TEK PROGRAMMING INFORMATION
FOR IEEE 488 CONTROLLERS

GPIB
MADE EASY

4041 GPIB
Programming Guide

Pl R PR P - . -y

= e AT e b T SR L

AR LR B T g T B S s
- " . e . I_:.'_"Ln:l |'-|."'-r.':ri_ .'.q. ":--"i‘e_pld.'.u..

i : P - . h . - . e -3 o : -1 P TEN o T KO, Ty . r N R e el . R h . Shell FRRLELE T B
T P Ll L Ve e . Tas T a iy i r L L IR s LN G o . B e B RRPY Ll .) R M m e T, e T TR Y ._.E'. o . AR R R T St . ‘- LA e T = .
) "ﬁ.-l‘:‘r_;-l.i-hL?ﬁt_E. i X, " . ol o s PR . T X 4 | i W el . -2 . B T Y e S LA D F et :‘f r._l.q AR e m e T e N LT e bt _?_-_ xRl :" ot 1‘: e N o Tl Ly . Tw ik T ; . VR, - . LB . -__"‘I"_«..}{._,“;_'_.

e b e R - i . L T X . RN) ST o Fainla . . e . - X Lhowe L et Palte A i . L) : Tt gt s o . - ., O T
, | .--..,I'.":"_"ll'_.- e LT . . AR ey Ly h L T n . . " . Y. Lt oL . - . et e T ey 3 et ; APy b 3 . - ! ; | S R . _.l..*
’ ...-.._-—.1-\- ,_:_”:1:1-' _|-r ,..—l:' "'.m'ﬂ_: ! ;! a ' i .. : . - . . A b . - - ' el J . 5 . ILI" L 1A 'J-"" - i St e L h - .) ri ';_ M __!r - F-}. '..___‘1“_"-\; i - h T, g H. N e DAL ey . :. : : . - - - . Aok -
. " ‘l"_f'q'dr':;.} AL .l) - : P . . T Sa e, - i i L L P P " Sy HE A R 'E . N 5 - A e P : TN H . ol - P L . o T] b ST - H . e (LIS ' . e LAl s \
L N)) ; - ? - 3
LR T

LA v o
e BN

il L
LI P i I N
St gem A a LLL ey Tl
b 1."‘"'_;' Ll
el ety
n i e v R R
R

1
P,
L

)
“a
"

Pt ey
-k p
II-'I': r

ol
r

P
q-':'.'."'""‘_ - .1.,-_':' "'

Rl AR
ey

JpES T ARTE BTN

Rt
QW

om ., .
-, ol -

Y

e

-
il

Pl liet
ower

= e

s
‘1: :)‘.Ezz:“ 'ﬁ'l‘?— R
R

L M-y ._'., R
", o r
R e) B
L i e T Ly P
R i

r __:r_t.-:r?.ﬂ-:i:
P

P T . :-.I_
Sew

'._.-._-._Ar__. ..l;.'- . . A :. N r . TRy

e '.-&-*'Q'é’;.':”l;-‘*‘i'ﬂ-".-t‘.‘f' ORI, I e X ‘,f i”; SSG Pels
: yr ottt gty ke 1 L F1 s e 'l_'.,... _'I,-I-".|_
TN R RE b Ot LIS R Rch e o Fiat TR

-

R TRT RTT TEETTEL TL BV rT)

[
.I-I - P
el . F T P el .. o :
L T M e A L s - . : ; - .
e T T . - - b - . -
f11
L]

o s Ay i - : A .) A L S R
T e R . i o, FEI
RO T
! ""':'-L,:':l

v
. s I L A 4 b Al T . E - . . I ST
:Fﬁ A g .: . X oL |- } o . T LT T . L
=l STy - _ . iy TA _ : 2 s R e e R
d . oL T ..}Iﬂ Pl . .J- ¥) . ; Ha [K

o
Tu Ty

:-_:,:-:*.-:b-:-:-ﬂ:\-:r.-:-:-:-:-:-:-:-:-::-:-'H:-:*.-:-:-:-:-:-ﬁ:-::::-:-::;-;;:-:-zfc-r.a:-:g:-‘.ai—c.::g;-f-:mrffg:-:a:m;5-'.5.'-.:-:*' R e e R R e O

b . - g Pty '-. ..— P P I g '.-I-_,'.' L e 1 - - — n :
_____ L ; ; e : 3 3 - IR ‘ :..__ AL ke A < .. S _ ';';j.,?-i"'-_:.r '-tF_-"-'.“"‘;: ﬁ s

I.I:{q'\:

"‘_. LT
R

]

i 4p.
.’-I;.:.‘ll.:.
:"l'"'.f"

DUl e e T
]

Bl Ry by

. L
AT AR
R TR i

-~
e

-

e

AT e e e I ! x|
: S TP L. i ; . =2 .lr‘l:"'-.'l"":-f"‘f_.-'i-r T AL o aﬁ-’h PR

et e et e ae M ar i e Rl Fb?ﬁéuﬁvihw:-au;i_ir.;,:-jgf:l:b-;-:-:g;:-.g.- ﬂg;ﬂ;?wﬁwmmw - : _ ki 0 R M= A T . T oy uso skt U T ! __-_:;3,—,-‘,‘--1"'" 1 ‘i}h 3
e T R T L A R T L R R R e T R R R R e R R T : o : . S L L e, i ; Pek : WTor L”;"-"".IJ."-’#

: : g P =

PTLALCE
o

-1

. . e H . k . i . e A e R o . . Al e L . . . !
...... .. P .. . P . = . L e - -) H § - - L . . [l J‘I""T"'
. L
=

iy :.-H.!:_":-',

-'r-'.h'..:...
e
R R

-t .||i.l'.f.-:

I.-r.
R

: -.-..r"..'l.

par

[2

a0,

Fd L T b il e P AC, - . _‘:_q. ST -
""fi-‘!f-:#'ui;ﬁr i U fe Al e R ki i | 4 .igff"ﬁ
F::fé-." : AT, e) - S B T

- K1
,';r'":.":‘."-'- :
ac

iy "
A

e
4

gt

Ll

1
-

fi

- .1.- M _'|. .
A ER T
LT Ll"-.l_'-_' .

.=H

e

by et
%T. J‘il" 'F,

-
1

YT
) -
r

=

TIth

i)

i
e g

o
g

: 1;"5.' b
25

o gl
- 1]

o L‘_.r - -”-.F ; ,
s

‘{r"ﬁ' J‘\. e "--"

e

i

S e e :
3;,'15""" _,-..n:',:f:{-:
LK o L X
T ot - T .-\.'.;.-‘!.- "_.__.I'.r.-!.'; "f".l_u'
BT R PR PN el T , 2 : : e e i< : . R R e b g
T - Tl e e e o L T : e . ST - . . - hERA S : - cem Bppem " P - : - A o N et L S o : . - JEN : = o e oEn e . . : ot el R bl 0L TR, E kb ur
a o . o Bt e 2L O, h " s X = L = e . . - : .. t e e - . R B . : M . b M - - B : T] "'H." e : T L oty R E - A 4 At _:‘i LI - .. - Py . TSt r = it] y I, TN Py s =L

T : T - . . . h X ; . o ; : -

i .

.-
=1
e

-

%

el
Ll

. e
=T sk |
™

SV rAL
M e

i,
Vgt

AL
g

R ST

1:"'.‘_"1--51."'1-'.\.Il-f .-.‘I"-_;Ir_' .

-

o ML - g ; : R S L H ey
. o o r e A UE LN Wy 0 R MO " L
Pl . t (Frd’ e L ey gl =y 12:_#_"-1'- ‘-’-Hi.‘!".:.'j::._ =t E‘i_,'.:-f;"!-'.'.. L
Xy g) e . e R L
.:'F' r_L’:ﬂ-

LRkl | i
T
oyl

ST .
“;.. A

o
r

AL

o

- . -
et S T
RN

»

HEr=)

T
L h
-

e
e

A binder is available from Tektronix for your GPIB Programming Guides and
Instrument Interfacing Guides. Contact your local Tektronix Field Office or
representative and ask for part number 062-6433-00.

Additional Application and Programming Resources from Tektronix

Application Engineers at many local field offices

HANDSHAKE —Newsletter of Signal Processing and Instrument Control
Tektronix Instrumentation Software Library

Application Notes

Instrument Interfacing Guides (11G)

Other GPIB Programming Guides

For more information, contact your local Tektronix Field Office or representative.

P T

bl o el - L v Sk bl 1 1 bl el I - i

The information presented in this programming guide is provided for instructional
purposes only. Tektronix, Inc. does not warrantor represent inany way theaccuracy or
completeness of any program herein or its fitness for a user’s particular purpose.

This Programming Guide was written by Mark D. Tiiden and produced by the
Applications Support Group.

Copyright © 1983 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.

070-4696-00 First Printing SEP 1983

Preface

The GPIB can be a smooth path to automated test and measurement, or it can be a
rough road, strewn with pitfalls. Choosing the right controller and instruments and
writing efficient control programs can make the difference. This programming guide
provides some guidelines for selecting system components and implementing a system
based on the Tektronix 4041 System Controller.

Section 1 provides a brief introduction to the 4041's GPIB capabilities. Section 2
discusses guidelines for choosing system components and configuring the system. A
brief review of the fundamentals of 4041 BASIC is provided in Section 3. Then, Section 4
gets down to the specifics of GPIB system programming with the 4041. A generous
supply of examples are included to help illustrate the concepts.

Section 5 deals with interrupt handling in 4041 BASIC, while Section 6 is devoted to
techniques for processing and displaying the acquired data. Section 7 describes the
factors that affect system performance and Section 8 provides some hints forimproving
the performance of the system.

The IEEE 488 interface subsets are described and a summary table of the subsets is
provided in Appendix A. Appendix B briefly describes the Tektronix Standard Codes
and Formats for waveform data. Finally, a glossary of common GPIB and system terms
IS provided in Appendix C.

This guideis notintended as areference manualfor 4041 BASIC. Only the features of
4041 BASIC that relate to GPIB system programming are described in detail. More
complete reference information is available in the 4047 Programmer’'s Reference
Manual.

For complete information on the 'EEE 488 bus (GPIB), refer to !EEE Standard
488-1978. Also, refer to the instrument manuals for specific information on
programming GPIB instruments.

L "y iy - e i PR T T

T e see— AT S T T P T e v v . Frr—— - ' - - y ’ - o AR S S e T © s g g el L A b L - e 1 L gy e —— Sdart i e L sl iiiiii‘lll‘!‘i

TABLE OF CONTENTS

Section1 —The4041asa GPIB Controller 1
Defining the System Controller's Job o e i 1
Program Development . e e e 1
Controlling the System .. . i e it e e e e 2

AdAressiNg INSITUMENES L ittt e e e e et e e e e e e e 3
Sending data and COMMaANAS i e e e et e, 3
Transmitting and receiving data ittt i e ettt eenns 4
=L Lo R AT I 1 2 =T V) - 4
Processing the Data e e e e et |
Storing and Displaying the Data e |
GPIB Capability—More than GPIB Compatibility 4

Section 2 — Configuring a 4041 GPIB System 7
Defining the System’'s Job i e e e e e 7
Selecting System CompPonents ... e e e 7
Getting T Ogether . . it e i e e e e e 13

SelliNg the bUs AdArESS . oo v e e e e 13
Setting the message terminalor. et e e, 14
Cabling the INStrumenNts ... o e 14
I S UMM ANy .o e 15

Sectlon 3 — Introduction t0 4041 BASIC e e, 17
4041 BASIC Enhancements oot 17
Input/Qutput in 4041 BASIC . e 19

I/0O statements, e e 19
) VIS . it 19
The system CONSOIE QeVICE e e e e i, 20
The System deViCe e e 20
Stream SpPecCifiCatioNS . ..o 20
Logical Unit NUMDEIS L. . e e e e e e 21
PO I o - Ve 1T =] =T = A 21
Interrupt Handling . ..o e e e e 22
Db UGGING Programs .. i e e e e 22
Breakpoints . o e e e e 22
=T T o = e Tl T = T o 1 PO 23

Section 4 — Programming a 4041 GPIB System, 25

SV M POWB U o ittt i ettt it ittt it e e 25
POWeEIr-UP 188, L e e it e e e e e 25
Power-up SRO ... e e 25

4041 G PIB Defaulls ... e e e e e 25
Default GPIB parameters ... e 25
DefaUlt LUNS o it ittt ettt i i e e e e 25

GPIB Parameters e e e e e e 25
P hYSICAl PaArAM B OIS . .o e e e e 25
Setting physical parameters.o i e e e 27
oo FToT= I 2= T 41=1 T 27
Setting logical parameters e e e e 28

LA I

Table of Contents

IV

Talking to the Instrumentso i 29
Device-dependent MESSAgESo rt et 29
Transferring a device-dependent MesSsageooieniir e, 29
PRINTing and ASCIIMesSSage venae i it 30
GETING B TESPOMSE .+ o\t e e ettt e e st 32
Receiving long Strings i e 32
INPUTHNG NUMENC VAIUGS e e 34

Transferring WavefOorms i i e 34
Tek Codes and Formats wavelorms . .. e i e 34
Receiving ASCIH dataot i e 35
Sending ASCIdatat 36
Receiving binary data. oo e 36
Block binary data inputot i e 37
Receiving end block binarydata....... ...t 37
Reading binary datainto astringvariableo ne 38
Sending DINAry data ov i i e 38

Special /O SIUALIONSt 38
Suppressing the EOM character on PRINT oo 38
Using alternate delimiters on INPUT ..., SR 39

Proceed MOGE .o v e e e es e et st aata s saa e 40
Proceed Mode PRIN T L .. e e it e et e ettt e a st maana s 40
Proceed mode INPL T ... ittt eaat i tan et san oo 41
1S L AONE YO i 41

Using the BUFFER Clauset e 41
10 TR TE0 N o] 711 1-] dUurEr P R R 41
Defining an alternate I/O buffer e, .. 42

GETMEM and PUTMEM oot e e e e e 43
UsSing GETMEM ..o i 43
GETMEM with binary waveforms e 44
USING PUTMEM ..o i ittt 45

Low-Level GPIB 170 ... i et ee it e A6
The SELECT statementttt it teeaaer it isanaes st saorannnonr. 46
The WBY TE StAtEIMENT . . oottt it ettt e s arnan e oasna ey 46
WEBYTE GPIB fUNCItONS . .t ettt i et teea e it iaae i a s taa s 48
Transfers among GPIB instruments.o it 48
The RBY TE Statement & ..o e ot s i it enaesearie s saamatarsentatacssannres 49

The 4041 as a Talker/LiStener e i it e ansn e et anenns 49
Talker/Listener programmingo et era i anm e 50
Knowing when to talk and when tolisten.........o oiiiiiiinnenn 51

Storing and Retrieving Dataon Tape...........ioiiiii e 52
Reading and writing ASClidata oo 53
A special case—binary waveforms in string variables....... ..o 53
Detecting theend ofthefile i i 53
The TYPE fUNGLION ..ot et e e it ie st enasansacsianaaeseosanananaoeeens 54
ITEM fOrmMat fHllES & oo et it et e e et it et ea ittt an e an s aoaase ey 54
Physical mode /O i e s 54

Section 5 — Processing Interrupts in 4041 BASIC c.cviiiiienen 57

Interrupt Conditionso e e 57

What 1S a2 HANA G .. it e e e et a e a s st 57

Calling a Handler. i e 57

Table of Contents

SYStem Handlers o e e e e e e e 58
Enabling an Interrupts ... e e e e e 98
Disabling an InterrUpt L. e e e 58
Exiting fromaHandler............. e I e 28
The ADVANCE statement e e 59
The BRANCH statement i e i e e e e e e 59
The MONITOR statement e e e e i, 59
The RESUME statement 59
The RETRY statement ... e e e e e e e s, 59
NeSted HaNAlers . i i e i e e e e et e 59
AN EXamMpPle HANAor, i i i s et e ttn e ettt aaa e 60
GPIB INerTUDIS . 60
S o O I 20) =T W 1 X4 61
PollNg 1Ne AeviCES .. e e et e e 61
POLL statement forms e 62
SELECTIng a GPIB port for POLL e 62
The SPE parameter and POLL i e e e e 62

3 &2 Y (U) £ £ 1 T | 63
Processing the Status Byte........... e e e e e e, 64
Differenthiating system and device status ittt eneenns, 65
(=T 0o T A1 g o [T 0] 65
Normal and abnormal condition statuso oot i i e 66
B Or OGN . o i e e e e e e e e 66
Using SRQ interrupt to control program flow 67

E O IN et TUDES L e e e e e, 67
B ol O N o) (=T U] o] £ DU 68
DO L INterrUPES . e 68
MTA and MLA Interrupls . . .o e e e e 68
T T It U S oo e e e e e e 70
ABORT N errUpls . e e e e e /0
Nested ABORT handlers .o i e e e e e e e e 70
ERRBOR INtermupts . o e e e e 72
Setting Up error handlers ... e e e e e 72
ON ERROR statement order. e 72
Proceed mode [/OQerrors.............. e e e e e 72
User-defined errOrS {2
The ASKS(“ERROR) fUNCHONt e e e 72
OFF ERROR Statements ... ittt e e et e e et e e 73
OB ONE INterrupts . e e 73
Y I e U S . e e et e e e e 73
User-definable keys and the consoledeviCe it i i it e i nee e 73

K Y QU U ING Lottt e ittt ettt e e et ettt e e et eaa 73
The ASK("KEY) fuUNCHON ... e e e e e e e e s e 73
Section 6 — Processing and DisplayingData 75
ATTAY PrOCE S ING ittt e e ettt e e e 75
ROM PaCKS .o e 70
Calling ROM pack routines. e e i, 76
GrapPNINg Dala . e e e e 77
404 1R0T GraphiCcs ROM . e e e e e e ettt e 78
4041R0Z2 Plotting ROM . . oo e e 78

Table of Contents

Vi

SigNal ProCeSSiNG . .o e e 79
4041R03 Signal Processing ROM L. i i 60
SaAMPIE PrOgram .ttt e i et e e 81
Section 7 — Estimating 4041 GPIB System Performance 85
GPIB System Performance Factors ... i 85
Instrument Set-Up timMe . ..o v vt e e e e 85
Data acquUIsition tHimMe i e 86
Data transfer time .. . e e e e e e 87
Data proCessSing time i e e e 38
Human interaction time e it ettt aas et s 38
Estimating Performance FaCtors. ... o i e 88
Estimating instrument set-uptime i i 88
Estimating data acquisitiontimeo i e 89
Estimating data transfertime 91
An example—estimating data transfer rate for a PRINT statement............ 95
Estimating serial poll time. oo e 96
WBYTE and RBY TE timingt i e i e e e an s 98
Estimating data processing time o e 98
Estimating human interaction time.........o oo 99

Using the 4041 Real-Time Clock for Timing Measurements.................... 99

Section 8 — Improving 4041 GPIB System Performance. 101
Get 1o KNOW Ehe SyStem ..t i i e e e et a e 101
Reducing Set-Up Time ... e e et v ae e e 101
Reducing Data Acquisition Time e e 102
Reducing Data Transfer Timeo i e 104
Reducing Data Processing TIme. e 108
Reducing Human Interaction Time ... i e 110

Appendix A — Subsets Describe Interface Functions 113

Appendix B — Tek Standard Codes and Formats Waveforms 117

Appendix C — GlOSSATY\ttt i e L. 121

13 Yo 1= < 127

Section 1 — The 4041 as a GPIB Controller

Defining the System Controtiler’s Job

A typical GPIB system (Fig. 1-1) could include a
controller, such as the TEKTRONIX 4041 System
Controller, a signal generator only able to listen, a
digital counter, able to talk and listen, and a
magnetic tape drive, able to talk and listen. These
instruments can work together to perform a task,
but they must be directed—and that’s where the
controller comes in.

At the heart of the GPIB system is its controller. In
all but the simplest data logging applications, some
form of controller is required to make the system
work. But, taking full advantage of the controller’s
power requires a good understanding of it’s job in
the GPIB system.

4041

The controller’'s job can be broken into four major
tasks:

1. Program development
2. Instrument control

3. Data processing

4. Display and storage

Program Development

the first task for many GPIB controllers is
program development—writing, editing, and
debugging the application software that controls
the system. Since a large part of the total system
cost is wrapped up in the software development, the
controller should provide an environment
conducive to good programming practice and that

CONTROLLER

(ABLE TO TALK,
LISTEN, AND CONTROL)

.......................................

lllllllllllllllllll
..

...................

--

..

[]

.................

...

ll

lll
...

.........
.............
RN
............
..........
..........

..........
..........
..........
..........
..........
..........

..........
..........

..........
||||||||||

...........

......
..........
..........

aaaaaaaaaa

lllllllllllllll

.................
................

= 1 o= ko
iiiiiiiiiiii
lllllllllll

SIGNAL
GENERATOR

(ONLY ABLE TO
LISTEN)

||||||||||||||

lllllll

........................

lllllll

|||||||
+

|||||||

DIGITAL
COUNTER

(ABLE TO TALK
AND LISTEN)

..............................
..

lll

..

...

.....................................

...

llllllllll

||||||||||

nnnnnnnnnn
||||||||||
iiiiiiiiii

.........
..........
lllllllll

llllllllll
..........
|||||||||||
lllllllll

|||||||||||
||||||||||

.......
...........

llllllllll

.....................

....................
lllllllllllllllll
1111111111111111
...............

MAGNETIC
TAPE DRIVE

(ABLE TO TALK
AND LISTEN)

Fig. 1-1. A typical GPIB system includes a controller and a variety of GPIB-interfaced devices with different

capabilities.

Section 1
The 4041 as a GPIB Controller

enhances programmer productivity. For example,
full subprogram capability, long, descriptive
variable names, local and giobal variables, and
powerful debugging tools are all features that make
software development and maintenance easier.

In addition, a fuli-size CRT terminal or display 1s
helpful during program development and
debugging. However, a CRT terminal is often not a
good choice for interacting with operators that have
minimal computer background. After the software is
developed and running, the CRT terminal might be
replaced with a simple keypad with user-definable
Keys. The simple keypad usually provides a better
operator interface for system operators.

Finally, mass storage is important for storing
programs and data. A standard, transportable
media allows programs developed on one controller

to be transferred to and run on many other similar
controllers.

Contiroiling the System

Next, consider the task of instrument control. No
matter how powertul the system components, if
their actions are not coordinated, the system is like
an orchestra without a conductor.

The controiler directs the entire system in
performing its intended function. |t assigns tasks to
the instruments, coordinates communication,
handles error conditions, and monitors the system’s
progress. Theinstrumentcontroltask can befurther
divided into four functions:

Addressing instruments
Sending data and commands

—

i
MAINFRAME s
SECONDARY.-. et e
ADDRESS 0 - S
[M
FG 5010 l
PRIMARY T 1T | PROGRAMMABLE DM 5010
ADDRE : PROGRAMMABLE
A 7a16P] |7A16P FUNCTION hpp
GENERATOR
L+. F L] | J I]
/ "‘x\ PRIMARY PRIMARY
CHANNEL A CHANNEL B ADDziESS ADTZESS
PLUG-IN PLUG-IN
SECONDARY SECONDARY
ADDRESS 1 ADDRESS 2

Fig. 1-2. Each instrument on the bus is assigned a unique primary address. Secondary addresses are used in
some instruments to sefect sub-sections or functions within tne instrument.

2

Section 1
The 4041 as a GPIB Controller

———— S ——

Transmitting and receiving data
Handling interrupts

Let's ook at each of these functions individually.

Addressing instruments. The controller selects
an instrument or set of instruments to be involved in
a data transfer by “addressing” them. Every
instrument is assigned a unigue address in the
range 0-30. This is the instrument's “primary”
address. The controtler uses the primary address to
assign a device to talk or listen.

In addition, some instruments have another
address or set of addresses called secondary
addresses that select sub-sections or functions
within the instrument. For example, the
TEKTRONIX 7612D Programmabie Digitizer has a
secondary address that selects its mainframe and
another secondary address for each programmable
plug-in instatled in the mainframe (Fig. 1-2). Thus,
to address the right plug-in instalied in a 7612D. the
/612D primary address is sent followed by the right
plug-in's secondary address.

Sending data and commands. The controller
sends two basic types of messages: device-
dependent messages and interface messages (Fig.
1-3). Interface messages can be thought of as
commands sent by the controller to direct interface
operation. Device-dependent messages, on the
other hand, consist of data and commands that
control individual instruments on the bus. The

controller uses the ATN {Attention) line on the GPIR
to distinguish the two message types. When ATN is
asserted, Information on the bus is interpretted as
intertace messages. When ATN is not asserted, the
messages are device-dependent.

The content and format of device-dependent
messages 1S not specified in the IEEE 488
standard—itt is lett to the instrument designer. The
messages may consist of queries that return
instrument settings or data, commands that control
instrument settings, or other data, such as
waveforms.

Intertace messages can be further divided into
three types: Uni-tline messages, Universal multi-line
messages, and Addressed muiti-line messages (Fig.
1-4). The IEEE 488 standard defines three bus
control lines—REN (Remote Enable), ATN
(Attention), and EQI (End Or Identify)—as interface
messages in themselves. They are called uni-line
messages. When the standard refers to the REN
message, it simply means that the Remote Enable
(REN) line is asserted.

The second and third type of interface messages
are muiti-line messages. These messages are sent
by placing a byte on the bus with ATN asserted.
Multi-line messages may either be universal
commands, affecting all devices on the bus, or
addressed commands affecting only the addressed
Instruments.

e INTERFACE FUNCTIONS »

-]

INSTRUMENT

| (e.g.. 492P)
GPIB

INTERFACE

...
||
.....................
...
..

(. DEVICE DEPENDENT MESSAGES L

—r
4041
GFIB
INTERFACE
ATN 1

Fig. 1-3. The controller sends interface messages with Attention (ATN) asserted. These messages control
interface functions. Device dependent messages, sent with ATN unasserted, control instrument functions.

Section 1
The 4041 as a GPIB Controller

| GPIB MESSAGES

l———l—_ﬁ

—

DEVICE-DEPENDENT INTERFACE
MESSAGES MESSAGES
MULTI-LINE UNI-LINE
MESSAGES MESSAGES
I—I___| (ATN, SRQ, REN)
UNIVERSAL ADDRESSED
COMMANDS COMMANDS
(UNT, UNL, SPE) (SDC, GET, GTL) _|
e ———————rr———

Fig. 1-4. Messages sent over the GPIB can be divided into two general types—interface messages and device-
dependent messages. Interface messages are further divided into universal multi-line messages, addressed

muliti-line messages, and uni-line messagess.

Transmitting and receiving data. Most
Instruments send data to or receive data frem the
system controller. A digitizer, for example, acquires
waveform data and transmits it to the controller for
processing and storage. A programmable
oscilloscope, such as the TEKTRONIX 7854, might
receive waveform data from the controlier for
processing or display on its CRT. Data may be
transmitted using a variety of codes including
binary and ASCIHL

Handling interrupts. Devices in the system
generate interrupts to inform the controller of error
conditions, the completion of an operation, ar other
asynchronous events that require the controller's
attention. The controller finds the device that
generated the interrupt by polling the devices,
reading a status byte from each instrument and
taking the appropriate action.

Processing the Data

Thethird majortask of a GPIB system controlier is
processing the data acquired from instruments.
Often, a few important parameters must be
extracted from a mass of “raw’ acquired data.
Again, the system controller takes over. A few
instruments, such as the DM 5010 Programmable
Digital Multimeter and the 7854 Programmable
Oscilloscope, can do some processing internally.
But many can ¢nly send raw data to the controlier,
sO the processing task is left entirely to the
controller.

4

This processing may involve simple calculations
on single values, such as voltage readings from a
DMM. More advanced applications may require
array processing such as signal averaging, or
computing pulse parameters from an acquired
waveform. Powerful high-speed microcomputers
have made lengthy and complex calculations, once
left to large mainframe computers, feasibie even in a
small GPIB system controlier. With this power, the
controller can set up the instruments, acquire test
data. and compute the desired parameters from the
acquired data—all without human intervention.

Storing and Displaying the Data

Cnce data is acquired and processed, the
controller is responsible for storing and/or
displaying the results. Non-volatile mass storage,
such as magnetic tape or disk, provides a
convenient means of iocgging data or results. In
addition, the controller can display measurement or
processing results or it can print results on a printer
or other hard copy device.

GPIB Capability—
More than GPIB Compatibility

An efficient, powerful GPIB system requires more
than just a computer with a IEEE 488 interface—it
requires a capable controller with the hardware,
software, and peripherals tc handle the tasks. Many
a frustrated user has found that an IEEE-488
interface and a piug on the rear panel do notmakea

Section 1
The 4041 as a GPIB Controller

capable GPIB controller. There is a considerable
difference between GPIB compatibility and GPIB
capability!

The TEKTRONIX 4041 System Controiler is a
powerful, flexible, expandable IEEE 488 systems
controller. The standard 4041 comes with 32K bytes
of memory (between 18K and 25K are available to
the user, depending on the configuration).
Additional memory can be added up to a total of
512K bytes.

Though the basic unit is principally designed as
an execute-only controlier for use in systems where
operators have minimal computer background, a
variety of options and peripherals are available to
equip the 4041 for full Interactive program
development and user fiexibility.

The 4041's powerful hardware is supported by a
highly enhanced BASIC language. BASIC is an
excellent language for occasional programmers
becauseitis simple and easy to learn. But, standard
BASIC leaves much to be desired for many
sophisticated progamming tasks. The
enhancements provided by 4041 BASIC create an

excellent environment for more advanced
programmers. These enhancements include
FORTRAN-like subprograms, parameter passing,
local and global variables, a powerful debug mode,
an extremely flexible {/O system, and several data
types, create an excellent environment for more
advanced programmers. The modularity afforded
by true subprograms also allows a team of
programmers to work on a single software task.

The 4041 was specifically designed as an
Instrument controller. Its powerful, flexible /0
structure makes handling virtually any GPIB device
simple. In its default power-up condition, the 4041
implements the Tektronix Standard Codes and
Formats so you can communicate instantly with
Tektronix IEEE 488 instruments without worrying
about command or numeric formats, delimiters, etc.
In additicn, a set of high-level commands are
provided to implement most of the |IEEE 488
functions, such as Device Clear (DCL) and Local
| ock-Out (LLO).

The 4041 was designed as a GPIB controller—it
has all the essential elements of a powerful, flexible
and capable GPIB system controller (Fig. 1-5).

—_—

PROGRAM

DEVELOPMENT

GPIB

INSTRUMENT

CONTROL

DATA
PROCESSING

MULTIPLE
VO

INTERFACES

MASS
STORAGE

EXECUTE—
ONLY
OPERATION

o

- HARD
COPY
PRINTER

Fig. 1-5. The 4041 is more than a GPIB-compatible computer—it's a capable GPIB system controller.

Section 1
The 4041 as a GPIB Controller

Section 2 — Configuring a 4041 GPIB System

The GPIB is a flexible interface—it can efficiently
link many different types of instruments together to
perform a variety of jobs. Section 1 described the
system controller’'s job and discussed some of the
qualifications of a capable GPIB controller. But,
choosing the right instruments and the right
configuration for your system is also important. A
clear definition of what you want the system to do
and a basic understanding of the system
components is the key.

Defining the System’s Job

The first step in configuring a system is to define
its job. Consider these questions:

¢ What is the system’s operating environment?
Will it be performing tests on a production line? If
so, the operator will probably have minimal
computer background. These operators usually
need complete, detailed prompting and complete
error handling. The software must be protected so
that unexpected or incorrect inputs can’t abort the
program or “crash” the system. In this environment,
a small, simple keypad with user-definable keys
suits the need. In contrast, technicians and
engineers often need a full-size keyboard with
program editing functions.

¢ Will the system generate test stimull? If so, one
or more signal sources will be required. And if the
output of the source must be changed during a test,
the signal sources should be programmabile.

* Will the system acquire data? If the system is
intended to make automated measurements, some
type of data acquisition is a given. This acquisition
could be as simple asa DC voltage measurement, or
as complex as a high-speed transient waveform.
The important points to consider here are the type
of data to be acquired, number of data channels,
and the GPiB capabilities required in the acquisition
instrument. Also remember that the 4041 must be
programmed to receive the acquired data. A variety
of data formats are used, so be sure you know the
specifics of how your instrument transmits its data.
We'll talk more about this later.

* Will the data need to be processed? H the
acquired data requires processing, the controller or
instrument must be capable of performing the
necessary computations in the available time.

* Will data or test results be logged to a peripheral
device? In some cases, where data must be
captured very quickly, data logging may be
necessary. Data can be written to a peripheral
device, sometimes without even passing through
the 4041. Later, when the acquisition is compiete,
the 4041 can read and process data from the
peripheral at a slower rate. It may even set up to log
data from an acquisition, initiate the acquisition
and process the data from the last acquisition while
the next one is in progress.

¢ How will the system interface with the device
under test? Stimulus signals, power sources, and
measurement signals may have to be switched or
routed. In addition, parts handlers or other
equipment may have to be interfaced to the system.
Programmable multiplexers or multi-function
Interfaces may be required to provide interfacing to
the device under test.

These are some of the questions that need
answers as you begin configuring your GPIB
system. It's not an exhaustive list, but answering
these questions will get you on the path to a clear
definition of your system'’s job. And that's a big step
toward a well-designed, efficient system.

Selecting System Components

With a clear definition of the system’s purpose in
mind, you can begin selecting the specific
instruments to accomplish that purpose. This
discussion focuses on the GPIB considerations of
selecting components. Other reqguired
specifications will be determined by the application.

¢ Is the instrument really programmable? Often.
instruments that are described as “IEEE 488
programmable” in catalogs and sales brochures are
actually only partially programmable. Some
functions can only be set from the front panel or by
internal controls. It's important to know which
functions, if any, are NOT programmable when you
are selecting instruments. Remember GPIB
compatibility is not synonomous with GPIB
programmability.

For each component in the system, you should
have a list of the functions that must be
programmable. If, for example, you need a function
generator, your list might include programmable
frequency, phase, and symmetry. As you look for

7

Section 2
Configuring a 4041 GPIB System

programmable function generators, look at the
specifications carefully. Are these functions
programmable? Don’t assume that the functions
you need will be programmable just because the
brochure says the instrument is “programmable.”

e How fast is the insirument? Speed can be an

important factor in choosing GPIB system

components, particularly for systems intended for
high-speed testing in a production environment.
The speed of a GPIB instrument is determined by
four basic factors: the time required for acquisition,
internal processing, data transfer, and human
interaction. If your system will be performing in an
environment where speed is critical, take a careful
look at the data transfer rate and other speed
specifications of the instruments. Section 7
describes some techniques for estimating the
performance of a GPIB system.

¢ What interface functions are impiemented? A
device’'s GPIB interface links the GPIB to the
programmable device functions. The |EEE 488
standard allow designers to choose from a list of
optional functions when implementing the device
interface. These intertace functions are defined in
terms of the following “interface subsets.”

SOURCE HANDSHAKE—the ability to generate the
handshake cycle for transmitting data.

ACCEPTOR HANDSHAKE—the ability to generate the
nandshake cycle for receiving data.

TALKER—the ability to transmit data on the bus.
LISTENER—the ability to receive data from the bus.

SERVICE REQUEST—the ability to request service
from the controller via the SRQ line.

REMOTE/LOCAL—the ability to switch between local
and remote operation.

PARALLEL POLL—the abtlity to report a single status
bit during a parallel poll.

DEVICE CLEAR—the ability to be initialized by a bus
command.) |

DEVICE TRIGGER—the ability to initiate an operation
on receipt of a bus command.

CONTROLLER—the ability to act as the controlier-in-
charge. |

The instrument designer can choose to
implement all, part, or none of each of these

8

functions, as defined by the function subsets in the
standard. You should find a list of the interface
subsets in the specifications for any GPIB
instrument. The list may sound strange until you
realize that it's just a shorthand way of describing
the device's interface functions. CO, for instance,
says that an instrument has no capability as a
controlier. DT1 means that an instrument can be
triggered to perform a designer-chosen function
when it receives the group execute trigger interface
message. A summary of the interface subsets is
contained in Appendix A.

As you select instruments for the system, keep
these interface subsets in mind, but don’t confuse
them with the programmable functions of a device.
The interface subsets only describe the capabilities
of the device's GPIB interface, not the
programmable functions of the device itself.

All instruments in a system do not need to have
the same interface subsets. But, the capabilities of
some instruments may not be useable unless other
instruments in the system or the controiler also
implement the same interface subsets.

Consider, for example, the Device Trigger (DT)
interface subset. Instruments that have the device
trigger function implemented (DT1 interface
subset) can be set up to start acquiring data or
initiate some other process wnen they receive the
Group Execute Trigger (GET) interface message.
This function is useful when several instruments
must be synchronized to perform a test. However, if
only one of the instruments in the sysiem has the
DT1 interface subset, the device trigger feature
won't be very useful, since the other instruments in
the system don’'t understand the GET message and
can’t be triggerred by it (Fig. 2-1).

¢ What’'s the address? The |EEE 488 standard
defines the basic addressing scheme for GPIB
instruments. However, it leaves several options
open to the instrument designer, so it's also
important to know the individual addressing
requirements of the instruments you are
considering.

All GPIB instruments have at least one primary
address in the range 0-30. 4041 BASIC adds this
offset to the primary address automatically, soc you
only have to remember a single primary address. An
instrument actually has one address for talking (if it

Section 2
Configuring a 4041 GPIB System

o4

...
...

..
--
ll

--
...

lll

..
...
..
..
ll
..

iiiiiiiiiiii
lllllllllllll
!!!!!!!!!!!!!!

rrrrrrrrrrrrr

.............
llllllllllllll
iiiiiiiiiiiii
iiiiiiiiiiiiii

..............
.............

|||||||||||||
iiiiiiiiiiiiii

..............
............
uuuuuuuuuuuuuu
lllllllllllll

-
llllllllllllll
lllllllllllll
lllllllllllll

..............

lllllllllllll

lllllllllllll
llllllllllllll
llllllllllllll

llllllllllllll

..............
llllllllllllll
llllllllllllll
llllllllllllll

CONTROLLER

Fig. 2-1. Some interface capabilities may not be useful if only one instrument in the system implements that
capability. For example, the Device Trigger function may not be useful for synchronizing system operations if
only one instrument implements the D71 subset. Instruments with the DTO subset ignore the GET message.

can talk) and one address for listening (if it can
listen). But the controller automatically generates
these “absolute” talk and listen addresses from the

single primary address.

In 4041 BASIC, the primary addressis specified in
the range of 0-30. When you use an output
statement like PRINT, the controller adds 32 to the
primary address to generate the absolute listen
address of the instrument. When you use an INPUT
statement, the controller adds 64 to the primary
address to generate the absolute talk address. In
most cases, this process i1s automatic, so the user
need only remember the single primary address.

Some instruments also have one or more
secondary addresses. This address selects a sub-
function or part of the instrument to take partin the
operation. The specific use of this secondary
address is not defined in the standard, so
manufacturers use it several ways. Again, the user
specifies an address in the range 0-30, and the
controller automatically adds 26 to this address to
generate the absolute secondary address.

Addresses are usually set by a set of five switches
inside the instrument or on the rear panel. These
switches allow you to set the address from 0 to 31,
but there are some limitations. 31 is not a valid
address—it is used for the universal UNTalk and
UNListen commands. Setting adeviceto address 31
effectively removes it from the bus sinceitcan never
be addressed. A typical set of address switches is
shown In Fig. 2-2.

It a secondary address is required, it is usually set
by a separate set of switches. In the 7912AD and
7612D, the secondary address switch sets the
maintrame secondary address. The secondary
address of the left plug-in is the mainframe
secondary address plus one. The right plug-in
address i1s the mainframe address plus two (See
Table 2-1). So, to address the left plug-in to listen,
the primary listen address is sent, followed by the
secondary address of the left plug-in. Some specific
examples of how this is accomplished in 4041
BASIC are provided later.

Section 2
Configuring a 4041 GPIB System

TABLE 2-1
7612D AND 7912AD SECONDARY ADDRESSES

Plug-in Compartment Secondary Address
r——e— e

Channel A plug-in Mainframe secondary address + 1
Channel B plug-in Mainframe secondary address + 2

* Who's in charge here? Two kinds of controllers
are allowed on the GPIB: the system controlier, and
the controller-in-charge (often abbreviated as CIC). .‘
At any time, a GPIB system can have only one
device acting as system controller and one device
acting as controller-in-charge. The system
controiler and the controtler-in-charge may be the
same or different devices. The system may,
however, have any number of devices that are
capabie of acting as controller-in-charge. Only one
device may be the system controlier and this task

Fig. 2-2. A typical set of GPIB address and message cannot be passed to other devices.

terminator selection switches. This set of switches

also selects the ON BUS/OFF BUS conditions and The system controller has some special
the talk-only, listen-only, or talk/listen modes. privileges. It is the only device that can assert the

Default controlier-in-charge

SYSTEM on power-up. Can regain
CONTROLLER | control by asserting IFC.

e R S e e o e e e o T T B DLt B e oA 2 N I N N NN T NN LN R NN B R S OB SNSRI N B BN NN LI
...

ll
..
"4 ..ara.-Ia.r|1a.r.l|l.I-‘-I-.1I-l-.|.|.|‘-.-.aln.|IL.-.-I-.-I T L, |l.-.|.|._-.|.+.|.rln1rln. N N AL |.-l-|-.-1-|-.|‘I'l-|r-.:l.|.i-l.": |I.pl+llll|.lll:a.ln:|‘-:|:-. ':'.l‘:'.l-:-:':.._':':':-:
...
...
--

...
...
...

--

lllllllllllllllllllllllll
...

--
]

INSTRUMENT INSTRUMENT INSTRUMENT CONTROLLER
" #3 CHARGE

(Idle Controlier)

Assumed control from the
system controller or previous
controller-in-charge.

Fig. 2-3. There can only be one system controlier in the system and only one device can be the controller-in- I
charge at any time. However, there can be any number of devices capable of assuming control,

10

Section 2
Configuring a 4041 GPIB System

IFC or REN (Remote ENable) lines. When the
system 15 powered-up orthe IFClineis asserted, the
system controller becomes the controller-in-
charge.

The system controller can pass control of the
system to another device capable of assuming
control of the bus. The new device becomes the
controller-in-charge. The controller-in-charge can,
In turn, pass control to another device capable of
assuming control or it can pass control back to the
system controiler. The system controller can also
regain control of the system by asserting the {FC
line.

The controller-in-charge 15 the only device that is
permitted to send messages with ATN asserted.
These messages Inciude addresses, and other
intertace messages. The controller-in-charge is
responsibie for controlling all bus transters and
handiing interrupts. Figure 2-3 illustrates the
relationship between the system controller and the
controlier-in-charge.

Some devices capable of acting as system
controller do not have the capability of passing
control to another controller. It is important 1o note
this distinction because devices that cannot pass
control will not operate on the bus unless they are
the system controller. If you intend to operate the
system with more than one controller it is important
to check for the capability to pass control.

e Who's talking, who's listening, and who’s
controlling? Devices in the system can take three
roles: Talker, Listener, or Controller. The controller-
in-charge assigns the roles of the other devices in a
system. Once the assignment of roles (addressing)
15 complete, the device assigned as the talker sends
data to the devices assigned as listeners. For
example, the controtler might tell a DMM to talk and
a tape drive to listen. When the data transfer begins,
the DMM sends data and the tape drive receives it
(Fig. 2-4). |

There can only be one controlier-in-charge and
one talker at a time, though there can be several
listeners. The 4041 can take on any of these roles.
There can even be several 4041's in a system—one
performing as a controller and another acting as a
smart data logger, for example.

A single 4041 can also take different roles on each
of it's two GPIB ports (with its optional second GPIB

port}. On one bus, the 4041 can act as the system
controller or controller-in-charge, while 1t acts as a

talker/listener on the other bus. The two GPIB
interfaces in the 4041 with Option 1 are entirely
independent.

TAPE

MM DAIVE

CONTROLLER
IN
CHARGE

(a) The controller assigns the roles of talker and
listener by sending the appropriate addresses lo
the instruments.

DMM | TAPE
Talk DATA FROM TALKER TO LISTENER PRIVE
(Talker) R (Listener)

CONTROLLER
IN
CHARGE

| {(b) After the instruments are addressed, the
tatker transfers its data to the Istener(s). If the
controller is not talking or listening, it simply
[waits for the transfer to complete.

Fig. 2-4. The controller-in-charge assigns the roles
of talker and listener to devices in the system. The

controiler may or may not be involved in the data
transfer.

At this point, it's important to understand what the
lEEE 488 standard refers to as a “talk-only” or
“listen-only”’ instrument. These terms refer to
Instruments that can be manually configured
(usually with a switch} as permanent talkers or
permanent listeners. When configured in this mode,
the instruments do not need to be addressed by a
controller. They are permanently addressed and
they participate in every bus transaction. Other
instruments may only be capable of talking or

11

Section 2
Configuring a 4041 GPIB System

listening, but if they must be addressed by a
controller, they are not considered “talk-only” or
“listen-only” devices as defined by the standard.

Talk-only and tisten-only instruments are useful
when a small system is set up without a controller.
Often, the system simply consists of a talk-only
acquisition instrument, such as the 468 Digital
Storage Oscilloscope, and a peripheral configured
for listen-only operation, such as the 4924 Digital
Cartridge Tape Drive (Fig. 2-5). In this
configuration, the acquisition instrument sends its
data to the tape drive for {ogging. No other bus
traffic occurs and a controller is unnecessary.

When talk-oniy or listen-only instruments are not
used, the controiler assigns the role of talker or
listener to an instrument by 1ssuing its talk or listen
address, respectively. Unaddressed instruments do
not participate in the transaction.

When choosing system components, it’s
iImportant to know which instruments need to talk,
which ones need to listen, and which ones need to
do both. in addition, If the system will have more
than one controller, be sure that they can “pass
control.” In other words, be sure the controller can
et another device take over the role of controller-in-

charge.

* What is the message format? Another important
consideration when you are configuring a GPIB

468
| DIGITAL STORAGE

system is the message format used by each
instrument. The IEEE 488 standard specifies the
mechanical, electrical and functional aspects of the
Interface, but 1t does not specify the content or
syntax of the messages transferred across this
interface. As a result, devices connected by the
|EEE 488 bus have a compatible hardware interface,
but there is no guarantee that they will speak the
same language.

The telephone system provides a good analogy of
this problem. Telephones provide a compatible
hardware interface that makes it possible to call just
about any telephone in the world. But if the people
on each end don't speak the same language, no
meaningful communication can take place even
though they can hear each other. In the same way,
two devices connected by the IEEE 488 bus may not
be able to communicate if they don't speak the same
language even though they have a compatible

hardware interface. Figure 2-6 illustrates this
concept.

Since IEEE 488 doesn’t specify the syntax or
coding of the messages, there are a variety of codes
and syntax formats used by various manufacturers.
This can be a source of frustration when
programming a system, because the programmer

may have 10 remember several different message
formats.

4924
DIGITAL CARTRIDGE

OSCILLOSCOPE

SET FOR
TALK-ONLY MODE

.................................
||||||||||||||||||||||||||||||||||||

.................................
||||||||||||||||||||||||||||||||

....................................

|||||||||||||||||||||||||||||||||||||

...
|||||||||||||||||||||||||||||||||
...............................
...........................

||

..
..
||||||||||||||||||||||||||||||||||||

||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||||

llllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllll

||||||||||||||||||

....................................

TAPE DHIVE
SET FOR

LISTEN-ONLY MODE

Fig. 2-5. Some instruments can be manually set to permanent talker (talk-only mode) or permanent listener
(listen-only mode). This allows small systems, such as the 468/4924 system shown here, to operate without a
controller. These instruments may also be operated with a system controlier.

12

Section 2
Configuring a 4041 GPIB System

CHANGE
TO 10

VOLTS

/ 3 :"’fff‘f _ SR 1#"’:;;
| | DC DU O L FD =Yal)
coD : AL — [
oo ooo ﬂ - A [_]‘!Il[]llg
C © coo o ettt L E g — '
@ E C B % L | [] ; OO O
Se— e g =280
OO0 OO0 INCOMPATIBLE = |||, : ImRala
; MESSAGE _ _~Jj—== ==
NEEnEnInnER
’L i ‘.IHJ’ ;l;___!a 1] |_f_
| e ——
PROGRAMMABLE SYSTEM
COMPATIBLE HARDWARE
INSTRUMENT INTERFACE CONTROLLER
(GPIB)

Fig. 2-6. The controller and instruments need more than a compatible hardware interface; they need a

compatible message structure to communicate.

Tektronix has developed a standard for codes and
formats designed to enhance compatibility among
its GPIB instruments. The standard specifies
message coding and syntax designed to be
unambiguous, correspond to those used by similar
devices, and be as simple and cbvious as possible.
This standard makes programming a system of
Tektronix GPIB instruments easier and simpler,
because the messages forall instruments are similar
and easy to remember. And since the commands
consist of simple English-like mnemonics,
programs 4dre easier to read and understand,

A brief summary of the Tektronix Standard Codes
and Formats is provided in Appendix B.

o What is the message terminator? Manufacturers
also use different techniques to indicatetheend of a
message. Some instruments assert the EQOI bus line
when they are finished talking, others send aspecial
character, such as line-feed. Again, the key is
knowing what the instruments require. Using
Tektronix instruments eliminates most of these
problems since they are designed to conform to the
standard codes and formats, which specifies EQl as
the message terminator. Most Tektronix

instruments can be also be set to use the line-feed

terminator when operated with equipment from
other manufacturers. In addition, Tektronix
controllers can be set to use any character in
addition to EQI| as the message terminator.

Getting It Together

Once you understand the capabilities and
reqguirements for each instrument in your system,
the job of actually configuring the system should be
simple. This section provides a few guidelines for
connecting the instruments together and setting
bus addresses.

Setling the bus address. The first step is setting
the primary bus address and, if used, secondary
addresses for each instrument. Remember that
every device must have a unique address. Valid
primary addresses are 0-31, but selecting address
31 1ogically removes the device from the bus; it does
not respond to any addresses and it remains both
unlistened and untalked. In addition, no instrument
on the bus can be set to the same address as the
4041. The 4041 powers-up with a default address of
30, but this value can be changed under program
control using the SET DRIVER commandg.

13

Section 2
Configuring a 4041 GPIB System

It is not necessary to arrange the addresses inany
particular order. As you set the addresses, write
them down for reference when writing programs.
Most Tektronix instruments can display their
current address setting by pressing a front-panel
button.

If you change the address switches after an
instrument 1s powered up, the address may not
actually be updated until the instrument returns to
local mode, is re-initialized, or the power is turned
off and back on. Check the instrument manuals for
more details.

With option 01, the 4041 has two GPIB ports. Each
port can supportanindependent system. Addresses
on each bus must be unigue, but there can be
cuplicate addresses on different busses. The 4041
occuplies address 30 on both busses unless its
address is changed in the program. Notice that the
4041 can occupy different addresses on the
standard GPIB bus (GPIB0) and the Option 1 bus
(GPIB1). The 4041's address is set with the MA (My
Address) parameter in a SET DRIVER statement.

Setting the message terminator. The message
terminator on most instruments is setected with a
switch on the rear panel or an internal strap. The

7A16P|7A16P 7612D

PRIMARY ADDRESS =1
SECONDARY ADDRESSES:
MAINFRAME = 0
LEFT 7A16P = 1
RIGHT 7A16P = 2
1 BUS LOAD

maost common delimiters are line feed and EQI. The
4041 uses EOI as the message terminator, but any
other character {inciuding line feed) can also be
defined as an alternate delimiter using the EOM
(End Of Message) parameter in an QPEN statement.
If an alternate delimiter is defined, the 4041 sends
the EOM character at the end of the message and
asserts EOI with that character. On input, the EOM
character or EO| are accepted as terminators.

Cabling the instruments. The next step is cabling
the instruments together. Up to 15 devices
(including the controlier), connected by not more
than 20 meters total cable iength, can be interfaced
to a single |EEE 488 bus. In some cases, more than
15 devices can be interfaced if they do not connect
directly to the bus, but are interfaced through
another device. Forexample, this schemeis used for
programmablie plug-ins housed in a 7612D or
7912AD Programmable Digitizer. Some devices,
like the Tektronix TM 5000-series of modular
Instruments are housed in a mainframe, but each
device counts as a bus load (Fig. 2-7). Check the
instrument manuals for more details.

With option 01, the 4041 has two GPIB ports, so up
to 14 devices can be connected to each bus. {The
4041 counts as the 15th device on each bus.) Since

TM5006 MAINFRAME

DM5010] DCS5010

PRIMARY ADDRESSES:

PS5010 = 22

DM5010 = 16

DC5010 = 20
NO SECONDARY ADDRESSES
3 BUS LOADS

Fig. 2-7. Some instruments, like the 76120 Programmable Digitizer, use a single primary address and represent
one bus load. Secondary addresses select the plug-ins or mainframe. Other devices, like the TM 5000-series of
programmable instruments represent one bus load per instrument. Each instrument has a separate primary bus

address. |

14

I

. N

Section 2
Configuring a 4041 GPIB System

IR Ao A T T T T

a STAR

SR]
Dl

comaner] (] (2] [2] [=

ooz] (o] [] [[c

c. COMBINATION

b. LINEAR

Fig. 2-8. The GFIB system can be cabled in a star or linear configuration or a combination of the two.

the option 1 GPIB port on the 4041 supports DMA
(Direct Memory Access), the system data transfer
speed may be improved by arranging instruments
on the two busses so that the faster instruments are
on the option 1 port (GPIB 1) and the slower ones
are on the standard port (GPIB 0). The DMA data
transfer mode is especially advantageous with
instruments that transfer farge amounts of data,
such as waveform digitizers.

The system can be cabled in a star or linear
configuration (Fig. 2-8). To maintain the bus
electrical characteristics, a device load must be
connected for each two meters of cable. Although
devices are usually spaced no more than two meters
apart, they can be separated further it the required

-

number of device [oads are lumped at any point. If a
single instrument is intertaced to a controller, the
two-meters-per-instrument rule allows the
controller and instrument to be separated by four
meters of cable.

Generally, at least two-thirds of the instruments
on the bus should be powered-up for correct
operation. In some cases, the bus will operate
properly with fewer instruments powered up. Check
the |[EEE 488 standard for more details.

In Summary

Figure 2-9 shows a checklist summarizing the
considerations for selecting system components
and contiguring the system.

15

Section 2
Configuring a 4041 GPIB System

(1 What is the system’s operating environment?
What is the operator’s skill level?

Will the system generate test stimuli?

Will the data need to be processed?

Will data or test results be logged to a peripheral device?

1 s the instrument really programmable?

How fast is the instrument?

What interface functions are implemented?

What's the address?

1 Who's talking, whao's listening, and who's controliing?]
What i1s the message format?
O What is the message terminator? 4

Fig. 2-9. Component selection and system configuration checklist.

16

Section 3 — Introduction to 4041 BASIC

The 4041 System Controlier provides the
hardware features required in a powerful, flexible,
and configurable GPIB controller. Butthe key to the
4041’s power and flexibility is in it's BASIC
operating system software. This section introduces
you to 4041 BASIC. It is not intended to be atutorial
on 4041 BASIC. Instead, it provides a brief overview
of the extensions and special features of 4041
BASIC. A more detailed description of the 4041
BASIC /O system is also provided.

4041 BASIC Enhancements

4041 BASIC combines the simplicity and ease of
use of standard BASIC wtth enhancements that
overcome many of the limitations of standard
BASIC. The major enhancements are described
below.

¢ Subprograms and user-defined functions. In
addition to the GOSUB statement provided in
standard BASIC, 4041 BASIC provides FUNCTION,
SUB, and CALL statements that allow you to set up
full FORTRAN-like subprograms and user-defined
functions. Thestandard BASIC subroutineis simply
a set of lines that are called with a GOSUB and are
terminated witha RETURN statement (Fig. 3-1). The

200 GOSUB 1000

4 210

1000 FOR 1-1 TO 10

Main Program 1010 .

2000 RETURN
2010 END

(a) A standard BASIC subroutine is not separated
fromthe restofthe program anditshares alivariables

with the rest of the program.

subroutine is called by its starting line number and it
is not separated from the rest of the program. Al
variables used in the subroutine are shared with the
main program and there is no facility for passing
arguments to the subroutine except through shared
variables.

he 4041 SUB statement allows you to set up a
subprogram that 1s like a subroutine with some

special advantages. The subprogram is separated
from the main program so that it can have
independent variables. In addition, the subprogram
can receive arguments and return results through
the CALL statement. The subprogram is called by
name, not by line number.

User defined functions are like subprograms in
that they are independent routines called by name.
However, they return a single value thrcugh the
function name itself. The FUNCTION statement
declares thebeginning ofa FUNCTION rroutine. The
function is called just like a reference to a standard
BASIC function.

The subprogram and user-defined functions
make modular program design much simpler and
allow a team of programmers to work on individual
parts ot a larger task with a minimum of interaction.

200 CALL SORT(A,B)

/ 210

300 END

Main Program

500 SUB SORT(X,Y)
510

Subprogram

500 RETURN
610 END

(b) A 4041 BASIC subprogram or user-defined
function is a separate moduie with separate flocal)
varrables. it is also called by name, not by line

number.

Fig. 3-1. 4041 BASIC provides a sophisticated FORTRAN-like subprogram and user-defined function capability

that makes modufar programming simple.

17

Section 3
Introduction to 4041 BASIC

¢ Local and global variables. Variables in a 4041
subprogram or user-defined function can be
declared as "local.” Local variables are defined only
within the subprogram or user-defined function, so
variables names can be duplicated in the
subprogram and the main program. L.ocal variables
In a subprogram or user-defined function are
completely independent of other variables outside
the subprogram even if variables in the other
program segments have the same name.

¢ Descriptive variables names. Variable names in
4041 BASIC can be up toeightcharacterslong. Asa
result, programs are easier to read and undgerstand
pecause variable names can more clearly represent
their function. For example a variable that stores
the maximum value of an array can be calied
ARRAYMAX instead of M or M1,

¢ Variety of data types. A variety of data types are
available in 4041 BASIC to match the application.
Numeric data can be stored in one of three formats:
Integer, short floating point, and long floating point.
Numeric data and strings can also be stored in
arrays.

The choice of which data format to use depends
OnN accuracy regquirements, memaory consumption,
and execution speed. The variety of data formats
availlable in 4041 BASIC allows you to match the
data tormat to your application.

¢ Line labels. Program lines in a 4041 BASIC
program can be tabeled and lines can bereferenced
by label, instead of by line number. Programmers
don't need torememberline numbers and line labels
‘can describe the code that follows. SORT, for
example, might refer to a sort routine, The program
jumps to the SORT routine with a GOTO SORT
statement instead of GO TO 1000 (Fig. 3-2).

* Debugging aids. To simplity the task of
debugging programs, 4041 BASIC includes a debug
mode that allows the programmer to trace each
change of a specified variable during program
execution, trace program flow, and set
“breakpoints’’ to temporarity halt program
execution.

e Powerlul GPIB control. Since the 4041 was
primarily designed as an instrument controller,
several enhancements are included in 4041 BASIC
for efficient GPIB system control. Commands are

18

500 GOTO 1000

1000 FORI-1 TO 10

(a) /n standard BASIC, ali program branches
refer to a line number.

500 GOTO SORT

1000 SORT:FOR1=1 TO 10

(b) 4041 BASIC allows you to attach descriptive
line labels to a program line and branch to the
label instead of the line numbaer.

Fig. 3-2. 4041 BASIC allows line labels that make
programs easier to read and maintain.

provided for simple ASCI|I and binary
communication. In addition, most of the |IEEE 488
interface messages are implemented as simpie
high-level keywords.

e Tek Codes and Formats support. The 4041 is
designed to be especially easy to operate with
instruments that support the Tektronix Standard
Codes and Formats. The Codes and Formats
standard specifies simple consistent commands
and syntax for ail Tektronix GPIB instruments.

¢ Flexible I/0 structure. The 1/O structure of 4041
BASIC makes input and output operations simple.
You can define the characteristics of the device
once and assign alogical unit number to that device.
Then /O to the device Is performed through the
logical unit number. The logical unit number can be
specified as either a constant or as a variable.

¢ Proceed mode 1/0. 4041 BASIC allows you to
start an /O operation and proceed with other tasks
while the |/Ois in progress. An interrupt signals the
program when the 1/0 is complete. Proceed mode
can increase system performance by overlapping
the I/O and other tasks—reducing the total time
required for a measurement.

. . o o o

Section 3
Introduction to 4041 BASIC

input/Output in 4041 BASIC

1/0 statements. A variety of 1/0O statements are
provided in 4041 BASIC. These statements
generally fall into four catagories: /O control, high-
level data transfer, low-level data transfer, and
special-purpose /O statements. [/Q control
statements set |/O parameters or contral how I/O is
performed. High-level 1/O statements transfer
formatted data such as ASCIHl characters or
numbers or binary values. Low-level statements

transfer 8-bit values without formatting. Special-
purpose /0 statements perform functions required
by a particular device, such as formatting a DC-100
tape, or poliing a GPIB device. Table 3-1 lists the
statements in each class.

I/0 devices. All input and output in the 4041 is
directed to one of five devices (seven with option 1},
Fach of these devices is represented in 4041 BASIC
by a mnemonic that identifies the device. The
devices and their mnemonics are listed in Table 3-2.

TABLE 3-1
/0 STATEMENTS

170 Control Statements

OPEN - associates a logical unit with a stream spec.

CLOSE - returns a logical unit to a default stream spec.
SELECT - specifies default stream spec for RBYTE, WBYTE and POLL.

RESTORE - resets DATA statement pointer to first element.
IMAGE - specifies data format for PRINT USING and INPUT USING.

SET CONSOLE - sets the console device to front-panel or the GOMM port.
SET DRIVER - sets physical characteristics of a port.
SET PROCEED - sets or clears proceed mode for /O operations,

High-level /0 Statements

—_____________,_._____._u_—-——-—-————l_——_" —

COPY - transfers data from one device or file to another.

INPUT - transfers data from a device into memory.
PRINT - transfers data from memory to a device.

il

Low-level I/O Statements

RBYTE - transfers unformatted 8-bit bytes from a device into memory.
WBYTE - transfers unformatted 8-bit bytes or GPIB control commands from memacary to a device.

Special-Purpose 1/0 Statements

GETMEM - transfers data from a buffer string into variables.

il e

PUTMEM - transfers data from variables into a buffer string.

POLL - performs a serial poll on the GPIB.

APPEND - gets a program from a device and adds it to the program in memory.
LOAD - clears the current procgram and loads a program from a device.

SAVE - sends a program stored in memory to a device.

LIST - sends a listing of a program stored in memory to a device.

FORMAT - formats a specified device to prepare it to receive data.”

DELETE FILE - deletes a file on the specified device.”

RENAME - renames a file on the specified device.”

DIR - prints a directory of the specified device on the console or another device.”

« The default device for these commands is the SYSDEV (System Device) which defauits on power-up to the tape. The Syste'm
Device can be changed using the SET SYSDEV command,

19

Section 3
Introduction to 4041 BASIC

TABLE 3-2
4041 1/Q DEVICES AND MNEMONICS

Mnemonic I Device

FRTP Front panel (LED display. front-panel
keypad, and program development
keyboard)

COMM or Standard RS-2320 port

COMMO

COMM1 Option 1 RS-232C port

GFIB or Standard GPIB port

GPIBO

GPIB1 Option 1 GPIB port

TAPFE Internal DC-100 tape drive

PRIN Internal 20-character thermal printer

170 statements, such as PRINT, default to one of
these devices if you don’t explicitly specify a device
N the statement. For exampie, the PRINT statement
transfers data to the console device (the front-panel
LEDs or the COMM port} if a device is not specified.
Table 3-3shows the I/QO statements and their defauit
devices.

TABLE 3-3

DEFAULT DEVICES FOR I/0O STATEMENTS

Statement Default Device
) S ——

PRINT Console (FRTP or COMM)*
INPUT Console (FRTP or COMMY?
RBYTE GPIBD
WBYTE GPIBO

" Console device is set with a SET CONSQLE statement;
defauit is FRTP.

The system console device. The primary device
through which ausercommunicates with the 4041 is
calied the system console device or “console.” The
default PRINT and INPUT statements transfer data
to and from the consoie device. In addition, on a
4041 equipped with the program development
ROMs (Option 30), programs are input and edited
from the console device.

At power up. the console device defaults to the
front panel (FRTP) which includes the front panel
LEDs and keypad and the program development
keyboard {with Option 31). The console device can
be changed to an RS-232C device connected to cne

20

of the COMM ports witha SET CONSOLE statement
such as:
Set console “COMM:"

NOTE

fn order to use an RS-232C terminal as the system
console device with a 4041 NOT equipped with
Options 30 and 31 (Program development ROMS
and keyboard), the user must have a DC-100 tape
containing a file named "AUTOLD” that includes
the statement SET CONSQOLE “COMM:” The tape

must be inserted at power-up or the tape can be
inserted and executed with the AUTOLOAD button.

The system device. The 4041 has another
“psuedo-device’’ calied the system device
(SYSDEV). On power-up the system device is the
tape drive. All DIR, RENAME, and other file control
statements default to the system device. The system
device can be changed with the SET SYSDEV

command.

Stream specifications. 4041 BASIC provides a
means of specifying an alternate path for I/Q other
than the default device shown in Table 3-3. For
example, output from a PRINT statement can be
directed to a GPIB device instead of the front-panel.
This alternate path is specified in a “stream
specification.” The stream specification (or stream
spec, for short) defines the alternate device for the
/O statement as well as the characteristics of the
device or transfer. AGPIB stream spec, for instance,
can specify the bus address of the device and the
end-of-message terminator character to be used in
the data transfer.

The stream spec 1s a string constant or string
variable containing the device mnemonic followed
by the characteristics of the device or transfer.
Consider. for example, a GP!B device connected to
the standard GPIB port (GPIBQO). The device is set
for primary address 4 and secondary address 0 and
the end-of-message (EOM)} character is line feed
(ASCII decimal code=10). The stream spec for this
device would be:

“GPIBO{(pri=4,sec=-0,eom=<10>}""

If you want to send a voltage value stored in the
variable VOLTS, you simply add the above stream
spec to a standard PRINT statement as shown
pelow.

Print #°GPIBO{pri=4,sec=0,eom=<10>):":volts

Section 3
Introduction to 4041 BASIC

The stream spec can also be assigned to a string
variable and the variable can be referenced in the

PRINT statement like this:

100 Stream15="GPI80(pri=4,sec=0,eom=<10>):"
110 Print #stream1$:volts

Logical unit numbers. Instead of requiring you to
enter the entire stream spec for every |/0 statement,
4041 BASIC provides a shorthand way of referring
to a stream spec. The stream spec can be assigned
to a “logical unit number” with an OPEN statement

as shown below.
Open #4:'GPIBO(pri=4,sec=0,eom=<10>).”

This statement associates the stream spec with
logical unit number 4. From this point on, referring
to logical unit 4 automatically uses the stream spec
defined in the OPEN statement. As a result, the
PRINT statement reduces to:

Print #4.volts
The logical unit number dces not have to
correspond to the primary address. Logical unit
numbers can range from 0 to 32,767

PRINT #“GPIB{PRI=4,SEC-0.EOM=<10>)":VOLTS

(a) The stream spec can be inserted in a standard
PRINT statement as a string constant.

100 STREAM1$="GPIB(PRI=4,SEC=0,EOM=<10>)"
110 PRINT #STREAM1$:VOLTS

(b) The stream spec can be stored in a string
variable and the variable referencedin a standard

PRINT statement.

100 OPEN #4:"GPIB(PRI=4,SEC=0,EQM=<10>}:"
110 PRINT #4:VOLTS

(¢) The stream spec can be associated with a
logical unit number in an OPEN statement. Then
the logical unit number is referenced in the

PRINT statement

Fig. 3-3. There are three ways to use a stream spec
to define an alternate /O path.

Figure 3-3 shows the four ways to use a stream
spec—as a string constant in the PRINT statement,
as a string variable, with a logical unit number
specified as a constant, or with alogical unit number
speicified as a variable.

/O parameters. 4041 BASIC provides several
“settings” that control the way I/0 operations are
performed. These parameters can be divided into
three types:

¢ Logical parameters—set the characteristics of a
particular device or data transfer. The bus address
of a GPIB device and the end-of-message character
are logical parameters.

o Physical parameters—set the characteristics of
all 1/0 on a GPIB or COMM port. The COMM port
baud rate is a physical parameter.

o ASKS$ parameters—cannot be set, but return
values that indicate the status of a device. The
ASKS$(“LU”,3) function returns the siream spec
associated with logical unit number 3.

Logical parameters are gset as part of a streasm
spec Incltuded in an OPEN or I/0 statement. For
example, to set up a transfer to a GPIB device at
primary address 4, secondary address 0, with line
feed as the message terminator, the following OFim
statement could be used:

Open #4:"GPIBO(pri=4,5ec-0,eom=<10>)."

The PRI parameter specifies a primary address of 4,
the SEC parameter specifies the secondery
address, and the EOM parameter specifies the
message terminator character.

Physical parameters, on the other hand, e
interface characteristics, such as the baud rate of
the COMM port. Physical parameters are set using
the SET DRIVER statement. The following
statement sets the baud rate of the COMMO port to
4800 baud and selects even parity.

Set driver "COMMO(bau=4800,par=even):”

The ASKS$ function returns parameters o the ueer
or program that indicate the status of the device. Te
get information about a dewvice, just specify the
logical unit number for that device in an ASK$
function as shown below.

Print asks$({"'LU",4)

This statement prints the stream spacC currestty
associated with logical unit number 4.

2

Section 3
Introduction to 4041 BASIC

Interrupt Handling

4041 BASIC also provides a complete set of high-
level commands for handling special conditions
called “interrupts.” An interrupt may occur as a
result of:

* A specitied condition on the GPIB including:
- Receipt of a Device Clear (DCL) message.
- End or ldentify {EOI) line asserted.
~ Interface Clear (IFC) line asserted.
- Receipt of the 4041's My Listen Address (MLA).
- Receipt of the 4041’s My Talk Address (MTA).
- Service Request (SRQ) line asserted.
- Receipt of the Take Contro!l (TCT) message.

¢ Pressingthe ABORT buttononthefront panelor
program development keyboard or receiving a
control-C from the COMM port.

e Anerrorcondition that occurs while executing a
program.

¢ The completion of an 1/O operation.

¢ Pressing a front-panet user-definable key or
receiving the equivalent characters from the COMM
port. (Control-F foliowed by a digit 0-9 is equivalent
to pressing function keys 0-9 and control-D
followed by a digit 0-9 is equivalent to pressing the
corresponding digit on the keypad.)

Since all of these conditions are asynchronous
(you usually don’t know when they will occur in
program execution), the 4041 aliows you to setup a
routine to handle any or all of these conditions and
call the routine when the event occurs. Forexample,
if a subprogram is set up to handle SRQs from the
GPIB, you can tell the 4041 totemporarily stop what
it is doing and execute this subprogram whenever
an SRQ occurs. After the SRQ handling routine is
complete, the 4041 returns to what it was doing
when the interrupt occurred.

One particular advantage of this interrupt
capability is in handling program errors. In a
production environment it is especially important
that the program be capable of recovering from
errors in an orderly manner. The ON ERROR
statement in 4041 BASIC altows you to handle error

22

conditions in the program without aborting
program operation. in addition, each subprogram
can handle its own interrupts independently.

Section 5 discusses interrupt handling in more
detail.

Debugging Programs

4041 BASIC includes some advanced features
that make locating and fixing software problems
simpter. Several special "debugging’ commands

are included. Table 3-4 tlists the debugging
commands and briefly describes each command.

TABLE 3-4 |
4041 BASIC DEBUGGING COMMANDS

Command |

Descriplion

BREAK Sets hreakpoints in the program at the
specified line numbers.

CONNECT Allows TRACE to work (n local

! subprogram environments.
|

CONTINUE Resumes execution of a program after
it is halted by a breakpoint.

DEBUG Runs the current program with
breakpoints and trace flags enabled.

NOBREAK Clears breakpoints Iin the current

| program.

NOTRACE Clears trace flags set with the TRACE
command.

SET DEBUG Selects the device where debugging
informatian 18 sent.

SET SYNTAX Selects the device where syntax error
messages are sent.

TRACE Sets flags to display trace information
on variables, branches in the program,

nd program execution.

I S bl it khinkiidaiet

Breakpoints. The 4041 allows you to temporarily
halt the execution of a program to examine or
modify a program line or the contents of a variable
or to examing other aspects of program execution.
The temporary halting points are called
“breakpoints.” Breakpoints are set with the BREAK
command and are cleared with the NOBREAK
command. Breakpoints do not add lines to the
program and are completely ignored when the
program is run with the RUN command. The
breakpoints are enabled when the program is run

Section 3
Introduction to 4041 BASIC

with the DEBUG command.

When a breakpoint is encountered, the PAUSE
button is pressed, a control-B i1s received from the
COMM port, or a STOP statement is executed,
program execution stops. Execution can be
resumed with the CONTINUE command or by
pressing the CONTINUE key on the program
deveiopment keyboard, or by pressing the
PROCEED key on the front-panel keypad.

Tracing a program. In addition to the breakpoint
feature, the 4041 can display information about the
execution of aprogram. The TRACE command sets

flags to:

¢ Print the line number of every program line as it
s executed.

e Print a list of the name and contents of all
variables or any specified variable each time they
are moditied in a program line.

® A list of the source and destination fine number
for all branches, including GOTO, GOSUB, CALL,
user-defined funtion calls, or returns from
subprograms or user-detined fucntions.

Complete information on the debugging features
of the 4041 is provided in the 4041 Programmer’s
Reference Manual.

23

Section 3
Introduction to 4041 BASIC

24

Section 4—Programming a 4041 GPIB System

Writing the programs that contro! a GPIB system
is often the most time consuming and difficult part
of building the system. But, with a clear definition of
the system’s purpose, carefully chosen system
componenis, and a powerful programming
language like 4041 BASIC, the job is greatly
simplified.

This section provides a guide for writing 4041
BASIC programs to control a GPIB system. The
details of interacting with GPIB devices,
transterring data, and bus control are covered. A
generous supply of sample programs is included to
ilustrate each point.

System Power-up

Power-up test. The first thing you'll notice when
you power up your GPIB system is that most
instruments go through some kind of a self-test
procedure. During the self-test, the instrument
usually won't respond to front-panel or GPIB
input—all you can do is wait. The time required for
the tests varies from a few milliseconds to several
seconds, depending on the instrument.

It all goes well in the self-test, the instrument
powers up normally. Otherwise, errors are usually
reported onthe front-panel and by setting the status
byte to indicate the error.

Power-up SRQ. When the power-up test is
complete (whether or not it detected errors), most
instruments assert the SRQ (Service Request) line
onthe GPIBtotell the controller that the instrument
statusisreadyto beread. By reading the status byte,
the controller can tell if the instrument powered up
normally or it errors were detected during self-test.

Handling SRBRQ interrupts is discussed in more
detail in the next section. For now, you can assume
that the instruments power up normally, so the
power-up SRQ can beignored. The 4041 powers up
with SRQ interrupts disabled so unless you
explicitly enable thermn, SRQs will be ignored. Later
you'll probably want to enable SRQs so the program
can detect power-up errors or other system
conditions.

. 4041 GPIB Defaults

When the 4041 powers up, it assumes default
values for a variety of parameters that affect GPIB

communication. The defaults are set up for
communicating with Tektronix GPIB instruments,
The following paragraphs list the default
parameters, describe the parameters, and showyou
how to set them to different values. With a system of
Tektronix instruments, you may not have to change
any of the defaults.

Detfault GPIB parameters. Table 4-1 shows the
default parameter values. Notice that the
parameters fall mnto two general catagories—
physical parameters and logical parameters. (The
ditference between physical parameters and iogical
parameters is discussed in Section 3.) The default
values are for the GPIB only. Some of these
parameters also apply to other devices, but the
default settings may be different for other devices.

The PRI (Primary Address}) and TIM (Timeout)
parameters have different defauit values when the
Logical Unit Number (LUN)} is explicitly opened
with an OPEN statement and when the LUN is
implicitly open (a LUN that is referenced without
being explicitly OPENed). The primary address
defaults to 31 for an explicitly open LUN and to the
L UN number for LUNs that are implicitly epened.

The TIM parameter is set to 4 seconds when the
LUN is implicitly opened and to infinity when the
LUN is explicitly open.

Default LUNs. The 4041 assigns default stream
specifications to LUNs 0-30 that correspond to
primary addresses 0-30 on the standard GPIB port
(GPIBO). These default stream specs use the default
logical parameters shown in Table 4-1. As a result,
the default LUNs can often be used without
previously OPENing them. LUNs 31-32767 are
assigned to the console device by default. These
L UNs can aiso be assigned to other devices with an
OPEN statement. Table 4-2 summarizes the default
LUN assignments.

GPIB Parameters

The GPIB parameters are briefly described here.
More information is provided in the 4041
Programmer's Reference Manuat.

Physical parameters:

MA—My Address. This parameter sets the
4041's primary address. This is the address the

25

Section 4

Programming a 4041 GPIB System

FaLma

TABLE 4-1

DEFAULT GPIB PARAMETERS

Physical Parameters

Parameter Valid Default
Values Value
MA 0-30 30
=G YES/NO YES
PNS 0-255 0
IST TRUe/FALse FALSE
DEL NORmal/FASt NOR
TC SYN/ASY SYN
Logical Parameters
Parameter Valid Default
Values Value
PRI 0-31 LUN number (when LUN is implicitiy open)
31 {when LUN is explicitly open)
SEC 0-32 32 ’
EOA - <char>* <44> {comma)
EOH <char> <32> (space)
EOM <char> <255> (carriage return/line feed)
EOCQ <char> <0> (no output)
ECU <char> <69> {(semicolon)
TIM any positive 4 seconds (when LUN is implicitly opened)
number infinity™ (when LUN is explicitly open)
SFE any positive 10 milliseconds
number
TRA NOR/FAS/DMA NORmal

il F T - —

T <char> = any printing ASCIt character or any ASCl| decimal equivalent code enclosed in angle brackets.

** Actually, the default TIM parameter is 2.14748 E+7 or about 248 days.

TABLE 4-2
DEFAULT LUN ASSIGNMENTS

charge i1s provided in Section 2.)

When the SC parameter is set to SC=YES, the

LUN Default Assignment 4041 asserts IFC (Interface Clear) for about 100
—— e e microseconds and asserts REN.
(-30 GPIB devices with primary addresses

31-30767 0-30 Console Device The 4041 powers up inaspecial ‘waiting” state. It

. e does not assert control of the GPIB immediately.
However, any bus activity initiated by the 4041
(such as executing a PRINT or INPUT
statement), causes the 4041 to implicitly set

4041 uses for all GPIB communication whether
the 4041 is the controller-in-charge or not.

SC—System Controller. If this parameter is set SC=YES.
to YES, the 4041 is the system controller. When

the parameter is setto NQ, the 4041 relinquishes PNS—Polled with Nothing to Say. This

26

system control to another device. However, the
4041 can still become the controller-in-charge if
the system controller or another controller
passes control to it, (A discussion of the rgoles of
the System Controller and the controller-in-

parameter specifies the value the 4041 should
report when it has nothing to say and it is polled
by the controller-in-charge. Regardless of the
vatue specified, bit 7 i1s cleared, since the 4041 s
not asserting SRQ.

IST—Interface Status. This parameter sets a
status flag that is used to report the 4041's status
when itis parallel polled. The parameter has only
two valid values—Ltrue or false.

DEL—GPIB settling time delay. This parameter
sets the settling time for GPIB data byte transfers
(called “T1" in the |EEE 488 standard). There are
two possible settings—NORmal and FASL.

TC—Taking Control of the Bus. The TC
parameter controls the 4041's ability to assert
ATN. The 4041 asserts ATN wnenever it is going
to send aninterface message. However, ifthe TC
parameter is set for SYNchronous (the default),
the 4041 must wait to assert ATN if a handshake
cycieis in progress. The 4041 will waitupto TIM
seconds forthe handshakecycleto complete. Ifit
does not complete within that time. a timeout
error is issued. If the 4041 is set for TC=ASY, it
can assert ATN at any time, regardless of the
state of the bus. This means the 4041 can get
control of the bus at any time. But, it also means
that the 4041 could corrupt a data transfer that
was in progress by asserting ATN during the
transter.

Setting physical parameters. Physical parameters
are set with the SET DRIVER statement. A typical
SET DRIVER statement is shown below.

Set driver “GPIBO{ma=16,sc=no}’”

Physical parameters that are not specified in a
SET DRIVER statement are unaffected—they retain
their previous values.

Logical parameters:

PRI—Primary Address. This parameter specifies
the primary address of a device on the bus. When
the value of this parameter is between 0 and 30,
the stream spec refers to a specific device with
that address. A value of 31 addresses the GPIB
/O to the port itself, so all devices that are
already addressed on that port participate inthe
transfer.

SEC—Secondary Address. This parameter
specifies the secondary address of a device. The
default value (32) causes no secondary address
to be sent.

Section 4
Programming a 4041 GPIB System

EOH—End Of Header. The End-Of-Header
parameter specifies an ASCII character that is

automatically inserted in GPIB output when the
first semicolon is encountered in a PRINT list
(not including semicolons in literal strings). The
default EOH character 1s space, which is the
character the Tek Standard Codes and Formats
specifiesto separateacommand headerfrom it's
arguments.

Thne EQH character can be set to any printing
ASCI| character or any ASCH decimal code
enclosed in angle brackets. if the value is set to
zero, no character is output for EOH. The
following examples iHustrate valid EQH settings:

EOH=#
EOQOH=<9>
EQH=<0>

EOA—End Of Argument. The end-of-argument
parameter specifies an ASCII character that is
sent automatically whenever a semicolon is
encountered in a PRINT list after the first
semicolon (not including semicolons in literal
strings). The default EOA character is comma,
which Tek Codes and Formats specifies as the
delimiter for successive arguments.

The valid values for the EOA parameter are the
same as for the EOH parameter.

EOU—End Of Unit. This parameterspecifiesthe
character that will be sent as the end-of-
message-unit dehimiter. It 1s sent whenever a
comma I8 encountered in a PRINT list and
between elements of an array. The default EOQU
character for the GPIB is semicolon.

EQOU can be set to the same values as EQH.

EOQ—End Of Query. The end of query
characteris automatically inserted at theend of a
prompt message sent with an INPUT PROMPT.
Valid settings are the same as EOH.

The default setting for EQQ is no output. For Tek
Codes and Formats instruments, this parameter
can be set to EOQ=7. Then the 4041
automatically inserts the question mark at the
end of a prompt string. For example,in the
following program segment, the question mark is

27

Section 4
Programming a 4041 GPIB System

automatically added to the end of the prompt
string (ID). The resulting query is I1D?.

100
110

Open #1:"GPIBO{pri=1,e0q="7)."
Input #1 prompt “ID":ident$

EOM—End Of Message. This parameter
specifies a character that is automatically
appended to the end of a device-dependent
message on output and that delimits a message
on input. Valid settings for the EOM parameter
are thesame as forthe EOHand EOQA parameters
with one difference. If EOM is set to 255, a
carriage return and a line feed are appended to
the end of the message and the EOI line s
asserted concurrently with the line feed. If EOM
is set to 0, no character is appended and EOIl is
asserted concurrently with the last byte in the
message.

Figure 4-1 shows a typical PRINT statement and
the resulting device-dependent message traffic
(the addressing and unaddressing traffic have
been omitted for clarity). The first command
header (REC) is followed by the EOH character
(space), the NUMREC value (1), the EOA
character (comma), and the RECLEN value
(1024}. Next, the EOU characteris sent to delimit
the first message unit (REC 1,1024) from the
following message unit (ARM A). At the end of
the entire message, the EOM character is
appended and EO! is asserted with the EOM
character.

TIM—Data Transfer Timeout. The amount of
time the 4041 will wait for each data byte to be
transferred on the GPIB is set by this parameter.
At power-up, all LUNs are assigned a timeout
value of four seconds. When a LUN is OPENed,
the timeout value defaults to infinity 1f the TIM
parameter is not specified in the stream spec.

SPE—Serial Poll Timeout. This parameter sets
the amount of time the 4041 will wait for a device
to respond to a serial poli before going on to the
next device or generating an error.

TRA—Data Transier Mode. This parameter sets
the GPIB data transfer mode. It can be set for
NORmal, FASt, or DMA (with Option 1). The
differences between these modes are discussed
later in this section.

Setting logical parameters. Logical parameters
are set when a logical unit number 1s opened with
the OPEN statement. The QOPEN statement
performs two functions. First, it associates a
specified logical unit number with a GPIB device or
address. Second, it specifies the logical parameters
that define the characteristics of the data transfer. A
typical OPEN statement for a GPIB device 1s shown
below:

Open #4:“GPIBQ(pri=4,sec=2 eom=<10>}."

- Logical parameters that are not specified in the
OPEN statement are set to their default values.

| 100 Open #1:“GPIBO(pri=3,sec=0):"

110 Integer numrec,reclen

120 Numrec=2¢

130 Reclen=1024

140 Print #1:“REC":numrec;reclen,"ARM A"

EOI
ASSERTED

'

REC 2,1024 : ARM A <cr><|f>
EOH EOA EQU EOM

CHARACTER
(EOM=<255>)

BUS TRAFFIC:

B

Fig. 4-1. 4041 BASIC automatically inserts the EOH, EOA, and EOM characters in a statement to build a valid
message for a Tektronix Codes and Formats instrument.

28

Section 4
Programming a 4041 GPIB System

Talking to the Instruments

Once the system is configured and powered up,
you're ready to begin communicating with the
iInstruments. Remember from Section 1 that all
messages transferred across the bus are divided
into two types: interface messages and device-
dependent messages. Interface messages control
the operation of the bus and interfaces while device-
dependent messages contro!l instrument
operations.

Device-dependent messages. Device-dependent
messages comprise the vocabulary of a GPIB
instrument. The content and format of these
messages is not defined by the IEEE 488 standard; it
Is determined by the instrument designer. However,
the Tektronix Codes and Formats standard
specifies the content and syntax ot device-
dependent messages for Tektronix GPIB
INnstruments.

Tektronix instruments implement two general
types of commands: set commands and query

commands. Set commands are device-dependent
messages that set instrument operating modes or

control device operations. Query commands are

device-dependent messages that return current

instrument settings, status, or values. Many query
commands are simply set commands with a
question mark added to the end of the command.
For example, the VPOS command sets the positive
supply output voltage fora PS 5010 Programmable
Power Supply. The VPOS? query returns the
positive supply voltage setting.

Transferring a device-dependent message.
Though the IEEE 488 standard does not specify the

ccentent of the device-dependent messages, it does
specify a protocol for how device-dependent
messages should be transferred over the GPIB.
There are three basic parts to every device-
dependent message transfer (see Fig. 4-2).

1. The addressing sequence. The controller
addresses one instrument (or itself) as a talker and
one or more instruments (including itself) as

INSTRUMENT 4041
LISTEN TALK
ALCDRESS ADDRESS

ot | jubd [y
N o N | At
L | T St
sl b T
T o(Rbd|E
N | $1.°%"°
B Al
o G
S £ &
B D N S B |
T] Y |
A T
L :
UNADDRESSING DATA
SEQUENCE TRANSFER

] i
F o L | T |5
{ | I A]
R | 5 Ef;fff L e
[T | K o
I i E oo e
el TMEA 1B E:
S | SR T
g [A . D |
P) 8 SR R}
G | 3 S £ |
E | R [S b

= E | s =
3 1 S | o=
T {1 § | 7
E [/ o

ADDRESSING
SEQUENCE

Fig. 4-2. There are three basic parts to every data transfer—the addressing sequence, the data transfer, and the

unaddressing sequence.

29

Section 4 o
Programming a 4041 GPIB System

listeners. If the 4041 is sending data, such as with a
PRINT statement, it sends the instrument’s listen
address (primary address+32) and its own talk
address (MA+64). If the 4041 is receiving data, such
as with an INPUT statement, it sends the
instrument’s talk address (primary address+64) and
its own listen address (MA+32) asshownin Fig. 4-3.
If the instrument requires a secondary address, this
address follows the primary address.

2. The data transfer. When the addressing
sequence is complete, the talker begins sending the
device-dependent message to the listeners. The
talker indicates the end of the message by asserting
EOQI with the last character of the message or by
adding a line-feed character to the end of the
message.

3. The unaddressing sequence. Most controliers
send the UNTalk and UNListen interface messages
at the end of a transfer to unaddress the current
talkers and listeners. This insures that the bus is
clear and ready for the next transfer.

Tosee how this works, consider sending an “ARM
A" command from the 4041 to a Tektronix 7612D
Programmable Digitizer. For the sake of this
example, assume that the instrument is set for
primary address 3 and secondary address 0. The
bus traffic required to send this message is shown in
Fig. 4-4.

First, the controller asserts the ATN line and
sends its own talk address, followed by the
instrument’s primary listen address (3+32=35). This

PRIMARY ADDRESS

LISTEN ADDRESS

address tells the instrument that it should listen to
the message that follows. Next, the controiler sends
the mainframe secondary address {(0+96=96). In the
case of the 76120, the secondary address telis the
mainframe to listen instead of one of the plug-ins
installed in the mainframe.

With the addressing sequence complete, the 4041
unasserts ATN, and begins transferring the device-
dependent message {ARM A). The message is
transferred one character at a time. If an EOM
characteris defined (EOM is not set to 0), the EOM
characteris sentatthe end of the message. With the
last character (EOM or the last character of the
message), the 4041 asserts EOQO| to tell the 7612D that
this is the end of the message.

When the ARM A message has been transferred,

the 4041 asserts ATN again and sends the universal
UNTalk and UNListen interface messages.

This processisthe same regardiess of the content
and format of the message. In stnme-cases, the
secondary address may be omitted if the instrument
does not require a secondary address.

PRINTing an ASCIl message. The process of
transferring a message may seem a hit complex, but
the 4041 takes care of most of the details
automatically. All you have to do is use a PRINT or
INPUT statement with the proper stream spec or
logical unit number. (Section 3 discusses stream
specs and logical unit numbers in more detail.)

To make communicating with a Tektronix
instrument even simpler, Logical Unit Numbers

TALK ADDRESS

D1
1
2

- 30

32 64
33 65
34 66
62 94

Fig. 4-3. The 4041 automatically generates the listen address on PRINT statements by addin g
32 to the instrument’s primary address. On INPUT statements, the talk sddress is generated by
adding 64 to the instrument’s primary address. The 4041’s talk or listen address is generated
by adding the appropriate offset to the MA parameter value.

30

. e e S

—'-—m'.“—

Section 4
Programming a 4041 GPIB System

100 OFPEN #1:"GPIB(PRI-3,.SEC=0)."

s Y10 PRINT #1."ARM A" 1041
L ‘-‘r"’é’&} : TALK
o DEVICE-DEPENDENT N2 RUMENT ADDRESS
A MESSAGE SECONDARY
(ARM A)
£ ADDRESSES
;t??,: - 11-'13.'...'.2_:. , - o ' ' T L T e , _____
4y R S T R e U T S R e T e PPN . Bkl it
"}-?‘: —
o {ul ful [|e B |t |T
3} N{ N 1| | A cl ts| |0
32 L T N R 0 T K
T | A E R N el
o S| |L | S D! Inl :a
'_E-:F'-"? T K F A P A r D
¥ E El (G| |A| |A R Al BT tal D
A N E! |E C Yi 1ol &
a D i_ E A |
.;_:. E D R S
A . T Ri |E| |5
¥ | U E S
B | R S
LE‘ J i N S
P B N ————— e N S
£ed 5 SATNT EO| ATN
ol ASSERTED ASSERTED
ég | ASSERTED

Fig. 4-4. Atypical PRINT statement sending the device-dependent message “ARM A" and the resulting message

traffic.

0-30 are automatically assigned default stream
specs that correspond to primary addresses 0-30.
The default stream specs are set to handle
iInstruments that implement the Tektronix Codes
and Formats Standard and that require no
secondary addresses.

These default LUNs allow you to begin
communicating with most Tektronix instruments
immediately. For example, the following PRINT
statement sends a SET? query to a DM 5010
Programmable Digital Multimeter set foraddress 16
using the default stream spec for LUN 16.

Print #16:“SET?"

It your instrument requires secondary addresses
or some other non-default stream spec, you simply
OPEN thelogical unit with the required stream spec
parameters. To send the same SET? query to a

7612D Programmable Digitizer set for primary

address 4 and secondary address 2, the following
statements could be used:

100 Open #10:"GPIBO(pri=4,sec-2)."
110 Print #10:"SET?”

The PRINT statement can be used to send any
ASCIll message. The message can be included as a
literal string tn quotes, as illustrated above. Or, the
message can be stored in avariable and the variable
can be included in the PRINT statement like this:

Command$="SET?"

Print #10:command$

Numeric values can be stored in numeric
variables and included in a PRINT statement to a
GPIB device. The PRINT statement automatically
converts the numeric value to a series of ASCIH
digits. Numeric values and character strings can be
mixed freely in a PRINT statement as long as the
result is a valid command string for the instrument.

In the following program segment, the output
voltage for a PS 5010 Programmable Power Supply
Is stored in the numeric variabte, POSVOLTS. The
complete message for the PS 5010 is constructed
from a literal command header (VPQOS) and the
numeric value stored in POSVOLTS. Notice that the
4041 automatically inserts the EOH character

31

Section 4
Programming a 4041 GPIB System

(space) between the header (VPOS) and the
argument (3.5}

100 Posvolits=3.5
110 Print #22:"VPOS";posvolts

Messages can also be built dynamically based on
userinput. The fo!lo'wing program segment asks the
user to enter a desired ocutput voltage fora PS 5010
Programmable Power Supply. The program accepts
the input value from the system console and builds a
message for the PS 5010 that telis it to set its output
to the desired voltage. |

100 Input prompt "Enter the output voltage: ":posvolts
110 Print #22."VPOS"posvolis

Getting a response. The process of sending a
query is the same as sending any other device-

dependent message except that after the query is

sent, the instrument expects to be addressed to talk
so that it can transmit the query response. The
complete process is shown in Fig. 4-5.

1. Address the instrument to listen. The 4041 sends
the instrument’s fisten address and, Hf necessary, its
secondary address. The 4041 addresses itself to talk
by sending its talk address.

2. Send the query command. Next, the query
command i1s sent to the instrument.

3. Unaddress the instrument. The instrument is
unaddressed to prepare for getting the response.

4. Address the instrument to talk. The controller
sends the Instrument's talk address and, if
necessary, the secondary address. The 4041 also
addresses itself to listen by sending its listen
address. -

5. Get the response. The instrument sends the
query response to the controlier, terminating the
message with EOI or EOQ! and line feed, depending
on the message terminator setting.

6. Unaddress the instrument. The UNTalk and
UNListen interface messages are sentagain to clear
the bus.

Query commands are sent with a PRINT
statement like any other device-dependent
message. The response from most queries can be
read with an INPUT statement as shown below.

32

100 Print #22:"I1D?"
110 Input #22:ident$

This program segment asks the instrument at
address 22 to send an ID string that identifies the
Instrument type and firmware version number. Line
100sendsthe queryandline 110 readsthe response
string into the string variable IDENTS.

4041 BASIC provides an easier way of handling
queries with a special INPUT clause called
PROMPT. The INPUT PROMPT statement aliows
you to send the gquery and get the reply in a single
program line. The program shown above can be
shortened to a single tine with the INPUT PROMPT
statement:

100 Input #22 prompt “1D?”:ident$

This single program line performs the same
function as the separate PRINT and INPUT
statements, butit's more efficient because the query
s completed in a single program line.

Receiving long strings. String variables in 4041
BASIC cancontainup to 72 characters by default. If
the query response is longer than 72 characters, the
string variable must be dimensioned to at least the
length of the query response string.

For example, the program segment below gets all
the current settings of a PS 5010 Programmable
Power Supply using the SET? query. The response
from the SET? query is 127 characters long, so the
string variable, SETTINGS$, must bedimensioned to
at least 127 characters in length.

100 Dim settingS to 150
110 Input #22 prompt “SET7":setting$

A string variable can be dimensioned to longer
than the expected response string. The string input
will be terminated as usual and unused space in the
string variable Is ignored.

Notice that the DIM statement can dimension the
length of individual strings as well as set up string
arrays. If the keyword “TO" is included as in the
previous example, the string is dimensioned to the
specified length. If the dimension parameter is
enclosed in parentheses directly following the
variable name, a string arrayissetup. The following
dimension statement illustrates the two functions of
the DIM statement.

Dim setting$(32) to 128

Section 4
Programming a 4041 GPIB System

4041 INSTRUMENT 4041
LISTEN INSTRUMENT LISTEN TALK
ADDRESS TALK ADDRESS ADDRESS ADDRESS

; NN

p o gl - Tt

am-ih—rZC

B . . . eaman - -
ﬁ_:ll: rJ B B .._=.. L . - " r
oy, . - . - . Lo
"'F_.f}"-. . :_ ." . . - .k - i' o~ -
-t wp ;‘":,-' w5 W

-t o O L

MmO xrpe—

Tt
l-". % I "

1%"‘*-" A E"
e
MO0 K- |

MO ZM—AUt =
MDD LM-{oh —r

I
Tvm.vu—-u-l—u—u-ﬂ
puk ok B PR TR TR W ahdn.

Mgt MEOPWDME =k |\ o
-
|
-

- 2Z2MSCDN-N=Z—

D M= MO AWM E =D

I T I I AT AT A R S A B S : s o Laga

“" / - ——— g
ATN EOI QUERY ATN
ASERTED ASSERTED COMMAND ASSERTED

(e.g. SET?)

TR

L
SRR

i
T .r.: F_d?-'.‘ . |..-‘

AR
N

(a) First, the instrument is addressed o listen, the query command is sent, the instrument is unaddressed, and
addressed to tailk.

-t o G

—ZMeC0—-{nNnLZ -

me<m mO»nmE A [/}

M—A=<T MO KAME = (1 D= Ty

QUERY +

RESPONSE E<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>