
TE K INFORMATION MAY
FOR TECHNOLOGISTS 1983

TECHNOLOGY
report

COMPANY CONFIDENTIAL

SOLVES
ELECTROMAGNETIC»

PROBLEMS
USING
FINITE

a

Tektronn<
COMMITTED TO EXCELLENCE

CONTENTS

EMGAP Solves Electromagnetic Problems
Using Finite Element Analysis5.

High Level Simulation of Digital
System Using N.mPc

Engineering Activities Council
Membership Changes...... waa

Modula-2 As a Software
Engineering Tool........ re

Book by Tek Author Deals
with Standardseee0e0%

Ergonomic Barriers Are Real

User Interface Aspects of a
Desktop CAD System..............

. 11

. 22

Volume 5, No. 2, May 1983. Managing edi-
tor: Art Andersen, ext. MR-8934, d.s. 53-077.
Cover: Joe Yoder; Graphic illustrator: Jackie
Miner. Composition editor: Jean Bunker. Pub-
lished for the benefit of the Tektronix engi-
neering and scientific community.

Copyright © 1983, Tektronix, Inc. All rights
reserved.

Why TR?

Technology Report serves two purposes.
Long-range, it promotes the flow of technical
information among the diverse segments of
the Tektronix engineering and scientific com-
munity. Short-range, it publicizes current
events (new services available and notice of
achievements by members of the technical
community).

Contributing to TR

Do you have an article or paper to contrib-
ute or an announcement to make? Contact

the editor on ext. MR-8934 or write to d.s.
53-077.

TECHNOLOGY
REPORT

EMGAP SOLVES ELECTROMAGNETIC
PROBLEMS USING FINITE
ELEMENT ANALYSIS

Jeffrey Beren supervises electromagnetic model-

ing in High Frequency Component Development,
part of the Solid State Group. Jeff joined Tek in
1977. He received his BSEE from Washington

University (St. Louis, Missouri); his MSEE from the
University of Arizona (Tucson); and his PhD in
electrical engineering from the University of

Arizona.

Bob Kaires is an electrical engineer doing electro-

magnetic modeling within High Frequency Com-

| ponent Development, part of the Solid State
Group. He joined Tek full time in 1979 after
summer interning in 1978. Bob received his BS in

physics from Rutgers College (New Jersey)
and his MS in physics and MS in electrical

engineering from Michigan State University.

Introduction

The Electromagnetic General Analysis Package (EMGAP) is an
evolving collection of software programs that allows the user to
solve electromagnetic problems in 1, 2, and 3 dimensions.

The package is divided into three major parts (see figures 1 and
2). The input and output parts are handled by pre- and post-
processor programs, which reside on a VAX computer opti-
mized for interactive graphics. The numerical analysis program
resides on a Cyber computer optimized for numerical analysis.
In this configuration, additional preprocessors, postprocessors

EMGAP

VAX CYBER

SUPERTAB

SUPERB

mene
HYPER

CHANNEL

CURRENT SYSTEM (SPECIFIC CONFIGURATION)

INTERACTIVE NUMERICAL
GRAPHICS ANALYSIS
COMPUTER COMPUTER

> | aera | PREPROCESSOR r >| NUMERICAL

=| ANALYZER
POSTPROCESSOR}¢

COMMUNICATIONS
LINK

FUTURE SYSTEMS (GENERAL SYSTEM CONFIGURATION)

GENERAL CONFIGURATION (HARDWARE)

Figure 2.

and numerical analyzers can be added to EMGAP as the need
arises.

EMGAP Today and Tomorrow

The current version of EMGAP is a collection of Structural

Dynamics Research Corporation (SDRC) software designed for

EMGAP

PREPROCESSORS NUMERICAL ANALYZERS POSTPROCESSORS

f : ob rt '

SAB ec6 SUPERB ees SUPER Jee

COMMUNICATION BUS

GENERAL CONFIGURATION (SOFTWARE)

Figure 1.

TECHNOLOGY
REPORT

mechanical engineering finite element analysis!'-7] (This soft-
ware is marketed by General Electric, Computer-Aided Engi-
neering International.) Because the finite element technique is a
very general numerical technique (see The Finite Element
Method), nothing inherently restricts the technique to mechani-
cal engineering. Many of the mathematical equations that
describe mechanical engineering problems also describe elec-
trical engineering problems.

In the current version of EMGAP, we use the SDRC software
that solves the mechanical engineering heat problem (Laplace's

equation). For electromagnetics, the heat problem can be inter-
preted as the electrostatics problem. Thus, we can make corre-
spondence between isotherms and equipotentials, heat flux and
electric flux, heat source and electric charge.

In EMGAP, the SDRC preprocessor program SUPERTAB
handles interactive graphic input. Interactive graphics output is
handled by SDRC postprocessor program SUPER, which plots
the problem geometry, equipotentials (isotherms), and lines of
constant-D field (heat flux) magnitude.

The numerical analysis is done with SDRC analysis program
SUPERB. SUPERB solves Laplace's equation (electrostatic and
magnetostatics problems in source-free regions), and we have
modified it to calculate electrostatic capacitance (or magneto-
static reluctance). SUPERTAB and SUPER temporarily reside on
the HCAD VAX with the VMS operating system, and SUPERB
resides on the CYBER A machine (figure 2).

In future versions of EMGAP, Poisson’s equation (electrostatics
and magnetostatics problems in regions containing sources)
and Helmholtz’s equation (electrodynamics) will be available. In
addition, the organization of the package is versatile enough to
let us add software other than mechanical engineering software.
Thus specific programs written directly for electrostatic applica-
tion!8] could be added to the package. The software added
could then employ SUPERTAB to set up the problem geometry.
However, future development depends on how users respond
to the current version of EMGAP and what future capabilities
users want.

Applications and Capabilities

Some of the 2-D capability of EMGAP now includes shielded
transmission lines of arbitrary cross-section, magnetic relays,

gallium arsenide (GaAs) bridges and air lines, and high voltage
structures.

A shielded microstrip problem is an example of an EMGAP
solution of a shielded transmission line of arbitrary cross-section.
Figure 3 shows the element arrangement of half of a shielded
microstrip transmission line. Only half of the geometry need be
entered because of the symmetry plane perpendicular to, and

bisecting, the microstrip. Figures 4 and 5 show the equipoten-
tials for substrate dielectric constants (e€,, equal to 1 and 10,
respectively).

For the substrate with e,= 10, a closed-form solution, accurate
to 1%, gives a capacitance of 178.074 pF. Using 60 cubic
elements, EMGAP gave a capacitance value of 181.507 pF, a
difference of 1.9%. The problem was solved again using 150

cubic elements, reducing the difference to less than 1%.

SHIELD

+e, =1

CENTER
CONDUCTOR

et 0

SANS “al *MICROSTRIP EXAMPLE

Figure 3.

CONTOUR CONTOUR
NUMBER LEVEL

1 .40001
2 54001
3 60001
4 .66001
5 72001
6 .78001
7 84001
8 .90000
9 .96000
10 1.0201
1 1.0001

12 1.1401
13 1.2001
14 1.2601
15 1.3201

_~ 16 1.3801

’ 17 1.4401

ASN 18 1.5001
ay
a

=S7Zz

MICROSTRIP EXAMPLE AIR DIEL

EQUIPOTENTIAL PLOT

Figure 4.

TECHNOLOGY
REPORT

CONTOUR CONTOUR
NUMBER LEVEL

1 .40001

2 54001

3 .60001

4 .66001

5 .72001

6 .78001

7 .84001

8 .90000

9 .96000

10 1.0201

11 1.0001

12 1.1401

13 1.2001

14 1.2601

15 1.3201

16 1.3801

17 1.4401

18 1.5001

MICROSTRIP EXAMPLE DIEL OF 10

Figure 5.

Zz

ARMATURE y

POLE x $
PIECE 0

AXISYMMETRIC MAGNETIC RELAY

ARMATURE |

32.1 MILL SPACING iN
| _| POLE PIECE

Figure 6.

For the case of substrate dielectric e, = 1, EMGAP gives a value
of capacitance of 27.491 pF. Using this value and the one
above for e, = 10, we calculated the characteristic impedance
for the shielded microstrip as 47.67 ohms.

Another EMGAP application involves an axially symmetric
magnetic relay. Figure 6 shows a radial slice of a 3-dimensional
object used to model a magnetic relay. The solid can be gener-

ated by rotating the slice about the Z axis. SUPERB handles this
as a 2-dimensional problem because of the symmetry.

Figures 6 and 7 show lines of constant magnetic potential.
Figure 7 is a magnification of an interesting area that also shows
element density. From repeated solutions of this problem for dif-
ferent armature/pole piece separations, we produced a curve of
reluctance vs. spacing (figure 8).

ARMATURE —> | 1 /

j

==2Z746Re4

S=== Vian
=N N

NIN
POLE WT JON
PIECE NV AT N\

\y\
\ \

DETAIL OF AXISYMMETRIC MAGNETIC RELAY

Figure 7.

E-4 RELUCTANCE vs. SPACING

5.00

4.00

R
3.00 _GILBERTS

MAXWELL

2.00

1.00

0.00

x(milis)

0.00 2.00 4.00 E1

Figure 8.

TECHNOLOGY
REPORT

GaAs INTERELECTRODE CAPACITANCE
EXAMPLE

y ke 4um —>4
3um R2

1 +E LECTRODE 1

4 0 2 4 6 8 10 12 pm
Tpm R3 ’ ’) Lot tf i 4 !

4 ELECTRODE 2

.2nm \ yer €,= 12 Spm
R4 RS

Figure 9.

The GaAs bridges and air lines example demonstrates the ability
of the EMGAP program to handle a problem with more than
one dielectric region. Figure 9 shows five different dielectric

regions. For one such interelectrode configuration — the air

bridge — three of the five regions (R1, R2, and R3) have air
dielectric constants. Figure 10 shows the equipotentials and
finite element density for this analysis. If R3 has a dielectric con-

stant other than air, the same model (figure 9) represents a
bridge conductor resting on a dielectric support. For various
spacings of electrode 1 to electrode 2 and for different dielec-
trics, it was possible to develop design curves for the interelec-
trode capacitance (figure 11). This information can be used to

help design GaAs circuits.

EMGAP also solves high-voltage analysis problems such as a
wire over a ground plane (in a box) (figure 12). We can set up
the model to minimize the effects of the sides and top of the box
(figure 13). Windowing in on figure 13, we can see the details of
the equipotential lines for a line above a ground plane (figure
14). SUPERB calculates field strength, field energy, and poten-
tials. For more complex problems, we can study the effect the
model’s geometry has on these parameters.

A shielded square capacitor problem demonstrates the 3-D

capability of the program (figure 15). For this example, we con-

sidered the dielectric region to be.air. The element density and
equipotential contours are presented at various cross-sections:

(1) in the plane of the square plate (figure 16), (2) in a plane paral-

lel to the preceding case but one unit above the plane of the

square plate (figure 17), and (3) in a perpendicular plane bisecting

the square plate (figure 18). Note the similarity of the equipoten-

tials for the bisecting plane (figure 18) and the equipotentials for

the shielded microstrip problem (figure 4).

IL \
\\

AN AAA WZ AS
ont tit 2
Shhh

eS ENN WO AA aS
TEES tp pa a ar A
SS “NS —— | L L ~*

EQUIPOTENTIAL AND ELEMENT PLOT

Figure 10.

24 1 |

INTERELECTRODE CAPACITANCE

22

20

U q ' ‘ . ' ' T

R3/R2

77

3.8/3.8
OO

TH

CA
PA

CI
TA

NC
E

fF
/1

00

pm

i
T
T
T
P
E
T
C
T
P
I
T
r
r
y
p
r
r
r
r
r
y
p
r
y
p
r

yr

7?

r
i
a
i
b
i
d
l
i
t
i
r
i
y

t
i

t
a
t
s

b
a

t
a
t

SPACING pz m

~ mele 3.8/1

6 a
ol. - * miei

4

2

0 i i L l L i rn L

0 2 4 6 8 40 12

Figure 11.

TECHNOLOGY
REPORT

SHIELD

—

WIRE

WIRE OVER A GROUND PLANE IN A BOX

GROUND pane!

Figure 12.

WIRE OVER A GROUND PLANE IN A BOX
EQUIPOTENTIAL PLOT

Figure 13.

FIGURE 13 MAGNIFIED

Figure 14.

SHIELD
aN

2

\ Ss
GROUND PLANE 20M

THREE DIMENSIONAL PLATE

SQUARE PLATE OVER A GROUND PLANE

Figure 15.

T
S

a

NEU = =
wae

Mii po
IN

THREE DIMENSIONAL PLATE (CU)

EQUIPOTENTIAL AND ELEMENT PLOT

Figure 16.

TECHNOLOGY
REPORT

act | et A
Lae = \
WE
LLG

a

P
J

—

—
—
}
f

Ga
N

—
—
—
E

a

NJ

N

—

|

e
™

iY
”

WA

S
P
S
L

4

M
I
M
E

L
n
 Gy:

A
W
A

THREE DIMENSIONAL PLATE (CU)
EQUIPOTENTIAL AND ELEMENT PLOT

Figure 17.

The square capacitor example has wider application. If the
square plate is replaced by several rectangular strips, this ex-
ample could represent a shielded meander line in the quasi-
static approximation and would apply to CRT deflector analysis.
lf the rectangular plate is replaced by two rectangular plates of
different widths, the example could represent the quasi-static
approximation to a step in a microstrip line. An equivalent circuit
could then be derived and the resulting equivalent circuit could

be used in GLUMP or SUPER COMPACT. This, in turn, would
lead to more accurate high-frequency analysis.

How to Operate EMGAP

To use EMGAP, users need a HCAD VAX user number and a

CYBER A user number. A beginner’s user manual is available

from Carolyn Schloetel, ext. B-1762. EMGAP temporarily resides
on HCAD VAX and may be moved in the future. However, such
a move will not affect usage.

/ N
ae ph AS

THT
Gees \

WNICZ=\08

THREE DIMENSIONAL PLATE (CU)
EQUIPOTENTIAL AND ELEMENT PLOT

N\

Figure 18.

For More Information

For more information, call Jeff Beren ext. B-3128 or Bob Kaires

ext. B-3150. (J

Acknowledgement

We would like to thank the CAE Development Group (Jack Hurt,
Barry Ratihn, Matt Reddy, and George Chang) for their con-
tinued support during the development of EMGAP. Special
thanks to Barry Ratinn whose support and patience were critical
to the success of the project.

TECHNOLOGY
REPORT

THE FINITE
ELEMENT METHOD

The finite element method (FEM) is a numerical technique for
solving differential or integral equations. The distinguishing
feature of this technique is that a 3-dimensional region of space
is divided into subregions (or elements). This subdivision
facilitates the numerical treatment.

Different finite element approximations arise from mathematical
formulations such as variational principles, weighted integral ex-
pressions, Lagrangian multipliers. The finite element method
discussed next will be of the variational type and will be used to
solve Laplace's equation.

Laplace’s equation, V2¢ =0, together with boundary conditions
uniquely specifies the electric potential ¢ in a region of space.
Another way to find electric potential is by minimizing the
energy integral:

W(d) =e [Vo |?dv
Vv

This is called the minimum energy principle. The potential ¢,
which minimizes the energy integral, also satisfies Laplace’s
equation with boundary conditions. In fact, these two methods
of finding ¢ can be shown to be mathematically equivalent.

The energy integral can be minimized using the Rayleigh-Ritz
method in which an approximate potential function:

o=o(a,, Qn, Og i)

is specified.

The parameters, a,,, are chosen such that

OW O for all n.
day,

This results in n simultaneous equations for n unknowns. Using
the boundary conditions along with the n simultaneous equa-
tions leads to the determination of the a,,'s.

The finite element method discussed here is an extension of the
Rayleigh-Ritz technique. The region of interest is divided into
elements and Rayleigh-Ritz technique is applied over each ele-
ment. The potential is then approximated over each element by
a function, in this case a polynomial expansion:

$0 =6 el), aff), .)

A number of spacial coordinates, called nodes, are identified in
each element. The polynomial expansions are formulated in
terms of the unknown potentials at these nodes. The ‘‘nodal
potentials’ which minimize the energy expression are then

found.

Two features that distinquish the finite element method from

other methods are:

1. In finite elements, once the nodal potentials are known, the
potential field throughout the element is described by the ap-
proximating polynomial. In contrast with this, the finite aif-
ference method — a well-known numerical technique — for-
mulates the solution at discrete points in space.

2. The minimum energy principal is a stationary variational for-

mula. This means that first-order small errors in @ lead to

second-order small errors in energy. We can therefore ex-

pect that quantities derived from energy (capacitance for ex-
ample) are more accurate than the electric potential solution
might indicate.

The following one-dimensional example illustrates the principles
of the finite element method:

Consider the one dimensional case where the potential only
varies in one direction (an infinite parallel-plate capacitor, for ex-
ample). To within a constant, the electrostatic energy is equal to:

wd) = | ¥6] ®dv

Further, let’s divide the region into three linear elements:

ELEMENT 2

o,=1V e=1 2 e=2 $3 e=3 o,=0V

xy a X2 1X3 XA
L} bo, bg are the

unknown nodal

potentials.

NODE 2

x 4
W=(|Vol 2 dv=AyAz 9$| °ax j |Vo| y " ax

V

3
W= L We We is the elemental energy

e=1

X
e+]

_ ag) 2
We=AyAz | ss dx

é

The approximating polynomial over element e is:

g(x) = ax +b.

The nodal potentials are:

OK) =,
e _

o! Key)=be41

We can reformulate ¢(x) in terms of these nodal potentials as:
X_ 7X +e X_—X

_ e+ _
Xe Koa Xe Xo4t

ox) =, 7

TECHNOLOGY
REPORT

The integrand of the elemental energy integral can now be

found:

2 ag)

ax
%o~ bo+1

X_—%*

2 2
2 beat — 2b F414 4% = E

e+1

Here we've assumed that all elements are equal in length to L,

therefore:

W_,= AyAz 7

3 3
AyAz 2 2

and W= & We= 1 oni fett 2b5 %o447%

for minimization oW =0, ow =Q
d¢5 d$.

These two constraints together with the two boundary condi-

tions ¢4 =1 and ¢4=0 leads to the matrix equation:

10 0 0 , 1

1-2 1 0 b5 _ 6)

0 1 -21]] 45>] oO}
00 0 1 b4 0

the solution is: by = AV

b3= Vav

Substituting back into the expression for p(x) for e=1, 2, 3;
#(x) is now known element-by-element over the entire region.

06(x)
Ox

will be piecewise continuous, there being a discontinuity al-
lowed at element boundaries.

#(x) will be continuous over the region and

References

1. Barry Ratinn, Kurt Krueger, ‘‘Finite Element Analysis Solves
Mechanical Design Problems,’’ Engineering News, January
1979.

Farid Durrani, ‘‘Finite-Element Analysis: An Available and
Useful Mechanical Engineering Technique,’ Technology

Report, December 1982.

Peter P. Silverster, Ronald L. Ferrari, Finite Elements for
Electrical Engineers, Cambridge University Press (forth-
coming latter half of 1983.

Isaac Fried, Numerical Solution of Differential Equations,
Academic Press, New York 1979.

. Gilbert Strang, George J. Fix, An Analysis of the Finite
Element Method, Prentice-Hall, Inc., Englewood Cliffs, NJ
1973.

Larry J. Segerlind, Applied Finite Element Analysis, Wiley,
New York 1976.

. OC, Zienkiewicz, The Finite Element Method in Engineering
Science McGraw-Hill, London 1971.

John B. Rettig, “For the Designer: A General Purpose

Capacitance Calculator Run from HCAD,” Technology
Report, May 1982.

|.J. Bahl, ‘“Use Exact Methods for Microstrip Design,”
Microwaves, December 1978.

| TECHNOLOGY
REPORT

HIGH LEVEL SIMULATION
OF DIGITAL SYSTEMS USING N.mPc

Jack Gjovaag is a software engineer in the Com-
puter Research Lab, part of the Applied Research
Laboratories. Jack joined Tektronix in 1975 from
California Computer Products. His experience in-
cludes computer graphics, computer aided de-
sign, and automated cartography.

Marc Wells is a hardware/software engineer in the
Computer Research Lab, part of the Applied Re-
search Laboratories. Marc joined Tektronix in
1974. He has a BA in math and physics from
Whitman College, 1974.

With high level simulation, digital system behavior can be
studied without completing a full hardware design and im-
plementation, software evaluation can begin before hard-
ware is available, and design changes are more easily made
than if the design were implemented in hardware. This ar-
ticle describes the N.mPc simulation system and discuss-
es some cases where it is being used profitably.

The traditional approach to digital system design involves carry-
ing a tentative design down to a point where it can be imple-
mented in hardware, building a prototype of the design, and
then evaluating the design by running appropriate software on
the prototype hardware. Based upon observed performance,
the design may change. These changes must be installed in the
prototype hardware and the process repeated. This approach is
outlined in figure 1.

It is important to observe that most performance characteristics
of a system are determined by the time the functional descrip-
tion of the hardware is specified. Thus building a hardware proto-
type to investigate performance involves more detail designing
than is theoretically necessary. This overdesigning is usually
done only because it is difficult to analyze the performance of a
complex system based on its functional description.

The N.mPc system is intended to improve the design methodol-
ogy shown in figure 1 by providing methods for design evalua-
tion before prototyping. The major advantage of this is that the
system need not be designed to greater detail than that neces-

sary for validating the system. This is done by providing a formal
language that can be used to describe the function of a digital
system, some programs that support development of system soft-
ware, and a simulator that will run the software on the described
system and permit observation of performance. The design meth-
odology using N.mPc is shown in figure 2.

y
DESCRIBE EXTERNAL

BEHAVIOR OF
SYSTEM

PARTITION SYSTEM
INTO HARDWARE
AND SOFTWARE

DESCRIBE HARDWARE
FUNCTIONALLY

v
_W. v. v

DO LOGIC DESIGN
DESIGN OF SOFTWARE
HARDWARE

DO ELECTRICAL
DESIGN OF
HARDWARE

IMPLEMENT
HARDWARE
PROTOTYPE

l
y

TEST
SYSTEM

L_} MAKE NO
CHANGES

Figure 1. The traditional design process for digital sys-
tems requires building a hardware prototype to evaluate
the design. N.mPc eliminates the prototyping bottleneck
(see figure 2).

Register transfer level descriptions

Note in figure 2 that the design loop is completed before de-
tailed logical and electrical design. For this to be possible, the
design must be expressed on a higher level of abstraction than
logic gates. The N.mPc system uses a register transfer level (or
RT) description to express the function of the system being de-
signed. An RT description is composed of two types of compo-
nents: registers, which are devices for holding collections of bits;
and transfer functions, which alter and transfer data between
registers. Such a system description will undergo a sequence of
discrete states as fields of bits are transformed by the transfer
functions and stored in destination registers. Generally there is a
bit or short field of bits (called a clock) that is a product term in
most of the transfer functions. This clock field changes in step
with time, thereby enabling transfer functions only at discrete

time intervals. |

TENOR

Pd
DESCRIBE EXTERNAL

BEHAVIOR OF
SYSTEM

4
PARTITION SYSTEM
INTO HARDWARE
AND SOFTWARE

—=
DESCRIBE HARDWARE

FUNCTIONALLY
USING ISP’

—
DESIGN SOFTWARE
USING META-MICRO

—
TEST SYSTEM

BY SIMULATION

C,
Figure 2. The design process using N.mPc eliminates the
early hardware prototype traditionally required for digital

system evaluation.

A register transfer description has the power to describe trans-
fer functions at a level of abstraction higher than that of logic
gates. For example, an RT statement to transfer the product of
two 8-bit registers called A and B to a 16-bit register called C is

as follows:

state A <8>,

B <8>,
C <16>;

main: =(C =A*B)

The first three lines merely declare the size and names of the

registers and the third defines the single transfer function of our
example description. Notice the strong similarity between the
example and a small program written in a high level program-
ming language. In fact, the similarity is more than just appear-
ance; RT descriptions may be executed or caused to simulate
the behavior of the described system. The contents of the regis-
ters, as well as the elapsed simulated time, may be examined
during the simulation. Thus the system behavior over time can

be accurately predicted.

Components of the N.mPc system

The example RT description shown above is stated in a RT lan-
guage called ISP’, which is a component of the N.mPc system.
The complete N.mPc system is shown in figure 3. RT descrip-
tions are processed by the ISP’ Compiler. Simulated memories
and their initial contents are prepared through the use of a flexi-
ble component called the MetaMicro Assembler and the Linking/
Loader. Simulated memories and compiled ISP’ descriptions are
combined according to interconnection information supplied in
the ecology file by the Ecologist program to produce a simulation
file. The simulation file is an executable file which when run will

ISP’
HAROWARE
DESCRIPTION

COMPILER
ISP’

COMPILER OUTPUT

ECOLOGY
FILE ECOLOGIST -——4

ASSEMBLER
DESCRIPTION

ASSEMBLER
OUTPUT

LINKER
FILE

SIMULATION
RESULTS

Cc) TIMING
DIAGRAM

GENERATOR

META-
MICRO

ASSEMBLER

LINKING
LOADER SIMULATED

MEMORY
FILES

SOFTWARE
SOURCE
CODE

SIMULATOR

TIMING
DIAGRAMS

Figure 3. The N.mPc system.

allow interactive examination of the behavior of the system and

will gather timing information for selected registers. Graphic tim-
ing diagrams can be produced using a postprocessor called td.

ISP’ Descriptions

In this section we will give a brief description of the ISP’ language
and show some examples of its use.

Structures

The registers in an ISP’ description store information between
transfers. The registers are called structures in the documenta-
tion. The registers are of three types:

e States are registers internal to the ISP’ design. They may be
declared to be of varying length with varying bit numbering.
For example, the declaration

state accum <1:9>;

declares a 9-bit register called accum whose high-order bit is
numbered 1. A file of registers may be declared as follows:

state status[0:7]<15:0>;

e Ports are registers which may be connected externally to
other ISP’ descriptions. Ports may be written by one !SP’ de-
scription and read by another, thus implementing communi-
cation between modules.

e Memories are special arrays of constant-length registers that

may be set to a desired initial state through use of the Meta-
Micro assembler, the Linking/Loader and the Ecologist.

| TECHNOLOGY
REPORT

Register transfer statements

Register transfers are specified with register transfer statements,
which correspond roughly to assignment statements in a program-
‘ming language. For example, the register transfer statement

Areg = Buff *: logical — 3;

will cause the contents of Buff to be logically right shifted by 3
bits and the result transferred to Areg. ISP’ provides a broad set
of operators for specifying the register transfer function, such as
including the common arithmetic and logical operators.

Simulated time

Perhaps the biggest difference between ISP’ descriptions and
programs written in a conventional high level language is the
concept of simulated time. Each execution of a register transfer
statement has an associated number, which is its simulated time
of occurrence. This number orders the transfers in simulated
time such that the states produced by a transfer at a certain sim-
ulated time can have no effect on transfers at an earlier simu-
lated time. Also, all transfers occurring at the same simulated
time are, in effect, simultaneous.

Control of simulated time is achieved with a delay statement.

When a delay statement is executed, all transfers prior to it are
completed and the simulated time is advanced by the number
of time units specified in the statement. The units — microseconds,
nanoseconds - are not specified in the ISP’ description.

Without specific instructions to the contrary, all transfers with the
same simulated time of occurrence will be treated as parallel ac-
tions. Thus the contents of two registers can be exchanged by
the following pair of transfer statements without destroying one
of the values:

a=b;

b=a;

It is sometimes desirable to impose sequentiality of execution on
transfers that occur at the same simulated time. For example, if
one wishes to transfer the contents of register r1 to register r2
and then transfer the new contents of r2 to register r3, the first
transfer must be forced to complete before the second. This is
done with the next statement:

r2=r;

next

r3=r2:

The next statement causes all transfers preceding it at the cur-
rent simulated time to be completed but without advancing the
simulated time.

Considerable flexibility in the execution order of statements is

provided through a conventional set of control-flow statements

such as an if statement, a while and do until, a case statement
and a procedure call.

Processes

Statements and declarations are grouped into collections called
processes. Processes are independent of each other in the sense
that they can all run concurrently. Each process may be in one
of three states:

Running: All conditions for the execution of the process have
been satisfied and the process has reached the head of a queue
of processes eligible to run,

Ready: All conditions for the execution of the process have been
satisfied but the process is not at the head of the queue of pro-
cesses eligible to run.

Waiting: Some condition necessary for the execution of the pro-
cess has not been satisfied. The process will sleep until all condi-
tions have been satisfied then its status will be changed to ready.

Conditions necessary for executing a process are established
by the process declaration statement and by wait and delay
statements within the process body. A main process is a pro-
cess that is executed repeatedly during the simulation except
when made to wait by wait or delay statements. A main process
is placed in a running status at the beginning of a simulation. A

when process is a process that becomes ready only when some
event on a port occurs. Possible events are leading edge, trail-
ing edge, or change port value. When the last statement of a
when process is executed, the process sleeps again until the
event reoccurs.

The preceding discussion of ISP’ is incomplete and serves only
to illustrate the major features of the language. It should, how-
ever, be sufficient to permit understanding of practical ISP’ de-
scriptions. One such description taken from a much larger simu-
lation done in the Computer Research Labs is shown in figure 4.
It describes a process that manages the reading and writing of
an array of random access memory.

/%
« Memory management process
x/

macro LONGWORD 2 31:86,
. = 3 next; 8;

port LRW, lread/urite signal
LUBE , lupper byte enable
LLBE, !'lower byte enable
LAS, laddress strobe
Los, 'data strobe
LAck, 'data acknowledge
LBus <LONGWORD>;!!ocal bus

state address <23:1>;

memory datamem [@:32767] <7:@>;

when (LAS: lead) :=
(

address = LBus <23:1>;
delay (128);
LAck = 1;
LDS = 1;
if LAW ,

delay (68);

if LUBE datamem [address *: ftogical 1) = LBus <15:8>;
if LLBE datamem [address «: logical 1 + 1) = LBus <7:@>;

)
else

if LUBE LBus <15:8> = datamem (address «: logical 1);
if LLBE LBus <7:@> = datamem [address «x: logical 1 + 1);

);
Wait (LAS: trail);
LBus = 8,
LAck = 8,
LOS = @.
)

Figure 4. An ISP’ description that describes the reading
and writing of a random access memory.

TOMO 3

Integration of Processes

Compiled ISP’ descriptions can be compared to classes of elec-
tronic packages with pins for connection to the outside world
where the pins correspond to ISP’ ports. Integrating these de-
scriptions into a system amounts to selecting as many “pack-
ages” of each type as needed and interconnecting them. This
interconnection is done with the topology file.

The topology file has two major components: signal declara-
tions — where a signal is a named connection between ports,
and processor declarations — where the term processor means
a compiled ISP’ description. Signal declarations occur at the be-
ginning of the topology file and are similar in form to the state

and port declarations in ISP’. Processor declarations specify:
the ISP’ description to be used, a name by which the processor
may be identified during simulation, the files containing the initial
contents of memories used (described more fully in the next
section,) the time units used in delay statements, and the con-
nections between ports in the ISP’ description and the declared-

signal names.

Signals are the names by which certain states internal to a pro-
cessor may be referenced, however one processor cannot alter
the value of a port in another processor. The value of a signal is
the logical sum (OR) of the values of all of the ports connected
to the signal. Thus a port may be viewed as an open-collector-

output negative-logic transceiver.

Simulated Software

Any system which uses a programmable device (such as a micro-
processor or a ROM-based state machine) must have some way
of specifying the program for that device. Since N.mPc is intend-
ed to be a general purpose tool, it must provide a way of gener-
ating programming data for many devices, including commercial-
ly available parts as well as custom designed applications. The
solution to this programming problem is the MetaMicro Assembler.

The MetaMicro Assembler

Writing a program using the MetaMicro Assembler is a two-stage
effort. First, the instruction set of the target machine must be de-
fined andthe mapping between instruction mnemonic and ma-

chine bit format specified. Second, the actual code has to be
written for the target machine. The instruction set is specified in
the declaration section of the assembler source file, the actual
code is contained in the instruction section. Figure 5 shows a

sample of a MetaMicro Assembler declaration, a subset of the

Intel 8080 instruction set.

The instr declaration specifies the name which will refer to instruc-
tions elsewhere in the assembler. The maximum number of ma-
chine words per instruction and the default number of machine
words per instruction are indicated between square brackets. The
number enclosed in angle brackets indicates the number of bits
per machine word. The format declaration specifies the names
of various fields of the instruction. The number in square brack-
ets indicates which word of a multiword instruction is to be used;
the numbers in angle brackets indicate which bits of the word

are to be used.

Meta-Micro Assembler Declaration Section for 8888

tx (8888, m. x»!
!x metaMicro description file for Intel 8888 x!
! !

instr inst (3,1]<8> % ! three words of eight bits each
! default length of instruction is 1

format op = jinst{@}<7:6>, !main op code
dst = inst{@]<S:3>, !destination or op code
src = inst{@}<2:@>, !source or op code
rx = inst{@}<S:4>, !register pair
ndi « inst{@]<7:8>, !whole first word
wd2 = inst{1]<7:8>, !whole second word
nd3 inst{2]<7:8>8 lwhole third word

macro ret wd1l=8311 $ &, {return unconditional
rnz = wdl«8380 $ & lreturn no zero (Z=@)
rz = wd1l=98318 $ &, lreturn zero (Z=1)
rnc = wd1=8328 8 & —Treturn no carry (CY=@)

! winx This section contains the 8888 illegal op codes xox

bind iopc "ILLEGAL OP CODE FORMED",
bcde "REGISTER PAIR MAY ONLY BE bc OR de",
rple "REGISTER PAIR MAY ONLY BE: b,d,h,sp",
rp2c "REGISTER PAIR MAY ONLY BE: b,d,h,psw",
mbrg “OPERAND MUST BE A REGISTER" 8

elegal(val)= (wdleval;) jopeé, Imacro for illegal declarations
illegal (wd1=8818) jiopc, (udi=882@) iopc,

(ud1=8848) iopc, (wdi-8858) iopc,
(wd1=8878) jiopc, (wdi=8313) iopc,
(wdl = 8375) bcede,
(wd1 = 8335) rpic,
(wd1 = 9331) rp2c,
(wd1 = 8355) morg 8

(ud1 =8838) iopc,
(udl=8868) jopc,
(wd1#8166) iopc,

Figure 5. A MetaMicro Assembler declaration. This is a
subset of the Intel 8080 instruction set.

Bit patterns are built using macros. The macro declaration spec-
ifies the way in which bit patterns are to be combined to form
machine instructions. Parameters are passed to the macro; these
parameters determine the value of bit fields in the completed in-
struction. Several types of arithmetic and logical operations may
be performed on the macro parameters. Conditional expressions
of the form /f-then or if-then-else may be used at any time, either
as part of a macro or in the instruction section itself, to perform
conditional assembly.

The assembler can be set by the il/ega/ declaration to indicate

when an illegal bit pattern has been formed. When an illegal bit
pattern is detected, a user defined warning message is printed.

The instruction section of the assembler is what is converted into
bit patterns. If the instruction definition macros have been set up
well, code written for the MetaMicro Assembler will look like any
ordinary assembler code. In fact, declaration sections for several
processors, such as the 8080, Z80, 68000, and'so on, have been
written which provide a syntax very similar to that of the vendor-

supplied assemblers (see figure 6.)

Once the assembler has been defined and the desired code
written, the assembler creates an output file which the Linking
Loader uses to create a machine executable image of the
program.

The Linking Loader

The Linking Loader takes one or more files from the assembler
and links them together to fit in the address space specified.
Again, since the Linking Loader is designed as a general tool,
there are several aspects of the operation which are user defin-
able. Figure 7 is an example of the command file for the Linking

Loader.

| TECHNOLOGY
REPORT

Meta-Micro Assembler Instruction Section for 8888

include /nmpc/softgen/mmpd/ i 88888
begin

Ixi (h,128)
Ixi (sp,256)
Ixi (b, 788)

loop:
der (c)
jnz (loop)
der (b)
jnz (loop)
hit

end

Figure 6. An example of a program written for the 8080
using the MetaMicro Assembler.

The size and format of the instruction word are specified as in
the MetaMicro Assembler using the instr and format keywords.

The mode declaration specifies the method to be used to resolve
address references. A particular piece of code, such as a sub-
routine, must have its address field modified to reflect the new

destination address.

It may be necessary for the linker to break up a sequence of in-
structions and move some of them to a physically different area
in memory. In order to maintain the correct program flow, a jump
to the new address must be inserted. The method for doing this

is specified by the transfer directive.

Linking Loader Directives for 8888

Pectttetetcos sett tte ri tere et esessest ese seese tec w es ote
lx 18888. i x!
lx Linking Loader description for the Intel 8888 x!
Lnpooinioloaiai i aigaiaiar ioral oooorairoooronoooooooooonmooaniaiaax |

instr

inst [3,1] <8>8

format
op = inst{@)<7:6>,

dst = inst [@]<S:3>,
src = inst(@]<2:@>,

rx = inst[@)<5S:4>,
wdl = inst [(@)<7:@8>,

nd2 = inst[l]<7:@>,

wd3 = inst[2)<7:8>8%

space
<8: 4895>8

transfer

{new
udil = 83838
wd2 = address$
wd3 = address ~ -8$%
length = 38

}

mode
case length eql 3:

wd2 ~ (wd3*8) + wd2 + address$
wd3 ~ ((wd3*8) + wd2 + address)%*-8&%

break$

esac,

default:

wd] ~ (wd2*8) + wdl + address$
wud2 ~ ((wd2*8) + wdl + address)*-88%

break$

esac$

Figure 7. Linking Loader directives example.

The space declaration defines the memory space into which the
code will be allocated. The numbers in angle brackets specify
the lower and upper address of a block of available memory. Any
memory locations not specifically included in a space statement
are not used and any attempt to store information in these loca-
tions will cause an error.

Once the address modification and transfer mechanisms have
been defined, the memory allocator can be invoked. There are
several user-selectable methods of allocating the memory, includ-
ing a fragmented scheme, high- or low-end packing and a mod-
ified first-fit scheme. The output of the allocator is a file which is
ready to be loaded into an N.mPc simulation.

A utility to convert from the N.mPc machine image format to a
format readable by the TLOGS gate-level logic simulator has
been written. This allows files for use in TLOGS to be written
using the MetaMicro Assembler. It is important to note that the
allocator-output file can be used (by an appropriate utility pro-
gram) to program PROMs for the target hardware. The capa-
bility to program PROMs is very valuable because software
can be written and debugged using the simulator before any
hardware is available.

Running Simulations

Once all the pieces have been put together, from ISP’ descrip-
tions of the hardware components to the MetaMicro Assembler
descriptions of the software, the simulation is ready to be run. The
simulation runtime environment is interactive. The user controls
the simulation from a terminal which is used to start and stop the
simulation, examine and modify registers in the various processes,
and examine the various memories. Data can also be saved in a
file which can later be processed to generate timing diagrams.

Displaying and modifying data

Before running the simulation, the parts of the simulation that the
user wants to watch should be specified. The value of registers
within processes, the value of signals between processes, and
the contents of any memory can be monitored throughout the
simulation. The display command is used to watch registers with-
in processes. When anything selected is written to, or optionally
read, its value and the simulation time is printed on the users ter-
minal. The trace command is identical to display except the out-
put goes to the trace file. In the example below, the value of reg-
ister step in process stmachine is printed to the users terminal
whereas the value of register next of the same process is saved

in the trace file:

display stmachine:step read
trace stmachine:next

The display data will also be displayed whenever the register is
read.

If a signal between processes is monitored with a display or trace,
only values written to the signal from within the specified process
will be shown. Since the actual value of a signal is the OR of all
processes connected to that signal, a different command must
be used to determine the true value of the signal. The show com-

mand displays signal values on the terminal and the dump com-
mand saves the signal value in the trace file.

Teo 5

Whenever the simulation is not running, the value of any registers
in any process, the value of any signals between processes, and
the contents of any memory can be examined and modified. The
examine command will display the last value written to a register

or a signal in the specified process:

examine cpu:ir
examine cpu:addrbus

The first example will display the value of register ir in process
cpu, the second example will display the last data written to sig-
nal addrbus by process cou. Memory is displayed using the mem-

ory command:

memory cpu:rom 0 20

memory cpu:rom prout prend

In the first example, the contents of memory rom in process cpu
are displayed starting at location 0 and going through location 20.
The second example prints the contents of the same memory
from the location specified by label prout through the location
specified by label prend.

Data can be loaded into a register, signal, or memory location

using the deposit command:

deposit 0b01001010 cpu:ir
deposit 0h01fa cpu:addrbus
deposit ‘“?” cpu:rom[125]

The first example loads a binary value into register ir, the second
loads a hexadecimal value into signal addrbus and the last exam-
ple loads the value of the ASCII character ‘?” into location 125

of memory rom.

Runtime commands

The simulation is started by entering the run command. Simula-
tion will continue until a breakpoint is reached, an error condition
occurs, a deadlock condition occurs, or the user interrupts the
system. A deadlock occurs when there are no processes ready
to run, that is, every process is waiting for another process and

no process is running.

Breakpoints can be set to stop the simulation on the occurrence
of some event within the simulation. The value of some register

within a process, the simulation time, or a combination of these
can be used to form a breakpoint. If, for example, some process
named cpu contains a register named pc, the following will stop
the simulation when the value of pc is greater than or equal to 5:

bkpt cpu:pc geq 5

The form:

bkpt 500

will cause the simulation to stop at simulation time 500.

The following conditions can be monitored as breakpoints: the
value of a register is less than, equal to, or greater than a given
value; if the value of a register changes either up or down; or if
a register is written or read. Breakpoints may be linked so that

complicated relationships may be specified. The breakpoint
specification:

bkpt 250 after proc1: ir eql Ohif

will stop simulation 250 time steps after register ir in process proc?
is equal to hexadecimal 1f.

N.mPc has many more commands and combinations of com-
mands available than those outlined above. There are methods
for making timing measurements, for determining the minimum
and maximum values of registers, and for triggering events based
on the state of the simulation. Any of these commands may be
combined in a file that, when loaded, will automatically execute
the commands in the file.

Creating timing diagrams

A program, named td, to draw timing diagrams from data saved
in the trace file by the trace and dump commands has been writ-
ten.3 The timing diagrams are displayed using printer characters
so that no special graphics capability is needed; timing diagrams
can be displayed on the same terminal used to run N.mPc. All
these are selectable: the data to be displayed, the order in which
it is to be displayed, and the simulation time period over which it
is to be displayed. Since registers and signals in N.mPc may be
made up of more than one bit, the td program is capable of dis-
playing multibit data.

A line of data to be displayed is defined by specifying the name
of the register or signal, the first bit to display, the number of bits
to display and, if more than one bit is being drawn, the radix in
which to print the display. Single-bit displays are printed more
or less as a conventional timing diagram, multibit displays are
printed with the value of the specified bits separated by charac-
ters to indicate where transitions occur. Figure 8 is an example
of a timing diagram created by the td program from data gener-
ated by an N.mPc simulation.

Applying N.mPc

N.mPc has been successfully applied to a logic design task in the
Computer Research Lab. The task was to redesign a significant
portion from a TTL-implemented design into a large scale inte-
grated circuit. While the way that N.mPc was used in this situa-
tion was not exactly as its designers had intended, it neverthe-
less performed an important function that would have otherwise
been difficult.

The circuit to be redesigned was documented primarily by sche-
matic diagrams and some supporting descriptions of bus signals.
After determining what parts of the original circuit were candidates
for LSI implementation, it was necessary to discover the behavior
of the signals forming its interface. For this purpose, the entire
circuit was described in ISP’, sometimes using quite low-level
transfer functions that modeled the individual logic gates when
the functionality of a part of the circuit was not well understood.

When the description was completed and simulations run, the
behavior of the circuit could be studied and its function better
understood. While it was not necessary, low level descriptions
were replaced by higher level constructs as our understanding
improved. Once the simulation was running correctly and we

comprehended its workings, the part to be redesigned was de-
scribed in ISP’ and the functions to be replaced were removed.

| TECHNOLOGY
REPORT

File magl.d, simulation run on Tue Oct 12 09:11:81 1982
Plot produced on Tue Mar 1 11:84:28 1983

Start time = S, reer time = 31.

proc:
clock (8:1)

proc:
miscireg(@:4)

A(8:23)

pstep (8:5)

File mag6.d, simulation run on Tue Nov 3@ 18:88:17 1982
Plot produced on Tue Mar 1 11:11:38 1983

Start time = 128, stop time = 3218.
{128 |657 }1194

Ck (8:1) +

------ Q------|---------------~--786908----------------|-0-|

----8

-784888-------------------------

~-----Q------ | -1-|-18-|-11]-12]-13-|-14]-15-]-16]-17-|-@-|-1-|-18-|-11]-12-|-13|-14-|-15]-14|-15-|-14|-15-|-14|-15-

IRW_(@:1) + |

AS_ (8:1) + |

DS_ (8:1) +

proc:
pe (8:8)

proc:
pstep (8:5) -- 8

proc:
sysreg (@;8) - - 8

") -|- wa--]----------------+-

----|--1-|-18]-11-]-12-|-13-]-14-|-15-|-16]-17-|--@-|--1-|--2-|--3-|-4-]--5-]--4-|-5-

-- | --------------------- | --------------------

Figure 8. A timing diagram produced by td from N.mPc output.

The new description was connected to what remained of the old
and the simulation was rerun to validate the new design.

The value of this simulation was demonstrated when a number of

design errors were discovered that might have gone unnoticed
through chip fabrication. Obviously, when the circuit being de-
signed is a chip, rework is not possible.

Another project is being planned where N.mPc is expected to
be valuable. A large array of very simple processors organized
in a tree structure is planned to be implemented in VLSI. The ex-
pected benefits from simulating the chip at the register transfer
level before constructing it are:

© Determine the best workload distribution among
the processors.

© Minimize the required communication bandwidth
between processors.

e Establish effective interprocessor communication
protocols.

e Measure the overall performance of the system.

e Encourage experimentation early in the design.

Conclusions

The high level digital simulation system N.mPc has proved to be
quite useful in system design. We feel that in one project, it
saved considerable effort and helped locate errors that might
have otherwise been missed. At least one advanced application
of N.mPc is planned where even greater benefits are
anticipated.

One note of caution is in order. The N.mPc system was de-
signed and developed in a noncommercial research environ-
ment. The syntax of the various languages used — ISP’, topolo-
gy description, MetaMicro and the Linking Loader — are often in-
consistent for no apparent reason. Some documented features
have been discovered to be unimplemented. The system occa-
sionally fails in mysterious ways due to program errors or insuffi-
cient error checking. Despite these problems, however, the sys-
tem is quite workable and effective.

For More Information

For more information, contact Jack Gjovaag ext. B-6160, or
Marc Wells ext. B-6179.

Substantial improvements and modifications are being made to
N.mPc in another organization. Ellen Mickanin, ext. WR-1909 or
Pat Thompson, ext. WR-1006, can elaborate on these changes.

Contact Marc Wells, ext. 6179, or Karen Conrad, ext. B-6155,

for copies of the ARG Technical Reports listed below. 0

References

1. Bell, C.G., Newell, A., Computer Structures: Readings and
Examples, McGraw-Hill, New York, 1971.

2. Wells, Marc, Converting N.mPc Core Image File Format to
TLOGS ROM Statement Format, ARG Technical Report
CR-83-3, 1983.

3. Wells, Marc, Drawing Timing Diagrams from an N.mPc
Simulation, ARG Technical Report CR-83-1, 1983.

Teo 17

ENGINEERING ACTIVITIES COUNCIL
MEMBERSHIP CHANGES
The semiannual EAC “rotation” took place recently. About every
six months the membership of the Engineering Activities Coun-
cil (EAC) is partially changed (rotated) as old members finish
their terms and new members are selected.

The Engineering Activities Council (EAC) is a group of about 20
engineers and scientists, chartered to stimulate communication
between engineering and management, and also among engi-

neers. Members are nominated by their managers, peers, or
themselves, and then selected by Bill Walker, executive vice-

president, to represent the different engineering disciplines and
organizations within Tektronix. The EAC addresses issues of engi-
neering concern through a diverse set of activities including tech-
nical forums, technical seminars, new engineer orientations, and

engineering surveys.

EAC Goals

e Promote communications between engineers concerning issues
such as professional development, new technologies, and inter-
nal developments.

e Promote communications from engineering to management con-
cerning issues such as technology, environment, and market-
place trends and pressures. To this end, the EAC needs to be
aware of engineers’ views and be capable of advising on issues
concerning the engineering community.

® Promote communication from management to engineering con-

cerning company philosophy and business directions.

The Engineering Activities Council (EAC). From left to right, front row: Kathy Dagostino, Paul Dittman, Preston Seu,
Chairman. Second row: Phil Baker, Pat Green, Tom Ruttan, Nick Fkiaras, Paula Mossaides, Mike Nakamura, Ward Cun-

ningham. Back row: Bill Wilke, Russ Anderson, Mike Hatch, Steve Lyford. Not present: Mark DeSpain, Gary Fladstol,
Richard Greco, Geoff Herrick, Bill Trent, Mike Zuhl.

| TECHNOLOGY
REPORT

EAC ROSTER

Russ Anderson WR-1869 92/726

DAID-DAD/Logic Analyzers

Phil Baker DR-3149 13-035
\&TG/Solid State Group

Ward Cunningham DR-6180 50/384
|&TG/Applied Research Group

Kathy Dagostino WR-1729 92/515

DAID-DAD/MDP.

Mark De Spain WL-3755 63/356

DAID-IDD/GPP

Paul Dittman DR-3058 39/111

|&TG-ISD/Lab Instruments

Nick Fkiaras WL-3033 63/397
|&TG/Computer-Aided Engineering

Gary Fladstol DR-3064 39/103
I&TG-ISD/Lab Instruments

Richard Greco W1-3176 63/196
DAID-IDD/GAS

Pat Green DR-5461 50/252

1&TG/Display Group

Mike Hatch DR-2649 39/204

1I&TG/Portables

Geoff Herrick DR-6374 59/840

|&TG/Solid State Group

Steve Lyford DR-2952 39/194

1&TG/Portable Instruments

Paula Mossaides W1-2352 61/215

DAID-IDD/ECS

Mike Nakamura DR-1343 58/594

C&IG/TV Products

Tom Ruttan DR-1463 58/733

C&lG/FDI

Preston Seu W1-3856 63/356
DAID-DAD/GPP

Bill Trent DR-1447 58/305

C&IG/CNA

Bill Wilke WR-1521 92/815

I&TG/GPI

Mike Zuhl W1-2551 61/215

DAID-IDD/ECS

MODULA-2 AS A SOFTWARE
ENGINEERING TOOL

Patrick Clancy is a software engineer II in the Ad-
vanced Instrument Research Group, part of the
Applied Research Group. Pat joined Tektronix in
1981. He received his MSCS from the University
of Wisconsin, Madison.

Modula-2 is a programming language developed by Niklaus
Wirth and is a descendent of Pascal. Because it is intended for
systems programming, Modula-2 provides many features not
found in Pascal, or even in Pascal extensions. These features
enhance Modula-2’s suitability for the creation of modular sys-
tems, for providing access to the underlying machine, and for
real-time control applications. These are the areas in which Pas-
cal is most deficient, and where the need for a next-generation
Pascal successor has been most strongly felt by systems

programmers.

This article reports on the construction of a Modula-2 compiler
and run-time system for the Motorola MC68000 microprocessor,
and on the desirable language features which led to the under-
taking of this project. This work was done as part of a program
in Advanced Instrument Research to develop computer-based

instrumentation. Using the Modula-2 tools, a software develop-
ment team has created stand-alone modules to drive the hard-
ware of an instrument system prototype.

Modula-2 was chosen over more readily available languages
because it was better suited to meet the stringent requirements
of software engineering for complex instrument systems. The
most important requirements we identified were (1) modularity
of design, (2) reconfigurability of the system, (3) compiler type-
checking across all system interfaces, and (4) the ability to do all
coding in the high-level language (HLL); assembly code should
not be required. (Assembly code can be included, but it is not
required as it is in other languages for certain functions.)

Language Features

A brief overview of Modula-2’s distinguishing features will be
presented here. A manual and report on Modula-2 can be
found in [8].

The basic control and data structures of Modula-2 and Pascal
are almost identical. (Modula-2 has one control construct, LOOP/
EXIT, and two data types, procedure and process, which do not
have Pascal counterparts). In this article, Pascal will be used as
the basis for comparison.

reesse 19

Niodules

Programs in Modula-2 are written in terms of modules. All sepa-
rate compilation units are modules; in addition, modules may be
nested within procedures or other modules. Modules are a means
of partitioning a program and creating abstract data types. Mod-
ules can be used to group together related operations and hide
global data that should not be generally accessible.

The most significant aspect of the module feature is its role in
providing a separate compilation capability within the language.
A special type of module, called the definition module, is used
as an interface between compilation units. The information from
definition modules is accessed by the compiler to type check
externally referenced (imported) names. This type checking is
as complete as the checking within compilation units, since dec-
larations in definition modules provide all the necessary informa-
tion. For example, complete checking of parameter types is done
on the usage of procedures exported from separately compiled
modules. This capability is usually unavailable in Pascal, includ-
ing those extended Pascals that provide for separate compila-
tion, since major syntactic modifications and additions would be
necessary.

Each definition module has a corresponding implementation
module, which provides the actual code body of all procedures

declared in the definition module. In addition, the implementa-
tion module may contain other objects which are not exported.
The compiler checks the consistency between declarations in
the definition module and their corresponding implementations.
The important consequence of this mechanism is that the imple-
mentation in one module may be changed with certain knowl-
edge that other parts of the system will continue to function cor-
rectly as long as the interface (definition module) remains un-
changed. The interfaces are the anchor points for the overall
program design, allowing the implementations to be carried out
independently, possibly by different members of a software

design team. The overall structure of a Modula-2 program is
shown in figure 1.

Processes and Interrupts

The real-time control requirements that characterize complex
hardware systems usually cannot be met within the framework

of commonly used HLLs. For this reason, the software control-

ling such systems often contains some assembly code to deal

with machine-level tasks such as interrupt-handling. Modula-2
provides the facilities to program real-time control entirely within
the language. This is done without enforcing a particular high-
level view of processes and scheduling, as is found in other
multiprogramming languages,such as Concurrent Pascal [3],
Mesa [5], or Ada [6].

To support multiprocessing, Modula-2 provides a PROCESS
data type and a TRANSFER operation on this type to effect a
context switch. This constitutes a simple co-routine mechanism.
A scheduler module (written in Modula-2) can be provided to
implement true multitasking. Modula-2 thus provides the lowest-
common-denominator mechanism upon which any sort of multi-
tasking can be easily built; a scheduler can be constructed in
about 50 lines of Modula-2 code.

DEFINITION MODULE A DEFINITION MODULE B

EXPORT foo

DEFINITION MODULE C

EXPORT bar

VAR bar = RECORD

PROCEDURE foo (); ‘

END;
”

“
-

at. aN
o

FROM B IMPORT foo FROM C IMPORT bar FROM B IMPORT foo

PROCEDURE foo ();
BEGIN IMPLEMENTATION MODULE C

<code body of foo>
END foo;

IMPLEMENTATION MODULE A

IMPLEMENTATION MODULE B

Figure 1. The structure of a Modula-2 program. All ex-
ports out of the compilation unit are from definition mod-
ules. Definition modules may contain all types of declara-
tions, but no executable statements. For exported proce-
dures, the procedure heading only appears in the defini-
tion module. If a definition module remains fixed, the cor-

responding implementation module can be changed at will
without affecting the correct functioning of other parts of
the system.

To support interrupt-handling, Modula-2 provides an |OTRANSFER
operation. This operation is similar to TRANSFER except that it
causes the caller to suspend pending a specified interrupt. In-
terrupt handlers are therefore written in Modula-2. A priority spec-
ification for modules is also provided, so that interrupts having a
given hardware priority may be disabled during execution of criti-
cal code. This establishes a “critical section” [2] within a module,
which guarantees that operations on data accessible to multiple
processes will be indivisible and correct. Once again, Modula-2
provides a simple and elegant abstraction of the machine archi-

tecture, which allows complete flexibility in implementing higher-
level operating system functions (see figure 2).

State of the run-time interrupt table after calling IOTRANSFER (x, y, 1)

val va2 va3
a aie eel RTT,

PROCESS PROCESS
variable variable

x y

Va, = table entry for
nth 68000
interrupt vector

Figure 2. To support interrupt-handling, Modula-2 employs

an operation called IOTRANSFER. This operation causes
the caller to suspend pending a specified interrupt. The
effect of calling IOTRANSFER (X,Y,1) is shown. When in-
terrupt 1 occurs, the current process state is stored in Y
and process X is activated.

Although these system operations were originally modeled after
the PDP-11 processor architecture [8], we found that they were

yy TECHNOLOGY
REPORT

entirely sufficient for the 68000 as well. They are probably a
good fit with most processors that have an interrupt capability.

Machine Access

One reason assembly language has commonly been used in
system-level programming is the insulation of many HLLs from
access to the underlying machine. Such insulation restricts the
system-programmer in languages—like Pascal—that enforce
strong type checking rules.

Modula-2 uses Pascal-style type checking but provides methods
to circumvent the checks. This is done by using special un-
checked data types (WORD, ADDRESS), or using type names
as type-transfer functions. It is still up to the programmer to iso-
late hardware-dependent code into modules that can be easily
identified and replaced when hardware is modified.

The Compiler

The complete compiler system was created by constructing a
front-end compiler using UNIX* tools (C, yacc, lex), and incor-
porating this compiler with an existing code generator for the
68000. The code generator comes from the GCS Pascal com-
piler, which was discussed in a previous issue of Technology
Report [7]. Because of the close similarity of most Modula-2 and
Pascal statement and data types, the intermediate code form re-
quired as input to the code generator was with few exceptions
sufficient as an output language for the front-end. (The inter-
mediate code consists of quadruples, which resemble a high-
level assembly language.)

The front-end compiler operates in two passes. Two passes are
required because Modula-2 allows references within the same
scope to identifiers whose declarations have not yet been en-
countered. Thus, the forward declaration of Pascal is not re-
quired, and constant/type/variable declarations need not be
grouped at the beginning of a block.

In addition to the usual syntactic and semantic checks, the infor-
mation from definition modules must be accessed for externally
referenced (imported) names. This accessing of symbol-table in-
formation from other compilations (completed during the first
pass) constitutes, in fact, a separate linking step. This step is not
found in languages that have no interface specifications. The
compiler does version control when accessing this external in-
formation, by checking time stamps created when the definition
modules were compiled; this ensures that imports of the same
name are accessing identical information. (Different versions
bearing the same name would be created if, for example, a
definition module were modified and recompiled in between
compilations of two other importing modules. This situation is
usually to be avoided). This version-control process is illustrated
in figure 3.

Run-Time System

The run-time system must implement the operations on the
PROCESS data type, in addition to the more usual operations
such as error checking and floating-point processing. Because
of the simplicity of the system model, the amount of extra run-
time support code for PROCESS operations is relatively small.

DEF. MODULE Q DEF. MODULE Q

EXPORT foo , | EXPORT foo

o
RECOMPILE

001

TIME. H
STAMP i

009

ra !

ev i
? i

ey
DEF. MODULE X / DEF. MODULE Y ¥

4

contains: ra contains:
Q. foo [001] Q. foo [009]

003 O11

Sa a
an importing module

ERROR!
incompatible versions (DEFINITION or IMPLEMENTATION)

of Q. foo
discovered here

*UNIX is a trademark of Bell Laboratories.

Figure 3. In the Modula-2 compiler, version control is ac-
complished by checking time stamps. This ensures that
all imports bearing the same version name are identical.

One complication arises from the dynamic nature of the inter-
rupt specification; a particular interrupt vector on the 68000 can
be dynamically associated with different sets of Modula-2 pro-
cesses. This association requires that an interrupt table exist at
run-time, to store pointers to the process state variables (see
figure 2).

We have written an operating-system kernel in Modula-2 to pro-
vide multitasking (and eventually multiprocessor) capabilities,
as well as various operating-system utilities such as a terminal

driver. This kernel constitutes a stand-alone system for the 68000
single-board computers that control instrument system
hardware.

Experiences with Modula-2

Modula-2 has met the requirements of modularity, reconfigura-
bility, inter-module type checking, and real-time contro! capabili-
ty that are crucial to well-engineered software for a complex
computer-based instrument system. In fact, we expect the bene-
fits of using Modula-2 will increase as the size and complexity of
software development efforts increase—because interface spec-
ification and modularity become correspondingly more impor-
tant under these circumstances.

Problems and Qualifications

While this article has emphasized Modula-2’s good points, there
are also some qualifications to be made, and problems to be
pointed out:

1. Some language features need to be either clarified, modified,
or extended. In order to write flexible 1/O functions, for exam-
ple, variable argument counts in procedure calls should be
allowed in some situations. Other problems include the lack
of a way to specify initial values in variable declarations and
Modula-2’s overly restrictive limitation on set size.

2. Modula-2 is harder to compile than Pascal. One reason for
this is the greater sophistication of the scope-of-visibility rules
for identifiers—this sophistication is due to the module feature.
These rules make compiler symbol-table operations much
more complex than those needed for Pascal. This extra

rong

degree of flexibility in controlling identifier visibility is termed
scope control [1], and implementation solutions have not yet
been much discussed in the compiler literature.

The definition-module interface also adds to compiler com-
plexity. A Modula-2 compiler therefore requires more machine
resources to run than a Pascal compiler. (The compiler de-
veloped by the author runs on a VAX 11/780.) Note, however,
that Modula-2 presents fewer implementation problems
(because of its inherent simplicity) than some other systems-

programming languages, such as Ada.

3. While Modula-2 can facilitate the software engineering of
large programming projects, it is not necessarily the best
choice for doing a small job fast. This is because module in-
terfacing and type checking add overhead to the program
development process; for very small programs the benefits
which go along with this overhead will not be apparent.

Conclusions

Modula-2 provides an excellent basis for applying software
engineering principles to large software projects, especially for
operating-system and stand-alone systems development. As
computer-based systems become more complex, high-level

language features that can manage complexity will be increas-
ingly important in the software development process. U

References

[1] R.P. Cook and T.J. LeBlanc, “A Symbol Table Abstraction to
Implement Languages with Explicit Scope Control,” /EEE
Trans. Software Eng., Jan. 1983.

[2] Dijkstra, E.W., “Cooperating Sequential Processes,” in
F. Genuys (ed.), Programming Languages, Academic

Press, 1968.

[3] Brinch Hansen, P., “The Programming Language Con-
current Pascal,” /EEE Trans, Software Eng., June 1975,

p. 199-207.

[4] Kathleen Jensen and Niklaus Wirth, Pasca/ User Manual
and Report, Second Edition, Springer-Verlag, 1974.

[5] Mitchell, J.G., Maybury, W., and Sweet, R., Mesa Language
Manual, Xerox Res. Ctr., Palo Alto, Calif., 1979.

[6] Reference Manual for the Ada Programming Language, Pro-
posed Standard Document, United States Department of
Defense, July 1980, GPO 008-000-00354-8.

[7] Allen Wirfs-Brock and Paul McCullough, “A Pascal Compiler
for Motorola 68000 Firmware Development,” Technology

Report, Sept. 1981.

[8] Niklaus Wirth, Programming in Modula-2, Springer-Verlag,

1982.

BOOK BY TEK AUTHOR
DEALS WITH STANDARDS

Charles D. Sullivan

Charles D. Sullivan, late manager, Technical Standards, has

written a monograph Standards and Standardization, published
by Marcel Dekker, Inc., New York. Chuck has compiled a broad
overview of the subject based on his many years of on-the-job
involvement with standards.

Standards and Standardization is an excellent introduction to
this important subject. Engineering students will welcome it as

an essential text that can be studied without prerequisites, and
engineers will appreciate the perspective this book offers. It is

equally valuable for professional seminars and in-house training
programs, as well as supplementary reading in social science
courses.

Some subjects covered:

e Approaches to standards

e Ancient standards

e Voluntary and mandatory standards

e Mechanics of standards preparation

e Organizations

e The Standards Engineering Society

e Standards coordination

° The General Agreement on Tariffs and Trade (GATT)

For more information, call Bonnie Kooken, ext. B-1800. CJ

a TECHNOLOGY
REPORT

ERGONOMIC BARRIERS
TO SALES ARE REAL

Gene Lynch is a human factors engineer in the
Systems Engineering group, part of IDD. Gene
ioined Tektronix in 1981 after teaching math, phys-
cs, and mechanical engineering at the Santa Cat-
lina School and the Naval Postgraduate School

n Monterey, California. Each summer from 1973
o 1980, he was a consultant to Tek. Gene holds

a BS, MS, and PhD in Engineering Science from
the University of Notre Dame.

Late in 1981 IDD started losing sales in ergonomically sensitive
markets. Sales statistics dramatically pointed toward worse losses
to come. To separate ergonomic fact from fiction IDD formed the
Human Factors Task Force. Its mission was to establish good
communications with our people in the ergonomically sensitive
markets and with technical organizations, government commis-
sions, and the standards bodies. Then, the task force was to de-
termine what was needed to eliminate ergonomic barriers to sales.

The members of the task force were Bruce Carroci, Bob Edge,

Jerry Murch, Bob Russell, and Gene Lynch (chairman).

A little more than two years ago few of us had heard of er-
gonomics. It was a term that was popular in Europe. Its sim-
plest meaning is the science of making work easier. A more
complete definition is the adaptation of equipment and the
work environment to meet man’s strengths, capabilities,
and limitations. Ergonomics is derived from two Greek
words: ergon, for work and nemein, meaning to manage,
divide, or distribute.

A World-Wide Challenge

In Europe ergonomics has focused on improving the nature of
work with productivity a secondary goal. In the United States
the primary interest has been in increasing productivity. Prelimin-
ary data supports the position that good ergonomics is good

economics.

Germany has two, somewhat conflicting, sets of standards: the
German Safety Standard by the TCA (Trade Cooperative Asso-
ciation) and the DIN 66234 by the Deutches Institut fur Normung.

The TCA can, in essence, ban from sale in Germany any equip-
ment violating TCA standards. In Germany it is not uncommon
for sales engineers to be met by a purchasing agent holding the
pink booklet containing the TCA safety standard. It also is com-
mon for workers’ councils to have a say in a purchase or in pur-
chase policy. These councils are demanding ergonomically de-
signed terminals and workstations.

The effects of a TCA ban extend beyond Germany. Although only
Germany and Sweden have official ergonomic standards, in the
absence of an International Standards Association (ISO) standard,
most of Europe has accepted the German standards as de fac-
to. The ISO will begin working on a standard this spring.

in Germany it is not uncommon for purchasing agents to
greet sales engineers with the TCA safety standard in
their hand.

Canada too is active in ergonomics, trying to regulate video dis-
play terminals (VDTs). The Task Force on Micro-electronics and
Employment has just released recommendations for such regu-

lations in their report, “In the Chips.” British Columbia wrote non-
binding guidelines last year. This year, the British Columbia Gov-
ernment Employees Union is saying, ‘the guidelines must be

followed.”

In the US Too

In this country several states have considered VDT regulations.
This is unsettling, because the absence of a national standard

could put Tektronix in the untenable position of having to deal
with numerous conflicting standards in the American market.
The lack of a U.S. position also limits Tek input to the ISO com-
mittee that will draft the ISO standard.

Tektronix is working with the Human Factors Society in trying to
get an American standard through the American National Stan-
dards Institute (ANSI). ANSI is a member of ISO.

Although we are not enthusiastic that ergonomics is an area that
needs to be standardized, we strongly support the development
of an American position—we face the reality of the German stan-
dards, the German standards influence on the ISO, and the devel-
opment of state-by-state ergonomic standards. We feel that now is
the time to pursue a reasonable standard while we have a chance
to help define its structure and content.

How does all this affect our products? Without serious attention
to ergonomic issues, we could be maneuvered out of one or more
markets. We need to develop cost-effective answers to the chal-
lenges of this rapidly moving market requirement. Rather than
just meeting the standard, our goal should be to meet our cus-
tomers needs by following the underlying principles of ergonomics.

Guidelines Available

Rather than merely designing products to meet the letter of the
regulations, IDD people have been proactive in industry efforts
to develop standards and guidelines that assure product salea-
bility. One effort, the Human Factors Task Force, has recently
published Guidelines for Eliminating Ergonomic Sales Barriers.

TONER

The Guidelines were developed after closely scrutinizing ergo-
nomic regulations and practices and noting market sensitivities.
IDD designers who follow the guidelines should be able to not
only avoid building unsaleable products, but their products should
be more saleable because the needs of the user are dominant in

the Guideline.

Although the Guidelines are based on IDD product and market
needs, designers in the other divisions may find the contents of
this 17-page publication useful. The guidelines deal with displays,
keyboard electronics, workstations, systems considerations, soft-
ware and measuring techniques. Copies are available from
Gene Lynch, d.s. 63-225.

IDD designers may want to discuss specific standards and mar-

kets with either Jerry Murch, W1-3858, or Gene Lynch, W1-3730.

Here are some of the highlights from this document:

Displays

The minimum contrast ratio should be 3:1 in normal lighting

conditions.

The contrast must be manually adjustable by the operator.

Some sort of antiglare treatment is required.

The display should be flicker free.

Jitter is to be less than 0.7 minutes of arc as seen at 500 mm or

less than 0.1 mm actual motion.

Distortions are to be less than +1 percent of screen height or

width.

Visible variation of brightness across the screen is to be avoided.

The screen surround as well as other surfaces are to have matt

finish and with reflectivity between 20 percent to 50 percent.

The display should be adjustable for tilt and viewing distance (in-
tegral or optional device).

Characters

A7x9 matrix is the preferred minimum with a 5 x7 as an ab-

solute minimum.

The character height is to be a minimum of 2.6 mm (from the
German standards) to a minimum of 3.1 mm (from the Canadian

requirements).

Keyboards

Keyboards are to be detached and as thin as possible (30 mm

at the home row).

Tactile feedback is desirable, as is optional audio feedback (pop-

ular with the French).

When numeric entry is used extensively that a 10 key pad is rec-
ommended. If possible, it should be relocatable to the left or

right of the main keyboard.

From DESIGN, May 1980

Keyboard slopes should be adjustable (8 degrees for fixed slope
keyboards).

Slide stops should be provided to keep the keyboard from slip-
ping on the work surface.

National keyboards should have all legends in the native
language.

Red indicators should only indicate warnings, not status.

The keyboard cable should allow placing the keyboard up to
6 feet from the center of the display.

The legends on the keyboard should be dark characters on a
light background.

System

Controls should be easy to reach and operate.

Equipment plus ambient noise must not exceed 55 dBA. The
equipment itself should not exceed 50 dBA (measured at the
operator’s position).

From DESIGN, May 1980

a TECHNOLOGY
REPORT

Thermal comfort is a concern. Exposed surfaces are to be com-
fortable to the touch. Exposed heat sinks should be kept below
60 degrees C. Hot spots should be avoided. No part of the op-
erator’s body should be exposed to a temperature higher than
3 degrees C above the ambient.

Drafts should be avoided. Air flow at the neck, wrists, and ankles

should be less than 0.1 meter per second.

The height of the display at its lowest position should be no
higher than 14 inches above the work surface. Its highest posi-
tion should be at least 20 inches above the work surface.

Workstation

Displays should be able to tilt, swivel, and be easily positioned
in the work area (by integral design or auxiliary device).

The viewing angle should allow for maximum perpendicularity.
Perpendicularity and glare requirements can conflict, so glare
control and tilt are both required.

There should be 50 to 100 mm unused space in front of the key-
board on the work surface for a palm rest.

Surfaces should be adjustable to accommodate the range of all
persons from those larger than the 5th percent female to smaller
than the 95 percent male.

All adjustments should be easy and require little force and should
not accidentally readjust.

All corners and edges should be rounded.

There should be adequate leg and knee room.

The elements of the workstation should be modular, reconfigur-
able, and flexible.

Adequate work surface should be provided for the application. '

The workstation should include a proper chair and, where re-
quired, a document holder.

Cables should not interfere with the operator.

Software

In the near future (now if possible) system and error messages
should be in the native language to match the national keyboards.

The software should be in the native language.

While standards and ergonomic barriers have not been devel-
oped or identified in the area of firmware and software, it is clear
that the ergonomic aspects of firmware and software is every bit
as important or more important than the physical ergonomics. A
DIN committee is working on a standard dealing with man com-
puter dialogues.

For Nore Information

The Human Factors Task Force has completed its work, but the
job of monitoring, tracking and influencing the standards contin-
ues. Gene Lynch (63-225/W1-3730) and Jerry Murch (63-489/
W1-3858) will up date the Guidelines as necessary. They will
also be happy to answer questions concerning standards and
ergonomics. LJ

USER INTERFACE ASPECTS
OF A DESKTOP CAD SYSTEM

_| John H. Harms is a software engineer in Graphic
Design Application Systems (GDAS) part of IDD.
John joined Tektronix in 1980 to work on the team
of engineers that designed and implemented Tek
2-D Drafting. He is now working on new CAD sys-
tems. John received his BS in computer science
from Oregon State University. While at OSU he de-

| signed and implemented circuit board placement
and routing systems.

The user interface is a very important, but sometimes over-
looked, facet of a CAD (computer-aided design/drafting)
system. The man-machine interaction needed to make all
of the features work effectively really determines a sys-
tem’s usefulness. It is most desirable to have a user inter-
face that makes the system easy to learn and use, and yet
provides sufficient power to fully control a complex CAD
system. This article details some guidelines for the design
or selection of systems that fulfill these goals.

In designing a system that is both easy to use and powerful, the

use of a desktop computer in the CAD system has several ad-
vantages that make it an attractive alternative to the typical host-

computer terminal configuration. A desktop computer often has
display and interaction features that are unavailable on host-based
workstations in the same price range. For example, special-
function keys may require an expensive intelligent terminal sup-
ported by special software. Many desktop computers, however,
include such capabilities as standard features.

Other advantages of a desktop computer include instant response
(the computer has only one user to think about) and dedicated
peripherals (such as plotters and graphic tablets connected di-
rectly to the workstation). These advantages make it possible to
design a highly interactive user interface at much lower cost than
would be possible with a larger computer.

This article examines several facets of man-machine interaction
as they relate to drafting systems. Some examples are taken from
the Tektronix, Inc. PLOT 50 2-D Drafting package, a computer-
aided drafting system that runs on a desktop computer. Four
important aspects of a user interface will be discussed:

1. Employing the computer display effectively.
2. Making it easy to enter information into the system.

3. Providing capabilities that allow fast and efficient operation.

4. Preventing unpleasant surprises and uncertainty.

TENOR OE

Although the Tektronix 2-D Drafting system is used for examples,
the concepts in this article apply to the design of any CAD user

interface on a desktop computer.

Employing the Display Effectively

The effectiveness of a user interface depends a great deal on
how well the hardware is utilized. In particular, the computer’s
display is the focal point of the user’s attention.

In general, the larger the screen, the better the user interface.
For one thing, a large screen has more room for tutorial mes-
sages to help the user decide how best to respond. For exam-
ple, a menu can use full English phrases:

Select dimension alignment

1. Aligned (text at appropriate angle)

2. Unidirectional (text forced horizontal)

With a small screen, it may be necessary to use cryptic abbrevi-
ations, like ALIN and UNDR. Such abbreviations tend to increase
learning time and force users to refer to manuals more often.

Another advantage of a large, high-resolution screen is the big,
detailed image. The user can put more of the drawing on the
screen and yet keep small features visible.

Employing a DVST can complicate the design of a good user in-
terface, because once an image is drawn on the screen, it re-
mains until the whole screen is erased. Prompts and messages
can quickly fill the screen forcing the image to be redrawn, a pro-
cess which can take time. Until recently, the only way to get the
screen size and resolution of the DVST, without the redraw limi-
tation, was to employ a very expensive high-resolution refresh-
display terminal. However, it is now possible to use a relatively
inexpensive desktop computer (such as the Tektronix 4054) that
provides both stored images and refreshed images. Such re-
freshed graphics are called “dynamic graphics.”

Why are dynamic graphics important? First of all, they go a long
way toward eliminating a major objection to DVST displays — the
need for redraws. With all messages and user inputs in refresh,
there are no full-screen redraws forced by a message area be-

coming filled.

Since any graphic image can be placed in refresh and moved
around on the screen at will, refresh has many other uses. For
example, the user can “drag” symbols and text around on the
screen until their locations are satisfactory. A complex and ac-
curate cross-hair cursor helps the user precisely locate graphic
positions. Other powerful tools such as rubber-band lines (lines
that “stretch” as the cursor moves), blinking location indicators,
and blinking messages are provided. There is an option for the
refresh images to appear in orange, which provides a sharp con-

trast to the stored green image.

Making It Easy to Enter Information

A system that is easy to learn and use is achieved by designing
the user interface to be friendly, yet powerful. This presents the
designer with two conflicting goals: simple enough for the novice,
but still efficient for the expert.

There are several common methods for telling a CAD system what
to do next. One is command entry. Here the user types in a com-
mand, usually with parameters. For example: COPYROT 45,7
might mean to make seven copies after rotating the image 45°.
Although very efficient once learned, the command-entry method
requires the user either to memorize command names and pa-
rameter orders or to refer repeatedly to a manual. The command
method requires extensive user training.

Another common technique is called menu hierarchy. This meth-
od presents a menu of commands; each command choice from
a menu can produce another menu, and so on (see figure 1). In
the copy-rotation example, the user might choose EDIT from a
menu consisting of ANNOTATION, GEOMETRY, EDIT, and
PLOT. His choice might then produce an “edit” menu consist-
ing of BLANK, COPY, MODIFY, DELETE. Selecting COPY
would produce a “copy” menu: MIRROR, ROTATE, RESCALE,
and TRANSLATE. After ROTATE is selected, the user is asked
for the degrees of rotation and the number of copies. Although
easier to use than command entry, the menu method can be

tedious for an experienced user, who, instead of going directly
to the desired function, has to go through many levels of

menus.

MENU HIERARCHY EXAMPLE:

ANNOTATION,GEOM ETRY,EDIT,PLOT

BLAN COPYMODIFY,DELETE

MIRROR. ROTATE, RESCALE, TRANSLATE

ADDITIONAL PROMPTS

Figure 1. The menu-hierarchy technique presents a
choice of commands. If the user selects ‘‘Edit’’ from one
level, the next level is presented. If “Copy” is selected, a
third level appears . . . and so forth.

A third method, which is gaining popularity, uses the tablet
menu. The tablet menu is a formatted menu on a digitizing tab-
let from which the user selects by pointing with a special pen
(see figure 2). In the copy-rotate example, the user points to the
COPY:ROTATE function and then is asked for the degree of ro-
tation and the number of copies. The tablet-menu method has
much of the speed of command entry, yet does not force the
user to memorize command syntax or to wade through menu
levels as in the menu-hierarchy method.

Prompts

“Prompts” are a process in which the system asks the user for
information. Preferably, each prompt should be complete and
somewhat tutorial, yet concise. For example, “Enter name of
drawing to be deleted” is better than “Name.” In contrast,

“Please enter the name of the stored drawing that you want to
be deleted from the flexible disk drive’ is too wordy. Prompts of
an appropriate length give the user enough information to make
an intelligent response.

a TECHNOLOGY
REPORT

I:
 F

“
a
 '

=

HUE
bb
]

T
R
L
]

pe

e
f
e
|
-

ih

y.

I
B
A

B
e

4
4

n
n

n
e

= .

a
f
x

d
m

{p
i

= t i

int
 yfzt~ ee + Dw Big

Figure 2. Tablet menus offer much of the speed of com-
mand entry without forcing the user to memorize names
of parameters.

Because desktop computers are fast they have the advantage
here. On a host/terminal system, the slow communication speed
(low baud rate) can limit interaction speed with anything beyond
very abbreviated prompts.

Menus and yes/no prompts allow the user to see all his options
and to select the one that matches what he wants to do. This al-
lows the user to work without having to memorize the options or
to repeatedly refer to a manual. For example, if the drafting sys-
tem requires the user to specify the units for dimensioning, it
should show the choices:

Select dimension units

Unitless decimal

Decimal foot

Decimal inch

Foot, inch, fraction

a
F
O
N

Inch, fraction

The user should not have to look up dimension choices in a man-
ual or guess and hope that unit type 4” is what he needs (or
that “FT/IN/FRAC” is a valid input).

Most prompts should have a default. (A default is what the sys-
tem assumes if the user does not enter the requested informa-
tion.) If a default exists, it should be displayed with the prompt.
Good default selections serve two important purposes: (1) to
help the experienced user work faster, and (2) to suggest a re-
sponse for a new user who may not understand the full implica-
tions of the question. The choice of defaults should follow the
principle of “least astonishment,” which is discussed in the sec-
tion on preventing unpleasant surprises.

As much as is possible, prompts and messages should be in
the user’s language. Although some computer terminology is
necessary, the system should avoid computer jargon whenever
possible. Most users who would scratch their heads at “I/O de-
vice #2 byte count exceeds current capacity” would readily un-
derstand “Drawing will not fit on the drawing disk.”

A side note: Prompts in both upper and lower case are much
easier to read than those in all upper-case. The ‘“‘shape” of the
words can be perceived and understood more quickly.

Input to the System

Desktop computers often have great flexibility on how the user
can answer a prompt. (Input to a system is the user’s answer to
a prompt.) For example, it is easy for the program to receive one
character at a time (single-key) and give instant feedback. (On a
large computer system, instant feedback is often not practical due
to low communication speeds and time-sharing lags.)

A user interface can take advantage of single-key input in sever-
al ways. First of all, invalid keys can be screened out immediate-
ly by having a friendly bell ring right after the user presses one.

Without single-key input, the user would type in a whole line of
text and press RETURN only to get a “syntax error” message. He
would then have to re-enter the correct text. Single-key input also
speeds information entry, since one-character entries like Y and N
for yes and no responses require only one keystroke.

When prompted for information, the user should always be pro-
vided with a method to quickly “escape” to some known place.
For example, pressing the ESC key on the Tek 2-D drafting sys-
tem immediately returns the user to the point where he selects a
function from the tablet menu. Alternatively, pressing RUBOUT
returns the user to the previous question in a prompt sequence.
Escapes make it very easy to correct mistakes and give the user
more control over the system.

Numeric input is the input of parameter values to the system. A
system should be able to receive numeric input (and produce
output) in the measurement unit selected by the user. For exam-
ple, suppose a drawing has a scale of 1/4 inch = 1 foot. The user
should be able to specify five feet, three and one-eight inches
with something like 5’ 3-1/8 instead of 5.2604166. A system that
does not provide automatic scaling may even require the user
to compute the scaling by hand (6.2604166 x 0.25 + 12 =0.109592
for the above distance). When entering numbers, it is much easier
if the user can choose from a variety of ways. For example, 3/4,
2-7/8, 35° 16’, and 6.02E + 23 all make sense as numbers and
should be accepted.

Graphic input is how the user indicates positions on the drawing.
Flexibility is extremely important here. The user may want to sim-
ply indicate a position with a screen cursor. Usually, he will want
to have this indication “snap” to the nearest grid point (like graph
paper), but sometimes he may want to ignore the grid. On the
other hand, the user might want to “connect” to something al-
ready in the drawing, such as the endpoint of a line or arc. Al-
ternatively, he might want to use numbers to indicate the loca-
tion, either by absolute coordinates or by something relative to a
previous entry. Since there is no way the system can predict
which method the user wants to use, how should it prompt him?
Tek 2-D Drafting addresses this problem with a mode called
“free input.”

TEM D7

In the free input mode, any time the system needs a graphic po-
sition input, it gives the user instant access to any one of nine
methods of entry (see figure 3). Initially, in free input, a full-screen
cross-hair cursor appears; then the user selects a positioning
method by pressing a key. (Valid keys and their meanings are
displayed on the screen as shown in figure 4.) Basically, the
user can position by snapping to the nearest grid location (or ig-
nore the grid); or he can snap to one of four item types (points,
line endpoints, arc endpoints, and symbol connection points);
or the user can key in coordinates (either absolute or relative).

Symbol © | /. Keyin co
Point if 12.25,5.25 . :

Line : Are
Endpoint Endpoint

os alta Dit
2 2 7OF5, 2875 oT

igre So) Grid

Figure 3. ‘Free Input” gives the user nine options for

specifying any location.

ARC: CENTER & EDGE Z

\ re Gee ee
No oo fo et: Doli.

rn . : 80——— | le 100

Not ; of {pe

Ne re Aa

NV in
IN Rf ode:

Yo t i , oN
/ . \ at2-R 2a ; - B®

A | No 120049
J \ ee
Jo NG _ XYZ CORP. | |

Noo es NN | 7 SAMPLE DRAWING |”
7 er er ey . eos . woe \ ee +

Co Soe Be - FT hooes ey

Enter center location >
USE: Point, Lime, Arc, Symbol
ENTER: Keyin obsolute, Delta, Radial
CURSOR: Ignore grid, <SP> Use grid

Figure 4. Valid keyboard keys for “Free Input” are dis-
played (underlined) at the bottom of the screen. This
screen hardcopy also shows the cross-hair cursor that is
controlled by a set of thumbwheels next to the keyboard.

The flexibility of numeric and graphic input is further extended by
allowing the user to enter with either the tablet or the keyboard.
He might want to use the tablet to “digitize” or to trace a drawing
manually. On the other hand, to create a drawing from scratch,
the keyboard thumbwheels might be faster. The user has com-
plete control over the input source, and can even briefly switch
from one source to another for just one entry.

Providing Capabilities for Speed and Efficiency

No matter how fast a computer is, there will be times when a user
must wait for some operation to finish. The Tek 2-D Drafting sys-
tem improves user interactions with the system by providing ca-
pabilities that minimize this waiting. These capabilities include item
selection, redraw, and drawing simplification.

Item Selection and Redraw

Often, in drafting, the user will need to select an item from a draw-
ing. Suppose the user wants to delete a circle; how would he go
about it? Typically with drafting systems, you point to the circle
on. the screen using some sort of cross-hair cursor (like a gun
sight). The system then looks for the item closest to the cursor.
The Tek 2-D Drafting system uses a special cursor that has a
small circle at the intersection of the cross-hair lines. The circle
at the cross-hair intersection indicates a search tolerance. If you
put part of the item you are selecting inside the circle, the sys-
tem stops looking as soon as that item is found. With this method,
the item will usually be found much faster since it is not neces-
sary to search the whole drawing for the closest item. The Tek
4100 Series has this process implemented in firmware, which
makes it even faster.

Anything that reduces the number of items through which the
system must search speeds the selection process. The user
should be able to select by specifying the type of item. If he is
selecting an arc, the user should be able to tell the system to
look for arcs only and, thus, by ignoring lines, notes, symbols,
dimensions, etc., the system can speed through the selection
process.

The order of search also significantly affects selection speed. The
Tek 2-D Drafting system follows the “last in, most active” philos-
ophy. In other words, the items most recently added to a draw-
ing are the most likely to be selected for some further operation.
For example, it is more probable that the user will want to edit a
note just entered than one which was entered yesterday. For this
reason, searching is done backwards, that is, from the end of

the drawing to the beginning.

Redraw is another operation that benefits from the “last in, most
active” philosophy. The Tek 2-D Drafting system provides an
option to stop a redraw. Using this option, the user can start the
redraw and probably see what was wanted sooner (that is, the
items most recently added). He can then stop the redraw and
continue working.

a TECHNOLOGY
REPORT

Simplifying the drawing

Anything that temporarily simplifies a drawing will speed up vir-
tually all operations. One design approach is to allow the user to
turn off certain item types; for example, by telling the system not
to display annotation. The disadvantage of this method is that no
annotation will be visible and the user may need to see some of it.

A better approach is full blank and unblank capability. This al-
lows the user to blank (make invisible to both the user and the
system) by item type, level, pen, or other criteria. Blanking is
even more useful if the user can apply such criteria by region.
For example, the user could blank all dimensions that are out-
side of an area (a box which he indicates on the screen). Blanked
items are ignored by the selection and redraw processes until
the user unblanks them. Figures 5 and 6 show an example use
of blanking.

a
w
 H

+H

iY v = Ral

tle
 ih F

\
ea

4

me et mers

mn eee

SLR AD OT nee cme er nw nee

XYZ_CORP J
REAR PANEL |

iS ro = tern mee |
FE aT rE

Figure 5. Drawing before blanking.

EXAMPLE USE OF BLANKING

Figure 6. Same drawing as in figure 5 after blanking.

Preventing Unpleasant Surprises and Uncertainty

The design of a user interface should follow what James Foley
calls the principle of “least astonishment” (see bibliography). This
means that what really happens when the user tells the system
to do something should cause the least surprise and shock. In
addition, the user should never be left wondering “What's going
on — is everything working OK?” Proper implementation of the
user interface (and of the system in general) will help prevent
unpleasant surprises and uncertainty. This increases the user's
confidence in the system and in its ability to do what he wants.

Reliability

Paul Heckel, one of the innovators of the Craig Language Trans-
lator, gives a good example of what system reliability really means:
Suppose there were two systems. One would get your work done
in two hours, and the other would get it done in one hour. Which
one would you use? Obviously, the one-hour system. Now sup-
pose you found out that the one-hour system really gets your
work done in half an hour, but at the end of the half hour des-
troys all your work and makes you start from scratch. Which one
would you use now?

It is never fun to lose your work. Making a system reliable in-
volves several things.

First of all, the entire system should be “solid.” The hardware
should work together and should have a reasonable mean time
between failures. The software should be virtually bug free. The
user should never be hit with a computer error message like
UNDEFINED VARIABLE. Even in the event of error, the user
should not be left dead in the water. Except for the most ex-
treme hardware failures, users should be able to recover and
resume work without losing their drawings.

An additional reliability factor to consider is the ability of a sys-
tem to recover from a power failure. Recovery is especially im-
portant in offices, where users rarely have the protection of an
uninterruptable power supply (a special device that maintains
equipment power in the event of a brownout or a total power
failure).

Another advantage of desktop computer systems is that if one
workstation goes down, the others stay up. In comparison, if a
central computer goes down, all of the workstations are dead.

Preventing and recovering from user errors

One important way that a CAD system can help a user prevent
errors is to make sure the user knows what items on which the
system intends to operate. For example, suppose the user wants
to delete a line. Once the line is selected from the screen, the line
should be highlighted to verify that the correct item was chosen.
This could be done by making the particular item blink or change
color. The more visible and conspicuous the highlighting is, the
less likely it is that the user will make an irreversible error.

TEOMA DQ

The system should ask the user to confirm major actions. In the
above example, once the line to be deleted is highlighted, a
“Delete item?” yes/no prompt will prevent much distress if the
user intended to delete a different line. Potentially destructive
operations also can be flagged with blinking warning messages.
For example, if the user meant to blank an item but mistakenly
selected the delete function, a message that blinks “Warning:
deleted items cannot be restored” will help him catch the mis-

take before it is too late.

Another form of confirmation can be useful when the user is ma-
nipulating items. For example, when the user is duplicating an
item in the Tek 2-D Drafting system, the first duplication is shown
in refresh until the user confirms that it is correct. Only then does

the system actually change the drawing.

Another useful function is some sort of a delete-last-item or undo
command. This capability allows the user to quickly reverse an
action. How much you can undo varies from system to system.

Some will only remove the last item entered in the drawing,
whereas some systems can actually “unmodify” items that were
changed somehow. Once the system starts working on a com-
mand, the user should be able to stop it at any time by pressing
a special-function key or by some other action. Whenever possi-
ble, this interruption should leave things unchanged. For exam-
ple, if the user cancels an operation that involves overwriting a
drawing that already exists on disk, it is best if the system can
leave the original on the disk untouched.

There will be times when a user will ask the system to do some-
thing impossible, like finding the intersection of two parallel lines.
The result should be an error message, and possibly a warning
bell so the user will not have to constantly monitor the message
areas. (The bell should be friendly, not offensive or irritating.) The
error message itself should respect the user’s dignity and not
“shout.” In the parallel-line example, ILLEGAL INTERSECTION!!
is too emotional (am | going to jail?). A much better message
would be: “Lines are parallel - no intersection possible.” Friend-
ly error messages are less traumatic and increase user satisfac-

tion with a system.

Feedback to the user

We have all encountered the uncertainty that occurs when we
press a doorbell and hear no ring. Is it working? Should | knock?
Is no one home? Am | making a fool of myself standing here?
This is analogous for what a user feels when a CAD system does
not give instant feedback. We usually don’t mind waiting at the
door if we know that we were heard and that someone is coming.
Likewise, it is much easier to wait for a computer when you know
it understood and is performing your command. Timeshared
host-based systems, although intrinsically faster than desktop
computers, often make the user “wait at the door” without any

feedback.

The user interface of a CAD system must provide fast feedback;
this can take several forms. When the system user “presses the
doorbell,” something should happen. If you can hear a “ring,”
at least you know the system works. Likewise, when the user re-
sponds to a prompt on a computer, something should happen
instantly. For example, the prompts could disappear.

After you ring a doorbell, it is reassuring to hear responding foot-
steps indicating that you were heard. Likewise, the computer
should indicate that operations are in progress. To do this, the
Tek 2-D Drafting system displays a special message - “Working” —
any time the computer is busy. The user finds this message is
especially reassuring in operations that do not cause display ac-
tivity, such as saving a drawing on disk. In addition, many com-
mands produce running status messages like “15 items deleted.”
Some operations even display countdowns that indicate how
soon they will be finished.

Feedback is one of the best ways to reduce user uncertainty

about a computer system. The more certain the user is, the
more comfortable and productive he will be.

Conclusion

User interfaces have come a long way in recent years. The em-

phasis is moving more and more toward making the user as com-
fortable with the system as possible.

Desktop computers have helped to speed this change by provid-
ing interactive features at very attractive price-to-performance
ratios. Some desktop-computer features are unavailable on all
but the most expensive host-based systems.

No matter how good the computer hardware is, however, the sys-
tem is less useful if the computer software provides a user inter-
face that is difficult or unpleasant to use. It is the combination of
reliable, highly interactive hardware with reliable, highly interac-
tive software that makes a good user interface. This is what makes
a system really friendly, easy to learn, and efficient to use. These
factors, in turn, will greatly influence how useful the total system

is to the user.

For More Information

For more information, call John Harms, ext. W1-3439. LJ

This article was developed from material presented at the
Design Engineering Conference held in March, 1983.

Bibliography

Foley, James D., Human Factors of User-Computer Interfaces,
distributed by Computer Graphics Consultants, Inc., Washing-

ton, D.C., 1981.

Foley, James D. and Van Dam, Andries, Fundamentals of Inter-
active Computer Graphics, Addison-Wesley Publishing Co.,
Reading, MA, 1982.

3 TECHNOLOGY
REPORT

Grimes, Jack D. and Ramsey, Rudy H., ‘Psychology for User-
Computer Interfaces,” SIGGRAPH 82 tutorial.

Heckel, Paul, The Elements of Friendly Software, distributed by
QuickView Systems, Los Altos, CA, 1982.

Nickerson, R.S., “On Conversational Interaction With Computers,”
User Oriented Design of Interactive Graphics Systems, (ed.
Siegfried Treu), Association for Computing Machinery, New
York, 1977.

Savage, Ricky E., Habinek, James K., and Barnhart, Thomas W.,
“The Design, Simulation, and Evaluation of a Menu Driven User

Interface,” in Proceedings of Human Factors in Computer Sys-

tems, 1982.

Treu, Siegfried, “A Framework of Characteristics Applicable to
Graphical User-Computer Interaction,” User Oriented Design of
Interactive Graphics Systems, (ed. Siegfried Treu), Association
for Computing Machinery, New York, 1977. 0

Technology Report

MAILING LIST COUPON

LJ ADD Name: D.S.:
L] REMOVE

Not available to

field offices or

outside the U.S.

MAIL COUPON
TO 53-077

Payroll Code:

(Required for the mailing list)

For change of delivery station, use a directory
change form.

Teo 3

COMPANY CONFIDENTIAL
NOT AVAILABLE TO FIELD OFFICES

EWGd3¢ ADO TONHOFE

TISMNEOD J AaVHOTY

TLO-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer

