

8500 Series B Assembler Users

@

Section 88

8560 HOST SPECIFICS

This section is designed to be inserted into Section 8 ofthe 8500 Series B Assembler Core Users
Manual. This Host Specifics section provides information that applies specifically to the 8560
Multi-User Software Development Unit.

Throughout the section, "this manual" refers to the 8500 Series B Assembler Core Users
Manual.

The examples given in this section are for the 8086/8088 microprocessor, but apply equally
well to other microprocessors.

ASCII codes are given in hexadecimal only.

NOTE

The TNIX operating system does not support Series A software.

TNIX OPERATING SYSTEM FEATURES
Filenames
TNIX filenames may contain up to 14 characters. If you enter a filename longer than 14
characters, the excess characters are discarded. Uppercase and lowercase characters are
considered different. A filename may be made up of any ASCII characters except for NULL
(ASCII code 00) and slash (ASCII code 2F). You should also avoid using any of the following
special characters in filenames until you are aware of each character's significance:

()*? \1" $ 1
\< >; [] &?

Refer to the discussion under the heading "Interpretation of Special Characters" in Section 5
(The TNIX Shell) of your 8560 MUSDU System Users Manual for a better understanding ofthese
cha racters.

In addition, you should avoid using the dash (-) as the first character of a filename. The dash is
used in command names as a command option designator and has special meaning tothe linker,
library generator and many TNIX commands.

88-1

Software Installation 8560 Host Specifics-8500 Series B Assembler Users

88-2

Filespecs
A filespec is a sequence of filenames, separated by slashes, that defines the directory path of a
file. Each filename in the filespec identifies a directory along the path; the final filename
represents the file itself.

Command Names
A command name is a word that represents a command. TNIX command names must be entered
exactly as specified in the 8560 MUSDU System Users Manual. The TNIX operating system
differentiates between upper and lower case characters in command lines.

Redirection of Standard Output
The -I command option is used with the linker or the library generator to write a listing file to
standard output. Standard output is normally assigned to the terminal (/dev/ttynn, where nn is
the terminal number), but may be redirected using a greater-than sign (». For example:

link -1 -0 prog.obj sub.obj -0 load >lnkl

With this invocation, the listing file will be written to a file named Inkl, rather than to the
terminal. See the discussion "Output Redirection" in Section 5 (The TNIX Shell) of your 8560
MUSDU System Users Manual for more information about redirecting output.

SOFTWARE INSTALLATION
This procedure describes how to copy the software for the 8086/8088 Series 8 assembler from
the assembler installation flexible disk to the 8560 system fixed disk.

NOTE

The linker and library generator software is already present on your 8560
system fixed disk.

To complete this installation procedure you need the following items:

• an 8560 Multi-User Software Development Unit

• an 8086/8088 assembler software installation flexible disk

This installation procedure adds about 5 files to your 8560 system fixed disk (device / dey /hdO).

This installation procedure will work regardless of which Series 8 assembler you are installing.
See Table 88-1.

@

8560 Host Specifics-~500 Series B Assembler Users Assembler Software Selection

@

Install the Software
NOTE

You must have super-user status (for example, be logged in as root) in order to
install software.

Now place your 8086/8088 assembler installation flexible disk in drive 0 of the 8560 flexible
disk device (device name is /dev/fdO) and close the drive door.

The install command installs the assembler software; simply type:
install <CR>

Your assembler software is installed once the TNIX operating system responds with its prompt.
The dollar sign ($) is the sta ndard prompt; however, for the super user , the standard prompt is the
pound sign (#).

After entering the install command, wait for the superuser prompt to return. This indicates that
your assembler software has been installed. You may now remove your assembler flexible disk
and:

• install more software on your 8560 system fixed disk, or

• continue with the 8086/8088 Assembler Demonstration Run that follows in this section.

You can install more than one assembler on your 8560 system fixed disk.

ASSEMBLER SOFTWARE SELECTION
To tell the TNIX operating system which assembler software to use, you must set the uP TNIX
shell environment variable to the proper assembler name.

For example, in order to select the 8086/8088 assembler software, the following command line
would be entered:

$ uP=8086;export uP <CR>

T
The assembler name.
See Table 88-1.

NOTE

You need only enter the ";export uP" part of the indicated command line once.
Each succeeding time, you may enter just "uP=micro", where "micro" is the
appropriate assembler software choice (from Table 88-1).

You may alternatively select other assembler software, but only if such software has been
installed.

Table 88-1 shows what assembler names may be used in order to select the desired assembler
software.

88-3

Linker Invocation 8560 Host Specifics-8500 Series B Assembler Users

88-4

Table 88-1
Assembler Selection by Setting

the uP Shell Variable

Assembler Selected Name(s) to Use in uP Declaration

68000 68000

Z8001/Z8002 Z8000 Z8001 Z8002
z8000 z8001 z8002

8086/8088 8086 8087 8088

6809 6809

Z80A Z80 z80

8080A/8085A 8080 8085

6800/6801/6802 6800 6801 6802 6803

8048/8021/8041A/8022 8048 MCS84 mcs48
8021 8041 8022

Notice in Table 88-1 that most assemblers may be selected by more than one name. For
instance, the 8086/8088 assembler software may be selected using any of the following
names: 8086, 8087, or 8088.

ASSEMBLER INVOCATION
The assembler is invoked by the operating system command asm. The asm command has the
following syntax:

asm [object] [listing] source ...

object-filespec of object file to be produced
listing-filespec of listing file to produced
source-filespec(s) of source file(s) to be assembled

Assembler invocation is discussed in detail in The Assembler section of this manual.

LINKER INVOCATION
The linker is invoked by the operating system command link. The link command has the
following syntax:

link command-option ...

Linker invocation is discussed in detail in The Linker section of this manual.

@

8560 Host Specifics-8500 Series B Assembler Users Demonstration Run

@

LIBGEN INVOCATION
The library generator (LibGen) is invoked by the operating system command libgen. The libgen
command has the following syntax:

libgen command-option ...

LibGen invocation is discussed in detail in The Library Generator section of this manual.

NOTE

LibGen creates some temporary files during execution. These files are deleted
when LibGen terminates normally. However, if LibGen terminates abnormally
(fatal error, pressing the CTRL -C (control-C) key, system crash), these temporary
files remain on the 8560 system fixed disk. The temporary file names all begin
with ###.Iib.tmp. The TNIX command that would be entered to delete all such
files is:

rm ###.lib.tmp*

DEMONSTRATION RUN
Introduction
This demonstration run shows you how to enter, modify, assemble, link, and load a simple
8086/8088 program and subroutine. If you are using a different microprocessor, you must
change the microprocessor dependent instructions to similar instructions that are valid for the
selected microprocessor.

The purpose of this demonstration is to give you the basic information and experience you will
need to begin using the assembler, linker, and library generator. For your convenience, the
sample program and subroutine are short and trivial. Only a few features of the assembler and
linker are demonstrated, and the library generator is not discussed.

To perform this demonstration run you need the following items:

• an 8560 Multi-User Software Development Unit

• an 8540 Integration Unit or an 8550 Microcomputer Development Lab

Demonstration Run Hardware Configurations
This discussion assumes that the 8560 and 8540/8550 units are already set up and running.
The hardware configuration assumed depends on whether you use an 85400r an 8550with the
8560. The following two paragraphs describe the two hardware configurations that may be used
in this demonstration run.

Using an 8540 with the 8560. The cable from the terminal is connected to a terminal I/O port
(port numbers 0-7) on the 8560. The High Speed Interface (HSI) Cable is connected between the
HSI port on the 8540 and an HSII/O port on the 8560. When you connect the 8540 to the 8560,
set the jumpers on the 8560 I/O Adapter board to the HSI position.

88-5

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-6

Using an 8550 with the 8560. The cable from the terminal is connected to a terminal 1/0 port
(port numbers 0-7) on the 8560. The RS-232-C cable is connected between the REMOTE port on
the 8550 and a High Speed Interface (HSI) liD port on the 8560. When you connect the 8550to
the 8560, jumpers on the 8560 liD Adapter board must be set to the RS-232-C position in the
8560.

For more information on these and other hardware configurations, refer to the following
discussions in your 8560 MUSDU System Users Manual: "TERM MODE" in Section 7
(Intersystem Communication) and "Intersystem Communication" in Section 2 (Operating
Procedures).

8560 to 8540/8550 Communications
In order to communicate from the 8560 Multi-User Software Development Unit to either an
8540 Integration Unit or an 8550 Microcomputer Development Lab, you must inform the 8560
which 8560 liD port (channel) the 8540/8550 is plugged into. The form of the command line to
accomplish this is:

IU=n; export IU [needed each time you log in]

.
Notice that n is a number from 0 to 7 specifying which 8560 1/0 port that the 8540/8550 is
plugged into. This allows 8540/8550 operating system commands to be sent through the 8560
to fhe 8540/8550.

NOTE

If you have connected an 8550 to your 8560 and have set the jumpers on the
8560 liD Adapter board to the RS-232-C position, you must enter the fol/owing
command (superusers only) to enable HSI protocol on an RS-232-C Line.

stty IU >/dev/ttyn [needed only once as long as
the TNIX system is up]

Again, the port number (0-7) is specified byn. Some 110 ports may have already
been set for High Speed Interface (HSI) protocol by your system manager. The
I/O protocol may be defined for each 8560 liD port by the file /etc/ttys.

It may be helpful to refer to the heading "TTYS(5)" in Section 5 (File Formats and
Conventions) in your 8560 MUSDU System Reference Manual.

Once communication is established between the 8560 and an 8540/8550, you may enter an
8540/8550 command and it will be executed by the 8540/8550.

@

8560 Host Specifics-8600 Series 8 Assembler Users Demonstration Run

@

Command Line Conventions
In this demonstration run, each command line that is to be typed in by you will use the following
conventions:

• Underlined-Underlined characters in a command line must be entered from your system
terminal. Those characters not underlined are system output .

• <CR>-Each command line ends with an end-of-line character. The end-of-line character
used here is the carriage return (ASCII code 00). When a carriage return is to be entered,
the symbol <CR> is used. This is not to be confused with the end-of-line character (the line
feed, ASCII code OA) used to end each line in any file stored on the 8560 system fixed disk.

Preparation
To accomplish this demonstration run you should have a basic understanding ofthe 8560 Multi
User Software Development Unit and the TNIX Text Editor. If you need to review how the 8560
and its editor work, refer to Sections 1 (Learning Guide) and 4 (The TNIX Editor) of the 8560
MUSDU System Users Manual.

You will need about 60 minutes to complete this demonstration run.

NOTE

If you have not installed the 808618088 assembler software yet, then do so
before continuing this demonstration run.

Install the appropriate assembler software. Select the 8086/8088 assembler software by
setting the uP TNIX shell environment variable to the proper assembler name (See Table 88-1).

For example, to select the 8086/8088 assembler software, enter:
$ uP=8086; export uP <OR>

T
The assembler name.
See Table 88-1.

Now enter the following command to create the new directory, asm.demo:
$ mkdir asm.demo <OR>

Now cause asm.demo to become the working directory using the following command:
$ cd asm.demo <OR>

88-7

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-8

Examine the Sample Subroutine and Main Program
Figure 88-1 lists the 8086/8088 subroutine and program you will enter, assemble, link, and
load in the demonstration run. Similar instructions for any other microprocessor may be
substituted without changing the validity of the demonstration run.

Subroutine OUTSU8:

TITLE 'SAMPLE SUBROUTINE'
NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBSI

SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER
OUTSUB OUT #PORTN, AL OUTSUB STARTS HERE.

RETS ; RETURN TO PROGRAM.
END

Main Program:

GLOBAL PORTN,OUTSUB
PORTN EQU 15H
START MOVB AL,#'?'

CALLS OUTSUB,OUTSUB
HLT
END START

PORT = 15H
CHARACTER = '?'
SEND '?' TO PORT 15
... AND STOP.

Fig. 88-1. Source code for sample subroutine and main program.

Subroutine OUTSUB outputs a single ASCII character to an 1/0 port specified by PORTN. The
main program specifies an 1/0 port and a character and calls OUTSUB to send the character
to that port. The subroutine and main program are discussed in more detail later in this
section.

The subroutine performs a trivial task: it outputs the ASCII character stored in the a-bit
accumulator AL to an 1/0 port specified by the symbol PORTN.

NOTE

For the 808618088 microprocessor, the value for PORTN was chosen
arbitrarily. If your I/O ports are configured differently, you must alter this
demonstration program before you can run it successfully on your system.

The main program places a character in the accumulator, calls the subroutine to send the
character to the 1/0 port, and then halts.

You can think of the subroutine as a carefully prepared component of a major programming
project. The main program can be viewed as a quickly written test for the subroutine.

@

8560 Host Specifics-8500 Series B Assembler Users Demonstration Run

@

Assembly Language Statements
An assembler source module is made up of assembly language statements. There are three
types of assembly language statements:

• An assembly language instruction is translated by the assembler into a machine
instruction.

• An assembler directive indicates a special action to be taken by the assembler. Assembler
directives define data items, constants, and variables; provide information to the linker;
control macros and conditional assembly; and specify options for the assembler and linker
listings.

• A macro invocation is replaced by the statements of the macro it invokes. (Macro
invocations are not discussed in this demonstration.)

Each assembly language statement has four fields. Each field may vary in width, and certain
fields may be blank. However, the fields always occur in the following order:

1. The label field. The label field always begins in column 1 of the statement. The label
allows the statement to be referenced by other statements. The label usually represents
the address of the instruction or data item represented by the statement.

2. The operation field. The word in the operation field indicates the type of action to be taken
by the assembler. The word may be an assembler directive, an assembler mnemonic, or
the name of a macro. If the word is an assembler mnemonic, the assembler translates the
statement into a machine instruction.

3. The operand field. The operand field completes the assembly language statement. Most
assembler directives and assembler instructions contain one or more operand
expressions. The type and number of operands depend on the operation.

4. The comment field. Comments are used for program documentation only; they have no
effect on assembly. A semicolon (;) indicates that the remainder of the line is a comment.
A comment may follow the operand field, or may begin with a semicolon in column 1 and
take up an entire source line.

Explanation of the Subroutine Source Code
The following text explains each statement in the sample subroutine (shown in Fig. 8B-1). The
two statements preceding the END statement are 8086/8088 instructions. If you are using any
processor other than the 8086/8088, substitute equivalent instructions for these two
statements. The rest of the statements are assembler directives.

TITLE 'SAMPLE SUBROUTINE'

The phrase 'SAMPLE SUBROUTINE' will appear in the heading on each page of the assembler
source listing.

NAME SUBSMOD

When the subroutine is assembled, the resulting object module wi" be named "SUBSMOD".

88-9

Demonstration Run 8560 Host Specifics-8500 Series 8 Assembler Users

88-10

GLOBAL PORTNJOUTSUB

PORTN and OUTSUB are declared as global symbols, since each symbol is given a value in one
module and referred to in another module. OUTSUB is a bound global because it is defined in
this module. PORTN is an unbound global because it is not defined anywhere in this module.

SECTION SUBSl

Each object module is composed of one or more sections. The linker treats each section as a
separate unit: sections from the same module may be placed in different areas of memory. The
section in object module SUBSMOD will be called SUBS1. (If you were to add more sections to
this source module, they might be called SUBS2, SUBS3, and so on.)

NOTE

The assembler directives SECTION, COMMON, and RESERVE each declare a
different type of section, and may also specify restrictions on the relocatability of
the section. When no restriction is specified, the section is given the default
relocation type. The default relocation type is microprocessor dependent. For the
8086/8088, the default relocation type is alignment on 16-byte boundaries
(ALIGN 16). See the Assembler Specifics section of this manual for the default
relocation type for your microprocessor. The Linker section of this manual
contains an explanation of the six attributes of a section: name, class name,
section type, relocation type, size, and memory location.

SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER

This is a comment.

OUTSUB OUT #PORTN J AL ; OUTSUB STARTS HERE.

This 8086/8088 instruction outputs the contents of the 8-bit accumulator AL to an 1/0 port
specified by PORTN. The symbol OUTSUB becomes defined as the address of this instruction,
which is the first instruction in the subroutine.

RETS ; RETURN TO PROGRAM.

This 8086/8088 instruction returns control to the calling program.

END

This assembler directive marks the end of the source module.

Explanation of the Main Program Source Code
The following text explains each statement in the sample main program (shown in Fig. 8B-1).
The program contains three assembler directives (GLOBAL, EQU, and END) and three
8086/8088 instructions (MOVB, CALLS, and HLT).

GLOBAL PORTNJOUTSUB

As in the subroutine, PORTN and OUTSUB are global symbols. However, in this module PORTN
is a bound (defined) global while OUTSUB is an unbound (undefined) global. The GLOBAL
statements allow the two modules to share the 1/0 port address and the address of the
subroutine.

@

8560 Host Specifics-8~00 Series B Assembler Users Demonstration Run

@

PORTN EQU 15H ; PORT = 15H

This assembler directive assigns the hexadecimal value 15 to the symbol PORTN. "PORTN"
becomes synonymous with the constant 15H.

START MOVB AL,#'?' ; CHARACTER = '?'

This 8086/8088 instruction loads the hexadecimal value 3F (the ASCII code for a question mark)
into the 8-bit accumulator AL. This statement is given a label, "START", so the END statement
may refer to it.

CALLS OUT SUB , OUTSUB ; SEND ' ?' TO PORT 15

This 8086/8088 instruction transfers control to the instruction labeled OUTSUB in the segment
of memory whose base address is specified by the address OUTSUB. The second operand of an
intersegment CALLS must be the base address of the segment of memory in which the called
subroutine resides. Since OUTSUB is the location of the first byte in the section SUBS1,
OUTSUB defines the base address of the section. The subroutine sends the ASCII code for the
question mark to 1/0 port 15H.

HLT ; ... AND STOP.

Control returns from the subroutine to this 8086/8088 instruction. The HLT instruction halts
program execution.

END START

This assembler directive terminates the source module and indicates that program execution
should begin with the instruction labeled "START". START is called the transfer address. The
transfer address is passed through the assembler and linker to the 8540/8550 operating
system 10 and 9 commands.

Notice that this program source module does not contain a TITLE, NAME, or SECTION directive.
The following default conditions result:

• No special title appears in the page heading of the source listing.

• The object module is called *NONAME*.

• The one section in *NONAME* is given a default name, section type, and relocation type.

Naming Files
This demonstration run produces several files. To give each file a name that reflects its contents
and importance, we suggest you use the following file naming standards:

• The first part of the file name is an optional descriptive name followed by a period.

• The last part of the file name is a 3-or 4-character identifier that reflects the file type.

88-11

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-12

The following files will be produced:

File Name

sub.asm
sub.obj
sub.asml
prog.asm
prog.obj
prog.asml
load
Inkl

Description

subroutine assembler source file
subroutine object file
subroutine assembler list file
program assembler source file
program object file
program assembler list file
Program load file
Program linker listing file

Create the Subroutine Source File

How Created

by you
by assembler
by assembler
by you
by assembler
by assembler
by linker
by linker

The TNIX Text Editor, ed, helps create and modify source files. See Section 4 (The TNIX Editor) in
your 8560 MUSDU System Users Manual for a more complete explanation of ed.

How to Correct Typin'g Mistakes in the Editor

Before you begin to input text, you need to know how to correct your mistakes on the input line.
You may correct only the line you are currently editing. Once you have entered a carriage return
to end the line, no further corrections can be made to that line while in input mode.

Deleting Characters One-by-One During Input Mode. The BACKSPACE key on a CRT
terminal cancels the character above the cursor and moves the cursor one space tothe left. The
same thing results when a CTRL-H (control-H is the default TNIX erase character command) is
entered.

Deleting an Entire Line During Input Mode. If you are entering a lineoftext and decide for some
reason (bad text perhaps) that you would like to replace the entire line and you have NOT
entered the carriage return yet, you may enter a CTRL-U (control-U is the default TNIX kill line
command) to delete the line. TNIX recognizes a CTRL-U entry as a command to delete the entire
input buffer entry. Thus after entering a CTRL-U, simply continue typing as though you had
never entered the bad text line.

If you have typed in the bad text line and entered the carriage return, you may replace the bad
line by using the following procedure:
Old-line-you-just-typed <CR>
..:.. <CR>
£. <CR>
type-in-new-line <CR>
... continue with text input

[Your current text line]
(Terminate input mode]
[Delete bad line and enter input mode]
[Text is appended to line preceding deleted line]

@

8560 Host Specifics-8f;i00 Series B Assembler Users Demonstration Run

@

Correcting Errors in a Line That Has Already Been Entered. The general command procedure
is:

. <CR>
ferror/ <CR>
line-with-error
s/error/the-correction/p <CR>
line-with-the-correction

These commands:

• Terminate input mode.

[Terminate input mode]
[Search for string "error"]
[Display line with string "error"]
[Substitute "error" with "the-correction"]

[Corrected line is displayed]

• Search for the first occurrence of a line with the character string "error". This line becomes
the current line and is echoed to the system terminal.

• Substitute the characters "error" with the characters "the-correction". The corrected line
is then displayed.

Start Editing

The TNIX command ed invokes the TNIX Text Editor (named ed). The filename that follows the
command indicates the file to be edited. In this demonstration, the name sub.asm is used. The
extension (asm) indicates an assembler source file.

The editor does not respond with a prompt after performing the entered command. Rather, ed
responds by moving the cursor to the beginning of the next line after displaying the appropriate
information (if any) for that command. Enter the following command line to begin the editing
session that creates sub.asm, the subroutine source file:
$ ed sUb.asm <CR>

After you enter this command, the editor responds:
?sub.asm

The editor is now waiting for a command. Enter input mode using the a command and then type
in the subroutine.

~ <CR>

NOTE

Be sure to misspell GLOBAL in the third line of text. This deliberate typing error
will be used to illustrate features of the assembler and editor.

TITLE 'SAMPLE SUBROUTINE' <CR>
NAME SUBSMOn <CR>
GLOABL PORTN,OUTSUB <CR>
SECTION SUBSl <CR>

SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER. <CR>
OUTSUB OUT #PORTN, AI. OUTSUB STARTS HERE. <CR>

RETS RETURN TO PROGRAM. <CR>
___ =END--.. <CR>
~ <CR>

Insert mode is terminated by typing a single period followed by a carriage return l <CR» on an
empty line. Typing the period directs the editor to enter command mode. This is signified by the
cursor moving to the next line. You may now enter your next editor command.

88-13

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-14

Examining the Program Text Entered in the File. The text that you just entered is stored in the
editor workspace. To display the workspace contents from beginning to end, enter the following
command:
l,$p <CR>

TITLE 'SAMPLE SUBROUTINE'
NAME SUBSMOD
GLOABL PORTN,OUTSUB
SECTION SUBSI

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
OUTSUB OUT #PORTN, AL ; OUTSUB STARTS HERE.

RETS ; RETURN TO PROGRAM.
END

Examine the listing of the text. If you discover an error, don't panic, you will soon learn how to
correct the misspelling of GLOBAL and you may apply it to any misspellings of your own.

Now enter the following commands to copy the text in the workspace out,to the new source file
and end the editing session:
J! <CR>
265
q <CR>

T
Thus we see that

• The w command' writes the contents of the editor workspace to the file (sub.8sm) you
specified in the ed command line (ed sub.asm).

• The 265 indicates the number of characters that are in the file you have just produced.

• The q command closes the editing session and returns control to the TNIX operating
system.

The TNIX prompt ($) indicates that you have exited the editor. You may now enter your next TNIX
command.

Assemble the Subroutine and Examine Any Errors
The asm command invokes the assembler and specifies the source file(s) to be assembled and
the object and listing files to be produced. To scan source file sub.8sm for errors, enter the
following command:

$ asm "" "" sub.asm <CR>

Omitting the filespecs of the object and listing files has two advantages:

1. The assembler runs faster because it produces no object code or listing.

2. The 8sm command line is shorter.

You may want to omit these filespecs from your 8sm command line whenever you suspect that
your source code contains errors.

@

8560 Host Specifics-8,500 Series B Assembler Users Demonstration Run

@

The assembler responds as follows on your system terminal:
ASM 8086/8088 Vxx.xx-xx Copyright (C) 1981 Tektronix, Inc.
*****Pass 2

3 00000000 00000000 GLOABL PORTN,OUTSUB
*** ASM: 107(E) Undefined opcode "GLOABL"

6 00000000 E600 OUTSUB OUT #PORTN,AL ; OUTSUB STARTS HERE.
*** ASM: 21(E) Undefined operand

8 Lines Read
8 Lines Processed
2 Errors

The assembler's response can be interpreted as follows:
ASM 8086/8088 Vxx.xx-xx Copyright (C) 1981 Tektronix, Inc.

The assembler announces itself as it begins executing. The assembler reads through your
source file twice. The first time through (Pass 1), the assembler makes a list of symbols that
appear in the source code and tries to assign an address or value to each symbol.

*****Pass 2

The assembler begins its second pass through your source file. During Pass 2 the assembler
produces the object and listing files and displays error messages and statistics.

3'00000000 00000000 GLOABL PORTN,OUTSUB
*** ASM: 107(E) Undefined opcode "GLOABL"

The assembler cannot translate the above statement because "GLOABL" is not an 8086/8088
mnemonic, an assembler directive, or the name of a macro. The erroneous source line and the
error message would appear in the listing (if any) just as they appear on the system terminal. The
three numbers to the left of the statement will be explained when you examine an assembler
listing later in this demonstration run.

6 00000000 E600 OUTSUB OUT #PORTN, AL ; OUTSUB STARTS HERE.
*** ASM: 21(E) Undefined operand

Because the assembler did not understand the GLOABL statement, it does not know that PORTN
is a global symbol. The assembler expects PORTN to be defined in this module.

8 Lines Read
8 Lines Processed
2 Errors

These lines summarize the assembler's activities. There are eight lines of code in your source
file. The number of lines read differs from the number of lines processed only in programs that
contain macros or conditional assembly.

The two errors, already discussed, produced the two undefined symbols GLOABL, and PORTN.

88-16

Demonstration Run S560 Host Specifics-S500 Series B Assembler Users

88-16

Correct the Error in the Subroutine Source Code
Both errors detected by the assembler arose from the misspelling of "GLOBAL" in line 3 of the
source file, sub.asm. Invoke the editor so that you may correct the misspelling:

$ ed sub.asm <CR>
265

Enter the following command line. This command searches for the character string "GLOABL"
and then displays the first line that contains the string.

/GLOABL/ <CR>
GLOABL PORTN,OUTSUB

Now the workspace pointer is at the line you want to modify. Use the s command to reverse the
letters "A" and "B" in "GLQABL":

s/AB/BA/p <CR>
GLOBAL PORTN,OUTSUB

The modified line is displayed.

As before, enter the following commands to copy the edited text in the workspace out to the
source file (sub.asm) and end the editing session:
!!. <CR>
265
q <CR>
T

Re-Assemble the Subroutine
Enter the following command to create an object file (sub.obj) and an assembler listing file
(sub.asml) from the subroutine source file:

$ asm sub.obj sub.asml sub.asm <CR>
ASM SOS6/S0S8 Vxx.xx-xx Copyright (C) 1981 Tektronix, Inc.
*****Pass 2

8 Lines Read
S Lines Processed
o Errors

$

This time the assembler finds no errors.

Examine the Subroutine Listing
In order to examine the assembler listing stored on the file sub.asml, copy the file to your line
printer:

$ 1p1r sub.asm1 <CR>

@

8560 Host Specifics-8500 Series B Assembler Users Demonstration Run

@

If you have no line printer, use the cat command to list the file on your system terminal.
(Remember that you may use CTRL-S to suspend and CTRL-Q to resume display on the system
terminal.)

$ cat sub.asml <CR>

Figure 88-2 shows the listing of the sample subroutine.

ASM 8086/8088 SAMPLE SUBROUTINE Page 1
dd-mmm-yy/xx:xx:xx Vxx.xx-xx (8560)

2
3
4
5
6 00000000 E600 RU
7 00000002 CB
8

ASM 8086/8088 SYMBOL TABLE
Vxx.xx-xx (8560)

NAME SUBSMOn
GLOBAL PORTN,OUTSUB
SECTION SUBSl

SUBROUTINE OUT SUB -- OUTPUTS A CHARACTER.
OUTSUB OUT #PORTN ,AL OUTSUB STARTS HERE.

RETS ; RETURN TO PROGRAM.
END

Page 1
dd-mmm-yy/xx:xx:xx

Section = SUBS1, Aligned to 00000010, Size = 00000003

OUTSUB------------OOOOOOOO G

Section = %SUBOBJ, Aligned to 00000010, Size = EMPTY

Unbound Globals

PORTN-------------OOOOOOOO

8 Lines Read
8 Lines Processed
o Errors

Fig. 88-2. Assembler listing for the sample subroutine.

The command asm sub.obj sub.asml sub.asm produces this listing file from the subroutine
source file. The command Ip1 r sub.asml copies the listing file to the line printer.

Every assembler listing has two parts: the source listing and the symbol table. Each page of the
listing begins with a standard page heading.

88-17

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-18

The Source Listing

Page 1 of your listing contains the source listing. The heading includes the words "SAMPLE
SUBROUTINE", which you supplied with the TITLE directive.

Each line of the source listing may contain the following information:

1. the line number (decimal);

2. the location counter (hexadecimal) of the object code generated (if any);

3. the assembled object code (hexadecimal) or result value;

4. a line indicator (indicates macro expansion, string substitution, relocation, text from
include file, or unbound global reference);

5. the source statement.

If any statement contains an error, the appropriate error message app~ars directly after the
statement.

Examine each line of your source listing:

• Line 1 (The TITLE directive) is not printed because it is a listing control directive.

• Lines 2, 3, 4, and 8 are assembler directives that produce no object code. The information
they provide is stored in special areas of the object module.

• Line 5 is a comment.

• Lines 6 and 7 are 8086/8088 assembly language instructions:

The 8086/8088 instruction OUT #PORTN,AL produces the two-byte machine instruction
E600. E6 is the hexadecimal opcode for the OUT instruction. The dummy value 00 is used
for the 1/0 port number until the linker supplies a value for PORTN. The machine
instruction E600 is stored in bytes 00000000 and 00000001 of section SUBS 1. RU
indicates a relocation and unbound global symbol.

The 8086/8088 instruction RETS produces the one-byte machine instruction CB, which is
stored in byte 00000002 of section SUBS1.

If you are not using an 8086/8088 microprocessor, similar statements should be
substituted for these two statements.

The Symbol Table
Page 2 of your listing contains the symbol table, which indicates the value and type of each
symbol in your source code.

The assembler symbol table is divided into the following categories:

• Scalars (numeric values other than addresses)

• Strings and macros

• Sections (and addresses within each section)

• Unbound globals

• Undefined symbols

• Statistics

@

8560 Host Specifics-8!?00 Series B Assembler Users Demonstration Run

@

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

Create the Main Program Source File
Now that you have created, corrected, and assembled the sample subroutine, it is time to create
the main program that uses the subroutine. Enter the following command to begin the editing
session that creates the main program source file, prog.asm:

$ ed prog.asm <CR>
?prog.asm

The editor is now waiting for a command. Enter input mode using the a command and then type
in the main program. This time, however, don't include any typing errors.

a <CR>
GLOBAL

PORTN EQU
START MOVB

CALLS
HLT
END

<CR> -

PORTNzOUTSUB
15H
AL,#'?'
OUT SUB , OUTSUB

START <CR>

<CR>
PORT = 15H <CR>
CHARACTER = '?' <CR>
SEND '?' TO PORT 15 <CR>
. .. AND STOP. <CR>

As before, enter the following commands to copy the text in the workspace out to the source file
(prog.asm) and return control to the TNIX operating system.
~ <CR>
242
q <CR>
l"

Assemble the Main Program
Enter the following command line to create an object file (prog.obj) and a listing file (prog.asml)
from the main program source file:

$

<CR>
':-:-"~~~~""'::t'----..IioI-_---:=---W-:--:::-:- (C) 1981 Tektronix, Inc.

6 Lines Processed
o Errors

The main program contains no errors.

88-19

Demonstration Run 8560 Host Specifics-8500 Series BAssembler Users

88-20

Examine the Main Program Listing
Copy the assembly listing to the line printer or to the system terminal:

$ Ip1r prog.asml <CR>

or

$ cat prog.asml <CR>

ASM 8086/8088
Vxx. xx-xx (8560)

1
2
3 00000000 B03F

15 PORTN
START

GLOBAL
EQU
MOVB

Page 1
dd-mmm-yy/xx:xx:xx

PORTN,OUTSUB
15H PORT = 15H
AL,#' 7' CHARACTER = '7'

4 00000002 9AOOOOOO R
00000006 00

CALLS OUTSUB,OUTSUB SEND '7' TO PORT

5 00000007 F4
6 0

ASM 8086/8088 SYMBOL TABLE
Vxx. xx-xx (8560)

Scalars

PORTN-------------00000015

HLT
END START

... AND STOP.

Page 1
dd-mmm-yy/xx:xx:xx

Section = %PROGOBJ, Aligned to 00000010, Size = 00000008

START-------------OOOOOOOO

Unbound Globals

OUTSUB------------OOOOOOOO

6 Lines Read
6 Lines Processed
o Errors

Fig. 88-3. Assembler listing for the sample main program.

The command 8sm prog.obj prog.asml prog.8sm produces this listing file from the main
program source file. The command Ip1 r prog.asml copies the listing file to the line printer.

15

Compare the listing of the sample main program (Fig. 88-3) with the listing of the sample
subroutine (Fig. 88-2).

@

8560 Host Specifics-8500 Series B Assembler Users Dem.onstration Run

@

The Source Listing

Page 1 of your assembler listing contains the source listing. Notice that there is no user-defined
title for the program listing: the source code did not contain a TITLE directive.

Examine each line of the program source listing:

• Line 1 declares PORTN and OUTSUB as global symbols. The GLOBAL statement produces
no object code.

• Line 2 is an EQU statement that assigns the value 15 (hexadecimal) to the symbol PORTN.
The symbol PORTN and its value are stored in the global symbol blockofthe program object
module. At link time the value of PORTN will be substituted into the OUT instruction in the
subroutine.

• Line 3 is an 8086/8088 assembly language instruction. MOVB AL,#'?' generates the
machine instruction B03F. BO is the opcode for "MOVB to AL" and 3F is the ASCII code for
the question mark. The machine instruction B03F is stored in bytes 00000000 and
00000001 of the main program.

• Line 4 is an 8086/8088 assembly language instruction. CALLS OUTSUB,OUTSUB
generates the machine instruction 9AOOOOOOOO in bytes 00000002-00000006 of the
main program. 9A is the opcode for the CALLS instruction. The zeroes represent dummy
values for OUTSUB that will be adjusted at link time.

• Line 5 is an 8086/8088 assembly language instruction. HLT produces the one-byte
machine instruction F4 in byte 00000007 of the main program.

• Line 6 is an END statement that specifies thatthe transfer address is START, the address of
the MOVB instruction. The transfer address will be adjusted if this section of object code is
not loaded at the beginning of memory.

The Symbol Table

1. The scalars table (which lists every scalar in the symbol list and the value associated with
each scalar) lists the scalar PORTN. The value of PORTN is 00000015 (hexadecimal).

2. The strings and macros table is again omitted because it is empty.

3. Because the main program source code contains no SECTION directive, the section
produced by this assembler run is given the following default attributes:
• name: %PROGOBJ (derived from the name of the object file);
• section type: SECTION;
• relocation type: aligned on a 16-byte boundary.

Section %PROGOBJ contai ns eight bytes of code. START is the address of the first byte of
the section.

4. OUTSUB is the only unbound (undefined) global symbol in the main program.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

88-21

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-22

Link the Object Modules
Now both the subroutine and the main program have been translated into machine language. In
order for the subroutine and main program object modules to communicate with each other,
they must be linked. The linker performs the following tasks in creating a load file of executable
object code:

• It locates each section in the specified object files to a block of memory.

• It adjusts addresses to reflect relocation of sections.

• It resolves global references.

Enter the following command to create a load file (load) and a linker listing file (Inkl) from your
two object fi les:

$ link -0 prog.obj sub.obj -0 load -1 >lnkl <CR>

The linker responds as follows:
Tektronix Linker Vxx.xx-xx (8560)
Copyright (C) 1981 Tektronix, Inc.

The listing file is written to Inkl .

Examine the Linker Listing
Copy the linker listing file to the line printer or system terminal:

$ lp1r lnkl <CR>

or

$ cat lnkl <CR>

Figure 88-4 shows the linker listing.

Tektronix
For load

8086/8088 Linker Vxx.xx-xx (8560)

MODULE AND FILE MAP:

LINK FILES:
NONAME
SUBSMOD

Tektronix
For load

prog.obj
sub.obj

8086/8088 Linker Vxx.xx-xx (8560)

MEMORY AND SECTION MAP:

NONAME:
o - FFFFF

Page 1

Page 2

%PRO GOBJ
SUBS 1

0-
10-

7
12

8 SECTION ALIGNED * NONAME *
3 SECTION ALIGNED SUBSMOD

Fig. 88-4. Linker listing. (part 1 of 2)

@

8560 Host Specifics-8500 Series B Assembler Users Demonstration Run

@

Tektronix
For load

8086/8088 Linker Vxx.xx-xx (8560)

MODULE AND SECTION MAP:

MODULE(S) IN LINK FILE(S):
MODULE: *NONAME*

Page 3

SECTION: %PROGOBJ 0- 7 8 SECTION ALIGNED

MODULE: SUBSMOD

SECTION: SUBSI 10- 12 3 SECTION ALIGNED

OUTSUB _________ 10

Tektronix
For load

8086/8088 Linker Vxx.xx-xx (8560)

GLOBAL SYMBOL LISTING:

%PROGOBJ 0 *NONAME*
ENDREL 13 ***********
OUTSUB 10 SUBSMOD

NONAME
PORTN 15 *NONAME*

SUBSMOD
SUBS 1 10 SUBSMOD

Tektronix
For load

8086/8088 Linker Vxx.xx-xx (8560)

STATISTICS:

Number of warning errors: 0
Number of errors: 0

Transfer address: 0

Load file is not relinkable
Load file is not useable for symbolic debugging

Fig. 88-4. Linker listing. (part 2 of 2)

Page 4

Page 5

The command link -0 prog.obj sub.obj -0 load -I >Inkl produces this linker listing file. The
command Ip1r Inkl copies the listing file to the line printer.

88-23

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-24

The standard linker listing contains six parts:

1. The COMMAND LOG lists command processing errors and those command options read
from a linker command file. If a command file is not used and there are no errors, the
command log does not appear.

2. The MODULE AND FILE MAP (page 1) lists all the modules linked into the load file.

3. The MEMORY AND SECTION MAP (page 2) provides the following information:
• The name of each logical memory area and its memory range.
• The name of each section located within each logical memory area.
• The module name for each section.

4. The MODULE AND SECTION MAP (page 3) provides the following information:
• The name of each module linked.

• The name of each section within each module.

• The global symbols defined in each section.

5. The GLOBAL SYMBOL LISTING (page 4) lists the value assigned to each global symbol
and the name of the module in which it was defined.

6. The STATISTICS (page 5) gives the number of errors, the transfer address, and whether
the load module is relinkable or usable by the symbolic debugger. Extra lines may follow a
particular global symbol line and simply list any modules that reference that same global
symbol.

Load the Executable Object Code into 8540 or 8550 Memory
This demonstration run assumes that you have plugged your 8540 or 8550 into High Speed
Interface (HSI) 1/0 port number 3 (on the 8560), type the following command in order to inform
the 8560 which HSI I/O port the 8540 or 8550 is plugged into.

$ lU=3; export lU <CR>

$ st ty lU > / dev / t ty03 <CR> [enter only if using the 8550]

The terminal you are using will now behave as though it were connected to the 8540/8550 that
is connected to 1/0 port number 3 (except that you cannot go into local mode).

Before you load your object program into 8540 or 8550 memory (depending on which unit you
are using), use the 8540/8550 command f to fill the beginning of 8540/8550 program memory
with zeros. Later, when you examine memory, the zeros make it easy to identify the end of your
code. Enter the following command to fill memory locations 000000-00001 F with zeros:

$ f 0 OIF 00 <CR>

Now copy the executable object code from the load file into 8540 or 8550 program memory:
$ 10 <load <CR>

Bytes 000000-000012 of program memory now contain the 11 bytes of machine language that
form the executable program.

@

8560 Host Specifics-8500 Series B Assembler Users Demonstration Run

@

The 8540/8550 command d displays the contents of a specified section of memory. Each byte is
displayed as a two-digit hexadecimal number and as the ASCII character it represents (if any).
Enter the following command to display the contents of memory locations 000000-00001 F:
$~ <CR>

012 3 4 5 6 7 8 9 ABC D E F
000000 BO 3F 9A 00 00 01 00 F4 00 00 00 00 00 00 00 00 .?

T'
~ ___ ",," ____ -.....-__ --".J ____ __ --""

1 1 1
address of
first byte
displayed

main program memory not affected corresponding
by the 10 command ASCII characters

000010 E6 15 CB 00 00 00 00 00 00 00 00 00 00 00 00 00

subroutine memory not affected
by the 10 command

r
corresponding

ASCII characters

The main program occupies bytes 00000000-00000007. The subroutine occupies bytes
00000010-00000012.

Compare the relocatable object code produced by the assembler with the executable object code
produced by the linker. (The addresses and object bytes adjusted by the linker are underlined.)

Relocatable Object Code Executable Object Code
(from assembler listings) (from the Dump command)

Source Code Address Object Code Address Object Code

MOVB AL, '?' 00000000 B03F 00000000 B03F
CALLS OUTSUB,OUTSUB 00000002 9AOOOOOOOO 00000002 9AOOOO0100
HLT 00000007 F4 00000007 F4
OUT PORTN,AL 00000000 E600 00000010 E615
RETS 00000002 CB 00000012 CB

Note the adjustments made by the linker:

• The subroutine is relocated. It now occupies memory bytes 000010-000012.

• The address of the subroutine is substituted into the CALLS instruction.

• The I/O port number is substituted into the OUT instruction.

Enter the following command to establish the parent directory as the current directory.
$ ~ <CR>

T
" .. " causes the
parent directory of
asm.demo to become
the working directory.

88-25

Demonstration Run 8560 Host Specifics-8500 Series B Assembler Users

88-26

Summary of Demonstration Run
Enter the Is command to list the files you have created:

$ Is asm.demo <CR>
Inkl
load
prog.asm
prog.asml
prog.obj
sub.asm
sub.asm/l
sUb.asml
sub.obj
$

Recall the eight files you have created in this demonstration run:

• the two source files (sub.asm and prog.asm) you created using the editor;

• the two object files (sub.obj and prog.obj) and the two listing files (sub.asml and
prog.asml) generated by the assembler;

• the load file (load) and the listing file (Inkl) generated by the linker.

When you corrected the misspelling of GLOBAL in your source file, the editor retained the
original file sub.asm as a backup file named sub.asm#.

You have now finished the demonstration run. It showed how to:

• create a source file using the editor;

• create an object file from a source file using the assembler;

• create a load file from object files using the linker;

• copy the load file into memory, using the 10 command;

• interpret listings generated by the assembler and linker.

NOTE

For the 808618088 assembler: if you wish to execute the demonstration
progr am, then you must substitute a port number valid for your system into the
definition of the variable PORTN. If the first few locations in memory are used for
system vectors, then you must use the linker relocation capabilities to move the
demonstration program to user memory.

If you would like to execute and monitor this program, you must first select the 8086 emulator
software. This may be done using the 8540/8550 sel command. For example, in order to select
the 8086 emulator software, the following command line would be entered:

$ sel 8086 <CR>

T
The emulator name.

@

8560 Host Specifics-8!500 Series B Assembler Users Demonstration Run

@

Refer to the heading, "Demonstration Run", in Section 1 (Learning Guide) of the 8560 MUSDU
System Users Manual to learn how to execute and monitor the program you have loaded into
memory.

If you prefer, you can leave all the files you have created for future reference. However, if you
want to delete these files, you can do so with one command:

$ rID -r asm.demo <CR>

This command deletes all the files in the directory 8sm.demo and the directory.

88-27

8500 Series B Assembler Core Users

@

Section 9

ASSEMBLER SPECIFICS

Processor-specific information is contained in the Assembler Specifics supplement that
accompanies each assembler. Each supplement is designed as a subsection to this manual.

The Assembler Specifics supplements are numbered as if they were separate sections of this
manual. For example, the 8086/8088 supplement is labeled "Section 9A", and' the first
illustration is numbered "Fig. 9A-1". Similarly, other supplements are labeled Sections 98, 9C,
etc. Figures, pages, and tables are numbered accordingly.

Each subsection presents the following information:

• A brief summary of the processor's registers and addressing modes.

• A list of notational conventions used to describe the instruction set.

• The microprocessor instruction set in a notation acceptable to the given assembler.

• A list of reserved words for the given assembler.

• The page size for the assembler, as defined in the Linker section of this manual.

• Any processor-specific assembler error messages.

• Any irregularities that should be noted.

Each supplement has its own table of contents.

9-1

