
1111•

TEK SPS BASIC
V02N02XM

Peripheral Drivers
CP57000/CP57500

COMMITIED TO EXCELLENCE

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

First Printing FEB 1980

COMMITIED ID EXCELLENCE

TEK SPS BASIC
V02N02XM

Peripheral Drivers
CP57000/CP57500

INSTRUCTION MANUAL

Serial Number

PRODUCED BY SPS DOCUMENTATION GROUP 070-27 40-00

SOFTWARE SUPPORT POLICY
Unless otherwise provided, Tektronix, Inc., agrees that during the one (1) year period following installation, if the

customer encounters a problem with this software which the customer's diagnosis indicates is caused by a software defect,
the customer may submit a Software Performance Report to Tektronix, Inc. For problems occurring in current, unaltered
releases of software, Tektronix, Inc., will respond to Software Performance Reports via a software maintenance periodical.
The software maintenance periodical will be provided at no cost to the customer for one year following installation and wil I
contain information for correcting or bypassing verified problems where possible, and will give notice of availability of
corrected software.

Any software updates released by Tektronix, Inc., to correct problems during the one (1) year period will be provided
to the customer at no charge on the standard distribution media specified in the software documentation. If media other
than the standard distribution media is requested, the customer will only be charged for the current cost of the optional
media.

SOFTWARE LICENSE
This software product, including subsequent improvements or updates, is furnished under a license for use on a

single controller. It may only be copied, in whole or in part (with the proper inclusion of the Tektronix, Inc., copyright notice
on the software), for use on that specific controller.

Specification and price change privileges are reserved.

Although the material in this manual has been thoroughly edited and checked for accuracy, Tektronix, Inc., makes no
guarantees against typographical or human errors. Also, Tektronix, Inc., assumes no responsibility or liability,
consequential or otherwise, of any kind arising from misinterpretation or misuse of the material in this manual. The
contents of this manual are subject to change without notice.

Copyright © 1980 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved.

U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

DEC, LSl-11, PDP, RT-11, and UNIBUS are registered trademarks of Digital Equipment Corporation.

TEK SPS BASIC V02 Peripheral Drivers

PREFACE

This manual describes the peripheral device drivers supported by all
releases of TEK SPS BASIC V02 and V02XM. Any exceptions to an option or a
capability of a driver being supported by a specific release of the software
are noted where appropriate. Information that pertains only to extended
memory (XM) systems is shaded.

The manual is organized by peripheral device type. Each section first
shows how to perform the more common operations of a particular type of
device using the TEK SPS BASIC peripheral commands. Then the TEK SPS BASIC
drivers for devices of that type are described at the end of the section.
The first two sections discuss drivers for file-structured devices. Section
1 covers directory-structured devices; Section 2 covers serial-access
devices. The third section discusses non-file-structured device drivers.
Each of the peripheral commands mentioned in this manual is fully documented
in the TEK SPS BASIC V02/V02XM System Software manual.

@ ;

TEK SPS BASIC V~2 Peripheral Drivers

TABLE OF CONTENTS

SECTION 1 - DIRECTORY-STRUCTURED DEVICE DRIVERS

General Operations
Introduction
Loading and Releasing the Device Driver
Creating the Directory
Listing the Device Directory
Copying Files
Canceling Files
Consolidating Free Storage Space
Renaming Files
Storing and Retrieving Data
Storing and Retrieving Programs
Loading and Releasing SPS Modules

DX Floppy Disk Driver
Attributes
Description
Using the Floppy Disk Unit
How Information is Stored on the Disk

DK Hard Disk Driver
Attributes
Description
Using the Hard Disk Unit
How Information is Stored

DL Hard Disk Driver
Attributes
Description
Using the Disk Unit
How Information is Stored

VM Virtual-Memory Driver
Attributes
Description
How Data is Stored

on the Disk

on the Disk

SECTION 2 - SERIAL-ACCESS DEVICE DRIVERS

General Operations
Introduction

iii

1-1

1-1
1-1
1-2
1-2
1-4
1-5
1-6
1-7
1-7
1-8
1-16
1-20
1-21
1-21
1-21
1-22
1-24
1-25
1-25
1-25
1-26
1-30
1-31
1-31
1-31
1-32
1-36
1-37
1-37
1-37
1-38

2-1

2-1
2-1

TEK SPS BASIC V02 Peripheral Drivers

Loading and Releasing the Device Driver
Initializing the Medium
Listing the Files Stored on the Device
The /F or /R Switch
Copying Files
Canceling Files
Rewinding a Serial-Tape Device
Storing and Retrieving Data
Storing and Retrieving Programs
Loading and Releasing SPS Modules

MT Magtape Driver
Attributes
Description
Magtape File Structure
Operating the Magtape Transport

CT Cassette Driver
Attributes
Description
Operating the Cassette Unit

SECTION 3 - NON-FILE-STRUCTURED DEVICE DRIVERS

Introduction
Loading and Releasing the Device Driver

Storage and Retrieval Devices
Storing and Retrieving Data
Storing and Retrieving Programs

ASCII Output Devices
Displaying Data
Listing a Program

ASCII Input Devices
Inputting Data
Copying to a File

LP Line Printer Driver
Attributes
Description
Preliminary Instructions
How Output is Formatted

PP and PR Paper-Tape Drivers
Attributes
Description

iv

2-2
2-2
2-2
2-3
2-4
2-5
2-6
2-6
2-11
2-14
2-15
2-15
2-15
2-16
2-19
2-20
2-20
2-20
2-21

3-1

3-1
3-1
3-2
3-2
3-3
3-5
3-5
3-7
3-8
3-8
3-9
3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-12

@

TEK SPS BASIC V~2 Peripheral Drivers

Preliminary Instructions
How Output is Formatted

Keyboard Terminal Drivers
Attributes
Description
Determining Which Driver
Special Function Keys

APPENDIX A - LOADING TEK SPS BASIC

APPENDIX B - STANDARD HARDWARE BOOTING PROCEDURES
FOR TEK SPS BASIC va2

M9301 Bootstrap ROM Card
M9312 Bootstrap ROM Card
Standard ROM Bootstrap on SBT Modules in CP4165

APPENDIX C - ARCHIVING YOUR SOFTWARE

Hard-Disk Based Systems
System Software (without Instrument Checkout Software)

3-12
3-13
3-14
3-14
3-14
3-15
3-15

A-1

B-1

B-1
B-1
B-2

C-1

C-3

on Hard Disk C-3
System Software with Instrument Checkout Software

on Hard Disk C-4
Separate Package or Module on Hard Disk C-5
Separate Package or Module on Floppy Disk C-6
Instrument Checkout Software on Floppy Disk C-7

Floppy-Disk Based Systems C-9
System Software on a Single Floppy Disk C-9
TEK SPS BASIC on Minimum Number of Floppy Disks C-10
Separate Package or Module on Floppy Disk C-11
Instrument Checkout Software on Floppy Disk C-12

v

TEK SPS BASIC V02 Peripheral Drivers

SECTIOR 1

DIRECTORY-STRUCTURED DEVICE DRIVERS

General Operations

Introduction

A directory-structured device is a file-structured peripheral that
has a directory of the files stored on it. This directory is a table
containing the names of all the files stored on the device and the pointers
to where the files are stored. The driver for a specific device accesses
a file by searching the device directory for the file name and using the
associated pointer to find the actual location of the file. Examples of
directory-structured peripherals are hard disk and floppy disk storage
devices.

A file is written to a directory-structured device in an integer
number of blocks of data. (One block is 256 16-bit words.) The block number
is a logical (software) number. The device driver determines the physical
location on the device corresponding to that number. Usually, block 0 is
the first block of data stored on the device, block 1 is the second, and
so on. (An exception to this is the VM driver which makes block 6 the first
block.) The device directory always begins at block 6 of the directory
structured peripheral. If the system software can be booted from the device,
the absolute loader always begins at block 0.

In the discussions of the peripheral operations that follow, the
symbol DSn is used to represent the device name and drive number of any
directory-structured device supported by a TEK SPS BASIC V02 peripheral
driver. When entering any of the examples, be sure to substitute the name
(and the drive number when appropriate) of a specific directory-structured
device for the DSn symbol (e.g., DX1, DK4, DL2, VM, etc.) The descriptions
of each of the TEK SPS BASIC V02 directory-structured device drivers that
appear at the end of this section include the device name and the number
of drives the driver supports.

As each peripheral operation is presented, the appropriate TEK SPS
BASIC V02 commands are briefly mentioned. For a complete discussion of
each command, see Section 4 of the TEK SPS BASIC V02 System Software manual.

@ 1-1

TEK SPS BASIC V~2 Peripheral Drivers

Loading and Releasing the Device Driver

Before any operations can be performed on a particular peripheral
device, the driver for that device must be resident in controller memory.
If the directory-structured device being referenced is the same as the
system device, the driver for that device is already permanently resident
in memory. Otherwise, the driver for that device must be LOADed before the
device can be referenced. Assuming that a device driver named "DS.SPS" is
stored on the system device, the statement:

LOAD 11DS.SPS11

or simply,

LOAD "DS"

brings the specified driver into memory. (Notice that a .SPS extension is
assumed by the LOAD command.) If at some later time you wanted to delete
this driver to free memory space, you could enter:

RELEASE 11DS 11

All drivers, except the system device driver and the keyboard driver, are
loaded and released in this manner. In the discussions that follow, it is
assumed that any required drivers are in memory when the examples execute.

Creating the Directory

As the name implies, a directory-structured device is a file-structured
device that has a directory -- a list of the files stored on the medium.
As each file is stored or canceled on the medium, the directory is updated
to indicate the new or canceled file. The directory also has the location
of each file. This allows faster file access than a serial access device.
Instead of sequentially searching the medium for the file, the driver
searches only the directory for the name and location of the file. Then
the file is accessed directly.

Before the medium of a directory-structured device can be used for
the very first time, it must be initialized with a ZERO statement to set
up space for the directory. This needs to be done only once for a disk,
but semiconductor-based extended memory used as a virtual memory peripheral
must be initialized each time the system software is loaded. (A disk must

1-2

TEK SPS BASIC V02 Peripheral Drivers

be formatted before it is ZEROed. The FORMAT command formats a DEC RK05
or equivalent disk. However, most disks used by TEK SPS BASIC are preformatted
by the manufacturer.)

The directory begins at block 6 of the device. The directory area is
variable in length and may range from 1 to 31 directory segments. A directory
segment consists of two blocks where a block equals 256 words; thus a
segment is 512 words long.

The ZERO command allocates from 1 to 31 directory segments. If no
number is specified, the default number of segments, which varies from
driver to driver, is used. (See the separate discussion on each driver for
its default number of segments.) To set up space for the default number
of directory segments use:

ZERO DSn:

To provide for fewer or more directory segments, specify the number after
the device name. For example:

ZERO DSn:10

sets aside 10 segments for the directory.

The amount of directory space needed depends on the size of the storage
area and the number and size of the files to be stored. Theoretically, the
maximum number of file entries that can be stored in a device directory
is about m times (507/7) where mis the number of segments allocated by
the ZERO command. Due to the way in which the directory is actually filled,
however, only (m+1) times (507/14). entries can be stored, unless you perform
a SQUISH command when the directory is first filled. By successfully filling
and SQUISHing the device, the theoretical limit can be approached. If a
large number of short files are to be stored, at least 20 directory segments
should be allocated. However, if a smaller number of longer files are to
be stored, perhaps the default number of segments is adequate.

If the directory area is overflowed, a fatal error will occur and no
more files can be stored on the device. At this point, you should either
SQUISH the device or copy any new or existing files onto another device.

1-3

TEK SPS BASIC V02 Peripheral Drivers

Listing the Device Directory

The DIRectory command lists the files stored on a file-structured
device. For a directory-structured device, DIR first outputs the device
and drive number. Then it lists the file name and the extension, the number
of blocks used, and the creation date for each file on the device. (One
block equals 256 words.) Free areas are shown in the list as "<unused>."
At the end of the listing the total number of free blocks is output. For
example:

DIR DSn:

displays the directory on the terminal.

Subsets of the directory can be listed by using the wild card
specification (*) in the file name in the DIR statement. For example:

DIR DSn:"*.BAS"

lists all the files on the device that have a .BAS extension, while:

DIR DSn:"PATCH.*"

lists all the patch files stored on the device.

The starting block number (in octal) of the files can be printed also
by including the optional keywords WITH BLOCK. For example:

DIR DSn: WITH BLOCK

Instead of a file name, an "<unused>" entry may appear in the directory.
The number associated with it is the number of unused blocks in that
position on the device. The presence of unused blocks in the middle of a
directory indicates that the file previously occupying that position has
been CANCELed. Canceling files in the middle of the device is referred to
as "fragmenting the device" and usually results in wasted space. However,
this wasted space may be reclaimed by executing the SQUISH command, discussed
later. It may also be reclaimed by using the INTO option when COPYing or
OPENing a file FOR WRITE, also discussed later.

1-4

TEK SPS BASIC V02 Peripheral Drivers

Copying Files

Copies of files can be transferred to or from a file-structured device
with the COPY command. For example:

COPY DSn:"FILE.BAS" TO DSm:"FILE.BAS"

transfers a copy of the file "FILE.BAS" on one directory-structured device
to another. The arguments specified on the left of the TO are the source
device and file name while the arguments on the right of the TO are the
target device and file name. In this example, the source and destination
file names were kept the same. However, it is possible to change the file
name in the process merely by specifying a new file name in the target
argument. Also, if the target is not a file-structured device, no destination
file name is required. For example:

COPY DSn: "ASCII" TO KB:

displays the contents of the ASCII file "ASCII" on the keyboard.

The wild card specification can be used in place of the file name or
extension to COPY more than one file. For example:

COPY DSn:"*.DAT" TO MT:"*.DAT"

transfers a copy of all the files with a .DAT extension on the directory
structured device to magtape.

When COPYing to a directory-structured device, the INTO option may
be used to stipulate the maximum number of blocks required by the copied
file. For example:

COPY DSn:"TEST.DAT" TO DSm:"BACKUP.DAT" INTO 45

allots up to 45 blocks on the target device (DSm) for a copy of the file.
Notice that the original and the copy will have different file names.

Use of the INTO option with the wild card specification (*) is
unnecessary and if used, is ignored. With the wild card notation, as each
file is copied, the first sufficient empty space on the target device is
used for that file.

1-5

TEK SPS BASIC V02 Peripheral Drivers

When the INTO option or the wild card specification is not used, one
half of the largest empty space on the target device is opened for the
file. In any case, if the specified or default space exceeds the actual
number of blocks used by the file, the unused blocks are returned to empty
(unused) status. However, if the specified or default space is less than
the number of blocks needed by the file, a fatal error is issued. To avoid
this error, use the INTO option or the wild card specification to COPY
files whenever one half of the largest empty space may not be large enough
for the copied file (such as when a disk is nearly full).

There are circumstances where you may want to copy all the files on
a directory-structured device to a blank medium in a directory-structured
device. To do this, execute the following SQUISH command:

SQUISH DSn: TO DSm:

This copies all the files from the source device (DSn) to the target device
(DSm); the source device remains unchanged, however any files on the target
device before the SQUISH are lost.

Canceling Fi1es

Selected files are removed from the device with the CANCEL command.
For example:

CANCEL DSn: 11 SHOOT.BAS 11 , 11 BASIC.DAT 11

cancels two files on the same device. The first canceled file is a BASIC
program named "SHOOT.BAS"; the second canceled file is a data file named
"BASIC.DAT". No default file name extension is provided with the CANCEL
command.

When canceling files on the system device, be careful not to cancel
any binary TEK SPS BASIC files. These constitute your system software and
should not be disturbed. TEK SPS BASIC binary files have a .SPS file name
extension, which differentiate them from other files which may be stored
on the same device.

Besides creating directory space, the ZERO command can also be used
to effectively remove a11 files by reinitializing the device. The ZERO
command is discussed under "Creating the Directory."

1-6

TEK SPS BASIC V@2 Peripheral Drivers

Be careful when specifying the device
argument for the ZERO command. Once a
device has been ZEROed, any data stored
on it is effectively lost.

Consolidating Free Storage Space

When files are CANCELed, unused areas, which fragment the available
free storage space, are left on the device. The SQUISH command consolidates
the unused blocks on a directory-structured device into one contiguous
area. SQUISH shifts the files on a fragmented device so all the free
(unused) blocks follow the last file on the device. To do this simply use:

SQUISH DSn:

Remember, the only time you need to SQUISH a device is when there are
canceled files occurring before the last file. If the last recorded file
is the only one that has been canceled, you do not need to SQUISH the
device. The unused blocks are already at the end of the last file.

Renaming Files

The SQUISH command should be used
with caution. If it is interrupted,
all data on the device may be lost.

The name of a file stored on a directory-structured device can be
changed with the RENAME command. For example:

RENAME DSn:"OLD" TO "NEW"

changes the name of a file from "OLD" to "NEW". RENAME has no default file
name extension. If you do not specify an extension in the new file name,
the file will not have one.

@ 1-7

TEK SPS BASIC V~2 Peripheral Drivers

Storing and Retrieving Data

Sequential-Access Files. Sequential-access files use a method of file
access in which the data is stored serially from the beginning of the file
and is retrieved in the same order in which it was stored. The general
procedure for storing or retrieving data in sequential-access files is to
first OPEN a file on the peripheral medium, next to perform the desired
operation (READ, WRITE, PRINT, INPUT, READU, or WRITEU), and finally to
CLOSE the file. The WRITE and READ commands store and retrieve formatted
binary or ASCII data. The PRINT and INPUT commands store and retrieve ASCII
strings delimited by carriage returns. The READU and WRITEU commands store
and retrieve unformatted binary or ASCII data.

The OPEN command allows access to a new file for storing data or to
an existing file for retrieving data. It assigns a peripheral logical unit
number (PLUN) to a specified file on the selected device. It also checks
that the operation is a legal one and performs any necessary initialization
routines. After a file is OPENed, it is addressed by its PLUN not its file
name.

A sequential-access file is OPENed either FOR WRITE or FOR READ.
Opening a file FOR WRITE creates a new file in which data is stored. Opening
a file FOR READ allows the previously stored data to be retrieved.

If you are OPENing a file FOR WRITE, you may use the WITH option.
This specifies the number of memory buffers to be used to increase the
throughput of the data. (The size of the memory buffer depends on the
output device. See the separate discussion on each device driver for the
buffer size for that device.) If the WITH option is not specified, just
one of these buffers will be used. Increasing the number of buffers often
increases the transfer rate, but generally not in direct proportion to the
number of buffers specified. In fact, there is a point at which increasing
the number of buffers actually decreases throughput due to lack of memory
space remaining. The optimum number of buffers largely depends upon the
application -- as your own experimentation will verify.

When OPENing a file FOR WRITE on a directory-structured device, you
may also use the INTO option. This specifies the number of blocks to open
for use by the file. If the INTO option is not used, the driver automatically
allocates half of the largest number of contiguous free blocks on the
medium. In either case, when the file is CLOSEd, any blocks not written
to are returned to an unused status. Normally the default condition does

1-8

TEK SPS BASIC V02 Peripheral Drivers

not cause any problems. However, if you have only a few remaining free
blocks on your device, you may want to specify the INTO option. For example,
suppose there were 10 remaining free blocks on your device and you attempted
to write out a file that is 6 blocks long. Since only half of the remaining
10 blocks would be allocated, this would cause an error. To get around
this problem, use the INTO option with the OPEN command and specify 6
blocks. This will allow you to store the file in its entirety. The INTO
option also helps to avoid fragmentation of the medium.

The WITH option and the INTO option, do not apply to an OPEN FOR
READ.

After execution of the OPEN command, you can now store or retrieve
data. Data is stored by a WRITE, PRINT, or WRITEU statement. Data stored
by WRITE is retrieved by the READ command; PRINT, by the INPUT command;
and WRITEU, by the READU command. Binary data are stored and retrieved
more effeciently with the WRITE and READ commands, while ASCII strings are
stored and retrieved more efficiently with the PRINT and INPUT commands.
WRITEU and READU write and read files compatible with DEC RT-11 FORTRAN.

After completion of the WRITE, READ, PRINT, INPUT, WRITEU, OR READU
operations, the file should be closed. The CLOSE command closes the file
to further input or output. It also frees the PLUN for use by another file
or device and releases the memory buffers.

Once a sequential-access file that was OPEN FOR WRITE has been CLOSEd,
it can no longer be written into. An OPEN FOR READ command is then the
only legal OPEN command for that file.

WRITE and READ. The pair of commands used most for data file output
and input are WRITE and READ. WRITE was designed to store both numeric and
string data in a file; READ was designed to readily retrieve both types
of data from the file. With the WRITE/READ pair it is particularly easy
to store and retrieve array and waveform data. As an example, consider
this partial program which first acquires and stores ten waveforms and
then reads and processes them one by one.

With the waveform declared by:

100 WAVEFORM WA IS AA(511),DA,HA$,VA$

@ 1-9

TEK SPS BASIC Va2 Peripheral Drivers

the first step in storing the waveform data is to OPEN a file FOR WRITE.
For example:

11 a OPEN 111 AS DSn: "TEST. DAT" FOR WRITE

creates a sequential-access file named "TEST.DAT" and assigns it a PLUN
of 1. Since the WITH and INTO options are not used, only one memory buffer
will be used and the potential size of the file is one half the largest
number of contiguous unused blocks on the device. To increase throughput
and to insure that the file is large enough for ten waveforms, the following
statement could be used instead:

110 OPEN 111 AS DSn:"TEST.DAT" FOR WRITE WITH 2 INTO 41

This alternate line 110 provides two memory buffers and OPENs 41 blocks
for the file.

The second step in storing a waveform is to write it to the file. A
simple statement like:

WRITE #1,WA

writes all four components of waveform WA to the file known as PLUN 1.
Since ten waveforms are to be stored, the WRITE statement can appear in a
loop such as:

120 FOR I=1 TO 1a
130 GOSUB 10aa\REM ACQUIRE WAVEFORM DATA
140 WRITE 111, WA
150 NEXT I

After all ten waveforms are written to the file, the last step is to
close the file. The statement:

160 CLOSE II 1

closes the file to further data storage and frees PLUN 1 for use in another
OPEN statement. Once closed, the file cannot be reopened for WRITE; it can
only be opened FOR READ.

1-10

TEK SPS BASIC V02 Peripheral Drivers

Retrieving the waveform data for processing is just as easy. First,
OPEN the file FOR READ. For example:

200 OPEN lt1 AS DSn:"TEST.DAT" FOR READ

opens the file "TEST .DAT" for READ and assigns it the PLUN of 1. Since
PLUN 1 is free, the same PLUN is used again; but that is not required. Any
free PLUN can be used.

The second step in retrieving the data is accomplished by a statement
like:

READ /t1, WA

This reads all four components of the first waveform stored in the file.
Repeating this statement ten times reads all ten waveforms. Here the READ
statement appears in a FOR loop similar to the loop used for the WRITE
operation:

210 FOR I=1 TO 10
220 READ IF 1 , WA
230 GOSUB 2000\REM PROCESS WAVEFORM DATA
240 NEXT I

The last step is to close the file when done. For example:

250 CLOSE //1

closes the file and frees the PLUN. Incidentally, since no further data
remains to be read, trying to read beyond the end of the data causes an
error. However, if you wished to read the data again, instead of closing
and reopening the file, you could use a RESET statement. For example, if
PLUN 1 is a sequential access file OPEN FOR READ,

RESET /t1

allows the file to be read from its beginning.

1-11

TEK SPS BASIC V02 Peripheral Drivers

WRITEU and READO. WRITEU does not write waveforms and READU does not
read them. So, to modify this program for the WRITEU/READU pair, the four
components of the waveform must be written individually. Assuming that the
units strings HA$ and VA$ are at most ten characters long, line 140 could
be changed to:

140 WRITEU #1,AA,DA,HA$:10,VA$:10

This writes the array (AA), the data sampling interval (DA), and then the
two units strings of the waveform to the file. If either string is shorter
than ten characters, spaces are added to the end of the string to make it
ten characters long; if either string is longer than ten characters, only
its first ten characters are stored.

To read this waveform, line 220 should be changed to:

220 READU #1,AA,DA,HA$=10,VA$=10

However, since an HA$ or a VA$ shorter than ten characters is padded with
spaces as it is written by the WRITEU in line 140, those added spaces
should be removed. Adding the statements:

222 HA$=TRM(HA$)
224 VA$=TRM(VA$)

trims any trailing spaces from HA$ and VA$ with the TRM string function.

PRIHT and IKPUT. You would rarely store a waveform in a file with the
PRINT command because it would use too much storage space. (To hold just
one waveform such as the example, WA, the file would need to be about 15
blocks.) But, if you wanted to PRINT a waveform to a file so that you could
COPY it later to a line printer or terminal, use a statement like:

PRINT #1,WA

However, if the waveform is to be INPUT from the file, each component
of the waveform and each element of the array must be terminated by a
carriage return (or a comma if the item is a numeric string). PRINT outputs
a carriage return at the end of each line. So, the easiest way to delimit
each item is to output each item with a separate PRINT statement. Thus,

1-12

TEK SPS BASIC V02 Peripheral Drivers

to modify the example program for the PRINT/INPUT pair, first change the
INTO option in line 110 to 150 blocks. For example:

1111 OPEN /11 AS DSn: "TEST .DAT" FOR WRITE WITH 2 INTO 150

This insures that the file is large enough for ten PRINTed waveforms. Then,
expand line 140 to:

140 FOR J:0 TO 511
141 PRINT /11,AA(J)
142 NEXT J
143 PRINT /11, DA
144 PRINT /11,HA$
145 PRINT /11,VA$

which outputs a carriage return after each array element, the data sampling
interval, and each units string. This allows the waveform to be read in
with a simple INPUT statement such as:

220 INPUT /11, WA

Random-Access Files. Random-access files use a method of file access
in which the data can be stored or retrieved, in any order, as logical
units called data records. Each data record may consist of one or more
data items, but all the data records in a file must be the same length.
Where a record is written next does not depend on where a previous record
was written in the file. Similarly, which record is read next does not
depend on the position of the previously read record. In TEK SPS BASIC
V02, a random-access file is called a record I/0 (input/output) file.

The procedure for storing and retrieving data in a record I/O file
is first to create the file with a DEFINE statement, next to OPEN the file
FOR UPDATE, then to read or to write the data record with the record I/O
form of the WRITEU or READU commands, and finally, to close the file when
done.

The first step in using a record I/O file is to create a file of
sufficient length on the directory-structured device. The DEFINE command
does this and even makes it unnecessary for you to count the number of
words or bytes required. You need only to describe the contents of the

1-13

TEK SPS BASIC V02 Peripheral Drivers

record and to specify the number of records desired. The command determines
the size of the file by computing the number of bytes per data record and
multiplying this by the number of requested records. As the command creates
the file on the peripheral, the file is zeroed.

The contents of a data record are described with the keywords ARR,
IAR, VAR, and STG. ARR describes a floating-point array (each element is
four bytes long; !AR describes an integer array (each element is two bytes
long). The expression following ARR or !AR is the number of elements in
the array (not the dimension, but the~ of the array). VAR describes a
single, floating-point variable, while STG describes a string variable.
The expression following STG is the number of characters, and therefore
the number of bytes, in the string. (The keyword IAR is not supported by
DEFINE V02-01 .)

The total number of bytes in a logical record is calculated from the
keyword information. This record length is then multiplied by the number
of records requested in the expression following the keyword WITH. This
product determines the minimum size of the file. The actual size of the
file must be an integer number of blocks (256 words per block). Thus, a
file, whose calculated size is 600 bytes (300 words), is really two blocks
long.

For example, to define a record I/O file named "TEST.REC" which has
15 records, where each record contains a 512-element array, a variable,
and two strings of ten characters each, use:

DEFINE ..QSn:"TEST.REC" AS ARR 512,VA.R,STG 10,STG 10,WITH 15

After the file is DEFINEd, the next step is to OPEN the file. However,
instead of being OPENed for either READ or WRITE, a record I/O file is
OPENed FOR UPDATE. This allows both input and output operations and assigns
a peripheral logical unit number (PLUN) to the file. For example:

OPEN 111 AS DSn: "TEST. REC" FOR UPDATE

OPENs the example file as a record I/O file and assigns it PLUN 1.

Once OPENed FOR UPDATE, the file is accessed for output by the record
I/O form of the WRITEU command and it is accessed for input by the record

1-14

TEK SPS BASIC V@2 Peripheral Drivers

I/O form of the READU command. There is no need to close and reopen the
file to change from the output operation to the input operation. As with
files OPEN FOR READ or WRITE, record I/O files are referenced by PLUN, not
by file name.

The data in a record I/O file is written or read as a record, not as
individual data items. Since the records are accessed randomly, the record
number must be provided in the WRITEU and READO statements. The record
number, which can be an expression, is enclosed in angle brackets (<>) and
follows the PLUN. The data records are numbered from zero. So, assuming
AA is a 512-element array, to write the first record in the example file
"TEST.REC", OPENed as PLUN 1 use:

WRITEU #1<@>,AA,DA,HA$=1@,VA$=1@

and to write the tenth record use:

WRITEU #1<9>,AA,DA,HA$=1G,VA$:1a

Similarly, to read the first record use:

READU #1<G>,AA,DA,HA$=1@,VA$=1@

and to read the tenth record use:

READU #1<9>,AA,DA,HA$=1G,VA$=1@

WRITEU adds trailing blanks to strings that are shorter than the
length designated in the WRITEU statement. Thus, any trailing blanks should
be removed from strings by using the TRM function after they are input by
READU. For example:

HA$:TRM(HA$)\VA$:TRM(VA$)

When done reading and writing, the last step is to CLOSE the file.
For example:

CLOSE 111

This prevents further access to the file until it is reopened. It also
frees the PLUN for use by another file or device.

@ 1-15

TEK SPS BASIC V92 Peripheral Drivers

Random access means that a data record in a record I/0 file can be
written, read, or updated almost as easily as an array element can be
written, read, or updated. In fact, you may think of the record number as
being an index into the file and each data record as being an element of
the file. Thus, you can use a FOR/NEXT loop to skip through a record I/O
file the same way you can use a FOR/NEXT loop to skip through an array.
For instance, to read and update every third data record in the example
record I/O file, you could use:

109 OPEN #1 AS DSn: "TEST.REC" FOR UPDATE
110 FOR I=2 TO 14 STEP 3
120 READU $1<I>,AA,DA,HA$=10,VA$=19
130 GOSUB 1099\REM PROCESS DATA RECORD
140 WRITEU #1<I>,AA,DA,HA$=19,VA$=10
150 NEXT I
160 CLOSE #1

One at-a-time, this reads, processes, and rewrites the five data records
numbered 2,5,8,11, and 14. Each time the FOR/NEXT loop executes, the record
number (I) has a new value, causing a different record to be updated.

Storing and Retrieving Programs

Storing and retrieving programs is a fairly simple process since you
do not need to OPEN or CLOSE a file explicitly. As an example, suppose
that you wanted to store the following program on a directory-structured
device.

510 REM PROGRAM TO COMPUTE THE HYPOTENUSE OF RIGHT TRIANGLE
520 PRINT "INPUT LENGTH OF ONE KNOWN SIDE"
530 INPUT X
540 PRINT "INPUT LENGTH OF OTHER SIDE"
550 INPUT Y
560 LET Z:SQR(X*X+Y*Y)
570 PRINT "LENGTH OF HYPOTENUSE IS: II ,z
580 END

1-16 @

TEK SPS BASIC V02 Peripheral Drivers

Regular Program Files. If there are no other lines of program text
in memory, this program can be stored with this statement:

SAVE DSn:"HYPOT"

All the program text will be stored in a file called "HYPOT.BAS" on the
directory-structured device in drive n. Since no file name extension was
specified, an extension of .BAS is assumed by the SAVE command.

Now consider the case where there are other program lines in memory.
In this case, the preceding program could be stored with the following
statement:

SAVE DSn: 11 HY POT" , 5111, 580

which saves only lines 510 through 580 in the file.

If a program in memory is modified after it has been SAVEd, the new
version may be stored instead of the old version with the REPLACE command.
It operates similarly to the SAVE command except that it cancels the old
file (if there) before saving the new file. For example, if line 580 is
changed to a RETURN, the statement:

REPLACE DSn: "HYPOT"

cancels the old "HYPOT.BAS" file and saves all the text in memory in a new
file with the same name. (Notice that REPLACE also assumes the .BAS file
name extension.) If more lines of text are in memory than just those eight
lines,

REPLACE DSn: "HYPOT" ,510 ,580

saves only the lines of text between and including line 510 and line 580.
Because REPLACE cancels the old file, it can cause the same fragmentation
of the media that CANCEL does. (See the discussion, "Consolidating Free
Storage Space.")

1-17

TEK SPS BASIC V~2 Peripheral Drivers

To retrieve a program, you can use the OLD command. However, you must
realize that the OLD command deletes all existing text and variables in
memory before loading the program into memory. For example:

OLD DSn:"HYPOT"

loads all of the program entitled "HYPOT.BAS" from driven. Alternatively,
you could enter:

OLD DSn: 11 HYPOT 11 , 510

This would have the same effect as the preceeding example, but would also
begin program execution at line 51~ as soon as the program was loaded.

To load a program and delete all the previous text in memory but none
of the variables, use the CHAIN command. For example:

CHAIN DSn: "HYPOT"

deletes all text in memory and then loads the program 11 HYPOT.BAS", but it
does not delete any variables. As with the OLD command, you could also
enter:

CHAIN DSn: "HYPOT", 51'1

which would begin program execution at line 51a after loading the program.

Often you may want to load a program into memory without deleting all
text or variables. This can be done with the OVERLAY command. For example:

OVERLAY DSn: 11 HYPOT 11

loads the "HYPOT.BAS" program. No variables are deleted. No text in memory
is deleted unless it has the same line numbers as the new program to be
loaded, in which case those lines are overwritten.

Notice that OLD, CHAIN, and OVERLAY, which load programs stored by
the SAVE or REPLACE command, assume the .BAS file name extension if none
is specified.

1-18 @

TEK SPS BASIC V02 Peripheral Drivers

Fast-Overlay Files. As a program is entered, it is translated into
an internal form and stored in the controller memory. SAVE and REPLACE
convert the program back to the familiar BASIC language form to store it.
Thus, when the program is brought into memory by OLD, CHAIN, or OVERLAY,
time is required to translate the text back to the internal form. However,
for faster execution of overlaid programs, program segments can be stored
with the OVLSAV command and loaded with the OVLOAD command. OVLSAV stores
the already translated (internal form) text in a special program file
called a fast-overlay file. OVLOAD brings this fast-overlay file back into
memory.

For example, to store the previous program in a fast-overlay file use
the statement:

OVLSAV DSn:"HYPOT"

This stores all the program text in memory as a pretranslated fast-overlay
file named "HYPOT.BOL" (Notice that OVLSAV has a default file name extension
of .BOL.) If more lines of text are in memory than those eight, the lines
to be stored can be specified as with SAVE and REPLACE. For example:

OVLSAV DSn:"HYPOT",510,580

saves only the lines between and including line 510 and line 580.

To bring a fast-overlay file back into memory (usually during a running
program), use a statement like:

100 OVLOAD DSn: "HYPOT"

This loads the fast-overlay file "HYPOT .BOL". (OVLOAD also uses the default
file name extension .BOL when none is specified.)

Before the fast-overlay file is loaded, any text in memory with line
numbers in the range of the line numbers in the fast overlay file is
deleted, but no variables are deleted. In this example, any lines in memory
with line numbers between and including line 510 and line 580 are deleted.
Also, when the files are loaded, there must be enough free memory available
for one input/output buffer, the pretranslated text, and any other information
about the text from the file. (The size of the I/0 buffer depends on the
device used to store the file. See the separate discussion on a particular
device driver for the size of the I/0 buffer for that device.)

1-19

TEK SPS BASIC V02 Peripheral Drivers

Loading and Releasing SPS Modules

TEK SPS BASIC nonresident commands and drivers are stored in files
that have the reserved file name extension, .SPS. These SPS modules are
explicitly brought into controller memory from a peripheral device with
the LOAD command. (Nonresident commands may also be autoloaded, but only
from the system device; drivers are never autoloaded.) When a module is
LOADed, it remains resident in memory until it is explicitly deleted from
memory by the RELEASE command or until the system software is deleted from
memory. (Autoloaded commands are autoreleased if memory space is required
for another autoloaded command, data, or an explicitly loaded module.)
Both the LOAD and RELEASE commands operate only on files with the .SPS
extension and this extension is assumed if the .SPS extension is omitted
from the file name specification. For example:

LOAD DSn: "VM","OPRINT"

loads the two SPS modules, "VM.SPS" and "OPRINT.SPS" while,

RELEASE "VM","OPRINT"

deletes them from controller memory.

1-20

TEK SPS BASIC V02 Peripheral Drivers

DX Floppy Disk Driver

Attributes

Driver name: DX.SPS

Device name: DX

Device type: Directory-structured

Load module name: SPSDX.LDA

Maximum number of drives: 2 (DX@ and DX1)

Default number of directory segments: 4

Burrer size: 256 words

Maximum number of blocks: 494 (block 0 to block 493)

Medium formatting: Soft-sectored factory formatted

Description

The DX Floppy Disk driver is intended for use with the TEKTRONIX CP115
Dual Drive Flexible Disk unit (Tektronix nomenclature for a Data Systems
Design DSO 210 Diskette Memory System), the TEKTRONIX CP112/CP114 Floppy
Disk unit (Tektronix nomenclature for the DEC RX11/RXV11 Floppy Disk
system), or a similar device. (The CP112 and CP114 are identical except
for their interfaces. The CP112 connects to controllers using UNIBUS
architecture, while the CP114 connects to controllers using Q-BUS
architecture.)

The TEKTRONIX CP115 or CP112/CP114 is a random-access, mass storage
device which contains two floppy-disk drives. These drives use preformatted
IBM-compatible, flexible diskettes. The diskette can store 256,256 8-bit
bytes of information on one side. The outer portion of the recording surface
is divided into 77 concentric cylinders (circular "tracks") numbered 0
through 76; 0 is the inner track. Each track is divided into 26 sectors,
numbered 1 through 26. Unlike the "hard-sectored" diskettes which contain

@ 1-21

TEK SPS BASIC V02 Peripheral Drivers

a physical hole at the start of each sector, these diskettes use one hole
as an index or reference mark for the sectoring. The rest of the surface
is "soft-sectored" by a software preformatting routine.

Each sector on the diskette contains two fields: a header field and
a data field. The header contains information which indicates the beginning
of the header, the track address, the sector address, and a header CRC
(Cyclic Redundancy Check). The data field contains a "beginning of data"
mark, a 128-byte data space, and a CRC character. For more information on
this format, refer to the CP112, CP114, or CP115 manual.

Using the Floppy Disk Unit

Preliminary Instructions. Before using the floppy disk device, check
to ensure that it is properly cabled to the system. Also be sure that its
power supply is configured for the correct line voltage. (Since the
CP112/CP114 do not have power switches, the master control switch for the
system controls power to either unit.) In most cases, a Tektronix field
engineer will be on site to properly cable and install the system. If you
must make changes in the system cabling, consult your field engineer.

Inserting and Removing Diskettes. Each drive is accessed by pressing
the pushbutton located on the door of the respective drive. This opens the
spring loaded door to the drive. Insert the diskette with the read/write
head aperture (Fig. 1-1) facing the drive. Once the diskette has been
inserted, close the door to that drive. This will cause the drive spindle
to mesh with the registration hole on the diskette and the diskette will
now accelerate to a full speed.

To remove a diskette from its drive, open the door to that drive and
pull out the diskette. Opening the door disengages the drive spindle so
that the diskette may be removed immediately without damage to the spindle
or diskette.

~
Do not open the door to a drive when that
drive is being accessed. This can result in
data being incorrectly recorded, which causes
a CRC error when the sector is being read.

1-22

TEK SPS BASIC V~2 Peripheral Drivers

D

REGISTRATION
HOLE

INDEX
HOLE

READ/WRITE HEAD
APERTURE

Fig. 1.1. Top view of a floppy disk.

2740-01

Care and Handling of Diskettes. To prolong the life of diskettes and
prevent data read or write errors, the following precautions should be
followed:

1. Do not write on the envelope containing the diskette. Write on a
label prior to affixing it to the diskette.

2. Do not attach paper clips to the diskette or in any way disfigure
it.

3. Do not touch the diskette surface or attempt to clean it.

4. Avoid subjecting the diskette to magnetic fields (such as those
found near magnetic tools, terminals, or TV monitors).

5. Avoid exposing the diskette to dust, dirt, excessive heat, or
sunlight.

@ 1-23

TEK SPS BASIC V02 Peripheral Drivers

6. Always keep diskettes in their envelopes and store them in a
clean, dry place kept at moderate temperature.

How Information is Stored on the Disk

In addition to serving as a medium for loading system software (TEK
SPS BASIC operating system software) the device can be used for storing
and retrieving BASIC programs and data. The floppy disk is a file-structured
device with its own directory. As each new file is stored on the disk, the
directory is updated to indicate the name and location of the new file.
When a file is canceled, its name is removed from the directory.

The floppy disk has 77 tracks of 26 sectors each. Each sector has a
header followed by a 128 byte (64 16-bit word) data field. The numbering
of the tracks is from 0 through 76, 0 being the inner track.

When a program or data file is stored on the floppy, it occupies an
integer number of blocks -- a block being four sectors on the diskette.
Due to the slow speed at which the diskette turns, it is not practical to
record on successive adjacent sectors of the diskette. If internal
computations caused a delay in writing to the next sector, it would take
another entire revolution before the next sector could be accessed. For
this reason, every odd sector of track 1 is written into until they are
filled. Next, the even sectors of track 1 are written into until they are
filled. When all sectors of track 1 have been recorded, track 2 is written
into, but the sector number will be displaced six from the last recorded
sector on the previous track. Track 0 is not used. This is done to make
the diskette IBM and ANSI compatible.

1-24

TEK SPS BASIC V02 Peripheral Drivers

DK Hard Disk Driver

Attributes

Driver name: DK.SPS

Device name: DK

Device type: Directory-structured

Load module name: SPSDK.LDA

Maximum number of drives: 8 (DK0 to DK7)

Default number of directory segments: 8

Buffer size: 256 words

Maximum number of blocks: 4800 (block 0 to block 4799)

Medium formatting: Factory formatted or with FORMAT command

Supports DMA (direct aemory access)

Description

The DK Hard Disk driver is intended for use with the TEKTRONIX CP110
DISK DRIVE (Tektronix nomenclature for the DEC RK11-DE Disk Driver) or a
similar device. The DK driver can support instrument configurations with
up to eight disk drives, all controlled by a single disk controller card.

The TEKTRONIX CP110 is a mass storage device consisting of a control
module and a moving-head disk drive. It uses removable disk cartridges,
similar to the IBM 2315, but with 12 sectors and twice the bit density.
Each disk can hold over 2.4 million bytes of data. Data is stored on both
sides of the disk by a pair of movable heads. These are always positioned
over the opposing tracks simultaneously.

Each side of the disk contains 203 tracks and each track is divided
into 12 sectors capable of storing 256 words (512 8-bit bytes) of information.

1-25

TEK SPS BASIC V02 Peripheral Drivers

Average total access time is 70 milliseconds. However, on systems containing
more than one disk drive, it may be possible to devise BASIC routines that
increase the efficiency.

Each disk sector consists of 13 words of preamble terminating in a
sync bit. This is followed by a one-word header, a 256-word data space,
and a one-word checksum. The sector is terminated by one word of postamble.
A sector pulse signals the beginning of each sector. An index pulse indicates
the last sector, signifying that the next sector following is sector 0.
(More information on this subject can be found in the CP110 manual and in
the PDP-11 Peripherals Handbook from Digital Equipment Corporation).

Using the Hard Disk Unit

Preliminary Instructions. Before using the hard disk device, check
to ensure that it is properly cabled to the system. Also, be sure that its
power supply is configured for the correct line voltage. (Since the CP110
does not have its own power switch, the master control switch for the
system controls power to the unit.) In most cases, a Tektronix field
engineer will be on site to properly cable and install the system. If you
must make changes to the system cabling, consult your field engineer.

Controls and Indicators. The CP110 DISK DRIVE includes the following
controls and indicators.

RUN/LOAD
(rocker switch)

Placing this switch in the Run position locks the
drive front door, accelerates the disk to full
speed (1500 rpm), and loads the read/write heads.
Then, the RDY indicator is lit.

Placing this switch in the LOAD position unloads
the read/write heads, stops the disk rotation,
and unlocks the drive front door. Then, the LOAD
indicator is lit.

1-26

WT PROT
(rocker switch)

PVR
(indicator)

RDY
(indicator)

OB CYL
(indicator)

FAULT
(indicator)

WT PROT
(indicator)

LOAD
(indicator)

WT
(indicator)

RD
(indicator)

@

TEK SPS BASIC V02 Peripheral Drivers

This momentary-contact switch alternately prevents
or allows a write operation on the disk.
When the disk is write-protected, the WT PROT
indicator is lit and the FAULT indicator is
extinguished (if previously lit). When the disk
is not write-protected, the WT PROT indicator is
not lit.

Lights when the disk drive is powered up.

Lights when the disk is rotating at full speed
and the heads are loaded. Also indicates that all
interlocks are safe and that a seek, read, or
write operation can be performed. It is
extinguished when the RUN/LOAD switch is set to
the LOAD position.

Lights when the drive is in the Ready condition.
(A seek or restore operation is not being
performed and the read/write heads are positioned
and settled.) It is extinguished during a seek or
restore operation.

Indicates a hardware error on the CP110. (See the
CP110 manual.) It is extinguished when the WT PROT
switch is pressed or when the drive is cycled
through a RUN/LOAD sequence.

Lights when the disk is write-protected.

Lights when the read/write heads are fully
retracted and the spindle has stopped rotating.
It is extinguished when the RUN/LOAD switch is
set to the RUN position.

Lights during a write operation.

Lights during a read operation.

1-27

TEK SPS BASIC V02 Peripheral Drivers

Loading the Disk. The procedure for loading the disk is as follows:

1. Set the RUN/LOAD switch on the disk drive(s) to LOAD and observe
that the LOAD indicator lights.

If the LOAD indicator is not lit, the
drive front door is locked. In this case,
do not attempt to force the door open.

2. Open the front door of the drive and gently insert the disk
cartridge fully into the drive mechanism. (The labeled side of the disk
should be facing you.) Do not twist or force the cartridge during

insertion.

3. Close the door of the drive and set the RUN/LOAD switch to RUN.
When the RDY and ON CYL indicators are lit, the drive is ready to perform
a seek, read, or write operation.

Removing the Disk. The procedure for unloading the disk is as follows:

1. Set the RUN/LOAD switch to LOAD and observe that the RDY indicator
goes out. After about 30 seconds, the LOAD indicator will light, signifying
that the drive spindle has stopped rotating.

2. Open the front door to the disk drive and gently withdraw the
disk cartridge.

3. Close the door to prevent entry of dust or dirt.

Care and Handling of Disk cartridges. To obtain maximum performance
and reliability from the disk drive and disk cartridges, the following
precautions should be observed.

1. Store cartridges in a clean, dry place away from direct sunlight
and excessive heat. Store disks on edge or in stacks of three or four.

2. Unless you are working in a dust free environment, it is recommended
that disks be stored in plastic bags. (Since there is only 0.0001" clearance
between the disk platter and the read/write head, dust, dirt, hair, or
fingerprints should never be allowed to contaminate a disk or the disk
drive.)

1-28 @

TEK SPS BASIC V02 Peripheral Drivers

3. Place only stiff cardboard or plastic labels in the molded frame
at the front edge of the disk cartridge; do not use any adhesives. Labels
placed on any other part of the cartridge may interfere with the drive
operation or introduce contamination into the drive or the interior of the
cartridge.

4. Allow the temperature of the disk cartridge to become stabilized
with the room temperature before using the cartridge.

5. Keep the spindle hub clean and free from nicks and burrs to ensure
reliable cartridge operation. Because the hub is slightly magnetic, do not
expose it to metal chips that could adhere to the mounting surface.
Periodically inspect the hub on the bottom of the cartridge for dirt, metal
chips, plastic chips, etc.

6. If during normal operation, you hear a sustained tingling,
scratching, or rumbling sound (not to be confused with spindle grounding
brushes) shut down the disk drive immediately. Remove the disk cartridge
and inspect the read/write heads for damage or excessive dirt. If necessary,
clean or replace the heads. Do not reuse the cartridge without first
checking for surface damage.

7. Never expose a disk cartridge to strong magnetic fields, such as
those surrounding a terminal or TV monitor. This is to prevent information
from being erased from the disk.

8. Disk cartridges should be disassembled and cleaned every six
months, but more frequent servicing may be required under heavy use. If
possible, contact a professional disk cleaning service. In addition to
cleaning the cartridge and platter, they will check the bearings and platter
for wear and conformance to specified tolerances. If you must clean the
disk yourself, carefully disassemble it in a clean room, taking care not
to touch the platter with your fingers. Carefully wipe the platter with
TEXPADS (Tektronix part no. 006-2398-00, one per order); this is special
tissue treated with 99% isopropyl alcohol. After cleaning the platter,
reassemble the disk cartridge.

@ 1-29

TEK SPS BASIC V~2 Peripheral Drivers

How Inforaation is Stored on the Disk

In addition to serving as a medium for loading system software (TEK
SPS BASIC operating system software), the CP110 can be used for storing
and retrieving BASIC programs and data. The hard disk is a file-structured
device with its own directory. As each new file is stored on the disk, the
directory is updated to indicate the name and location of the new file.
When a file is canceled, its name is removed from the directory.

The hard disk has 203 tracks on each side, and each track contains
12 sectors capable of storing 512 bytes (256 16-bit words). Each sector
contains 13 words of preamble (terminating in a sync bit), a one-word
header, a 256-word data space, and a one-word checksum. The sector is
terminated in a one-word postamble. The numbering scheme of the tracks is
from 0 to 202, 0 being the inner track.

The recording scheme for the hard disk is fairly straightforward.
Data to be written out to the disk is first stored in a 256-word memory
buffer. Thus a block of data on the disk corresponds to exactly one memory
buffer or one disk sector. The Absolute Loader is stored beginning at the
first sector of track 0.

Because of the high speed at which the disk revolves (1500 rpm), data
is recorded sequentially on adjacent sectors of the same track. Normally,
data spanning more than one sector can be recorded during a single revolution
of the disk. However, occasionally internal computations slow down the
data transfer to where adjacent sectors must be recorded on successive
revolutions of the disk. In either case, when the upper track (the track
on the upper side of the platter) has been completely filled, the track
below it will be recorded. When this lower track has been completely filled,
the data will be recorded on the next upper track.

1-30 @

TEK SPS BASIC V02 Peripheral Drivers

DL Hard Disk Driver

Attributes

Driver name: DL.SPS

Device name: DL

Device type: Directory-structured

Load module name: SPSDL.LDA

Maximum number of drives: 4 (DL0 to DL3)

Default number of directory segments: 16

Buffer size: 256 words

Maximum number of blocks: 10240 (block 0 to block 10239)

Medium for•atting: Factory formatted (cannot be reformatted by software)

Supports DHA (direct memory access)

Description

The DL Hard Disk driver is intended for use with the DEC RL01 disk
drive or a similar device. The DL driver can support instrument configurations
with up to four RL01 disk drives, all controlled by a single disk controller
card.

NOTE

The DL Hard Disk driver is not supported
by TEK SPS BASIC V02-01.

The RL01 is a mass storage device consisting of a control module and
a moving-head disk drive. It uses removable top-loading disk cartridges.
Each disk can hold over five million bytes of data. Data is stored on both
sides of the disk by a pair of movable heads. These are always positioned
over opposing tracks simultaneously.

1-31

TEK SPS BASIC V02 Peripheral Drivers

Each side of the disk contains 256 tracks and each track is divided
into 40 sectors capable of storing 128 words (256 8-bit bytes) of information.
Average total access time is 55 milliseconds. However, on systems containing
more than one disk drive, it may be possible to devise BASIC routines that
increase the efficiency.

TEK SPS BASIC V02 and the Digital Equipment Corp. RT-11 Operating
System use the RL01 disk as if there were 20 256-word blocks per track
instead of using the 40 smaller 128-word data spaces separately. Greater
transfer efficiencies and driver compatabilities are achieved in this
manner.

Using the Disk Unit

Preliminary Instructions. Before using the RL01 Disk Drive, check to
ensure that it is properly cabled to the system. Also, be sure that its
power supply is configured for the correct line voltage. In most cases, a
Tektronix field engineer will be on site to properly cable and install the
system. If you must make changes to the system cabling, consult your field
engineer.

Controls and Indicators. The RL01 disk drive includes the following
controls and indicators.

LOAD
(push-button)

The LOAD button lights to indicate that the
cartridge may be loaded or the spindle is stopped.

Pressing the LOAD button locks the drive front
door, accelerates the disk to full speed (2500 rpm),
and loads the read/write heads. Then, the READY
indicator is lit.

Pressing the LOAD button again (moving it to the
out position) unloads the read/write heads, stops
the disk rotation, and unlocks the drive door. The
LOAD button light is turned off while the disk is
slowing down and lights again when the disk has
stopped and the drive door is unlocked.

1-32 @

READY
(indicator)

FAULT
(indicator)

WRITE PROT
(push-button)

TEK SPS BASIC V~2 Peripheral Drivers

The READY indicator lights when the disk is
rotating at full speed and the heads are loaded.
When lit, it also indicates that all interlocks are
safe and that a seek, read, or write operation can
be performed. It is extinguished when the LOAD
switch is set to the LOAD position.

When lit, FAULT indicates a hardware error on the
RL01. (Refer to the DEC RL01 Disk Subsystem User's
Guide.) It is extinguished when the WRITE PROT
switch is pressed or when the drive is cycled
through a LOAD sequence.

This push-button switch alternately prevents or
allows a write operation on the disk. When the
disk is write-protected, the WRITE PROT indicator
is lit and the FAULT indicator is extinguished
(if previously lit). When the disk is not write
protected, the WRIT PROT indicator is not lit.

Loading Procedure. The RL01 must be extended from the rack to begin
this operation.

1. Raise the cartridge access door (power on).

2. Prepare an RL01 cartridge for loading as follows:

a. Lift the cartridge by grasping the top cover handle
with the right hand.

b. Support the cartridge with the left hand holding the
protection cover.

c. Lower the top cover handle and push the handle slide
to the left with the thumb of the right hand. Again,
raise the handle to its full upright position to
release the protection cover.

d. Lift the cartridge from the protection cover and
carefully seat it on the drive spindle with the
top cover handle recess facing the rear of the
machine.

1-33

TEK SPS BASIC V~2 Peripheral Drivers

e. Carefully rotate the top cover handle a few degrees
clockwise and counterclockwise to ensure that the
spindle locating arms are seated properly within the
cartridge housing detent slots.

Use care when seating the RL01 cartridge
on the drive spindle. Rough handling of
the cartridge can cause damage to the
spindle/cartridge interface which, in
turn, can cause excessive cartridge runout
and positioning errors.

f. Gently lower the top cover handle to a horizontal
position to engage the cartridge on the drive
spindle.

g. Place the protection cover on top of the cartridge.

h. Close the cartridge access door.

Un1oading Procedure.

1. Power down the RL01 disk drive as follows:

a. Press the RUN/STOP switch and wait for the LOAD
indicator to light.

b. Raise the cartridge access door.

2. Remove the RL01 cartridge as follows:

a. Remove the cartridge protection cover and hold the cover
in the left hand.

b. Push the top cover handle slide to the left before
raising the handle.

c. Raise the top cover handle to a full upright position to
release the cartridge from the drive spindle.

d. Carefully lift the cartridge up and out of the drive
and place it in the protection cover.

1-34 @

TEK SPS BASIC V02 Peripheral Drivers

e. Lower the top cover handle to the horizontal position
to lock the protection cover in place.

Care and Handling of Disk Cartridges. To obtain maximum performance
and reliability from the disk drive and cartridges, the following precautions
should be observed:

1. Store cartridges in a clean, dry place away from direct
sunlight and excessive heat.

RL01 disk cartridges must never be stacked
on top of each other.

2. Keep cartridges clean.

3. Keep the spindle hub clean and free from nicks and burrs to
ensure reliable cartridge operation.

4. Use cartridges at computer room temperature only.

5. Manipulate cartridges by the top cover handle only.

6. When the protection cover is removed (for loading), do not
touch disk surfaces, hub center cone, or surfaces.

1. When the protection cover is removed (for loading), interior
metal hub surfaces must be clean.

8. When the protection cover is removed (for loading), ensure
that the disks are not moved or rotated, since improper disk motion may
generate plastic particles which can result in disk damage.

9. When loading or unloading, insert and remove cartridges gently.
In addition, do not use excessive force when manipulating the top cover
handle.

10. If, during operation, a cartridge makes rumbling or continuous
tinging sounds, discontinue use of the cartridge immediately. Use of a
damaged cartridge on other drives may damage the drives, resulting in
additional damage to all other cartridges used thereafter.

1-35

TEK SPS BASIC V02 Peripheral Drivers

11. Each cartridge should be cleaned professionally every six
months and/or whenever a specific cartridge is not operating properly.

12. Never expose a disk cartridge to strong magnetic fields, such
as those surrounding a terminal or TV monitor. This is to prevent information
from being erased from the disk.

How Information is Stored on the Disk

In addition to serving as a medium for loading system software (TEK
SPS BASIC operating system software) the RL01 can be used for storing and
retrieving BASIC programs and data. The hard disk is a file-structured
device with its own directory. As each new file is stored on the disk, the
directory is updated to indicate the name and location of the new file.
When a file is canceled, its name is removed from the directory.

The disk has 256 tracks on each side, and each track contains 40
sectors capable of storing 256 bytes (128 16-bit words). Each sector
contains 3 words of preamble, a 3-word header, a 1-word postamble, a 3-word
preamble to the data, and 128 words of data. The sector is terminated by
a data CRC word and a 1-word postamble. The numbering scheme of the cylinders
is 0 to 255, 0 being the outer track.

The recording scheme for the disk is fairly straightforward. Files
are stored in an integer number of blocks of data. (One block is 256 16-bit
words.) Data to be written to the disk is first stored in a 256-word memory
buffer. Thus a block of data on the disk corresponds to exactly one memory
buffer or two disk sectors. Block 0 corresponds to sectors 0 and 1 of track
0, surface 0. The Absolute Loader is stored beginning at the first sector
of track 0.

Because of the high speed at which the disk revolves (2500 rpm), data
is recorded sequentially on adjacent sectors of the same track. Normally,
data spanning more than one sector can be recorded during a single revolution
of the disk. However, occasionally internal computations slow down the
data transfer to where adjacent sectors must be recorded on successive
revolutions of the disk. In either case, when the upper track (the track
on the upper side of the platter) has been completely filled, the track
below it will be recorded. When this lower track has been completely filled,
the data will be recorded on the next upper track.

1-36

TEK SPS BASIC V~2 Peripheral Drivers

VM Virtual-Me•ory Driver

Attributes

Driver name: VM.SPS

Device name: VM

Device type: Directory-structured

Default number of directory segments: 4

Buffer size: 256 words

Maximum nu•ber of blocks: Depends on the amount of extended
memory used as a storage peripheral (4 blocks per 1K words)

Description

The Virtual-Memory driver treats extended memory as a peripheral
device for storing and retrieving files. This driver is intended for use
with any DEC-compatible core or semiconductor memory that is used as an
extension of the standard 28K controller (minicomputer) memory. In order
for the VM driver to be useful, the system must include DEC KT11 Memory
Management hardware. More information on Memory Management can be found
in the PDP-11 Processor Handbook published by Digital Equipment Corporation.

1-37

TEK SPS BASIC V02 Peripheral Drivers

In standard memory systems, any extended memory can be used only as
a storage peripheral; none can be used for program data.

In general, the VM driver can store or retrieve data at a rate two
to ten times faster than the DK driver. However, this is primarily a
function of the hardware and thus the improvement in speed varies greatly,
depending upon certain conditions. For example, semiconductor memory
generally operates considerably faster than core memory, and even the type
of semiconductor memory affects speed. Also, the time required to store
or retrieve data from the disk varies greatly depending upon the location
of the movable disk head in relation to the block of data to be transferred.
Thus, it is difficult to give a good "rule of thumb" for the speed advantages
of using extended memory as a peripheral device. Other attributes of
extended memory are low maintenance, high reliability, and silent operation.

Probably the greatest single disadvantage of using extended memory
as a storage peripheral is that data cannot be stored off-line as is the
case with a cartridge disk, floppy disk, or magtape reel. In fact, with
semiconductor-based extended memory, the data is lost when power is removed
from the controller (unless battery backup is used). For these reasons,
treating extended memory as a peripheral is primarily useful when you want
to quickly store data from an instrument; the data can then be transferred
to magtape or a cartridge disk if long-term storage is desired.

How Data is Stored

The extended memory, when used as a peripheral, is a file-structured
device with its own directory. As a new file is stored, the directory is
updated to record the name and location of the new file. When a file is
canceled, its name is removed from the directory.

The recording scheme is straightforward. Data to be written to the
extended memory is first stored in a 256-word memory buffer. Then it is
written to the extended memory in 256-word blocks. Each 1K of extended
memory can hold two blocks of data.

The VM driver assigns block number 6 (the beginning block for the
device directory) as the first block in extended memory. This makes block
numbers 0 through 5 invalid for the VM driver. Since there is no block 0,
the VM driver cannot permit an absolute loader to be installed, so system
software cannot be booted from extended memory.

1-38 @

TEK SPS BASIC V02 Peripheral Drivers

SECTION 2

SERIAL-ACCESS DEVICE DRIVERS

General Operations

Introduction

A serial-access device is a file-structured peripheral on which the
files are stored sequentially with the file name at the beginning of the
file rather than in a directory. The driver for a specific device accesses
a file by searching the medium linearly (either forward or backward),
looking for the file name. Examples of serial-access peripherals are magtape
and cassette tape devices.

A file is written to a serial-access device in an integer number of
data buffers. (The size of the data buffer depends on the device driver.
See the separate discussions on each device driver for the buffer size for
that peripheral.) Each new file is written at the logical end of the medium,
after the last file on the medium.

In the discussions of the peripheral operations that follow, the

symbol SAn. is used to represent the device name and drive number of any
serial-access device supported by a TEK SPS BASIC V02 peripheral driver.
When entering any of the examples, be sure to substitute the name (and the
drive number when appropriate) of a specific serial-access device for the
SAn symbol (e.g., MT4, CT1, etc.). The descriptions of each of the TEK SPS
BASIC V02 serial-access device drivers that appear at the end of this
section include the device name and the number of drives the driver supports.

As each peripheral operation is presented, the appropriate TEK SPS
BASIC V02 commands are briefly mentioned. For a complete discussion of
each command, see Section 4 of the TEK SPS BASIC V02 System Software manual.

@ 2-1

TEK SPS BASIC V02 Peripheral Drivers

Loading and Releasing the Device Driver

Before any operations can be performed on a particular peripheral
device, the driver for that device must be resident in controller memory.
Assuming that a device driver named "SA.SPS" is stored on the system device,
the statement:

LOAD "SA.SPS"

or simply

LOAD "SA"

brings the specified driver into memory. (Notice that a .SPS extension is
assumed by the LOAD command.) If at some later time you wanted to delete
this driver to free memory space, you could enter:

RELEASE "SA"

All drivers, except the system device driver and the keyboard driver, are
loaded and released in this manner. In the discussions that follow, it is
assumed that any required drivers are in memory when the examples execute.

Initializing the Medium

Before using a serial-access medium for the very first time, initialize
it with the ZERO command. For example:

ZERO~:

This writes an end-of-tape marker at the beginning of the serial-access
device medium in drive n.

Listing the Files Stored on the Device

The DIRectory command lists the files stored on a file-structured
device. For a serial-access device, DIR firs~ prints the device and drive

2-2

TEK SPS BASIC V02 Peripheral Drivers

number. Then it lists the file name and the extension plus the creation
date for each file on the device. For example:

DIR SAn:

displays the directory on the terminal.

Subsets of the directory can be listed by using the wild card
specification (*) in the file name in the DIR statement. For example:

DIR ..s.An.: "*.BAS"

lists all the files on the device that have a .BAS extension, while:

DIR ..s.An.:"PATCH.*"

lists all the patch files stored on the device.

Instead of a file name, an "*EMPTY" entry may appear in the directory.
The number associated with it is the number of unused blocks in that
position on the device. The presence of empty areas in the middle of a
directory indicates that the file previously occupying that position has
been CANCELed. On a serial-access device, there is no way to retrieve the
space occupied by a CANCELed file unless the medium is ZEROed from that
file, forward. See "Canceling Files."

The /F or /R Switch

For a serial-tape device, many commands that specify a source file
name may include a forward or reverse switch (/For /R). The switch specifies
the direction of the tape movement when searching for the source file. If
the switch is omitted, the tape is rewound before a forward search for the
file begins. If the wild card specification (*) is allowed and used in the
file name, the switch is ignored.

The peripheral commands that allow the /F or /R switch are:

CANCEL
CHAIN
COPY
LOAD

2-3

TEK SPS BASIC V02 Peripheral Drivers

OLD
OPEN
OVERLAY
OVLOAD
REPLACE
ZERO

An example of using the /R switch is shown in the "Copying Files"
discussion. Examples of using the /F or /R switch with other operations
were omitted because the concept is simple and the information would be
redundant.

Copying Files

Copies of files can be transferred to or from a file-structured device
with the COPY command. For example:

COPY ..sAn,:"FILE.BAS" TO ..sAm:"FILE.BAS"

transfers a copy of the file "FILE.BAS" on one serial-access device to
another. The arguments specified on the left of the TO are the source
device and file name while the arguments on the right of the TO are the
target device and file name. In this example, the source and destination
file names were kept the same. However, it is possible to change the file
name in the process merely by specifying a new file name in the target
argument. Also, if the target is not a file-structured device, no destination
file name is required. For example:

COPY .,SAn: "ASCII" TO KB:

displays the contents of the ASCII file "ASCII" on the terminal.

The wild card specification can be used in place of the file name or
extension to COPY more than one file. For example:

COPY .sAn,:"*.DAT" TO DX1: 11 *.DAT"

transfers a copy of all the files with a .DAT extension on the serial
access device to a floppy disk.

2-4

TEK SPS BASIC V~2 Peripheral Drivers

When COPYing to a serial-tape device, the forward or reverse switches
(IF or /R) may be used to stipulate the direction of the tape movement
when searching for the source file. If the switch is omitted, the tape is
rewound before a forward search for the file is begun. For example:

COPY .sfili:/R"TEST.DAT" TO .sAm:"BACKUP.DAT"

causes the tape to be searched in a reverse direction. (Notice that the
original and the copy will have different file names.) If the switch is
used with the wild card specification, the switch is ignored.

Canceling Files

Selected files are eliminated from the device with the CANCEL command.
For example:

CANCEL .sAn:"SHOOT.BAS","BASIC.DAT"

cancels two files on the same device. The first canceled file is a BASIC
program named "SHOOT.BAS"; the second canceled file is a data file named
"BASIC.DAT". No default file name extension is provided with the CANCEL
command.

When a file is CANCELed on a serial-access device, the file name is
changed to "*EMPTY", but no space is reclaimed. Storage space can be
regained by ZEROing all or part of the device. For example:

ZERO .sAn:

effectively removes all the files from the serial-access device in drive
n by writing an end-of-tape marker at the beginning of the medium. ZERO
can also be used to remove all the files from a specified file to the end
of the medium. For example:

ZERO ..sAn.:"TEST.DAT"

logically deletes the file "TEST .DAT" and any files following that file
by writing an end-of-tape marker at the beginning of "TEST.DAT".

2-5

TEK SPS BASIC V02 Peripheral Drivers

Be careful when specifying the device
argument for the ZERO command. Once a
device has been ZEROed, any data stored
on it is effectively lost.

Rewinding a Serial-Tape Device

A serial-access device can be returned to the beginning of the tape
with the REWIND command. For example:

REWIND .sAn.:

rewinds the serial-tape device in drive n.

Storing and Retrieving Data

Sequential-Access Files. Sequential-access files use a method of file
access in which the data is stored serially from the beginning of the file
and is retrieved in the same order in which it was stored. The general
procedure for storing or retrieving data in sequential access files is to
first OPEN a file on the peripheral medium, next to perform the desired
operation (READ, WRITE, PRINT, INPUT, READU, or WRITEU), and finally to
CLOSE the file. The WRITE and READ commands store and retrieve formatted
binary or ASCII data. The PRINT and INPUT commands store and retrieve ASCII
strings delimited by carriage returns. The READU and WRITEU store and
retrieve unformatted binary or ASCII data.

The OPEN command allows access to a new file for storing data or to
an existing file for retrieving data. It assigns a peripheral logical unit
number (PLUN) to a specified file on the selected device. It also checks
that the operation is a legal one and performs any initialization routines.
After a file is OPENed, it is addressed by its PLUN not its file name.

A sequential-access file is OPENed either FOR WRITE or FOR READ.
Opening a file FOR WRITE creates a new file in which data is stored. Opening
a file FOR READ allows the previously stored data to be retrieved. Only
one file may be OPEN per each drive of a serial-access device at any one
time.

2-6

TEK SPS BASIC V~2 Peripheral Drivers

If you are OPENing a file FOR WRITE, you may use the WITH option.
This specifies the number of memory buffers to be used to increase the
throughput of the data. (The size of the memory buffer depends on the
output device. See the separate discussion on each device driver for the
buffer size for that device.) If the WITH option is not specified, just
one of these buffers will be used. Increasing the number of buffers often
increases the transfer rate, but generally not in direct proportion to the
number of buffers specified. In fact, there is a point at which increasing
the number of buffers actually decreases throughput, due to lack of memory
space remaining. The optimum number of buffers largely depends upon the
application -- as your own experimentation will verify.

The WITH option does not apply to an OPEN FOR READ. (The INTO option
is not allowed with serial-access devices.)

After execution of the OPEN command, you can now store or retrieve
data. Data is stored by a WRITE, PRINT, or WRITEU statement. Data stored
by WRITE is retrieved by the READ command; PRINT, by the INPUT command;
and WRITEU, by the READU command. Binary data are stored and retrieved
more effeciently with the WRITE and READ commands, while ASCII strings are
stored and retrieved more efficiently with the PRINT and INPUT commands.
WRITEU and READU write and read files compatible with DEC RT-11 FORTRAN.

After completion of the WRITE, READ, PRINT, INPUT, WRITEU, OR READU
operations, the file should be closed. The CLOSE command closes the file
to further input or output. It also frees the PLUN for use by another file
or device and releases the memory buffers.

Once a sequential-access file has been CLOSEd FOR WRITE, it can no
longer be written into. An OPEN FOR READ command is the only legal OPEN
command for that file.

WRITE and READ. The pair of commands used most for data file output
and input are WRITE and READ. WRITE was designed to store both numeric and
string data in a file; READ was designed to readily retrieve both types
of data from the file. With the WRITE/READ pair it is particularly easy
to store and retrieve array and waveform data. As an example, consider

this partial program which first acquires and stores ten waveforms and
then reads and processes them one by one.

2-7

TEK SPS BASIC V02 Peripheral Drivers

With the waveform declared by:

100 WAVEFORM WA IS AA(511),DA,HA$,VA$

the first step in storing the waveform data is to OPEN a file FOR WRITE.
For example:

110 OPEN #1 AS SAn:"TEST.DAT" FOR WRITE

creates a sequential-access file named "TEST.DAT" and assigns it a PLUN
of 1. Since the WITH option is not used, only one memory buffer will be
used. To increase throughput the following statement could be used instead:

110 OPEN 111 AS .sAD.: "TEST .DAT" FOR WRITE WITH 2

This alternate line 110 provides two memory buffers.

The second step in storing a waveform is to write it to the file. A
simple statement like:

WRITE #1,WA

writes all four components of waveform WA to the file known as PLUN 1.
Since ten waveforms are to be stored, the WRITE statement can appear in a
loop such as:

12~ FOR I=1 TO 10
130 GOSUB 1000\REM ACQUIRE WAVEFORM DATA
140 WRITE 111, WA
150 NEXT I

After all ten waveforms are written to the file, the last step is to
close the file. The statement:

160 CLOSE #1

closes the file to further data storage and frees PLUN 1 for use in another
OPEN statement. Once closed, the file cannot be reopened FOR WRITE; it can
only be OPENed FOR READ.

2-8 @

TEK SPS BASIC V02 Peripheral Drivers

Retrieving the waveform data for processing is just as easy. First,
OPEN the file FOR READ. For example:

200 OPEN 111 AS .sfill: "TEST. DAT" FOR READ

opens the file "TEST.DAT" FOR READ and assigns it the PLUN of 1. Since
PLUN 1 is free, the same PLUN is used again; but that is not required. Any
free PLUN can be used.

The second step in retrieving the data is accomplished by a statement
like:

READ 111, WA

This reads all four components of the first waveform stored in the file.
Repeating this statement ten times reads all ten waveforms. Here the READ
statement appears in a FOR loop similar to the loop used for the WRITE
operation:

210 FOR I=1 TO 10
220 READ // 1 , WA
230 GOSUB 2000\REM PROCESS WAVEFORM DATA
240 NEXT I

The last step is to close the file when done. For example:

250 CLOSE /11

closes the file and frees the PLUN. Incidentally, since no further data
remains to be read, trying to read beyond the end of the data causes an
error. However, if you wished to read the data again, instead of closing
and reopening the file, you could use a RESET statement. For example, if
PLUN 1 is a sequential-access file OPEN FOR READ,

RESET /11

allows the file to be read from its beginning.

WRITEU and READO. WRITEU does not write waveforms and READU does not
read them. So, to modify this program for the WRITEU/READU pair, the four
components of the waveform must be written individually. Assuming that the

@ 2-9

TEK SPS BASIC V02 Peripheral Drivers

units strings HA$ and VA$ are at most ten characters long, line 140 could
be changed to:

140 WRITEU #1,AA,DA,HA$=10,VA$=10

This writes the array (AA), the data sampling interval (DA), and then the
two units strings of the waveform to the file. If either string is shorter
then ten characters, spaces are added to the end of the string to make it
ten characters long; if either string is longer than ten characters, only
its first ten characters are stored.

To read this waveform, line 220 should be changed to:

220 READU #1,AA,DA,HA$=10,VA$=10

However, since an HA$ or a VA$ shorter than ten characters is padded with
spaces as it is written by the WRITEU in line 140, those added spaces
should be removed. Adding the statements:

222 HA$=TRM(HA$)
224 VA$=TRM(VA$)

trims any trailing spaces from HA$ and VA$ with the TRM string function.

PRINT and IRPUT. You would rarely store a waveform in a file with the
PRINT command because it would use too much storage space. (To hold just
one waveform such as the example, WA, the file would need to be about 15
blocks.) But, if you wanted to PRINT a waveform to a file so that you could
COPY it later to a line printer or terminal, use a statement like:

PRINT #1,WA

However, if the waveform is to be INPUT from the file, each component
of the waveform and each element of the array must be terminated by a
carriage return (or a comma if the item is a numeric string). PRINT outputs
a carriage return at the end of each line. So, the easiest way to delimit
each item is to output each item with a separate PRINT statement. Thus,
to modify the example program for the PRINT/INPUT pair, expand line 140
to:

140 FOR J=0 TO 511
141 PRINT #1,AA(J)
142 NEXT J

2-10

TEK SPS BASIC V02 Peripheral Drivers

143 PRINT 111 ,DA
144 PRINT #1,HA$
145 PRINT #1,VA$

which outputs a carriage return after each array element, the data sampling
interval, and each units string. This allows the waveform to be read in
with a simple INPUT statement such as:

220 INPUT 111 , WA

Storing and Retrieving Programs

Storing and retrieving programs is a fairly simple process since you
do not need to OPEN or CLOSE a file explicitly. As an example, suppose
that you wanted to store the following program on a serial-access device:

510 REM PROGRAM TO COMPUTE THE HYPOTENUSE OF RIGHT TRIANGLE
520 PRINT "INPUT LENGTH OF ONE KNOWN SIDE"
530 INPUT X
540 PRINT "INPUT LENGTH OF OTHER SIDE"
550 INPUT Y
560 LET Z=SQR(X*X+Y*Y)
570 PRINT "LENGTH OF HYPOTENUSE IS:",Z
580 END

Regular Program Files. If there are no other lines of program text
in memory, this program can be stored with this statement:

SAVE ,SAn: "HYPOT"

All program text will be stored in a file called "H'YPOT.BAS" on the
serial-access device in drive n. Since no file name extension was specified,
an extension of .BAS is assumed by the SAVE command.

Now consider the case where there are other program lines in memory.
In this case, the preceding program could be stored with the following
statement:

SAVE .Mn.:"HYPOT",510,580

which only saves lines 510 through 580 in the file.

@ 2-11

TEK SPS BASIC V02 Peripheral Drivers

If a program in memory is modified after it has been SAVEd, the new
version may be stored instead of the old version with the REPLACE command.
It operates similarly to the SAVE command except that it cancels the old
file (if there) before saving the new file. For example if line 580 is
changed to a RETURN, the statement:

REPLACE Mn_: "HYPOT"

cancels the old 11HYPOT.BAS 11 file and saves all the text in memory in a new
file with the same name. (Notice that REPLACE also assumes the .BAS file
name extension.) If more lines of text are in memory than just those eight
lines,

REPLACE ~:"HYPOT",510,580

saves only the lines of text between and including line 510 and line 580.
Because REPLACE cancels the old file, it causes the same empty spaces in
the medium CANCEL does.

To retrieve a program, you can use the OLD command. However, you must
realize that the OLD command deletes all existing text and variables in
memory before loading the program into memory. For example:

OLD ~: "HYPOT"

loads all of the program entitled "HYPOT.BAS" from drive n of the serial
access device. Alternatively, you could enter:

OLD .,SAn:"HYPOT",510

This would have the same effect as the preceding example, but would also
begin program execution at line 510 as soon as the program was loaded.

To load a program and delete all the previous text in memory but none
of the variables, use the CHAIN command. For example:

CHAIN ,SAn: "HYPOT"

deletes all text in memory and then loads the program "HYPOT.BAS" but it
does not delete any variables. As with the OLD command, you could also
enter:

2-12

TEK SPS BASIC V02 Peripheral Drivers

CHAIN _Mn: "HYPOT II' 510

which would begin program execution at line 510 after loading the program.

Often you may want to load a program into memory without deleting all
text or variables. This can be done with the OVERLAY command. For example:

OVERLAY SAn:"HYPOT"

loads the "HYPOT.BAS" program. No variables are deleted. No text in memory
is deleted unless it has the same line number as the new program to be
loaded, in which case those lines are overwritten.

Notice that OLD, CHAIN, and OVERLAY, which load programs stored by
the SAVE or REPLACE command, assume the .BAS file name extension if none
is specified.

Fast-Overlay Files. As a program is entered, it is translated into
an internal form and stored in the controller memory. SAVE and REPLACE
convert the program back to the familiar BASIC language form to store it.
Thus, when the program is brought into memory by OLD, CHAIN, or OVERLAY,
time is required to translate the text back to the internal form. However,
for faster execution of overlaid programs, program segments can be stored
with the OVLSAV command and loaded with the OVLOAD command. OVLSAV stores
the already translated (internal form) text in a special program file
called a fast-overlay file. OVLOAD brings this fast-overlay file back into
memory.

For example, to store the previous program in a fast-overlay file use
the statement:

OVLSAV SAn:"HYPOT"

This stores all the program text in memory as a pretranslated fast-overlay
file named "HYPOT.BOL" (Notice that OVLSAV has a default file name extension
of .BOL.) If more lines of text are in memory than those eight, the lines
to be stored can be specified as with SAVE and REPLACE. For example:

OVLSAV _Mn: 11 HYPOT 11 , 510, 580

saves only the lines between and including line 510 and line 580.

2-13

TEK SPS BASIC V02 Peripheral Drivers

To bring a fast-overlay file back into memory (usually during a running
program), use a statement like:

100 OVLOAD SAn:"HYPOT"

This loads the fast-overlay file "HYPOT.BOL". (OVLOAD uses the default
file name extension .BOL when none is specified.)

Before the fast-overlay file is loaded, any text in memory with line
numbers within the range of line numbers in the fast overlay file is
deleted, but no variables are deleted. In this example any lines in memory
with line numbers between and including line 510 and line 580 are deleted.
Also, when the files are loaded, there must be enough free memory available
for one input/output buffer, the pretranslated text, and any other information
about the text from the file. (The size of the I/O buffer depends on the
device used to store the file. See the separate discussion on a particular
device driver for the size of the I/O buffer for that device.)

Loading and Releasing SPS Modules

TEK SPS BASIC nonresident commands and drivers are stored in files
that have the reserved file name extension .SPS. These SPS modules are
explicitly brought into controller memory from a peripheral device with
the LOAD command. (Nonresident commands may also be autoloaded, but only
from the system device; drivers are never autoloaded.) When a module is
LOADED, it remains resident in memory until it is explicitly deleted from
memory by the RELEASE command or until the system software is deleted from
memory. (Autoloaded commands are autoreleased if memory space is required
for another autoloaded command, data, or an explicitly loaded module.)
Both the LOAD and RELEASE commands operate only on files with the .SPS
extension and assume it if the .SPS extension is omitted from the file
name specification. For example:

LOAD .sAn_:"VM","OPRINT"

loads the two SPS modules, "VM.SPS" and "OPRINT.SPS" while,

RELEASE "VM","OPRINT"

deletes them from controller memory.

2-14

TEK SPS BASIC V02 Peripheral Drivers

MT Magtape Driver

Attributes

Driver name: MT.SPS

Device name: MT

Device type: Serial-access

Maximum number of drives: 8 (MT0 to MT7)

Buffer size: 256 words

Description

The MT Magtape driver is intended for use with a TEKTRONIX CP101
magtape system (Tektronix nomenclature for the TM11 magtape system from
Digital Equipment Corp.) or a similar device. These systems can control
up to eight tape transports (also referred to as drives). Data can be
copied from one drive to another; however, it is not possible to have more
than one file OPEN per drive at any one time.

TEK SPS BASIC V02 does not support magtape as the system device. Thus,
the primary use for the magtape medium is storing and retrieving BASIC
programs and data.

The magtape systems use industry-compatible, 1/2 inch wide, 9-track
tape. (A 10.5 inch diameter reel holds 2400 feet of tape; an 8.5 inch
diameter reel holds 1200 feet of tape.) Data written by a 9-track transport
is formatted so as to be industry-compatible. There are eight tracks (or
channels) of data. Each track represents a particular bit in the 8-bit
byte. Thus, data is stored in bit-parallel, byte-serial fashion. The
remaining P track is used to write an odd-parity bit, which will be a "1"
in the case of an all-zero data character. The parity functions are performed
automatically by the hardware.

Data is recorded on the tape in 512-byte blocks (records) separated
by blank areas created as the transport starts and stops. The blank area
is referred to as an Inter-Block Gap (IBG) or an Inter-Record Gap (IRG).

2-15

TEK SPS BASIC V02 Peripheral Drivers

Following each block of data, special error detection characters are
written. The CRCC (Cyclic Redundancy Check Character) is a coded cyclic
parity check character which is developed in a special register while the
block is being written. The CRCC character is required for IBM compatibility.

The LRCC (Longitudinal Redundance Check Character) is composed of
longitudinal even-parity check bits for each track. The LRCC has odd
vertical parity in 9-track transports. Further information can be found
in the manual for the magtape transport.

Near the beginning and end of each reel of magtape are reflective
markers. These are optically sensed by the transport to indicate the
physical beginning and end of the tape, respectively. All tape before the
beginning-of-tape (BOT) marker is considered leader. Data recording begins
just beyond the BOT mark (load point). The physical end-of-tape (EOT)
marker indicates that the end of the tape is approaching.

Hagtape File Structure

Magtape files written by the MT driver have the same file structure
as files created under the DEC RT-11 Operating System; thus, they use a
subset of the VOL1, HDR1, and EOF1 ANSI-standard labels. Each magtape file
has the following format:

HDR1*---data---*EOF1*

where each asterisk represents a tape mark, and HDR1 and EOF1 are the label
blocks denoting the beginning and end of file, respectively. Since each
ANSI-standard magtape reel begins with a VOL1 label block, a volume (reel)
containing a single file has the format:

VOL1 HDR1*---data---*EOF1**

Similarly, a volume containing two files has the format:

VOL1 HDR1*---data---*EOF1*HDR1*---data---*EOF1**

A double tape mark following an EOF1 label indicates the logical end of
tape. The above formats are illustrated in Fig. 2-1.

2-16

TEK SPS BASIC V02 Peripheral Drivers

VOLi HORI •

a) Format of a sinole-file volume

HORI ·----------

..... _ ----------.

• =Tape mark
= Usar data

--- File. B ----- •

•=Tape mark
=User data

b) Format of a multiple -flle volume
2740-02

Fig. 2-1. The MT driver supports single-file and multiple-file
magtape volumes.

Each label occupies the first 80 bytes of a 256-word (512-byte) block,
and each byte in the label contains an ASCII character (i.e., if the content
of a byte is listed as 11 111 , the byte contains the ASCII code for 11 111).

Table 2-1 shows the contents of the first 80 bytes in the three label
blocks. Notice that VOL1, HDR1, and EOF1 each occupy a full 256-word block,
of which only the first 80 bytes are meaningful. The remaining bytes are
blanks.

@ 2-17

TEK SPS BASIC V~2 Peripheral Drivers

TABLE 2-1

Contents of the Three MT Label Blocks

Volume-Header Label (VOL1)

cp1

1-3
4

5-10
11
12-37
38-51

52-79
80

81-256

First

CP

1-3
4
5-21

22-27
28-31
32-35
36-39
40-41
42-47
48-53
54
55-60
61-73

74-80
81-256

Field Name2 Length3 Content4

Label identifier 3 VOL
Label number 1 1
Volume identifier 6 RT1101
Accessibility 1 Blank
(Reserved) 26 Blanks
Owner identifier 14 DOU used to indicate an

RT-11 MT to RSX-110
(Reserved) 28 Blanks
Label-Standard Version 1 1

(Unused) 176 Blanks

File Header Label (HDR1)

Field Name Length Content

Label identifier 3 HOR
Label number 1 1
File identifier 17 6-character ASCII file name,

followed by ' ' , followed
by 3-character ASCII file
extension; left justified,
remainder of field is blanks

File Set identifier b RT1101
File Section Number 4 0001
File Sequence Number 4 0001
Generation Number 4 0001
Generation Vsn Number 2 00
Creation Date 6 .. 00000
Expiration Date 6 blank then 00000
Accessibility 1 blank
Block Count 6 000000
System Code 13 RT11 left-justified

followed by blanks
(Reserved) 7 blanks
(unused) 176 Blanks

First End-of-File Label !EOFl)

Same as HDR1 except that the label identifier (CPl-3) is BOP, not BDR,
and the block count field (CP55-60) contains the number of blocks in the
file as a decimal value encoded in ASCII characters (for example, if the
file was 12 blocks long, the block count field would be 00012).

lcp - character position in label
2Field name - reference name of field
3Length - length of field in bytes
4content - content of field in ASCII

2-18

2740-03

@

TEK SPS BASIC V02 Peripheral Drivers

TEK SPS BASIC does not support a file structure in which a file spans
more than one magtape reel. Thus each reel must contain one or more complete
files.

Operating the Magtape Transport

Since the TEK SPS BASIC Magtape driver will work with more than one
magtape system, the operating instructions for the magtape transport are
not detailed here. However, you are encouraged to read the operating
instructions in the applicable magtape manual before attempting to store
or retrieve data. It would also be well to read any periodic-maintenance
information, such as instructions for cleaning the read-write heads.

2-19

TEK SPS BASIC V~2 Peripheral Drivers

CT Cassette Driver

Attributes

Driver name: CT.SPS

Device name: CT

Device type: Serial-access

Maximum number of drives: 2 (CT~ and CT1)

Buffer size: 128 bytes (64 words)

Description

The cassette driver is intended for use with the TEKTRONIX CP100
cassette (Tektronix nomenclature for the DEC TA11 Dual Cassette System)
or similar device. TEK SPS BASIC V02 does not support cassette tape as the
system device. Therefore, the primary use for cassette tape is storing and
retrieving data and BASIC programs.

The TEKTRONIX CP100 is a dual-cassette, magnetic tape unit with non
simultaneous drives. Each drive has identical, but separate, motor controls
and servo logic. However, both drives use the same selection, formatting
and read/write logic. It is not possible to have more than one file OPEN
on the same drive at any one time, but it is possible to perform a read
or write operation on one drive and to rewind the other drive concurrently.
Furthermore, a cassette may be duplicated (copied) by means of the dual
cassette drives.

The CP100 uses Phillips-type cassettes which are specially designed
for storage of digital information. Each tape can hold approximately
9~,~00 bytes (or 45,~~0 16-bit words) of information. The data is stored
in a single bit-serial track of data. There is no prerecorded timing or
format track, so data must be sequentially recorded or retrieved as in a
convential magnetic tape system.

The cassette medium is an oxide coated tape with sections of clear
leader attached at both ends. The recorded data (stored on the magnetic

2-20 @

TEK SPS BASIC V~2 Peripheral Drivers

portion of the tape) is organized into user-defined collections of data
called files. These files are separated from each other by file gaps
generated under software control.

Data files in TEK SPS BASIC consist of a 32-byte header record, as
many 128-byte data records as needed, and a terminating file gap. Each
file is identified by its name, stored in the header record, which consists
of one to six characters followed optionally by a decimal point and a one
to three character extension (this is the standard SPS file-name format).
These names are assigned by the user with the OPEN command. The header
record also contains an indication of the file type (e.g., ASCII data,
binary data, etc), the number of data records (128 bytes each), and space
for additional information not implemented in TEK SPS BASIC. (Additional
information on the CP100 and the cassette file structure may be found in
the manual for the CP100.)

Operating the Cassette Unit

Preliminary Instructions. Before operating the CP100 CASSETTE tape
transport, be sure that its line-cord breaker assembly is configured
properly for the line voltage being used. Also, the two BC08-S interconnect
cables must be properly connected as mentioned in the CP100 manual. With
the unit properly cabled and its line cord connected to a power source,
turn on the power switch located on the back of the unit. (Usually this
switch will be left on, and the master switch for the system will control
power to the unit.) In most cases a Tektronix field engineer will be on
site to properly install the system. However, if you must make changes to
the system cabling, consult your field engineer or the CP100 manual.

Inserting and Rewinding Cassettes. Before inserting a cassette into
the CP100 tape drive, set the cassette write-protect tabs for the desired
operation. (See Fig. 2-2.) These tabs are pieces of flexible plastic
material that are hinged so that the holes located opposite the tape edge
may be covered or exposed as desired. They control the write-protect
switches of the tape drive. To inhibit a write operation, fold the tabs
back so the cassette recesses are exposed. In some cases, the tabs may be
removed to provide permanent protection. To allow a write operation, flip
the tabs so the recesses are covered.

The cassette may be inserted with the locking bar in either the opened
or the closed position, although it is easier if the locking bar is open.

@ 2-21

TEK SPS BASIC V02 Peripheral Drivers

DIGITAL CASSETTE

0

LEFT DOOR
(SLIGHTLY OPENED)

WRITE PROTECT TAB

LOCKING BAR
(OPENED)

Fig. 2-2. Inserting the cassette.

1970-08

(See Fig. 2-2.) The locking bar is the bar to the right of the drive
mechanism; it is opened by pressing on its flange. The steps for inserting
the cassette are as follows:

1. Set the write-protect tabs for the desired operation.

2. Hold the cassette with your thumb and index finger, so that the
open side of the cassette faces the read/write heads. Then insert the
cassette toward the left (at about a 45 degree angle) into the drive
mechanism. The labeled side of the cassette should be facing out and the
side which reads "THIS SIDE IN" should face the tape drive.

3. While applying pressure to the left, simultaneously rotate the
cassette inward and onto the drive sprockets. This allows the cassette to
slide under the door located to the left of the drive mechanism.

2-22

TEK SPS BASIC V02 Peripheral Drivers

4. When the cassette is completely inserted, the locking bar and
left door automatically closes flush with the drive mechanism.

5. To remove a cassette, press the locking bar to the right and
withdraw the cassette from the drive mechanism.

To rewind a cassette, insert it into either drive and press the REWIND
button located to the right of that drive. (See Fig. 2-3.) The cassette
should completely rewind to the beginning of the magnetic tape in about
20 seconds. If the REWIND button is again pressed, the cassette will rewind
to the beginning of the clear leader in about 1 second. When the cassette
is completely rewound, the tape will reside on the upper reel. (The cassette
can be rewound in the opposite direction by inserting it with the labeled
side facing the tape drive.) Once software has been loaded, the cassette
may also be rewound by using the REWIND command (e.g., REWIND CT1:).

POWER SWITCH
(ON REAR PANEL)

\
TEKTRONIX CASSETTE

I CP41©© I

SPACE FOR
STORING CASSETTE

0

LEFT DOOR

POWER ON
INDICATORS

LOCKING BAR

0

0

REWIND BUTTONS

1970-07

Fig. 2-3. Front panel of a TEKTROHIX CP100 Cassette Tape transport.

Care of Cassettes. It is imperative that only certified digital
cassettes be used on the CP100 cassette. These digital cassettes consist
of a special heavy base tape which can withstand the high tensions exerted
by the CP100. Also, the material used for the head pressure pad is engineered
for proper tape stacking. Never attempt to use an audio cassette in the
CP100 tape drive. The tape in most audio cassettes is not strong enough
to withstand the high tensions encountered. Also, their use will result
in tape breakage and deterioration, or rapid oxide buildup on the tape
heads.

2-23

TEK SPS BASIC V02 Peripheral Drivers

Before using a new cassette (or one that was accidentally dropped),
it is best to insert the cassette backwards and completely rewind it. Then
turn the cassette over and rewind it again. This ensures that the tape is
properly packed onto the cassette and that the full tape reel has the
proper operating tension.

It is best to rewind a cassette completely to the beginning of the
clear leader to protect the oxide on the tape. Digital cassettes should
be protected from dust by storing them in their original plastic boxes.
This is especially important since even a speck of dust or dirt on the
tape may cause a data error. Also, it is best to store them at room
temperature since excessive heat or cold may cause tape deterioration.

2-24

TEK SPS BASIC V02 Peripheral Drivers

SECTION 3

NON-FILE-STRUCTURED DEVICE DRIVERS

Introduction

A non-file-structured peripheral is a device, such as a line printer,
paper-tape punch/reader, or the keyboard terminal, on which the data is
not referenced by a file name. The three general types of non-file-structured
devices supported by TEK SPS BASIC are: data storage and retrieval devices,
ASCII output (display) devices, and ASCII input devices. (The keyboard
terminal is both an ASCII display and an ASCII input device.) The operations
that can be performed by each device type are discussed in the first part
of this section. Since each device cannot perform all the operations
discussed, a specific device is used in each example. At the end of this
section are descriptions of each of the TEK SPS BASIC non-file-structured
device drivers.

As each peripheral operation is presented, the appropriate TEK SPS
BASIC V02 commands are briefly mentioned. For a complete discussion of
each command see Section 4 of the TEK SPS BASIC V02 System Software manual.

Loading and Releasing the Device Driver

Before any operation can be performed on any peripheral device, the
driver for that device must be resident in controller memory. If the non
file-structured device is the keyboard terminal, its driver is made resident
when the system software is loaded. Otherwise, the driver must be LOADed
before the device can be referenced. Assuming that a device driver named
"NFS.SPS" is stored on the system device, the statement:

LOAD "NFS.SPS"

or simply,

LOAD "NFS"

brings the specified driver into memory. (Notice that the .SPS extension
is assumed by the LOAD command.) When the driver is no longer needed, it
can be deleted, freeing memory space, by entering:

RELEASE "NFS"

3-1

TEK SPS BASIC V02 Peripheral Drivers

Any driver, except the system device driver or the keyboard terminal driver,
is loaded and released in this manner. In the discussions that follow, it
is assumed that any required drivers are in memory when the examples
execute.

ROTE

Do not attempt to LOAD or RELEASE a driver
for the keyboard terminal (KB). What will
happen if this is done depends upon the
release number of the Monitor.

Storage and Retrieval Devices

An example of a non-file-structured data storage and retrieval device
is a paper-tape reader/punch. TEK SPS BASIC uses two drivers to support
this device. It is treated as two separate devices: one for punching the
paper tape and one for reading the paper tape. Each driver may be LOADed
or RELEASEd independently as it is needed.

Storing and Retrieving Data

The procedure for storing and retrieving data on a non-file-structured
device such as a paper-tape reader/punch is essentially the same as with
any SPS peripheral device. First the device must be OPENed FOR WRITE or
READ, next the write or read operation must be preformed, and finally the
device should be CLOSEd.

For example, suppose that a waveform WA consists of a 512-element
array A, a data sampling interval SA, and horizontal and vertical units
HA$ and VA$. Such an array could be defined with the command:

WAVEFORM WA IS A,SA,HA$,VA$

This waveform could be stored on paper-tape with the following routine:

100 OPEN fl 1 AS PP : FOR WRITE
110 WRITE 1/1, WA
120 CLOSE ff 1

The command at line 100 OPENs the paper-tape punch (PP) and assigns it
peripheral logical unit number (PLUN) 1. Then a 128-null leader is punched

3-2

TEK SPS BASIC V02 Peripheral Drivers

on the tape. (A humanly readable name will also be punched on the tape,
if a string expression is specified after the device name, PP.) The WRITE
command at line 110 outputs the data. Finally, at line 120, a 128-null
trailer is generated, and the device is closed.

As with any other WRITE or PRINT operation, multiple buffers can be
specified by using the keyword WITH. This can often increase the throughput,
depending on the particular application.

To read the stored data back into memory, the tape should be placed
in the reader just ahead of the data (but beyond the humanly readable name,
if present.) Assuming that waveform WA is defined, the waveform data can
be read in with the following routine:

200 OPEN #1 AS PR: FOR READ
210 READ #1,WA
220 CLOSE #1

Line 200 assigns PLUN 1 to the paper-tape reader as it is OPENed FOR
READ. Line 210 advances the tape to the end of the leader and begins reading
the waveform data. The CLOSE command at line 220 closes the device and
frees the PLUN for use by another device or a file.

Storing and Retrieving Programs

A BASIC program can be stored on a non-file-structured device such
as paper tape with the SAVE command. For example, to store all program
text in memory on paper tape, use:

SAVE PP:

where PP is the device name for the paper-tape punch. This punches a
128-null leader, the program in ASCII format, and a 128-null trailer. (If
a program name is specified following the device name, the name is punched
on the leader in a humanly-readable form.)

To store only part of the program that is in memory, specify the range
of the line numbers to be saved. For example, to save only lines 10 through
80, enter:

SAVE PP:,10,80

A BASIC program is read back into memory from a non-file-structured
device such as paper tape with the OLD, CHAIN, or OVERLAY command. OLD

@ 3-3

TEK SPS BASIC V02 Peripheral Drivers

deletes all variables and program text already in memory before loading
the program. CHAIN deletes any program text already in memory, but none
of the variables, before loading the program. OVERLAY does not delete any
variables; it does not delete any text unless some of the program lines
already in memory have the same line numbers as some program lines being
loaded. Then the old lines are overwritten. For example, to bring in a
program stored on paper tape use:

OLD PR:

or

CHAIN PR:

or

OVERLAY PR:

where PR is the device name for the paper-tape reader.

3-4

TEK SPS BASIC V~2 Peripheral Drivers

ASCII Output Devices

The keyboard terminal and a line printer are examples of non-file
structured ASCII output devices. The system keyboard terminal is used so
often that it is the default output device for several commands. (e.g.,
PRINT, LIST, and STATUS.) The driver for the keyboard terminal is brought
into memory when the system software is loaded; it must never be explicitly
LOADed or RELEASEd. The line printer driver must be LOADed before output
can be sent to the line printer and should be RELEASEd when no longer in
use.

Displaying Data

The easiest way to display the data in controller memory is to PRINT
it on the terminal, which is the default device for the PRINT command. For
example, assuming that WA is defined as a waveform,

PRINT WA

outputs the waveform components (the array, the data sampling interval,
and the units strings) on the terminal in ASCII characters. (See the
discussion on the PRINT command in Section 4 of the System Software manual
for the format of the ASCII output.)

NOTE

The Keyboard terminal (KB) is never OPENed
or CLOSEd. It is always PLUN ~. This
means that the statement:

PRINT #0,WA

or

PRINT #N,WA

where N equals ~' is equivalent to:

PRINT WA

Before data can be PRINTed on any other device, that device must be
explicitly OPENed FOR WRITE. Opening it assigns the peripheral logical

3-5

TEK SPS BASIC V02 Peripheral Drivers

unit number (PLUN) by which the PRINT command references the device. For
example, to assign PLUN 1 to the line printer use:

OPEN #1 AS LP: FOR WRITE

To increase the throughput of the data, more than one buffer can be
specified for output by the keyword WITH in the OPEN statement. For example,

OPEN #1 AS LP: FOR WRITE WITH 2

provides two output buffers for the line printer instead of the default
of one buffer.

After the device is OPEN FOR WRITE, the data in controller memory can
be output. For example, if WA is a waveform,

PRINT 111 , WA

PRINTs the waveform components on the line printer assigned PLUN 1. The
data is printed as ASCII characters in the same format as it is PRINTed
on the terminal.

When no more data is to be output on the device, the device should
be CLOSEd to free the PLUN. In this case,

CLOSE 111

closes the line printer and frees PLUN 1 for use by another device or a
file.

ASCII data which is stored in a file by the PRINT command may also
be displayed on a non-file-structured ASCII output device. For example,
the contents of an ASCII file named "ASCII.DAT" stored on a floppy disk
in drive 1 is displayed on the line printer by:

COPY DX1: "ASCII .DAT" TO LP:

(This assumes that both the DX driver and the LP driver are in controller
memory when the statement executes.) Similarly,

COPY DX1: "ASCII.DAT" TO KB:

displays the same file on the terminal.

3-6 @

TEK SPS BASIC V02 Peripheral Drivers

Listing a Program

Usually, the program in memory is displayed by LISTing it on the
terminal, which is the default device of the LIST command. For example:

LIST

prints all the program text in memory on the terminal while,

LIST 10,80

prints just lines 10 through 80 on the terminal.

The program may be LISTed on another non-file-structured ASCII output
device by simply including the device name in the LIST statement. For
example:

LIST LP:

LISTs all the program text in memory on the line printer. Similarly,

LIST LP:10,80

prints just lines 10 through 80 on the line printer.

@ 3-7

TEK SPS BASIC V02 Peripheral Drivers

ASCII Input Devices

The system keyboard is an example of a non-file-structured ASCII input
device. The driver for the keyboard terminal is brought into memory when
the system software is loaded; it must never be explicitly LOADed or
RELEASEd.

Inputting Data

Program data may be entered directly from the keyboard, which is the
default device of the INPUT command. For example:

INPUT A,A$

allows you to enter the values for A and A$ from the keyboard after the
prompting question mark (?) is printed on the terminal by the INPUT command.
The number entered for A may be terminated by either a comma or a carriage
return; the string entered for A$ must be terminated by a carriage return.
(See the INPUT command in Section 4 of the TEK SPS BASIC V02 System Software
manual for a further discussion of how to input program data from the
keyboard.)

NOTE

The keyboard terminal (KB) is never OPENed
or CLOSEd. It is always PLUN 0. This
means that the statement:

INPUT #0,A,A$

or

INPUT #N,A,A$

where N equals 0, is equivalent to:

INPUT A,A$

3-8 @

TEK SPS BASIC V02 Peripheral Drivers

Copying to a File

ASCII data can also be entered from the keyboard and stored directly
in a file. For example:

COPY KB: TO DX1: 11 TESTKB.DAT"

allows you to enter data from a keyboard and have that data stored in the
named file. As with data that is INPUT, numbers entered from the keyword
are terminated by either a comma or a carriage return; strings are terminated
by a carriage return. Also, since the keyboard is the source device, the
COPY command, like the INPUT command, prints a question mark (?) on the
terminal to prompt data entry. After each data-terminating carriage return
is entered, the COPY command prompts with another question mark. When all
the data is entered, the COPY command is terminated by entering a Control-Z.
(Data that is stored in a file in this manner is retrieved from the file
with the INPUT command.)

3-9

TEK SPS BASIC V02 Peripheral Drivers

LP Line Printer Driver

Attributes

Driver name: LP.SPS

Device name: LP

Device type: Non-file-structured ASCII output device

Maximum number of devices: 1 (LP0 or simply LP)

Buffer size: 132 bytes (characters)

Description

The TEK SPS BASIC LP Line Printer driver supports the TEKTRONIX CP146
or CP445 line printer or a similar device. (The CP146 is Tektronix
nomenclature for the LA180 manufactured by Digital Equipment Corporation;
the CP445 is Tektronix nomenclature for the TALLY 2215.)

Characteristics of the CP146.

1. Characters per line: 132

2. Character matrix: 7 X 7 dots

3. Printing speed: 180 characters per second

4. Character set: 128 (upper and lower case, ASCII)

5. Form width: variable from 3" to 14 7/8 11

Characteristics of the CP445.

1. Characters per line: 132

2. Character matrix: 5 X 7 dots

3. Printing speed: 200 lines per minute (upper case)
165 lines per minute (upper and lower case)

3-10

TEK SPS BASIC V~2 Peripheral Drivers

4. Character set: 64 (upper case)
96 (upper and lower case)

5. Form width: variable from4" to 14 7/8 11

6. Backspace capability: no

1. Character density: 1~ characters per inch

8. Line density:

Preliminary Instructions

6 or 8 lines per inch (switch selectable)
(10 lines per inch optional)

Turn on the line printer and ready it for use according to the manual
for the line printer being used. You may also want to check for an adequate
supply of paper and ribbon in the line printer.

NOTE

If the line printer is not turned on
when the OPEN command is executed, the
driver will wait until the line printer
is ready or a Control-P is entered from
the system terminal keyboard. If the line
printer is turned off while printing, a
fatal error is issued.

How Output is Formatted

A form feed is generated when the line printer is OPENed FOR WRITE
or at the start of a LIST operation. As a program is LISTed, it is output
in a single, left-justified column, with one program line per line of
output. Data is PRINTed on a line printer in the same format that it is
output on the terminal, except that some line printers may not respond to
certain control characters. See the discussion on the PRINT command in
Section 4 of the TEK SPS BASIC V~2 System Software manual for how each
type of data is output by PRINT.

TEK SPS BASIC V02 Peripheral Drivers

PP and PR Paper-Tape Drivers

Attributes

Driver names: PP.SPS (for punch) and PR.SPS (for reader)

Device names: PP (paper-tape punch) and PR (paper-tape reader)

Device type: Non-file-structured data storage and retrieval device

Maximum nuaber of drives: 1 (PP0 or simply PP)
(PR0 or simply PR)

Buffer size: 64 words (128 bytes)

Description

The paper-tape drivers are intended for use with the TEKTRONIX CP220
Reader/Punch (Tektronix nomenclature for the REMEX RAB6375) or a similar
device. TEK SPS BASIC does not support the paper-tape reader/punch as the
system device. Thus, the primary use for the paper tape is to store and
retrieve BASIC programs and data.

Preliminary Instructions

The CP220 Reader/Punch should be properly cabled to the system and
its line cord should be plugged into the master power panel. The CP220 has
its own power switch (located to the right of the paper-tape reader
mechanism) and this must be turned on before the CP220 can be used. When
turned on, a light inside the reader iliuminates the front of the unit.

Before using the CP220 for the first time, load a spool of paper tape
as explained in the manual for the CP220. Make sure the RUN-LOAD switch
is in the RUN position when tape loading is complete. (You can tell when
the tape supply is low or when the chad drawer is full; in either case,
the PERF STATUS light will illuminate.)

Leader and trailer is automatically generated when punching a program
or data tape under TEK SPS BASIC. However, extra leader or trailer may be
generated by pressing the FEED/DELETE switch. When in the FEED position,

3-12

TEK SPS BASIC V~2 Peripheral Drivers

only sprocket holes are punched. When in the DELETE position, a series of
DEL characters is punched. (This later position allows a quick check of
the punch mechanism.)

After a tape has been punched or read, it may be rewound by placing
the tail of the tape in the spool and by pressing the SPOOL button.

NOTE

If the punch is not turned on when an
OPEN FOR WRITE command is executed, the
driver will wait until the punch is
ready or until a Control-P is entered
from the system keyboard terminal. If
the punch is turned off while punching,
a fatal error is issued.

If the reader is not ready when an OPEN
FOR READ command is executed, a fatal
error is issued.

When data or a program is to be read, the tape must be positioned in
the paper-tape reader such that the sprocket engages the sprocket holes.
If a humanly-readable name was punched on the leader, the tape should be
positioned past that portion of the leader.

How Output is Formatted

Before the SAVE command stor~s a program on paper tape or when the
paper-tape punch is OPEN FOR WRITE, a 128-null leader is punched on the
paper tape. Also, if a file name is provided in the SAVE or the OPEN FOR
WRITE statement, the file name is punched on the leader in humanly-readable
form. After the SAVE command transfers the program to paper tape or when
the paper-tape punch is CLOSEd, a 128-null trailer is punched.

3-13

TEK SPS BASIC V02 Peripheral Drivers

Keyboard Terminal Drivers

Attributes

Driver names: KBG.SPS or KBN.SPS or KBT.SPS or KBE.SPS

Device name: KB

Device type: Non-file-structured data display and input device

Maximum number of devices:

Buffer size: 80 bytes (79 characters plus a carriage return)

Description

There are four keyboard drivers available in TEK SPS BASIC V02.

KBG.SPS. This driver supports graphics capabilities and indicates a
Rubout by echoing the deleted character. It shows what character or series
of characters is deleted by printing an underscore (_) on either side of
the character or series of characters. KBG.SPS is intended for use with a
direct-view storage terminal. It is the default keyboard driver.

KBN.SPS. This driver is just like KBG.SPS except that it does not
support graphics capabilities. KBN.SPS is intended for use when graphics
capabilities are deleted or with typewriter-style terminals that use paper.

KBT.SPS. This driver does not support graphics capabilities. It
indicates a Rubout by echoing a backspace. KBT.SPS is intended for use
with a raster-scan terminal when graphics capabilities are deleted.

KBE.SPS. This driver supports the high resolution graphics allowed
by the Enhanced Graphics Module option of a TEKTRONIX 4014 Computer Display
Terminal. It handles a Rubout in the same manner as KBG.SPS. Because KBE.SPS
supports the Enhanced Graphics Module option, graphics display commands
execute more slowly with KBE.SPS than with KBG.SPS. (KBE.SPS is not supported
by TEK SPS BASIC V02-01.)

All the drivers can be used with a TEKTRONIX 4010 Series or 4020
Series Computer Display Terminal or similar device. However, the keyboard

3-14

TEK SPS BASIC V02 Peripheral Drivers

terminal drivers for TEK SPS BASIC V02-01 do not support the Control-Q or
Control-$ used to suppress and resume output to terminals that scroll
output.

Determining Which Driver

The keyboard terminal driver is brought into memory when the system
software is loaded. The keyboard driver that is loaded depends on the
existence of a system-parameters file on the disk from which the software
is booted. If no such file exists, the default driver, KBG.SPS, is loaded.
If the file exists, the keyboard driver specified in the file is loaded.
Executing the SYSBLD command creates (or changes) the system-parameters
file. This allows another keyboard driver to be loaded the next time the
system software is booted.

You can obtain the name of the current keyboard driver by typing:

STATUS

This command reports the status of the system, including the name of the
keyboard driver in memory. To change to another keyboard driver, execute
SYSBLD and reboot BASIC. (See the discussion on the SYSBLD command in
Section 4 of the TEK SPS BASIC V02 System Software manual.)

Special Function Keys

The keyboard drivers support these special function keys. A control
character is entered by holding down the control key while striking the
desired character key. (When a control character is entered, the driver
echos an up arrow (A) followed by the character.)

Key

Return

Rubout

Action

Inserts a carriage return into the
keyboard buffer and makes the contents
of the buffer available to the Monitor.
A carriage return, line feed is echoed.

If the keyboard buffer is not empty,
deletes the last character inserted
into the buffer.

3-15

Control-0

Control-P

Control-Q

Control-S

Control-U

Control-Z

TEK SPS BASIC V02 Peripheral Drivers

Alternately suppresses and allows
the display of most output sent to the
terminal. Error messages are not sup
pressed. The first Control-0 suspends
display; the second, resumes it. Any
output directed to the terminal between
the suspension and resumption of the
display is lost.

Terminates a program and returns BASIC
to idle mode.

Resumes terminal output that was suspended
by a Control-S. No data is lost. (Control-Q
is not supported by TEK SPS BASIC V02-01.)

Suspends terminal output until a Control-Q
is entered. No data is lost. (Control-S is
not supported by TEK SPS BASIC V02-01.)

Deletes any characters from the keyboard
buffer. (Deletes the line being entered.)

Terminates input to the COPY command
when the terminal is the source device.

3-16

TEK SPS BASIC V02 Peripheral Drivers

APPERDIX A

LOADING TEK SPS BASIC

In order to boot TEK SPS BASIC from a peripheral device, the proper
SPS load module of the operating system (the .LDA file) for that device
must be on the medium. (Not all peripherals are supported by an SPS load
module. Check the individual discussions on each device driver in this
manual to see if an SPS load module exists and what its name is.) Also,
before the software can be booted, an absolute loader must have been
installed on the medium by either the HOOK or HOOKQ command. (The absolute
loader is a stand-alone program which, in this case, loads the operating
system. The absolute loader is brought into memory by the bootstrap program.)
If you follow the archiving procedure in Appendix C to make working copies
of the TEK SPS BASIC System software, the correct absolute loader is
installed. See the discussions on the HOOK and HOOKQ commands in Section
4 of the TEK SPS BASIC V02 Systems Software manual for more information.

The device name and drive number from which BASIC is loaded becomes
the system device. This is the device and drive from which commands are
autoloaded. It is also the default device and drive for many of the
peripheral commands (e.g., BOOT, CANCEL, COPY, DIR, OLD, OPEN, OVERLAY,
OVLOAD, READ, SAVE, WRITE, etc.) The system device driver is loaded with
the operating system; it is included in the SPS .LDA file for that device.

After the hardware system is properly connected and powered-up, insert
the medium with your copy of TEK SPS BASIC into the device for that medium.
If the device has more than one drive, use the drive you prefer.

Next, follow the bootstrap procedure for the ROM bootstrap card in
your controller. Some common hardware bootstrap procedures are briefly
discused in Appendix B.

When the ROM bootstrap program of the controller issues its prompt,
enter the device name and the drive number from which BASIC will be loaded.
For example, if your software is on a DK hard disk in drive 1, enter:

DK1

Now, depending on which absolute loader has been installed on the
medium for your copy of BASIC, one of three things will happen.

@ A-1

TEK SPS BASIC V02 Peripheral Drivers

1. If the SPS absolute loader was installed by the HOOK command, TEK
SPS BASIC is loaded automatically. This is the most common situation.

2. If the DEC RT-11 absolute loader was installed by the HOOK command,
the DEC RT-11 Operating System is loaded. To load TEK SPS BASIC, enter:

RUN LOADER

in response to the RT-11 prompt, a dot (.).When LOADER prints its prompt,
an asterisk(*), enter the name of the SPS .LDA file for your device. (Do
not type the .LDA extension.) For example, if the device is a DK hard disk,
enter:

SPSDK

ROTE

To return to the DEC RT-11 Operating System
from TEK SPS BASIC, enter:

BOOT

This reboots the device with DEC RT-11
as the operating system.

3. If the LDA absolute loader has been installed by the HOOKQ command,
any file with the .LDA extension can be loaded. To load TEK SPS BASIC,
enter the name of the SPS .LDA file for your device in response to the
prompting asterisk (*). (Do not enter the .LDA extension.) For example,
if the device is a DK hard disk, enter:

SPSDK

After BASIC is loaded, the version and release numbers of the BASIC Monitor
and the amount of free controller memory are printed on the terminal.
Finally,

READY

*

is displayed to show that TEK SPS BASIC is loaded and waiting for you to
enter program text or an immediate mode command.

A-2 @

TEK SPS BASIC V02 Peripheral Drivers

APPENDIX B

STANDARD HARDWARE BOOTING PROCEDURES FOR TEK SPS BASIC va2

M9301 Bootstrap ROM Card

A. Perform either 1 or 2 below.

1. On a controller without switch registers:

Press CNTRL-BOOT.

2. On a controller with switch registers:

a. Press HALT.
b. Enter the bootstrap address

(usually either 173000 or 173010} on the switch registers.
c. Press LOAD ADDRESS.
d. Press ENABLE.
e. Press START.

B. In response to the prompt character ($} printed on the terminal,
type the device name and drive number, followed by a carriage return.
The devices supported by the M9301 and TEK SPS BASIC V02 are:

DXn where n is a 0 or 1

DKn where n is an integer between a and 7, inclusive.

H9312 Bootstrap ROM Card

A. Perform either 1 .QI'.. 2 below.

1. On a controller without switch registers:

Press CNTRL-BOOT.

B-1

TEK SPS BASIC V02 Peripheral Drivers

2. On a controller with switch registers:

a. Press HALT.
b. Enter the bootstrap address

(usually either 173000 or 173010) on the switch registers.
c. Press LOAD ADDRESS.
d. Press ENABLE.
e. Press START.

B. In response to the prompt character ($) printed on the terminal,
type the device name and drive number, followed by a carriage
return. The devices supported by the M9312 (with the required ROM)
and TEK SPS BASIC V02 are:

DXn where n is a 0 or

DKn where n is an integer between 0 and 7, inclusive.

DLn where n is an integer between 0 and 3,inclusive
(not supported by TEK SPS BASIC V02-01)

DYn where n is a 0 or
(not supported by TEK SPS BASIC V02-01)

Standard ROH Bootstrap on SBT Module in CP4165

A. Press RESTART.

B. In response to the prompt (DEV=) printed on the terminal, type:

DXn where n is a 0 or 1

Do not enter a carriage return.

B-2

TEK SPS BASIC V02 Peripheral Drivers

APPEHDIX C

ARCHIVIHG YOUR SOFTWARE

We strongly urge you to create working copies of your software as
soon as possible and to keep your original copy as an archive. We also
recommend that you never write on your archive-copy medium and if possible,
that you always write-protect your archive software when making working
copies.

To assist you in archiving your software, some methods for creating
working copies are discussed here. The instructions are grouped under two
general headings: hard-disk based systems and floppy-disk based systems.
Under the heading for your system, find the example that best describes
your new software and follow the instructions on how to archive it. The
examples include:

Hard-Disk Based Systems

1. System software (without instrument checkout software) on hard
disk.

2. System software with instrument checkout software on hard disk.

3. Separate package or module on hard disk.

4. Separate package or module on floppy disk.

5. Instrument checkout software on floppy disk.

Floppy-Disk Based Systems

1. System software on a single floppy disk.

2. TEK SPS BASIC on minimum number of floppy disks.

3. Separate package or module on floppy disk.

4. Instrument checkout software on floppy disk.

C-1

TEK SPS BASIC V02 Peripheral Drivers

After you have made a copy of your software, check to see if it
requires patching. Do this by looking in the issue of the SPS Programming
Update shipped with your software. Included in this publication are all
the reported software errors and patches. Look through the list of patches
and the descriptions of the errors they fix. If any of the patches for
your version and release of the software are ones you want to implement,
carefully follow the patching directions in the SPS Programming Update.
Patch the working copy of the software you just made. Do not patch the
archive software. When you have finished copying and patching your software,
store the issue of the SPS Programming Update with your archive software.

NOTE

If you did not receive an issue of the
SPS Programming Update with your software,
in the U.S.A. request one by writing:

SPS Programming Update
Group 157 (94-384)
Tektronix, Inc.
P.O. Box 500
Beaverton, OR 97077

Outside the U.S.A., contact your local
Tektronix representative.

If you do any patching, you may want to save a copy of the patch files
created when PATCH.6LD was run. (Such a file has a numeric file name
extension, e.g. "PATCH. 001 ".) Do not copy these files onto your archive
medium. Instead, copy these patch files onto a separate disk or tape and
store this separate medium with the archive software.

C-2 @

TEK SPS BASIC V@2 Peripheral Drivers

Hard-Disk Based Systems

In the discussions that follow, the example device is the DK type of
hard disk (a DEC RK05 or similar device). To make working copies of the
software on another type of hard disk supported by TEK SPS BASIC, substitute
the proper device name for all occurrences of the DK device name, shown
in bold.

System Software (without Instrument Checkout Software) on Hard Disk

If you have purchased TEK SPS BASIC system software on hard disk, you
have two ways to make a working copy of your software.

I. SQUISH to a blank disk. This method is simple but transfers more
files to your working copy than you need for a hard-disk system.

1. Load the original disk into drive@, bootstrap, and write
protect.

2. Load a blank, formatted disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DK: TO DK1:
HOOK DK1:

4. When READY is printed on the terminal, remove the original
disk from drive @. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC.

II. COPY selected files. With this method, you transfer only the files
you need for a hard-disk system onto your working copy.

1 • Follow steps 1 and 2 in I above.

@ C-3

type:

TEK SPS BASIC V02 Peripheral Drivers

2. When the system is loaded and READY is printed on the terminal,

ZERO DK1:
COPY "*.SPS" TO DK1:"*.SPS"
COPY "*.OVL" TO DK1: 11 *.0VL 11

COPY "PATCH.*" TO DK1:"PATCH.*"
COPY "SPSDK.LDA" TO DK1:"SPSDK.LDA"
HOOK DK1:

3. Follow steps 4 and 5 in I above.

System Software with Instrument Checkout Software on Hard Disk

If you have purchased TEK SPS BASIC system software with instrument
checkout software on a single hard disk, use one of these procedures to
create working copies of this software. The type of the checkout software
determines which method you use.

I. BASIC checkout software. Use this procedure if the checkout software
is a BASIC program (e.g., CP56008 7912AD Checkout Software).

1. Load the original disk into drive 0, bootstrap, and write
protect.

2. Load a blank, formatted disk into drive 1.

3, When the system is loaded and READY is printed on the terminal,
type:

SQUISH DK: TO DK1:
HOOK DK1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC
with the instrument checkout software.

II. Stand-alone checkout software. Use this procedure if the checkout
software is a stand-alone software with its own .LOA file (e.g., CP56001
P7001/R7912 Checkout Software).

C-4

TEK SPS BASIC V02 Peripheral Drivers

1. Follow steps 1 and 2 in I above.

2. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DK: TO DK1:
HOOKQ DK1:

3. Follow steps 4 and 5 in I above.

When the working disk is bootstrapped, a prompt (*) will appear on
the terminal. Any file with the .LDA extension can then be loaded by
entering the file name without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDK

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

Separate Package or Module on Hard Disk

If you have purchased a separate software package or supplemental
module to add to your system, you have two options when making a working
copy.

I. SQUISH to a blank disk. Maintain a separate disk as a working copy
of the package or module.

1. Boot TEK SPS BASIC from drive 0. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

2. Remove the disk with TEK SPS BASIC from drive 0.

3. Load the original disk with the package or module into drive

0 and write-protect.

4. Load a blank, formatted disk into drive 1.

C-5

TEK SPS BASIC V02 Peripheral Drivers

5. Type:

SQUISH DK: TO DK1:

6. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

1. Use the disk in drive 1 as the working copy of the package or
module.

II. COPY to working disk. Add the package or module to your working
copy of TEK SPS BASIC on hard disk.

1. Load your working copy of TEK SPS BASIC into drive 0, bootstrap,
but do not write-protect.

2. Load the original disk with the package or module into drive
1 and write-protect.

3. When the system is loaded and READY is printed on the terminal,
type:

COPY DK1:"*.SPS 11 TO "*.SPS"

4. When READY is printed on the terminal, remove the original
disk from drive 1. This should be stored as the archive copy.

5. Your working copy in drive 0 now includes the new package or
module.

Separate Package or Module on Floppy Disk

If you have purchased a separate software package or supplemental
module on floppy disk to add to your hard-disk system, you must have a
floppy-disk device. We assume here that you want to add the package or
module to your working copy of TEK SPS BASIC on hard disk.

1. Load your working copy of TEK SPS BASIC into hard-disk drive
0, bootstrap, but do not write-protect.

C-6

TEK SPS BASIC V02 Peripheral Drivers

2. Load the original disk with the package or module into floppy-disk
drive 0 and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "DX"
COPY DX:"*.SPS" TO DK:"*.SPS"

4. When READY is printed on the terminal, remove the original
disk from floppy-disk drive 0. This should be stored as the archive copy.

5. Your working copy in hard-disk drive 0 now includes the new
package or module.

Instrument Checkout Software on Floppy Disk

If you received instrument checkout software on a floppy disk, use
one of these procedures to add it to your hard-disk system. The type of
the checkout software determines which method you use. To transfer the
software to your working copy on hard disk, you must have a floppy disk
device.

I. BASIC checkout software. Follow this procedure to copy checkout
software that is a BASIC program (e.g., CP56008 7912AD Checkout Software).

1. Load your working copy of TEK SPS BASIC into hard-disk drive
0, bootstrap, but do not write-protect.

2. Load the original disk with the checkout software into floppy-disk
drive 0 and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "DX"
COPY DX:"*·*" TO DK:"*·*"

4. When READY is printed on the terminal, remove the original
disk from floppy-disk drive 0. This should be stored as the archive copy.

C-7

TEK SPS BASIC V02 Peripheral Drivers

5. Your working copy in hard-disk drive 0"now includes the checkout
software.

II. Stand-alone checkout software. Follow this procedure to copy
checkout software that is stand-alone software with its own .LDA file
(e.g., CP56001 P7001/R7912 Checkout Software).

1. Follow steps 1 through 3 in I above.

2. Then enter:

HOOKQ DK:

3. Follow steps 4 and 5 in I above.

Now when the working disk is bootstrapped, a prompt (*) will appear
on the terminal. Any file with an .LDA extension can then be loaded by
entering the file name, without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDK

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

C-8

TEK SPS BASIC V02 Peripheral Drivers

Floppy-Disk Based Systems

In the discussions that follow, the example device is the DX type of
floppy disk (a preformatted, IBM-compatible, single-density flexible
diskette). To make working copies of the software on another type of floppy
disk supported by TEK SPS BASIC, substitute the proper device name, shown
in bold.

System Software on a Single Floppy Disk

If you have purchased TEK SPS BASIC system software on floppy disk,
you have two ways to make a working copy of your software.

I. SQUISH to a blank disk. This method is simpler but transfers more
files to your working copy than you need for a floppy-disk system.

1. Load the original disk into drive 0, bootstrap, and write
protect (if possible).

2. Load a blank, formatted floppy disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

SQUISH DX: TO DX1:
HOOK DX1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. The disk in drive 1 is now your working copy of TEK SPS BASIC.

II. Copy selected files. With this method, you transfer only the files
you need for a floppy-disk system onto your working copy.

1 • Follow steps 1 and 2 in I above.

@ C-9

TEK SPS BASIC V02 Peripheral Drivers

2. When the system is loaded and READY is printed on the terminal,
type:

ZERO DX1: 6
COPY "*.SPS" TO DX1:"*.SPS"
COPY "*.OVL" TO DX1:"*.0VL 11

COPY "PATCH.*" TO DX1:"PATCH.*"
COPY "SPSDX.LDA" TO DX1:"SPSDX.LDA" INTO 95
HOOK DX1:

3. Follow steps 4 and 5 in I above.

TEK SPS BASIC on Minimum Number of Floppy Disks

1. Load the original disk with the proper monitor file (SPSDX.LDA)
into drive 0, bootstrap, and write protect (if possible.)

2. Load a blank, formatted disk into drive 1.

3. When the system is loaded and READY is printed on the terminal,
type:

LOAD "SQUISH"
SQUISH DX: TO DX1:
HOOK DX1:

4. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

5. Remove the disk from drive 1. It is now your working copy of
TEK SPS BASIC System software.

6. Load another of the original disks to be archived into drive
0 and write-protect (if possible).

7. Load another blank, formatted disk into drive 1.

8. Type:

SQUISH DX: TO DX1:

9. When READY is printed on the terminal, remove the original
disk from drive @. This should be stored as the archive copy.

C-10 @

TEK SPS BASIC V~2 Peripheral Drivers

10. Remove the disk from drive 1. It is now your working copy of
additional SPS software.

11. Repeat steps 6 through 10 until all the original disks are
archived.

Separate Package or Module on Floppy Disk

If you have purchased a separate software package or supplemental
module to add to your system, your have two options when making a working
copy.

I. SQUISH to a blank disk. Maintain a separate disk as a working copy
of the package or module.

1. Boot TEK SPS BASIC from drive 1. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

2. Remove the disk with TEK SPS BASIC from drive @.

3. Load the original disk with the package or module into drive
@and write-protect (if possible).

4. Load a blank, formatted disk into drive 1.

5. Type:

SQUISH DX: TO DX1:

6. When READY is printed on the terminal, remove the original
disk from drive @. This should be stored as the archive copy.

7. Use the disk in drive 1 as the working copy of the package or
module.

II. Copy to working disk. Add the package or module to your working
copy of TEK SPS BASIC on floppy disk. Depending on the number of free
blocks on your working disk, you may not be able to do this.

1. Load your working copy of TEK SPS BASIC into drive~' bootstrap,
but do not write-protect.

@ C-11

TEK SPS BASIC V02 Peripheral Drivers

2. Load the original disk with the package or module into drive
and write-protect (if possible).

3. When the system is loaded and READY is printed on the terminal,
type:

COPY DX1:"*.SPS" TO "*.SPS"

4. When READY is printed on the terminal, remove the original
disk from drive 1. This should be stored as the archive copy.

5. Your working copy in drive 0 now includes the new package or
module.

Instrument Checkout Software on Floppy Disk

Use one of these procedures to archive instrument checkout software.
The type of the checkout software determines which method you use.

I. BASIC checkout software. Follow this procedure if the instrument
checkout software is a BASIC program (e.g., CP56008 7912AD Checkout
Software).

1. Load a blank, formatted disk into drive 1.

2. Boot TEK SPS BASIC from drive 0. When the system is loaded and
READY is printed on the terminal, type:

LOAD "SQUISH"

3. Remove the disk with TEK SPS BASIC from drive 0.

4. Load the original disk with the checkout software into drive
0 and write-protect (if possible).

5. Type:

SQUISH DX: TO DX1:

6. When READY is printed on the terminal, remove the original
disk from drive 0. This should be stored as the archive copy.

C-12

TEK SPS BASIC V~2 Peripheral Drivers

1. Use the disk in drive 1 as the working copy of the instrument
checkout software.

II. Stand-alone checkout software. Follow this procedure if the
instrument checkout software is a stand-alone software with its own .LDA
file (e.g., CP56001 P7001/R7912 Checkout Software).

1. Follow steps 1 and 2 in I above.

2. Enter:

HOOKQ DX1:

3. Follow steps 3 through 7 in I above.

When the working disk is bootstrapped, a prompt (*) will appear on
the terminal. Any file with an .LDA extension can then be loaded by entering
the file name, without the file name extension.

To load and execute TEK SPS BASIC, type:

SPSDX

To load and execute the instrument checkout software, type the name
of the .LDA file, but without the .LDA extension.

C-13

TEK SPS BASIC V02N02XM
070-27 40-00

YOUR COMMENTS COUNT

The Manual Writers at Tektronix, Inc. are interested in what you think about this manual, how you use it, and
changes you might like to see in future manuals. Any queries regarding this manual will be answered personally.

What did you find that was:

interesting? -----------------------------------

frustrating? -----------------------------------

helpful? ------------------------------------

confusing?

Is there anything you would like to see added to or deleted from this manual? ___________ _

What is your major application area for this product? ---------------------

Have you found any interesting applications, operating hints, or software routines which you would like to share with

us? --

* * * * *
Name: __________________ Position: ________________ _

Company: ----·------------ Department:

Street: ______________________________________ _

City: ------------------State: __________ Zip:

Fold on dotted lines and tape.
Postage will be paid by Tektronix, Inc. if mailed in U.S.A.

BUSINESS REPLY MAIL
No postage necessary if mailed in the United States

Postage will be paid by

TEKTRONIX, INC.

P.O. Box 500

Beaverton, Oregon 97005

ATTN: SPS Documentation Group 157 - 94-384

FIRST CLASS
PERMIT NO. 61

BEAVERTON, OREGON

