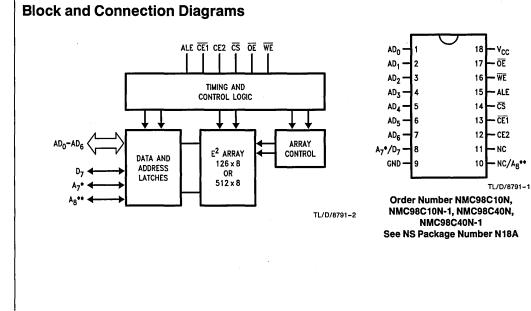
PRELIMINARY

NMC98C10/NMC98C40 Electrically Erasable, Programmable Memories

General Description

The NMC98C10 and NMC98C40 are 128 by 8 and 512 by 8 5-volt programmable, non-volatile, parallel access memories built with 3-micron CMOS floating gate process. Data and address lines are multiplexed, enabling these devices to be packaged in an 18-pin DIP, saving board space. The pin-out is identical to the Intel 8185 static RAM and the 2001 non-volatile RAM, allowing the memories to directly interface with Intel and other popular 8-bit and 16-bit microprocessors and microcontrollers.


The write cycle is simplified by a self-timed erase before write circuit on-chip. The end of write cycle can be determined by polling the data pins or the controller can simply allow a minimum time between a write command and the subsequent command. To prevent undesirable modification of the memory contents during system power up or power down, a lockout circuit ignores write commands while V_{CC} is below the prescribed level of VLKO.

Applications for these memories include storing position data in robotic systems, storing local area network node address and parameter settings in data communications equipment, storing set-up and last position data in industrial control systems and storing PBX switch data in telecommunications equipment.

The NMC98C10 and NMC98C40 are compatible with Sierra Semiconductor SC22101, SC22104.

Features

- CMOS EE technology
- Single 5-volt supply
- Reliable CMOS floating gate process
- Eighteen-pin package
- Multiplexed address and data bus
- Self timed write operation
- DATA polling
- Minimum 10,000 erase/write cycles
- Very low power dissipation
- Ten year data retention
- Minimum board space
- Directly compatible with NSC800, NSC32000 and other standard microprocessors
- No external sequencing of erase/write cycle
- End of write cycle verified by polling
- Long product life

Specifications for Military/Aerospace products are not contained in this datasheet. Refer to the associated reliability electrical test specifications document.

Supply Voltage, V _{CC}	7V
Voltage on Any Pin	V _{CC} + 0.5V
	GND - 0.5V
Storage Temperature Range	-65°C to +150°C
Maximum Power Dissipation @ 25°C	
(Note 2)	500 mW

Lead Temp. (Soldering, 10 seconds) ESD rating is to be determined.

Operating Conditions

(Applies to DC and AC Characteristics)	
Ambient Temperature	
Positive Supply Voltage	

300°C

0°C to 70°C

4.5V to 5.5V

DC Electrical Characteristics

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
VOH	Output High Voltage	I _{OH} = - 400 μA	2.4			V
VOL	Output Low Voltage	$I_{OL} = 2.1 \text{ mA}$			0.4	٧
VIH	Input High Voltage		2.0		$V_{CC} + 0.5$	V
VIL	Input Low Voltage		-0.5		0.8	V
V _{LKO}	V _{CC} Level for Write Lockout		4.0		4.4	V
ILI -	Input Leakage Current	$V_{IN} = V_{CC}$			±10.0	μΑ
ILO	Output Leakage Current	$V_{OUT} = V_{CC}$			±10.0	μA
lcc	Operating Supply Current	TTL Inputs			15.0	mA
		CMOS Inputs			10.0	mA
ICCPD	Standby Supply Current	TTL Inputs			5.0	mA
		CMOS Inputs			100	μΑ
I _{SC}	Short-Circuit Current	One Output Pin Shorted		40		mA

AC Electrical Characteristics

Symbol	Parameter		98C10, 98C40	NMC9 NMC9	Units	
-		Min	Max	Min	Max	
T _{AL}	Address to Latch Setup Time	50		20		ns
TLA	Address Hold Time after Latch	45		30		ns
T _{LC}	Latch to OE/WE Control	80		35		ns
T _{OE}	Valid Data Out Delay from Read Control	_	170		120	ns
T _{LD}	ALE to Data Out Valid		300		180	ns
TLL	Latch Enable Width	100		60		ns
т _{он}	Output Held from Addresses, CS, or OE (Whichever Changes First)	0		0		ns
T _{OLZ}	OE Low to Output Driven	10		10		ns
T _{RDF}	Data Bus Float after Read	0	95	0	60	ns
T _{CL}	OE/WE Control to Latch Enable	0		0		ns
T _{CC}	OE/WE Control Width	250		150		ns
T _{DW}	Data In to Write Setup Time	150		150		ns
T _{WD}	Data In Hold Time after Write	20		15		ns
T _{SC}	Chip Select Set-Up to OE/WE Control	50		20		ns
T _{CS}	Chip Select Hold Time after OE/WE Control	10		10		ns
TALCE	Chip Enable Set-Up to ALE Falling	30		5		ns

AC Electrical Characteristics (Continued)

Symbol	Parameter		, , , ,		·		•	
		Min	Max	Min	Max			
TLACE	Chip Enable Hold Time after ALE Falling	45		40		ns		
T _{WR}	Byte Write Cycle Time		20		20	ms		
т _{wн}	Data Invalid Time after WE Falling		11		1	ms		
	Number of Writes Per Byte	10,000		10,000		Cycles		

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz) (Note 3)

Parameter	Description	Test Conditions	Тур	Max	Units
CIN	Input Capacitance	V _{IN} = 0V	5	10	рF
C _{I/O}	Input/Output Capacitance	$\overline{OE} = \overline{CE1} = \overline{CS} = V_{IH}, CE2 = V_{IL}$		10	pF

AC Test Conditions

Output Load1 TTL Gate + $C_L = 100 \text{ pF}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", the device should not be operated at these limits. The table of "Electrical Characteristics" provides actual operating limits.

Note 2: Power dissipation temperature derating-plastic "N" package: -12 mW/°C from 65°C to 85°C.

Note 3: This parameter is sampled and not 100% tested.

Pin Descriptions

Pin Number	Pin Name	Function
1-8	AD ₀ -AD ₇	Multiplexed address and data bits. Pin 8 is DATA only for NMC98C10.
9	GND	Ground, 0 volts.
10	A8	MSB of address for NMC98C40, NC for NMC98C10.
11	NC	No connection. No internal connec- tion is made to this pin and it may be left floating.
12	CE2	Chip Enable 2 (see Table I)
13	CE1	Chip Enable 1 (See Table I)
14	CS	Chip Select (see Table I)
15	ALE	Address Latch Enable
16	WE	Write Enable
17	OE	Output Enable
18	V _{CC}	Positive power supply, 5 volts.

Functional Description

Table I shows the different modes of operation as a function of the control signals. Standby powered down mode: both write and read are inhibited and the device's power consumption is greatly reduced. Standby powered up mode: the device consumes the operating power, but read and write are inhibited. Inhibit mode: the device is write protected to avoid inadvertent modifications while the read and write pins are changing.

READ OPERATION

Figure 2 shows the timing diagram for READ operation. The address is latched on the falling edge of ALE. For the

NMC98C10 only pins 1 through 7 are used for address bits. NMC98C40 uses pins 8 and 10 in addition to pins 1 through 7 for address bits.

Data appear on pins 1 through 8 after $\overline{\text{OE}}$ becomes active (low).

WRITE OPERATION

Write operation's timing is shown in *Figure 3*. Address is latched on the falling edge of the ALE. After the address is latched, the WE becomes active (low) for the minimum time of TCC and returns to inactive state. This initiates the internally timed write operation. No external erase before write operation is needed and data lines as well as control lines may change after the write operation is initiated.

Mode	CE1	CE2	CS	ŌĒ	WE	AD0-AD7		
Standby Powered Down	VIH	х	x	X	х	Hi-Z		
Standby Powered Down	х	VIL	х	х	х	Hi-Z		
Standby Powered Up	VIL	VIH	VIH	х	х	Hi-Z		
Read	VIL	VIH	VIL	VIL	VIH	Data Out		
Write	VIL	VIH	VIL	VIH	VIL	Data In		
Inhibit	VIL	VIH	VIL	VIH	VIH	Hi-Z		
Inhibit	VIL	VIH	VIL	VIL	VIL	Hi-Z		

TABLE I. Mode Table

VIL = Logical Low Input

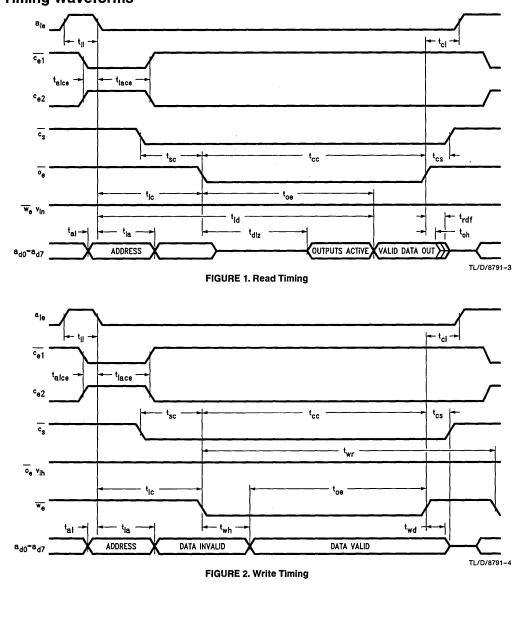
VIH = Logical High Input

Hi-Z = High Impedance State

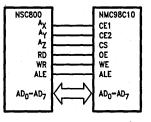
X = Don't Care

2

Functional Description (Continued)

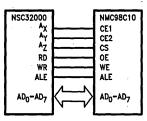

DATA POLLING

After the write operation is initiated, its conclusion can be monitored by putting the device in the READ mode and polling the D7 data bit. The data bit will be logical inverse of the bit being written to a location in memory until the write operation is completed. At this time the D7 data bit will be the same as the last D7 data bit written into memory.


Timing Waveforms

WRITE LOCKOUT

During system power up or power down, an on-chip write lockout circuit prevents spurious WRITES into the memory locations while V_{CC} is lower than the specified lockout voltage VLKO. This frees the system designer from having to design external write protection circuits.



Timing Waveforms (Continued)

Note: A_X, A_Y, A_Z are any three of the 8051 address pins A8–A15. By connecting CE1, CE2, and CS to specific address lines. The NMC98C10 and NMC98C40 can be mapped to a particular range in memory, without the need for an external memory address decoder.

FIGURE 3. Using the NMC98C10 with an NSC800 Microcontroller

TL/D/8791-6

TL/D/8791-5

FIGURE 4. Using the NMC98C10 with the HPC 16040 Microcontroller or NSC32000