF1816G412R0F
Al5R1338	315-0104-00	RES.,FXD,CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	CB1045
Al5R1339	315-0271-00	RES., FXD, CMPSN: 270 OHM, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	C82715
A15R1400	315-0103-00	RES., FXD, CMPSN: 10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
AlSR1401	315-0153-00	RES.,FXD,CMPSN: 15K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1535
Al5R1402	315-0153-00	RES.,FXD,CMPSN: 15 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C81535
Al5R1403	315-0104-00	RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
A15R1404	315-0432-00	RES., FXD, CMPSN: 4.3 K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB4325
Al5R1405	321-0414-00	RES.,FXD,FILM: 200 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G20002F
AlSR1406	315-0201-00	RES., FXD, CMPSN: 200 OHM, 5\%, 0.25W	01121	CB2015
AlSR1407	315-0122-00	RES.,FXD, CMPSN: 1.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1225
Al5R1420	321-0289-00	RES., FXD, FILM:10K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G10001F
Al5R1421	321-0289-00	RES.,FXD, FILM:10K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G10001F
A15R1424	315-0201-00	RES. , FXD, CMPSN: 200 OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB2015
Al5R1425	321-0283-00	RES., FXD, FILM:8.66K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G86600F
Al5R1426	321-0268-00	RES., FXD, FILM:6.04K OHM, 1\%,0.125 W	91677	MFF1816G60400F
Al5R1430	315-0474-00	RES.,FXD,CMPSN:470K ОНм, $5 \%, 0.25 \mathrm{~W}$ (OPTION 02 ONLY)	01121	CB4745
Al5R1501	321-0414-00	RES.,FXD,FILM:200k OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFI816G20002F
A15R1502	321-0312-00	RES.,FXD, FILM: 17.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G17401F
AlSR1503	321-0416-00	RES., FXD, FILM:210K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF 1816 C 21002 F
Al5R1510	315-0106-00	RES., FXD, CMPSN:10M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1065
Al5R1511	315-0203-00	RES., FXD,CMPSN:20K ОНM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB2035
Al5R1512	315-0106-00	RES., FXD, CMPSN: 10 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1065
AlSR1513	315-0203-00	RES., FXD, CMPSN: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2035
AlSR1514	315-0106-00	RES., FXD, CMPSN: 10 M OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB1065
AlSR1515	315-0226-00	RES., FXD, CMPSN: 22 M OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2265
Al5R1516	315-0203-00	RES., FXD, CMPSN: 20 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2035
A15R1517	315-0203-00	RES.,FXD,CMPSN:20K OHM, 5\%,0.25W	01121	CB2035
Al5R1518	315-0245-00	RES., FXD, CMPSN:2.4M OHM , 5\%,0.25W	01121	CB2455
Al5R1519	307-0093-00	RES., FXD, CMPSN: 1.2 OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB12G5
A15R1520	315-0101-00	RES., FXD, GMPSN: 100 OHM , 5\%,0.25W	01121	CB1015
Al5R1521	315-0101-00	RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
A15R1522	315-0102-00	RES.,FXD, CMPSN: 1 K О $\mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R1523	315-0102-00	RES.,FXD, CMPSN:IK OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R1524	315-0102-00	RES.,FXD, CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
A15R1525	315-0102-00	RES.,FXD,CMPSN:IK OHM, 5\%,0.25W	01121	CB1025
A15R1526	307-0093-00	RES., FXD, CMPSN: 1.2 OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB12G5
Al5R1600	315-0102-00	RES., FXD, CMPSN:1K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
Al 5 R1601	315-0102-00	RES.,FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
Al5R1602	321-0256-00	RES.,FXD,FILM: 4.53 K OHM, 1\%,0.125 W	91637	MFFl816G45300F
AlSR1603	315-0132-00	RES.,FXD,CMPSN:1.3K OHM,5\%,0.25W	01121	CB1325
Al5R1610	321-0174-00	RES., FXD, FILM: 634 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G634R0F
Al5R1611	321-0661-00	RES. , FXD, FILM: 600 OHM , $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G600ROF
Al5R1612	321-0131-00	RES., FXD, FILM: 226 OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G226R0F
AlSR1620	315-0472-00	RES.,FXD,CMPSN:4.7K OHM, 5\%,0.25W	01121	CB4725
Al5R1621	315-0472-00	RES.,FXD,CMPSN:4.7K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB4725
Al5s 1000	260-1999-00	SWITCH,PUSH:5 BUTTON,4,2 \& 0 POILE, DISTOR	71590	2KBC1310001304
AlSS 1100	260-2000-00	SWITCH, PUSH:5 BUTTON, 2 \& 4 POLE, Filler	71590	2KBB0500001305
Al5TP1411	214-0579-00	TERM, TEST POINT:BRS CD PL	80009	214-0579-00
Al5U1121	156-1191-00	microcircuit, li:dual bi-fet Op-ampl, 8 dip	01295	TL072CP

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
Al5u1201	156-1457-00		Microcircuit,li: True rms converter	24355	AD536AJH
Al5U1210	156-1191-00		MICROCIRCUIT,LI:DUAL BI-FET OP-AMPL, 8 dip	01295	TL072CP
Al5U1220	156-1149-00		microcircuit, lif operational amp, JFEt input	27014	LF351N
Al5U1230	156-1200-00		microcircuit, Li: operational ampl (OPTION 02 ONLY)	01295	TL074CN
Al5U1231	156-1338-00		MICROCIRCUIT, LI: OPERATIONAL AMPLIFIER (OPTION 02 ONLY)	18324	NE5534N
Al5U1301	156-1149-00		Microcircuit, li: operational amp, JFEt input	27014	LF351N
Al5ul310	156-1191-00		MICROCIRCUIT,LI:DUAL BI-FET OP-AMPL, 8 dIP (Standard only)	01295	TL072CP
A15U1310	156-1149-00		microcircuit, li : OPERATIONAL amp, JFEt input (OPTION 02 ONLY)	27014	Lf351n
A1501321	156-1149-00		MICROCIRCUIT, LI: OPERATIONAL AMP, JFET INPUT	27014	LF35in
Al5U1330	156-1200-00		MICROCIRCUIT,LI: OPERATIONAL AMPL (OPTION 02 ONLY)	01295	TLO74CN
A1501400	156-0763-00		microcircuit, di:hex cont bounce eliminator	80009	156-0763-00
Al5U1410	156-0931-00		MICROCIRCUIT, DI: QUAD D FF	80009	156-0931-00
Al5u1420	156-0158-00		microcircuit, li :dual operational amplifier	18324	MC1458V
A) 501500	156-0931-00		MICROCIRCUIT, di: QUAD D FF	80009	156-0931-00
Al5U1523	156-0277-00		microcircuit, li: Voltage regulator	07263	microal 8050 C
A15U1600	156-0513-00		microcircuit,di:8-chan mux	80009	156-0513-00
A1501610	156-0411-00		MICROCIRCUIT,LI: QUAD-COMP, SGL SUPPLY	27014	LM339N
Al5VR1021	152-0647-00		SEMICOND DEVICE:ZENER,0.4W,6.8V,5\%	80009	152-0647-00
AlsVr1401	152-0486-00		SEMICOND DEVICE:ZENER,0.25W,6.2V,5\%	80009	152-0486-00
A15VR1520	152-0590-00		SEMICOND DEVICE:ZENER, 18V,5\% AT 7MA	80009	152-0590-00
AlsVris21	152-0590-00		SEmicond device:Zener, 18V,5\% at 7ma	80009	152-0590-00

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mir Code	Mfr Part Number
			CHASSIS PARTS		
J500	131-0955-00		CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J510	131-1315-01		CONN, RCPT, ELEC: BNC, FEMALE	24931	28JR 306-1
J520	131-0955-00		CONN, RCPT, ELEC: BNC, FEMALE	13511	31-279
J530	136-0731-00		JACK, TIP: BLACK	80009	136-0731-00
J540	136-0731-00		JACK, TIP : BLACK	80009	136-0731-00
S1521	263-1187-00		SW Cam actr as:level range	80009	263-1187-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.

American National Standard Institute 1430 Broadway
New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:
$\begin{aligned} & \text { Capacitors }= \text { Values one or greater are in picofarads }(\mathrm{pF}) . \\ & \text { Values less than one are in microfarads } \\ &(\mu \mathrm{F}) .\end{aligned}$

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

ADJUSTMENT LOCATIONS

Fig. 8-2. Adjustment and CCIF-AUTO-SMPTE/DIN Jumper Position Location for Control \& IMD Option Boards.

Main Bonrd

Adjustment locations for Option 02 Main Board

ADJUSTMENT LOCATIONS

Fig. 8-1. Adjustment Location IIlustration for Main, Input \& Notch and DVM Boards.

Fig. 8-3. Inpui Board (A14 Assy)

Table 8-2
COMPONENT REFERENCE CHART (see Fig. 8-3)

P/O A14ASSY				inputboard <2	
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD Location	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
C1021	J4	C4	R1033	17	${ }^{\text {B6 }}$
C1030	H5 $\mathrm{K7}$	84	${ }_{\text {R1034* }}^{\text {R103 }}$	$\begin{array}{r}37 \\ \\ \\ \hline 6\end{array}$	${ }_{85}^{85}$
${ }_{\text {C1122 }}$	K7 J4	D5 c5	R1037 R1038	${ }^{\mathrm{J6}}$	${ }_{85}^{85}$
${ }^{\text {C1129* }}$	K5	${ }^{\text {c }}$	R1039*	J7	B6
C1131	J3	C5	R1115	L5	C3
C1132	K7	C5	R1116	\underline{L}	C_{4}
${ }^{\text {c1133 }}$	F3	D5	R1120	K5	C_{4}
$\mathrm{Cl13}^{134}$	${ }^{\text {H2 }}$	D5	${ }^{\text {R1121 }}$	K4	${ }^{\text {c }}$
C1135 $\mathrm{Cl136}$	F48	D5	R1122	K6	C4
${ }^{\text {c1139 }}$	F6	D6	R1125	K4	C_{4}
C1220	H3	D3	R1126	J3	C4
C1221	F4	E3	R1130	J8	C6
C1222	${ }^{\text {H3}}$	D4	R1131	${ }^{\text {F6 }}$	${ }^{\text {D6 }} 6$
${ }^{\text {c1223 }}$	F4	E4	R1132	${ }^{17}$	${ }^{06}$
${ }^{C 1224}$	${ }_{\text {H3 }}$	D4	${ }_{\text {R1134** }}$	H6	${ }^{\text {D6 }}$
${ }^{\text {C1225 }}$	${ }_{\text {F }}^{\text {F }}$	J4	R1134*	${ }_{\text {K4 }}$	${ }^{\text {D5 }}$
${ }_{\text {C13 }}$	${ }_{\text {D6 }}$	F5	R1136	${ }^{\text {J7 }}$	C5
${ }_{\text {C14331 }}$	c6	H5	R1139*	к7	c6
C1432	85	H5	R1228*	K4	B5
C1434 C 1530	${ }_{\text {c }}$	15 15	R1229**	157	${ }_{\text {c6 }}$
$\mathrm{C}^{\text {c1533 }}$	E7	J6	${ }_{\text {R1300 }}$	F2	F1
C1534 $C 1535$	${ }_{87}{ }^{\text {87 }}$	${ }^{16}$	R1301	E2	F1
C1535	B7	J6	R1302	E1	F1
CR1020	J1	A4	${ }_{\text {R1303 }}^{\text {R1303 }}$	E2	F1
CR1032	J7	85	R1308 R130	E8	F5
CR1033	K7 H 1	${ }_{84}^{85}$	R1131	E8	${ }_{\text {F6 }}$
CR1222	H2	E4	${ }_{\text {R1333 }}$	${ }_{\text {F7 }}$	${ }_{\text {F6 }}$
CR1223	F2	E4	R1334	H7	F6
CR1332	H88	G5	R1335	F7	${ }^{\text {F6 }}$
CR1531	E7	${ }^{5}$	R1336 R133	${ }_{87}^{\text {D6 }}$	G6
E1139*	F6	D6	R1338	C6	G6
E1140*	F6	C6	R1339	${ }^{\text {C6 }}$	${ }^{\mathbf{H 6}}$
J1201	${ }^{\text {L5 }}$	F1	R1431	B5	H5
J1201	D1	F1	R1432	C5	H5
J1300	D4	G1	R1433	B7	16
J1430	E6	G5	R1434	B7	${ }_{4}^{16}$
K1030	$J 1$	A5	R1436 R1530	C5	${ }_{16}$
K1130	H2	D5	R1531	${ }^{\text {D7 }}$	16
K 1231 K 1232	H2 F2	E5	R1533	C7	16
P1201	L5	F1			
P1201	D1	F1	U1020A	K4	B4
${ }_{\text {P1300 }}$	${ }_{\text {d }}{ }^{\text {a }}$	G1	${ }_{\square}^{\mathrm{U1030}}$	${ }_{56}^{\text {E5 }}$	${ }_{85}^{85}$
P1430	E6	G5	$\bigcirc 1032$	${ }^{\mathrm{J6}}$	${ }_{86} 85$
01320	F2	F4	U1120A	K6	C4
Q1321	F2	F4	U11208	L5	${ }^{\text {ca }}$
Q1322	${ }_{\text {F1 }}$	F4	${ }_{\mathrm{U} 1131}$	J4 K 7	C5
Q1330	${ }_{\text {F1 }}{ }_{\text {B7 }}$	${ }_{\text {F5 }}$	U13308	H8	F5
			U1331	${ }^{\text {B6 }}$	G6
R1023	K4	B4	${ }_{\text {U14 }}{ }_{\mathbf{U} 1431}$	${ }_{86}$	${ }^{H 5}$
R1024 R1025	J3	A4	$\bigcirc 1530 \mathrm{~A}$	${ }^{\text {E8 }}$	15
R1030	F5	B4	U1530B	C7	15
R1031 R1032	${ }^{\text {F6 }}$	- ${ }^{\text {c6 }}$	VR1430	B7	16
P/O A1a ASSY also shown on					

Table 8-1
COMPONENT REFERENCE CHART (see Fig.

$\mathrm{A}|\mathrm{B}| \mathrm{C}|\mathrm{D}| \mathrm{E}|\mathrm{F}| \mathrm{G}|\mathrm{H}| \mathrm{I}|\mathrm{J}| \mathrm{K}$ 1

2

Table 8-3
 COMPONENT REFERENCE CHART (see Fig 8-4)

P/O A15 ASSY				WIAINBOARD 3	
CIRCUIT	SCHEMATIC	BOARD	CIRCUIT	SCHEMATIC	BOARD
NUMBER	LOCATION	LOCATION	NUMBER	LOCATION	LOCATION
C1400	L6	H3	R1404	C6	13
C1410	E6	13	R1405	E5	J3
C1411	L8	14	R1501	E7	J3
C1501	E7	J3	R1502	E2	K3
C1502	K8	K3	R1503	E3	KS
C1600	E2	L3	R1510	J6	J4
C1601	ES	L3	R1511	J3	J4
C1602	B5	L3	R1512	Ja	Ja
			R1513	J5	J4
CR1401	E5	J3	R1514	J8	14
CR1411	L2	H4	R1515	J1	KA
CR1412	L5	Ha	R1516	J2	K
CR1413	L3	H4	R1517	J7	Ka
CR1414	L7	Ha	R1516	0	Ka
CR1501	E7	J3	A1610	H2	L4
CR1502	E2	K3	F1611	H7	ka
CR1503	E4	K3	R16.12	H2	W14
J1400	A6	H2	U1400	1.2	H8
J1400	M2	H2	U1410a	K2	14
J1400	M2	H2	U1410E	167	14:
P1400	A6	H2	U1410C	163	18
P1400	Ma	H2	U14100	$K 5$	14
P1400	Mr.	H.	U1500A	D5	J3
			UIF00E	07	13
Q1400	96	12	U1500C	02	J
Q1401	B6	12	W15000	D4	J3
			U1600	Hy	$L 3$
A1400	B6	12	U1610a	97	La
R1401	B7	12	U1610E	12	48
R1402	B5	13	U1610C	45	Re
P1403	C6	13	U1610D	J5	1.4
P/O A15 ASSV also shown on					

PARTS LOCATION GRID

Table 8-4
 COMPONENT REFERENCE CHART (see Fig. 8-3)

P/O A14 ASSY				INPUT BOARD <4	
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
C1000	F3	A1	R1010	E8	B3
C1001	$J 5$	B2	R1011	E8	B3
C1004*	c2	C2	R1012	C7	B3
C1010	D7	B3	R1013	E7	B3
C1011	K2	C2	R1014	C8	B4
C1013	C7	A2	R1015	C6	B3
C1019	K5	B3	R1016	B5	B2
C1102	K6	D3	R1017	K6	B3
C1115	L6	C3	R1018	D7	C3
C1121	L7	D4	R1019*	K6	B3
C1201	K4	E2	R1020	B7	A3
			R1021	B7	B4
CR1001	F7	B2	R1022	C6	A4
CR1002	E7	B2	R1026	L4	B4
CR1011	K6	83	R1035	$L 7$	A5
CR1012	K6	83	R1036	$L 7$	A5
CR1013	K5	83	R1100	$J 7$	D1
CR1022	L4	B4	R1101	J2	D1
CR1100	K2	C2	R1103	J7	D1
CR1110	K7	C2	R1104	$J 7$	D1
			R1105	J2	C2
Q1000	J5	C2	R1106	K3	C2
01001	L2	C2	R1111	L2	C3
Q1010	D8	A3	R1112	J6	C3
$Q 1011$	B8	A3	R1113	L7	C3
Q1012	${ }^{\text {C6 }}$	B2	R1114	L8	C3
01013	B6	C2	R1207	$J 5$	E2
Q1014	L4	C3	R1305	J4	F1
01110	L7	D3	R1306	D5	F1
Q1200	J4	E1	RT1030	L7	B5
R1000	H5 $H 5$	B2	U1000	H1	B1
R1001	H5	B2	U1001A	E6	A2
R1002	${ }^{\mathrm{J} 2}$	B2	U1001B	E7	A2
R1003	C2	C2	U1002A	D3	C1
R1005	C3	C2	U1002	D1	C1
R1006	F6	B2	U1020B	B7	B4
R1007	E6	B2	U1100	K 2 K 7	${ }_{\text {C2 }}$
A1008	D2	B1	U1100B	K7	C2
R1009	D4	C2	VR1000	C3	C2
			\rangle	$\text { (5) }\langle 10\rangle$	

Table 8-5
 COMPONENT REFERENCE CHART (see Fig. 8-3)

P/O A14 ASSY				INPUT BOARD < 5	
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1100	J3	D2	R1215	D6	E2
C1101	K2	D2	R1216	F3	E3
C1104	K3	D1	R1217	F3	E3
C1200	K4	E1	R1218	F2	E3
C1219	F2	F3	R1219	F2	F3
C1310	E2	F3	R1220	D7	D3
C1311	C3	F3	R1307	C3	F1
			R1309	D4	F2
J1200	B6	E1	R1310	C3	F2
131300	L2	G1	R1311	F1	F3
J1301	B2	F2	R1320	E1	F3
			R1327	C3	F4
P1300	L2	G1	R1610	B3	L3
P1301	B2	G1	R1611	C4	L3
Q1300	D3	G2	S1600A	C2	L3
Q1602	C3	L2	S1600C	84	L3
R1201	K3	D2	TP1310	F2	F2
R1202	K3	D2	U1101A	K2	D2
R1203	F5	E1	U11018	J4	D2
R1204	F5	E1	U1210	H2	D3
R1205 R1206	D4	E1	41300	D1	F2
R1210	J4	E2	41310	E2	F3
R1211	J4	E2	VR1112	D6	D3
R1212	D2	E2	VR1220	D7	E3
R1213	D2	E2			
R1214	C2	E2	W1304	C3	F2
P/O A14 ASSY also shown on $\langle 1\rangle\langle 2\rangle\langle 4\rangle$					

Table 8-6
 COMPONENT REFERENCE CHART (see Fig. 8-4)

P/OA15	ASSY			MAIN BOARD	
CIRCUIT	SCHEMATIC	BOARD	CIRCUIT	SCHENATIC	BOARD
NUMBER	LOCATION	LOCATION	NUMBER	LOCATION	LOCATION
C1021	E2	B6	R1103	K8	E2
C1022	D3	B6	R1104	L7	E2
C1100	C5	D3	R1105	K7	E3
C1101	B6	E3	R1106	C5	D3
C1102	B6	E3	R1110	B6	D4
C1103	D6	E6	R1111	B7	D4
C1110	H4	D4	R1112	C6	E4
C1111	H4	D4	R1113	C7	E4
C1112	H5	D5	R1114	C5	D4
C1121	C4	C6	R1121	D3	C6
C1122	C3	D6	R1122	B3	D6
C1123	B5	D5	R1201	H2	F2
C1201	J3	F3	R1202	H2	F3
C1210	C6	E4	R1203	J2	F3
C1211	C6	F4	R1204	K2	G3
C1212	F6	E5	R1210	C6	E4
C1213	K1	F4	R1211	C7	E4
C1220	F6	E5	R1212	J4	F4
V1221	H6	E5	R1220	H6	E6
C1300	J2	F3	R1221	H6	E6
C1301	L4	G3	R1222	F6	F6
C1310	J7	G5	R1223	E8	F6
C1311	H5	F3	R1224	H7	E6
C1315	K2	H4	R1300	K4	G2
C1320	D7	G5	R1301	L3	G2
C1321	D7	G6	R1302	L3	H3
C1322	D7	G6	R1303	K4	H3
C1323	E7	G6	R1306 R1310	K6 H5	H2 F4
CR1121	D3	C6	R1311	K4	G4
CR1122	D3	C6	R1312	K4	G4
CR1301	K5	G3	R1313	L5	H3
CR1302	J5	G3	R1314	K2	H3
CR1303	K1	G4	R1315 R1320	L3	H 4 F 5
CR1304	K1	G4	R1320	D8	F5
J1200	M7	E2	R1322	F8	H6
J1300	M2	G2	R1323	E8	H6
J1300	B6	G2	R1324	F7	H6
J1300	M4	G2	R1325	J7	H5
J1401	E4	G2	R1600	L1	L3
J1600	B8	L2	R1601	L1	M3
J1600	M6	L2	R1602	E4	M3
J1600	E5	L2	R1603	E5	M3
J1600	M3	L2	S1100A	H5	C3
J1600 J1600	M1	L2	S1100B	C5	C3
J1600	M8	L2	S1100C	D6	C4
P1200	M7	E2	S1100D	D6	C4
P1300	B6	G2	S1100E	J6	C5
P1300	M2	G2			
P1300	M4	G2	U1121A	E3	D6
P1401	E4	J2	U1121B	C4	D6
P1600	B8	42	U1210A	J1	F3
P1600 P1600	M6 E5	L2	U1210B	K6	E4
P1600	M3	L2	U1220	H6	E6
P1600	M1	L2	U1301	J5	G3
P1600	B8	L2	U1310A	L4	H4
P1600	M8	L2	U1310B U1321	K2	H4 H6
Q1301	K3	G4			H6
R1021 R1022	E2	B 6 C 6	VR1021	E3	B6
R1023	D3	C6	J500	M6	Chassis
R1100	K6	E2	J510	M6	Chassis
R1101	K7	E2	J520	M7	
R1102	K0	E2			
P/O A15 ASSY also shown on (13) 14					

PARTS LOCATION GRID

Table 8-6A COMPONENT REFERENCE CHART (see Fig. 8-4A)

	P/OA15 ASSY						MAIN BOARD (OPTION 02) 6A		
	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
	C1021	D3	C2	J1300	N6	G2	R1232	H6	E6
	C1022	D5	C2	J1401	E5	J2	R1233	J5	F5
	C1030	16	B5	J1600	C9	L2	R1234	$J 4$	F5
	C1031	15	B6				R1235	H4	F6
	C1032	K6	C5	Q1310	K3	G3	R1236	14	F6
	C1033	16	C6	Q1330	N5	H4	R1237	J4	F6
	C1103	F8	E3				R1238	15	F6
	C1121	86	D2	R1000	D5	C2	R1306	K8	F2
	C1122	B6	D3	R1021	D3	C2	R1314	L2	H3
	C1123	B6	E3	R1022	B4	B2	R1315	M3	G3
	C1130	G3	D5	R1023	D5	C2	R1325	H9	E2
	C1131	G6	E5	R1030	16	B6	R1330	J5	G5
	C1132	K6	D5	R1031	16	B6	R1331	K4	G5
	C1133	K6	D6	R1032	J7	B6	R1332	N5	H5
	C1134	G5	E5	R1033	J6	C6	R1333	M4	H4
	C1135	D8	E4	R1034	H6	C6	R1334	N5	H5
	C1201	J3	G3	R1035	J6	C6	R1335	L4	H6
	C1210	D8	E4	R1036	E7	D3	R1336	L5	H6
	C1211	D8	E5	R1037	D7	D3	R1337	L4	H6
	C1213	J1	G3	R. 1038	C7	D3	R1338	M5	H6
	C1230	H7	F3	R1039	C8	D3	R1339	M5	H6
	C1231	G7	F4	R1100	J8	E2	R1430	N5	H4
	C1232	G7	F4	R1101	J8	E2	R1600	L1	M3
	C1233	C7	F4	R1102	19	E2	R1601	M1	M3
	C1234	C7	F5	R1103	J9	E2	R1602	D6	M4
	C1235	H4	F5	R1104	K9	E3	R1603	D7	M3
	C1236	H4	F5	R1105	J8	E2	S1100A	H7	C3
	C1237	H5	E6	R1106	D9	D3	S1100日	E8	
	C1300	J2	H3	R1111	C8	D5	S1100C	E7	
	C1310	H9	F3	R1113	D8	D5	S1100D	G5	
	C1315	L2	H3	R1114	B8	D3	S1100E	18	
	C1330	H9	G6	R1121	C5	B2			
	C1331	K3	G6	R1122	B6	B2	U1121A	E5	D2
	C1332	K4	G6	R1130	G4	D5	U1121B	B6	
	C1333	K4	H4	R1131	G5	E5	U1201	11	G3
	C1334	M3	H4	R1132	H6	E6	U1210A	F7	D3
	C1335	L4	H5	R1133	K6	E6	U1210B	19	
	C1430	N4	H4	R1134	K6	E6	U1220	H7	F3
	C1431	N5	H5	R1135	L6	E6	U1230A	L6	E5
				R1136	L6	E6	U1230B	15	
	CR1121	D5	B2	R1137	C8	D4	U1230C	J6	
	CR1122	C5	B2	R1200	H9	E3	U1230D	H6	
	CR1230	15	F6	R1201	G1	G3	U1231	K4	
	CR1231	J4	F6	R1202	H1	G2	U1310	L1	H3
	CR1232	K4	G6	R1203	12	G2	U1330A	M5	G5
	CR1233	K4	G6	R1204	K2	H3	U1330B	N4	
	CR1303	L1	H3	R1211	D8	D4	U1330C	N4	
	CR1304	L1	H4	R1220	H7	E2	U1330D	L5	
	CR1331	N4	H4	R1221	G7	E2			
	CR1332	N4	H4	R1222 R1230	G7	E2	VR1521	D4	L6
	J1200	L7	E2	R1231	G6	E6			

Table 8-7
 COMPONENT REFERENCE CHART (see Fig. 8-5)

P/O A12 ASSY			LOGICBOARD < 7		
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
C1212	C3	G2	R1411	J4	12
C1220	E2	G3	R1412	D4	13
C1312	H2	H3	R1413	C4	13
C1433	K8	15	R1414	L1	13
C1434	J8	15	R1420	H4	14
C1445	E8	16	R1431	K6	14
			R1432	E8	15
CR1220	F3	F3	R1435	J8	15
CR1400	H2	12	R1436	K8	15
CR1401	L1	12	R1441	E8	15
CR1431	M6	14	R1442	J8	J5
			R1443	K6	15
J1301	M1	G1	R1444	J5	15
J1401	F4	11	R1445	J5	J6
J1401	B2	11	R1501	F2	K1
			R1503	F2	K1
P1301	M1	G1	R1504	J2	K2
P1401	F4	11	R1505	C7	K1
P1401	B2	11	R1506	K3	K1
			R1507	K2	K1
Q1311	H3	H2	R1508	K2	K2
Q1447	K8	J5	R1509	K3	K2
			R1510	J2	J2
R1201	E2	G2	R1511	F3	K2
R1219	D3	G3			
R1222	C3	G3	S1411C	H5	13
R1224	F2	G3			
R1225	C2	F3	TP1200	C3	G2
R1230	F4	G4	TP1240	B3	F6
R1231	F4	G4	TP1410	H2	12
R1232	F4	G4			
R1241	C4	F5	U1222	E3	G3
R1242	B3	F5	U1231	C5	G5
R1245	B3	G6	U1312A	D4	H3
R1246	E5	G6	U13128	H2	H3
R1301	J4	H2	U1312C	C3	H3
R1302	E4	H2	U1312D	E2	H3
R1311	C2	G2	U1313A	C7	H3
R1312	D2	G2	U1313B	L1	H3
R1313	F2	H3	U1313C	J4	H3
R1320	E4	G3	U1313D	D6	H3
R1332	E6	G4	U1321	H5	H4
R1333	J5	H4	U1331A	L5	H4
R1334	L5	H5	U13318	K5	H4
R1335	L5	H5	U1331C	J7	H4
R1341	C2	H6	U1331D	J6	H4
R1400	F4	12	U1332	H7	H5
R1401	C7	J1	U1407	K1	J2
R1402	K1	$J 1$	U1431A	K8	J5
R1403	J4	$J 1$	U1431B	J8	J5
R1404	H1	12	U1431C	D8	J5
R1405	J2	12	U1431D	D8	$J 5$
R1406	C1	12	U1531A	F8	J5
R1407 R1409	L1	12	U1531B	L7	J5
R1410	J4	12	VR1406	C8	12
	P/O	ASSY also s	vnon	$\hat{11}\rangle\langle 12\rangle$	

PARTS LOCATION GRID

PARTS LOCATION GRID

COMPONENT NUMBER EXAMPLE

Fig. 8-6. DVM Board (A11 Assy). See Maintenance Section

Table 8-8
 COMPONENT REFERENCE CHART (see Fig. 8-6)

P/O A11 ASSY				DVM BOARD 8	
CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
C1020	E3	B4	R1126	C5	B4
C1021	E3	B3	R1127	C6	C4
C1120	F4	C4	R1128	C7	C4
C1220	F2	D3	R1130	C6	C5
			R1131	C6	C5
$J 1101$	B1	B1	R1132	B6	C5
51111	M1	B2	R1133	B6	C5
J1221	M7	D4	R1134	B7	C5
			R1135	B7	B5
P1101	B1	B1	R1136	C7	D5
P1111	M1	B2	R1137	D7	D5
P1221	M7	D4	R1138	D8	D5
			R1139	B7	D5
Q1201	L5	D2	R1201	K5	D1
01210	J1	D2	R1202	H6	D1
			R1212	D1	D2
R1001	L7	B2	R1216	E2	D3
R1002	L7	B2	R1217	E2	D3
R1003	L5	B2	R1218	E2	D3
R1004	L5	B2	R1225	E8	D4
R1005	L6	B2	R1226	C7	D4
R1006	L6	B2	R1227	F8	D4
R1021	E4	B3	P1228	F8	D4
R1022	E3	B3	R1230	F8	E5
R1024	D3	B4	R1231	E8	D5
R1025	C4	B4	R1232	D8	D5
R1026	C4	B4	R1233	E8	D5
R1031	C4	B5	R1234	E8	D5
R1032	C3	B5	R1235	E8	D5
R1033	B4	B5	R1236	C8	D5
R1034	B3	B5	R1237	B7	D6
R1035	B4	B5			
R1036	B4	A4	U1030A	C4	B4
R1037	C4	B5	U1030B	C4	B4
R1038	C5	B5	U1111	H5	C3
R1039	B5	B5	U1130A	C5	C4
R1040	B5	B5	U1130B	C7	C4
R1041	B5	B5	U1130C	C6	C4
R1042	B5	B4	U1130D	C5	C4
R1102	L5	C2	U1201A	J6	D2
R1103	L4	C2	U1201B	J5	D2
R1104	L6	C2	U1201C	K5	D2
R1105	L6	C2	U1201D	K6	D2
R1121	F3	B3	U1230A	C7	D4
R1122	F2	D3	U1230B	F8	D4
R1125	C5	B4	U1230C	E8	D4
			U1230D	D8	D4

PARTS LOCATION GRID

Fig. 8-7. Display Board (A10 Assy)

Table 8-9
COMPONENT REFERENCE CHART (see Fig. 8-7)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{P/O A10 ASSY} \& \multicolumn{2}{|l|}{displayboard $\langle 9\rangle$}

\hline CIRCUIT
NUMBER \& schematic LOCATION \& BOARD
LOCATION \& CIRCUIT
NUMBER \& schematic LOCATION \& $$
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
$$

\hline DS1010 \& C2 \& 82 \& ${ }^{\text {J1012 }}$ \& ${ }^{\text {B2 }}$ \& ${ }^{\text {B2 }}$

\hline ${ }_{\text {DS } 1022}$ \& E5 \& D_{2} \& J2020 \& ${ }_{2}$ \& 82

\hline - ${ }^{\text {DS1030 }}$ \& ${ }_{\text {F5 }}^{\text {F5 }}$ \& ${ }_{\text {D2 }}$ \& j2030

2030 \& ${ }_{84}^{\text {K7 }}$ \& ${ }_{\text {D2 }}$

\hline DS1040 \& K5 \& E2 \& J2040 \& ${ }_{13}$ \& ${ }_{\text {F2 }}$

\hline Ostio42 \& ${ }_{4}^{4}$ \& ${ }_{\text {F }}$ \& ${ }^{\text {P1012 }}$ \& ${ }^{82}$ \& ${ }^{82}$

\hline ${ }^{\text {bst1052 }}$ \& L4 \& ${ }_{\text {F2 }}$ \& ${ }_{\text {P2020 }}$ \& ${ }_{81}$ \& ${ }_{82}$

\hline - ${ }_{\text {DS2020 }}$ \& ${ }_{\text {L2 }}$ \& ${ }_{\text {明 }}^{82}$ \& ${ }_{\text {P2030 }}{ }_{\text {P2030 }}$ \& ${ }_{84}{ }^{\mathrm{K7}}$ \& ${ }_{\text {D2 }}$

\hline DSS2040
DS2050 \& [13 \& \& P2040 \& ${ }^{\text {L3 }}$ \& F2

\hline \& \& \& ${ }_{\text {R }}^{\text {R20040 }}$ \& ${ }_{\text {K2 }}^{\text {K2 }}$ \& ${ }_{82}^{\text {E2 }}$

\hline
\end{tabular}

Table 8-10 COMPONENT REFERENCE CHART

(see Fig. 8-3,8-4, 8-5)

S1411

51531

S1600
FUNCTION
\(\left.\left.\begin{array}{|ccc|}\hline 3 \& 2 \& 1

0 \& 0 \& 0

0 \& 0 \& 0

4 \& 5 \& 5

\hline 0 \& 0 \& 0

0 \& 0 \& 0

\hline 0 \& 0 \& 0

0 \& 0 \& 0

\hline 0 \& 0 \& 0

0 \& 0 \& 0\end{array}\right] \mathbf{B} \quad $$
\begin{array}{|c|}\hline\end{array}
$$\right]\)| LEVEL |
| :---: |

Table 8-11
 COMPONENT REFERENCE CHART (see Fig. 8-5)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{P/O A12 ASSY} \& \multicolumn{2}{|l|}{LOGICBOARD <11} \\
\hline CIRCUIT NUMBER \& SCHEMATIC LOCATION \& BOARD LOCATION \& \begin{tabular}{l}
CIRCUIT \\
NUMBER
\end{tabular} \& \begin{tabular}{l}
SCHEMATIC \\
LOCATION
\end{tabular} \& BOARD LOCATION \\
\hline \[
\begin{aligned}
\& \text { C1132 } \\
\& \text { C1204 }
\end{aligned}
\] \& B3 \& D4 \& R1138 R1139 R1213 \& \[
\begin{aligned}
\& \text { C6 } \\
\& \text { C3 } \\
\& \text { F7 }
\end{aligned}
\] \& D5
D5
F2 \\
\hline CR1203 \& B2 \& F1 \& \[
\begin{aligned}
\& \text { R1214 } \\
\& \text { R1215 }
\end{aligned}
\] \& F8 \& F2 \\
\hline \(J 1001\) \& B4 \& B1 \& R1216 \& H8 \& F3 \\
\hline J1001 \& M3 \& B1 \& R1221
R1230 \& F7 \& F3 \\
\hline J1001

1002 \& M2 \& B1 \& R1233 \& D4 \& F4

\hline J1002 \& M3 \& C1 \& R1234 \& C4 \& F5

\hline J1002 \& B8 \& C1 \& R1236 \& B4 \& F5

\hline J1101 \& B8 \& D1 \& R1237 \& B4 \& F5

\hline J1201 \& B6 \& F1 \& R1240 \& B5 \& F5

\hline J1503 \& M7 \& L1 \& R1512
R1513 \& J7
J8 \& K2

\hline P1001 \& M3 \& B1 \& R1514 \& K8 \& L2

\hline P1001 \& M2 \& B1 \& R1515 \& K8 \& L2

\hline P1001 \& B4 \& B1 \& \& \&

\hline P1002 \& M5 \& C1 \& S1521 \& C1 \& K3

\hline P1002 \& M8 \& C1
C1 \& U1011 \& J3 \& B2

\hline P1101 \& B8 \& D1 \& U1012A \& L3 \& B2

\hline P1201 \& B6 \& F1 \& U1031 \& H3 \& B5

\hline P1503 \& M7 \& L1 \& $$
\begin{aligned}
& \text { U1032A } \\
& \text { U1032B }
\end{aligned}
$$ \& E4 \& B5

\hline Q1508 \& L8 \& L2 \& U1032C \& C8 \& B5

\hline 01509 \& K8 \& L2 \& U1032D \& F4 \& B5

\hline R1031 \& B7 \& B5 \& U1111B \& B3 \& D3

\hline R1041 \& F2 \& B6 \& U1124 \& L6 \& E4

\hline R1042 \& F3 \& B6 \& $U 1131$ \& J6
H7 \& D5

\hline R1043 \& F3 \& B6 \& U1132A \& $H 7$
$H 8$ \& E5

\hline R1130 \& C6 \& D4 \& U1132B \& H8 \& E5

\hline R1133 \& B3 \& D4 \& U1132C \& C3 \& E5

\hline R1134 \& F3 \& C5 \& U1132D
U1221A \& J8 \& E5

\hline R1135 \& D5 \& D5 \& | U1221A |
| :--- |
| U1221B | \& C4 \& F4

\hline $$
\begin{aligned}
& \text { R1136 } \\
& \text { R1137 }
\end{aligned}
$$ \& C7 \& D5 \& U1221B \& F5 \& F4

\hline R1137 \& D6 \& D5 \& U1221D \& F8 \& F4

\hline \multicolumn{6}{|c|}{P/O A12 ASSY also shown on}

\hline
\end{tabular}

Table 8-12
 COMPONENT REFERENCE CHART (see Fig. 8-5)

P/O A12 ASSY				LOGIC BoARD (12)	
CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
CR1021	F5	C3	R1113	K7	D2
CR1022	F3	C3	R1114	K4	D2
CR1023	F3	C3	R1115	K1	D2
CR1024	F4	C3	R1116	K2	D2
CR1025	F3	C4	R1117	K2	D2
CR1026	F4	C4	R1118	H5	D3
CR1027	F4	C4	R1119	H4	D3
CR1028	F3	C4	R1120	H5	D3
CR1029	F5	C4	R1131	F3	D4
CR1121	F5	D3	R1211	K5	E2
$J 1102$	L1	E1	R1212	K5	E2
J1102	L7	E1	R1217	H7	G2
J1301	L4	G1	R1218 R1223	J7 $\mathrm{H7}$	G2
P1102	M1	E1	R1226	E2	F3
P1102	M1	E1	R1235	C2	F5
P1301	M3	G1	U1012B	H2	B2
01101	L7	C2	U1012C	E2	B2
Q1102	L2	D2	U1013	J3	C2
Q1103	L2	D2	U1021	C3	B4
Q1104	L2	D2	U1022	D4	B4
Q1105	L1	E2	U1111A	J1	D3
Q1106	L4	E2	U1111C	J2	D3
Q1113	17	E2	U11110	J2	D3
Q1203	L4	E2	U1112A	J7	E3
Q1204 Q1205	L5	F1	U1112B	J7	E3
		F1	U1122B	C8	D4
R1002	K2	C2	U1122C	C7	D4
R1101	K6	D2	U1122D	C7	D4
R1111	K7	D2	U1123	D7	D4
R1112	K7	D2			
P/O A12 ASSY alsoshown on					

Table 8-13
 COMPONENT REFERENCE CHART (see Fig. 8-4)

P/O A15 ASSY				MAIN BOARD 13	
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$
$\begin{aligned} & C 1412 \\ & C 1413 \\ & C 1421 \\ & C 1423 \\ & C 1424 \\ & C 1510 \\ & C 1520 \\ & C 1521 \\ & C 1610 \\ & C 1620 \end{aligned}$	H3	14	Q1510	D4	J5
	C6	J4	Q1511	F2	K5
	H6	15	Q1513	D2	K5
	F6	J6	Q1520	D6	J6
	E5	15	Q1521	F8	K6
	C3	K4	01522	D7	K6
	F3	J5			
	D8	L6	R1406	D4	J4
	D2	L5	R1407	H4	$J 5$
	05	15	R1420	F6	15 15
$\begin{aligned} & \text { CR1420 } \\ & \text { CR1521 } \end{aligned}$	D6	J6	R1424	D5	J6
	D4	J5	R1425	F3	J5
			R1426	F4	J6
$\begin{aligned} & \text { DS1610 } \\ & \text { DS1611 } \end{aligned}$	E2	L5	R1519	H3	K4
	E7	L5	R1520	D6	J5
			R1521	D3	J4
$\begin{aligned} & \text { F1610 } \\ & \text { F1620 } \\ & \text { F1621 } \end{aligned}$	C2	L5	R1522	F8	K5
	C8	L5	R1523	D7	K5
	C5	L6	R1524	D3	K5
			R1525	F2	K5
J1500	K4	L2	R1526	H6	K6
	K4		R1620	D2	L5
$\begin{aligned} & \text { P1500 } \\ & \text { P1600 } \end{aligned}$	K4	L2	R1621	D8	L6
	F2	M4			
P1600	B8	M4	TP1411	H3	14
P1600	E7	M4	U1420A	E6	J5
P1600	B3	M4 M4	U1420B	E4	J5
P1600	K5	M4	U1523	E5	16
$\begin{aligned} & \text { P1600 } \\ & \text { P1600 } \end{aligned}$	F7	M4			
	E3		VR1401 VR1520	H4	J5
			VR1521	D6	
P/O A15 ASSY also shown on					

PARTS LOCATION GRID

Table 8-14
COMPONENT REFERENCE CHART (see Fig. 8-8)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{P/O A13ASSY} \& \multicolumn{2}{|l|}{Imd option board 14.}

\hline CIRCUIT NUMBER \& SCHEMATIC LOCATION \& BOARD LOCATION \& CIRCUIT NUMBER \& SCHEMATIC LOCATION \& $$
\begin{aligned}
& \text { BOARD } \\
& \text { LOCATION }
\end{aligned}
$$

\hline C1011 \& L^{2} \& ${ }^{\text {A2 }}$ \& R1011 \& M1 \& B3

\hline C1012 \& 14 \& B2 \& R1012 \& K4 \& B3

\hline C1021 \& C7 \& ${ }^{\text {A3 }}$ \& R1113 \& L5 \& ${ }^{\text {B3 }}$

\hline ${ }^{\text {C1022 }}$ \& c8 \& ${ }_{\text {A }}{ }^{\text {B4 }}$ \& R1030 \& 17 \& ${ }^{\text {A5 }}$

\hline C1024 \& K4 \& ${ }_{83}$ \& R1032 \& 17 \& A5

\hline C 1025 \& K4 \& в3 \& R1101 \& K2 \& C2

\hline C1031 \& K7 \& B5 \& R1111 \& K5 \& C3

\hline C1032 \& 17 \& B4 \& R1112 \& K5 \& ${ }^{\text {c }}$

\hline C1041 \& 17 \& ${ }^{85}$ \& R1121 \& J3 \& ${ }^{\text {c3 }}$

\hline C1111 \& L4 \& C2 \& R1122 \& J3 \& C3

\hline C1121 \& 17 \& B4 \& R1123 \& K3 \& C3

\hline C1131 \& J6 \& B5 \& R1124 \& H4 \& ${ }^{\text {c3 }}$

\hline C1145 \& D7 \& C5 \& R1131 \& J7 \& C4

\hline C1146 \& D8 \& C5 \& R1132 \& J6 \& C4

\hline C1201 \& E2 \& D2 \& R1135 \& ${ }^{\text {H6}}$ \& C4

\hline C1202 \& D1 \& D2 \& R1141 \& C7 \& 85

\hline ${ }^{\text {C1203 }}$ \& E2 \& E2 \& R1142 \& C8 \& B5

\hline ${ }^{C 1221}$ \& H6 \& ${ }^{\text {C3 }}$ \& R1201 \& E2 \& D2

\hline C1222 \& H5 \& D3 \& R1202 \& E2 \& D2

\hline ${ }^{\text {C1223 }}$ \& ${ }^{\text {F2 }}$ \& D3 \& R1203 \& C2 \& D2

\hline C1224 \& F3 \& D3 \& R1211 \& K3 \& C2

\hline C1231 \& F6 \& D5 \& ${ }^{\text {R1212 }}$ \& H4 \& E3

\hline C1301 \& D2 \& E2 \& ${ }^{R 1213}$ \& L3 \& C3

\hline C1302 \& C2 \& E2 \& R1216 \& F3 \& ${ }^{\text {D3 }}$

\hline ${ }^{\text {C1303 }}$ \& B3 \& E2 \& R1217 \& F3 \& E3

\hline C1311 \& C3 \& E2 \& R1219 \& K3 \& C2

\hline C1312 \& E1 \& E3 \& ${ }^{\mathrm{R} 1224}$ \& F2 \& E3

\hline C1321 \& ${ }^{\text {c3 }}$ \& E3 \& ${ }^{\text {R1231 }}$ \& H6 \& C4

\hline C1331
C 1401 \& ${ }_{C 2} \mathrm{C}$ \& F2 \& R1233 \& F5 \& D4

\hline \& \& \& R1241 \& D6 \& D5

\hline CR1101 \& L2 \& B2 \& R1242 \& D5 \& D5

\hline CR1211 \& ${ }^{\text {J4 }}$ \& ${ }^{\text {D3 }}$ \& R1320 \& E3 \& E3

\hline CR1212
CR1325 \& J4
C6 \& E3 \& R1322 \& C5 \& E3

\hline \& \& \& R1324 \& C6 \& E3

\hline J1041 \& M7 \& A5 \& R1401 \& D1 \& F2

\hline ${ }^{J 1101}$ \& M4 \& B1 \& ${ }^{\text {R1402 }}$ \& c2 \& ${ }_{\text {F2 }}$

\hline ${ }^{31131}$ \& 87 \& 81
$\mathrm{C5}$ \& R1403
R1411 \& ${ }_{83}^{82}$ \& G2

\hline J1401 \& 81 \& G2 \& R1412 \& B3 \& ${ }_{\text {F3 }}$

\hline J1411 \& B2 \& G3 \& ${ }^{\text {R1413 }}$ \& ${ }^{\text {B3 }}$ \& ${ }_{\text {F3 }}$

\hline \& \& A5 \& R1421 \& D4 \& F3

\hline P1101 \& M4 \& ${ }^{\text {B1 }}$ \& \& \&

\hline P1101 \& 87 \& B1
C \& U1110A \& ${ }_{2}$ \& B3

\hline ${ }_{\text {P1401 }}$ \& ${ }_{81} 85$ \& G3 \& ${ }^{411108}$ \& ${ }^{J 5}$ \& ${ }^{\text {B3 }}$

\hline P1411 \& B2 \& G2 \& U1115A \& J4
K 4 \& C3
C3

\hline \& \& \& U1310A

U1310B \& - \& E3

\hline Q1231 \& ¢6 \& ${ }_{\text {D }}{ }^{\text {D }}$ \& U1310B \& C4 \& E3

\hline R1001

R1002 \& M2 \& B1 \& VR1041 VR1042 \& $$
\begin{aligned}
& \mathrm{D7} \\
& \mathrm{D} 8
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { C5 } \\
& 85
\end{aligned}
$$
\]

\hline
\end{tabular}

(x) $\begin{gathered}\text { Static Sensitive Devices } \\ \text { See Maintenance Section }\end{gathered}$

REPLACEABLE
 MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

$\times 000$ Part first added at this serial number
00X Part removed after this serial number

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column

12345
Name \& Description
Assembly and/or Component
Altaching parts for Assembly and/or Component

- - * - - -

Detail Part of Assembly and/or Component Aftaching parts for Detail Part

- - - . .

Parts of Detail Part
Altaching parts for Parts of Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol---*-- indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwlse specifled.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H5-1 can be utilized where possible.

$A B B$ SEVIATIONS							
"	1 NCH	ELCTRN	ELECTRON	IN	INCH	SE	SINGLE END
\#	NUMBER SIZE	ELEC	ELECTRICAL	INCAND	INEANOESCENT	SECT	SECTION
ACTR	ACTUATOR	ELCTLT	ELECTROLYTIC	INSUL	INSULATOR	SEMICOND	SEMICONDUCTOR
ADPTR	ADAPTER	ELEM	ELEMENT	INTL	INTERNAL	SHLD	SHIELD
ALIGN	ALIGNMENT	EPL	ELECTRICAL PARTS LIST	LPHLDR	LAMPHOLDER	SHLDR	SHOULDERED
AL	ALUMINUM	EQPT	EQUIPMENT	MACH	MACHINE	SKT	SOCKET
ASSEM	ASSEMBLED	EXT	EXTERNAL	MECH	MECHANICAL	SL	SLIDE
ASSY	ASSEMBLY	FIL	FILLISTER HEAD	MTG	MOUNTING	SLFLKG	SELF-LOCKING
ATTEN	ATTENUATOR	FLEX	FLEXIBLE	NIP	NIPPLE	SLVG	SLEEVING
AWG	AMERICAN WIRE GAGE	FLH	FLAT HEAD	NON WIRE	NOT WIRE WOUND	SPR	SPRING
BD	BOARD	FLTR	FILTER	OBD	OADER BY DESCRIPTION	SQ	SOUARE
BRKT	BRACKET	FR	FRAME Or FRONT	OD	OUTSIDE DIAMETER	SST	StAINLESS STEEL
BRS	BRASS	FSTNR	FASTENER	OVH	OVAL HEAD	STL	STEEL
BRZ	BRONZE	FT	FOOT	PH BRZ	PHOSPHOR BAONZE	SW	SWITCH
BSHG	BUSHING	FXD	FIXED	PL	PLAIN or PLATE	T	TUBE
CAB	CABINET	GSKT	GASKET	PLSTC	PLASTIC	TERM	TERMINAL
CAP	CAPACITOR	HDL	HANDLE	PN	PART NUMBER	THD	THREAD
CER	CERAMIC	HEX	HEXAGON	PNH	PAN HEAD	THK	THICK
CHAS	CHASSIS	HEX HD	HEXAGONAL HEAD	PWR	POWER	TNSN	TENSION
CKT	CIRCUIT	HEX SOC	HEXAGONAL SOCKET	RCPT	RECEPTACLE	TPG	TAPPING
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION	RES	RESISTOR	TRH	TRUSS HEAD
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION	RGD	RIGID	V	VOLTAGE
COV	COVER	HV	HIGH VOLIAGE	RLF	RELIEF	VAR	VARIABLE
CPLG	COUPLING	IC	INTEGRATED CIRCUIT	RTNR	RETAINER	W/	WITH
CRT	CATHODE RAY TUBE	ID	INSIOE DIAMETER	SCH	SOCKET HEAD	WSHR	WASHEA
DEG	DEGREE	IDENT	IDENTIFICATION	SCOPE	OSCILLOSCOPE	XFMR	TRANSFORMER
DWR	ORAWER	IMPLR	IMPELLER	SCR	SCREW	XSTR	TRANSISTOR

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

Mir. Code
Manutacturer
Address
City, State, Zip

000BH	FAB-TEK	17 SUGAR HALLOW ROAD	DANBURY, CT 06810
000EX	O'hara metal product company	542 brannan Street	SAN FRANCISCO, CA 94107
00779	AMP, INC.	P O BOX 3608	HARRISBURG, PA 17105
11897	PLASTIGLIDE MFG. CORPORATION	P O BOX 867, 1757 STANFORD ST.	SANTA MONICA, CA 90406
22526	BERG ELECTRONICS, INC.	YOUK EXPRESSWAY	NEW CUMBERLAND, PA 17070
23740	AMUNEAL MFG., CORP.	4737 DARRAH	PHIlAdElPhIA, PA 19124
49671	RCA CORPORATION	30 Rockefeller plaza	NEW YORK, NY 10020
70318	ALLMETAL SCREW PRODUCTS CO., INC.	821 STEWART AVE.	GARDEN CITY, NY 11530
71785	TRW, CINCH CONNECTORS	1501 MORSE AVENUE	ElK GROVE VILlage, IL 60007
73743	FISCHER SPECIAL MFG. CO.	446 MORGAN ST.	CINCINNATI, OH 45206
73803	texas instruments, inc., metallurgical materials div.	34 FOREST STREET	ATTLEBORO, MA 02703
78189	ILLINOIS TOOL WORKS, INC. SHAKEPROOF DIVISION	ST. CHARLES ROAD	ELGIN, IL 60120
78471	TILLEY MFG. CO.	900 INDUSTRIAL RD.	SAN CARLOS, CA 94070
79136	WALDES, KOHINOOR, INC.	47-16 AUSTEL PLACE	LONG ISLAND CITY, NY 11101
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
83385	CENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153
86928	SEASTROM MFG. COMPANY, INC.	701 SONORA AVENUE	GLENDALE, CA 91201
93907	TEXTRON INC. CAMCAR DIV	60018 TH AVE	ROCKFORD, IL 61101

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Oty	12345 Name \& Description	Mfr Code	Mfr Part Number
1-	337-2807-01		2	Shield, elec: side, plug-in unit w/insul (attaching Parts)	80009	337-2807-01
-2	105-0869-00		2	LATCH, PANEL: SIDE, $1 / 4$ turn, Plastic	80009	105-0869-00
			-	shield includes:		
-3	342-0540-00		1	- insulator, plate: Shield	80009	342-0540-00
-4	366-1190-02		1	KNOB:0. 252 ID X0.706 0 D, 0.6 H	80009	366-1190-02
-5	358-0029-00		1	BSHG,MACH.THD: HEX, 0.375-32 $\times 0.438$ "LONG (attaching parts)	80009	358-0029-00
-6	$210-0590-00$		1	Nut, PLAIN, hex.:0.375 $\times 0.438 \mathrm{INCH}, \mathrm{StL}$	73743	2x28269-402
-7			1	WASHER, FLAT:0.375 ID X 0.50 INCH OD, STL	78471	OBD
-8-9	366-1851-00		1	KNOB, LATCH:SIL GY, $0.625 \times 0.25 \times 1.09$	80009	366-1851-00
	---------		2	JACK,TIP:(SEE $\begin{gathered}\text { J530, J540 REPL) } \\ \text { (ATTACHING PARTS) }\end{gathered}$		
-10	210-0465-00		2	nut, plain, hex.:0.25-32 x 0.375 InCH brs	73743	3095-402
-11	$210-0223-00$$210-0905-00$		2	TERMINAL, LUG:0. 25 INCH DIA, SE	${ }_{8}^{86928}$	${ }^{\text {A313-136 }}$
-12			2	WASHER, FLAT:0.256 id x 0.05 THK , BRS	83385	Obd
-13	$\begin{aligned} & 210-0905-00 \\ & 342-0137-00 \end{aligned}$		2	WASHER, NONMETAL: 0.266 ID X0. 50 OD	80009	342-0137-00
-14	$\begin{array}{r} 200-0103-00 \\ 355-0507-00 \end{array}$		1	Nut, plain, KNURL: $0.25-28 \times 0.375^{\prime \prime}$ OD, Brass	80009	200-0103-00
-15			1	STUD, SHOULDERED:BINDING POST (ATTACHING PARTS)	80009	355-0507-00
-16	$210-0455-00$ $210-0046-00$		1	NUT, PLAIN, HEX.:0.25-28 x 0.375 INCH, BRASS	73743	3089-402
-17	210-0046-00		1	WASHER, LOCK:0.261 ID,INTL,0.018 THK, BRS	78189	1214-05-00-0541C
-18	----------		2	CONNECTOR,RCPT:(SEE J500,J520 Repl)		
$\begin{aligned} & -19 \\ & -20 \end{aligned}$	333-2631-01		1	Conn, RCPT, elec:(see j510 REPL)		
			1	PANEL, FRONT: (Standard only)	80009	333-2631-01
	333-2631-00		1	PANEL, FRONT:	80009	333-2631-00
	333-2631-04			(OPTION 01 ONLY)		
			1	- (option 02 only) (attaching parts)	80009	333-2631-0
	213-0875-00					
				SCR ASSEM WShr: $6-32 \times 0.5$, TAPTITE, PNH	93907	Obd
-22	334-3807-00		1	marker,ident:mid amsol avoid analyzer	80009	334-3807-00
-23	$\begin{aligned} & 378-0159-02 \\ & 407-2496-00 \end{aligned}$		1	LENS, LED, DSPL: RED, W/MARKing	80009	378-0159-02
-24			1	bracket, ckt bd:main,al (ATTACHING PARTS)	80009	407-2496-00
-25	211-0101-00		2	SCREW, MACHINE:4-40 x 0.25,100 DEG, FLH STL	83385	OBD
-26	$211-0008-00$$210-0054-00$		2	SCREW, MACHINE:4-40 X 0.25 INCH, PNH STL	83385	OBD
-27			2	WASHER,LOCK:SPLIT, 0.118 ID X $0.212^{\prime \prime}$ OD STL	83385	OBD
-28	407-2495-00		1	bracket,ckt bD:LOGIC, al (attaching parts)	80009	407-2495-00
-29	$\begin{aligned} & 211-0101-00 \\ & 211-0601-00 \end{aligned}$		2	SCREW,MACHINE:4-40 x 0.25,100 DEG,FLH STL	83385	OBD
-30			1	SCR, ASSEM WSHR:6-32 $\times 0.312$, DOUBLE SEMS	83385	OBD
-31	386-4348-01		1	SUBPANEL, FRONT:	80009	386-4348-01
-32	211-0541-00		2	(ATTACHING PARTS) SCREW, MACHINE: 6-32 X $0.25^{\prime \prime} 100$ DEG, FLH STL	83385	OBD
-33	366-1512-00		6	push button:Gray 0.18 SQ $\times 0.83$ Inch lg	80009	366-1512-00
-34	$384-1341-00$$366-1599-01$		4	EXTENSION SHAFT:2.183 INCH LONG, OfFSET	80009	384-1341-00
-35			1	PUSH BUTTON:GRAY, $0.43 \mathrm{~L} \times 0.18 \mathrm{~W} \times 0.18 \mathrm{H}$	80009	366-1559-01
	$366-1559-01$ $366-1512-01$ $-36-152-01$			PUSH BUTTON:Charcoal gy, 0.18 SQ $\times 0.8$	80009	366-1512-01
	366-1512-01		2	push button: Charcoal gy, 0.18 SQ x 0.8	80009	366-1512-01
-37	366-1559-02		5	(OPTION O1 AND O2 ONLY) PUSH BUTTON:CHARCOAL, $0.18 S Q \times 0.43$	80009	366-1559-02
-38	366-1559-00		5	PUSH button:SIL GY,0.18 SQ x 0.43	80009	366-1559-00
-39	384-1099-00			extension Shaft:push button, 1. 54 inch long	80009	384-1099-00
-40	255-0334-00		FT	PLASTIC Channel: $12.75 \times 0.175 \times 0.155$, NYL	11897	122-37-2500

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mir Code	Mir Part Number
1-41	386-4392-01		1	PANEL, REAR:	80009	386-4392-01
				(ATTACHING PARTS)		
-42	213-0789-00		2	SCREW, TPG, TF:6-32 X 0.375, TAPTITE, PNH	93907	OBD
-43	386-3657-01		2	SUPPORT, PLUG IN:	93907	OBD
	337-2917-00		1	SHIELD, ELEC:TRANSFORMER (attaching parts)	23740	OBD
	211-0147-00		3	SCREW, MACHINE:4-40 X 0.25 INCH, PNH STL	83385	OBD
	210-1178-00		2	WSHR, SHOULDERED:FOR MTG TO-220 TRANSISTOR	49671	DF 137A
	220-0438-00		3	NUT, PLAIN, HEX:4-40 X 0.25 HEX, SST	70318	OBD
	210-0058-00		3	WASHER,LOCK: \#4 EXT, 0.015 THK SST	70318	OBD
-44	426-1716-00		1	FR SECT, PLUG-IN:TOP,AL	80009	426-1716-00
-45	351-0672-00		2	GUIDE CKT BOARD: PLASTIC	80009	351-0672-00
-46	351-0604-00		2	GUIDE, CKT BOARD: PLASTIC	80009	351-0604-00
-47	214-1061-00		2	SPRING,GROUND : FLAT	80009	214-1061-00
-48	343-0687-00	B010100X	1	RETAINER,CKT CD:5.11 L, 0.124 DIA,SST	80009	343-0687-00
-49	----------		1	CKT BOARD ASSY: DISPLAY (SEE A1O REPL) (ATTACHING PARTS)		
-50	211-0244-00		2	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL - - - * - -	78189	OBD
	----- -----		-	CKT BOARD ASSY INCLUDES:		
-51	----- -----		1	- CONN,RCPT, ELEC: (SEE Al0J2030 REPL)		
-52	----- -----		1	- TERM SET, PINI (SEE Al0J1012,J2020,J2040 REPL)		
-53	175-5137-00		1	CA ASSY,SP,ELEC: 34,28 AWG,8.5 L,RIBBON (FROM AllJ1111 TO Al0J2030)	22526	OBD
-54	----- -----		1	CKT BOARD ASSY:DVM(SEE All REPL) (ATTACHING PARTS)		
-55	211-0244-00		3	SCR,ASSEM WSHR:4-40 X 0.312 INCH,PNH STL	78189	OBD
	----------		-	CKT BOARD ASSY INCLUDES:		
-56	136-0269-02		4	. SKT, PL-IN ELEK:MICROCIRCUIT, 14 DIP, LOW CLE	73803	CS9002-14
-57	----------		1	. TERM SET, PIN: (SEE AllJ 1221 REPL)		
-58	----------		1	- CONN,RCPT, ELEC: (SEE AllJllll REPL)		
-59	136-0623-00		1	- SOCKET, PLUG-IN:40 DIP,LOW PROFILE	73803	CS9002-40
-60	136-0499-14		1	- CONNECTOR,RCPT, : 14 CONTACT	00779	4-380949-4
-61	129-0420-00		3	POST, ELEC-MECH:0.575 LONG X 0.188 I HEX (ATtaching Parts)	80009	129-0420-00
-62	211-0244-00		3	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL	78189	OBD
	672-0883-00		1	CKT BOARD ASSY: CONTROL LOGIC W/CAM SW	80009	672-0883-00
	----- -----		1	. SW CAM ACTR AS: (SEE S 1521 REPL) (ATTACHING PARTS)		
-63	211-0678-00		4	. SCR,ASSEM WSHR:4-40 X $0.281 \mathrm{~L}, \mathrm{PNH}$ STEEL - - - * - - -	01536	OBD
-64	131-0963-00		1	. CONTACT, ELEC:GROUNDING	000EX	OBD
	----------		-	- . SWITCH ASSY INCLUDES:		
-65	200-2488-00		1	. . COVER,CAM SW:ALUMINUM (ATTACHING PARTS)	80009	200-2488-00
-66	211-0678-00		4	. . SCR,ASSEM WSHR:4-40 X $0.281 \mathrm{~L}, \mathrm{PNH}$ STEEL	01536	OBD
-67	354-0390-00		1	. . RING, RETAINING:0.338 ID X 0.025' THK, STL	79136	5100-37MD
-68	131-0963-00		1	. . CONTACT, ELEC:GROUNDING	O00EX	OBD
-69	210-0406-00		2	. . NUT, PLAIN, HEX.:4-40 X 0.188 INCH, BRS	73743	2×12161-402
-70	214-1139-02		2	. . SPRING,FLAT:GREEN COLORED	80009	214-1139-02
-71	214-1752-00		2	- . ROLLER, DETENT:	80009	214-1752-00
-72	401-0178-01		1	. . BEARING, CAM SW:CENTER/REAR	80009	401-0178-01
-73	210-0406-00		4	. . NUT, PLAIN, HEX. 4 -40 X 0.188 INCH, BRS	73743	2X12161-402
-74	401-0180-00		1	. . bearing, CAM SW:FRONT \& REAR	80009	401-0180-00
-75	105-0850-00		1	- . ACTUATOR, CAM SW:LEvEl Range	80009	105-0850-00
-76	384-0878-30		1	. . SHAFT,CA SW: OUTER CONCENTRIC W/DR	80009	384-0878-30
-77	----- -----		1	- CKT BOARD ASSY: CONTROL LOGIC(SEE A12 REPL)		
-78	----------		1	. . CONTACT ASSY, EL: (SEE Al2J1301 REPL)		
-79	----- -----		3	. . TERM,TEST POINT: (SEE Al2TP1200,TP1240, . . TP1410 REPL)		

Fig. \&

Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mir Part Number
1-80	136-0269-02		13	SKT, PL-IN ELEK:MICROCIRCUIT, 14 DIP,LOW CLE	73803	CS9002-14
-81	136-0260-02		13	. . SKT, PL-in elek:MICROCIRCUIT, 16 dip,Low Cle	71785	133-51-92-008
-82	----- -----		1	-. TERM SET, PIN: (SEE Al2J1401, J1503,J1530 REPL)		
-83	----- -----		1	. . CONTACT, SET ELE: (SEE A12J1001, J1002,J1101,		
			-	- Jl102,J1201 REPL)		
-84			1	- . SWITCH, PUSH: (SEE Al2S1411 REPL)		
-85	361-0385-00		6	. . SPACER, PB SW:0.164 INCH LONG	80009	361-0385-00
-86	361-0382-00		6	. . Spacer, pb SW:BROWN,0.275 INCH LONG	80009	361-0382-00
-87				- . SWITCH, PUSH:(SEE A12S1531 REPL)		
-88	131-0604-00		6	. . Contact, elec:Ckt bd SW,Spr,cu be	80009	131-0604-00
-89	------ -----		1	CKT BOARD ASSY:IMD (SEE Al3 REPL)		
			-	(OPTION 01 And 02 Only)		
				(attaching parts)		
-90	211-0244-00		3	SCR,ASSEM WSHR:4-40 $00.312 \mathrm{INCH}, \mathrm{PNH}$ STL	78189	OBD
-91	129-0457-00		3	SPACER, POST:1.07L, W/4-40 TAP 1 END	80009	129-0457-00
-92	210-0406-00		1	NUT, PLAIN, HEX.:4-40 x 0.188 INCH, BRS	73743	2x12161-402
-93	210-0054-00		1	WASHER,LOCK:SPLIT, 0.118 ID X $0.212^{\prime \prime} O D$ STL	83385	OBD
			-	Ckt board assy includes:		
-94	-----		1	. CONT SET, ELE: (SEE Al3J1041, J1401, J1411 REPL)		
-95	136-0260-02		1	. SKT, Pl-in elek:Microcircuit, 16 dip,low cle	71785	133-51-92-008
-96	136-0269-02		1	. Skt, pl-in elek:microcircuit, 14 dip,low cle	73803	CS9002-14
-97	136-0514-00		5	. Skt, pl-in elec:microcircuit, 8 dip	73803	CS9002-8
-98	131-0993-00		1	- bus, CONDUCTOR:2 WIRE black	00779	530153-2
-99	----- ----		1	- TERM SET, PIN: (SEE A13J1101,J1131 REPL)		
-100			1	CKT board assy: input/notch filler (see al4 repl) (attaching parts)		
-101	211-0661-00		2	SCREW, MACHINE:4-40 X 0.25 INCH, PNH, STL - - - * - -	83385	OBD
			-	CKT board assy includes:		
-102	----- -----		1	. TERM SET, PIN:(SEE Al4J1620 Repl)		
-103	----------		1	. SWITCH, PUSH: (SEE Al4S1600 REPL)		
-104	361-0385-00		4	. SPACER, PB SW:0.164 inch long	80009	361-0385-00
-105	361-0383-00		4	- SPacer, pb SW:Charcoal, 0.33 inch long	80009	361-0383-00
-106	344-0154-00		4	. CLIP, Electrical: FUSE, CKT BD MT	80009	344-0154-00
-107	---------		1	- TERM, TEST POINT: (SEE A14TP1310 REPL)		
-108	136-0269-02		2	. SKT, PL-IN ELEK:MICROCIRCUIT, 14 dip, LOW CLE	73803	CS9002-14
-109	337-2139-00		2	. Shield, elec: input coupling switch	80009	337-2139-00
-110	---------			. TERM SET, PIN: (SEE A14J1200,J1301, J1311,J1430, - J1500,J1600 REPL)		
-111	----------		1	. Contact Set, ele: (SEE A14J1201, J1300 Repl)		
-112	136-0514-00		13	. SKt,pl-in elec:microcircuit, 8 dip	73803	Cs9002-8
-113	136-0260-02		3	. SKt, pl-in elek:microcircuit, 16 dip, Low cle	71785	133-51-92-008
-114	337-2806-00		1	shield, elec:circuit board (attaching parts)	80009	337-2806-00
-115	211-0012-00		3	SCREW, MACHINE:4-40 X 0.375 , PNH STL CD PL	83385	OBD
-116	129-0420-00		2	POST, ELEC-MECH:0.575 LONG x 0.188 I hex	80009	129-0420-00
-117	361-0548-00		3	SPACER,RING:0.125 ID X 0.25 OD X 0.110 ID	80009	361-0548-00
	210-0004-00		2	WASHER, LOCK:\#4 INTL, 0.015THK, STL CD PL	78189	1204-00-00-0541C
-118	210-0406-00		1	NUT, PLAIN, hex.:4-40 x 0.188 INCH, BRS	73743	2×12161-402
-119	210-0054-00		1	WASHER,LOCK:SPLIT, 0.118 ID X 0.212 "OD STL	83385	OBD
-120	385-0107-00		2	SPACER, POST:0.75 L W/4-40 THD THRU,NYL (attaching parts)	80009	385-0107-00
-121	211-0244-00		2	SCR,ASSEM WSHR:4-40 $\times 0.312$ INCH, PNH STL	78189	OBD
-122	----- -----			CKT board assy:main (see als repl)		
-123	-			. Contact Set, Ele: (SEE A15J1100,J1200, J1300, - J1400,J1401,J1500,J1600 REPL)		
-124	136-0269-02		1	. Skt, Pl-in elek:microcircuit, 14 dip, Low Cle	73803	CS9002-14
-125	344-0154-00		6	. Clip,electrical:fuse, Ckt bd mt	80009	344-0154-00
-126	136-0260-02		4	. Skt,pl-in elek:microcircuit, 16 dip, Low Cle	71785	133-51-92-008
-127	214-2518-00		1	. HEAT SINK, XSTR:T0-220 OR T0-202	000 BH	106B-B-HT
-128	136-0514-00		7	- Skt, pl-in elec:microcircuit, 8 dip	73803	CS9002-8
-129	----- -----		1	. SWITCH, PUSH: (SEE A15S1100 REPL)		

Fig. \&
Index Tektronix Serial/Model No. Mi

index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345	Name \& Description	Code	Mir Part Number
1-130	361-0573-00		4	SPACER	$234 \mathrm{~L}, \mathrm{BLACKPP}$	80009	361-0573-00
-131	136-0241-00		1	. SOCKET, P	O CONTACT, ROUND	71785	133-99-12-064
-132	----- -----		1	- TERM, TES	(SEE Al5TP1411 REPL)		
-133	----------		1	. SWITCH,	Al5S 1000 REPL)		
-134	361-0385-00		4	. SPACER,	64 INCH LONG	80009	361-0385-00
-135	214-3143-00		1	SPRING, HLE	OD X $0.545 \mathrm{~L}, \mathrm{X}$ LOOP	80009	214-3143-00
-136	105-0865-00		1	BAR, LATCH		80009	105-0865-00
-137	105-0866-00		1	LATCH, RETA	FETY	80009	105-0866-00
-138	351-0604-00		3	GUIDE, CKT		80009	351-0604-00
-139	426-1717-01		1	FR SECT, PL	TTOM, AL	80009	426-1717-01

Fig. \&

Index	Tektronix		del No.						M + r	
No.	Part No.	Eff	Dscont	Qty	12		5	Name \& Description	Code	Mtr Part Number

9
175-3264-00
2-0161-08
175-5137-00
175-3262-00
352-0164-03
198-4302-00
352-0199-03
175-3261-00
352-0166-00
175-5152-00
352-0162-01
175-3263-00
-0164-02
0
352-0167-04
175-3259-00
352-0168-
175-3636-00
-0161-00
352-0161-02
175-5134-00
2-0163-06
75-5135-00
-0168-06
8-4299-00

1$-$
1
-

1
-
2
1
$-$

1
2

- CONN BODY,PL,EL: 8 WIRE BLACK

CA ASSY, SP,ELEC: 4,26 AWG,3.0 L,RIBBON (FROM Al2J1002 TO Al4J1200)
. CONN BODY,PL,EL:4 WIRE BROWN
CA ASSY, SP,ELEC: 6,26 AWG,9.0 L,RIBBON
(FROM Al2J1101 TO Al5J1401)
. CONN BODY,PL,EL: 6 WIRE RED
CA ASSY, SP, ELEC:9,26 AWG,10.0 L,RIBBON
(FROM Al2Jl201 TO Al5Jll00)
. CONN BODY,PL,EL:9 WIRE YELLOW
CA ASSY,SP,ELEC: 10,26 AWG,4.0 L,RIBBON
(FROM Al2J1401 TO A14J1600)

- CONN BODY, PL,EL:10 WIRE GREEN 80009 352-0168-05

CA ASSY,SP,ELEC:2,26 AWG,14.0 L,RIBBON 80009 175-3636-00
(FROM A12J1530 TO Al5J1600)

- HLDR, TERM CONN: 3 WIRE BLACK
- CONN BODY, PL, EL: 3 WIRE RED

CA ASSY,SP,ELEC:5,26 AWG,3.0 L,RIBBON (FROM Al4Jl201 TO Al5J1400) - CONN BODY,PL,EL: 5 WIRE BLUE

CA ASSY,SP,ELEC:10,26 AWG,4.0 L,RIBBON
(FROM Al4Jl300 TO Al5JI300)
. CONN BODY,PL,EL: 10 WIRE BLUE
WIRE SET ELEC:
(FROM Al5J1200 TO J520, J510, J500)
. CONN BODY,PL,EL:6 WIRE BLACK 80009 352-0164-00

Fig. \& Index No.

Tektronix Part No.
175-3374-00
352-0169-02
175-3373-00
$\begin{aligned} & 352-0162-07 \\ & 175-3375-00 \end{aligned}$

Serial/Model No Mir Eff Dscont Code Mfr Parl Number OPTION OI WIRE ASSEMBLIES

175-3374-00
352-0169-02 175-3373-00

352-0162-07 175-3375-00 352-0169-01
(FROM A13JI041 TO A14J130i)
. CONN BODY,PL,EL:2 WIRE RED 80009 352-0169-00
CA ASSY,SP, ELEC:4,26 AWG,4.0 L,RIBBON 80009 175-3373-00
(FROM Al3Jllol TO Al5Jls00)
CONN BODY, PL, EL:4 WIRE VIOLET 80009 352-0162-07
CABLE ASSY, RF:50 OHM COAX,3.0 L 80009 175-3375-00

- (FROM Al3J1401 TO Al4J1430)
- (from Al3J1411 TO Al4J1311)

4 . HLDR TERM CONN:2 WIRE, BROWN 80009 352-0169-01

OPTION 02 WIRE ASSEMBLIES
175-3373-00
352-0162-07
175-3374-00
----- -----
352-0169-02
175-3375-00
----- ----

352-0169-01

ASSY,SP,ELEC:4,26 AWG,4.0 L,RIBBON	80009	175-3373-00
(FROM AllJllol to alsjlsoo)		
CONN BODY, pl, el: 4 WIre violet	80009	352-0162-07
CABLE ASSY,RF:50 OHM COAX, 7.0 L	80009	175-3374-00
(FROM AllJ1041 TO Al4Jl301)		
. CONN BODY, PL,EL:2 WIRE RED	80009	352-0169-02
CABLE ASSY,RF: 50 OHM COAX, 3.0 L	80009	175-3375-00
(FROM AllJl401 to alljl430)		
(FROM AllJl4ll to Al4J1311)		

Digitally remastered by ArtekMedia © 2002-2006

Fig. \&

Index	Tektronix		el No						Mir	
No.	Part No.	Eff	Dscont	Qty	12	345		Name \& Description	Code	Mir Part Number

070-2958-00 1 MANUAL, TECH: INSTRUCTION 80009 070-2958-00

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

COMMTTED TO EXCELUENCE
MANUAL CHANGE INFORMATION
Date: 7-1-81
Change Reference:
C7/781
Product: AA501 DISTORTION ANALYZER

Manual Part No.: 070-2958-00

DESCRIPTION

TEXT CORRECTION

Page 4-12 Step 9 k .
CHANGE TO READ:
k. CHECK--that the display reads $\leq 0.0018 \%$.

Change the following on page 2-2:
(1) INPUT LEVEL RANGE to (1) INPUT RANGE

Add the following on page 2-2:
(13) RESPONSE
...(rms calibrated for sinewaves) or quasi-peak in Option 02.

Add the following on page 2-2:
(15) \ldots (Option 01 or 02 instruments only)

Add the following on page 2-4:
(23) 30 kHz LO PASS, 22.4 Hz to 22.4 kHz in Option 02
(24) 'A' WEIGHTING, ! CCIR WTG in Option 02
...al1 functions. Operates only with 2-PK RESPONSE in Option 02 instruments.

Add to page 2-5, paragraph one under heading LEVEL MEASUREMENTS:
...depending on the position of the RESPONSE pushbutton. Option 02 instruments provide an rms or 2-PK response. This is useful for noise measurements.

Add to page 2-6, paragraph six:
...frequency dependent weighting network. Option 02 instruments provide filters corresponding to CCIR and DIN standards. These instruments employ a quasi-peak detector useful in measuring peak noise amplitudes at audio frequencies. The AA 501 provides severa1...

Add to page 2-11, before FILTERS section:
NOISE MEASUREMENTS USING THE R-PK DETECTOR
To make noise measurements, select an INPUT RANGE that adequately covers the expected peak noise voltage. As the peak noise may be considerably greater than the average noise level in the circuitry the DECREASE RANGE light may be illuminated for most measurements. Do not use the AllTO RANGE position for these noise measure-. ments as the instrument responds to the peak measurements. Select either the 22.4 Hz to 22.4 kHz unveighted response or the CCIR WTG filters. The response curves for these filters are shown in Fig. 2-9. The CCIR WTG filter is useful when measuring subjective noisiness of audio equipment. For more information, refer to the previously mentioned CCIR and DIN standards.

Add to page 2-11, after the last paragraph on the page:
...standards for class 1 sound level meters.
Option 02 instruments provides CCIR WTG and 22.4 Hz to 22.4 kHz unweighted response limits. These are shown in Fig. 2-9. The CCIR WTG response is a subjective response for noise measurements in audio equipment. The 22.4 Hz to 22.4 kHz response limits are essentially flat from 30 Hz to 16 kHz .

Fig. 2-9. Response curves for AA 501 filters.
Fig. 2-9. Response curves for AA 501 filters.
(This figure replaces Fig. 2-9 in the manual.)

Add to page 3-5, second paragraph:
...U1220 and U1321. U1321 and associated components are eliminated in Option 02 instruments. Switch S1100B routes the signal...comprise the 30 kHz low pass filter. In Option 02 instruments pressing 51100 C places the 22.4 Hz to 22.4 kHz filter in the signal path. In the standard and Option 01 instruments switch S11000 connects...

Add to page 3-5, after the fourth paragraph:
Option 02 instruments have a high-pass filter composed of C1131 and R1230 which drives two 3-pole filters in cascade. This high-pass filter is driven through S1100E from the output of 41220 on U1210B. The 3-pole filters are composed of U1230D and U1230C with associated components. U1230A provides the necessary gain. The output of this filter is susitched to the input of $41230 B$, an active full-wave rectifier, via S11000. These active filters provide the proper response for the CCIR WTG filter. The output from full-wave rectifier U1230B passes to pin 2 of 41231 . This circuitry rapidly charges C1331 to the peak value of the input waveform. This peak voltage passes through U1330A, a low-pass filter with associated components and to the + input of U1330B. The peak positive voltage charges C1431 through CR1332. C1430 is also charged through CR1331. As the peak voltage disappears, C1431 slowly discharges ihrough R1430. The voltage across C1430 remains constant until the voltage across C1431 decays to about 6.1 V below the level on C1430. Now C1430 discharges through transistor 21330 operating as a zener diode. This circuitry serves to delay a minimum width peak pulse for at least 0.5 s . The purpose of this circuitry is to allow peak pulses to be displayed on the digital readout. The peak voltage is amplified via U1330C and connected to the converter output through 21310 and 41310 .

Add to Table 4-1, page 4-1:
Under PERFORMANCE CHECK STEP column, first equipment listed (Low distortion...) add: $\ldots .12,13,14,16$

After second equipment listed (Sinewave oscillator...) add:
Function generator $\left|\begin{array}{l}\text { Triggerable, 2 v rms } \\ 200 \mathrm{~Hz} \\ \text { sinewave output }\end{array}\right| 16|\quad| \quad$ TEKTRONIX FG 501A
Add to Table 4-1, page 4-2:
Under PERFORMANCE CHECK STEP column, first equipment listed (50Ω coaxial...) add:
$\ldots 12,13,14,16$
Under PERFORMANCE CHECK STEP column, second equipment listed (Bnc female...) add:
...13,14,16

Page 4-3, change the following steps under Performance Check Steps to read:
3. ...Function Accuracy and Input Ranges
6. ...Distortion Accuracy, Minimum Input Level and Fundamental Frequency Range
8. ...SMPTE/DIN Mode (Option 01 or 02 only)
9. ...Tone Test Mode (Option 01 or 02 only)
10. ...SMPTE Test (Option 01 or 02 only)
11. ...Tone Test (Option 01 ar 02 only)

11A. ...step 11 is performed, Option 01 or 02 only)

Add:
16. Check 2-Pk Response Dynamic Characteristics (Option 02 only)

Page 4-3, change the following steps under Adjustment Procedure Steps to read:
2. ...Rms, Avg Zero and (Option 02) 2-Pk Zero
10. ...SMPTE Cal (Option 01 or 02 only)
11. ...Freq Cal (Option 01 or 02 only)

11A. ...step 11 is performed, Option 01 or 02 only)

Delete the NOTE on page 4-3.

Add to page 4-6, step \#3:
3. ...Function Accuracy and Input Ranges
c. ...other pushbuttons out, except the RESPONSE pushbutton may be either in or out.

Add to page 4-7, step \#3d:
d. ...Table 4-3. (Level accuracy in Option 02 instruments, 2-PK response, is applicable from 20 Hz to 50 kHz only.)

Add the following to page 4-8:
NOTE
For Standard and Option 01, perform steps 5e and 6. For Option 02, perform steps $59, h$, and i.
(5)e. ...weighting pushbutton, (standard and Option 01 instruments only).
9. Press the CCIR UTG pushbutton.
h. Release the RESPONSE pushbutton.
i. CHECK - that the display reads $\leq 5.0 \mu \mathrm{~V}$.
j. Remove the male bnc to dual binding post adapter and $1 \mathrm{k} \Omega$ resistor for the next step.

Change step 6 , page $4-8$, to read:
6. ...Distortion Accuracy, Minimum Input Level and Fundamental Frequency Range

Insert the following step on page 4-10, after step m :
n. On Option 02 instruments press the RESPONSE pushbutton.

Change steps n, o, p, and q on page 4-10 to " $0, p, q$, and r ".

Delete the NOTE on page 4-10.

Add the following to step 7b, page 4-10:
b. ...pushbuttons out. On Option 02 instruments press the RESPONSE pushbutton.

Change the following steps on page 4-11 to read:
f. ...display reads $\leq 0.0025 \%$. (Disregard this step for Option 02 instruments.)
k. ...display reads $\leq 0.0071 \%$.

Change step 8 to read:
8. ...in the SMPTE/DIN Mode (Option 01 or 02)

Add to step 8 c , page 4-11:
c. ...other pushbuttons out. On Option 02 instruments press the REPSONSE pushbutton.

Add to step 9, page 4-11:
9. ...Tone Test Mode (Option 01 or 02)

Change step $9 k$ on page $4-12$ to read:
k. ...display reads $\leq 0.0018 \%$.

Add to step 10 on page 4-12:
10. ...SMPTE Test (Option 01 or 02)

AA 501

Add to step 11 on page 4-12:
11.Tone Test (Option 01 or 02)

Add to step 11A on page 4-13:
11A. ...step 11 is performed, Option 01 or 021

Change step 12 c on page $4-14$ to read:
c. ...INPUT RANGE switch to the $2 V$ RANGE position.

After step 12 j on page 4-14, add the following NOTE:
NOTE
Steps k through n apply to the standard and Option 01 instruments only.

After step $12 q$ on page $4-15$, add the following NOTE:
NOTE
Steps r through v apply to Option 02 instruments only.

Delete step $12 r$ on page 4-15, and add the following steps:
r. Release the 80 kHz LO PASS pushbutton and press the 22.4 Hz to 22.4 kHz pushbutton.
s. Lower the frequency of the SG 505 until the display reads -3 dB .
t. CHECK - that the counter reads from 21.28 Hz to 23.52 Hz .
u. Raise the frequency of the SG 505 until the display reads -3 dB .
v. CHECK - that the counter reads from 21.28 kHz to 23.52 kHz .

NOTE
Steps w through cc spot check the response of the A weighting filter istandard and Option 01 instruments only). For more information, refer to ANSI S 1.41971 (revised 1976) or IEC Recommendation 179 for type 1 sound level meters.
w. Press the "A" WEIGHT pushbutton. Make certain all other FILTERS pushbuttons are released.
x. Set the output frequency of the $S G 505$ to 1 kHz .
y. CHECK - that the AA 501 display reads from -1.0 dB to +1.0 dB .
2. Set the SG 505 output frequency to 100 Hz .
aa. CHECK - that the AA 501 display reads from -20.1 dB to -18.1 dB .
bb. Set the SG 505 output frequency to 10 kHz .
cc. CHECK - that the $A A 501$ display reads from -6.5 dB to -0.5 dB .

NOTE
Steps dd through aq spot check the response of the CCIR weighting filter (Option 02 instruments only). For more information refer to CCIR Recommendation 468-2 or DIN 45405.
dd. Release all FILTERS pushbuttons and select 2-PK RESPONSE.
ee. Set the SG 505 output frequency to 1 kHz and the output amplitude to 0.4 V .
66. Press the $d B$ RATIO pushbutton. Press and release the PUSH TO SET $0 d B$ REF pushbutton.
99. Press the CCIR WTG pushbutton.
hh. CHECK - that the AA 501 display reads from -0.2 dB to +0.2 dB .
ii. Set the SG 505 output frequency to 6.3 kHz . Adjust the output amplitude to obtain an AA 501 display reading of +12.2 dB .
jj. Set the SG 505 output frequency to 100 Hz .
kk. CHECK - that the $A A 501$ display reads from $-20.8 d B$ to -18.8 dB .
le. Set the SG 505 output frequency to 1 kHz .
mm . CHECK - that the AA 501 display reads from -0.5 dB to +0.5 dB .
nn. Set the SG 505 output frequency to 10 kHz .
o0. CHECK - that the $A A 501$ display reads from +7.3 dB to +8.9 dB .
pp. Set the SG 505 output frequency to 20 kHz .
qq. CHECK - that the $A A 501$ display reads from -24.2 dB to -20.2 dB .
mr. Leave these connections for the next step.

Add the following step to page 4-16:
16. Check 2-pk Response Dynamic Characteristic (Option 02 only)

NOTE

The following procedure is optional. It checks the peak-hold dynamic characteristic of the 2-PK detector circuitry. It is generally sufficient to verify proper operation and is provided in lieu of the complex procedures defined in CCIR Recommendation 468-2 or DIN 45405.
a. Select the 2 V INPUT RANGE, LEVEL FUNCTION, VOLTS, and 2-PK RESPONSE. Make certain all FILTERS pushbuttons are out.
b. Connect the output of the FG 501A triggerable function generator to the INPLT of the AA 501. Connect the output of the SG 505 ascillator to the trigger input of the FG 501A.
c. Set the sinewave output frequency of the FG 501A to 200 Hz in the free run mode.
d. Adjust the FG 501A output amplitude until the AA 501 displays approximately 1.6 V .
e. Push the $d B$ RATIO pushbutton and push and release the PUSH TO SET $0 d B$ REF pushbutton. Note that the AA 501 displays a reading of 0.0 dB .
6. Set the output frequency of the $S G 505$ to 10 Hz with maximum output amplitude (approximately 6 V rms).
9. Change the FG 501A to the triggered mode. Make certain the phase control setting is near 0. (The FG 501A output signal should be a single cycle burst of 200 Hz starting at 0 phase at a 10 Hz repetition rate. 1
h. CHECK - that the AA 501 display reads from -2.7 dB to -1.9 dB .

Change step 2 on page $4-19$ to read:
2. Adjust Rms, Avg Zero, and (Option 02) Q-Pk Zero

Add the following to step 2 g on page 4-19:
g. ...Avg Zero, (Option 02, R1334, 2-Pk Zero), for a display...

Change step 3 g on page 4-19 to read:
g. (standard and Option 01 instruments) ADJUST - R1301,...

Insert the following steps after step 3 g on page 4-19:
h. (Option 02 instruments) ADJUST - R1330, 2-Pk Cal, for a display reading of 1.800 ± 0.001.

Change step 3 h on page $4-19$ to:
i. Leave this....

Add the following to step 11 on page 4-22:
11. ...Freq Cal (Option 01 or 02)

Add the following to step 11A on page 4-22:
11A. ...step 11 is performed, Option 01 or 02 only)

Change 11A, step c on page $4-22$ to read:
c. ... 20%, and RESPONSE pushbuttons...

Delete step m of 11 A on page $4-22$ and add the following:
12. Adjust CCIR Cal (Option 02)
a. Connect the test equipment as shown in Fig. 4-15.
6. Apply a 1 kHz 0.400 V rms sinewave to the AA 501 input.
c. Make certain the INPUT RANGE switch is on the 2 V position.
d. Press the FUNCTION LEVEL, and dB RATIO pushbuttons, all other pushbuttons out.
e. Press the PUSH TO SET 0 dB REF pushbutton.
6. Press the CCIR WTG pushbutton.
9. ADJUST - R1132, CCIR Cal, for a display of 0.0 dB .
h. Remove all connections.
i. This completes the AA 501 Internal Adjustment procedure.

Add the following on page 6-1:

Option 01 and 02 instruments...of this manual. Option 02 instruments provide quasi-peak detection with 22.4 Hz to 22.4 kHz and CCIR weighted filters in place of the 30 kHz LO PASS and "A" WEIGHT filters.

[^0]: ${ }^{1}$ IHF-A-202 1978, Standard Methods of Measurement for Audio Amplifiers, The Institute of High Fidelity, Inc., 489 Fifth Avenue, New York, N.Y. 10017

[^1]: 2 Defined in Electronic Industries Association Standard No. RS 204A, July 1972, Electronic Industries Association, Engineering Department, 2001 Eye St. N.W., Washington, D.C. 20006.

[^2]: ${ }^{6}$ International Electrotechnical Commission, Publication 179, second edition, Precision Sound Level Melers, 1973, Central Office of IEC (sales department), 1, rue de Varembe', 1211 Geneva 20 Switzerland.

[^3]: ' Dolby et al, CCIR/ARM: A Practical Nolse-Measurement Method, Journal of the Audio Englneering Society, Vol. 27, No. 3. March 1979, p. 149.
 ${ }^{8}$ International Radio Consultative Committee.

[^4]: m. This completes the AA 501 Internal Adjustment procedure

