INSTRUMENT REFERENCE BOOK

for the Tektronix type

5T1A

sampling time-base plug-in unit

For all serial numbers

(C), 1963, Tektronix, Inc., P. O. Box 500 Beaverton, Oregon. All rights reserved.

TYPE 5T1A advertising release (661 AD, A-2079-3)
Pages A-25 to A-36

This cover sheet identifies unnumbered pages.
Do not separate from attached information.

The $2 \mathrm{mv} / \mathrm{cm}$ sensitivity of the vertical units, in conjunction with their dc offset capability, allows 1000-to-1 vertical resolution. 100X time expansion and wide-range time position allows 1000-to-1 time resolution. To help make these features applicable to your problem, Tektronix offers a wide variety of probes, test fixtures, and accessories.

This compact and complete sampling system consists of a Type 5T1A Timing Plug-In Unit and either of two 50 -ohm Vertical Plug-In Units used with the Type 661 Oscilloscope.

Vertical Plug-In Units are the $0.35-\mathrm{nsec}$ risetime Type 4S1 and the $0.1-\mathrm{nsec}$ risetime Type 4S2. When using the Type 4S1, the Type 661 operates in much the same manner as a conventional oscilloscope, but with sensitivity and bandwidth that is possible only through sampling. When using the Type 4S2, the Type 661 offers an advanced degree of time resolution over other sampling systems.

Some Of The Things Possible With The Type 661, Type 4S1, And Type 5T1A Combination

1. Trigger internally - observe fast leading edges of both A and B traces. Matched internal delay lines in both vertical channels assure accurate time comparisons.
*2. Observe less than $10-\mathrm{psec}$ time jitter on fastest sweep range (optimum triggering conditions).
2. Measure pulse risetimes with 0.35 nanosecond response in both channels. Full scale timemeasurement range extends to 1 millisecond.
*4. Use time expansion of either $1,2,5,10,20,50$, or 100 times, while maintaining a constant number of samples/cm.
*5. Change time position over full time-base duration for viewing expanded signals.
3. Display repetitive signals on 16 calibrated equivalent sweep rates from $1 \mathrm{nsec} / \mathrm{cm}$ to 100 $\mu \mathrm{sec} / \mathrm{cm}$, accurate within 3%. Magnifier provides sweep expansion from 2 to 100 times . . . time per dot remains the same for digital readout (rear panel connector provides signals for connection to counter).
4. Dot transient response and dc reference are independent of signal source impedance.
5. Reduce random system time jitter and amplitude noise by means of a smoothing control.
6. Measure millivolt signals in the presence of a substantial dc component by means of a dcoffset voltage monirorable at the front panel.
7. Calibrate with amplitude signals available from the front panel. Calibrate with timing signals traceable to National Bureau of Standards.
8. Show lissajous patterns in addition to single and dual-trace displays and signals added algebraically.
*12. Drive X-Y plotters or similar readout accessories, manually or automatically. Slow speed scan nominally set at $7.5 \mathrm{sec} / \mathrm{cm}$.
9. Drive external equipment, with fast-rise delayed-pulse output.

* New features of Type 5T1A, compared to Type 5T1,

Time Jitter
A 1 -volt $1.2-n s e c$ pulse internally triggering the $451 / 5 \mathrm{TlA}$ system. Vertical sensitivity is $200 \mathrm{mv} / \mathrm{cm}$, sweep speed is $0.2 \mathrm{nsec} / \mathrm{cm}(1 \mathrm{nsec} / \mathrm{cm}$ with 5X expander). Note very small amount of time jitter. Note clean 0.2nsec risetime of the Type 109 Pulse Generator and 0.35 -nsec risetime of the Type 4 S 1 combined for less than $0.4-n s e c$ total risetime.

Typical Application
2 gigacycle sine-wave driving inputs to $4 S 1$ for $X-Y$ operation. Diagonal line shows in-phase characteristics. Ellipse is caused by insertion of 8 millimeters of air-line to one input, resulting in approximately 20 degrees of phase shift. Resolution below one degree is possible.

PLUG-IN UNIT COMPARTMENTS

VERTICAL SYSTEM accepts a 4 -series plug-in unit. HORIZONTAL SYSTEM accepts a 5 -series plug-in unit.

HORIZONTAL DISPLAY CONTROLS

HORIZONTAL POSITION controls provide either coarse or fine adjustment - shift of display over 10 centimeters unmagnified or 1000 centimeters fully magnified.

FAST or SLOW MANUAL SCAN permits detailed analysis of any portion of the display. This mode of operation facilitates driving external recorders.

SWEEP MAGNIFICATION of $1 \mathrm{X}, 2 \mathrm{X}, 5 \mathrm{X}, 10 \mathrm{X}$ 20X, 50X, or 100X, symmetrical about the screen center, reduces the number of dots/cm and keeps time/dot uniform.
EXTERNAL HORIZONTAL INPUT permits externally scanning the sampled display. $50 \mathrm{mv} / \mathrm{cm}$ to $5 \mathrm{v} / \mathrm{cm}$ sensitivity (into $25-\mathrm{K}$ impedance) is in 7 steps, 1-2-5 sequence, either ac or dc-coupled. Equivalent time per centimeter remains calibrated.

AMPLITUDE/TIME CALIBRATOR

CALIBRATED AMPLITUDES range from 1 mv to 1000 mv in 4 decade steps. Accuracy with 50 -ohm load is within 2% at 1000 mv .

CALIBRATED TIMES range from $0.01 \mu \mathrm{sec} / \mathrm{cycle}$ to 10 $\mu \mathrm{sec} / \mathrm{cycle}$ in 4 decade steps. Accuracy with 50 -ohm load is within 0.2%, except within 2% at $0.01 \mu \mathrm{sec} /$ cycle.

DELAYED-PULSE AND SIGNAL OUTPUTS

DELAYED PULSE 50-ohm output permits the Type 661 (with 4S1 or 4S2 and 5T1A Units) to serve as a rate generator to trigger external circuitry. Pulses occur nominally 50 nsec after the equivalent sweep start with a Type 4S1 Unit, or 10 nsec after sweep start with a Type 4S2 Unit. Amplitude is at least -350 mv and risetime is less than 0.04 nsec.

SIGNAL OUTPUTS include those for Vertical A, Vertical B, and Horizontal Outputs through an impedance of 10 kilohms, at an amplitude of $200 \mathrm{mv} / \mathrm{cm}$ referred to the crt display.

CATHODE-RAY TUBE DISPLAY

TEKTRONIX CRT is a flat-faced, $5^{\prime \prime}$ tube with an $8-\mathrm{cm}$ by $10-\mathrm{cm}$ viewing area and $2.7-\mathrm{kv}$ accelerating potential. A P2 phosphor will be supplied with the instrument unless another phosphor is specified.
BEAM-POSITION INDICATORS show the position of the crt beam when it is deflected away from the center-screen area.

ILLUMINATED GRATICULE has variable edge lighting and is accurately scribed in 8 vertical and 10 horizontal centimeter divisions, with 2 -millimeter baseline divisions.

ELECTRONICALLY-REGULATED POWER SUPPLIES

TEMPERATURE COMPENSATED AND REFERENCE ISOLATED SUPPLIES provide adequate power for stable operation of the oscilloscope with plug-in units. Line voltage changes within the operating range cause imperceptible changes in the display. Thermal cutout interrupts the power if chassis temperature becomes excessive.

POWER REQUIREMENT is 105 v to 125 v or 210 v to $250 \mathrm{v}, 50$ to 60 cps , typically 450 watts.

MECHANICAL FEATURES

Type 661 has an aluminum-alloy chassis and anodized front panel. Dimensions are $167 / 8^{\prime \prime}$ high by $131 / 8^{\prime \prime}$ wide by $233 / 4^{\prime \prime}$ deep. Net weight is $491 / 2$ pounds. Shipping weight is 69 pounds, approx.
TYPE 661 OSCILLOSCOPE, without plug-in units \$1150

[^0]

The Type 4S1 Dual-Trace Sampling Unit is a generalpurpose sampling plug-in unit with separate internal trigger takeoffs, delay lines, and terminations, which permit triggering on either A or B input signals.

Capabilities include display of $\pm \mathrm{A}$ only, $\pm \mathrm{B}$ only, algebraic addition, dual-trace, and an X-Y type display of Avertically and B-horizontally - for observing hysteresis loops, phase shift, similar displays.

INPUT CHANNELS can be viewed in either single-trace, dual-trace, algebraic addition, or X-Y operation. Independent controls for each channel permit positioning and inverting input signals as desired.

SMOOTHING CONTROL reduces system time jitter and amplitude noises, if needed when there is sufficient dot density.

Tangential Noise
A 0.8 -millivolt $2.5-\mathrm{nsec}$ pulse externally triggering the $4 \mathrm{~S} 1 / 5 \mathrm{~T} 1 \mathrm{~A}$ system. Vertical sensitivity is $2 \mathrm{mv} / \mathrm{cm}$. This displays a typical tangential noise of the Type 4S1 (specification: 1 millivolt). Tangential noise is more useful than RMS noise, when taking a visual reading, as the eye easily interprets a quasi peak-to-peak noise value. A peak-to-peak value of 3 times the RMS value contains approximately 90% of the trace dots. Most observers agree that the tangential noise displayed is 0.8 millivolts (4 mm quasi peak-to-peak); thus the RMS noise is approximately 270 microvolts (unsmoothed). Random noise decreases $2 X$ with smoothing.

TYPE 4S1 DUAL-TRACE UNIT

0.35-nsec Risetime

Internal Delay Lines
$2 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}$ Calibrated Sensitivity
2-volt Dynamic Range
± 1 volt DC Offset
Less than 1 mv noise (unsmoothed, $1 / 2 \mathrm{mv}$ smoothed)

RISETIME is 0.35 nsec or less, measured from 10% to 90% amplitude points on an input step.

FREQUENCY RESPONSE is equivalent to dc-to-1000 Mc.
DEFLECTION FACTOR is in 7 calibrated steps from 2 $\mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}, 1-2-5$ sequence, accuracy within 3%. A variable control permits continuous adjustment uncalibrated from $200 \mathrm{mv} / \mathrm{cm}$ to $0.67 \mathrm{mv} / \mathrm{cm}$.

NOISE LEVEL is equivalent to an input signal of 1 mv or less (tangential noise) unsmoothed, or 0.5 mv smoothed. (Tangential noise is approximately 3 times the RMS amplitude, and is the level "seen" on sampling oscilloscopes. Only approximately 10% of the random noise dots are outside this level).
DC-OFFSET through ± 1 volt, for signal levels exceeding "on screen" sensitivity settings, allows utilization of full sensitivity to display and accurately measure small order signal discontinuities.

DYNAMIC RANGE is 2 volts. Full sensitivity can be used with overloads up to 2 volts in amplitude. Safe overload is ± 10 volts dc (higher with reduced duty factor).
TRIGGERING can be either internal or external. Separate internal delay lines and trigger takeoffs permit triggering on either A or B input signals. The trigger takeoffs deliver to the timing unit approximately $1 / 8$ the input signal amplitude. Risetime of the trigger amplifier system is nominally $0.6 \mathrm{nsec}(600 \mathrm{Mc}$ bandwidth).

INPUT IMPEDANCE is 50 ohms. Input connectors are GR 874. Special 2% Tektronix 45 -nsec delay lines terminate in 2 pf and $50-\mathrm{ohm} 1 \%$ resistor.
PROBE POWER is available at the front panel for cathodefollower probes. See accessory list.

MECHANICAL FEATURES include an aluminum-alloy chassis and anodized front panel. Net weight is $15 \frac{1}{4}$ pounds. Shipping weight is 27 pounds, approx.

TYPE 4S1 DUAL-TRACE SAMPLING UNIT

[^1]
TYPE 4S2 DUAL-TRACE UNIT

0.1-nsec Risetime

$2 \mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}$ Calibrated Sensitivity
± 1 volt Dynamic Range
± 1 volt DC Offset
4 mv noise (unsmoothed, 2 mv smoothed)

The Type 4S2 Dual-Trace Sampling Unit is a specialpurpose sampling plug-in unit which makes possible a new degree of time resolution. This latest vertical plug-in unit retains most features of the general-purpose Type 4S1, except for delay lines and internal triggering.

Capabilities include those for display of $\pm A$ only, $\pm B$ only, algebraic addition, dual-trace, and an X-Y type display, of A-vertically and B-horizontally - for observing hysteresis loops, phase shift, similar displays.

661/5T1A/4S2 CAPABILITIES

DISPLAY 0.1% system discontinuities as reflectometer with centimeter separation capability (limited by external pulse generators, delay lines, attenuators).

DISPLAY millivolts of information on top of signals hundreds of millivolts in amplitude (not limited by the usual amplifier overload problem).

DISPLAY fastest present switching transistor risetimes, including commercially available avalanche types (usually limited by the transistor or the transistor case).
DISPLAY most tunnel diode switching times. (Only diodes with better than $3 \mathrm{ma} / \mathrm{pf}$ are faster).

DISPLAY stored charge in switching diodes to the 0.01 picocoulomb/milliampere region (generally limited by diode capacity and turn-on capability).

DISPLAY fractions of a degree of relative phase shift to over 3 gigacycle frequency with lissajous-mode operation (usually limited by harmonic content or residual reflections to a few degrees absolute). Over 500 Mc , use Type 280 Trigger Count-Down Unit.

INPUT CHANNELS can be viewed in single-trace, dualtrace, algebraic addition, or X-Y operation. Independent terminations and controls for each channel permit positioning and inverting input signals as desired.

SMOOTHING CONTROL reduce system time jitter and amplitude noises, if needed when there is sufficient dot density.

RISETIME is 0.1 nsec or less, measured from 10% to 90% amplitude points on an input step. Transient abberations are within $\pm 5 \%$.

FREQUENCY RESPONSE is equivalent to dc-to- 3500 Mc .
DEFLECTION FACTOR is in 7 calibrated steps from 2 $\mathrm{mv} / \mathrm{cm}$ to $200 \mathrm{mv} / \mathrm{cm}, 1-2-5$ sequence, accuracy within 3%. A variable control permits continuous adjustment uncalibrated from $200 \mathrm{mv} / \mathrm{cm}$ to $0.67 \mathrm{mv} / \mathrm{cm}$.

NOISE LEVEL is less than 4 mv (tangential noise) unsmoothed or 2 mv smoothed. (Tangential noise is approximately 3 times the RMS amplitude and is the level "seen" on sampling oscilloscopes. Only 10% of the random noise dots are outside this level).

DC-OFFSET through ± 1 volt, for signal levels exceeding "on screen" sensitivity settings, allows utilization of full sensitivity to display and accurately measure small order signal discontinuities.

DYNAMIC RANGE is ± 1 volt. Full sensitivity can be used with overloads up to ± 1 volt in amplitude. Safe overload is ± 10 volts dc (higher with reduced duty factor).

TRIGGERING is external (required 50 -nsec prior to signal). No internal delay lines included. Please refer to Timing Plug-In Unit specifications.

INPUT IMPEDANCE is 50 ohms. Input connectors are GR 874. Termination is 50 -ohm $\pm 1 \%$ resistor and approximately 3 pf.

PROBE POWER is available at the front panel for cathodefollower probes. See accessory list.

MECHANICAL FEATURES include an aluminum-alloy chassis and anodized front panel. Net weight is 9 pounds. Shipping weight is 21 pounds, approx.

TYPE 4S2 DUAL-TRACE SAMPLING UNIT $\$ 1600$

[^2]

The Type 5T1A Timing Plug-In Unit provides flexible triggering and generates the time base. External trigger sensitivity is 5 mv , for pulses 1 nsec or wider. Triggers larger than 250 mv can be accommodated with external attenuators. External input is ac coupled, approximately $3-\mathrm{db}$ down at 300 kc (sine-wave) at the low end.

Time-base range covers an equivalent sweep rate from $100 \mu \mathrm{sec} / \mathrm{cm}$ to $1 \mathrm{nsec} / \mathrm{cm}$ in 16 calibrated rates (to 10 $\mathrm{psec} / \mathrm{cm}$ with full Time Expansion). Continuous adjustment is possible between rates uncalibrated and to approximately $0.33 \mathrm{nsec} / \mathrm{cm}(3.3 \mathrm{psec} / \mathrm{cm}$ time expanded).

SAMPLING DISPLAY is in 5 calibrated steps of $5,10,20$, 50, 100, (accuracy within 2%), and nominal 1000 samples/ cm.

SWEEP MODE selects either NORMAL (repetitive), SINGLE, or TIMED displays. A timed slow scan is provided for those applications requiring the connection of a $\mathrm{Y}-\mathrm{T}$ or $\mathrm{X}-\mathrm{Y}$ Recorder. The slow scan is nominally $7.5 \mathrm{sec} / \mathrm{cm}$ and adjustable from $5 \mathrm{sec} / \mathrm{cm}$ to approximately $10 \mathrm{sec} / \mathrm{cm}$.

EQUIVALENT SWEEP RANGE is in 16 calibrated rates from $1 \mathrm{nsec} / \mathrm{cm}$ to $100 \mu \mathrm{sec} / \mathrm{cm}, 1-2-5$ sequence, accuracy within 3%. A variable control permits continuous adjust-

TYPE 5T1A TIMING UNIT

$1 \mathrm{nsec} / \mathrm{cm}$ to $100 \mu \mathrm{sec} / \mathrm{cm}$ Calibrated Sweep Speeds
*X2 to X100 Time Expander (constant dots/cm)
*Time position provides delay through full time base duration
Versatile Triggering
*5 to 1000 Samples/cm
Repetitive or Single Displays
*Timed display
*New features of Type 5T1A compared to Type 5T1.
ment-uncalibrated from approximately $0.33 \mathrm{nsec} / \mathrm{cm}$ to 100 $\mu \mathrm{sec} / \mathrm{cm}$.

TIME EXPANDER provides $\mathrm{X} 1,2,5,10,20,50$, and 100 expansion that maintains a constant number of samples per centimeter.

TIME POSITION allows time "windowing" over the full time base duration.

INTERNAL TRIGGERING, with the Type 4S1 vertical plugin unit, allows triggering from the vertical input signal. This feature facilitates observation of the leading edge of fastrise input signals. Internal delay lines eliminate the need for external delay networks and accurately preserve the fast-rise characteristics of the Type 4S1. Nominally, the leading edge of a fast-rise signal will appear more than 8 nsec after the equivalent sweep start. Sensitivity is 40 mv for a 2 -nsec wide pulse.

FREE RUN TRIGGERING provides stable displays when using the Type 661 delayed-pulse generator.
EXTERNAL $50-\mathrm{OHM}$ TRIGGER INPUT is ac coupled ($1 \mu \mathrm{sec}$ time constant) and allows direct connection of the Type 5T1A to the trigger signal. Sensitivity is 5 mv for a fast-rise $2-\mathrm{nsec}$ wide pulse. An isolation stage reduces kickout to 5 mv or less, with less than $1 / 2$ nsec decay time constant.

TRIGGER THRESHOLD is continuously variable, $\pm 200 \mathrm{mv}$.
RECOVERY TIME may be varied from nominally $10 \mu \mathrm{sec}$ to $13 \mu \mathrm{sec}$ on sweep rates faster than $0.1 \mu \mathrm{sec} / \mathrm{cm}$, longer on slower sweep rates. This normally permits triggering from irregularly spaced pulses.

TRIGGER POLARITY can be either positive or negative.
TIME JITTER is less than 10 psec at $1 \mathrm{nsec} / \mathrm{cm}$, and less than 30 psec (or 0.01% of fast ramp, whichever is larger) at $2 \mathrm{nsec} / \mathrm{cm}$ or slower. This is under optimum conditions of 100 kc or less repetition rate, and fast-rise triggers of $40 \mathrm{mv}, 1 \mathrm{nsec}$ duration. Jitter increases with reduced trigger rise rate, amplitude, or duration, and increased repetition rate. Internal triggering with the Type 4 SI , on a 50 mv signal of 1 nsec duration, will display typically less than 100 psec of jitter. Internal triggering on a 100 Mc sine wave, 1 v pk-to-pk, displays less than 50 psec of jitter. Synchronizing at $1000 \mathrm{Mc}(100 \mathrm{mv}$ pk-to-pk external or 1 v internal) displays typically 80% of dots within 100 psec.

MECHANICAL FEATURES include an aluminum-alloy chassis, and anodized front panel. Net weight is 6 pounds. Shipping weight is 12 pounds, approx.

[^3]
TRIGGER COUNTDOWN UNIT

TYPE 280 TRIGGER COUNTDOWN UNIT

The Tektronix Type 280 Trigger Countdown Unit allows timing systems to be synchronized on frequencies up to 5 gigacycles. The Type 280 can be used to lower the frequency of the triggering signals to within a range of 15 to 45 megacycles. This permits the triggering circuits of timing systems to lock in solidly with a much higher input signal frequency.

The Type 280 is adequately shielded to permit operation in areas that have significant rf radiation levels.

INPUT IMPEDANCE is approximately 50 ohms.

INPUT FREQUENCY is from 30 megacycles to 5 gigacycles.

INPUT SIGNAL RANGE is 50 millivolts to 4 volts, peak to peak.

JITTER is 10 psec , or less than 1% of input period, whichever is larger.

OUTPUT REPETITION is continuously variable from 15 to 45 megacycles.

FAST RISE TRIGGER OUTPUT (terminated in 50 ohms) is 150 millivolts, with less than 0.4-nanosecond risetime, decaying with $2-$ nsec time constant, (for use with Type 5T1, 5T1A, or 3T77).

LARGE AMPLITUDE TRIGGER OUTPUT is 1.5 volts, nominally 8 -nsec long, with less than 4-nanosecond risetime (for use with Type N and other slower systems).

AMPLITUDE OF TRIGGER OUTPUT as seen at Input Connector is approximately 50 millivolts decaying with a 4 nanosecond time constant.

POWER REQUIREMENT is 105 v to 125 v or 210 v to 250 v , 50 to $800 \mathrm{cps}, 10$ watts.

MECHANICAL FEATURES include an aluminum-alloy chassis, die-cast aluminum-alloy top and bottom covers, and steel wrap-around housing. Overall dimensions are $73 / 8^{\prime \prime}$ high by $75 / 8^{\prime \prime}$ wide by $45 / 8^{\prime \prime}$ deep. Net weight is $41 / 2$ pounds. Shipping weight is 8 pounds, approx.

TYPE 280 TRIGGER COUNTDOWN UNIT
\$265
Includes: 2 - instruction manuals, 1 - 5 -nsec cable, 1 -
3 -conductor power cord.

The Type 290 does not use speedup capacitors or catching diodes. Use of these capacitors and diodes tends to test a circuit rather than a transistor. The common emitter, base-driven circuit of the Type 290 introduces into the base of the test transistor a non-overshooting step of current equal to $1 \mathrm{ma} / \mathrm{volt}$ of input pulse in excess of $\mathrm{V}_{\text {be }}$.

The collector circuit provides a resistive load of 200 ohms monitored by an internal dc-coupled passive probe, for measurement of collector-to-emitter saturation potentials and collector swings under saturated or linear conditions.

Transistor input and output are presented in correct time relationship either simultaneously for dual-trace systems or, at the turn of a switch, for single-trace systems. The input monitor and output of the Type 290 Transistor SwitchingTime Tester is at a 50 -ohm impedance level, allowing remote location of the tester from the sampling system.

TWO TRANSISTOR TEST SOCKETS are mounted on the Type 290. The sockets provide for easy insertion of the transistor into the grounded-emitter test circuit. One socket connects to the HIGH collector voltage supply and the other connects to the LOW collector voltage supply. A transistor under test in the HIGH socket has a passive probe output attenuation of $250-$ to- 1 into the 50 -ohm output. A transistor under test in the LOW socket has an attenuation of 50 -to-1 from the collector to the 50 -ohm output. Lead length of the transistor tested, up to approximately 2 inches, is unimportant at speeds slower than 2 nsec , due to the choice of collector load resistance.

THREE 50-OHM CONNECTORS for input, output, and input monitor are conveniently mounted at the side of the instrument.

INPUT from external pulse generator determines base current of transistor under test. For each volt of input pulse above $\mathrm{V}_{\text {be }}$ there is approximately 1 ma of base current.

OUTPUT signal is taken from the collector of the transistor under test. The input signal can be switched to the output for observation with a single trace system.

INPUT MONITOR permits simultaneous viewing of the input and output of the transistor under test when used with

TYPE 290 TRANSISTOR SWITCHING-TIME TESTER

The Tektronix Type 290 Transistor Switching-Time Tester permits dc-coupled pulse-response characteristics of fastswitching transistors to be observed and measured on Tektronix oscilloscopes. Driven by a Tektronix fast-rise pulse generator and combined with a Tektronix fast-rise sample oscilloscope, the Type 290 becomes an integral part of a transistor testing system with an overall transient response of less than 1 nanosecond. (When a non-sampling oscilloscope is used with plug-in units such as the Type 82, or L, transient response is limited by the risetime of the unit). This system can test fast NPN or PNP transistors on a short duty-cycle basis for delay, rise, storage, and fall times with variable collector voltage and base drive conditions. Since these characteristics vary considerably with operating conditions, the Type 290 supplies a wide range of operating voltages.
a dual-trace unit such as the Type 4S1, 4S2, or Type 3576. The input monitor has a 50 -to- 1 attenuation ratio.

REGULATED SUPPLIES (with Zener diodes) are provided for the collector and base supply sources. Collector Voltage is continuously variable from zero to 30 volts in the LOW position and from zero to 100 volts in the HIGH position. Base Supply Voltage is continuously variable from zero to ± 10 volts (through 10 k).

POWER REQUIREMENT is 105 v to 125 v or 210 v to 250 v , 50 to $1200 \mathrm{cps}, 15$ watts.

MECHANICAL FEATURES include aluminum-alloy chassis, die-cast aluminum top and bottom covers (with steel, wraparound housing), and etched circuit-board chassis. Overall dimensions are $73 / 8^{\prime \prime}$ high by $75 / 8^{\prime \prime}$ wide by $5^{\prime \prime}$ deep. Net weight is 5 pounds. Shipping weight 9 pounds, approx.
TYPE 290 TRANSISTOR SWITCHING-TIME TESTER \$290
Includes: 2 - instruction manuals, 1 - 10 -nsec cable, 1 3 -conductor power cord.

$10 \mathrm{nsec} / \mathrm{cm}$
Fast Switching Transistor
Equivalent to $\mathrm{I}_{\mathrm{B}_{1}}$ (turn-on) $=12 \mathrm{ma}$ (approx)
$\mathrm{I}_{\mathrm{B}_{2}}$ (turn-off) $=0.1 \mathrm{ma}$ (approx)

The TF-1 Test Fixture is designed for easy and rapid operation. This Fixture is a separate unit, and can be used remotely from the Power Supply. The diode under test is magnetically held in the Fixture and ejected by push button. Ejection can be actuated by a solenoid (not included) for automated testing.

INPUT PULSE should be supplied from a fast-rise generator such as the Type 109 or 110 . Risetime should be short compared to the diode reverse-recovery time expected. Length should be longer than the diode reverse-recovery time. Amplitude, as called out in the diode test specifications, should not exceed half the diode-breakdown voltage.

DIODE RECOVERY LOOP IMPEDANCE is 100 ohms.

291/TF-1 RESPONSE is less than 0.35 nanosecond; coaxial and strip-line construction confines transient abberations to essentially those of the diode itself. External diode leads are guarded out.

SUPPLY CURRENT is provided in seven calibrated ranges from 1 milliampere to 100 milliamperes, 1-2-5 sequence, with continuous fine adjustment. Calibration accuracy is within $\pm 2 \%$ for all ranges except the 100 -milliampere position, which is within $\pm 3 \%$.

POWER REQUIREMENT is 105 v to 125 v or 210 v to 250 v , 50 to $400 \mathrm{cps}, 6$ watts.

MECHANICAL FEATURES include an aluminum-alloy chassis, and top and bottom covers (with steel, wrap-around housing). Dimensions are $4^{11 / 16^{\prime \prime}}$ high by $69 / 16^{\prime \prime}$ wide by $81 / 8^{\prime \prime}$ deep. Net weight is $43 / 4$ pounds. Shipping weight is

TYPE 291 DIODE SWITCHING-TIME POWER SUPPLY
 . . . and associated test fixture

Type 291 permits observation and measurement of fastswitching diode characteristics. Dc output coupling permits direct reading of forward and reverse recovery currents on the crt screen of a suitable oscilloscope. Since these switching characteristics vary with diode current, the Type 291 Power Supply provides a range of dc test currents to 100 milliamperes - with provision for external current supply to 500 milliamperes or an external current monitor.

10 $1 / 4$ pounds, approx. The TF- 1 Test Fixture has an aluminum-alloy chassis with plastic cover. Dimensions are $21 / 2^{\prime \prime}$ high by $3 / 16^{\prime \prime}$ wide by $47 / 8^{\prime \prime}$ deep. Net weight is 1 pound. Shipping weight is 2 pounds, approx.

TYPE 291 DIODE SWITCHING-TIME TESTER POWER SUPPLY
(without test fixture) ... 85

Includes: 2 - instruction manuals, 1 - power cord.

TYPE TF-1 DIODE TEST FIXTURE (017-072) \$ 65

Diode Recovery Waveform
6-V in 100 -ohm Loop
(3-V pulse from Type 109 Pulse Generator)

Horizontal - $1 \mathrm{nsec} / \mathrm{cm}$

Vertical - $10 \mathrm{ma} / \mathrm{cm}$
Diode - Tektronix "Snap-off Diode"
In this diode-recovery waveform (displayed on a Tektronix Type 661 Sampling Oscilloscope), the diode shows a stored charge of approximately 6 picocoulombs per milliampere. Note the freedom from ringing and overshoot of the recovery waveform, owing to strip-line testing environment of the Diode Switching-Time Tester.

TEKTRONIX PROBES

MINIATURE PASSIVE PROBES for use with 50 ohm systems

TYPE P6034-10X Attenuation

The Type P6034 provides accurate measurements of highspeed pulses. Input resistance is 500 ohms at dc and approximately 300 ohms at 1.0 gigacycle. Input capacitance is $0.7 \mathrm{pf} \pm 0.1 \mathrm{pf}$ at 1.0 Mc to 1.0 gc . Risetime of the probe is less than 100 picoseconds. Maximum de input, de-coupled, is 16 v and, ac-coupled, is 500 v . Ringing and overshoot is 2% or less on pulses from 25 -ohm or more source. Peak-to-peak voltage derating is necessary for CW sine waves higher than 800 Mc .
Order Part Number 010-110 . \$35

TYPE P6035—100X Attenuation

The Type P6035 provides accurate measurements of highspeed pulses. Input resistance is 5000 ohms at dc and approximately 1500 ohms at 1.0 gigacycle. Input capacitance is $0.6 \mathrm{pf} \pm 0.1 \mathrm{pf}$ at 1.0 Mc to 1.0 gc . Risetime of the probe is less than 200 picoseconds. Maximum de input, dc-coupled, is 50 v and, ac-coupled, is 500 v . Ringing and overshoot is 2% or less on pulses from 25 -ohm or more source. Peak-to-peak voltage derating is necessary for CW sine waves higher than 500 Mc .
Order Part Number 010-111
\$35

CATHODE-FOLLOWER PROBE

 for use with Type 4S1, 4S2 or 3S76 Plug-In UnitsType P6032—10X to 1000X Attenuation

Attenuator Head	Max. Input Voltage*	Input Capacitance at DC ($\pm 10 \%$)	Input Resistance at DC ($\pm 2 \%$)
10X	$\pm 1.5 \mathrm{v}$	3.6 pf	10 meg
20X	$\pm 3.0 \mathrm{v}$	2.6 pf	10 meg
50x	$\pm 7.5 \mathrm{v}$	1.8 pf	10 meg
100X	$\pm 15 \mathrm{v}$	1.5 pf	10 meg
200X	$\pm 30 \mathrm{v}$	1.4 pf	10 meg
500X	$\pm 75 \mathrm{v}^{* *}$	1.3 pf	10 meg
1000X	$\pm 150 \mathrm{v}^{* *}$	1.3 pf	10 meg
Attenuator Head	Max. Input Voltage (peak-to-peak) (at 100\% duty factor)		
	500 Mc	$750 \mathrm{Mc} \quad 1000 \mathrm{Mc}$	1250 Mc
500X	150 v	150 v 150 v	125 v
1000X	300 v	200 v 150 v	125 v

[^4]The Type P6032, with a bandwidth greater than 800 Mc , provides accurate measurements of high-speed repetitive pulses. The dc-coupled probe uses 7 plug-in attenuator heads. Risetime is typically 0.4 nsec for probe and attenuator head. Maximum output is $\pm 150 \mathrm{mv}$ into a 50 -ohm load. Signal delay is approximately 10 nsec .
Order Part Number 010-108
\$220

OTHER SAMPLING ACCESSORIES

50-OHM PICKOFF POINT

The VP-1 is a 50 -ohm coaxial "T" with GR connectors on each end and a plastic center collar formed to provide a branch for insertion of a Type P6034 or P6035 Miniature Passive Probe.

With the VP-1 you can inspect signals within a 50 -ohm system, provide a trigger takeoff . . . with transient reflecfion coefficients of less than 2% with either probe, or less than 3% without probe, as seen on a Type 4S1. Resistive reflection depends upon probe used.
Order Part Number 017-073

TRANSFORMER MATCHED " T "
This unit provides two 50 -ohm outputs from one 50 -ohm input and divides the regenerated trigger for simultaneous triggering of two sampling-sweep systems.
Order Part Number 017-012
$\$ 35.00$

CHARGE WAVEFORMS FROM HIGH-SPEED CURRENT SIGNALS

The Type O Unit, when used as a gated integrator, in conjunction with a Tektronix Sampling Oscilloscope provides a convenient method of obtaining charge waveforms from high-speed current signals. The Type O Unit can be used with any Tektronix Oscilloscope that accepts letterseries plug-in units. The gated integrator is designed for use with delaying sweep oscilloscopes such as the Type 535A or 545A. The integrated display is then read directly from the crt.
Type O Operational Amplifier Plug-In Unit \$525

50-OHM STEP ATTENUATOR

The Step Attenuator provides, by switching, attenuations of $2 \mathrm{X}, 5 \mathrm{X}, 10 \mathrm{X}, 20 \mathrm{X}, 50 \mathrm{X}$, and 100 X .
Order Part Number 017-011
$\$ 120.00$

MAINTENANCE AIDS

Plug-In Extension for Dual-Trace and Timing Units Order Part Number 012-064 (24-pin extension) \$23.00

Circuit-Board Extension for Dual-Trace Unit
Order Part Number 012-069 (22-pin extension)
Coaxial Cable for Coupling Trigger Signals Order Part Number 012-070\$ 9.75

These items are offered for the convenience of companies with in-plant instrument-maintenance facilities. If your company has this facility, or you intend performing your own maintenance, please include 2 plug-in extensions lone each for the dual-trace and timing units), 1 circuit-board extension, and 2 coaxial trigger cables with your initial instrument, order. One set of 5 will usually be adequate for maintenance of several instruments.

TYPE CT-1 CURRENT TRANSFORMER

The Type CT-1 Current Transformer provides for accurate measurement of current flow in a circuit, while keeping loading effects to a minimum. One or several Type CT-1 Transformers can monitor critical points in a circuit. One or more P6040 Probes can then be used to feed the resultant voltages to the oscilloscope.

Sensitivity is $5 \mathrm{mv} / \mathrm{ma}$ into a 50 -ohm load. Frequency response is down approximately 3 db at 50 kc (low end) and 1 gc (high end). Pulse response risetime is less than 0.35 nsec. Accuracy is within $\pm 3 \%$. Droop is less than $21 / 2 \%$ at 100 nsec. Maximum voltage is 1000 v , dc. Current ratings are 500 ma, maximum RMS, or 20 ma peak pulse. ratings are 500 ma maximum RMS, 20 amp peak pulse (1 amp microsecond).
Order Part Number 015-040 $\$ 17$

Dual-Trace Display of input and output of the Type CT-1.
Vertical Sensitivity $10 \mathrm{mv} / \mathrm{cm}$
Sweep Speed $5 \mathrm{nsec} / \mathrm{cm}$
Upper waveform shows an input current step with 1-nsec risetime Lower waveform shows the output of the Type CT-1.
Photo taken with Tektronix Type C-12 Camera and Type $661 / 4$ S1/5T1A Sampling System.

TYPE P6040 PROBE

The Type P6040 is used as an inter-connecting cable for the Type CT-1 Transformer or other monitoring points using Amphenol series 27 Sub-Minax or Selectro Sub-Miniature RF connectors. The plug-on feature provides a quick means of connection to the CT-1. The $18^{\prime \prime}$ cable terminates in a GR type connector.
Type P6040 Probe (Order Part No. 010-133) \$14 Type CT-1 and P6040 (Order Part No. 015-041) \$31
U. S. Sales Prices f.o.b. Beaverton, Oregon

Tektronix Field Offices are located in principal cities throughout the United States. Please consult your Telephone Directory. Tektronix Canada Ltd: Montreal, Quebec •Toronto (Willowdale) Ontario •Tektronix International A. G., Terrassenweg 1A, Zug, Switzerland.

5 T suffers from competition
Our 661 generally enjoys favorable acceptance, but suffers in comparison to one or two features pushed by Lumatron and HP. We plan to include these features in the 5TIA as fast as possible and may offer field mods for existing 5Tl's.

Sweep expansion major objection
The major objection to the 661-5T1 was the way we obtained sweep expansion. The 661-5T1A will retain this feature because the sweep mag is on the 661 frame. However, in addition, the 5TIA will also allow "time expansion" and still retain a constant dots/cm display.

5T1A improvements

1. TIME EXPANDER: The time expander will provide $\mathrm{X} 1,2,5,10,20,50$ and 100 expansion --retaining a constant number of samples $/ \mathrm{cm}$.
2. TIME POSITION: This control allows "windowing" over the full time base duration.
3. 1000 SAMPLES/CM: An additional samples/cm position of 1000 samples/cm allows greater display resolution and reduces possible errors in applications where "smoothing" is used.
4. TIMING ACCURACY: The linearity of the fast ramp will be improved by incorporating a transistor in place of a Nuvistor. This may improve timing linearity to 2%.
5. Y-T RECORDER FACILITATED: A timed slow-scan added to facilitate applications requiring the connection of a $Y-T$ recorder. Scan speed adjustable approx $5 \mathrm{sec} / \mathrm{cm}$ to $10 \mathrm{sec} / \mathrm{cm}$ 。

Field mod
We haven't worked out the field mod details yet but it doesn't look feasible to provide $\times 2$, $\times 5$ X20 or X50 time expander positions because of 5T1 switch limitations. It 's likely the field mod will bypass any changes that involve elaborate field maintenance re-work. Preliminary plans call for a new front panel (not 5T1A) and replacement of the fast-ramp board.

TYPE 5T1A general description (from preliminary manual)
Pages A-39 to A-41

This cover sheet identifies unnumbered pages.
Do not separate from attached information.

SECTION 1

GENERAI DESCRIPIION
Introduction

The Type 5TlA Timing Unit is a sampling-type timing plug-in unit for use with the Tektronix Type 661 Oscilloscope, and '4' Series sampling plug-in units. The Type 5T1A can receive trigger signals either through a frontpanel connector (externally supplied) or through interconnecting wiring from vertical sampling units which have provisions for internal trigger takeoff. Trigger signals must bear a fixed time relationship to the signals to be displayed by the sampling unit.

The Type 5T1A has 16 calibrated equivalent-time sweep rates. Any sweep rate may be continuously increased to about 3X faster than the calibrated rate. A 7-position TMME EXPANDER switch allows any portion of the display to be expanded with a constant dot density. A front-panel control selects the number of samples per centimeter of horizontal deflection. A single-display circuit allows the operator to start a single horizontal sweep.

The triggering circuit will operate either on negativegoing or positive-going signals. Trigger threshold is adjustable over a $\pm 200-m i l l i v o l t ~ r a n g e ~ f o r ~ e i t h e r ~ p o s i t i v e-g o i n g ~ o r ~ n e g a t i v e-~$ going signals. Trigger source may be selected internally from the sampling unit, externally through a front-panel connector on the Type 5T1A, or internally from the Type 661 Amplitude/Time Calibrator. Thie trigger circuit may also be free-run at its maximum repetition rate. The repetition rate of the trigger circuit is determined by the setting of the SWEFP TIME/CM switch and the RECOVERY TIME control.

The RECOVERY TTME control provides a range of trigger recovery times, allowing the operator to adjust for jitter-free triggering.

A TIME POSITION control provides a'variable time delay for time-positioning the signal display in the TIME EXPANDER switch XI position. In the expanded positions, the TTME POSITION control moves the time "window" anywhere within the original range displayed in the Xl position of the TIME EXPANDER switch.

Operating Characteristics
Sweep 'Time/Cm -- Sweep rates in 16 calibrated steps of equivalent time from $1 \mathrm{nsec} / \mathrm{cm}$ to $100 \mu \mathrm{sec} / \mathrm{cm}$ in a L, 2, 5, 10 sequence. An uncalibrated variable control provides a continuous range up to $3 X$ the calibrated rate between steps. A variable control extends the fastest rate to about $1 / 3 \mathrm{nsec} / \mathrm{cm}$. All calibrated rates better than 3\% accuracy.

Samples/Cm -- 5, 10, 20, 50, and 100, $\pm 3 \%$ accuracy; also 1000 and timed sweep, with an unmagnified display.

Sweep Mode -- Repetitive or single display.
Trigger Source -- External, internal, free run, and calibrator. Sensitive to positive-going or negativegoing slope.

Triggering Threshold -- Continuously variable over a t200-mv range.

Trigger Sensitivity -- Internal or External: 5 mv external for a 1 nsec pulse. .(Internal level is determined by output of sampling unit trigger-takeoff circuit.)

Recovery Time -- Variable from about 10 to about $13 \mu \mathrm{sec}$ on sweep rates faster than $0.2 \mu \mathrm{sec} / \mathrm{cm}$; longer on slower sweep rates.

Time Expansion -- Provides X1, X2,' $\times 5, \times 10, \times 20, X 50$, and X 100 expansion of sweep rate selected with a constant number of samples/cm. Expansion may be selected to fall anywhere in basic time-base range, determined by SWEEP TTME/CM switch setting.

Time Position -- Provides continuously variable time display window. Time position range is controlled by the TIME EXPANDER and SWEEP TIME/CM switches. Table l-l lists the ranges as a function of control settings.

Time Jitter -- Less than 30 psec (picoseconds), or 10^{-4} X (fast ramp duration), whichever is greater, in $100-\mu \mathrm{sec}$ through $2-\mathrm{nsec} / \mathrm{cm}$ sweep rates. Less than 10 psec at $1 \mathrm{nsec} / \mathrm{cm}$ sweep rate. External trigger "kickout" is less than 5 mv .

TABLE 1-1
Time Range of TIME POSIIION Control

SWEEP TTME/CM Switch Setting	TTME EXPANDER Switch Setting		
	XI	X2	$\begin{gathered} x_{5}, x_{10}, x_{20} \\ x_{50}, x_{100} \end{gathered}$
100, 50, or 20μ SEC	$100 \mu \mathrm{sec}$	$500 \mu \mathrm{sec}$	$1000 \mu \mathrm{sec}$
10, 5, or $2 \mu \mathrm{SEC}$	$10 \mu \mathrm{sec}$	$50 \mu \mathrm{sec}$	$100 \mu \mathrm{sec}$
1, . 5 , or $2 \mu \mathrm{SEC}$	$1 \mu \mathrm{sec}$	$5 \mu \mathrm{sec}$	$10 \mu \mathrm{sec}$
. $1 \mu \mathrm{SEC}, 50 \mathrm{nSEC}$, or 20 nSEC	$0.1{ }^{\prime} \mu \mathrm{sec}$	$0.5 \mu \mathrm{sec}$	$1 \mu \mathrm{sec}$
10, 5, or 2 nSEC	100 nsec	100 nsec	200 nsec
1 nSEC	10 nsec	10 nsec	20 nsec

HISTORY PARTS LIST

CONTENTS:

Publication:
061-831
February 1963

For all serial numbers.

ABBREVIATIONS:

cer	ceramic
comp	composition
emc	electrolytic, metal cased
emt	electrolytic, metal tubular
gmv	guaranteed minimum value
h	henry
k	kilo (103)
k	kilohm
m	milli ($10-3$)
ma	milliamp
meg	megohm
mh	millihenry
mpt	metalized, paper tubular
mt	mylar, tubular
mv	millivolt
μ	micro (10-6)
$\mu \mathrm{f}$	microfarad
$\mu \mathrm{h}$	microhenry
$\mu \mathrm{sec}$	microsecond
n	nano (10-9)
nsec	nano second
Ω	ohm
p	pico (10^{-12})
pbt	paper, "bathtub"
pcc	paper covered can
pf	picofarad ($\mu \mu \mathrm{f}$)
piv	peak inverse voltage
pmc	paper, metal cased
poly	polystyrene
prec	precision
pt	paper, tubular
ptm	paper, tubular molded
sn or S/N	serial number
tub	tubular
v	working volt, dc
var	variable
w	watt
WW	wire wound

SPECIAL NOTES AND SYMBOLS:

$\pm \quad$ approximate serial number
X000 part first added at this serial number
000X part removed after this serial number
*000-000 asterisk preceding Tektronix part number indicates manufactured by or for Tektronix, also Tektronix reworked or checked components
$\bmod w /$ modify with \qquad - Simple replacement is not recommended. Replace with part listed for later instruments and also modify the circuit symbol numbers listed after mod w/

ELECIRICAL PARTS

Values are fixed unless marked Variable.

Tht. No. Tronix	
Part Number	Description

BULBS
B319 150-002 Neon, NE-2

CAPACITORS

Tolerance $\pm 20 \%$ unless otherwise indicated.
Tolerance of all electrolytic capacitors are as follows (with exceptions):

$$
\begin{aligned}
3 V-50 V & =-10 \%,+250 \% \\
5 I V-350 V & =-10 \%,+100 \% \\
35 I V-450 V & =-10 \%,+50 \%
\end{aligned}
$$

C1	283-002	. $01 \mu \mathrm{f}$	Disc Type	500 v	
C2	283-002	. $01 \mu \mathrm{f}$	Dise Mype	500 v	
C3	283-002	$.01 \mu \mathrm{P}$	Disc Type	500 v	
C4	283-003	$.01 \mu \mathrm{P}$	Disc Type	150 v	
C5	281-557	1.8 pf	Cer.	500 v	
C7	281-544	5.6 pf	Cer.	500 v	10\%
c8	281.534	3.3 pf	Cer.	500 v	$\pm .25 \mathrm{pf}$
C9	283-003	. $01 \mu \mathrm{f}$	Disc Type	150	
C10	283-010	. $05 \mu \mathrm{f}$	Disc Type	50 v	
C20	283-026	$.2 \mu \mathrm{f}$	Dise Type	25 v	

CAPACITORS (Cont'd.)

C21	281-580	470 pf	Cer.		500		10\%
C30	283-026	. $2 \mu \mathrm{f}$	Disc Type		25	v	
C40	283-026	. $2 \mu \mathrm{f}$	Disc Type		25	v	
C50	283-026	. $2 \mu \mathrm{f}$	Disc Type		25	v	
C60	281-504	10 pf	Cer.		500		10\%
C61	281-504	10 pf	Cer.		500		10\%
C65	281-549	68 pf	Cer.		500	v	10\%.
C75	283-000	. $001 \mu \mathrm{f}$	Disc Type		500	v	
C110	283-010	. $05 \mu \mathrm{f}$	Disc Type		50	v.	
C120	283-010	. $05 \mu \mathrm{P}$	Disc Type		50	v	
C126	281-519	47 pf	Cer.		500	v	10\%
C140	283-002	. $01 \mu \mathrm{f}$	Disc Type		500	v	
c145A	283-012	. $1 \mu \mathrm{P}$	Disc Type		100	v	
C145B	283-010	. $05 \mu \mathrm{f}$	Disc Type		50	v	
C145D	283-003	. $01 \mu \mathrm{f}$	Disc Type		150	v	
C145E	283-001	. $005 \mu \mathrm{f}$	Disc Type		500	v	
C145G	283-000	.001 $\mu \mathrm{P}$	Disc Type		500	v	
C145H	283-032	470 pf	Disc Type		500	v	5\%
C146A	281-512	27 pf	Cer.		500	v	10\%
C146B	281-022	8-50 pf	Cer.	Var.			
C155	283-000	. $001 \mu \mathrm{P}$	Disc Mype		500	v	
C160	283-010	. $05 \mu \mathrm{P}$	Disc Type		50	v	
C164	281-511	22 pf	Cer.		500	v	10\%

CAPACITORS (Cont'd.)

C260E	$283-591$	150 pf	Mica	500 v	5%
C260F	$281-022$	$8-50 \mathrm{pf}$	Cer.	Var.	
C263	$281-061$	$5.5-18 \mathrm{pf}$	Cer.	Var.	
C270	$281-518$	47 pf	Cer.		
C274	$283-028$	$.0022 \mu f$	Disc Type	500 v	
			50 v		
C288	$283-000$	$.001 \mu \mathrm{f}$	Disc Type	500 v	
C300	$283-067$	$.001 \mu \mathrm{f}$	Disc Type	200 v	10%
C301	$290-107$	$25 \mu \mathrm{f}$	Littl-Lytics	25 v	
C302	$283-003$	$.01 \mu \mathrm{f}$	Disc Type	150 v	
C303	$281-551$	390 pf	Cer.	500 v	10%

CAPACITORS (Cont'd.)

C305	283-000	. $001 \mu \mathrm{f}$	Disc Type	500 v	
6309	281-504	10 pf	Cer.	500 v	10\%
6310	283-003	. $01 \mu \mathrm{~m}$	Disc Type	150 v	
6322	281-551	390 pf	Cer.	500 v	10\%
C332	281-523	100 pf	Cer.	350 v	
C335	283-003	. $01 \mu \mathrm{f}$	Disc Type	150 v	
C341	283-024	$.1 \mu \mathrm{f}$	Disc Type	30 v	
C342	283-000	. $001 \mu \mathrm{f}$	Disc Type	500 v	
C345	283-004	. $02 \mu \mathrm{f}$	Disc Type	150 v	
C346	285-623	. $47 \mu \mathrm{P}$	PTM	100 v	
C358A	283-581	510 pf	Mica	300 v	5\%
C358C	283-580	220 pf	Mi ca	500 v	5\%
C358D	281-012	7-45 pf	Cer. Var.		
C358E	283-579	100 pf	Mica	500 v	5\%
C358F	281-012	7-45 pf	Cer. Var.		
C358G	283-578	27 pf	Mica	500 v	5\%
C358H	281-012	7-45 pf	Cer. Var.		
C358J	281.542	18 pf	Cer.	500 v	10\%
C358K	281-007	3-12 pf	Cer. Var.		
C360	*291-019	. $01 \mu \mathrm{f}$	Polystyrene	500 v	5\%

CAPACITORS (Cont'd.)

C361	285-576	$1 \mu \mathrm{f}$	PTM	100 v
0362	283-012	. $1 \mu \mathrm{P}$	Disc Type	100 v
C365	283-003	. $01 \mu \mathrm{f}$	Dise Type	150 v
C370	283-000	. $001 \mu \mathrm{P}$	Dise Type	500 v
C373	283-000	$.001 \mu \mathrm{f}$	Disc Type	500 v
C374	283-001	. $005 \mu \mathrm{f}$	Disc Type	500.
0377	285-572	. $1 \mu \mathrm{f}$	PTM	200
C378	285-572	. $1 \mu \mathrm{f}$	PTM	200
C390	290-015	$100 \mu \mathrm{f}$	EMI	25
C391	283-026	$.2 \mu \mathrm{P}$	Dise Type	25
C396	290-026	$5 \mu \mathrm{P}$	EMT	25
C397	290-015	$100 \mu \mathrm{~F}$	ENT	25
C398	283-026	$.2 \mu \mathrm{f}$	Disc TYpe	25
,	-	DIODES		
D7	152-008	Germanium	T12G	
D25	152-043	Tunnel	IN3129 20 MA	
D35	152-043	Tunnel	1N3129 20 MA	
D45	152-043	Tunnel	1N3129 20 MA	
D55	152-043	Tunnel	IN3129 20 MA	
D65	152-043	Tunnel	IN3129 20 MA	
D72	152-026	Germanium	Q6-100	
D82	152-008	Germanium	T12G	
D92	152-008	Germanium	T12G	
D122	152-061	Sillicon	6061	

DIODES (Cont'd.)

D132 152-008
D144 152-008
D1 146
D147 D164

D234
D255
D256
D270
D271

D272
D275
D276
D285
D300

D306 D324 D325 D336 D337

D345
D352
D353
D360
D361

B-32

	DIODES (Cont'd.)		
D362	152-045	sulicon	6045
D377	152-069	Zener	1M75210
D378	152-069	Zener	1M75Z.10
D420	152-066	Slilcon	1183194
D421	152~066	Slilicon	2N3194
D422	152-066	Silicon	1123194
	INDUCIORS		
L25	*108-182	$.3 \mu \mathrm{~h}$	
135	*1080.182	$.3 \mu \mathrm{~h}$	
L45	*108-182	$.3 \mu \mathrm{~h}$	
155	*108-182	$.3 \mu \mathrm{~h}$	
L300	*108-200	$40 \mu h$	
1390	*120-261	Toroid 5	
L398	*120-261	Toroid 5	
	RESISTORS		
Resistors are fixed, composition, $\pm 10 \%$ unless			
R3	316-121	120Ω	$1 / 4 \mathrm{w}$
R4	317-201	200Ω	1/10 w
R5	316-222	2.2.k	1/4 w
R6	317-510	51	$1 / 10 \mathrm{w}$
R7	317-510	51Ω	$1 / 10 \mathrm{w}$
R8	316-152	1.5 k	1/4 w
R9	317-510	51	1/10 W

RESISTORS (Cont'd.)

R10	$302-101$	100Ω	$1 / 2 \mathrm{w}$
R11	$302-101$	100Ω	$1 / 2 \mathrm{w}$
R12	$302-470$	47Ω	$1 / 2 \mathrm{w}$
R14	$316-472$	4.7 k	$1 / 4 \mathrm{w}$
R15	$302-223$	22 k	$1 / 2 \mathrm{w}$

R16t	$311-299$	100 k	
R17	$316-472$	4.7 k	$1 / 4 \mathrm{w}$
R18	$302-470$	47Ω	$1 / 2 \mathrm{w}$
R19	$316-472$	4.7 k	$1 / 4 \mathrm{w}$
R20	$307-023$	4.7Ω	$1 / 2 \mathrm{w}$

R21	$305-621$	620Ω	2 w	5%
R22	$301-471$	470Ω	$1 / 2 \mathrm{w}$	5%
R24	$316-561$	560Ω	$1 / 4 \mathrm{w}$	
R25	$311-171$	5 k		Var.
R27	$315-750$	75Ω	$1 / 4 \mathrm{w}$	

R28	315 m 750	75Ω	$1 / 4 \mathrm{w}$	5%
R29	$316-103$	10 k	$1 / 4 \mathrm{w}$	
R30	$307-023$	4.7Ω	$1 / 2 \mathrm{w}$	
R31	$305-471$	470Ω	2 w	5%
R32	$301-361$	360Ω	$1 / 2 \mathrm{w}$	5%
R33	$316-560$	56Ω	$1 / 4 \mathrm{w}$	
R34	$316-68 \mathrm{~J}$	680Ω	$1 / 4 \mathrm{w}$	

+Concentric with Ri36. Furnished as a unit.

RESISTORS（Cont＇d．）

R35	311－171	5 k		Var．	TRIG RECOVERY
R40	307－023	4.7	1／2 w		T．D．BIAS
84.1	305－621	620	2 w		5\％
R42	301．472	470 ＠	1／2 w		5\％
R44	316－561	560Ω	1／4 w		
R45	311－171	$5 k$		Var．	TRIG．RECOG．T．D．BIAS
R47	315－750	75	1／4 w		5\％
R48	315－750	75	1／4 w		5\％
R49	316－103	10 k	1／4 w		
R50	307－023	4.7 a	1／2 w		
R51	305－471	470	2 w		5\％
R52	301－361	360	1／2 w		5\％
R53	316－560	56Ω	1／4 w		
R54	316－681	680Ω	1／4 w		
R55	311－171	5 k		Var．	TRIG。RECOVERY T．D．BIAS
R60	316－101	100Ω	1／4 w		
R61	316－101	100Ω	$1 / 4 \mathrm{w}$	．	
R65	311－004	200		Var．	OUTPUT T．D．BIAS
R66	306－391	390 』	2 w		
867	307－053	3.3 』	1／2 w		5\％
R73	315－510	51 （1）	1／4 w		5\％
R74	316－122	1.2 k	1／4 w		
R75	316－122	1.2 k	1／4 w		．
R83	316－472	4.7 k	1／4 w		

RESISTORS（Cont＇d．）

R35	311－171	5 k		Var．	TRIG RECOVERY T．D．BIAS
R40	307－023	4.7Ω	1／2 w		
R41	305－621	620 ®	2 w		5\％
R42	301－472	470 ！	1／2 w		5\％
R44	316－561	560 』	1／4 w		
R45	311－171	5 k		Var．	TRIG．RECOG．T．
R47	315－750	75 』	1／4 w		5\％
R48	315－750	750	1／4 w		5\％
R49	316－103	10 k	1／4 w		
R50	307－023	4.7Ω	1／2 w		
R51	305－471	470Ω	2 w		5\％
R52	301－361	360Ω	$1 / 2 \mathrm{w}$		5\％
R53	316－560	56 』	$1 / 4 \mathrm{w}$		
R54	316－681	680Ω	$1 / 4$ w		
R55	311－171	5 k		Var．	TRIG．RECOVERY T．D．BIAS
R60	316－101	100	1／4 w		
R61	316－101	100 』	$1 / 4 \mathrm{w}$		
R65	311－004	200 a		Var．	OUTPUT T．D．BIA
R66	306－391	390 』	2 W		
R67	307－053	3.3 ת	1／2 w		5\％
R73	315－510	51.10	1／4 w		5\％
R74	316－122	1.2 k	1／4 w		
R75	316－122	1.2 k	$1 / 4 \mathrm{w}$		
R83	$316-472$	4.7 k	$1 / 4 \mathrm{w}$		

		RESISTORS	nt ${ }^{\text {d }}$. $)$			
R166	316-393	39 k	$1 / 4 \mathrm{w}$			
8167	316-683	68 k	1/4 w			
R175	$315-472$	4.7 k	1/4 w			5\%
R176	316-393	39 k	1/4 w			
R177	316-104	100 k	1/4 w			
R200	316-100	109	1/4 w			
R201	316-100	100	1/4 w			
R202	316-100	108	1/4 w			
R208B	318-012	25 k	1/8 w		Prec.	1\%
R2086	318-001	100 k	$1 / 8 \mathrm{w}$		Prec.	1\%
R208D	318-016	225 k	1/8 w		Prec.	1\%
R208E	321.450	475 k	$1 / 8 \mathrm{w}$		Prec.	1\%
R208F	318-121	1.225 meg	$1 / 8 \mathrm{w}$		Prec.	1\%
R208G	319-073	2.475 meg	1/4. W		Prec.	1\%
R209B	321-356	49.9 k	1/8 w		Prec.	1\%
R2096	321-337	31.6 k	1/8 w		Prec.	1\%
R209D	321-331	27.4 k	$1 / 8 \mathrm{w}$		Prec.	1\%
R209E	321-329	26.1 k	1/8 w		Prec.	1\%
R209F	321-328	25.5 k	1/8 w		Prec.	1\%
R209G	321-328	25.5 k	1/8 w		Prec.	1\%
R211 +	*311-295	10 k		Var.	WW	VARIABLE
R212	309-159	5 k	1/2 w		Prec.	1\%
R213A	$318=074$	11.8 k	1/8 w		Prec.	1\%
R213B	318-010	5.03 k	1/8 w		Prec.	1\%

AConcentric with SW2ll. Furnished as a unit.

RESISTORS (Cont'd.)

R214A	309-193	25 k	1/2 w		Prec.	1\%
R214B	309-389	50 k	1/2 w		Prec.	1\%
R214C	309-376	125 k	1/2 w		Prec.	1\%
R2140	309-389	50 k	1/2 w		Prec.	1\%
R21418	309-260	100 k	1/2 w		Prec.	1\%
R214F	309-162	250 k	1/2 w		Prec.	1\%
R214G	309-389	50 k	1/2 w		Prec.	1\%
R2158	309-389	$50 . \mathrm{k}$	1/2 w		Prec.	1\%
R2150	309-037	31.1 k	1/2 w		Prec.	1\%
R2150	309-389	50 k	1/2 w		Prec.	1\%
R215E	309-375	33.3 k	1/2 w		Prec.	1\%
R215F	309-339	27.4 k	1/2 w		Prec.	1\%
R2159	309-389	50 k	1/2 w		Prec.	1\%
$R 216$	309.168	78 k	1/2 w		Prec.	1\%
R217A, B	311-394	$2 \times 10 \mathrm{k}$		Var.		TIME POSITION
R218	318-074	11.8 k	1/8 w		Prec.	1\%
R219A	309-181	2.5 k	1/2 w		Prec.	1\%
R219B	302-223	22 k	1/2 w			
R220	311-125	50 k	. 2 w	Var.		delay zerro
R223	309-049	150 k	1/2 w		Prec.	1\%
R225	311-303	200Ω		Var.		INVERTER INPUT ZERO
R227	309-200	11.76 k	1/2 w		Prec.	1\%
$R 229$	301-393	39 k	1/2 w			5\%
R231	309-159	5 k	1/2 w		Prec.	1\%
R232	316-100	10Ω	1/4 w			

RESISTORS (Cont ${ }^{\text {d }}$. ${ }^{\text {) }}$						
R233	304-334	330 k	1 w			
R234	303-153	15 k	1 w			5\%
R237	316-101	100 』	$1 / 4$ w			
R240	316-562	5.6 k	$1 / 4$ w			
R241	316-122	1.2 k	$1 / 4$ w			
R242	315-510	51 @	$1 / 4$ w			5\%
R243	316-124	120 k	$1 / 4$ w			
R244	315-133	13 k	$1 / 4 \mathrm{w}$			5\%
R254	311-393	1 k		Var.		RAMP RECOV.
R261	316-100	10 \%	$1 / 4 \mathrm{w}$			
R260A	301-510	51	1/2 w			5\%
R260F	316-100	10Ω	$1 / 4 \mathrm{w}$			
R263	315-510	51Ω	1/4 w			5\%
R264	315-181	180 』	1/4 w			5\%
R265	308-273	6.5 k	5 w		WW	3\%
R267	311-395	2.5 k		Var.		SWEEP CAL.
R270	316-101	100Ω	1/4 w			
R271	318-084	10 k	$1 / 8 \mathrm{w}$		Prec.	2\%
R272	316-103	10 k	$1 / 4 \mathrm{w}$			
R274	316-122	1.2 k	1/4 w			
R2'75	311-060	1 k		Var.		COMPARATOR LEVEL
R285	316-561	560	1/4 w			
R286	316-152	1.5 k	1/4 w			
R287	316-332	3.3 k	$1 / 4 \mathrm{w}$			
R288	307-057	5.18	$1 / 2 \mathrm{w}$			5\%

RESISTORS (Cont'd.)

R289	308-067	750Ω	5 w	WW	5\%
R303	301-152	1.5 k	$1 / 2 \mathrm{w}$		5\% -
R304	311-170	20 k		Var.	SAMPLES/CM CAL.
R305	302-270	27 ®	$1 / 2 \mathrm{w}$		
R306	301.472	4.7 k	$1 / 2 \mathrm{w}$		5\%
R308	316-223	22 k	$1 / 4 \mathrm{w}$		
R309	302-393	39 k	1/2 w		
R310	302-105	1 meg	1/2 w		
R312	317-910	912	1/10 w		5\%
R314	317-910	91Ω	1/10 w		5\%
R315	301-102	1 k	1/2 w		5\%
R319	302-474	470 k	1/2 w		
R322	301-332	3.3 k	$1 / 2 \mathrm{w}$		5\%
R323	302-101	100Ω	1/2 w		
R324	301-222	2.2 k	$1 / 2 \mathrm{w}$		5\%
R325	301-472	4.7 k	$1 / 2 \mathrm{w}$		5\%
R330	301-274	270 k	1/2 w		5\%
R331	302-393	39 k	1/2 w		
R332	301-103	10 k	$1 / 2 \mathrm{w}$		5\%
R333	301-272	2.7 k	1/2 w		5\%
R334	302-104	100 k	1/2 w		
R335	302-101	100Ω	1/2 w		
R336	301-472	4.7 k	$1 / 2 \mathrm{w}$		5\%
R337	302-393	39 k	1/2 w		
R340	301-123	12 k	$1 / 2 \mathrm{w}$		5\%

RESISTORS (Cont'd.)

R341	302-270	27	1/2 w			
R342	301-512	5.1 k	1/2 W			5\%
R343	301-332	3.3.15	1/2 w			5\%
R344	301.473	47 k	1/2 w			5\%
R345	311-1.70	20 k		Var.		SWP LENGTH
R346	302-101	100	1/2 w			
R349	316-223	22 k	$1 / 4$ w			
R356	311-157	100 k		Var.		TIMED
R357	309-095	10 meg	1/2 w		Prec.	1\%
R358	301-102	1 k	-1/2 w			5\%
R362	303-223	22 k	1 w			5\%
R364	316-101	100Ω	$1 / 4 \mathrm{w}$			
R365	302-101	100Ω	$1 / 2 \mathrm{w}$			
R370	316-101	100Ω	1/4 w			
R371	301-393	39 k	1/2 w			5\%
R372	316-101	100Ω	1/4 w			
R373	316-101	100	1/4 w			
R374	316-101	100Ω	1/4 w			
R375	303-273	27 k	1 w			5\%
R376	305-153	15 k	2 w			5\%
R377	301-124	120 k	1/2 w			5\%
R381	311-125	50 k	. 2 w	Var.		STAIRCASE DC LEVEL
R382	309-090	50 k	1/2 w		Prec.	1\%
R383	309-090	50 k	1/2 w		Prec.	1\%
R384	309-115	1 k	1/2 w		Prec.	1\%

		RESISTORS (Cont'd.)	
R386	$316-101$	100Ω	$1 / 4 \mathrm{w}$
R393	$306-330$	33Ω	2 w
R394	$306-330$	33Ω	2 w
R395	$304-101$	100Ω	1 w
R420	$302-275$	2.7 meg	$1 / 2 \mathrm{w}$

SWITCHES

	Unwired	Wired		
SW10A	260-438	*262-452	Rotary	TRIGGERING (Source)
SWIOB)			Rotary	TRIGGERING (Polarity)
SW210	260-527	*262-552	Rotary	TIME EXPANDER
SW211+	*311-295			
SW260	260-528	*262-553	Rotary	SWEEP TIME/CM
$\text { SW325 \} }$	260-526	*262-554	Rotary	SWEEP MODE
SW358)			Rotary	SAMPLES/CM

IRANSFORMERS

T2	$* 120-262$	Toroid IT
T65	$* 120-263$	Toroid $3 T$
T284	$* 120-264$	Toroid $3 T$
T300	$* 120-265$	Toroid TP

TRANSISTORS
Q4
151-027 2N700
Q73
151.068 2N636

Q84
151-065 2N1991
Q94 151-065 2N1991
Q104 151-031 2N1517
*Concentric with R211. Furnished as a unit.

TRANSISTORS (Cont'd.)

Q115	151-072	2N1308
Q125	151-072	2N1308
Q144	151-072	2N1308
Q154	151-071	2N1305
Q165	151-072	2N1308
Q175	151-072	2N1308
Q223	151-103	Planar Silicon
Q234	151-087	J3138
Q244	151-123	2N976
Q254	151-123	2N976
Q261	151-108	Tek 151-108
Q276	151-108	Tek 151-108
Q284	151-123	2N976
Q300	*153-511	OCl70 checked
Q314	151-054	2N1754
Q324	151-068	2N636
Q335	151-031	2N1517
Q345	151-040	2N1302
		ELECTRON TUBES
V361	154-215	6688/E180F
V373	154-187	6DJ8/ECC88

Ref. Part No. Quan. Description

1.	366-146	1.	Knob, Charcoal
	366-032	1	Knob, Small Red
	210-413	1	Nut
	210-840	1	Washer
	210-012	1	Lockwasher
2.	366-142	2	Knob, Charcoal
	366-031	2	Knob, Small Red
	210-413	2	Nut
	210-840	2	Washer
	210-012	2	Lockwasher
3.	132-001	1	Nut Coupling
	132-002	1	Sleeve, Outer Conductor
	132-007	1	Snap Ring
	132-016	1	Retaining Nut
	132-026	1	Outer Transition
	132-027	1	Inner Transition
	132-028	1	Insulator
	132-029	1	Inner Conductor
	166-221	1	Tube, Alum, Ferrule
	132-040	1	Adapter, Panel
	211-038	4	Screw, Adapter to Subpane 1
4.	333-753	1	Panel, Front
	006-105	1	Cover, Front Panel
	387-783	1	Plate, Subpane 1
5.	366-144	1	Knob, Large Charcoal
	366-038	1	Knob, Small Red
	210-413	1	Nut
	210-840	1	Washer
	210-012	1	Lockwasher
6.	334-679	1	Tag, Metal Serial
7.	366-175	1	Knob, Charcoal
	366-140	1	Knob, Small Red
	210-413	1	Nut
	210-840	1	Washer
	210-012	1	Lockwasher
8.	358-054	1	Bushing, Banana Jack
	210-011	1	Lockwasher
	210-471	1	Nut, Spacer

Ref.	Paxt No.	Quan.	Description
1.	670-029		Etched Cixcuit Board, Trigger
		Include	
		1360062	2 Socket, Transistor
		352-041	1 Holder, Tunnel Diode
	211-008	4	Screw, Circuit Board to Chassis
2.	426-121	1	Mount, Toroid
	361-007	1	Spacer
3.	348-003	1	Grommet
4.	179-599	1	Cable, Harness, Etched Board
5.	124-146	2	Ceramic Strip, 16 Notch
	361-007	4	Spacer
6.	210-413	2	Nut, Pot Mounting
	21.0-840	2	Washer
7.	348-031	3	Grommet, Plastic Snap-in
8.	354-068	2	Ring, Capacitor Securing
9.	210-204	1	Solder Lug
	213-044	1	Screw
10.	124-145	8	Ceramic Strip, 20 Notch
	361-007	16	Spacer
11.	348-005	2	Grommet
12.	136-095	1. 11	Socket, Transistor
	213-113	22	Screw, Socket to Chassis
13.	441-412	1	Chassis, Ramp Amp
	211-538	3	Screw, Chassis to Subpanel
	211-507	2	Screw, Chassis to Rear Plate
	210-006	3	Lockwasher
	. $210-407$	3	Nut
14.	210-201	1	Solder Lug
	213-044	1	Screw
15.	179-774	1	Cable, Harness, Ramp Amp Chassis
16.	210-223	4	Solder Lug, Mini. Pot (not shown)
17.	179-639	1	Cable, Harness, Pot

RIGHT SIDE (Cont.)

Ref.	Part No.	Quan.	Description
18.	670-030	1	Etched Circuit Board, Fast Ramp
		Includes	
		136-062	Socket, Transistor
		352-041	Holder, Tunnel Diode
	211-008	4	Screw, Circuit Board to Chassis
	210-204	1	Solder Lug
19.	124-147	1	Ceramic Strip, 13 Notch
	361-007	2	Spacer
20.	211-040	1	Screw, Nylon
	210-810	1	Washer, Fiber
	385-107	1	Rod, Nylon, Core Mounting
	211-011	1	Screw, Rod to Chassis
21.	124-149	1	Ceramic Strip, 7 Notch
	361-007	2	Spacer

REAR

Ref. Part No. Quan. Description

1.	$131-149$	2
$211-008$	4	Connector, Plug-in
$210-004$	3	Screw
$210-201$	1	Lockwasher
$210-406$	4	Solder Lug
2.	$387-598$	1

LEFT SIDE

Ref.	Part No:	Quan.	Description
1.	384-566	4.	Rod, Frame
	212-044	4	Screw, Rod to Rear Plate
2.	179-772	1	Cable, Harness, Stair-Step Chassis
3.	210-201	1	Solder Lug
	21.3-044	1	Screw
4.	136-014	1	Socket, Tube
	213-044	2	Screw
5.	348-003	3	Grommet
6.	136-085	1	Socket, Tube W/shield
	213-044	2	Screw
7.	124-148	2	Ceramic Strip, 9 Notch
	361-007	4	Spacer
8.	352-008	1	Holder, Neon
	211-031	1	Screw, Holder to Subpanel
	210-406	2	Nut
9.	210-413	2	Nut, Pot
	210-012	1	Lockwasher
10.	348-002	2	Grommet
11.	136-127	1	Socket, Tunne1 Diode Holder
12.	$124-147$	4	Ceramic Strip, 13 Notch
	361-007	8	Spacer
13.	348-005	1	Grommet
14.	124-145	4	Ceramic Strip, 20 Notch
	361-007	8	Spacer
15.	136-095	5	Socket, Transistor
	213-113	10	Screw, Socket to Chassis
16.	441-489	1	Chassis, Stairstep
	211-559	2	Screw, Chassis to Subpanel
	211-507	2	Screw, Chassis to Rear Plate
	210-006	4	Lockwasher
	210-407	4	Nut

Ref.	Part No.	Quan.	Description
1.	$\begin{aligned} & 166-204 \\ & 132-117 \end{aligned}$	$\frac{1}{1}$	Tube, Coax. Adapter Ferrule
2.	$\begin{aligned} & 166-240 \\ & 132-117 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Tube, Coax. Adapter Ferrule
3.	$\begin{aligned} & 406-747 \\ & 211-504 \end{aligned}$	$\frac{1}{2}$	Bracket, Sweep Speed Switch Screw, Bracket to Chassis
4.	348-031	1	Grommet, Plastic Snap-in
5.	$\begin{aligned} & 343-042 \\ & 211-507 \\ & 210-803 \\ & 210-006 \\ & 210-407 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	Clamp, Cable Screw, Clamp to Chassis Washer Lockwasher Nut
6.	$\begin{aligned} & 211-014 \\ & 166-025 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Screw, Pot Mounting Tube, Aluminum Spacer
7.	$\begin{aligned} & 210-449 \\ & 210-006 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Nut, Bracket to Switch Lockwasher
8.	179-773	1	Cable, Harness, Sweep Time/CM
9.	$\begin{aligned} & 131-221 \\ & 358-172 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	Connector, Bulkhead Jack Bushing, Connector
10.	426-150	1	Mount, Connector
	211-511	2	Screw; Mount to Bracket
	406-779	1	Bracket, Mount Support (not shown)
	211-507	2	Screw, Bracket to Chassis
	210-006	4	Lockwasher
	210-407	4	Nut
11.	214-222	1	Spring Striker
	361-029	1	Spacer, Spring Striker
	211-082	2	Screw, Spring Striker to Subpane 1
	210-004	2	Lockwas her
	210-406	2	Nut

Ref. Part No. Quan. Description

1.	406-748	1	Bracket, Capacitor Mounting
	211-008	4	Screw, Bracket to Switch
	210-004	4	Lockwasher
	210-406	4	Nut
2.	214-153	4	Fastener, Capacitor
3.	406-914	1	Bracket, Pot Mounting
	211-507	2	Screw, Bracket to Chassis
4.	179-640	1	Cable, Harness, Connecting
5.	343-042	1	Clamp, Cable
	211-507	1	Screw, Clamp to Chassis
	210-803	1	Washer
	210-006	1	Lockwasher
	210-407	1	Nut
6.	384-135	1	Rod, Spacer
	211-507	2	Screw, Rod to Chassis
7.	131-180	2	Connector, Stand-off
	358-135	2	Bushing, Teflon

Ref. Part No. Quan. Description

| 1. 017-044 | 2 | Attenuator, $50 \Omega, 10 \mathrm{X}$
 (see pub. no. $061-762$ for parts breakdown) |
| :--- | :--- | :--- | :--- |
| 2. $017-501$ | 1 | Cable, $50 \Omega, 10 \mathrm{~N} \mathrm{sec}$. |
| (see pub. no. $061-765$ for parts breakdown) | | |

TYPE 5T1A recalibration (from preliminary manual)
Pages C-655 to C-666

This cover sheet identifies unnumbered pages.
Do not separate from attached information.

SECTION 4

CALIBRATION
General

The Type 5T1A is a stable instrument, and should operate properly with a minimum of care. The instrument should be recalibrated at least once every 6 months or 500 hours of operation, whichever comes first. For best results, the steps in this calibration procedure should be followed in the order they appear.

Tunnel diodes used in the Type STIA should not be handled unless necessary. Do not connect probes directly to tunneldiode bodies. When tunnel diodes are marked with e color code, it will appear on the anode side. The cathode side has a small external disc. Locations of internal controls and tunnel diodes are shown in Figure 4-1.

Preset internal controls to midrange only if the Type 5TlA has undergone repairs, or is known to be seriously out of calibration.

Equipment Required

1. Tektronix Type 661 Oscilloscope.
2. Tektronix '4' Sexies sampling unit. $^{\prime}$
3. Volt-ohm-milliameter, dc resistance 5000 ohms/volt, or better.
4. Time-mark generator, Tektronix Type 180A, or equivalent.
5. Test oscilloscope, dc to 15-mc bandpass, sensitivity capable of displaying 400-mv signol, Tektronix Type 531 with Type K Plug-In Unit or equivslent.

Fig. 4-1. Type 5T1A internal adjustment locations.
6. $30-\mathrm{cm}$ air line, General Radio part numbex 874 L 30 , or equivalent.
7. Pulse generator, Tektronix Type 111, or equivalent.

Procedure

1. Check Resistance to Ground at Power Plug With cormon lead of test meter grounded, the following resistances are typical: (This check necessary only after repair.)

Pin	Power Supply Voltage	Ohms 15$\quad 300$
17	100	40 k
5	-100	80 k
3	-19	10 k
18	10	150Ω
		10Ω

2. Preset Front-Panel Controls

Install plug-in units in Type 661 Oscilloscope. Turn on power and set front-panel controls as follows:

5T1A

SWEEP TIME/CM	10 nSEC
VARIABLE	CALIBRATED
SWEEP MODE	NORMAL
TIME POSITION	Clockwise
SOURCE	EXT.
POLARITY	NEG.
RECOVERY TIME	MIN.

661
HORIZONTAL DISPLAY
AMPLITUDE/TTME CALIBRATOR
HORIZONTAL POSITION

F MANUAL SCAN
OFF
Centered

Sampling Unit

Dc Offset	Zero Volts
Mv/Cm	200
Vertical Position	Centered
	Test Oscilloscope

3. 0 Threshold

Connect the de voltmeter between the center terminal of the THRESHOLD control (potentiometer nearest the front panel) and ground. Adjust THRESHOLD control for zero volts on the meter. The dot on the control knob should be aligned with the 0 on the front panel; if not, loosen and reposition the knob.
4. - Threshold

Connect the test oscilloscope probe to the junction of L25 and the anode of D25. Set -TRIG. RECOVERY T.D. BIAS R35 fully clockwise, and adjust -TRIG. RECOG. T.D. BIAS R25 for a stable display.
5. + Threshold

Connect the test oscilloscope probe to the junction of L45 and the anode of D45. Set +TRIG. RECOVERY T.D. BIAS R55 fully clockwise, and adjust +TRIG. RECOG. T.D. BIAS R45 for a stable display.
6. Output Tunnel-Diode Bias

Connect the test oscilloscope probe to the junction of C65 and the anode of D65. Adjust OUIPUT T.D. BIAS R65 for a stable display. The display should be about a
 the THRESHOLD control is turned fully clockwise.
7. Ramp Recovery

Connect the test oscilloscope probe to the junction of Q244 collector and D255 cathode. Adjust R254 for a stable $+0.4-$ volt, $50-n s e c$ pulse. You may have to adjust COMPARATOR LEVEL R2.75 for a stable display. All values are approximate.
8. Comparator Level

Connect the test oscilloscope probe to the collector of Q284. Adjust COMPARATOR LEVEL R275 for a stable +5.5 -to +6 -volt pulse, about 750 nsec wide at the top. This is the fast-ramp pulse to the sompling unit. A similar pulse (3v) should appear at the opposite end of R285 (560 Ω resistor). Set Type 661 HORIZONTAL DISPLAY switch to $X I$; a sweep should appear on the crt. Remove test probe.

This is a preliminary adjustment. If the sweep is not on the crt, check the staircase generator circuit for proper operation.
9. Threshold Sensitivity

With a trace on the crt, aveust -TRIG. RECOG. T.D. BIAS R25 so that the sweep freemuns as near the 0 position as possible when the THRESHOLD control is turned clockwise. Adjust -TRIG. RECOVERY T.D. BIAS R35 so that the sweep stops within 5° to the right of the 0 position.

With a trace on the crt, adjust +TRIG. RECOG. T.D. BIAS R45 so that the sweep free-runs as near the 0 position as possible when the THRESHOLD control is
turned counterclockwise. Adjust +TRIG. RECOVERY T.D. BIAS R55 so that the sweep stops within 5° to the left of the 0 position.
10. Lockout Time

Apply a $0.1-\mu \mathrm{sec} / \mathrm{cyc} 1 \mathrm{e}, 100-\mathrm{mv}$ signal from the Type 661 Amplitude/Time Calibrator to the Type 5T1A EXIERNAL TRIGGER INPUT connector. Adjust the THRESHOLD control to trigger the Type 5T1A. Touch the test oscilloscope probe to the junction of C65 and the anode of D65, and adjust C146B for 9.5 to 10 $\mu \mathrm{sec}$ between pulses.
11. Delayed-Pulse Generator Bias

Connect the test oscilloscope probe to the emitter of Q73. Adjust DELAYED PULSE GEN. BIAS R990 (located on the right side of the Type 661) until a -0.4-to -0.5-volt pulse appears on the crt. Repetition rate should be the same as that of output tunnel diode D65. This adjustment may require resetting OUIPUT T.D. BIAS R65 to maintain the stability of D65. Connect a cable from the Type 661 DELAYED PULSE 50Ω connector to the vertical input connector. The pulse at Q73 should be stable when connecting and disconnecting cable.
12. Sweep Length

Adjust SWP LENGTH R345 for a $10.5-\mathrm{cm}$ sweep length. Connect the test oscilloscope probe to the center terminal of the VARIABLE SWEEP TTME/CM control (potentiometer at rear of SWEEP TIME/CM switch wafer). A 52.5 ± 1 volt, peak ac, staircase voltage
should appear on the crt.
13. Sweep Rate

Set the SWEEP TTME/CM switch to 1μ SEC, and apply 1 $\mu s e c$ markers from the time-mark generator. Ad.just SWEEP CAL R267 for 1 mark/cm between lst and 9th major graticule divisions. Timing should be within 2% on all ranges from $20 \mathrm{nsec} / \mathrm{cm}$ to $100 \mu \mathrm{sec} / \mathrm{cm}$. Check to see that the VARTABLE SWEEP TTME/CM control provides a 3:1 sweep-timing range.
14. Check Time Expander

With the SWEEP TTME/CM switch set to $1 \mu \mathrm{sec}$, check all. ranges of the TIME EXPANDER switch with the TIME POSITION control at midrange. Locate the proper midrange point by setting the TTME POSITION control fully counterclockwise, and then turning clockwise to midrange. Also, recheck with $1-\mu \mathrm{sec}$ time marks in the X1 position. Accuracy must be $\pm 1.5 \%$ between list and 9th mafor graticule divisions.
15. Sweep Delay and Registration

Preset controls as follows:
5T2A

DC LEVEL (R381)
deLay zero (r220)
SAMPLES/CM
TRIGGERTING
SWEEP TTME/CM
TIME EXPANDER
TIME POSITION
661
AMPLIIUDE/TTIME CALIBRAIOR SWEEP MAGNIFIER

Counterclockwise Clockwise 100

INT +
$2 \mu \mathrm{SEC}$
$\chi 1$
Clockwise

Connect output of Type 661 Amplitude/Time Calibrator to the sampling unit. Display a sinewave by adjust. ing IHRESHOLD, RECOVERY TIME, COMPARATOR LEVEL R275, and Type 661 POSITION controls.

Adjust R275 and R254 for best corner transition-tosine curve. Dots should be continuous. Connect the test oscilloscope probe to the base of Q223, with test oscilloscope set for $50 \mathrm{mv} / \mathrm{cm}$, dc coupled. Adjust the test oscilloscope for a 0 -volt de reference level. Adjust R225, for 0 volt dc (same as reference level). Turn SWEEP TTME/CM switch to the 2, 1 , and $.5 \mu \mathrm{SEC}$ positions. Adjust DELAY ZERO R220 so that the sinewave starts at the same place on the crt at each position of the SWEEP TTME/CM switch. Set the SWEEP TTME/CM switch to 1μ SEC. Adjust DC LEVEL R381 to remove the straight line of dots preceding the start of the sinewave. Disregard any dots that may appear at other de levels.

Apply a 2 -nsec pulse from the pulse generator to the sampling unit. Pretrigger the Type 5TIA from the pulse-generator pretrigger output through the EXTERNAL TRIGGER INPUT connector. Set the SWEEP TIME/CM switch to 1 nSEC, and locate the pulse-generator output on the second major vertical graticule division where it crosses the horizontal centerline. Insert the $30-\mathrm{cm}$ air line in the signal connection to the sampling unit, and adjust C 263 so that the pulse now lies on the third major vertical graticule
division where it crosses the horizontal centerline. Remove the aix line and reposition the pulse (with the Type 661 positioning controls) so that it again crosses the second major vertical graticule division. Recheck the adjustment by reinserting the air line. Repeat this procedure until inserting the $30-\mathrm{cm}$ air line causes a l-cm signal delay.

Apply a 50-mc signal from the timemark generator to the sampling unit. Set the SWEEP TTINE/CM switch to 10 nSEC and adjust C260F for 1 cycle/2 cm. Apply a 20-to 30-nsec pulse from the pulse generator to the sampling unit. The pulse should remain on the crt through all the SWEEP TIME/CM switch positions from 2 nSEC to $2 \mu \mathrm{SEC}$. Use the TIME EXPANDER switch to increase resolution, and make it easier to locate the pulse on the slower sweep rates. Make the final adjustment of DELAY ZERO R22O to position the pulse at the same starting point as when the TIME POSITION control is set fully clockwise.
16. Sweep Timing

Apply a $50-\mathrm{mc}$ sinewave from the time-mark generator to the sampling unit. Set the SWEEP TIME/CM switch to 10 nSEC and adjust C260F for 1 cycle/2 cm .
17. Time Position

Apply a l0-me sinewave from the time-mark generator to the sampling unit. Set the SWEEP TTME/CM switch to 10 nSEC . Set the TTME POSITION control fully clockwise, and the TTIEE EXPANDER witch to $X 1$. Turn
the TIME POSITION control fully counterclockwise.
Check delay range according to the following table:

SWEEP TTME/CM	Input	TIME EX	
ritch Setting	requency	Switch Sett	Delay Range

10 nSEC	10 mc	$\chi 1$	greater than 100 nsec
10 nSEC	10 mc	$\chi 2$	greater than 100 nsec
10 nSEC	10 mc	$\chi 5$	greater than 200 nsec
100 nSEC	10 mc	$\chi 1$	greater than 100 nsec
100 nSEC	10 mc	$\chi 2$	greater than 500 nsec
100 nSEC	1 mc	$\chi 5$	greater than 1000 nsec

18. Samples/Cm

Set the SOURCE switch to FREE RUN, SAMPLES/CM switch to 5, SWEEP TIME/CM switch to 1μ SEC, and Type 661

HORIZONIAL DISPLAY switch to XI. Adjust SAMPIES/CM
R304 for 5 dots/cm; 1 dot exactly at each minor division between the lst and 9th major graticule divisions. Linearity must be $\pm 0.5 \mathrm{~mm}$.

Apply a 350-mv pulse from the pulse generator to the sampling unit. Adjust the SOURCE switch and THRESHOLD control to trigger the Type 5T1A. Adjust the pulse-generator repetition rate for 100 kc with the RECOVERY TIME control at MIN. Change the pulsegenerator repetition rate to 50 cps . The samples (dots)/cm should not change more than $\pm 1 \%$. Return SOURCE switch to FREE RUN. Make the following preliminary adjustments for the samples (dots)/cm:

Type 661 HORIZONTAL DISPLAY

Switch Setting

SAMPLES/CM
Switch Setting Adjust Dots/Cm

X10	10	$6358 D$	1
X20	20	$C 358 F$	1
X50	50	$C 358 \mathrm{H}$	1
X100	100	$C 358 \mathrm{~K}$	1

Set the SAMPLES/CM switch to 5, Type 661 HORIZONTAL DISPLAY switch to $X 1$, and SWEEP TTME/CM switch to 20 nSEC. Apply a 5-me sinewave from the time-mark generator to the sampling unit. Adjust the THRESH OLD control to trigger the Type 5TIA for a good sinewave display. Then set the SWEEP TTME/CM switch to $1 \mu \mathrm{SEC}$. A single row of dots should appear on the crt. Now set the time-mark generator for $1-\mu \mathrm{sec}$ markers. With the TIME POSITION control near its fully counterclockwise position, adjust SAMPLES/CM R304 and SWEEP CAL. R267 for a single level row of dots on the rise of $1-\mu s e c$ markers (use TTME POSITION control.). A dot should occur at exactly the 2nd and loth major graticule divisions in a nearly level line across the crt. Set the time-mark generator for $50-\mathrm{mc}$ sinewaves, and use the following table for the final samples/cm adjustments. Adjust for straightest possible line, or better than table.

SAMPLES/CM Switch Setting	Adjust	Rows of Dots	Maximum Number of Cycles or Crossovers
10	C358D	1	2.5 cycles
20	C358F	2	5 crossovers
50	C358H	1	2.5 cycles
100	C358K	2	5 crossovers

19. Times Mode

Set the SAMPLES/CM switch to TIMED. Set R357 (front panel) fully clockwise. Set the SOURCE switch to FREE RUN. Set the time-mark generator for l-sec marks. Fewer than ten marks should occur between
each two major graticule divisions (sweep rate faster than $5 \mathrm{sec} / \mathrm{cm}$). Set R357 fully counterclockwise; sweep should stop.

20. Single Display

Turn the SWEEP MODE switch from SINGLE DISPLAY to START; only one sweep should occur.

FACTORY CALIBRATION PROCEDURE

CONTENTS:

General	$\mathrm{C}-805$
Circuit specifications	C-807
Calibration	C-809

INTRODUCTION:

This isn't a field recalibration procedure as is the procedure in your instruction manual. This is a guide in calibrating brand-new instruments, just assembled instruments that have never been turned on before. Therefore it calls out many pocedures and adjustments that are rarely reacired.ots subsequent recalibration.

Even though we wrote this procedureprimarily for our own factory test deparment, t^{\prime} 's valuable to others also if used with

1. Special test equiphnent, if mentioned, is not available from Tektronix urless Mt's listed also in our current catako This speckal equipment is used in our test deparment to seded calibration. Usually you can eithe y dupicate its function with standard equipment in yguk ioility, devise alternate approaches, or suike thaspecial test equipment yourself.
2. Factory circuit specifications are not guaranteed unless they also appear as catalog or instruction manual specifications. Factory circuit specs usually are tighter than advertised specs. This helps insure the instrument will meet or exceed advertised specs after shipment and during subsequent field recalibrations over several years of use. Your instrument may not meet factory circuit specs but should meet catalog or instruction manual specs.
3. Presetting internal adjustments, if mentioned, usually is unnecessary. This is helpful for "first-time" calibration only. If internal adjustments are preset, you'll have to perform a 100% recalibration. So don't preset them unless you're certain a "start-fromscratch" policy is the best.

In this procedure, all front panel controls for the instrument under test are in capital letters (SENSITIVITY) and internal adjustments are capitalized only (Gain Adj).

a	amp	mid r	midrange or centered
ac	alternating current	min	minimum
approx	approximately	mm	millimeter
b	base	mpt	metalized, paper tubular (capacitor)
bulb	light, lamp, etc.	msec	millisecond
c	collector	mt	mylar, tubular (capacitor)
ccw	counterclockwise or full counterclockwise	mv	millivolt
cer	ceramic	μ	micro (10^{-6})
cm	centimeter	$\mu \mathrm{f}$	microfarad
comp	composition (resistor)	$\mu \mathrm{h}$	microhenry
cps	cycles per second	$\mu \mathrm{sec}$	microsecond
crt	cathode ray tube	n	nano (10-9)
cw	clockwise or full clockwise	nsec	nanosecond
db	decibel	Ω	ohm
dc	direct current	p	pico (10^{-12})
div	division	pbt	paper, "bathtub" (capacitor)
e	emitter	pcc	paper covered can (capacitor)
emc	electrolytic, metal cased (capacitor)	pf	picofarad ($\mu \mu \mathrm{f}$)
emt	electrolytic, metal tubular	piv	peak inverse voltage
fil	filament	pmc	paper, metal cased (capacitor)
freq	frequency	poly	polystyrene
gmv	guaranteed minimum value (capacitor)	pot	potentiometer
gnd	chassis ground	prec	precision (resistor)
h	henry	pt	paper, tubular (capacitor)
hv	high voltage	ptm	paper, tubular molded (capacitor)
inf	infinity	ptp	peak-to-peak
int	internal	sec	second
k	kilo (10^{3})	sn	serial number
k	kilohm	term	terminal
m	milli (10^{-3})	tub	tubular (capacitor)
ma	milliamp	unreg	unregulated
max	maximum	v	volt
mc	megacycle	var	variable
meg	megohm	w	watt
mh	millihenry	WW	wire wound
		x-form	transformer

[^5]
TYPE 5T1A

FACTORYTESTSPECIFICATIONS
(Tentative)

1. LOCKOUT TIME; 9.5-10 $\mu \mathrm{sec}$. at min. Greater than $13 \mu \mathrm{sec}$ at max.
2. THRESHOLD SENSITIVITY; + and - Triggers shall free-run within $\pm 10^{\circ}$ of zero and turn off within $2^{\circ} \mathrm{ccw}$ for - Trigger and $2^{\circ} \mathrm{cw}$ for + Trigger.
3. SWEEP LENGTH; set for 10.5 cm adjustab1e from 9.5-11.5 cm. Staircase 52.5 ± 1 volt.
4. SWEEP SPEED; $100 \mu \mathrm{sec}$ to $20 \mathrm{nsec} \pm 2 \%$, 1 to 9 cm mark, $3: 1$ var. control capability.
5. TIME EXPANDER; $\pm 1.5 \%$ all positions.
6. SWEEP DELAY; greater than 8 nsec.
7. SWEEP REGISTRATION; sweep delay the same on all ranges 1ess . 5% of total sweep time.
8. SWEEP TIMING AND RATE ERROR; 1, 2, $5,10 \mathrm{nsec} / \mathrm{cm} \pm 2 \%$ timing accuracy. $\pm 4 \% 1$ st $1 / 10$ of $10 \mathrm{nsec} / \mathrm{cm}$ sweep compared to last $1 / 10$ 。 $\pm 2 \%$ second $1 / 10$ of $10 \mathrm{nsec} / \mathrm{cm}$ sweep compared to last $1 / 10$, 1 st to. 9 th cm marks.
9. TIME POSITION;

Sweep Speed	Time Exp.	Delay Range
$10 \mathrm{nsec} / \mathrm{cm}$	X1	greater than 100 nsec
$10 \mathrm{nsec} / \mathrm{cm}$	X2	greater than 100 nsec
$10 \mathrm{nsec} / \mathrm{cm}$	X5	greater than 200 nsec
$100 \mathrm{nsec} / \mathrm{cm}$	X1	greater than 100 nsec
$100 \mathrm{nsec} / \mathrm{cm}$	X2	greater than 500 nsec
$100 \mathrm{nsec} / \mathrm{cm}$	X5	greater than 1000 nsec

10. SAMPLES/CM; maximum deviation $\pm .5 \mathrm{~mm}$ for 5 dots. Accuracy $\pm 1 \%$ from 50 cps to 100 kc rep rate. Samples/cm compared to fast ramp $\pm .5 \%$ overall. (2.5 cycles or 5 crossovers.)
11. TIMED MODE; Sweep must go faster than $5 \mathrm{sec} / \mathrm{cm}$ in real time.
12. SINGLE DISPLAY; One sweep shall occur for each operation.
13. TRIGGER \& TIME JITTER; Internal pulse; - shall trigger on 40 mv , 2 nsec wide pulse with a rep rate at 1 kc to 100 kc on + and - Trigger positions. Should not free-run when signal is removed. Should have less than 200 psec of time jitter. For $700 \mathrm{mv} / \mathrm{nsec}$ rise rate less than 30 psec jitter.
14. EXTERNAL PULSES shall trigger on $5 \mathrm{mv}, 2 \mathrm{nsec}$ wide pulse with less than 200 psec of jitter. May free-run when signal is removed. For $60 \mathrm{mv} / \mathrm{nsec}$ rise rate shall have less than 30 psec of time jitter.
15. INTERNAL SINE WAVES; 100 mc 1000 mv p-p less than 30 psec of time jitter; \pm Trigger.
16. $100 \mathrm{mc} 100 \mathrm{mv} \mathrm{p}-\mathrm{p}$ 1ess than 250 psec of time jitter; \pm Trigger.
17. 1000 mc 1.2 v p-p. Average jitter less than 100 psec . Random jitter less than $200 \mathrm{psec} ; \pm$ Trigger.
18. EXT TRIGGER KICKOUT: + and - Trigger kickout less than 5 mv.

FACTORY CALIBRATION PROCEDURE

 (Tentative)
EQUIPMENT NEEDED:

1	Type 661 Indicator
1	$4 S 1$ Sampling P1ug-In
1	V.O.M. , Triplett 630 NA or equiv.
1	530 or 580 series scope
1	180 Timing Standard (or equiv.)
1	Test Probe, X1
1	Pulse Generator, 109,110 or 111
1	Oscillator, $450-1050 \mathrm{mc}, \mathrm{GR}$ or equiv. 1
Vert. P1ug-In for test scope (Type L or Type H$)$	
1	Test Probe, X10
1	Tek made Diode Detector (special)

150Ω Coax Cable/GR Connectors
15 nsec length cable
2 2, nsec length cable
2 UHF to GR Connector Adaptor (017-023)
150Ω Terminator mode1 (017-037)
250Ω Attenuator, X2 (017-046)
250Ω Attenuator, X5 (017-045)
250Ω Attenuator, X10 (017-044)
1 Exten. Cable, Power \& Signal
2 Exten. Cables, Trigger
1 GR Tee, 874-T (017-069)

Check unit visually for obvious faults, such as wrong components, wiring errors, rosin or unsoldered connections. Tighten all mechanical fasteners. Check front panel for proper indexing of knobs. VAR. SWEEP TIME/CM turns 360° with index set at CALIBRATED. SWEEP MODE switch is indexed to REPETITIVE. When turned to START and released, it should return to SINGLE DISPLAY. All controls should operate quietly and smoothly.

Preset all internal adjustments to mid-range. Check all diodes for forward impedance before inserting transistors and tunnel diodes.

Make sure tubes and semi-conductors are installed properly. Tunnel diodes can be installed backward, so extra attention is in order. Note: When tunnel diodes are marked with a color code, it will appear on the cathode side. Also cathode side has a small external disc. Any unmarked tunnel diodes may be compared to those with code, in the Type 575 Curve Tracer.

Extra handing care is advised to prevent damage to tunnel diodes. Do not bend tabs unnecessarily; do not apply pressure to body, either with tools or test probe. Tabs are for removal and insertion. Test probe should be applied to circuitry near, but not on, tunnel diode.

1. CHECK RESISTANCE TO GROUND AT POWER PLUG:

With common lead of test meter grounded, the following resistances are normal:

Pin		Code		
15		930		+300
17	910		40 k on 10 k scale	
5	010	-100	80 k on 10 k scale	
3	020	-19	10 k on 1 k scale	
18	920	+10	10Ω on 100Ω scale	

2. FRONT PANEL PRESETS:

Plug 5T1A into 661 or to power and trigger extension cables. Turn on power and set front panel controls as follows:

5T1A

SWEEP TIME/CM	10 nsec
VARIABLE	CALIBRATED
SWEEP MODE	REPETITIVE
TIME POSITION	cw
SOURCE	INTERNAL
POLARITY.	NEG.
RECOVERY TIME	MIN.

HORIZ DISPLAY XI AMP/TIME CALIB OFF
PROBE

4 S 1
MODE
TRIGGERING
DISPLAY
DC OFFSET
MV/CM
VERT. POS.

A ONLY or B ONLY A or B NORMAL ZERO VOLTS 200 centered

Test Scope

TRIG MODE (SLOPE)	AC LF REJECT INT +
TIME/CM	$10 \mu \mathrm{sec}$
VOLTS $/ \mathrm{CM}$.05

X10 Attenuation

3. THRESHOLD - :

Set center arm of THRESHOLD pot to zero volts (use DC meter). Index THRESHOLD knob to 0. Set THRESHOLD halfway between + and 0 . Attach lOX Probe to junction of L25 and D25 anode. Adjust R25 for a stable display. R35 should be set cw maximum.
4. THRESHOLD + :

Set trigger POLARITY positive. Set THRESHOLD halfway between - and 0. Attach probe to junction of $L 45$ and $D 45$ anode. Adjust R45 for stable display: R55 should be set cw maximum.
5. OUTPUT T.D. BIAS:

Probe junction of C65 and D65. Adjust R65 for a stable display. Pulses should be positive, approximately . 400 v , approximately $5 \mu \mathrm{sec}$ wide and same spacing as lockout time.
6. RAMP RECOVERY:

Probe emitter of Q244 for approximately 30 mv positive pulse. Negative pulses following are not critical.
Probe junction of Q244 collector and D255 cathode. Adjust R254 until a stable. 400 v positive pulse, 50 nsec wide, appears. (May have to adjust R275, comparator level, for stable display.) All values approximate.
7. COMPARATOR LEVEL:

Probe collector of Q284. Adjust 275 for a stable 5.5-6 v positive pulse, approximately 750 nsec wide at top. This is the fast ramp pulse to the 4 S 1 . Similar pulse (3 v) should appear at opposite end of R285 (560 Ω). Sweep should now be on screen. Remove test probe.
This is a preliminary adjustment. If sweep is not on screen, look into staircase generator circuit.
8. THRESHOLD SENSITIVITY - :

With trace on screen, adjust R25 and R35 for the following. When turning THRESHOLD knob.cw, the trace free-runs near the zero point. Turning knob ccw will shut off trace within 2°. Final spec $\pm 10^{\circ}$ of zero for free-run point.
9. THRESHOLD SENSITIVITY + :

With trace on screen, adjust R45 and R55 for the following. When turning THRESHOLD knob ccw the trace free-runs near the zero point. Turning knob cw will shut off trace within 2°. Final spec $\pm 10^{\circ}$ of zero for free-run point.
10. LOCKOUT TIME:

Apply $100 \mathrm{mc}, 1 \mathrm{v}$ p-p from AMPLITUDE/TIME CALIBRATOR to the vertical. Trigger 5T1A and probe junction of C65 and D65. Adjust C146B for 9.5-10 $\mu \mathrm{sec}$ between pulses, at min. recovery time. Greater than $13 \mu \mathrm{sec}$ at max recov. time.
11. DELAYED PULSE GENERATOR, Q73:

Probe emitter of Q73. Adjust R990 (DELAYED PULSE GEN. BIAS) until output appears (. 400 - . 500 neg. v). Rep rate should be same as output T.D. D65. This adjustment may require resetting R65 to maintain stability of D65. Connect a cable from the DELAYED PULSE 50Ω jack to A or B vertical. The pulse at Q73 should be stable when connecting and disconnecting cable.
12. SWEEP LENGTH:

Set sweep length control R345 for $10.5 \mathrm{~cm}, 9.5-11.5 \mathrm{~cm}$ adjustment capability. Staircase on wiper of R211 (Var. Sweep Time) shall be 52.5 ± 1 volt.
13. SWEEP SPEED:

Primary adjustment: On $1 \mu \mathrm{sec} / \mathrm{cm}$, apply $1 \mu \mathrm{sec}$ markers from Time Mark Generator and adjust R267, SWEEP CAL, for 1 mark per each cm. Check from 1 st to 9 th cm marks. Timing $\pm 2 \%$ on all ranges from $20 \mathrm{nsec} / \mathrm{cm}$ to $100 \mu \mathrm{sec} / \mathrm{cm}$. Check for 3:1 VARIABLE sweep timing range.
14. TIME EXPANDER:

Using $1 \mu \mathrm{sec} / \mathrm{cm}$ sweep range, check all ranges of TIME EXPANDER with TIME POSITION control at mid-range. Note: mid-range is found by setting control to maximum ccw position and then rotating cw to mid-position. Also can check with $1 \mu \mathrm{sec}$ marks on X 1 position. Accuracy $\pm 1.5 \% 1$ st to 9 th cm marks.
15. SWEEP DELAY AND REGISTRATION: Preset following controls.

5T1A
Staircase dc level (R381) ccw AMPLITUDE/TIME CALIB $1000 \mathrm{mv} 1 \mu \mathrm{sec}$ Delay Zero (R220) cw
SAMPLES/CM 100
TRIGGERING
SWEEP TIME/CM
TIME EXPANDER

INT +
$2 \mu \mathrm{sec} / \mathrm{cm}$
X1 (set
to max. cw)
15. SWEEP DELAY AND REGISTRATION, Continued:

Connect output of Amplitude Time Calibrator to A or B Channel of 4 S1. Display sinewave by adjusting THRESHOLD, RECOVERY TIME, COMPARATOR LEVEL (R275) and POSITION CONTROL.
Adjust COMPARATOR LEVEL and RAMP RECOVERY for best picture shown below:

Adjust controls for best corner and a sine curve. Dots should be continuous

Probe base at Q223 RAMP INVERTER input with a X1 Probe at $50 \mathrm{mv} / \mathrm{cm}$. Adjust test scope for reference leve1 when AC coupled. Adjust R225, INVERTER INPUT ZERO to zero volts (same as reference level) with test scope set to DC coupled.
Rotate SWEEP TIME/CM between 2, 1 and $.5 \mu \mathrm{sec} / \mathrm{cm}$ sweep speeds. Using Delay Zero (R220), adjust start of each sweep range to occur at same place on trace. This is called registration.
On the $1 \mu \mathrm{sec} / \mathrm{cm}$ sweep range, adjust R 381 DC Level control for no dots preceding start of sine wave. There may be one dot at a different dc level, disregard.
Apply 1, kmc sinewave and time the $1 \mathrm{nsec} / \mathrm{cm}$ sweep range by adjusting C 263 on fast ramp board (preliminary cal.). Apply 50 mc to $10 \mathrm{nsec} / \mathrm{cm}$ sweep range and set timing by adjusting C260F.
Set sweep to $1 \mathrm{nsec} / \mathrm{cm}$ and apply 1 kmc . Check sweep for non-1inear appearance. Se1ect Q261, Q276 and Q254 for best looking sweep.
App1y pulse from Type 111 and check delay on $2 \mathrm{nsec} / \mathrm{cm}$ range. Delay must be greater than 8 nsec . A $20-30 \mathrm{nsec}$ pulse width from the 111 shall remain on screen from $2 \mathrm{nsec} / \mathrm{cm}$ to $2 \mu \mathrm{sec} / \mathrm{cm}$ sweep speeds. Use time expander to verify pulse location on these ranges. Make final adjustment of Delay Zero to bring in pulse position.
16. SWEEP TIMING AND RATE ERROR:

Time $1 \mathrm{nsec} / \mathrm{cm}$ with a calibrated 1 kmc sine wave. Use diode detector and Type 180 at 50 mc to check 1 kmc . Adjust C 263 for 1 cycle/cm with X1 TIME EXPANDER setting.
Time $10 \mathrm{nsec} / \mathrm{cm}$ with 50 mc sine wave for $1 \mathrm{cyc} 1 \mathrm{e} / 2 \mathrm{~cm}$. Adjust C260F. $1,2,5$ and $10 \mathrm{nsec} / \mathrm{cm} \pm 2 \%$ accuracy.
Apply 1 kmc to $10 \mathrm{nsec} / \mathrm{cm}$. sweep range. TIME EXPANDER set to X10. Set TIME POSITION control to maximum ccw position. Note timing error in mm . Set TIME POSITION to maximum cw position. Note timing error in mm. Subtract ccw position from this error. This shall not be greater than 3.2 mm . Move TIME POSITION one full screen diameter from max. cw position. Note error in mm. Subtract ccw position from this error. This shall not be greater than 1.6 mm .

17．TIME POSITION（Contro1）：
Apply 10 mc to A or B Channel．Set sweep speed to $10 \mathrm{nsec} / \mathrm{cm}$ ．Set TIME POSITION control maximum cw，TIME EXPANDER set to X1．Move TIME POSITION control to maximum ccw position．Measure time as called out in chart below：

Sweep Speed	Freq．	TIME EXP。	DELAY RANGE
10 nsec	10 mc	X1	greater than 100 nsec
10 nsec	10 mc	X2	greater than 100 nsec
10 nsec	10 mc	X5	greater than 200 nsec
100 nsec	10 mc	X1	greater than 100 nsec
100 nsec	10 mc	X2	greater than 500 nsec
100 nsec	1 mc	X5	greater than 1000 nsec

18．SAMPLES／CM：
Primary adjustment；set front panel controls to FREE RUN，5；SAMPLES／CM， $1 \mu \mathrm{sec} / \mathrm{cm}$ ；SWEEP MAG（main frame），X1．Adjust R304 for 5 DOTS／CM with dots exactly at each minor division between the 1 st and 9 th cm marks．Linearity $\pm .5 \mathrm{~mm}$ ．

Obtain a 350 mv pulse from 111 （X25 Atten．）and connect to A or B Input． Trigger 5T1A．Adjust rep rate of 111 for 100 kc with RECOVERY TIME at．min－ imum．Change 111 to 50 cps ．SAMPLE／CM accuracy must not change by more than $\pm 1 \%$ ．Return to FREE－RUN trigger．
Preliminary adjustment：：Set as follows

SWP MAG	SAMPLES／CM	ADJ。	DOTS／CM
X10	10	C358D	1
X20	20	C358F	1
X50	50	C358H	1
X100	100	C358K	1

Final adjustment：
SAMPLES／CM，5；SWEEP MAG，X1；TIME／CM， $20 \mathrm{nsec} / \mathrm{cm}$ ；SOURCE，INT．Apply 50 mc from 180．Trigger 5T1A for good sinewave of 50 mc ．Now set sweep speed to $1 \mu \mathrm{sec} / \mathrm{cm}$ ．A single row of dots should appear on screen．Now switch to $1 \mu \mathrm{sec}$ markers．Using TIME POSITION control near maximum ccw， adjust for a single row of dots on top of $1 \mu \mathrm{sec}$ markers．Do this by ad－ justing R304（5 dots contro1）and sweep timing with R267．Check that a dot occurs exactly at the 1st and 9 th cm marks and it is in a nearly level line across screen．Use chart below for other SAMPLES／CM after switching back to 50 mc ．

SAMPLES／CM	ADJ。	ROWS OF DOTS	CYCLES OR CROSSOVER
10	C358D	1	2.5 cycles
20	C358F	2	5 crossovers
50	C358H	1	2.5 cycles
100	C358K	2	5 crossovers

This is the final setting for the SAMPLES／CM．This display indicates the total sweep error for one full fast ramp averaged over one screen diameter． 2.5 cycles indicates at 50 mc that the error is not over 0.5% ． For most units，this error is completely caused by the fast ramp．When the staircase generator has problems then the screen picture will give more than 2.5 cycles．Thus the staircase generator should be checked．
Do not now use MAGNIFIER to check dots，as it will not do the job．
19. TIMED MODE:

Set SAMPLES/CM, TIMED MODE. Adjust R357 (front pane1) to maximum cw position. Free-run 5T1A. Set marker generator to 1 sec marks. Observe that fewer than five marks occurs between each cm mark. (Faster than $5 \mathrm{sec} / \mathrm{cm}$.) Adjust R357 to ccw position. Sweep should stop on screen. (Any fast sweep speed ok, $10 \mathrm{nsec} / \mathrm{cm}$.)

20. SINGLE DISPLAY:

Check that only one sweep occurs for each operation of SINGLE DISPLAY switch.
21. TRIGGER AND TIME JITTER:

Obtain a 40 mv pu1se, 2 nsec wide from the 111 (approx. 250 X atten. and no charge line). Check that a positive and negative pulse can be displayed at rep rates of 1 kc and 100 kc . Remove pulse from 4 Sl and observe that trace is gone. The 5T1A triggering must not be free-running. Jitter displayed on the observed pulse shall be less than 200 picosec. Measure jitter, adjusting HORIZ MAG and Vert. Sens. for a 45° line. Width of line horizontally will give jitter in time. Subtract vertical system noise at that sensitivity from width.
Obtain 350 mv pulse (approx 25 X atten.) 2 nsec wide from 111. For + and Polarity, the observed jitter shall be less than 30 picosec. (Measure as previously)
Using a X20 Atten, a Tee and X50 Atten, check the EXT TRIGGER with approximately 5 mv from 111. Measure output at X50 Atten for 5 mv while triggering on other output in other channe1. Jitter should be less than 200 picosec for the observed pulse when triggered EXT on 5 mv . (Trace may free-run when trigger pulse is removed.) Using X10 Atten., Tee and X20 Atten to obtain 30 mv pulse amplitude for triggering the jitter shall be less than 30 picosec.
Obtain $100 \mathrm{mc} 1000 \mathrm{mv} \mathrm{p}-\mathrm{p}$ from calibrator output. Observed jitter when triggered internally as in first step () shall be less than 30 picosec.
Using 100 mc and $100 \mathrm{mv} \mathrm{p}-\mathrm{p}$ from calibrator output, the jitter shall be less than 250 picosec.
With $1.2 \mathrm{v} \mathrm{p}-\mathrm{p}$ at 1 kmc from UHF oscillator, the average jitter shall be less than 100 picosec. Random dots shall display less than 200 picosec of jitter. Check + and - triggering.
22. EXT TRIGGER KICKOUT:

Free run trigger on $2 \mathrm{nsec} / \mathrm{cm}$ sweep speed, XI Expander. Connect Ext Trigger jack to " B " Channe 1 Input at $2 \mathrm{mv} / \mathrm{cm}$ sensitivity. Observed spike for + and - triggering shall be less than 5 mv .

TYPE 5TIA operating instructions (from preliminary manual) Pages E-105 to E-121

This cover sheet identifies unnumbered pages. Do not separate from attached information.

SECTION 2

OPERATING INSTRUCTIONS

Introduction
The operating instructions are divided into three parts. First is a description of front-panel controls and connectors. Second is a discussion of methods of triggering the Type 5T1A, Third is a discussion of the controls.

Because the Type 5T1A is part of a system, we suggest that you also familiarize yourself with the information in the Type 661 Instruction Manual and for the 14 ' Series sampling unit used. Familiarize yourself with the operation of the system by displaying the Amplitude/Time Calibrator and Delayed Pulse signals available from the Type 661. We also suggest that you read the booklet "Sampling Notes", Tektronix publication number 061-557.

The Type 5TIA requires a trigger signal with a definite time relation to the signal to be displayed. These trigger signals may be obtained internally, when a sampling unit with internal trigger takeoff provisions is used. They may also be externally fed to the Type 5T1A through a front-panel connector. The Timing Unit may be triggered by either positiveor negative-going signals of 5-to 250-millivolts peak-to-peak amplitude.

FUNCTION OF FRONT-PANEL CONTROLS AND CONNECTORS
SWEEP TIME/CMThe SWEEP TIME/CM switch sets the equivalent time/horizontal cm of display when the VARIABLE control is in the CALIBRATED position.

VARIABLE The uncalibrated VARIABLE control permits up to $3 X$ decrease in sweep time/cm between sweep ranges. Control can extend the $1-\mathrm{nsec} / \mathrm{cm}$ range to about $1 / 3 \mathrm{nsec} / \mathrm{cm}$.
SAMPLES/CM Establishes the number of dots (samples) per horizontal centimeter of the crt display. The TIMED position allows a constant rate of horizontal deflection, with sweep rate adjustable from $8 \mathrm{sec} / \mathrm{cm}$ to approximately $5 \mathrm{sec} / \mathrm{cm}$.

TIME EXPANDER Expands a portion of the sweep to a full-width display. Samples/ cm in the display remain constant.

TTME POSITION Allows movement of the time-display window. Allows time-expanded sweep window to present any part of display seen in Xl . Positioning range shown in Table l-1.

SWEEP MODE Establishes NORMAL (repetitive) or SINGLE DISPLAY condition. Spring return START position starts the single display.

TRIGGERING SOURCE Permits selection of triggering signals from the sampling unit internally, or from the EXTERRNAL TRIGGER INPUT connector. A third position places the sweep-sampling
system in a free-run mode at which time stable displays may be obtained from the Type 661 Delayed Pulse generator, or from a system that has been triggered by the delayed pulse.

TRIGGERING POLARITY Permits starting the display on a negative-polarity pulse (-), or on a positive-polarity pulse (+). A CAL position permits triggering on the Type 661 Amplitude/Time Calibrator signal, internally connected. The CAI position is useful when displaying small signals from the Amplitude/Time Calibrator.

EXIERNAL TRIGGER INPUT A nominally 50Ω, ac-coupled, external trigger input connector. Mates with General Radio Type 874 connectors. Allows direct connection of the Type 5IIA to the triggering signal when the signal is Less than the required 40 mv for internal triggering. Signals from 5 to 250 mv will permit proper operation of the timing unit. For proper triggering on slow-rise signals, $10-\mathrm{mv} / \mu \mathrm{sec}$ minimum rate of change is required. See Fig. 2-1.

Time Jitter (nsec)

TRIGGERING THRESHOLD.......... The Type 5TIA trigger system is sensitive to signals exceeding 5 mv . The THRESHOID control determines the signal level needed to trigger the system. Setting the triggering POLARITY control in the + position and the THRESHOID control fully clockwise will hold off the triggering system for normal amplitude positive trigger signals. Turning the THRESHOTD control counterclockwise permits proper triggering as the trigger-to-threshold voltage difference is brought to zero. Triggering occurs as the extreme positive portion of the triggering signal reaches the threshold voltage. Turning the THRESHOID control further counterclockwise will finally produce a free-rurning sweep, at the condition when the trigger signal base-Iine level reaches the threshold voltage. The same conditions exist when the POLARITY switch is at - and the THRESHOLD control is turned in the + direction.

RECOVERY TTME The RECOVERY TIME control is in the circuit that locks out the trigger circuit for a definite recovery time after each sample has been taken. It is normally left in the MIN. position. Turning the control clockwise will then increase the lock-out period after each sample. With adjustable lock-out time, it is usually possible to adjust for a clean display if an irregular display is caused by the triggering signal persisting or a second trigger arriving at the same time the lock-out is released.

Installation

Before installing the Type 5T1A, be sure the Type 661 POWER and SCALE ILLUM. control is in the POWER OFF position. If the Type 5T1A is installed when the power is on, damage may result.

Pull out the lock bar located at the bottom of the Type 661 timing plug-in unit compartment. Insert the Type 5T1A in the plug-in compartment, and press it firmly in place so that the connectors mate. When placed properly, the Type 5T1A front panel will be tight against the Type 661 front panel, and the lock will move to about a 45° angle with the front-panels. Press the lock bar firmly against the front panel.

NOTE
The Delayed Pulse generator of the Type 661 Oscilloscope must be readjusted for each Tyjpe 5T1A unit used. See the Calibration section of this manual for procedure.

TRIGGERING CONSIDERATIONS

The Type 5T1A may be triggered from either internal trigger signals, when a sampling unit with trigger takeoff provisions is used, or from an external source. The Type 661 Amplitude/Time Calibrator may also be internally connected to trigger the Type 5T1A. The trigger pulse must be related in time, and have a repeitition rate equal to or less than that of the signal displayed. It must also meet amplitude and timing requirements, as discussed in the following paragraphs.

Internal Source
When a sampling unit is used that has internal triggertakeoff circuitry and vertical-signal delay following the trigger takeoff, such as the Type 4S1, the signal itself may be used to trigger the Type 5T1A. The signal sent from the sampling unit must be at least 5 mv , determined by the ratio of input signal to the division of signal by the sampling unit: The Type 4S1, for example, provides a trigger signal about $1 / 8$ the amplitude of the input signal, thus the input signal must be at least 40 millivolts for internal triggering. The internal trigger signal is ac or dc coupled into the Type 5T1A and is controlled by the sampling unit. Placing the Type 5T1A SOURCE switch in the INT. position connects the
internal trigger from the sampling unit. The Type 4 Sl provides vertical signal delay following the trigger-takeoff circuit which allows the signal that triggers the Type 5T1A to be displayed.

The Type 661 Delayed Pulse may be used to trigger a circuit under test. The Delayed Pulse generator is driven by the trigger circuit of the Type 5T1A, and delivers about a $-400-m v$ pulse. The pulse appears about 40 nsec after the trigger circuit has operated, allowing the sampling unit to view the delayed pulse. To obtain the delayed pulse, place the triggering SOURCE switch in the FREE RUN position. Repetition rate of the pulse is determined by the repetition rate of the Iype 5T1A trigger circuit, controlled by the triggerholdoff circuit. This rate may be varied by use of the RECOVERY TIME control.

When the Type 5T1A is used with a sampling unit having a delay line, such as the Hype 4S1, the Delayed Pulse from the Type 661 must be viewed with the SWEFP TIME/CM switch in the 2 nSEC or slower sweep rate position. In the 1 nSEC sweep rate position, the signal delay of the sampling unit places normal input signals in the TINE POSIITION control range, which is 10 to 20 nsec at this sweep rate. To view the Delayed Pulse on a signal-delaying sampling unit at a l-nsec or faster sweep rate, place the SWEEP TTME/CM control in the 2 nSEC position and use the TIME EXPANDER switch to increase the sweep rate. This allows at least 100 nsec of TIME POSIIIION control range, and delays the sweep sufficiently to display the Delayed Pulse.

External Source
When a sampling unit without signal delay (such as the Type 452) is used, and external trigger signal must be supplied to the Type 5TIA EXIERNAL TRIGGER INPUT connector. External triggering also may be used instead of internal triggering when a sampling unit such as the Type $4 \leq 51$ is used. Placing the SOURCE switch in the EXT. position connects the EXTIERNAL TRIGGER INPUT connector through an ac-coupling circuit and through an isolation stage to the trigger circuit.

The Type 5T1A must be triggered at least 35 nsec before the signal reaches the sampling gate of the sampling unit. The TIME POSITION control allows an extra delay in operat:nn, added to the 35 nsec requirement. Thus, the time window after triggering that is displayed may be moved a considerable distance in time, allowing flexibility in test setup. Remember that as little as 8 inches of $R G-8 A / U$ cable can insert an extra nsec of delay.

There are two methods of triggering the Type 5T1A before the signal arrives at the sampling-unit sampling gate. The first is to pretrigger the Type 5T1A by using a pulse generator that triggers the system, and some time later triggers the circuit under test. The second is to insert some delay in the signal connections to the sampling unit so that the signal will arrive at the sampling gate after the Type 5T1A is triggered (occurs internally in Type 4S1). The following are some examples of each method:

Pretriggering
This method may be used when the circuit under test can be triggered, producing the signal to be displayed some finite
time after it has been triggered. Typical circuits of this sort are blocking oscillator and avalanche transistor circuits. A suitable pretrigger generator is a Tektronix Type 111 Pretrigger Pulse Generator. The Type 111 supplies a trigger signal to the Type 5T1A, and some time later, supplies a trigger signal for the circuit under test. The system should be adjusted so that the time between the pretrigger signal sent to the Type 5TIA and the trigger sent to the circuit under test is 35 to 50 nsec , minus the time delay in the circuit under test between triggering and signal output.

When using the pretriggering technique, remember that any time jitter between the pretrigger and the signal sampled will be displayed as time-jitter.

Signal Delay
This method is suitable for circuits which cannot be triggered by some external means. A suitable delay line for most applications is the Tektronix Type 113 Delay Cable, which provides a 60-nsec delay with a risetime under 0.1 nsec.

When the input signal must be used to trigger the Type 5 T1A, a suitable arrangement must be made to split the signal so that it may also drive the trigger circuit of the Iype 5TIA.

A suitable transformer-type trigger takeoff is the Tektronix CT-I Nanosecond Current Transformer. This unit does not require an input circuit of any specific impedance. Its output is $5 \mathrm{mv} / \mathrm{ma}$. Since the current in the input circuit follows ohm's law, the output of the CT-I may be quickly calculated from the following equation:
$\mathrm{E}_{\text {out }}=\frac{5 \mathrm{E}_{\text {sig }}}{Z}$
where: $E_{\text {out }}=$ 5T1A output in millivolts

$$
\begin{aligned}
\mathrm{E}_{\text {sig }} & =\text { signal amplitude (ac) in millivolts } \\
\mathrm{Z} & =\text { characteristic impedance of the signal circuit }
\end{aligned}
$$

The CT-1 output impedance is 50Ω - suitable for direct connection to the Type 5IIA EXTERNAL TRIGGER INPUT connector. Remember that the input to the Type 5T1A must be in the 5 -to 250-mv range of the trigger circuit.

A Tektronix VP-1 Voltage Pickoff unit may also be used as a trigger signal' source. The Type VP-1 works with either a Tektronix P6034 or P6035 Probe. When using the VP-1, the effect of the $P 6034$ or $P 6035$ on the system impedance must be considered, as well as the output voltage which will arrive at the EXTPRRNAT TRIGGER INPUT connector.

An impedance matched "T" with 16.7Ω in all 3 legs will divide an input signal into 2 equal, $1 / 2$ amplitude signals; one for a 50Ω vertical input to the sampling unit and one for the timing unit. Thus, a lo-mv signal will provide 5 mv for viewing and 5 mv for triggering.

The Type 110 allows transformer-type trigger takeoff from a 50Ω system. 98% of the signal passes through the signal system for viewing, while a trigger signal 20% of the signal voltage is provided by the unit for use in triggering the Type 5T1A. The Type 110 has a dynamic range versatility which will allow most signals from a 50Ω source to be used in triggering the Type 5T1A. When the Type 110 is used, be sure the trigger takeoff output fed to the Type 5T1A is within the 5-to 250-mv range of the trigger circuit. The pulse generator section of the Type 110 may be used to trigger a circuit under test. Typical test setups using the Type 110 are shown in the Type 110 Instruction Manual.

Trigger Signal Repetition Rate
The Tektronix Type 280 Trigger Countdown unit can be used to reduce the repetition rate of trigger signals with frequencies (or repetition rates) up to $5 \mathrm{gc}\left(50 \times 10^{6}\right.$ to 5×10^{9} trigger signals/second) for more stable triggering. The trigger signal is fed to the Iype 280, and the output from the FAST RISE OUTPUT connector is connected to the Type 5TIA EXPERIVAL TRIGGER INPUT connector.

Adjusting Triggering POLARITY and THRESHOLD
The Type 5TIA POLARITY switch selects triggering on either positive-going (+) or negative-going (-) signals. The THRESHOLD control can select the voltage point, (within a $\pm 20-m v$ range) where the trigger circuit will actually operate. Once the signal voltage passes the threshold point set by the THRESHOLD control, the trigger circuit can freerun until the signal voltage once again drops below the threshold point. The maximum repetition rate of the trigger circuit is controlled by a trigger holdoff circuit, and may be increased about 30% by the RECOVERY TIME control.

Set the POLARITY switch at + to trigger on positivegoing signals; at - to trigger on negative-going signals. The THRESHOLD control can set the triggering threshold anywhere over a $\pm 200-m v$ range. Adjustment should start with the THRESHOLD control in the same polarity region for which the POLARITY switch is set (+ for + , - for -). The THRESHOLD control should be adjusted toward the opposite polarity region. Set the THRESHOID control so that stable minimum-jitter triggering occurs. If the THRESHOID control is moved too far toward the opposite polarity region, multiple triggering
may occur, and multiple traces may be displayed on the crt. Turning the THRESHOLD control further will cause the trigger circuit to free-run, and the display will be meaningless. During these adjustments, the RECOVERY TIME control should be set to MIN., allowing the trigger circuit to operate at the highest possible repetition rate. Experimenting with the THRESHOID control and a signal display from the Type 661 Amplitude/Time' Calibrator with the POLARITY switch set to CAL. will help you use the THRESHOLD control properly.

"False" Display

It is possible to nbtain a "false" display on the crt when using a low sampling density, and when the sweep rate selected is such that several cycles of signal will be displayed on the crt. To illustrate, connect a $100-\mathrm{mv}$, $10-\mu \mathrm{sec} / \mathrm{cyc} 1 \mathrm{e}$ signal from the Type 661 Amplitude/Time Calibrator to the Type 5TIA. Set the Type 5TIA SWEEP TTME/CM control to $100 \mu \mathrm{SEC}$, the SAMPLES/CM control to 5, the triggering SOURCE switch to CAL., and the TIME EXPANDER switch to XI. You should obtain about a 2-cycle display on the crt, although, by calculation, you should obtain 10 cycles $/ \mathrm{cm}$. Now move the SAMPLES/CM switch to 1000 and observe the display in each position between 5 and 1000 samples/cm. You should see, with 1000-samples/cm density, the calculated 10 cycles $/ \mathrm{cm}$. The reason for the false display with the lower sampling densities is that there are not enough samples taken to trace the outline of each cycle. The samples seen in the false displays lie on the true curve, but are insufficient to. display its outline. The effect is similar to the plotting of a graph with insufficient information points. Check for
false displays by moving the SAMPLES/CM control to another position. If the outline of the display is correct, the samples will remain the same in both positions. Increasing the sweep rate with a constant number of samples/cm decreases equivalent sweep time between samples, and allows a lower sampling density to provide a proper display.

Recovery Time
The recovery time of the trigger-recognition circuit is controlled by the holdoff circuit. The recovery time is dependent on the time required for fast-ramp operation, or the 100-kc maximum repetition rate, whichever is greater. If the duty factor of the trigger signal is long, in relation to the repetition rate of the Type 5T1A, multiple triggering may occur. The RECOVERY TIME control can often be used to improve triggering under these circumstances. This control should be set to MIN. for initial adjustments. If multiple triggering is obtained, the RECOVERY TIME control may be adjusted to provide proper triggering. The best setting for the control is determined by experiment. The RECOVERY TIME control can increase recovery time by about 30%.

OBTAINING A DISPLAY

1. Set the 'RRIGGERING SOURCE switch for the same polarity as the trigger signal.
2. Select a sweep time/cm long enough to permit viewing the signal. If unknown, start at $10 \mathrm{nsec} / \mathrm{cm}$.
3. Set the SAMPLES/CM switch to 5. This can be increased to a larger number if a more continuous trace is desired.
4. Turn the TIME POSIIION control fully clockwise. It can later be set to bring the desired signals in view on the cret. Set the ITME EXPANDER switch to $X 1$.
5. Set the RECOVERY TIME control to MIN.
6. Set the THRESHOID control to hold off the sweep (cw +, ccw -). Turn the control toward zero for proper triggering.
7. If triggering difficulties occur, establish whether the trouble is due to: (a) too low or too high trigger amplitude, (b) too high a trigger-signal repetition rate, (c) too low a rate of rise (or fall.) of trigger-signal voltage, or (d) interference due to recovery time. The cause can usually be found by operating the SWEEP ITME/CM switch, THRESHOID, and RECOVERY TIME controls. Inability to hold off the sweep with the THRESHOLD control indicates too large a trigger signal. Use an input attenuator to reduce amplitude. If advancing the THRESHOLD control causes the sweep to free-run before obtaining a stable display, either amplitude or rate-of-change is too low. If the problem is high repetition rate, and moving the RECOVERY TIME control does not stabilize a display, an external trigger-countdown unit such as Tektronix Type 280 may be needed. If the signal has a low rate of rise (for example, sinewaves below about 50 kc), a faster-rising trigger signal is needed. (Dc triggering is available internally only. See sampling unit instruction manual.) Tf confused triggering results in the form of multiple
traces, try operating the RECOVERY ITME control. ADJUSTING THE SYSTEM FOR BEST VIEWING

Once you have obtained a display and located the signal you wish to view on the crt, you may adjust for increased resolution by expanding the portion of the display you wish to study and by increasing sampling density.

1. To expand the portion you wish to display, increase the sweep rate with the SWEEP TTME/CM switch. This is the best method since time-jitter is held to a minimum. The TIME POSITION control may be used to position the signal onto the crt. Another method is to use the TTME EXPANDER switch and then to position the portion you wish to observe with the TTME POSITION control. The TIME EXPANDER switch allows you to position signals occurring over a relatively large period of time compared with the length of the time window actually displayed.
2. To increase sampling density, increase the number of samples/cm with the SAMPIES/CM switch. Note that increased sampling density provides smoothing of the trace. When using smoothing, check for sufficient dot transient response by moving the SAMPLES/CM switch to the next higher density and checking for transient information that was not present on the display. Generally, the best setting for the SAMPIES/CM switch is for the highest density with reasonable display repetition rate.

Timed Operation
This includes using the timed sweep and single display
features. To use the timed sweep, set the SAMPIES/CM switch to ITMED. This should be done after the system is set up to display the desired signal. With the SAMPLES/CM switch in TIMED, the system is no longer dependent on trigger repetition rate for display sweep, but will display a signal linearly over a period of time. The rate at which the display moves across the crt may be adjusted by use of the front-panel screwdriver adjustment immediately under the SAMPLES/CM switch.

The timed sweep may be used when signals from the Type 661 vertical-signal output connectors are used to drive a clock-type recorder. The timed sweep allows the sweep rate (of the display) to be synchronized with the rate at which the recorder operates.

GENERAL

The Type 5TIA Timing Unit is an Improved version of the Type 5Ti. Significant changes are:

1. Provision for sweep time expansion with a uniform number of dots/cm in any of the expanded positions. The expanded trace may be taken from any portion of the normal XI trace through use of a TIME POSITION control. The Time Position control is an improved version of the Type 5TI TIME DELAY circuit.
2. The addition of $1000 \mathrm{samples} / \mathrm{cm}$ and timed sweep positions to the SAMPLES/CM control. The timed sweep allows the stal rcase generator to provide a ramp voltage, rather than a staircase. The horizontal sweep is thus at a linear rate, independent of the repetition rate of the triggering signal, and the vertical outputs of the Type 661 are suitable for use in driving a $\gamma-T$ type recorder, having an independent time-base driving mechanism. The timed sweep rate may be adjusted by a front-panel screwdriver adjustment.
1000 samples/cm provides a display similar to that seen with the Type 5 TI when the SAMPLES/CM switch was held between detent positions. The 1000 samples/cm density gives a very continuous display nearly impervious to dot transient response of the system. Because of the sample density, a high trigger repetition rate is needed to provide an adequate repetition rate of the display.
3. The fast ramp constant current tube, V261, is replaced by a transistor, Q261. This improves ramp linearity. The circuit operation is similar to that of the circuit of V261 in the Type 5 Tl .

5T1A DIFF ERENCES FROM 5T1

1. Time Expander: A new attenuator, the TIME EXPANDER, has been inserted in the comparator circuit of the fast ramp. The attenuator has seven positions, which provide seven possible attenuations of the comparison signal. The sweep $\mathrm{time} / \mathrm{cm}$ attenuator, R214 and R215, remains as before, and presents a 25 K inm put impedance in any position of the SWEEP TIME/CM control, SW260. The new attenuator works into this 25 K load impedance, and also presents a constant 25 K input impedance in any position of the TIME EXPANDER control, SW2lo. This new attenuator, R208 and R209, shortens the portion of the fast ramp which represents 10 centimeters of sweep. If the fast ramp rate is -1 volt per $\mu \mathrm{sec}$, and the sweep rate (set by the SWEEP TIME/CM control) is $1 \mu \mathrm{sec} / \mathrm{cm}$, the comparison voltage appearing at the base of 0276 will have a 10 volt range for the 10 centimeters of sweep, with the TIME EXPANDER control in the XI position. Moving the TIME EXPANDER control to the XIO position attenuates the comparison voltage by 10 x ; the portion of the fast ramp corresponding to 10 cm of sweep is now 1 volt.

The dc level of the portion of the fast ramp used is controlled by the TIME POSITION control, R217A and B. This control is two potentiometers, with one shaft fixed firmly to the control knob, and the other arranged so that the control knob may be moved through about 30 degrees of "hysteresis". In the hysteresis range of movement, a slow change in dc level is introduced by R2178.

When movement of R217A is added, a fast change in dc level occurs. This arrangement allows a large adjustment range, with the hysteresis portion allowing precise adjustment. This control is a cousin to the TIME DELAY control used on the Type 5TI. However, it is used both to introduce an adjustable delay in the XI position of the TIME EXPANDER control and to make it possible to put any part of the XI display on the crt in the expanded positions.

The TIME POSITION control is wired so that the trace is displaced in the same direction the control is moved. This is opposite the Type 5 TI TIME DELAY control wiring. Thus, minimum delay is at the clockwise end of control travel.

In the XI position of the TIME EXPANDER, SW210, the dc voltage must flow through R216 alone. This gives the control a 1 centimeter range, with the SWEEP TIME/CM in any of the "ll" positions to. $1 \mu \mathrm{sec} / \mathrm{cm}$. In other positions of the SWEEP TIME/CM control, the effect of the TIME POSITION control is proportionately greater, since the attenuator R214-R215 decreases the volts of fast ramp per centimeter. In the four fastest positions of the SWEEP TIME/CM control, R218 increases the effectiveness of the TIME POSITION control. This allows the control to maintain at least a 100 nsec range, except in the $1 \mathrm{nsec} / \mathrm{cm}$ sweep rate, where the control has a 10 nsec range.

Moving the TIME EXPANDER to the X2 position connects R213A in parallel with R216, increasing the effectiveness of the TIME POSITION control so that any portion of the fast ramp rundown may be used. In the other positions of the TIME EXPANDER, R213B further increases the effect of the TIME POSITION control, allowing any portion of the display seen in the XI position of the TIME EXPANDER to be positioned on to the display.
2. 1000 Samples/cm and Timed Sweep: The staircase generator has been modified to allow selection of 1000 samples/cm and a timed sweep. Other positions of the SAMPLES/CM switch provide operation the same as that of the Type 5TI staircase generator.

In the 1000 SAMPLES/CM position of the SAMPLES/CM switch, an additional Integrating capacitor, C361, is paralleled with C360. This gives a corresponding reduction in the voltage change of each step of the staircase generator per unit charge transferred from the blocking oscillator. The staircase miller integrator is charged through C358C and D in both the 10 and the 1000 samples/cm positions of the SAMPLES/CM switch. The 1000 samples $/ \mathrm{cm}$ sampling density allows a display that is nearly continuous even with fast changes in display signal level. It also is much less affected by changes in loop gain, allowing full smoothing without loss of resolution. The 1000 samples/cm density requires a reasonably high repetition rate of the input signal to maintaln a usable display repetition rate. However, this position is excellent for assisting with a single display photograph where low rep-rate is unimportant.

The TIMED position of the SAMPLES/CM switch also uses the additional integrating capacitor, C361. In the TIMED POSITION, the staircase generator is
fed current through R356 and R357. This current causes the integrator to run up in the same manner as a conventional oscilloscope time-base generm ator: The current fed through these resistors, and thus the rate at which the circult runs up, is dependent on the setting of R356, a front panel screwdriver adjustment. This mode of operation is useful when the sweep pate of the display must represent real time, such as when using a clockdriven Y-T recorder.
3. Fast Ramp: V261 has been replaced by Q261. The tube had grid current problems which affected the ramp rate calibration. The changeover to a transistor imm proves the overall sweep timing and ramp linearity. Operation of the new circuit is similar to that of the old, except that Q261 is supplled with a constant base voltage of -19 volts, instead of the -50 v used with V261. Also, the $1 \mathrm{nsec} / \mathrm{cm}$ ramp slope capacitor is now an adjustable (C263) combined with the physical circuit capacity, with a C260 disconnected at this sweep rate. This allows the ramp to operate for a reduced length of time (20 nsec), reducing time jitter introduced in the comparator. We can now specify less than 10 psec time jitter at the $1 \mathrm{nsec} / \mathrm{cm}$ sweep rate, under favorable conditions. Because of the decreased time duration of the fast ramp, the amount of time positioning available with the TIME POSITION control is limited to 10 nsec, requiring a little more care in test setup. If a greater range of positioning is needed at the $1 \mathrm{nsec} / \mathrm{cm}$ rate, the $2 \mathrm{nsec} / \mathrm{cm}$ sweep rate may be used with X2 time expansion. This method, however, does not offer the reduced jitter of the $1 \mathrm{nsec} / \mathrm{cm}$ sweep rate.

TYPE 5T1A circuit description (from preliminary manual) Pages E-311 to E-332

This cover sheet identifies unnumbered pages.
Do not separate from attached information.

TEK 5TIA IRB 2-11-63 5TIA CIRCUIT | E-311 |
| :---: |
| to |
| $E-332$ |

SECTION 3

CIRCUIT DESCRIPTION

The Type 5T1A Timing Unit is used with '4' Series sampling units in the Type 661 Oscilloscope. The Timing Unit is triggered by signals with a fixed time relationship to repetitive identical signals displayed on the crt. The sampling technique allows resolution of repetitive identical signalm voltage changes occurring at fractional nanosecond (less than 10^{-9} second) rates with a broad bandpass for resolution of signals approaching dc.

The function of the Type 5T1A is to control the time at which the sampling unit takes the sample, and to simultaneously provide the display oscilloscope with a horizontal deflection signal. The horizontal deflection signal represents the time that elapses after the Type 5T1A is triggered before the sample is taken. By taking a series of samples, each one occurring a little later after triggering than the last, the display constructs a representation of the repetitive signals that were sampled.

The Type 5T1A has three major functional sections shown in simplified block diagram, Fig. 3-1. First is the trigger recognition and regeneration circuit, which triggers the operation of the remainder of the unit, and in turn must be triggered by a signal time-related to that displayed. Second is the fast ramp and comparator circuit. The fast ramp is a voltage fall with a constant calibrated slope. This voltage is fed to the comparator and compared with another voltage which represents the amount of horizontal deflection. The comparator provides a pulse output trigger to the sampling unit when the voltages are equal. Thus, the horizontal-
deflection voltage level fed to the comparator represents a calibrated interval of time following the operation of the trigger circuit.

Fig. 3-1. Type 5T1A simplified block diagram.

Third is the staircase generator. When the Type 5T1A provides the horizontal deflection (Type 661 HORIZONTAL DISPLAY control in a SWEEP MAGNIFTER position), the staircase generator provides the horizontal deflection signal. The staircase steps one voltage increment after each sample is taken. When enough increments are stepped over, and a full display sweep is completed (about $101 / 2 \mathrm{~cm}$), the staircase resets and repeats the display. The size of each increment is controlled by the SAMPIES/CM switch determining the den.sity (in equivalent time) of the samples.

The system may be triggered by an external 5 to 250 mv signal through a front-panel connector. Internal triggering from the signal applied to the sampling unit is also possible when the sampling unit used has a trigger takeoff circuit (such as the Type 4Sl). Trigger circuit threshold may be set by a front-panel control.

The trigger recognition and regeneration circuit must receive trigger signals having a fixed time relation to the signal to be displayed. This circuit provides an output pulse to the time base (fast ramp) and the Type 661 Delayed Pulse generator for each trigger signal that operates the circuit. The holdoff circuit allows the trigger recognition circuit to operate only when the system is prepared for a new sample (never more often than about every 10 microseconds).

The trigger-recognition circuit triggers a fast-ramp voltage-rundown circuit. The fast-ramp circuit generates a voltage with a constant calibrated slope. Because the slope of the ramp is constant, some given time after triggering is equivalent to the time required for the fast-ramp voltage to travel from its starting point to a specific voltage. Thus, if the ramp slope is -5 volts/ $\mu \mathrm{sec}$, the equivalent voltage for $2 \mu \mathrm{sec}$ is -10 volts. In the Type 5TIA, the fast-ramp slope is controlled by the SWEEP TTME/CM switch. The total voltage change of the fast ramp, representing full-scale horizontal deflection on the crt, is selected by the SWEEP TIME/CM and TIME EXPANDER switches.

The Type 5T1A is provided with a staircase generator which advances a voltage increment after each run of the fast ramp. The staircase output voltage is normally fed to the Type 661 horizontal amplifier. When the Type 661 HORIZONTAL DISPLAY switch is in a SWEEP MAGNIFIER position, the staircase voltage is supplied to the comparator portion of the fast-ramp circuit. When the fast ramp has run from its starting voltage to the comparison voltage fed to the comparator, the comparator initiates a pulse, which is sent to
the sampling plug-in unit. The staircase voltage, which represents time after the trigger has occurred, is also fed to the horizontal display circuit of the Type 661. The horizontal deflection caused by the staircase voltage represents the time it takes the ramp voltage to run down to the same voltage as the staircase level. The voltage increments of each step of the staircase voltage determine the equivalent time-spacing between samples.

When the Type 661 HORIZONTAL DISPLAY switch is in the EXT. HORIZ. INPUT positions, the staircase voltage is not used. Instead, the deflection caused by the external horizontal input voltage determines the time after triggering when samples are taken. The Type 5T1A must be triggered in the same manner as it was when the staircase was used to provide horizontal deflection. The position of the trace on the crt, determined by the horizontal input signal, determines the time after triggering when a sample will be taken. Thus, if the left graticule edge represents a specific time T_{0}, and the SWEEP TIME/CM switch is set at 10 nSEC, the vertical deflection at the fifth graticule mark will represent the signal at the input occurring 50 nsec after $\mathrm{T}_{0^{\circ}}$ Note that the input voltage to the external horizontal circuit of the Type 661 and Type 5TIA system always represent time when displayed on the crt.

Manual scan also provides a display of equivalent time. With the SWEEP TTME/CM switch at 10 nSEC, scanning the crt with the HORIZONTAL POSITION controls will cover an equivalent time from T_{0} to $\left(T_{0}+100\right)$ nsec.

A time-expendex circuit allows the system to view only a portion of the fast-ramp rundown time, displaying this time as a full 10 cm display. The expanded time portion of the turndown is determined by the TTME EXPANDER switch and TIME POSITION control. The TIME EXPANDER switch determines the length (difference in voltage between beginning and end) of the fast-ramp rundown portion used. The TIME POSITION control sets the de level of the portion used, effectively shifting the time scanned. Notice that magnifying the signal with the TIME EXPANDER switch allows a portion of the signal to be viewed with a constant number of samples/cm. The Type 661 SWEEP MAGNIFIER switch allows a portion of the signal to be viewed, with a decrease in the number of samples/ centimeter (constant time/dot) in the crt display. A comm bination of the two magnification methods may be used.

Trigger Recognition Circuits
Two trigger-recognition circuits are used. One responds to positive-trigger information, and one responds to negativetrigger information. The trigger-recognition circuit used is selected by POLARITY switch SWIOB. When the POLARITY switch is in the CAI. position, the signal from the Type 661 Amplitude/Time Calibrator is fed to the negative-trigger recognition circuit. The trigger-recognition circuits are similar except that they use opposite input and supply voltage polarities. The external trigger information is inverted by $T 2$ before being fed to the trigger-recognition circuits. Isolation amplifier Q4 isolates the external trigger input from the trigger-recognition circuits.

The trigger source is selected by SOURCE switch SWIOA. Trigger signals may be internally supplied by the sampling unit if the sarmpling unit has a trigger takeoff circuit. They may also be supplied from an external source. External triggering is necessary when the sampling unit has no provisions for trigger takeoff or when low amplitude signals are being sampled. The SOURCE switch selects the trigger source, and feeds the signals to the POLARITY switch which directs the signals to one of the trigger-recognition circuits. When the SOURCE switch is in the FREE RUN position, a bias is applied to the trigger-recognition circuit selected by the POLARITY switch, causing the trigger-recognition circuit to freemun. The THRESHOLD control sets the level (over a ± 200 mv range) at which triggering occurs, and the + and - positions of the POLARITY switch set the direction in which the signal must move to cause triggering.

Assume TRIGGERTNG SWITCHES SWIOA and SW1OB are set to - INT as shown on the Trigger and Holdoff schematic. The THRESHOLD control is set far enough into the - region to hold off the trigger circuit. Assume also that the trigger circuits are ready to retrigger. D25 rests at its low state, near the switching point. D25 receives bias current from two sources. One is through R20, R21, R22, and L25. In addition, D35 is already in the high state, and current is supplied through R33. D25 is ready to trigger. If we move the THRESHOLD control to its + region, the small additional current supplifed through the THRESHOID control switches D25 to its high state. This sends a positive pulse to T65 through C60 and R60. The other end of the drive winding of

T65 is connected to +19 volts through C61, R61, R47, R48, R49, and through R19 and the POLARITY switch. The connection through POLARITY switch SW1OB locks out positive triggerrecognition circuit D45 and D55.

The pulse from D25, through the drive winding of regen erator transformer $T 65$, causes enough additional current to flow in the circuit of D65 to switch D65 to its high state. After the pulse, D65 switches back to its low state. The regenerated output is taken from D65 through C65 and used to trigger the fast-ramp circuit. A negative gate signal is supplied by Q73 and D72 for use by the Type 661 Delayed Pulse generator. This gate circuit is driven by a separate winding on T65. D72 starts the delayed pulse and 073 ends it.

The positive pulse at D25 is also fed to the emitter of holdoff driver Q104, starting operation of the holdoff circuit. The holdoff assures that the sampling cycle does not repeat before the system is prepared to take another sample. The circuit will not retrigger until D35 is turned to the high state and Q84 and Q94 are turned off. Under the freerunning conditions described, D25 will retrigger immediately after D35 switches to its high state, which occurs after Q.84 and 0.94 are turned off.

With normal trigger operation, D25 will not have sufficient bias to switch to its high state until a trigger signal is received. THRESHOLD control R16 determines the signal level needed to trigger D25 to its high state. Trigger signals are fed either from the external or the internal trigger inputs, depending on the setting of SOURCE switch SWIOA.

Operation of the positive trigger-recognition circuit is similar to that of the negative circuit. D45 is the recognition diode, and D55 is the recovery diode. The nega.. tive trigger-recognition circuit is locked out by -19 volts through POLARITY switch SWIOA, and R17. The holdoff circuit is driven when D45 switches to the high state and sends a signal to the base of Q104. D55 is switched to the low state by the collector of Q84. D45 and D55 are connected opposite in polarity to D25 and D35. Note that the negative trigger-recognition circuit actually operates on positivegoing signals, and the positive trigger-recognition circuit operates on negative-going signals. This is because trigger signals provided to the Type 5T1A are inverted before being fed to the trigger-recognition circuits.

Operation of the trigger-recognition circuits in FREE RUN is similar to the operation described previously. The input is driven by either +19 volts, in the - POLARITY, or -19 volts in the + POLARITY position.

Holdoff

The holdoff circuit prevents the trigger-recognition circuit from operating after a trigger has been received and recognized until the remainder of the system is ready to take a new sample. The holdoff period is required to allow the fast ramp to run for a time equivalent to 10 cm of display; then reset, or to limit the system repetition rate to 100 kc , whichever time is longer. The holdoff period is variable; 1.3:1 from the MAX. to the MIN. position of the front-panel RECOVERY TTME control. This may be adjusted to
aid stable triggering if the triggering input frequency and the holdoff repetition rate are equal.

The holdoff circuit consists of two bistable multivibrators and a Miller integrator. Each bistable multivibrator drives a transistor which shunts supply current from one pair of the trigger-recognition circuit tunnel diodes. The output of the Miller integrator is also fed to a gate which switches both multivibrators. Recognition tunnel-diode multivibrator Q115-Q125 drives Q94. Recovery-diode multivibrator Q165-Q175 drives Q84. Miller integrator Q144 drives Q154 and gate D144. Tunnel diodes D25 and D45 are the recognition diodes, and D35 and D55 are the recovery diodes. Q104 drives the holdoff circuit. When a trigger signal is received and recognized (assume the same conditions as for the trigger-recognition circuit discussion), D25 switches to the high state. This causes the emitter of Q104 to go positive, forward biasing the transistor. The collector voltage of Q104 rises, forward biasing Q115. The collector of Q115 drops, turning Q125 off. The same collector voltage drop at Q115 causes D92 to become forward biased, shunting the current source for D25 and causing D25 to return to its low state.

When Q125 turns off, its collector voltage rises, and current is supplied through R132 and RECOVERY TIME control R136, forward biasing Q144. This causes a voltage drop at the collector of Q144 which was clamped by Q154 at +19 volts. The collector drop of Q144 is fed back to its base through C145 and C146, preventing any large voltage swing at the base of Q144. Thus, the current through R132 and R136 that is charging C145 and C146 remains essentially constant. The
value of Cl45 determines the rate of voltage fall at the collector of Q.144, and is selected by the SWEEP TIME/CM switch for the desired holdoff time. As soon as the collector voltage of Q144 begins to fall, Q154 becomes back-biased, and its collector voltage drops to ground.

When the collector of Q144 reaches ground, D144 is forward biased which lowers the base voltage of Q165, turning it off and raising its collector voltage. C166 and R166 couple this collector voltage rise to Q175, turning it on. The collector of Q175 drops, forward biasing D82 and Q84. When Q84 is turned on, it shunts the current source for D35, returning D35 to the low state.

The collector voltage rise at Q165 is also coupled through D164, C164, and R164, to the base circuit of Q125, turning Q125 on. The collector voltage of Q125 drops, and this drop, coupled through Cl26 and R126, turns Q115 off. The collector voltage of Qll5 rises, back biasing D92 and Q94, and restoring the current source to D25. Note, however, that D35 is in the low state, and that no current is available to D25 through R35. Thus, D25 remains in the low state, and cannot be triggered yet.

When Q125 is turned on, its collector voltage drops, and C145 and C146 discharge through R132 and R136. The voltage falls at the base of Q144 which decreases the collector current, causing the collector voltage to rise. This rise is fed back through C145 and C146, and the collector voltage of Q144 runs back up at a rate proportional to the total capacitance of C145 and C146. When the collector voltage of Q144 reaches +19 volts, Q154 becomes forward
biased. This clamps the collector voltage of Q144 at +19 volts. When Q154 becomes forward biased, its collector voltage rises, forward biasing Q165. The collector voltage of Q165 drops, and this drop, coupled through C166 and R166, turns Q175 off. The collector voltage clamps the base of Q144, through D146, from going below the collector voltage of Q165. D164 is back biased, preventing the drop at the collector of Q165 from operating multivibrator Q115-Q125.

The collector voltage rise of Q175 back biases D82, and turns Q84 off. This restores the operating current to D35, and D35 immediately switches to the high state. With D35 in the high state, D25 receives additional current through R33, and is ready to be retriggered to initiate a new sampling cycle.

Fast Ramp

The fast-ramp circuit consists of a comparison-voltage amplifier, a ramp generator, and a pulse-forming comparator. The output of the ramp generator is a voltage fall with a constant calibrated slope used as an internal time base. The comparison voltage is received either from the staircase generator or externally through the Type 661. In the manual scan mode, the comparison voltage is supplied by the Type 661. For this discussion, assume that the Type 661 HORIZONTAL DISPLAY control is in the Xl position unless otherwise stated.

The comparison and fast-ramp voltages are fed to the pulse-forming comparator. When the two voltages are just equal, the comparator circuit generates a pulse used to
drive the sampler in the '4' Series sampling unit. A pulse from the comparator circuit also drives the staircase generator, causing it to advance one step. The fast-ramp circuit operates each time a trigger output signal is fed to it from the trigger circuit. As the staircase voltage advances, step by step; the fast-ramp voltage must become greater, and thus will run a little longer with each succeed. ing run-down before the comparator circuit generates a pulse. The fast-ramp voltage represents the real time on which the system reconstructs the signal.

Ramp Generator
Q261 is a constant-current supply. Before a trigger signal is received from the trigger circuit, D255 is in the high state and holds Q254 on. Current from Q261 passes through Q254 and holds C260 near ground voltage. D255 is held in the high state by current through R244. Current through R244 also provides base current for $Q 254$, and Q254 conducts the current supplied by 0,261 .

Q261 receives a constant base voltage from the -19-volt supply through decoupling filter R260 and C260. Q261 emitter current, which comes from the -100 -volt supply, passes through R265 and R267 which drop about 81 volts. This determines the current through Q261. Current supplied by the transistor is determined by emitter current, and is little affected by any change in collector voltage.

The trigger cirait sends a positive pulse which causes Q244 to conduct more current. The collector voltage of Q1244 rises to ground, and switches D255 to its low state, turning

Q254 off. After the trigger pulse passes, Q254 remains cut off, held by D255 which remains in the low state. o261 collector current now flows through ramp-slope capacitor C260, whose value is selected by SWEEP TIME/CM switch SW260. Before the beginning of the fast-ramp rundown, comparator diode D270 is back biased, and all current from Q261 is fed to c260. The ramp voltage runs down until D270 becomes forward biased. Collector current from Q261 is now fed through D270 and Q276, and the collector voltage of Q276 drops. D275 switches to the high state.

Before D275 switches, the voltage on either side of D276 is about zero volts. When the current from Q261 passes through Q276, it causes a step at D2'75, quickly switching D275 to the high state. Because D276 was not conducting, it appears as an open circuit as D275 switches.

When D275 switches, D276 becomes back biased. Because it is a tunnel diode, D276 conducts current easily, coupling the step caused by the switching of D275 to D285. This . causes D285 to switch. When D285 switches, a step is fed to T284, which is a doubling transformer. The output of T284 forward biases Q284, causing the collector voltage of Q284 to rise. This gate, which appears at the collector of Q284, is connected directly through interconnecting cables to the '4' Series sampling unit. The gate is also sent, through isolation resistance network R285, R286, and R287, to the stairstep generator, where it is used to advance the stairstep one step. When the current through $\mathbb{T} 284$ (fed from R288 and R289) rises, D285 is switched back to the low state.

The fast ramp is reset by the comparator pulse. When D275 changes to the high state, D256 conducts, and changes D255 to the high state. Q254 now conducts the current supplied by Q261 and discharges C260. RAMP RECOVERY control R254 sets the maximum current through $Q 254$ to a safe value commensurate with speedy ramp recovery.

Because the fast ramp is triggered by the incoming signal (or in a fixed time relationship to it), the instant, in real time, when the comparator pulse is sent to the sampling unit is determined by the comparison voltage. This determines the time the fast ramp must take to run down before the comparator pulse is sent to the sampling unit.

The rate of fall of the fast-ramp voltage, except the $1 \mathrm{nsec} / \mathrm{cm}$ rate, is determined by c260. Five capacitors allow five rates of fall or ramp slope (in volts/usec) over the range above $1 \mathrm{nsec} / \mathrm{cm}$. The $1 \mathrm{nsec} / \mathrm{cm}$ sweep rate is set by C263 and circuit stray capacitance. With C260 disconnected, C263 remains in the collector circuit of Q261 at all sweep rates, but is a small fraction of the circuit capacitance in sweep rates slower than $1 \mathrm{nsec} / \mathrm{cm}$.

The effective portion of the fast-ramp voltage used is determined by the range of comparison voltage fed to the base of comparator transistor Q276. In the . $1 \mu \mathrm{SEC}$ position of the SWEEP TIME/CM switch, the effective ramp length is 10 volts; in the 50 nSEC position, 5 volts; and in the 20 nSEC position, 2 volts. (These voltages are true with the TTME EXPANDER switch in X1.) In each of these three positions, the slope of the ramp voltage is the same.

The voltage fed to comparator transistor Q276 is determined by the current fed to the operational amplifier preceding it; Q223 and Q234. Because Q223 is an emitter follower, the amplifier is current driven. Because Q234 is collector loaded, the output is a voltage output. Feedback resistor R231 determines the characteristics of the amplifier. There are three sources of current for Q223; from DELAY ZERO control R220 fed through R223 (this is a calibration adjustment); from the TIME POSITION control circuit, and from the Type 661 HORIZONTAL DISPLAY switch. When the HORIZONTAL DISPLAY switch is in any of the SWEEP MAGNIFIER switch positions, the staircase voltage is fed to the comparator circuit through two attenuator networks. One network, R214 and R215, always looks like a constant impedance at the input to the attenuator, but divides the current fed to Q223. Table 3-1 lists the positions of the SWEEP TIME/CM switch and the current attenuation introduced in each position. The SWEEP TTME/CM switch controls the values of R214 and R215. Table 3-1 also lists the resulting comparison voltage output equal to 10 cm of horizontal deflection. This voltage is seen at the base of 2276.

A second attenuator, R208 and R209, may be cascaded ahead of R214 and R215. R208 and R209 are controlled by the TIME EXPANDER switch, and are used to introduce further current division, above that introduced by R214 and R215. When R208 and R209 are switched into the circuit, the input continues to look like a constant impedance, and the current source for the comparator circuit is subjected only to a constant load impedance regardless of the settings of the

SWEEP TTME/CM and TIME EXPANDER switches.
The range of the TIME POSITION control depends on both the SWEEP TTME/CM and the TIME EXPANDER switch settings. This control is a variable current supply, and its range of operation (in time) depends on the voltage shift it can impose on the comparison voltage. Table $3-1$ shows the voltages of the fast-ramp duration in SWEEP TIME/CM switch settings. Table 1-1 shows the range of the TIME POSITION control in time according to SWEEP TTME/CM and TIME EXPANDER switch settings. The voltage ranges over which the TIME EXPANDER control can shift the comparison voltage limits are as follows: (a) Al1 SWEEP TIME/CM switch settings slower than $10 \mathrm{nsec} / \mathrm{cm}$, and TTME EXPANDER switch at X1: 1 volt.
(b) $10 \mathrm{nsec} / \mathrm{cm}$ through $1 \mathrm{nsec} / \mathrm{cm}$ sweep rates and TIME EXPANDER switch at $X 1$: 5 volts.
(c) A11 SWEEP TTME/CM switch settings and TIME EXPANDER switch at $\times 2: 5$ volts.
(d) All SWEEP TIME/CM switch settings and TIME EXPANDER switch at $X 5, X 10, X 20, X 50$, or $X 100: 10$ volts.

The voltage at the base of $Q 223$ is controlled by INVERTER INPUT ZERO control R225. This control is set so that the base of e223 is at zero volts dc, allowing proper operation of the current sources feeding Q223.

Staircase Generator
With the Type 661 HORIZONTAL DISPLAY switch in the SWEEP MAGNTFIER positions, the staircase generator provides a staircase voltage for the comparison circuit of the fast ramp. The staircase generator is triggered by the fast-ramp

TABLE 3-1
SWEEP TTIME/CM Switch

SWEEP TTME/CM Switch Setting	Fast Ramp Slope	Attenuator Ratio	Duration of Fast Ramp Voltage $=10 \mathrm{~cm}$ Sweep
$\begin{array}{r} 100 \mu \mathrm{SEC} \\ 50 \mu \mathrm{SEC} \\ 20 \mu \mathrm{SEC} \\ \hline \end{array}$	$\begin{aligned} & 0.01 \\ & \text { volt/ } \\ & \mu \mathrm{sec} \end{aligned}$	$\begin{aligned} & x 1 \\ & x 2 \\ & x 5 \end{aligned}$	$\begin{array}{r} 10 \text { volts } \\ 5 \text { volts } \\ 2 \text { volts } \\ \hline \end{array}$
$\begin{array}{r} 100 \mu \mathrm{SEC} \\ 5 \mu \mathrm{SEC} \\ 2 \mu \mathrm{SEC} \\ \hline \end{array}$	0.1 volt/ $\mu \mathrm{sec}$	$\begin{aligned} & x 1 \\ & x 2 \\ & \times 5 \end{aligned}$	$\begin{array}{r} 10 \text { volts } \\ 5 \text { volts } \\ 2 \text { volts } \\ \hline \end{array}$
$1 \mu \mathrm{SEC}$. $5 \mu \mathrm{SEC}$ $.2 \mu \mathrm{SEC}$	1.0 volt/ $\mu \mathrm{sec}$	$\begin{aligned} & x 1 \\ & x 2 \\ & x 5 \end{aligned}$	10 volts 5 volts 2 volts
. $1 \mu \mathrm{SEC}$ 50 nSEC 20 nSEC	10 volts/ $\mu \mathrm{sec}$	$\begin{aligned} & x 1 \\ & x 2 \\ & x 5 \\ & \hline \end{aligned}$	10 volts 5 volts 2 volts
$\begin{array}{r} 10 \mathrm{nSEC} \\ 5 \mathrm{nSEC} \\ 2 \mathrm{nSEC} \\ \hline \end{array}$	50 volts/ $\mu \mathrm{sec}$	$\begin{aligned} & x 2 \\ & x 4 \\ & x 10 \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \text { volts } \\ 2.5 \text { volts } \\ 1 \text { volt } \\ \hline \end{array}$
1 nSEC	500 volts/ $\mu \mathrm{sec}$	X2	5 volts

comparator pulse, and steps one step for each comparison pulse fed to it. The voltage increment of each step is determined by the SAMPLES/CM switch. When the staircase has stepped over a voltage equivalent to the sweep length, a reset circuit returns the staircase voltage and a new trace begins. In the TIMED position of the SAMPLES/CM switch, the staircase generator is allowed to run up linearly in a smooth runup. A single-sweep lockout circuit may be selected by SWEEP MODE switch SW325. A single sweep is obtained by preventing the staircase from starting until the SWEEP MODE switch is set to START. The staircase will then step through
one display cycle, return, and be locked out until the SWEEP MODE switch is set to START again.

The staircase circuit includes gate circuit Q335-Q345, single display lockout D325-Q324, blocking' oscillator Q300, and step integrator V361-V373.

Assume that the gating circuit is allowing a staircase voltage run, and that the SWEEP MODE switch is in NORMAL with Q335 and Q345 conducting. Note that Q335 is a PNP transistor, and that Q345 is NPN. The circuit operates with both transistors turned on or turned off simultaneously. The collector circuit of each transistor is connected to the base of the other, and the circuit has two stable states. Its operation will be discussed later. With both Q335 and Q345 conducting, disconnect diodes D352 and D353 are back biased, allowing staircase capacitor 0360 to be charged by the staircase step integrator as pulses arrive from the blocking oscillator.

A pulse from the fastmramp comparator passes through C30 into the blocking oscillator circuit. The pulse sends current through the collector winding of T 300 . The trigger current induces a current in the base winding of 1300 which turns on blocking oscillator transistor Q300. Normal blocking oscillator saturation follows. D306 completes the basewinding circuit of T 300 . The negative emittex-output signal of Q300 is fed through C358 (SAMPLES/CM switch SW358) to the step integrator. The amplitude of the pulse fed to $C 358$ is controlled by R304, the internal SAMPIES/CM control.

Saturation occurs, and the blocking oscillator starts its backswing. D300 becomes forward biased and current
passes through D300 instead of the collector winding of T300.
The negative pulse passed through C358 back biases D361, and forward biases D360. The pulse energy is fed directly to C360 and the grid of V361. V361 and associated circuit is a Miller integrator. The pulse energy starts to charge C360, and lowers the grid voltage of V361 which allows plate voltage to rise. This rise is coupled to the grid of cathode follower V373B. The cathode of V373B is coupled to $C 360$ via C378 and D378. The rise of V373B cathode voltage raises the voltage to C360. The result is that the voltage of the V361 grid side of $C 360$ remains nearly constant. The amount of charge given $C 360$ is proportional to the capacitance of C358, which is controlled by SAMPLES/CM switch SW358. In the TIMED position of the SAMPLES/CM switch, current through R355 and R356 causes C360 to charge in a linear ramp. C360 is paralleled by C361 in the SAMPLES/CM switch 1000 and TIMED positions, decreasing the staircase (or ramp) voltage slope for a given amount of charge fed through C358.

A positive feedback loop keeps the plate current of V361 constant over the output range to improve linearity and response time. The cathode voltage of V373B is fed through Zener diode D377 and C377 to the grid of V373A. As C360 charges, the grid voltage of V373A rises. The cathode of V373A follows the grid and keeps the current through R371 and V361 essentially constant.

The staircase voltage at the cathode of V373B is fed through a resistance divider to pin 22 of P 4 and to the Type 661 HORIZONPAL DISPLAY switch. The voltage at pin 24 of P 4 runs from about 0 to 50 volts. Dc level of the output is
set by DC IEVEL control R381. This voltage is fed back to the comparator of the Type 5T1A as a comparison voltage when the Type 661 HORIZONTAL DISPLAY switch is in any of the SWEEP MAGNIFIER positions.

Staircase Gating Circuit

The unattenuated output signal is fed from C360 to the gating circuit. This signal passes through R346, D345, R345, and R344 to the base circuit of Q335. As the staircase voltage rises, the base of $Q 335$ is moved toward cutoff. SWP LENGTH control R345 determines the amount of signal sent to Q335. When the base current approaches about 0.1 ma , the transistor turns off, and its collector voltage falls from 0 to -18 volts. This fall is coupled through R332 and C332 to the base of 0345 where the voltage drops from -18 to -20 volts. Q345 turns off, and its collector voltage raises from -18 to 0 volts. The grid of V361 is at about -0.9 volts, and D353 becomes forward biased. This raises the grid voltage of V361, since a current path is established through D353 to the +19 -volt supply. The step integrator circuit now runs down and discharges C360 until D352 becomes forward biased, and state of clamped equilibrium exists. When the Miller step-integrator circuit has discharged C360, D345 becomes back biased, and a current path no longer exists between the integrator circuit and the base of Q335. This prevents the staircase voltage from turning Q335 and Q345 back on.

The pulses from the blocking-oscillator circuit are fed through Q324 to switch the gate back on to start the next staircase output. $C 303$ transmits each negative pulse through

R324 to D325 and the emitter of Q324. Each pulse switches D325 to the high state and forward biases Q324, which causes the emitter of 0324 to fall from 6.3 volts to zero. At the end of each blocking oscillator pulse, D325 switches back to the low state, and Q324 turns off. The negative pulse at the collector of Q324 is transmitted through C322 and R336 to the base of Q335. The first pulse received after D345 bew comes back biased and C345 has discharged allows Q335 to conduct, raising its collector to ground, and allowing Q34.5 to conduct. C345 is paralleled by C346 in the SAMPLES/CM switch TIMED and 1000 positions which lengthens the holdoff time before Q335 can be turned back on. The collector of Q345 drops back to about -18 volts, back biasing D352 and D353, and the step integrator is free to run up again until the feedback path from the integrator to the base of Q335 stops the run-up.

Blanking mixer Q314 is driven by the gate circuit, and by the blocking oscillator to provide blanking signals to the Type 661. When the gate is in the off state (neither Q335 or Q345 conducting), Q314 is turned on through R331. When the gate is in the on state, (staircase run-up permitted) the collector voltage of Q335 turns off Q314 and permits each pulse from the blocking oscillator to turn on Q314 for the duration of the pulse. The collector circuit of 8314 is completed in the Type 661. Whenever Q314 is forward biased, collector current flows, and crt blanking occurs. Thus, the crt beam is off whenever deflection is occurring.

A single sweep is obtained by moving SWEEP MODE switch SW325 to the SINGLE SWEEP position. R325 is connected, by

SW325, to the -19-volt supply, and holds D325 in the high state. With D325 held in the high state, Q324 remains in conduction, and the negative pulse necessary to switch the gate transistors back into conduction is blocked. This locks the staircase at zero output. When the SWEEP MODE switch is moved to the START position, the junction of R310 and C310, which was at -19 volts, is grounded. $C 310$ sends a positive pulse through R312 and R315 to D325, causing it to switch back to the low state momentarily, turning Q324 off. D325 switches back to the high state with the next pulse from blocking oscillator Q335, and allows the staircase generator to generate one display. At the end of the single sweep, Q335 is turned back off in the normal manner, and the SWEEP MODE switch must be set to START to obtain the next staircase output.

Publication:
061-833
February 1963

CONTENTS:

title

TRIGGER and HOLDOFF
print symbol
schematic date

FAST RAMP
STAIRCASE GENERATOR
--
--
TIMING SWITCH
For all serial numbers.

title	print symbol	schematic date
TRIGGER and HOLDOFF	--	$2-15-63$
FAST RAMP	--	$1-8-63$
STAIRCASE GENERATOR	--	$1-11-63$
TIMING SWITCH	--	$1-5-63$

ABBREVIATIONS:

cer	ceramic
comp	composition
emc	electrolytic, metal cased
emt	electrolytic, metal tubular
gmv	guaranteed minimum value
h	henry
k	kilo (10 ${ }^{3}$)
k	kilohm
m	milli (10-3)
ma	milliamp
meg	megohm
mh	millihenry
mpt	metalized, paper tubular
mt	mylar, tubular
mv	millivolt
μ	micro (10-6)
$\mu \mathrm{f}$	microfarad
$\mu \mathrm{h}$	microhenry
$\mu \mathrm{sec}$	microsecond
n	nano (l0-9)
nsec	nano second
Ω	ohm
p	pico (10-12)
pbt	paper, "bathtub"
pcc	paper covered can
pf	picofarad $(\mu \mu \mathrm{f})$
piv	peak inverse voltage
pmc	paper, metal cased
poly	polystyrene
prec	precision
pt	paper, tubular
ptm	paper, tubular molded
sn or S/N	serial number
$t u b$	tubular
v	working volt, dc
var	variable
w	watt
WW	wire wound

[^6]

[^0]: Each instrument includes: 1 - light filter, 1 - power cord, 2 - instruction manuals.

[^1]: Each instrument includes: $2-10 \times 50-\Omega$ attenuators, $2-$ $5-\mathrm{nsec} 50-\Omega$ cables, 2 - instruction manuals.

[^2]: Each instrument includes: $2-10 \times 50-\Omega$ attenuators, $2-$
 5 -nsec $50-\Omega$ cables, 2 - instruction manuals.

[^3]: TYPE 5T1A TIMING PLUG-IN UNIT $\$ 750$
 Each instrument includes: 2 - 10X $50-\Omega$ attenuators, 1 -
 10-nsec $50-\Omega$ cable, 2 - instruction manuals.

[^4]: * Limited by linearity of cathode follower. This value may be exceeded by more than 50% for pulses without damage to probe components.
 ** Must be derated for continuous-wave use. Peak-to-peak voltage derating is necessary with CW sine waves higher than 500 Mc for the 1000 X aftenuator head and 1000 Mc for the 500 X aftenuator head.

[^5]: ©, 1963, Tektronix, Inc., P. O. Box 500
 Beaverton. Oregon. All rights reserved.

[^6]: ©. 1963, Tektronix, Inc., 1'. O. Box 500 Beaverton, Oregon. All rights reserved.

