TB 9-6625-2139-35

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR OSCILLOSCOPE AN/USM-488 AND TEKTRONIX, TYPE 2235

Headquarters, Department of the Army, Washington, DC
30 October 2002
Approved for public release; distribution is unlimited.
TB 9-6625-2139-35, dated 18 March 2002, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages

1 and 2
17 and 18
27 and 28

Insert Pages
1 and 2
17 and 18
27 and 28
2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI
General, United States Army Chief of Staff

OFFICIAL:

Distribution:
To be distributed in accordance with initial distribution number (IDN) 342245, requirements for calibration procedure TB 9-6625-2139-35.

*TB 9-6625-2139-35

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR OSCILLOSCOPE AN/USM-488 AND TEKTRONIX, TYPE 2235

Headquarters, Department of the Army, Washington, DC 18 March 2002

Approved for public release; distribution is unlimited

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter, DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our FAX number is: DSN 788-6546 or Commercial 256-842-6546. Our email address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this of this bulletin. For the World Wide Web, use: https://amcom2028.redstone.army.mil.

SECTION I.

IDENTIFICATION AND DESCRIPTION

Test instrument identification
Forms, records, and reports.
\qquad
Calibration description. \qquad
II. EQUIPMENT REQUIREMENTS

Equipment required. \qquad
Accessories required.
ROCESS
Preliminary instructions.
Equipment setup
Vertical
Horizontal
Triggering
\qquad
Calibrator amplitude
Power supply \qquad
Final procedure
III. CALIBRATION PROCESS
Final proceaure
\square

Paragraph

2
3

2

2
2

SECTION I IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This bulletin provides instructions for the calibration of Oscilloscope AN/USM-488 and Tektronix, Type 2235. The manufacturers' manuals were used as the prime data sources in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
a. Model Variations. Variations among models are listed in text.
b. Time and Technique. The time required for this calibration is approximately 2 hours, using the dc and low frequency technique.

2. Forms, Records, and Reports

a. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
b. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument parameters	Performance specifications
Vertical	
Deflection	Range: $2 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div Accuracy: $\pm 2 \%$
Bandwidth	Range: $2 \mathrm{mV} / \mathrm{div}$
	Accuracy: Dc to at least 90 MHz
	Range: $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div
	Accuracy: Dc to at least 100 MHz
Aberrations	Range: $2 \mathrm{mV} /$ div to $0.5 \mathrm{~V} / \mathrm{div}$ Accuracy: $+4 \%,-4 \%, 4 \%$ p-p

2 CHANGE 1

Table 1. Calibration Description - Continued

Test instrument parameters	Performance specifications				
Horizontal A sweep timing B sweep timing Sweep linearity Deflection (X-Axis)	Range: $0.5 \mathrm{~s} /$ div to $0.05 \mu \mathrm{~s} /$ div Accuracy: $\pm 2 \%$ Range: (X10 mag): $50 \mathrm{~ms} /$ div to $5 \mathrm{~ns} /$ div Accuracy: $\pm 3 \%$ Range: $50 \mathrm{~ms} /$ div to $0.05 \mu \mathrm{~s} /$ div Accuracy: $\pm 2 \%$ Range: (X10 mag): $5 \mathrm{~ms} /$ div to $5 \mathrm{~ns} /$ div Accuracy: $\pm 3 \%$				
A trigger sensitivity	Frequency	10 MHz	$\begin{gathered} 60 \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \hline 100 \\ & \mathrm{MHz} \end{aligned}$	
	Internal	$\begin{gathered} 0.35 \\ \operatorname{div}^{1} \end{gathered}$	1.0 div	1.5	div
	External	35 mV	$\begin{aligned} & 120 \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & \hline 150 \\ & \mathrm{mV} 2 \end{aligned}$	
B trigger sensitivity	Internal only	0.35 div	1.0 div	1.5	div
Calibrator amplitude	Range: 0.5 V Accuracy: $\pm 2 \%^{3}$				

${ }^{1} 0.3$ division for type 2235 .
${ }^{2} 200 \mathrm{mV}$ for type 2235.
${ }^{3} \pm 5 \%$ for type 2235 .

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-286. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI.
5. Accessories Required. The accessories required for this calibration are common usage accessories issued as indicated in 4 above, and are not listed in this calibration procedure. The following peculiar accessory is also required for this calibration: standardizer, $5-80 \mathrm{pF}$.

Table 2. Minimum Specifications of Equipment Required

Common name	Minimum use specifications	Manufacturer and model (part number)
OSCILLOSCOPE CALIBRATOR	Volts out:	John Fluke, Model 5820A, MIS-38938
	Range: 10 mV to 20 V	$(5820 \mathrm{~A}-5 \mathrm{C}-\mathrm{GHZ}$),
	Accuracy: $\pm 0.5 \%$	
	Time markers:	
	Range: $5 \mathrm{~ns} / \mathrm{D}$ to $0.5 \mathrm{~s} / \mathrm{D}$	
	Accuracy: $\pm 0.5 \%$	
	Sine wave frequency:	
	Range: 50 kHz to $>100 \mathrm{MHz}$	
DIGITAL MULTIMETER	Range: -8.64 to $<0.1 \mathrm{~V} \mathrm{dc}$	John Fluke, Model 8840A/AF-05/09
	Accuracy: $\pm 0.12 \%$	(AN/GSM-64D)

SECTION III

CALIBRATION PROCESS

6. Preliminary Instructions

a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
b. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual for this TI.
d. When indications specified in paragraphs 8 through 11 are not within tolerance, perform the power supply check prior to making adjustments. After adjustments are made, repeat paragraphs 8 through 11. Do not perform power supply check if all other parameters are within tolerance.
e. Unless otherwise specified, all controls and control settings refer to TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.
a. Remove protective cover from TI only when necessary to make adjustments. Replace cover after completing the adjustments.
b. Connect TI to a 115 V ac source.
c. Position controls as listed in (1) through (22) below:
(1) A and B INTENSITY controls fully ccw.
(2) POSITION controls to midrange.
(3) CH 2 POSITION INVERT (PULL) control to in position (AN/USM-488).
(4) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(5) VERTICAL MODE TRIGGER SOURCE CH 1 and CH 2 pushbuttons pressed to COMPOSITE (AN/USM-488).
(6) CH 1 and CH 2 VOLTS/DIV CAL controls fully cw to detent.
(7) CH 2 INVERT pushbutton to out position (type 2235).
(8) CH 1 and CH 2 AC GND DC switches to DC.
(9) BW LIMIT 20 MHz pushbutton to out position.
(10) HORIZONTAL MODE switch to A.
(11) A AND B SEC/DIV switches to $\mathbf{2} \mathbf{~ m s}$.
(12) X10 CAL control fully cw and in position.
(13) VAR HOLDOFF control fully ccw to NORM.
(14) B TRIGGER SLOPE pushbutton OUT: Γ to
(15) B TRIGGER LEVEL control fully cw.
(16) A TRIGGER P-P AUTO pushbutton to in position.
(17) A TRIGGER NORM pushbutton to out position.
(18) A TRIGGER SLOPE pushbutton to OUT (positive slope).
(19) A TRIGGER LEVEL control to midrange.
(20) A TRIGGER A TRIG BW switch to FULL (AN/USM-488).
(21) A TRIGGER A\&B INT switch to VERT MODE (type 2235).
(22) A TRIGGER A SOURCE switch to INT.
d. Press POWER pushbutton to $\mathbf{O N}$ and allow at least 20 minutes for warm-up.
e. Adjust A INTENSITY and FOCUS controls for suitable viewing.
8. Vertical
a. Performance Check
(1) Connect oscilloscope calibrator CHAN 1 to TI CH 1.
(2) Set CH 1 VOLTS/DIV switch to $\mathbf{2 m}$.
(3) Press oscilloscope calibrator VOLTAGE pushbutton to illuminate green LED. Set oscilloscope calibrator output to $\mathbf{1 0} \mathbf{~ m V}$ and output frequency to $\mathbf{1} \mathbf{k H z}$.
(4) Adjust A TRIGGER LEVEL and POSITION controls, as necessary, to view waveform.
(5) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to obtain 5 divisions of vertical display. Oscilloscope calibrator err display will indicate within limits specified in table 3 .
(6) Repeat technique of (4) and (5) above for settings listed in table 3 Oscilloscope calibrator err display will indicate within limits specified in table 3; if not, perform adjustments list in table 3.

Table 3. Vertical Deflection

Test instrument VOLTS/DIV switch settings	Oscilloscope calibrator VOLTAGE output settings	Test instrument divisions of vertical deflection	Oscilloscope calibrator Err display indications $(\pm \%)$	Test instrument adjustments
2 m	10 mV	5	2	$\mathbf{b}(1)$ through (40)
5 m	20 mV	4	2	$\mathbf{b}(81)$ through (95)
10 m	50 mV	5	2	
20 m	.1 V	5	2	
50 m	.2 V	4	2	
.1	.5 V	5	2	
.2	1 V	5	2	
.5	2 V	4	2	
1	5 V	5	2	
2	10 V	5	2	
5	20 V	4	2	

(7) Set VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2 and move TI connections at CH1 to CH2.
(8) Ensure CH 2 VOLTS/DIV switch is set to $\mathbf{2 m}$.
(9) Set oscilloscope calibrator VOLTAGE output to $\mathbf{1 0} \mathbf{~ m V}$ and frequency to $\mathbf{1}$ $\mathbf{k H z}$.
(10) Adjust A TRIGGER LEVEL and POSITION controls, as necessary, to view waveform.
(11) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to obtain 5 divisions of vertical display. Oscilloscope calibrator err display will indicate within limits specified in table 4.
(12) Repeat technique of (10) and (11) above for settings listed in table 4 Oscilloscope calibrator err display will indicate within limits specified in table 4; if not, perform $\mathbf{b}(41)$ through (80) below.

Table 4. Vertical Deflection

Test instrument VOLTS/DIV switch settings	Oscilloscope calibrator VOLTAGE output settings	Test instrument divisions of vertical deflection	Oscilloscope calibrator Err display indications $(\pm \%)$	Test instrument adjustments
2 m	10 mV	5	2	$\mathbf{b}(1)$ through (40)
5 m	20 mV	4	2	$\mathbf{b}(81)$ through (95)
10 m	50 mV	5	2	
20 m	.1 V	5	2	
50 m	.2 V	4	2	
.1	.5 V	5	2	
.2	1 V	5	2	
.5	2 V	4	2	
1	5 V	5	2	
2	10 V	5	2	
5	20 V	4	2	

(13) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(14) Position controls as listed in (a) through (c) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) CH 1 and CH 2 VOLTS/DIV switches to 2 m .
(c) Set A AND B SEC/DIV switch to $\mathbf{. 0 5} \mu \mathrm{s}$.
(15) Press oscilloscope calibrator EDGE pushbutton to illuminate green LED and set oscilloscope calibrator output to $\mathbf{1 0} \mathbf{~ m V}$ at $\mathbf{1 ~ M H z}$.
(16) Use technique of step 17 below for TI settings and oscilloscope calibrator output settings listed in table 5 .
(17) Adjust CH 1 POSITION control to position top of waveform to center horizontal graticule line. If squarewave aberrations exceed those listed in table 5 perform adjustments listed in table 5.

Table 5. Channel 1 Vertical Deflection Aberration Limits and Adjustments

$\begin{array}{r} \hline \text { Oscilloscop } \\ \text { EDGGE } \end{array}$	alibrator	Test instrument			
Amplitude	Frequency	A AND B SEC/DIV switch settings ($\mu \mathrm{s}$)	$\begin{gathered} \text { VOLTS/DIV } \\ \text { switch } \\ \text { settings } \\ \hline \end{gathered}$	Aberration limits minor division positive or negative or minor division pk-pk <	Adjustments
10 mVpp	1 MHz	0.05	2 m	1	b(81) through (95)
50 mVpp	1 MHz	0.05	10 m	1	
100 mVpp	1 MHz	0.05	20 m	1	
250 mVpp	1 MHz	0.05	50 m	1	
. 5 Vpp	1 MHz	0.05	. 1	1	
1 Vpp	1 MHz	0.05	. 2	1	

(18) Set VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2.
(19) Remove connection located at TI CH 1 and connect oscilloscope calibrator CHAN 1 to TI CH 2 using a 50Ω feedthrough termination.
(20) Ensure CH 2 VOLTS/DIV switch is set to $2 m$ and oscilloscope calibrator EDGE pushbutton green LED is illuminated.
(21) Use technique of (22) below for TI settings and oscilloscope calibrator output settings listed in table 6.
(22) Adjust CH 1 POSITION control to position top of waveform to center horizontal graticule line. If squarewave aberrations exceed those listed in table 6 perform adjustments listed in table 6 .

Table 6. Channel 2 Vertical Deflection Aberration Limits and Adjustments

Oscilloscope calibrator EDGE settings		Test instrument			
Amplitude	Frequency	A AND B SEC/DIV switch settings ($\mu \mathrm{s}$)	VOLTS/DIV switch settings	Aberration limits minor division positive or negative or minor division pk-pk $<$	Adjustments
10 mVpp	1 MHz	0.05	2 m	1	b(81) through (95)
50 mVpp	1 MHz	0.05	10 m	1	
100 mVpp	1 MHz	0.05	20 m	1	
250 mVpp	1 MHz	0.05	50 m	1	
. 5 Vpp	1 MHz	0.05	. 1	1	
1 Vpp	1 MHz	0.05	. 2	1	

(23) Set VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(24) Connect CH1 through 50Ω feedthrough termination to oscilloscope calibrator CHAN 1.
(25) Press oscilloscope calibrator LEVEL SINE pushbutton to illuminate green LED.
(26) Set TI VOLTS/DIV, A AND B SEC/DIV settings and oscilloscope calibrator LEVEL SINE output to settings listed in first row of table 7.
(27) Rotate oscilloscope calibrator knob below EDIT FIELD pushbutton to adjust amplitude for 6 divisions of vertical deflection on TI.

Table 7. Channel 1 Bandwidth Measurement

Test instrument switch settings		Oscilloscope calibrator LEVEL SINE output settings		Test instrument amplitude limits (divisions) \geq	Test instrument adjustments
VOLTS/DIV	A AND B SEC/DIV	Amplitude	Frequency sweep		
2 m	$20 \mu \mathrm{~s}$	11.2 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 90 \mathrm{MHz}^{1} \\ \hline \end{gathered}$	4.2	b(81) through (95)
5 m	$20 \mu \mathrm{~s}$	30 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}{ }^{1} \end{gathered}$	4.2	
10 m	$20 \mu \mathrm{~s}$	60 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}{ }^{1} \end{gathered}$	4.2	
20 m	$20 \mu \mathrm{~s}$	120 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz} 1 \end{gathered}$	4.2	
50 m	$20 \mu \mathrm{~s}$	300 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \\ \hline \end{gathered}$	4.2	
. 1 m	$20 \mu \mathrm{~s}$	0.60 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}{ }^{1} \end{gathered}$	4.2	
. 2 m	$20 \mu \mathrm{~s}$	1.20 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}{ }^{1} \end{gathered}$	4.2	
. 5 m	$20 \mu \mathrm{~s}$	3.0 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2	

${ }^{1}$ Press "Set to 50 kHz " Blue Soft button to quickly return to 50 kHz .

NOTE

To perform the step below; press EDIT FIELD pushbutton as required to place underline under one of the frequency digits.
(28) Rotate oscilloscope calibrator knob below EDIT FIELD pushbutton to sweep oscilloscope calibrator from 50 kHz to frequency limits specified in table 7 while observing displayed waveform amplitude on TI crt. Displayed waveform amplitude will be as specified in table 7 throughout frequency range.
(29) Repeat technique of steps (27) and (28) above for remaining TI VOLTS/DIV, A and B SEC/DIV settings and oscilloscope calibrator LEVEL SINE output to settings listed in table 7.
(30) Set VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2 and move connection located at TI CH 1 to CH 2.
(31) Set TI VOLTS/DIV, A and B SEC/DIV settings and oscilloscope calibrator LEVEL SINE output to settings listed in first row of table 8.
(32) Rotate oscilloscope calibrator knob below EDIT FIELD pushbutton to adjust amplitude for 6 divisions of vertical deflection on TI.

Table 8. Channel 2 Bandwidth Measurement

Test instrument switch settings		Oscilloscope calibrator LEVEL SINE output settings		Test instrument amplitude limits (divisions)
VOLTS/DIV	A AND B SEC/DIV	Amplitude	Sweep frequency	
2 m	$20 \mu \mathrm{~s}$	11.20 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 90 \mathrm{MHz}^{1} \\ \hline \end{gathered}$	4.2
5 m	$20 \mu \mathrm{~s}$	30 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2
10 m	$20 \mu \mathrm{~s}$	60 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2
20 m	$20 \mu \mathrm{~s}$	120 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2
50 m	$20 \mu \mathrm{~s}$	300 mV	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2
. 1 m	$20 \mu \mathrm{~s}$	0.60 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}{ }^{1} \\ \hline \end{gathered}$	4.2
.2 m	$20 \mu \mathrm{~s}$	1.20 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2
. 5 m	$20 \mu \mathrm{~s}$	3.0 V	$\begin{gathered} 50 \mathrm{kHz} \\ \text { to } \\ 100 \mathrm{MHz}^{1} \end{gathered}$	4.2

[^0]
NOTE

To perform the step below, press EDIT FIELD pushbutton as required to place underline under one of the frequency digits.
(33) Rotate oscilloscope calibrator knob below EDIT FIELD pushbutton to sweep oscilloscope calibrator from 50 kHz to frequency limits specified in table 8 while observing displayed waveform amplitude on TI crt. Displayed waveform amplitude will be as specified in table 8 throughout frequency.
(34) Repeat technique of steps (32) and (33) above for remaining TI VOLTS/DIV, A AND B SEC/DIV settings and oscilloscope calibrator LEVEL SINE output to settings listed in table 8.
b. Adjustments
(1) Disconnect oscilloscope calibrator CHAN 1 from TI CH 1.
(2) Set CH 1 AC GND DC switch to AC.
(3) Set CH 1 VOLTS/DIV switch to 50 m .
(4) Adjust CH 1 POSITION control to position trace on center horizontal graticule line.
(5) Set CH 1 VOLTS/DIV switch to $\mathbf{5 m}$.
(6) Adjust R10 fig. 1 to position trace on center horizontal graticule line.
(7) Repeat (3) through (6) above for minimum trace shift when setting CH 1 VOLTS/DIV switch from $\mathbf{5 0 m}$ to $\mathbf{5 m}$.
(8) Adjust CH 1 POSITION control to position trace on center horizontal graticule line.
(9) Set CH 1 VOLTS/DIV switch to $\mathbf{2 m}$.
(10) Adjust R33 (fig. 1) to position trace on center horizontal graticule line.
(11) Set CH 1 VOLTS/DIV switch to 5 m .
(12) Repeat (8) through (11) above for minimum trace shift when setting CH 1 VOLTS/DIV switch from $\mathbf{5 m}$ to $\mathbf{2 m}$.
(13) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(14) Position controls as listed in (a) through (c) below:
(a) CH 1 VOLTS/DIV switch to $\mathbf{1 0 m}$.
(b) CH 1 AC AND DC switch to DC.
(c) A AND B SEC/DIV switches to $20 \mu \mathrm{~s}$.

TB 9-6625-2139-35

Figure 1. Adjustment locations - top view.
(15) Set oscilloscope calibrator EDGE output to $\mathbf{1 0} \mathbf{~ k H z}$ and 5 divisions of vertical deflection on TI.
(16) Adjust CH 1 POSITION control to position top of waveform to the center horizontal graticule line.
(17) Adjust C3 (fig. 1) and R47 (fig. 1) for the best square corner and flat top.
(18) Remove 50Ω feedthrough termination and connect calibration generator OUTPUT to TI CH 1.
(19) Set oscilloscope calibrator voltage output to 10 mV at 1 kHz .
(20) Position controls as listed in (a) through (c) below:
(a) CH 1 VOLTS/DIV switch to $\mathbf{2 m}$.
(b) A AND B SEC/DIV switches to .2 ms .
(c) CH 1 POSITION control to view waveform.
(21) Adjust R26 (fig. 1) for 5 divisions of vertical deflection on TI (R).
(22) Set CH 1 VOLTS/DIV switch to 10m.
(23) Set oscilloscope calibrator output to 50 mV .
(24) Adjust R145 (fig. 1) for 5 divisions of vertical deflection on TI (R).
(25) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 5-80 pF standardizer.
(26) Set oscilloscope calibrator EDGE output to $\mathbf{1} \mathbf{~ k H z}$ and amplitude for 5 divisions of vertical defection on TI.
(27) Adjust $5-80 \mathrm{pF}$ standardizer for optimum square wave.
(28) Set CH 1 VOLTS/DIV switch to .1.
(29) Replace $5-80 \mathrm{pF}$ standardizer with 50Ω feedthrough termination.
(30) Set oscilloscope calibrator output amplitude for 5 divisions of vertical deflection on TI.
(31) Adjust C12 (fig. 1) for best front corner.
(32) Replace 50Ω feedthrough termination with a $5-80 \mathrm{pF}$ standardizer and repeat (30) above.
(33) Adjust C11 fig. 1 for best flat top.
(34) Repeat (29) through (33) above until no further improvement is noted.
(35) Set CH 1 VOLTS/DIV switch to 1.
(36) Remove $5-80 \mathrm{pF}$ standardizer and connect oscilloscope calibrator CHAN 1 to TI CH 1. Repeat (30) above.
(37) Adjust C5 (fig. 1) for best front corner.
(38) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 5-80 pF standardizer and repeat (30) above.
(39) Adjust C4 fig. 1) for best flat top.
(40) Repeat (36) through (39) above until no further improvement is noted.
(41) Disconnect oscilloscope calibrator CHAN 1 from TI CH 2.
(42) Set CH 2 AC GND DC switch to AC.
(43) Set CH 2 VOLTS/DIV switch to 50m.
(44) Adjust CH 2 POSITION control to position trace on center horizontal graticule line.
(45) Set CH 2 VOLTS/DIV switch to 5m.
(46) Adjust R60 (fig. 1) to position trace on center horizontal graticule line.
(47) Repeat (43) through (46) above for minimum trace shift when setting CH 2 VOLTS/DIV switch from 50 m to 5 m .
(48) Adjust CH 2 POSITION control to position trace on center horizontal graticule line.
(49) Set CH 2 VOLTS/DIV switch to 2m.
(50) Adjust R83 (fig. 1) to position trace on center horizontal graticule line.
(51) Set CH 2 VOLTS/DIV switch to $\mathbf{5 m}$.
(52) Repeat (48) through (51) above for minimum trace shift when setting CH 2 VOLTS/DIV switch from $\mathbf{5 m}$ to $\mathbf{2 m}$.
(53) Connect oscilloscope calibrator CHAN 1 to TI CH 2 using a 50Ω feedthrough termination.
(54) Position controls as listed in (a) through (c) below:
(a) CH 2 VOLTS/DIV switch to $\mathbf{1 0 m}$.
(b) CH 2 AC GND DC switch to DC.
(c) A AND B SEC/DIV switches to 20μ s.
(55) Set oscilloscope calibrator EDGE output to $\mathbf{1 0} \mathbf{~ k H z}$ and amplitude for 5 divisions of vertical deflection on TI.
(56) Adjust CH 2 POSITION control to position top of waveform to the center horizontal graticule line.
(57) Adjust C53 (fig. 1) and R97 (fig. 1) for the best square corner and flat top.
(58) Remove 50Ω feedthrough termination and connect oscilloscope calibrator CHAN 1 to TI CH 2.
(59) Set oscilloscope calibrator VOLTAGE output to 10 mV and 1 kHz .
(60) Position controls as listed in (a) through (c) below:
(a) CH 2 VOLTS/DIV switch to $\mathbf{2 m}$.
(b) A AND B SEC/DIV switches to .2 ms .
(c) CH 2 POSITION control to view waveform.
(61) Adjust R76 (fig. 1) for 5 divisions of vertical deflection on TI (R).
(62) Set CH 2 VOLTS/DIV switch to 10m.
(63) Set oscilloscope calibrator output to 50 mV .
(64) Adjust R195 (fig. 1) for 5 divisions of vertical deflection on TI (R).
(65) Connect oscilloscope calibrator CHAN 1 to TI CH 2 using a 5-80 pF standardizer.
(66) Set oscilloscope calibrator EDGE output to $\mathbf{1} \mathbf{~ k H z}$ and amplitude for 5 divisions of vertical defection on TI.
(67) Adjust $5-80 \mathrm{pF}$ standardizer for optimum square wave.
(68) Set CH 2 VOLTS/DIV switch to .1.
(69) Replace $5-80 \mathrm{pF}$ standardizer with 50Ω feedthrough termination.
(70) Set oscilloscope calibrator amplitude for 5 divisions of vertical deflection on TI.
(71) Adjust C62 (fig. 1) for best front corner.
(72) Replace the 50Ω feedthrough termination with a $5-80 \mathrm{pF}$ standardizer and repeat (70) above.
(73) Adjust C61 (fig. 1) for best flat top.
(74) Repeat (69) through (73) above until no further improvement is noted.
(75) Set CH 2 VOLTS/DIV switch to 1.
(76) Remove $5-80 \mathrm{pF}$ standardizer and connect oscilloscope calibrator CHAN 1 to TI CH 2. Repeat (70) above.
(77) Adjust C55 fig. 1) for best front corner.
(78) Connect oscilloscope calibrator CHAN 1 to TI CH 2 using a $5-80 \mathrm{pF}$ standardizer and repeat (70) above.
(79) Adjust C54 (fig. 1) for best flat top.
(80) Repeat (76) through (79) above until no further improvement is noted.
(81) Position controls as listed in (a) through (c) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) CH 1 and CH 2 VOLTS/DIV switches to 10 m .
(c) A AND B SEC/DIV switch to $\mathbf{. 0 5} \mu \mathrm{s}$.
(82) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 10X attenuator and a 50Ω feedthrough termination.
(83) Set oscilloscope calibrator EDGE output to $\mathbf{1} \mathbf{M H z}$ and amplitude for 5 divisions of vertical deflection on TI.
(84) Adjust CH 1 POSITION control to position top of waveform to center horizontal graticule line.
(85) Adjust C237 (fig. 1) for minimum overshoot and R240 (fig. 1) and R241 (fig. 1) for best flat top on front corner of waveform (R).
(86) Set CH 1 VOLTS/DIV switch to 2 m .
(87) Set oscilloscope calibrator output for 5 divisions of vertical deflection on TI.
(88) Adjust CH 1 POSITION control to position top of waveform to center horizontal graticule line.
(89) Adjust C26 fig. 1) for minimum overshoot on waveform (R).
(90) Set VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2 and repeat technique of (82) through (84) above for CH 2.
(91) Adjust C180 fig. 1) for minimum overshoot on displayed waveform (R).
(92) Set CH 2 VOLTS/DIV switch to $\mathbf{2 m}$.
(93) Set oscilloscope calibrator output for 5 divisions of vertical deflection on TI.
(94) Adjust CH 2 POSITION control to position top of waveform to center horizontal graticule line.
(95) Adjust C76 fig. 1) for minimum overshoot on waveform (R).

9. Horizontal

a. Performance Check
(1) Position controls as listed in (a) through (e) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) CH 1 VOLTS/DIV switch to .5.
(c) B DELAY TIME POSITION control fully ccw.
(d) B TRIGGER LEVEL control fully cw.
(e) A TRIGGER NORM pushbutton pressed.
(2) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(3) Press oscilloscope calibrator MARKER pushbutton to illuminate green LED and set oscilloscope calibrator output for settings listed in first row in table 9 .
(4) Adjust A TRIGGER LEVEL, A INTENSITY, and CH 1 POSITION controls for suitable viewing.
(5) Adjust horizontal POSITION control to aline $2^{\text {nd }}$ time marker with $2^{\text {nd }}$ vertical graticule line.
(6) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $10^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticle line. Oscilloscope calibrator err display will indicate within limits specified in table 9. If oscilloscope calibrator err display does

TB 9-6625-2139-35
not indicate within limits listed in table 9 and linearity is not within limits listed in table 9 perform adjustments listed in table 9 .
(7) Repeat technique of steps (4) through (6) above for remaining rows listed in table 9. Perform TI adjustments listed in table 9 as needed.

Table 9. A Sweep Timing

Test instrument A AND B SEC/DIV switch settings	Oscilloscope calibrator MARKER output settings		OscilloscopecalibratorErr display limits$\pm \%$	Test instrumentlinearity0.1 division over any2 center 8 divisions		Test instrument adjustments	
			Yes	No			
. $05 \mu \mathrm{~s}$	50	nS/D		2			b(1) through (28)
. 1 Hs	. 1	$\mu \mathrm{S} / \mathrm{D}$	2				
. 2 us	. 2	$\mu \mathrm{S} / \mathrm{D}$	2				
. 5 H	. 5	$\mu \mathrm{S} / \mathrm{D}$	2				
$1 \quad \mu \mathrm{~s}$	1	$\mu \mathrm{S} / \mathrm{D}$	2				
$2 \quad \mu \mathrm{~s}$	2	$\mu \mathrm{S} / \mathrm{D}$	2				
5 Ms	5	$\mu \mathrm{S} / \mathrm{D}$	2				
10 Hs	10	$\mu \mathrm{S} / \mathrm{D}$	2				
$20 \quad \mu \mathrm{~s}$	20	$\mu \mathrm{S} / \mathrm{D}$	2				
50 Hs	50	$\mu \mathrm{S} / \mathrm{D}$	2				
. 1 ms	. 1	mS / D	2				
. 2 ms	. 2	mS / D	2				
. 5 ms	. 5	mS / D	2				
1 ms	1	mS / D	2				
2 ms	2	mS / D	2				
5 ms	5	mS / D	2				
10 ms	10	mS/D	2				
20 ms	20	mS / D	2				
50 ms	50	mS / D	2				
$\begin{aligned} & .1 \quad \mathrm{sec} \\ & \mathrm{~A} \text { ONLY } \end{aligned}$. 1	S/D	2				
$\begin{gathered} .2 \mathrm{sec} \\ \mathrm{~A} \text { ONLY } \\ \hline \end{gathered}$. 2	S/D	2				
$\begin{aligned} & .5 \mathrm{sec}_{\mathrm{A}}{ }^{\text {ONLY }} \end{aligned}$. 5	S/D	2				

(8) Pull X10 CAL control to out position.
(9) Set calibration generator output for settings listed in first row in table 10 and adjust A TRIGGER LEVEL, A INTENSITY, and CH 1 POSITION controls for suitable viewing.
(10) Adjust horizontal POSITION control to aline the ${ }^{\text {st }}$ time marker that is 25 ns beyond start of sweep with the $2^{\text {nd }}$ vertical graticule line.
(11) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $5^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticle line. Oscilloscope calibrator err display will indicate within limits specified in table 10. If oscilloscope calibrator err display does not indicate within limits listed in table 10 and linearity is not within limits listed in table 10. perform adjustments listed in table 10.

Table 10. A Sweep Timing (X10 Out)

Test instrument A AND B SEC/DIV switch settings	Oscilloscope calibrator MARKER output settings	Oscilloscope calibrator Err display limits $\pm \%$	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments
			Yes	No	
. $05 \mu \mathrm{~s}$	$10 \mathrm{nS} / \mathrm{D}$	3			b(1) through (28)

(12) Set TI A AND B SEC/DIV switch settings and oscilloscope calibrator output to first row in table 11. Adjust A TRIGGER LEVEL, A INTENSITY, and CH 1 POSITION controls for suitable viewing.
(13) Adjust horizontal POSITION control to aline the 1st time marker that is 25 ns beyond start of sweep with the $2^{\text {nd }}$ vertical graticule line.
(14) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $10^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticle line. Oscilloscope calibrator err display will indicate within limits specified in table 11. If oscilloscope calibrator err display does not indicate within limits listed in table 11 and linearity is not within limits listed in table 11. perform adjustments listed in table 11.

Table 11. A Sweep X10 Timing

Test instrument A AND B SEC/DIV switch settings	Oscilloscope calibrator MARKER output settings	Oscilloscope calibrator Err display limits $\pm \%$		ment vision sions	Test instrument adjustments
			Yes	No	
. $1 \quad \mu \mathrm{~s}$	10 nS/D	3			b(l) through (28)
. 2 Ms	20 nS/D	3			
. $5 \quad \mu \mathrm{~s}$	50 nS/D	3			
$1 \quad \mu \mathrm{~s}$		3			
$2 \quad \mu \mathrm{~s}$. $2 \mu \mathrm{~S} / \mathrm{D}$	3			
$5 \quad \mu \mathrm{~s}$. $5 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
$10 \quad \mu \mathrm{~s}$	$1 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
$20 \quad \mu \mathrm{~s}$	$2 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
$50 \quad \mu \mathrm{~s}$	$5 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
.1 ms	$10 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
.2 ms	$20 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
. 5 ms	$50 \quad \mu \mathrm{~S} / \mathrm{D}$	3			

18 CHANGE 1

Table 11. A Sweep X10 Timing

Test instrument A AND B SEC/DIV switch settings	Oscilloscope calibrator MARKER output settings		Oscilloscope calibrator Err display limits $\pm \%$	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments	
			Yes	No			
1 ms	. 1	mS / D		3			
2 ms	. 2	mS / D	3				
5 ms	. 5	mS / D	3				
10 ms	1	mS / D	3				
20 ms	2	mS / D	3				
50 ms	5	mS/D	3				
$\begin{gathered} .1 \mathrm{~ms} \\ \text { A ONLY } \\ \hline \end{gathered}$	10	mS / D	3				
$\begin{gathered} .2 \mathrm{~ms} \\ \text { A ONLY } \\ \hline \end{gathered}$	20	mS/D	3				
$\begin{gathered} .5 \mathrm{~ms} \\ \text { A ONLY } \end{gathered}$	50	mS/D	3				

(15) Repeat technique of (12) through (14) above for remaining settings listed in table 11. If oscilloscope calibrator err display does not indicate within limits listed in table 11 and linearity is not within limits listed in table 11, perform adjustments listed in table 11.
(16) Position controls as listed in (a) through (c) below:
(a) HORIZONTAL MODE switch to B.
(b) $\mathbf{X 1 0} \mathbf{C A L}$ control to in position.
(c) Set TI switch settings and oscilloscope calibrator output to first row listed in table 12.
(17) Adjust A and B TRIGGER LEVEL, B INTENSITY, and CH 1 POSITION controls for suitable viewing.
(18) Adjust horizontal POSITION control to aline $2^{\text {nd }}$ time marker with $2^{\text {nd }}$ vertical graticule line.
(19) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $10^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticule line. Oscilloscope calibrator err display will indicate within limits specified in table 12. If oscilloscope calibrator err display does not indicate within limits listed in table 12 and linearity is not within limits listed in table 12. perform adjustments listed in table 12.

Table 12. B Sweep Timing

Test instrument SEC/DIV switch settings		Oscilloscope calibrator MARKER output settings		Oscilloscope calibrator Err display limits $\pm \%$	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments	
A	B			Yes	No			
. 1 M	. $05 \mu \mathrm{~s}$	50	nS / D		2			b(l) through (28)
. $2 \mu \mathrm{~s}$. $1 \mu \mathrm{~s}$. 1	$\mu \mathrm{S} / \mathrm{D}$	2				
. $5 \mu \mathrm{~s}$. $2 \mu \mathrm{~s}$		$\mu \mathrm{S} / \mathrm{D}$	2				
$1 \quad \mu \mathrm{~s}$. $5 \mu \mathrm{~s}$		$\mu \mathrm{S} / \mathrm{D}$	2				
$2 \quad \mu \mathrm{~s}$	$1 \quad \mu \mathrm{~s}$		$\mu \mathrm{S} / \mathrm{D}$	2				
$5 \quad \mu \mathrm{~s}$	$2 \quad \mu \mathrm{~s}$	2	$\mu \mathrm{S} / \mathrm{D}$	2				
$10 \quad \mu \mathrm{~s}$	$5 \quad \mu \mathrm{~s}$	5	$\mu \mathrm{S} / \mathrm{D}$	2				
$20 \quad \mu \mathrm{~s}$	$10 \quad \mu \mathrm{~s}$	10	$\mu \mathrm{S} / \mathrm{D}$	2				
$50 \quad \mu \mathrm{~s}$	$20 \quad \mu \mathrm{~s}$	20	$\mu \mathrm{S} / \mathrm{D}$	2				
. 1 ms	$50 \quad \mu \mathrm{~s}$	50	$\mu \mathrm{S} / \mathrm{D}$	2				
. 2 ms	.1 ms	. 1	mS / D	2				
. 5 ms	.2 ms	. 2	mS / D	2				
1 ms	.5 ms	. 5	mS / D	2				
2 ms	1 ms	1	mS / D	2				
5 ms	2 ms	2	mS/D	2				
10 ms	5 ms	5	mS / D	2				
20 ms	10 ms	10	mS / D	2				
50 ms	20 ms	20	mS/D	2				
$\begin{gathered} .1 \mathrm{sec} \\ \text { A ONLY } \end{gathered}$	50 ms	50	mS/D	2				

(20) Repeat technique of (17) through (19) for remaining TI settings and oscilloscope output settings listed in table 12. If oscilloscope calibrator err display does not indicate within limits listed in table 12 and linearity is not within limits listed in table 12. perform adjustments listed in table 12
(21) Set X10 CAL control to out position.
(22) Set TI A AND B SEC/DIV switches and oscilloscope calibrator output as listed in table 13.
(23) Adjust A and B TRIGGER LEVEL, B INTENSITY, and CH 1 POSITION controls for suitable viewing.
(24) Adjust horizontal POSITION control to aline the $1^{\text {st }}$ time marker that is 25 ns beyond start of sweep with the $2^{\text {nd }}$ vertical graticule line.
(25) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $5^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticule line. Oscilloscope calibrator err display will indicate within limits specified in table 13. If oscilloscope calibrator err display does not indicate within limits listed in table 13 and linearity is not within limits listed in table 10. perform adjustments listed in table 13.

Table 13. B Sweep Timing (X10 Out)

Test instrument SEC/DIV switch settings		Oscilloscope calibrator MARKER output settings	Oscilloscope calibrator Err display limits $\pm \%$	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments
A	B			Yes	No	
. $1 \mu \mathrm{~s}$. $05 \mu \mathrm{~s}$	$10 \mathrm{nS} / \mathrm{D}$	3			b(l) through (28)

(26) Set A AND B SEV/DIV switches and oscilloscope calibrator output as listed in first row of table 14.
(27) Adjust horizontal POSITION control to aline the $1^{\text {st }}$ time marker that is 25 ns beyond start of sweep with the $2^{\text {nd }}$ vertical graticule line.
(28) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to align $10^{\text {th }}$ time marker with $10^{\text {th }}$ vertical graticule line. Oscilloscope calibrator err display will indicate within limits specified in table 14. If oscilloscope calibrator err display does not indicate within limits listed in table 14 and linearity is not within limits listed in table 14. perform adjustments listed in table 14.
(29) Repeat technique of (27) and (28) above for settings listed in table 14. If oscilloscope calibrator err display does not indicate within limits listed in table 14 and linearity is not within limits listed in table 14, perform adjustments listed in table 14.

Table 14. B Sweep X10 Mag Timing

Test instrument SEC/DIV switch settings		Oscilloscope calibrator MARKER output settings	$\begin{gathered} \text { Oscilloscope } \\ \text { calibrator } \\ \text { Err display limits } \\ \pm \% \end{gathered}$	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments
A	B			Yes	No	
. $2 \mu \mathrm{~s}$. $1 \mu \mathrm{~s}$	$10 \mathrm{nS} / \mathrm{D}$	3			b(1) through (28)
. $5 \mu \mathrm{~s}$. $2 \mu \mathrm{~s}$	$20 \mathrm{nS} / \mathrm{D}$	3			
$1 \mu \mathrm{~s}$. $5 \mu \mathrm{~s}$	$50 \mathrm{nS} / \mathrm{D}$	3			
$2 \mu \mathrm{~s}$	$1{ }^{1}$. 1 MS/D	3			
$5 \mu \mathrm{~s}$	$2 \quad \mu \mathrm{~s}$. 2 MS/D	3			
$10 \mu \mathrm{~s}$	$5 \quad \mu \mathrm{~s}$. $5 \mu \mathrm{~S} / \mathrm{D}$	3			
$20 \mu \mathrm{~s}$	$10 \quad \mu \mathrm{~s}$	$1 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
$50 \mu \mathrm{~s}$	$20 \quad \mu \mathrm{~s}$	$2 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
. 1 ms	$50 \quad \mu \mathrm{~s}$	$5 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
. 2 ms	.1 ms	$10 \mu \mathrm{~S} / \mathrm{D}$	3			
. 5 ms	. 2 ms	$20 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
1 ms	. 5 ms	$50 \quad \mu \mathrm{~S} / \mathrm{D}$	3			
2 ms	1 ms	. $1 \mathrm{mS} / \mathrm{D}$	3			
5 ms	2 ms	. $2 \mathrm{mS} / \mathrm{D}$	3			

Table 14. B Sweep X10 Mag Timing

Test instrument SEC/DIV switch settings			Oscilloscope calibrator MARKER output settings		Oscilloscope calibrator Err display limits	Test instrument linearity 0.1 division over any 2 center 8 divisions		Test instrument adjustments
A					$\pm \%$	Yes	No	
10 ms	5	ms	. 5	mS / D	3			
20 ms	10	ms	1	mS / D	3			
50 ms	20	ms	2	mS / D	3			
$\begin{array}{r} .1 \mathrm{sec} \\ \mathrm{~A} \text { ONLY } \end{array}$	50	ms	5	mS / D	3			

(30) Position controls as listed in (a) through (d) below:
(a) X10 CAL control to in position.
(b) B DELAY TIME POSITION dial to $\mathbf{1 . 0 0}$.
(c) B TRIGGER LEVEL control fully cw.
(d) A TRIGGER P-P AUTO pushbutton pressed.
(31) Set TI switch settings and oscilloscope calibrator out setting to first row listed in table 15.
(32) Adjust A TRIGGER LEVEL, B INTENSITY, and CH 1 POSITION controls for suitable viewing.
(33) Adjust horizontal POSITION control to aline the first fully displayed time marker with the center vertical graticule line.
(34) Adjust B DELAY TIME POSITION dial to approximately 9.00 to aline time marker with the center vertical graticule line. If B DELAY TIME POSITION dial indication is not within dial limits listed in table 15, perform test instrument adjustments listed in table 15.

Table 15. B Delay Time Position Accuracy

Test instrument VOLTS/DIV switch setting	Test instrument TIME/DIV switch setting		Oscilloscope calibrator MARKER output setting	Test instrument B DELAY TIME POSITION dial limits		Test instrument adjustments
	A	B		Min	Max	
. 5	. $5 \mu \mathrm{~s}$. $05 \mu \mathrm{~s}$. $5 \mu \mathrm{~s}$	8.91	9.09	b(29) through (37)
. 5	$5 \mu \mathrm{~s}$. $5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	8.91	9.09	b(29) through (37)
. 5	. 5 ms	$50 \mu \mathrm{~s}$. 5 ms	8.91	9.09	b(29) through (37)
. 5	5 ms	. 5 ms	5 ms	8.91	9.09	b(29) through (37)
. 5	. 5 s	$50 \mathrm{~ms}^{1}$. 5 s	8.91	9.09	b(29) through (37)

${ }^{1}$ Press A TRIGGER NORM pushbutton.
(35) Repeat technique of (32) through (34) above for settings listed in the remaining rows of table 15. If B DELAY TIME POSITION dial indication is not within dial limits listed in table 15, perform test instrument adjustments listed in table 15.
(36) Remove 50Ω feedthrough termination and connect oscilloscope calibrator CHAN 1 to TI CH 1.
(37) Position controls as listed in (a) and (b) below:
(a) HORIZONTAL MODE switch to A.
(b) A TRIGGER P-P AUTO pushbutton pressed.
(38) Set TI switch settings and oscilloscope calibrator output setting as listed in table 16.
(39) Adjust A INTENSITY, CH 2 POSITION (vertical adjustment) or POSITION (horizontal adjustment) controls for suitable viewing.
(40) Rotate oscilloscope calibrator knob located below EDIT FIELD pushbutton to for 5 divisions of horizontal display. Oscilloscope calibrator err display will indicate within limits specified in table 16. If oscilloscope calibrator err display does not indicate within limits listed in table 16. perform adjustments listed in table 16.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Table 16. Bandwith } \\ \text { Test instrument } & \text { Test instrument } & \text { Oscilloscope } & \begin{array}{c}\text { Oscilloscope } \\ \text { calibrator } \\ \text { CH 1 VOLTS/DIV } \\ \text { switch settings }\end{array} & \begin{array}{c}\text { A AND B SEC/DIV } \\ \text { switch settings }\end{array}\end{array} \begin{array}{c}\text { calibrator VOLTAGE } \\ \text { output settings }\end{array}\right)$
b. Adjustments
(1) Position controls as listed in (a) through (c) below:
(a) HORIZONTAL MODE switch to A.
(b) A AND B SEC/DIV switches to. $\mathbf{1} \mathbf{~ m s}$.
(c) X10 CAL control to in position.
(2) Set oscilloscope calibrator MARKER output to . $\mathbf{1} \mathbf{~ m S} / \mathbf{D}$.
(3) Adjust horizontal POSITION control to aline 1st time marker with the 1st (extreme left) vertical graticule line.
(4) Adjust R740 fig. 1) for 1 time marker per division over the center 8 divisions (R).
(5) Set HORIZONTAL MODE switch to \mathbf{B} and adjust \mathbf{B} INTENSITY control for suitable viewing. Adjust horizontal POSITION control to aline 1st time marker with 1st vertical graticule line.
(6) Adjust R730 fig. 1) for 1 time marker per division over the center 8 divisions (R).
(7) Set HORIZONTAL MODE switch to A and pull X10 CAL control to out position.
(8) Set oscilloscope calibrator MARKER output to $\mathbf{1 0} \mu \mathbf{S} / \mathbf{D}$.
(9) Adjust horizontal POSITION control to aline the nearest time marker to the lst vertical graticule line.

TB 9-6625-2139-35

(10) Adjust R754 (fig. 1) for 1 time marker per division (R).
(11) Set A AND B SEC/DIV switches to . $\mathbf{2} \mathbf{~ m s}$.
(12) Set oscilloscope calibrator MARKER output to $\mathbf{1} \mathbf{~ m S} / \mathbf{D}$.
(13) Adjust horizontal POSITION control to position middle time marker to center vertical graticule line.
(14) Push X10 CAL control to in position.
(15) Adjust R749 (fig. 1) to position the middle time marker to the center vertical graticule line.
(16) Pull X10 CAL control to out position and check that there is no horizontal shift in time marker position.
(17) Repeat (13) through (16) above until no further improvement is noted.
(18) Set A AND B SEC/DIV switches to . $1 \mu \mathrm{~s}$ and push X10 CAL control to in position.
(19) Set oscilloscope calibrator MARKER output to . $1 \mathbf{n S} / \mathbf{D}$.
(20) Adjust A TRIGGER LEVEL control for a triggered display and horizontal POSITION control to aline 1st time marker with 1st vertical graticule line.
(21) Adjust C703 (fig. 1) for 1 time marker per division over the center 8 divisions (R).
(22) Position controls as listed in (a) through (c) below:
(a) HORIZONTAL MODE switch to B.
(b) A SEC/DIV switch to $1 \mu \mathrm{~s}$.
(c) B SEC/DIV switch to $\mathbf{1} \mu \mathrm{s}$.
(23) Adjust horizontal POSITION control to aline 1st time marker with 1st vertical graticule line.
(24) Adjust C713 fig. 1) for 1 time marker per division over the center 8 divisions (R).
(25) Position controls as listed in (a) through (c) below:
(a) HORIZONTAL MODE switch to A.
(b) A AND B SEC/DIV switches to $.05 \mu \mathrm{~s}$.
(c) X10 CAL control to out position.
(26) Set oscilloscope calibrator MARKER output to 10 nS/D.
(27) Adjust horizontal POSITION control to aline the 1st time marker that is 25 ns beyond start of sweep with the $2^{\text {nd }}$ vertical graticule line.
(28) Adjust C775 (fig. 1) and C785 fig. 1) alternately for 1 time marker every 2 divisions over the center 8 divisions (R).
(29) Position controls as listed in (a) through (d) below:
(a) HORIZONTAL MODE switch to ALT.
(b) A SEC/DIV switch to $\mathbf{1} \mathbf{~ m s}$.
(c) B SEC/DIV switch to $1 \mu \mathrm{~s}$.
(d) B DELAY TIME POSITION dial to $\mathbf{1 . 0 0}$.
(30) Set oscilloscope calibrator MARKER output for . $\mathbf{1} \mathbf{~ m S} / \mathbf{D}$.
(31) Adjust A/B SWP SEP control to separate A and B sweeps.
(32) Adjust R646 DELAY START (fig. 2) so that the $2^{\text {nd }}$ A sweep time marker is intensified and the B sweep time marker's rising edge starts at the beginning of B sweep (R).
(33) Adjust B DELAY TIME POSITION dial to 9.00 .
(34) Adjust R652 DELAY END fig. 2) so that the 10th A sweep time marker is intensified and the B sweep time marker's rising edge starts at the beginning of B sweep.
(35) Adjust B DELAY TIME POSITION dial to $\mathbf{1 . 0 0}$.
(36) Repeat (32) through (35) above until no further improvement is noted.
(37) Set HORIZONTAL MODE switch to B.
(38) Adjust R760 fig. 1) for 5 divisions of horizontal display (R).

Figure 2. Adjustment locations - right side view.

10. Triggering

a. Performance Check

(1) Position controls as listed in (a) through (m) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) CH 1 and CH 2 VOLTS/DIV switches to 5m.
(c) A AND B SEC/DIV switches to $\mathbf{2} \mu \mathrm{s}$.
(d) B DELAY TIME POSITION dial fully ccw.
(e) B TRIGGER SLOPE pushbutton to OUT.
(f) B TRIGGER LEVEL control to midrange.
(g) A TRIGGER P-P AUTO pushbutton pressed.
(h) A TRIGGER SLOPE pushbutton to OUT.
(i) A TRIGGER LEVEL control to midrange.
(j) A TRIGGER A TRIG BW switch to FULL (AN/USM-488).
(k) A TRIGGER A\&B INT switch to VERT MODE (type 2235).
(l) A TRIGGER A SOURCE switch to INT.
(m) A TRIGGER A EXT COUPLING switch to DC.
(2) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(3) Set oscilloscope calibrator LEVEL SINE output at $\mathbf{1 0} \mathbf{M H z}$ and approximately 17 mVpp for 3.5 divisions (3.0 divisions for type 2235) of vertical display on TI.
(4) Set CH 1 VOLTS/DIV switch to 50m.
(5) Set A TRIGGER pushbutton to first row listed in table 17 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 17
(6) Repeat technique of step (5) above for remaining A TRIGGER pushbutton combinations listed in table 17. If a stable display cannot be obtained for each combination, perform adjustments list in table 17.

$\begin{array}{r} \text { T } \\ \text { A TRIGGEF } \end{array}$	mbinatio	Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	YES	NO	b
NORM	IN:			b
P-P AUTO	IN:			b
P-P AUTO	OUT:			b

(7)Set HORIZONTAL MODE switch to B.
(8) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 18 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 18

NOTE
You may have to adjust A TRIGGER LEVEL control while alternately adjusting B TRIGGER LEVEL to get B TRIGGER to lock for B TRIGGER pushbutton combinations in table 18.

Table 18. B Trigger Level Channel 1

Test instrument		Test instrument B TRIGGER LEVEL stable display test		Test instrument Adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(9) Position controls as listed in (a) through (e) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2.
(b) VERTICAL MODE TRIGGER SOURCE CH 1 pushbutton to out position (AN/USM-488).
(c) HORIZONTAL MODE switch to A.
(d) B TRIGGER SLOPE pushbutton to OUT.
(e) A TRIGGER A\&B INT switch to CH 2 (type 2235).
(10) Move connection at CH 1 to CH 2 using a 50Ω feedthrough termination.

NOTE
Ensure CH 2 VOLTS/DIV is set to $\mathbf{5 m}$.
(11) Set oscilloscope calibrator LEVEL SINE output to $\mathbf{1 0} \mathbf{M H z}$ and approximately 17 mVpp for 3.5 divisions (3.0 divisions for type 2235) of vertical display on TI.
(12) Set CH 2 VOLTS/DIV switch to 50m.
(13) Set TI A TRIGGER pushbutton to first row listed in table 19 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 19
(14) Repeat technique of step (13) above for remaining A TRIGGER pushbutton combinations listed in table 19. If a stable display cannot be obtained for each combination, perform adjustments list in table 19.

Table 19. A Trigger Level Channel 2

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(15)Set HORIZONTAL MODE switch to B.
(16) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 20 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 20

NOTE

You may have to adjust A TRIGGER LEVEL control while alternately adjusting B TRIGGER LEVEL to get B TRIGGER to lock for B TRIGGER pushbutton combinations in table 20.

Table 20. B Trigger Level Channel 2

Test instrument B TRIGGER pushbutton combinations		Test instrument B TRIGGER LEVEL stable display test		Test instrument Adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(17) Position controls as listed in (a) through (f) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) VERTICAL MODE TRIGGER SOURCE CH 1 and CH 2 pushbuttons to COMPOSITE (AN/USM-488).
(c) HORIZONTAL MODE switch to A.
(d) A AND B SEC/DIV switches to $\mathbf{.} 1 \mu \mathrm{~s}$.
(e) B TRIGGER SLOPE pushbutton to OUT.
(f) A TRIGGER A\&B INT switch to VERT MODE (type 2235).
(18) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(19) Set oscilloscope calibrator LEVEL SINE output to 60 MHz and approximately 50 mVpp for 1.0 division of vertical display on TI.
(20) Set A TRIGGER pushbutton to first row listed in table 21 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 21
(21) Repeat technique of step (20) above for remaining A TRIGGER pushbutton combinations listed in table 21. If a stable display cannot be obtained for each combination, perform adjustments list in table 21.

Table 21. A Trigger Level Channel 1

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	b
NORM	IN:			b
P-P AUTO	IN:			b
P-P AUTO	OUT:			b

(22)Set HORIZONTAL MODE switch to B.
(23) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 22 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 22.

NOTE
You may have to adjust A TRIGGER LEVEL control while alternately adjusting B TRIGGER LEVEL to get B TRIGGER to lock for B TRIGGER pushbutton combinations in table 22.

Table 22. B Trigger Level Channel 1

Test instrument B TRIGGER pushbutton combinations		Test instrument B TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(24) Position controls as listed in (a) through (d) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2.
(b) HORIZONTAL MODE switch to A.
(c) B TRIGGER SLOPE pushbutton to: OUT.
(d) Connect oscilloscope calibrator CHAN 1 to TI CH 2 using a 50Ω feedthrough termination.
(25) Set A TRIGGER pushbutton to first row listed in table 23 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 23.
(26) Repeat technique of step (25) above for remaining A TRIGGER pushbutton combinations listed in table 23. If a stable display cannot be obtained for each combination, perform adjustments list in table 23.

Table 23. A Trigger Level Channel 2

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	YES	NO	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(27)Set HORIZONTAL MODE switch to B.
(28) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 24 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 24.

NOTE

You may have to adjust A TRIGGER LEVEL control while alternately adjusting B TRIGGER LEVEL to get B TRIGGER to lock for B TRIGGER pushbutton combinations in table 24.

Table 24. B Trigger Level Channel 2

Test instrument B TRIGGER pushbutton combinations		Test instrument B TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-PAUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(29) Position controls as listed in (a) through (d) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) HORIZONTAL MODE switch to A.
(c) A AND B SEC/DIV switches to $.05 \mu \mathrm{~s}$.
(d) B TRIGGER SLOPE pushbutton to OUT.
(30) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(31) Set oscilloscope calibrator LEVEL SINE output to $\mathbf{1 0 0} \mathbf{M H z}$ and approximately 100 mVpp for 1.5 divisions of vertical display on TI.
(32) Set A TRIGGER pushbutton to first row listed in table 25 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 25
(33) Repeat technique of step (32) above for remaining A TRIGGER pushbutton combinations listed in table 25 . If a stable display cannot be obtained for each combination, perform adjustments list in table 25.

Table 25. A Trigger Level Channel 1

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(34) Set HORIZONTAL MODE switch to B.
(35) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 26 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 26

NOTE
You may have to adjust A TRIGGER LEVEL control while alternately adjusting B TRIGGER LEVEL to get B
TRIGGER to lock for B TRIGGER pushbutton combinations in table 26.

Table 26. B Trigger Level Channel 1

Test instrument B TRIGGER pushbutton combinations		Test instrument B TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(36) Position controls as listed in (a) through (c) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 2.
(b) HORIZONTAL MODE switch to A.
(c) B TRIGGER SLOPE pushbutton to OUT.
(37) Connect oscilloscope calibrator CHAN 1 to TI CH2 using a 50Ω feedthrough termination.
(38) Set oscilloscope calibrator LEVEL SINE output to $\mathbf{1 0 0} \mathbf{M H z}$ and approximately 100 mVpp for 1.5 divisions of vertical display on TI.
(39) Set A TRIGGER pushbutton to first row listed in table 27 and adjust A TRIGGER LEVEL control to obtain a stable display. If a stable display cannot be obtained, perform adjustments listed in table 27.
(40) Repeat technique of step (39) above for remaining A TRIGGER pushbutton combinations listed in table 27. If a stable display cannot be obtained for each combination, perform adjustments list in table 27.

Table 27. A Trigger Level Channel 2

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	Yes	No	\mathbf{b}
NORM	IN:			\mathbf{b}
P-PAUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(41) Set HORIZONTAL MODE switch to B.
(42) Verify a stable display can be obtained for each of the TI pushbutton combinations listed in table 28 by adjusting B TRIGGER LEVEL control in a position other than B RUNS AFTER DLY; if not, perform adjustments listed in table 28.

NOTE
You may have to alternately adjust A TRIGGER LEVEL control while adjusting B TRIGGER LEVEL to get B TRIGGER to lock for B TRIGGER pushbutton combinations in table 28.

Table 28. B Trigger Level Channel 2

Test instrument B TRIGGER pushbutton combinations		Test instrument B TRIGGER LEVEL stable display test		Test instrument adjustments
Mode	SLOPE	YES	NO	\mathbf{b}
NORM	IN:			\mathbf{b}
P-P AUTO	IN:			\mathbf{b}
P-P AUTO	OUT:			\mathbf{b}

(43) Position controls as listed in (a) through (d) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) HORIZONTAL MODE switch to A.
(c) A TRIGGER NORM pushbutton pressed.
(d) A TRIGGER A SOURCE switch to EXT.
(44) Connect oscilloscope calibrator CHAN 1 to TI EXT INPUT using a 50Ω feedthrough termination.
(45) Set oscilloscope calibrator LEVEL SINE output to 35 mV and 10 MHz .
(46) Press in and hold TRIG VIEW pushbutton while adjusting A TRIGGER LEVEL control to obtain a stable display.
(47) Repeat technique of step (46) above for A TRIGGER pushbutton combinations listed in table 29.

Table 29. A Trigger Level A Source to EXT INPUT

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL with TRIG VIEW in stable display test		Test instrument adjustments
Mode	SLOPE	YES	NO	b
NORM	IN:			\mathbf{b}
P-PAUTO	IN:			b
P-P AUTO	OUT:			b

(48) Release TRIG VIEW pushbutton.
(49) Pull X10 CAL control to out position and press A TRIGGER NORM pushbutton.
(50) Set oscilloscope calibrator LEVEL SINE output to 120 mV and 60 MHz .
(51) Press in and hold TRIG VIEW pushbutton while adjusting A TRIGGER LEVEL control to obtain a stable display.
(52) Repeat technique of step (51) above for A TRIGGER pushbutton combinations listed in table 30.

Table 30. A Trigger Level A Source to EXT INPUT

Test instrument A TRIGGER		Test instrument A TRIGGER LEVEL with TRIG VIEW		Test instrument adjustments
Moshbutton combinations				

(53) Release TRIG VIEW pushbutton.
(54) Set oscilloscope calibrator LEVEL SINE output to 150 mVpp (200 mVpp for type 2235) and 100 MHz output.
(55) Press in and hold TRIG VIEW pushbutton while adjusting A TRIGGER LEVEL control to obtain a stable display.
(56) Repeat technique of step (55) above for A TRIGGER pushbutton combinations listed in table 31.

Table 31. A Trigger Level A Source to EXT INPUT

Test instrument A TRIGGER pushbutton combinations		Test instrument A TRIGGER LEVEL with TRIG VIEW in stable display test		Test instrument adjustments
Mode	SLOPE	YES	NO	B
NORM	IN:			B
P-P AUTO	IN:			B
P-P AUTO	OUT:			B

(60) Release TRIG VIEW pushbutton.
b. Adjustments
(1) Disconnect oscilloscope calibrator and 50Ω feedthrough termination from TI.
(2) Position controls as listed in (a) through (o) below:
(a) POSITION controls to midrange.
(b) VERTICAL MODE CH 1 BOTH CH 2 switch to BOTH.
(c) VERTICAL MODE TRIGGER SOURCE CH 1 pushbutton to out position (AN/USM-488).
(d) VERTICAL MODE TRIGGER SOURCE CH 2 pushbutton to in position (AN/USM-488).
(e) VERTICAL MODE ADD ALT CHOP switch to ALT.
(f) CH 1 and CH 2 VOLTS/DIV switches to .5.
(g) CH 1 and CH 2 AC GND DC switches to GND.
(h) HORIZONTAL MODE switch to A.
(i) A AND B SEC/DIV switches to $\mathbf{1} \mathbf{~ m s}$.
(j) B TRIGGER SLOPE to OUT:

(k) B TRIGGER LEVEL control to midrange.
(l) A TRIGGER P-P AUTO pushbutton pressed.
(m) A TRIGGER SLOPE pushbutton to OUT:
(n) A TRIGGER LEVEL control to midrange.
(o) A TRIGGER A\&B INT switch to CH 2 (type 2235).
(3) Adjust CH 1 and CH 2 POSITION controls to set both traces to the center horizontal graticule line.
(4) Connect digital multimeter $\mathbf{L O}$ to chassis ground and $\mathbf{H I}$ to pin 1 on A5 (fig. 1) board connector. Digital multimeter indication will be less than 100 mV dc. Record digital multimeter indication.
(5) Position controls as listed in (a) through (c) below:
(a) VERTICAL MODE TRIGGER SOURCE CH 1 pushbutton to in position (AN/ USM-488).
(b) VERTICAL MODE TRIGGER SOURCE CH 2 pushbutton to out position (AN/ USM-488).
(c) A TRIGGER A\&B INT switch to CH 1 (type 2235).
(6) Adjust R309 fig. 1 for digital multimeter indication recorded in (4) above.
(7) Position controls as listed in (a) through (c) below:
(a) VERTICAL MODE TRIGGER SOURCE CH 1 pushbutton to out position (AN/USM-488).
(b) VERTICAL MODE TRIGGER SOURCE CH 2 pushbutton to in position (AN/USM-488).
(c) A TRIGGER A\&B INT switch to CH 2 (type 2235).
(8) Repeat (4) through (7) above until digital multimeter indications in (4) and (6) above are equal within $\pm 1 \mathrm{mV}$ dc.
(9) Disconnect digital multimeter.
(10) Position controls as listed in (a) through (g) below:
(a) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(b) VERTICAL MODE TRIGGER SOURCE CH 1 pushbutton to in position (AN/USM-488).
(c) VERTICAL MODE TRIGGER SOURCE CH 2 pushbutton to out position (AN/USM-488).
(d) CH 1 VOLTS/DIV switch to 1.
(e) CH 1 AND CH 2 AC GND DC switches to AC.
(f) A AND B SEC/DIV switches to $\mathbf{1 0} \mu \mathrm{s}$.
(g) A TRIGGER A\&B INT switch to CH 1 (type 2235).
(11) Connect oscilloscope calibrator CHAN 1 to TI CH 1 using a 50Ω feedthrough termination.
(12) Set oscilloscope calibrator LEVEL SINE output to $\mathbf{5 0} \mathbf{~ k H z}$ and 2.2 divisions of vertical display on TI.
(13) Set CH 1 VOLTS/DIV switch to 1.
(14) Adjust R479 (fig. 2) while rotating A TRIGGER LEVEL control slowly so that the \mathbf{A} trigger is just able to be maintained (R).
(15) Set CH 1 VOLTS/DIV switch to 50m and adjust A TRIGGER LEVEL control fully cw .
(16) Set oscilloscope calibrator LEVEL SINE output for 5 divisions of vertical display on TI.
(17) Set CH 1 VOLTS/DIV switch to .5.
(18) Adjust R434 (fig. 2) so display just solidly triggers on positive peak of signal (R).
(19) Press A TRIGGER SLOPE pushbutton to IN:-— and adjust A TRIGGER LEVEL control fully ccw.
(20) Adjust R435 (fig. 2) so display just solidly triggers on the negative peak of signal (R).
(21) Connect oscilloscope calibrator CHAN 1 with LEVEL SINE output to one side of a BNC tee. Connect BNC tee to TI CH 1 using an Xl0 attenuator and a 50Ω feedthrough termination. Connect the other side of BNC tee to TI EXT INPUT.
(22) Set CH 1 VOLTS/DIV switch to 10m and A TRIGGER A SOURCE switch to EXT.
(23) Set oscilloscope calibrator LEVEL SINE output for 2.2 divisions of vertical display on TI.
(24) Adjust A TRIGGER LEVEL control for a stable display.
(25) Set HORIZONTAL MODE switch to B and adjust B TRIGGER LEVEL control for a stable display.
(26) Set CH 1 VOLTS/DIV switch to .1.
(27) Adjust R627 (fig. 2) so that a display can just be maintained by adjusting B

TRIGGER LEVEL control (R).

11. Calibrator Amplitude

a. Performance Check
(1) Position controls as listed in (a) through (l) below:
(a) POSITION controls to midrange.
(b) VERTICAL MODE CH 1 BOTH CH 2 switch to CH 1.
(c) VERTICAL MODE TRIGGER SOURCE CH 1 and CH 2 pushbuttons to COMPOSITE (AN/USM-488).
(d) CH 1 AC GND DC switch to DC.
(e) HORIZONTAL MODE switch to A.
(f) X10 CAL control to in position.
(g) A TRIGGER P-P AUTO pushbutton pressed.
(h) A TRIGGER SLOPE pushbutton to OUT.
(i) A TRIGGER LEVEL control to midrange.
(j) A TRIGGER A TRIG BW switch to FULL (AN/USM-488).
(k) A TRIGGER A\&B INT switch to VERT MODE (type 2235).
(l) A TRIGGER A SOURCE switch to INT.
(2) Connect TI CH 1 to TI AMP CAL (PROBE ADJUST on type 2235).
(3) Set TIME/DIV and CH1 VOLTS/DIV switches as listed in table 33 Adjust CH1 VOLTS/DIV CAL control for 5 divisions of vertical deflection on TI.
(4) Remove connection at TI CALIBRATOR and connect to oscilloscope calibrator CHAN 1.
(5) Set oscilloscope calibrator VOLTAGE output as listed in table 32
(6) Adjust A TRIGGER LEVEL and CH 1 and horizontal POSITION controls, as necessary, to view waveform.
(7) Rotate oscilloscope calibrator knob below EDIT FIELD pushbutton to adjust for 5 divisions of vertical deflection on TI. Oscilloscope calibrator err display will indicate as specified in table 32, if not perform \mathbf{b} below.

Table 32. Test Instrument Calibrator Output Check				
Oscilloscope calibrator Vest instrument switch settings Vest instrument output settings Err display limits $(\pm \%)$ VOLTS/DIV TIME/DIV Amplitude Frequency 1 kHz .1 .5 ms 500 mV pp 1 kHz 2^{1}				

${ }^{1} \pm 5 \%$ for type 2235.

b. Adjustments

(1) Rotate CH 1 VOLTS/DIV CAL knob fully clockwise to detent.
(2) Connect CH 1 input to oscilloscope calibrator CHAN 1.
(3) Set oscilloscope calibrator VOLTAGE output as listed in table 33
(4) Adjust TI CH 1 POSITION control to view waveform.
(5) Record waveform amplitude.
(6) Move connection from oscilloscope calibrator CHAN 1 to AMP CAL located on TI front panel using adaptors as necessary.
(7) Adjust R984 (fig. 1) for waveform amplitude for recorded amplitude in (4) above.(R).

12. Power Supply

NOTE
Do not perform power supply checks if all other parameters are within tolerance.
a. Performance Check. Connect digital multimeter to TI TP961-8.6 (fig. 1) and chassis ground. Digital multimeter will indicate as listed in table 33; if not, perform \mathbf{b} below.

Table 33. Power Supply Voltage

Test instrument test points (fig. 1)	Digital multimeter indications (V dc)		
	Min	Max	
TP961-8.6	-8.56	-8.64	

b. Adjustments. Adjust R938-8.6V ADJ (fig. 2) for a -8.60 V dc indication on digital multimeter (R).

13. Final Procedure

a. Deenergize and disconnect all equipment.
b. Annotate and affix label/form in accordance with TB 750-25.

THESE ARE THE INSTRUCTIONS FOR SENDING AN ELECTRONIC 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: $1,3,4,5,6,7,8,9,10,13,15$, 16,17 , and 27.

From: "Whomever" whomever@avma27.army.mil
To: 2028@redstone.army.mil
Subject: DA Form 2028

1. From: Joe Smith
2. Unit: Home
3. Address: 4300 Park
4. City: Hometown
5. St: MO
6. Zip: 77777
7. Date Sent: 19-Oct-93
8. Pub No: TB 9-6625-xxxx-35
9. Pub Title: Calibration Procedure for ...
10. Publication Date:
11. Change Number:
12. Submitted Rank: MSG
13. Sumitter Fname: Joe
14. Submitter Mname: T
15. Submitter Lname: Smith
16. Submitter Phone: (123) 123-1234
17. Problem: 1
18. Page: 2
19. Paragraph: 3

20 Line: 4
21. NSN: 5
22. Reference: 6
23. Figure: 7
24. Table: 8
25. Item: 9
26. Total: 123

27: Text:
This is the text for the problem below line 27.

By Order of the Secretary of the Army:

ERIC K. SHINSEKI
General, United States Army Chief of Staff

OFFICIAL:

> fael \mathcal{R} the
> JOEL B. HUDSON

Administrative Assistant to the
Secretary of the Army

Distribution:
To be distributed in accordance with IDN 342245, requirements for calibration procedure TB 9-6625-2139-35.

[^0]: ${ }^{1}$ Press Set to 50 kHz blue soft button to quickly return to 50 kHz .

