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TEK SPS BASIC Signal Processing Package 

PREFACE 

This manual describes the Signal Processing Commands Package for TEK 
SPS BASIC V@2 and V@2XM software. Any exception to an option or a capability 
of a command in this package being supported by a specific release of the 
software is noted where appropriate. Information that pertains only to 
extended memory (XM) systems is shaded. 

The prerequisite software for executing the commands in this package 
is the corresponding version of the TEK SPS BASIC System Software. The 
V@2 package (CP57001) requires the V@2 System Software (CP57000); the V@2XM 
package (CP57501) requires the V@2XM System Software (CP57500). 
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SECTION 1 

SIGNAL PROCESSING COMMANDS 

Introduction 

This manual describes the Signal Processing Package commands for TEK 
SPS BASIC V~2 and V~2XM. The package consists of seven nonresident commands 
for processing waveforms or arrays. These commands are summarized in Table 
1-1. The operations performed include convolution, correlation, differentiation, 
integration, fast Fourier transform, inverse Fourier transform, and 
rectangular-to-polar conversion. 

All the Signal Processing Package commands are designed to operate 
on floating-point waveforms and arrays. When a waveform is the destination 
for the output of a command, the data sampling interval (DSI), the horizontal 
units, and the vertical units are all updated to reflect the results of 
the operation. This automatic waveform arithmetic inludes the processing 
of the units strings (by an operation like the CAN string function) which 
cancels matching characters from strings that have a slash(/). 

The Signal Processing commands are used in the same manner as other 
nonresident TEK SPS BASIC commands. The command may be preceded by a line 
number and included in a program, or the command may be executed directly 
by entering it from the terminal in immediate mode. If the command is not 
in memory when it is called, it is auto-loaded if it is stored on the 
system peripheral device. If it is not in memory and not on the system 
device, the command must be brought into memory with the LOAD command 
before it can be executed. Auto-loaded commands are auto-released from 
memory when more free memory is needed; explicitly LOADed commands are 
removed from memory with the RELEASE command. Also, all auto-loaded commands 
can be removed from memory with a RELEASE AUTO statement. 
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TABLE 1-1 

SWUlary of Signal Processing Commands 

Performs a non-cyclic, discrete convolution operation 
on two source arrays or waveforms (which are overwritten 
by intermediate results) and places the result in a 
third array or waveform. 

Performs a non-cyclic, discrete auto- or cross
correlation operation on two source arrays or waveforms 
(which are overwritten by intermediate results) and 
places the result in a third array or waveform. 

Performs a differentiation of an array or waveform and 
places the result in a second array or waveform. The 
source and destination arguments may be the same, in 
which case the source is overwritten by the result. 

Performs an integration of an array or waveform and 
places the result in a second array or waveform. The 
source and destination arguments may be the same, in 
which case, the source is overwritten by the result. 

Performs a fast Fourier transform on a real-valued 
array or waveform via a power-of-two algorithm and 
places the frequency results in two arrays or waveforms: 
one for real and one for imaginary components. It also 
performs the inverse Fourier transform given the 
frequency component arrays or waveforms. 

Performs a rectangular-to-polar conversion of the real 
and imaginary component arrays or waveforms as returned 
by the RFFT command. The source arguments are 
overwritten by the magnitude and phase results. 

Performs a fast Fourier transform on a real-valued 
array or waveform via a power-of-two algorithm and 
overwrites the source with the result. It can also 
perform the inverse Fourier transform on frequency 
domain data stored in the same format as the result 
from its direct transform. 
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Command Descriptions 

The remainder of this section contains the command descriptions for 
the Signal Processing Package commands. The command descriptions are listed 
in alphabetical order, and include examples, syntax forms, and a discussion 
of how the syntax options are used. 

Guide to Syntax Notation 

The syntax forms describe how the commands may be typed on the terminal. 
Upper case characters and punctuation must be typed as shown, but any 
information in brackets ([]) is optional. Braces ({}) indicate that a 
choice must be made between one of the listed items. Items followed by an 
ellipsis( ... ) may be repeated one or more times. 

Memory Requirements 

The approximate size of each command is listed in Appendix H of the 
System Software manual. This size refers to the number of words of memory 
required to load that particular command. In some cases, the amount of 
memory needed to execute the command will be considerably more. 

Array Sizes 

The Signal Processing commands operate only on floating-point arrays 
and waveforms. In standard memory systems, the size of an array is limited 
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CORVL (Nonresident) 

Examples: 

CONVL X1 ,X,Z, TB 
10 CONVL A(0:127),B(0:127),C(0:255) 
20 CONVL X,Y,Z,T(0:63) 

Syntax Form: 

[line no.] CONVL I floating-point array I I floating-point array I 
floating-point waveform ' floating-point waveform ' 

I floating-point array I [ I simple numeric variable I J 
floating-point waveform ' floating-point array 

Descriptive Form: 

[line no.] CONVL source data, source data, target for convolved result [,sine table] 

Purpose: 

The CONVL command performs a non-cyclic, discrete convolution operation 
on two source arrays and places the result in a third array. 

Discussion: 

The CONVL command performs a fast convolution operation on two input 
arrays, placing the result in a third array. The convolution operation can 
be thought of as successively shifting, multiplying, and integrating the 
two arrays (waveforms) to be convolved, except that one of the waveforms 
is reversed in time before performing the shifting-multiplying-integrating 

process. This is evident from examining the summation that mathematically 
describes convolution discussed later in The Theory of Convolution. The 
actual operation in TEK SPS BASIC, however, is done in the frequency domain. 
This requires only a multiplication of the fast fourier transforms of the 
two arrays. (See The CORVL Algorithm for details.) 
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An important application for convolution is determining or predicting 
the output of a linear, time-invariant system (such as a passive filter 
or network). Given the input signal x(t) and the system impulse response 
h(t), the output can be predicted simply by convolving x(t) with h(t). 

The format of the CONVL command is illustrated by the following 
example: 

CON VL X, Y , Z , TB 

The first two arguments (X and Y in the example) are the input arrays to 
be convolved. They must be floating-point waveforms, arrays, or contiguous 
subarrays, of length N = 2m for some integer m 2. 4. The source arguments 
must not overlap. The CONVL command overwrites both source arrays with 
intermediate results during its execution. Because of this overwriting, 
you may want to save the original array contents elsewhere before executing 
CONVL. 

The third argument (Z in the example) specifies the target array for 
the convolution result. It must be a floating-point waveform, array, or 
contiguous subarray of length 2N, where N is the length of each source 
array. (Since a floating-point array in an extended memory (XM) system is 
limited to 8K elements, the largest N can be in an XM program is 4K = 212 
= 4096.} After the convolution is performed, this array contains the result 
in its first 2N-1 locations, elements Z(0) through Z(2N-2). The last 
element, Z(2N-1), is used to store intermediate results. Thus, after CONVL 
executes, the content of the last element is meaningless and should be 
ignored. 

The fourth argument (TB in the example) is optional. If it is specified, 
the Fourier transform (used by CONVL) is table driven. If the argument is 
a simple numeric variable, that variable is autodimensioned to an array 
of length N/2 and filled by CONVL with sine terms needed by the Fourier 
transform, creating the table. Subsequent executions of CONVL do not require 
regeneration of the table if the source and target array lengths remain 
unchanged and the table is not altered. (The table can be generated by the 
CORR, RFFT, and RFFT1 commands also. For more information about the table, 
see the RFFT command.) If the argument is an array, it must be of length 
N/2. CONVL checks the first element of the array. If it is the correct 
value, the array is assumed to be the proper sine-values table. If the 
first element is an incorrect value, CONVL fills the array with the correct 
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sine values. If the argument is not present, the necessary sine values are 
recursively generated as needed. This method saves memory at the cost of 
longer execution times. 

The Theory of Convolution 

The convolution of two time domain functions, say x(t) and y(t), can 
be expressed by the following integral: 

z(t) = ~: x(u)y(t-u) du 

The function z(t) is the result of convolving waveforms x and y according 
to the integral expression. The u is simply the arbitrary variable of 
integration for the definite integral. 

In signal processing applications, this operation is performed with 
a discrete approximation having a finite time window. For a time window 
of N samples, where each sample isb.t seconds apart, the general expression 
for the discrete approximation may be written as follows: 

N-1 
Z(nb.t) = b.t L X(kb.t)Y(nb.t - kb.t) for n = 121, 1, 2, ••• , 2N-2 

K=0 

where X and Y terms with indices that are less than zero or greater than 
N-1 are taken to be zero. 

to: 
If b.t is normalized to be 1, then the discrete approximation reduces 

N-1 
Z(n) = L X(k)Y(n-k) 

k=0 

for n = 0, 1, 2, ••• , 2N-2 

In the above summation, N is the length of the input arrays. Also, X(k) 
is the kth element of the first input array and Y(n-k) is the (n-k)th 
element of the second input array; k is merely an index that defines the 
range of the summation. The summation is computed by summing X(k)Y(n-k) 
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ask ranges from 0 to N-1; this is done for each value of n, beginning 
with 0 and ending with 2N-2. Each value of n thus defines a corresponding 
element of the final output array Z. For some values of n and k, the index, 
n-k, of array Y may be equal to a number less than 0. When this occurs, 
0 is used for Y(n-k). 

The CONVL Algorithm 

The preceding discussion illustrates one method for computing 
convolutions. It is instructive because it describes the way in which 
convolution data is formatted. However, rather than evaluating the discrete 
convolution summation directly, the CONVL command uses a faster computational 
method that takes advantage of the fast Fourier transform (FFT) and the 
inverse Fourier transform (IFT) algorithms. This method is based on the 
fact that the convolution of two signals (time domain) is equivalent to 
the multiplication of their Fourier transforms (frequency domain). Stated 
in more mathematical terms: 

F(Z) = F(X)F(Y) 

where F(X) and F(Y) are the Fourier transforms of the two time-domain 
signals, X and Y; and F(Z) is the Fourier transform of Z, the convolution 
of X and Y. 

Before the CONVL command actually performs the convolution on two 
arrays, it appends N zeroes to each of the input arrays, X and Y. This 
prevents cyclic convolution which can arise from the assumption of periodicity 
that the FFT makes. The zero-appended input arrays, X and Y, are then 
transformed to the frequency domain via the FFT and a complex multiplication 
is performed on the resulting arrays. Finally, an inverse Fourier transform 
(IFT) is performed on the product, resulting in a convolution of the 
original arrays. This procedure is equivalent to the direct evaluation of 
the non-cyclic convolution summation previously discussed, but the whole 
process is performed faster due to the smaller number of calculations 
required. 
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Units and Data Sampling Interval (DSI) Derinitions 

The following list describes how the vertical and horizontal units 
and data sampling interval are automatically assigned when a waveform is 
the target for the CONVL command. To simplify this discussion, it is assumed 
that A and B are arrays and that WA, WB, and WC are waveforms. Accordingly, 
the following conventions are used: 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 
SC: the data sampling interval for waveform WC 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 
HC$: the horizontal units for waveform WC 

VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 
VC$: the vertical units for waveform WC 

Using the above notation, these rules apply when the target argument 
(WC) is a waveform. An ampersand (&) indicates that the units strings are 
concatenated (joined together). 

CASE 1: Both source arguments are waveforms. For example: 

Then: 

CONVL WA,WB,WC 

SC = SA 
HC$ = HA$ 
VC$ = VA$ & VB$ & HA$ 

NOTE: A warning error is issued if the horizontal units for waveform WA 
do not equal the horizontal units for waveform WB, or if the data sampling 
interval for waveform WA is not equal to the data sampling interval for 
waveform WB. 
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CASE 2: The first source argument is a waveform; the second source argument 
is an array. For example: 

Then: 

CONVL WA,B,WC 

SC = SA 
HC$ = HA$ 
VC$ = VA$ & VA$ & HA$ 

CASE 3: The first source argument is a array; the second source argument 
is a waveform. For example: 

Then: 

CONVL A,WB,WC 

SC = SB 
HC$ = HB$ 
VC$ = VB$ & VB$ & HB$ 

CASE 4: Both source arguments are arrays. For example: 

Then: 

CONVL A,B,WC 

SC = 1 
HC$ = null string 
VC$ = null string 
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CORR (Nonresident) 

Examples: 

CORR X1,X2,Z,TB 
100 CORR A(0:127),B,C(0:255) 
200 CORR X,X,Y,T(0:63) 

Syntax Form: 

I floating-point array I I floating-point array I [line no. ] CORR 
floating-point waveform ' floating-point waveform ' 

I floating-point array I [ I simple numeric variable I J 
floating-point waveform ' floating-point array 

Descriptive Form: 

[line no.) CORR source data, source data, target for correlated result [,sine table] 

Purpose: 

The CORR command performs a non-cyclic, discrete auto- or cross
correlation operation on two source arrays and places the result in a third 
array. 

Discussion: 

The CORR command performs a fast correlation operation on two input 
arrays, placing the result in a third array. If the two source arrays are 
the same, or contain the same data, the operation is called autocorrelation. 
If the two input arrays are different, the operation is called cross
correlation. Like the convolution operation, the correlation process can 
be thought of as successively shifting, multiplying, and integrating the 
two waveforms to be correlated. But unlike convolution, the correlation 
process does not reverse in time either waveform before performing the 
shifting, multiplying, and integrating. In TEK SPS BASIC, however, the 
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actual operation is done in the frequeny domain by multiplying the fast 
Fourier transform of one source array by the complex conjugate of the fast 
Fourier transform of the other source array. (See The CORR A1gorithm for 
details.) 

Autocorrelation is a useful method of detecting the presence of 
periodic signals buried in noise. The technique is used in biomedical 
studies, astronomy, and tone-control systems -- to name just a few 
applications. On the other hand, cross-correlation is a useful tool for 
detecting whether a known signal is present in a noisy environment. A 
common application for cross-correlation is the detection and ranging of 
radar, sonar, and other transmitted signals. 

The format of the CORR command is illustrated by the following example: 

CORR X,Y,Z,TB 

The first two arguments (X and Y in the example) are the input arrays to 
be correlated. They must be floating-point waveforms, arrays, or contiguous 
subarrays of length N = 2m for some integer m 2. 4. The source arguments 
must not partially overlap; however, they may be the same array or waveform, 
which results in the autocorrelation operation. The CORR command overwrites 

both source arrays with intermediate results during its execution. (Because 
the input arrays are overwritten, you may want to save the original array 
contents elsewhere before executing CORR.) 

The third argument (Z in the example) specifies the destination, where 
the correlated result is stored. It must be a floating-point waveform, 
array, or contiguous subarray of length 2N, where N is the length of each 

After the correlation performed, this array contains 
the result in its last 2N-1 locations. The first element, Z(0), is used 
to store intermediate results. Thus, after CORR executes, the content of 
the first element is meaningless and should be ignored. 

The fourth argument (TB in the example) is optional. If it is specified, 
the Fourier transform (used by CORR) is table driven. If this argument is 
a simple numeric variable, that variable is autodimensioned to an array 
of length N/2 and filled with sine terms needed by the Fourier transform, 
creating the table. Subsequent executions of CORR do not require regeneration 
of the table if the source and target array lengths remain unchanged and 
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the table is not altered. (The table can be generated by the CONVL, RFFT, 
and RFFT1 commands also. For more information about the table, see the 
RFFT command.) If the argument is an array, it must be of length N/2. CORR 
checks the first element of the array. If it is the correct value, the 
array is assumed to be the proper sine-values table. If the first element 
is an incorrect value, CORR fills the array with the correct sine values. 
If the argument is not present, the necessary sine values are recursively 
generated as needed. This method saves controller memory at the cost of 
longer execution times. 

The Theory of Correlation 

The correlation of two time-domain functions, say x(t) and y(t) defined 
over the interval 0 S. t S. T can be expressed by the following integrals: 

1T-t 
z12Ct) = (1/T) 

0 
x(u)y(u+t) du for 0 S. t ~ T 

and 

rT-t 
z21(t) = (1/T) }

0 
y(u)x(u+t) du 

z12(t) applies when waveform x(t) lags waveform y(t), and z21 applies when 
waveform x(t) leads waveform y(t). Notice that if x(t) = y(t) -- as is the 

·case with autocorrelation -- then z12(t) = z21Ct). 

In presenting the discrete approximation for correlation, again 
consider two waveforms, X(k) and Y(k). If these two waveforms are sampled 
N times with a finite time window such that k = 0, 1, ... , N-1 then the 
discrete approximation for cross-correlation with X(k) lagging Y(k) with 
time lag n is: 

CORR 

N-n-1 
Z12(n) = (1/N) ~ X(k)Y(k+n) 

k=0 

1-12 
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and with X(k) leading Y(k) is: 

N-n-1 
Z21(n) = (1/N) ~ Y(k)X(k+n) 

k=fll 
forn=fll,1, ... ,N-1 

With some algebraic manipulation, it can be shown that Z21(n) is equal 
to Z12(-n). Thus an alternative to presenting the equations for Z12(n) and 
Z21(n) as defined above is to present only Z12 with n = -N+1, ... , -1, fll, 
1, ... , N-1. This latter approach is used by the CORR command. In summary, 
the summation for the cross-correlation function Z(n), where the subscripts 
have been dropped for convenience, is: 

N-n-1 
Z(n) = (1/N) ~ X(k)Y(k+n) 

k=fll 
for n = -N+1, ••. , -1, fll, 1, •.. , N-1 

Any terms of X or Y with indices that are less than zero or greater 
than N-1 are assumed to equal zero. 

The autocorrelation function is expressed in the same manner as the 
cross-correlation function. In this case, Z(n) is the autocorrelation 
function when X(k) = Y(k) for all values of k. With X(k) = Y(k), then Z(n) 
= Z(-n); and the autocorrelation is an even function about the time lag 
of n = fll. 

The CORR Algorithm 

The preceding discussion describes one method of computing correlations. 
It is instructive because it describes the way in which correlation data 
is formatted. However, rather than evaluating the discrete correlation 
summation directly, the CORR command uses a faster computational method 
that takes advantage of the fast Fourier transform (FFT) and the inverse 
Fourier transform (IFT) algorithms. This method is based on the fact that 
the correlation of two signals (time domain) is equivalent to the complex 
conjugate multiplication of their Fourier transforms (frequency domain). 
Stated in more mathematical terms: 

F(Z) = F*(X)F(Y) 
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where F*(X) is the complex conjugate of the Fourier transform of X, and 
F(Y) is the Fourier transform of Y -- with X and Y being the two time
domain signals. F(Z) is the Fourier transform of Z -- the correlation of 
X and Y. 

Before the CORR command actually performs the correlation of two 
arrays, it appends N zeroes to each of the input arrays, X and Y. This 
prevents the cyclic correlation that would be implemented because of the 
assumed periodicity of the discrete Fourier transform. The zero-appended 
input arrays, X and Y, are then transformed to the frequency domain via 
the FFT, and a complex-conjugate multiplication is performed on the resulting 
arrays. (By complex-conjugate multiplication, it is meant that the imaginary 
part of one of the Fourier transform pairs is negated before performing 
the complex multiplication.) Finally, an inverse Fourier transform (!FT) 
is performed on the product, resulting in the correlation of the original 
arrays. This procedure is equivalent to the direct evaluation of the non
cyclic correlation summation previously discussed, but the whole process 
is performed more quickly due to the smaller number of calculations required. 

Normalizing the Output 

The correlation between two waveforms is often expressed within a 
normalized range of -1 to +1, with perfect positive or negative correlation 
having a value of +1 or -1, respectively. The output of the CORR command 
is not normalized, but normalization is a simple process. Just divide the 
resulting array by the product of the RMS (Root Mean Square) values of the 
two source arrays. 

Since the source arrays of the CORR command are overwritten during 
execution, their RMS values must be obtained before the command is executed. 
The following short routine demonstrates obtaining RMS values, cross
correlation, and normalizing the result. X and Y are the source arrays, 
and Z is the target array. 

CORR 

10 R=RMS(X)*RMS(Y) 
15 CORR X,Y,Z 
20 Z = Z/R 
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Units and Data Sampling Interval (DSI) Definitions 

The following list describes how the vertical and horizontal units 
and the data sampling interval (DSI) are automatically assigned when a 
waveform is the target for the CORR command. To simplify this discussion, 
it is assumed that A and B are arrays and that WA, WB, and WC are waveforms. 
Accordingly, the following conventions are used: 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 
SC: the data sampling interval for waveform WC 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 
HC$: the horizontal units for waveform WC 

VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 
VC$: the vertical units for waveform WC 

Using the above notation,these rules apply when the destination 
argument (WC) is a waveform. An ampersand (&) indicates that the units 
strings are concatenated (joined together). 

CASE 1: Both source arguments are waveforms. For example: 

Then: 

CORR WA,WB,WC 

SC = SA 
HC$ = HA$ 
VC$ = VA$ & VB$ 

Note: A warning error is issued if the horizontal units for waveform WA 
do not equal the horizontal units for waveform WB, or if the data sampling 
interval for waveform WA is not equal to the data sampling interval for 
waveform WB. 
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CASE 2: The first source argument is a waveform; the second source argument 
is an array. For example: 

Then: 

CORR WA,B,WC 

SC = SA 
HC$ = HA$ 
VC$ = VA$ & VA$ 

CASE 3: The first source argument is an array; the second argument is a 
waveform. For example: 

Then: 

CORR A,WB,WC 

SC = SB 
HC$ = HB$ 
VC$ = VB$ & VB$ 

CASE 4: Both source arguments are arrays. For example: 

Then: 

CORR 

CORR A,B,WC 

SC = 1 
HC$ = null string 
VC$ = null string 
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Examples: 

DIFF A,A 
DIFF A,B 

10 DIFF X,Y,FOR 

DIFF (Nonresident) 

20 DIFF C(0:511),D(0:511) 

Syntax Form: 

[line no.) DIFr ! floating-po int array I ! floating-po int array I 
floating-point waveform ' floating-point waveform 

Descriptive Form: 

[line no.) Dirr source data, target for differentiated result [,forward difference switch) 

Purpose: 

The DIFF command performs a differentiation of an array or waveform. 

Discussion: 

The DIFF command performs a two-point or three-point differentiation 

operation on a source array or waveform, placing the result in the specified 
target array or waveform. The source and destination arguments may be the 

same, in which case the source data is overwritten by the results of the 
differentiation. 

Differentiation is an important branch of calculus that has numerous 
applications in physics, chemistry, statistics, electronics, and various 
other scientific and engineering disciplines. As an example, an array 
containing distance data can be differentiated once to yield an array of 
velocity data. The resulting velocity data can again be differentiated to 
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yield an array of acceleration data. In short, differentiation is useful 
in any application where it is necessary to determine the instantaneous 
rate of change of a function (the slope of the curve at a given point). 

The format of the DIFF command is illustrated by the following example: 

DIFF X,Y,FOR 

The first argument (X in the example) is the input array or waveform to 
be differentiated. The second argument (Y in the example) specifies the 
target for the result. 

The specified source and target arguments may be the same array or 
waveform, but they may not partially overlap. If the target array is 
different from the source array, the data in the source array is left 
intact. The length of the source and target arrays must be the same and 
greater than or equal to 3. 

The third argument is optional. If it is present and equal to the 
keyword FOR (or a string expression equaling either "FOR", or "FD"), then 
a two-point differentiation is performed. If the third argument is omitted, 
three-point differentiation is performed. 

The Theory of Differentiation 

According to elementary calculus, the derivative, f'(t), of the 
function f(t) is defined by the limit: 

f(t +lit) - f(t) 
lim 

lit~ra 6t 

In the preceding definition, t remains fixed while6t tends to '3. When the 
limit does not exist for a particular value of t, the function has no 
derivative for that value. 

Though the definition of the derivative (in terms of limits) may 
initially appear a bit abstract, it is possible to get a good intuitive 
feel for it by considering the idea of slope (see Fig. 1-1). In elementary 

DIFF 1-18 



TEK SPS BASIC Signal Processing Package 

terms, the derivative of f(t) is simply the change in f(t) divided by the 
change int. In other words, f'(t) =.6f(t)/.6t. If y = f(t), we can rewrite 
this as: 

f I ( t) : _6y f.6t or dy/dt 

where .6 or "d" denotes a very small change in the value of t and y. 

y 

Fig. 1-1. The derivative of f(t) at ti yields 
the slope (12) at ti. 

2743-01 

From examining Fig. 1-1, it is seen that the slope of the line 11 
over the interval.6t is: 

However, as.6t approaches 0, the slope <b.f(t)/.6t) more nearly approaches 
the slope of 12, and thus the derivative of f(t) at the point ti yields a 
slope that defines 12 . 

The DIFF Algorithm 

Two-point Method. In theory, it is possible to talk about the derivative 
of a function in terms of a limit, where the interval (Llt) approaches zero. 
However, when discussing numerical differentiation as implemented on a 
signal processing system, the interval (over which the slope is computed) 
cannot approach zero. Instead, the interval must be no smaller than the 
time segment between adjacent elements in the waveform array. This method 
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of numerical differentiation is known as the "two-point" derivative and 
can be demonstrated by a statement such as: 

DIFF X,Y,FOR 

where the optional keyword FOR designates a forward-difference calculation 
for two-point differentiation. Executing the above command causes an 
element-by-element differentiation which is performed according to the 
following scheme: 

X(n+1) - X(n) 
Y (n) = for n = 0, ... , N-2 

Lit 

Y(N-1) = Y(N-2) 

where X and Y are the source and target arrays, respectively, both of 
length N. The data sampling interval (the time between the acquisition of 
adjacent array elements in a TEK SPS BASIC waveform) is lit. It is normally 
equal to 1a times the horizontal scale factor divided by the array length 
N. In the case of an array, Lit is always equal to 1. The process of two-point 
differentiation is diagrammed in Fig. 1-2. 

DIFF 

Xi+11-------
X; 1-------

0 i+1 

y;= X;+1-X; 
8t 

i = 0, 1,2, ... , 510 

511 

2743-02 

Fig. 1-2. Two-point derivative of X, a 512-element array; 
at element i. 
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Three-point Method. A more complicated method of differentiating an 
array of values on a signal processing system, is to compute the slope 
between the datum immediately preceding and immediately following the array 
element where the slope is to be computed. This method is known as 
"three-point differentiation" and can be demonstrated by the statement: 

DIFF X,Y 

The absence of the optional third argument specifies the three-point 
derivative. Executing the above command causes an element-by-element 
differentiation which is performed according to the following scheme: 

-3X(a) + 4X(1) - X(2) 
Starting value: Y(a) = 

2~t 

X(n+1) - X(n-1) 
Intermediate values: Y(n) = for n = 1 to N-2 

2~t 

X(N-3) - 4X(N-2) + 3X(N-1) 
Ending value: Y(N-1) = 

2~t 

where X and Y are the source and target arrays, respectively, both of 
length N. Again, ~t is the data sampling interval (the time between the 
acquisition of adjacent array elements in the waveform). The process of 
three-point differentiation is diagrammed in Fig. 1-3. 

Two-point Versus Three-point Differentiation 

For arrays where large transitions occur over intervals greater than 
three array elements, the three-point derivative exhibits the least analytic 
error in estimating the slope at a given point. Thus for smoothly varying 
functions (e.g., a sine wave), the three-point derivative is the most 
accurate means of differentiating the function. 

When array values exhibit large transitions within intervals of three 
or fewer adjacent array elements, the two-point derivative may provide a 
better slope estimate within the interval of transition. Square waves, 
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y, = X;+1 -X;-1_ 

2.6t 

i = 1,2,3, ... , 510 

i-1 j+ 1 
511 

2743-03 

Fig. 1-3. Three-point derivative of X, a 512-element array, 
at element i. 

steps, impulses, and other functions containing large transitions over 
limited intervals are best differentiated with the two-point algorithm. 

Differentiation of a time-domain waveform is effectively the same as 
digitally filtering the waveform. Hence, the results of differentiation 
reflect the response function of the chosen scheme of differentiation. The 
response functions for two-point and three-point differentiation are shown 
in Fig. 1-4 and Fig. 1-5. In comparing these two figures, notice that the 
two-point function is maximum at the Nyquist frequency of 1/(2~t). Also, 
notice in the equations which follow that the phase of the three-point 
function is zero at all frequencies. 
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a.) Gain function 

1 
2.M 

1 

261 

¢ (f) 

TT 

TT 

2 

TT 

2 

-TT 

b.) Phase function 

1 

261 

1970-65 

Fig. 1-4. Frequency response or the two-point derivative. 

G (I) 

1 

6 t 

1 

261 
2197-01 

Fig. 1-5. Frequency response or the three-point derivative. 
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The formulas applicable to the two-point derivative and its frequency 
response function (Fig. 1-4) are as follows, where X is the function to 
be differentiated, X' is the derivative of X, and6t is the waveform's 
data sampling interval: 

X(n+1) - X(n) 
Impulse response: X'(n) = ------

Frequency response: H(f) = G(f)ej<l>(f) 

Gain: G(f) = (2/6t) I sin(Jtf<l>t) I for -1 /(26t) ~ f < 1 /(26t) 

Jt6t[f + 1/(2L'.1t)] for -1/(26t) ~ f < 0 
Phase: <I>( f) = 

Jt6t[f - 1/(26t)] for 0 ~ f < 1/(26t) 

The formulas applicable to the three-point derivative at intermediate 
points and its frequency-response function (Fig. 1-5) are as follows: 

X(n+1) - X(n-1) 
Impulse response: X'(n) = -------

26t 

Frequency response: H(f) = G(f) ej<l>(f) 

Gain: G(f) = (1/6t)lsin(2itf6t)I 

Phase: <l>(f) = 0 for -1/(26t) ~ f < 1/(26t) 
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Units and Data Sampling Interval (DSI) Definitions 

The following list describes how the vertical and horizontal units 
and data sampling interval (DSI) are automatically assigned when a waveform 
is the target for the DIFF command. To simplify this discussion, it is 
assumed that A is an array, while WA and WB are waveforms. Accordingly, 
the following conventions are used: 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 

VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 

Using the above notation,these rules apply when the target (WB) is a 
waveform. An ampersand (&) indicates that the units strings are concatenated 
(joined together). 

CASE 1: The source argument is a waveform. For example: 

Then: 

DIFF WA,WB 

SB = SA 
HB$ = HA$ 
VB$ = VA$ & "/" & HA$ 

CASE 2: The source argument is an array. For example: 

Then: 

DIFF A,WB 

SB = 1 
HB$ = null string 
VB$ = null string 

1-25 DIFF 



TEK SPS BASIC Signal Processing Package 

IHT (Nonresident) 

Exa•ples: 

INT A,A 
100 INT C,D 
200 INT X(0:511),Y(0:511) 

Syntax Form: 

. ] I floating-point array I I floating-point array I [line no. INT , . . 
floating-point waveform floating-point waveform 

Descriptive Form: 

[line no.] INT source data, target for integrated result 

Purpose: 

The INT command performs an integration of an array or waveform. 

Discussion: 

The INT command performs an integration operation on a source array 
or waveform, placing the results in the specified destination array or 
waveform. The source and target arguments may be the sa•e, in which case 
the source data is overwritten by the results of the integration. 

Integration is an important branch of calculus that has numerous 
applications in physics, chemistry, electronics, and various other scientific 
and engineering disciplines. As an example, an array representing acceleration 
data can be integrated to get an array of velocity data. Similarly, 
integrating an array of velocity data yields distance data. In short, 
integration is useful whenever you wish to determine the area under a 
curve, or determine the energy associated with a pulse. 
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The format of the INT command is illustrated by the following example: 

INT X,Y 

The first argument (X in the example) is the input array or waveform to 
be integrated. The second argument (Y in the example) specifies the target 
for the integrated result. 

The specified source and target arguments may be the same array or 
waveform, but they may not partially overlap. If the destination array is 
different from the source array, the data in the source array is left 
intact. The length of the source and target arguments must be the same. and 
greater than or equal to 3. 

The Theory of Integration 

Most elementary calculus texts define the definite integral of a 
function in terms of the "antiderivative" of that function. For example, 
since the derivative of tn+1/(n+1) is tn, then the antiderivative of tn 
is tn+1;(n+1). Thus the definite integral of tn between two points, a and 
b, is 

lb tndt • 
tn+1 b bn+1 an+1 

= 
n+1 a n+1 n+1 

which represents the area underneath the curve tn between a and b. 

While the idea of the antiderivative is valid if an antiderivative 
can be found, there are still many functions for which an antiderivative 
cannot be found by any known method even though its definite integral 
has a specific value. This leads us to the concept of numerical integration, 
a technique that allows you to find an estimate of the definite integral 
for virtually any continuous function. 

The idea of numerical integration is a simple concept, and in fact, 
is often used to introduce the fundamentals of integral calculus. One of 
the easiest methods of numerical integration is to simply estimate the 
area under the curve (the graph of the function) by dividing the curve 
into segments and then summing the areas of the rectangles under the curve. 
For example, in Fig. 1-6a, we see a graph of the function y = t2, in which 
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five equal-width rectangles have been drawn under the curve. By computing 
the area of each rectangle (width times height) and summing all the computed 
areas, we can get a rough estimate of the area under the curve. Actually, 
the value described by this summation will be less than the area under the 
curve, but in many cases, the error is not significant if the width of the 
rectangles are kept small enough. 

y 
y =t2 

y 
y = t2 

0 0 

{a) {b) 

2743-04 

Fig. 1-6. Numerical integration of the function y = t2 
by estimating (a) the lower bound, and 
(b) the upper bound of the area under the curve. 

Even more accuracy can be gained by summing the areas of the rectangles 
shown in Fig. 1-6b to get an upper bound on the total area under the curve. 
The true area is then very nearly equal to the mean of the lower-bound of 
the area (Fig. 1-6a) and the upper-bound of the area (Fig 2-6b). 

The accuracy of the preceding method -- computing upper and lower 
bounds and taking the mean -- can also be achieved by a method known as 
the trapezoidal rule. Like the previously described method, the trapezoidal 
rule involves dividing the horizontal axis of the function into a number 
of equally spaced intervals. However, rather than drawing rectangles under 
and above the curve, the trapezoidal rule requires the construction of 
trapezoids whose upper vertices touch the curve at the endpoints of the 
horizontal intervals (see Fig. 1-7). The definite integral of the function 
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is then found by summing the area of each trapezoid under the curve between 
the limits of integration. 

y 

0 t, = a t;+J t,., t,+3 tn = b 

2743~05 

Fig. 1-7. Illustration of the trapezoidal rule 
for numerical integration. 

There are other methods of numerical integration. (One common method 
is Simpson's rule, which requires the construction of rectangles under the 
curve to be integrated, such that the curve intersects each rectangle in 
the center of its upper edge.) In each of these methods, however, the 
answers are only approximate, and to achieve high accuracy, the width of 
each rectangle or trapezoid must be sufficiently small or the change in 
the value of the function must be small over the selected interval. Thus, 
as the width of each rectangle or trapezoid approaches zero, the approximate 
value obtained by numerical integration approaches the true value obtained 
by finding the antiderivative. 

The INT Algorithm 

In theory, it is possible to talk about the integral of a function 
in terms of rectangles or trapezoids whose width ~) approaches zero. 
However, when discussing numerical integration as implemented on a signal 
processing system, the interval (width of each rectangle or trapezoid) 
cannot approach zero. Instead, the width of the quadrilaterals can be no 
smaller than the time segment between adjacent elements in the waveform 
array. 
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The INTegrate command in TEK SPS BASIC uses the trapezoidal rule for 
integration. The format of INT is illustrated by the following example: 

INT X, Y 

Here, an array (or waveform) X of length N is integrated and the result 
is placed in array Y according to the following equations: 

Y('1) = 0 

.llt[X(n-1) + X(n)] 
Y(n) = Y(n-1) + for n = 1 , 2, ... , N-1 

2 

Upon examining the second equation, it is seen that this is the familiar 
trapezoidal rule. Notice that.llt is the width of each trapezoid and [X(n-1) 
+ X(n)]/2 is the average height of each trapezoid. The source waveform's 
data sampling interval is.llt (the time between adjacent array elements in 
a TEK SPS BASIC waveform); it is normally equal to 1'1 times the horizontal 
scale factor divided by the array length, N. In the case of an array, .llt 
is always equal to 1. 

Integrating a waveform is the same as digitally filtering the waveform. 
The frequency-domain formulas that describe the gain and phase functions 
associated with integration are as follows: 

.Llt I sin ( 2Jt f .llt) I -1 
Gain: G(f) = for .5.. f < 

2 [ 1 - cos ( 2Jtf .Ll t)] 2.llt 2.llt 

Jt/2 for -1/(2.llt) < f < 0 -
Phase: <J>( f) = 

- Jt /2 for a < f < 1/(2.llt) -

The gain and phase functions described by these formulas are plotted 
in Fig. 1-8. 
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Fig. 1-8. Frequency response functions for integration. 

Units and Data Sampling Interval (DSI) Definitions 

The following list describes how the vertical and horizontal units 
and data sampling interval are automatically assigned when a waveform is 
the target for the INT command. To simplify this discussion, it is assumed 
that A is an array, while WA and WB are waveforms. Accordingly, the following 
conventions are used: 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 
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VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 

Using the above notation,these rules apply when the target (WB) is a 
waveform. An ampersand (&) indicates that the units strings are concatenated 
(joined together). 

CASE 1: 

Then: 

CASE 2: 

Then: 

INT 

The source argument 

INT WA,WB 

SB = SA 
HB$ = HA$ 
VB$ = VA$ & HA$ 

The source argument 

INT A,WB 

SB = 1 
HB$ = null string 
VB$ = null string 

is a waveform. For example: 

is an array. For example: 
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POLAR (Bonresident) 

Examples: 

POLAR A,B 
HJ0 POLAR X, Y, DL 
110 POLAR A(10:20),B(7:17),N/8 

Syntax Form: 

[line no.] POLAR 

Descriptive Form: 

floating-point 
floating-po int 
floating-point 

[,expression J 

variable 11 floating-point variable I 
array , floating-point array 
waveform floating-point waveform 

[line no.] POLAR real source data and target for magnitude component, 
imaginary source data and target for phase component [,delay estimate] 

Purpose: 

The POLAR command performs a rectangular-to-polar conversion. 

Discussion: 

Normally, the RFFT command returns its results in rectangular form 
(with the array components being real and imaginary numbers). Quite often 
though, the results can be interpreted more easily if they are in polar 
form (with the array components being magnitude and phase numbers). The 
POLAR command performs this conversion. 

The format of the POLAR command is illustrated by the following 
example: 

POLAR X,Y,DL 
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The first two arguments (X and Y in the example) correspond, respectively, 
to the real and imaginary components of the complex data (as returned by 
the RFFT command) to be converted. If these two arguments are arrays or 
waveforms, they must be of equal length. 

After the POLAR command has executed, the two source arguments contain 
the results, with the magnitude component stored in the first argument (X) 
and the phase component stored in the second argument (Y). The first element 
of each array or waveform argument -- X(0) and Y(0) in the above example 
-- correspond to the DC (direct current) term. Succeeding elements of these 
arguments indicate the magnitude and phase numbers for increasing frequencies. 

The optional third argument (DL in the example) represents phase delay 
and designates delay removal. If this argument is present, the phase is 
continuous; if it is omitted, the phase is discontinuous. 

Theory of Operation 

The operation of the POLAR command is best understood by considering 
the following example: 

POLAR RX,IX 

Assuming RX and IX are arrays of equal length N, the arrays are redefined 
as follows: 

RX(n) = VRX2(n) + IX2(n) for n = 0, 1 , ... , N-1 

IX(n) = arctan[IX(n)/RX(n)] 

The phase information, returned in IX, is discontinuous and is expressed 
within a range of - Jt to + "t radians. 

Continuous phase can be provided for arrays or waveforms by specifying 
the optional third argument in a statement such as: 

POLAR RX,IX,DL 

assuming that RX and IX are waveforms of length N (where N is greater than 
1), DL represents the phase delay expression which must evaluate to a value 

POLAR 1-34 



TEK SPS BASIC Signal Processing Package 

less than N/2. Then, the phase information is "unwrapped" module 21t and 
the value: 

21t*DL*DS*n for 0 S. n < N-1 

is removed from the phase data. Here DS is the data sampling interval of 
RX if RX is a waveform. If RX is not a waveform and IX is a waveform, DS 
is the data sampling interval of IX. If neither RX nor IX is a waveform, 
DS equals 1. 

If the value of the phase delay expression (DL in the example) is an 
adequate estimate of the true delay, then subtracting 2n*DL*DS*n from.the 
phase has the effect of removing the linear component which has a slope 
of 21t times the phase delay. This makes the phase non-linearity or 
fluctuations much more apparent. If the value of the phase delay expression 
is zero, then nothing is subtracted, yet a continuous phase is still 
provided. 

See the discussion of the RFFT command for examples of phase output 
of the POLAR command. 

Units and Data Sampling Interval (DSI) definitions 

The following list describes how the vertical and horizontal units 
and the data sampling interval (DSI) are automatically assigned when a 
waveform is the target for the POLAR command. To simplify this discussion, 
it is assumed that A and B are arrays and WA and WB are waveforms. 
Accordingly, the following conventions are used: 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 

VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 
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Using the above notation, these rules apply when the target for the magnitude 
is a waveform (WA) and/or when the target for the phase data is a waveform 
(WB). 

CASE 1: Both source/target arguments are waveforms. For example: 

Then: 

POLAR WA,WB 

SA, SB, HA$, HB$, and VA$ are unchanged. 
VB$ is changed to "RAD" 

CASE 2: The first source/target argument is a waveform; the second is an 
array. For example: 

POLAR WA,B 

Then: 

SA, HA$, and VA$ are unchanged. 

CASE 3: The first source/target argument is an array; the second is a 
waveform. For example: 

Then: 

POLAR 

POLAR A,WB 

SB and HB$ are unchanged 
VB$ is changed to "RAD" 
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RFFT (Ronresident) 

Examples: 

RFFT A,B,C,INV 
10 RFFT X(0:63),Y,Z(0:32),T,INV 
20 RFFT X,R,I 
30 RFFT M,N,Q,T,DIR 

Syntax Form: 

I floating-point array I I floating-point array I [line no. ] RFFT 
floating-po int waveform ' floating-po int waveform ' 

I floating-point array I [ I simple numeric variable IJ 
floating-point waveform ' floating-point array 

[ I DIR ] 
, INV 

string ex press ion 

Descriptive Form: 

[line no.] RFFT time domain data, real component of frequency domain data, 
imaginary component of frequency domain data [,sine table] 
[,direct or inverse transform switch] 

Purpose: 

The RFFT command performs a multi-argument fast Fourier transform on 
real-valued data via a power-of-two algorithm. 

Discussion: 

The RFFT command can perform either an FFT (fast Fourier transform) 
or an IFT (inverse Fourier transform) operation. The fast Fourier transform 
is an algorithm for quickly computing the discrete Fourier transform. By 
means of the FFT, a waveform (time domain) or other time-series data can 
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be converted to a corresponding spectrum (frequency domain). Normally, the 
FFT data is expressed in terms of real and imaginary data (rectangular 
format). However, this FFT data can be converted to a series of magnitude 
and phase data (polar format) via the POLAR command. 

The IFT is just the inverse of the FFT operation. That is, the IFT 
converts an array of spectral data (frequency domain) into an array of 
waveform data (time domain). The FFT and IFT find numerous applications 
in such areas as frequency-response estimation, signature analysis, harmonic 
distortion measurements, and digital filtering. 

The format of the RFFT command is illustrated by the following example, 
which performs an FFT operation: 

RFFT X,RX,IX 

The first argument (X in the example) corresponds to the real-valued, 
time-domain data. It must be a waveform, array, or contiguous subarray of 
length N = 2m for some integer m 2. 4. 

The second and third arguments (RX and IX in the example) correspond, 
respectively, to the real and imaginary components of the discrete Fourier 
coefficients (the frequency-domain data). These arguments will contain the 
output of the RFFT command. They must be waveforms, arrays, or contiguous 
subarrays of length N/2 + 1. (Note that the first elements of RX and IX 
correspond to the DC terms, while the last elements of RX and IX correspond 
to the Nyquist frequency.) 

The presence of an optional fourth argument specifies that the RFFT 
computation will be table driven. In its absence, sine terms (required by 
the FFT algorithm) are recursively generated as needed, saving computer 
memory space but somewhat slowing the computations. If the fourth argument 
is a simple variable, it is auto-dimensioned to a floating-point array of 
length N/4, and it will. be filled with the sine values needed by the 
transform (the values correspond to 1/4 of a cycle of a negated sine wave). 
If the fourth argument is otherwise specified, it must be a floating-point 
array or subarray of length N/4. (In this latter case, it is assumed that 
the array already contains the table of proper sine values. However, one 
element within the array is checked to see if it contains the proper sine 
value; if it does not, the entire table of sine values is regenerated.) 
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The presence of an optional keyword or string expression specifies 
whether a forward or inverse Fourier transform is to be performed. If the 
keyword DIR or a string expression equal to "DIR" is present (or if no 
keyword or string is present -- as in the preceding example), a direct FFT 
will be performed. In this case, the time-domain data in the first argument 
is the source, and the discrete Fourier coefficients are returned in the 
second and third arguments. If the keyword INV or a string expression equal 
to "INV" is present, the inverse Fourier transform (IFT) is performed. In 
this latter case, the second and third arguments are the source arrays and 
are assumed to contain the real and imaginary components of the discrete 
Fourier coefficients; the time-domain data is then returned in the first 
argument. Data in the second and third arguments are overwritten by 

intermediate results when the INV function is performed. 

An example of an RFFT command that performs an IFT operation is: 

RFFT X,RX,IX,TB,INV 

The real and imaginary data (in RX and IX respectively) is inverse Fourier 
transformed and the resulting time-domain data is placed in array X. The 
optional argument INV specifies that the inverse Fourier transform is to 
be performed and the optional argument TB specifies that it is to be table 
driven with array TB. 

The Theory of the Discrete Fourier Transform 

The RFFT command performs a fast calculation of the DFT (discrete 
Fourier transform). The DFT can be expressed mathematically by the following 
summation: 

N-1 
Xd(n) = .6.t 2: x(k)e-j2Jtnk/N 

k=0 
for n = 0, 1 , ... , N /2 

In the above equation, N refers to the length of the time-domain argument, 
.6.t is the sampling interval between the elements of the time-domain data, 
and n is an index used in generating the various Fourier coefficients. 
Also, in accordance with usual math notation, e (2.718281828 ... ) is the 
base of the natural logarithm, and j is the square root of -1. Xd(n) is 
the nth Fourier coefficient, and x(k) refers to the kth element of the 
time-domain input array. 
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The summation is computed by summing x(k)e-j2~nk/N as k ranges from 
0 to N-1; this is done for each value of n, beginning with 0 and ending 
with N/2. Each value of n thus defines a corresponding element of the final 
OFT result. 

Theoretically, the discrete Fourier transform contains spectral 
components for negative frequencies as well as positive ones. In this case, 
the index n would range from -N/2+1 to N/2. However, by assuming that the 
time domain contains only real-valued data (as opposed to complex data), 
the spectral components for the negative frequencies can be determined 
from the components for the positive frequencies. Specifically, the spectral 
components at the negative frequencies are complex conjugates of the 
spectral components at the positive frequencies. This means that the 
components at the negative frequencies contain half of the total spectral 
energy. Therefore, the spectral output of the RFFT command has only half 
of the expected amplitude value since it shows only the information at the 
positive frequencies. 

The X(n)'s are the N/2+1 positive complex frequency components from 
DC through the Nyquist frequency. These complex Fourier coefficients are 
stored in the two target arrays -- one for the real part and one for the 
imaginary part. If RX and IX are the destination arguments of the RFFT 
command, then the format of data storage is as follows: 

RX(@) = DC term IX(@) = 0 
RX( 1) = Real part, 1st Fourier coeff. IX( 1) = Imag. part, 1st Fourier coeff. 
RX(2) = Real part, 2nd Fourier coeff. IX(2) = Imag. part, 2nd Fourier coeff. 
RX(3) = Real part, 3rd Fourier coeff. IX(3) = Imag. part, 3rd Fourier coeff. 
RX(4) = Real part, 4th Fourier coeff. IX(4) = Imag. part, 4th Fourier coeff. 

RX(N/2) = Nyquist term IX(N/2) = 0 

The inverse Fourier transform (IFT) is performed with the RFFT command 
by specifying the keyword INV, as illustrated in the following example: 

RFFT X, RX, IX, INV 

It is assumed that arrays RX and IX contain the real and imaginary components 
respectively of each of the Fourier coefficients. These Fourier components 
must be formatted as follows: 
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RX(a) = DC term IX(((J) = (() 

RX(1) = Real part, 1st Fourier co ff IX( 1) = Imag. part, 1st Fourier coeff. 
RX(2) = Real part, 2nd Fourier coeff. IX(2) = Imag. part, 2nd Fourier coeff. 
RX(3) = Real part, 3rd Fourier coeff. IX(3) = Imag. part, 3rd Fourier coeff. 
RX(4) = Real part, 4th Fourier coeff. IX(4) = Imag. part, 4th Fourier coeff. 

RX(N/2) = Nyquist term IX(N/2) = (() 

Notice that this is the same format as output by the direct RFFT command. 

The inverse Fourier transform can be expressed mathematically by the 
following summation: 

N-1 
x(k) =fir L xd (n)ej2J'fnk/N for k = ((), 1 , ... , N-1 

n=((J 

In the above equation, N refers to the length of the time-domain array 
argument,fif is the data sampling interval of the RX array (containing the 
real components), and Xd(n) again refers to the nth positive complex Fourier 
coefficient. Here, Xd(n) = RX(n) + jIX(n) where RX(n) is the nth element 
of the RX array (containing the real components) and IX(n) is the nth 
element of the IX array (containing the imaginary components). The Xd(n)'s 
for N/2 < n < N-1 are defined by Xd(N-n) = xd*(n) with * denoting complex 
conjugation; x(k) refers to the kth element of the real time-domain data 
that results from the IFT operation. 

The summation is computed by summing Xd(n)ej2J'fnk/N as n ranges from 
a to N-1. Each value of k thus defines a corresponding element of the final 
output array, x, containing the real time-domain data. 

The FFT/IFT Algorithm 

The preceding discussion describes one method for computing the 
discrete Fourier transform. It is instructive because it describes the way 
in which the FFT data is formatted. In the case of TEK SPS BASIC, however, 
there is a much faster method for computing the Fourier transform: it is 
the Sande-Tukey decimation-in-frequency algorithm. It uses a floating-point 
table of length N/4 (where N is the number of time-domain data points) 
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containing a one-quarter cycle of negative sine-wave data to generate the 
necessary complex exponentials. 

The inverse Fourier transform uses the same algorithm as the direct 
transform except that some of the initialization parameters are changed. 
For more information on the Sande-Tukey FFT/IFT algorithm, refer to Section 
7 in the Tektronix concept book entitled The FFT: Fundamentals and Concepts 
(Tektronix part number 070-1754-00). 

An Example Program: 

Applying the RFFT command to a waveform aids in understanding the 
basic concept of the Fourier transform. Figures 1-9 and 1-10 are graphs 
of a sine and cosine waveform, respectively. The sine wave (Fig. 1-9) has 
a period of 83.3 microseconds, and the cosine wave (Fig. 1-10) has a period 
of 62.5 microseconds. By calculating the reciprocal of the periods, we 
find that their frequencies are 12,000Hz and 16,000Hz. Notice also that 
the amplitude of the waveforms are 1 volt and .75 volt respectively. 

v 

0 +--+--+t~-+-....... -+-tlt-+---t-+t---i~l--'t--H-+-+-111-+-.......... -+-H--+--t 

~ 
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Fig. 1-9. Sine wave with frequency of 12,000 Hz. 
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Fig. 1-10. Cosine wave with frequency of 16,000 Hz. 
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Fig. 1-11. Sum of waveforms in Figures 1-9 and 1-10. 
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Figure 1-11 is the sum of these two waveforms. This is the waveform 
that is transformed into the frequency domain by the program that is listed 
here. For simplicity, ideal waveforms are assumed. In real life, such 
things as aliasing, leakage, noise, etc. must be considered. For a complete 
description of the Fourier transform and its analysis, see the Tektronix 
publication The FFT: Fundamentals and Concepts. 

RFFT 

10 REM *** DEFINE WAVEFORMS *** 
20 WAVEFORM WA IS AA(511),SA,HA$,VA$ 
30 WAVEFORM W1 IS A1(256),S1,H1$,V1$ 
40 WAVEFORM W2 IS A2(256),S2,H2$,V2$ 
50 REM CREATE SOURCE WAVEFORM WA 
60 PI=3.14159 
70 AA=1/512 
80 INT AA,AA 
90 AA=SIN(2*PI*AA*12)+.75*COS(2*PI*AA*16) 
100 SA=1E-03/512 
11(1 HA$= "S" 
120 VA$="V" 
130 REM *** CONVERT TO FREQUENCY DOMAIN *** 
140 RFFT WA,W1,W2 
150 REM CONVERT TO MAGNITUDE AND PHASE 
160 POLAR W1, W2 
170 REM*** COMPUTE MAGNITUDE, FREQUENCY, AND PHASE *** 
180 REM FIND SUBSCRIPT OF MAXIMUM FREQUENCY COMPONENT 
190 REM IN MAGNITUDE ARRAY 
200 C=CRS(W1,MAX(W1)) 
210 GOSUB 540\REM SUBROUTINE TO CALCULATE AND PRINT 
220 REM FIND OTHER FREQUENCY COMPONENT 
230 C=CRS(A1(C+1:256),MAX(A1(C+1:256))) 
240 GOSUB 540\REM SUBROUTINE TO CALCULATE AND PRINT 
250 END 
500 REM SUBROUTINE TO CALCULATE AND PRINT THE 
510 REM MAGNITUDE, FREQUENCY, AND PHASE OF THE COMPONENT 
520 REM GIVEN MAGNITUDE AND PHASE WAVEFORMS (W1 AND W2), 
530 REM LOCATION OF THE COMPONENT (C), AND PI=3.14159 
540 M=W1(C)*S1*2 
550 F=C*S1 
560 PRINT "MAGNITUDE IS" ,M; 11 V" 
570 PRINT "FREQUENCY IS",F;" ";H1$ 
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580 PRINT "PHASE IS",W2(C);" ";V2$ 
590 PRINT " OR",W2(C)*180/PI;" DEG" 
600 PRINT\PRINT 
610 RETURN 

This program consists of three logical parts. These parts and their 
functions are: 

1) Define the waveforms and create the composite waveform WA (lines 
10 to 120). 

2) Transform the time-domain waveform into the frequency domain and 
convert the real and imaginary output of the RFFT into magnitude and phase 
information (Lines 130 to 160). 

3) Compute the magnitude, frequency, and phase of the source waveform's 
components and print the results (lines 170 to 240 and the subroutine in 
lines 500 to 610). 

Each of these steps is discussed in detail below. 

Part one. This section of the program creates the waveform WA and 
defines its OSI and vertical and horizontal units. The source array WA is 
created by summing two waveforms of different frequency, phase, and 
amplitude. 

Part two. Here the time-domain information is transformed into magnitude 
and phase information. First, the RFFT command is executed to define 
waveforms W1 and W2 as the real and imaginary components. Next, the POLAR 
command is used to calculate the magnitude and phase information. These 
are the arrays used in the next part. 

Part three. Refer to Fig. 1-12, a graph of the magnitude array created 
by the POLAR command. The two spikes represent the two original waveforms 
used to create the source (WA). The spike's horizontal position in the 
graph defines the frequency of the component, and its amplitude corresponds 
to the value from the formula for the discrete Fourier transform discussed 
earlier. This value closely approximates the integral Fourier transform 
and has vertical units of "VS" (volts seconds). When scaled by a factor 
of two times the data sampling interval of the magnitude waveform (line 
54'4'), it represents the total amplitude and has units of "V" (volts). 
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Fig. 1-12. Magnitude output of the POLAR command. 

7 

Next, the frequency of the component is determined by multiplying the 
subscript value by the data sampling interval. The frequency is expressed 
in units of Hertz. Then, phase is found in the waveform W2 created by POLAR 
(Fig. 1-13) and expressed in both radians and degrees. Phase is related 
to delay. A perfect cosine waveform has no delay. A perfect sine wave is 
90 degrees delayed. Therefore, the phase information provided by the POLAR 
command can be used to find the phase shift of any waveform component. 
finally, the values are printed at the terminal, along with the associated 
units. The actual output is shown in Fig. 1-14. 

Remember, while this program did find the amplitude, frequency, and 
phase of the original two waveforms, it is operating on ideal waveforms. 
It merely serves as an example of what the RFFT command can do. 

RFFT 1-46 



TEK SPS BASIC Signal Processing Package 

RAD 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

I\ 

~ mV \ ~ lt1 ~ :& ~ 1-\, . .Ail IM_~ 

~ ry ~ II' 

)74:1-07 

0 51.4 102.8 154.2 205.6 257 
25.7 77.1 128.5 179.9 231.3 

lE 3 HZ 

Fig. 1-13. Phase output of the POLAR command. 
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Fig. 1-14. Printed results of the program that finds 
the components of a waveform. 

Units and Sampling Interval (DSI) Definitions 

The following lists describe how the vertical and horizontal units 
and data sampling interval are automatically assigned when a waveform is 
the target for the RFFT command. To simplify the discussion it is assumed 
that A, B, and C are arrays and that WA, WB, and WC are waveforms. 
Accordingly, the following conventions are used: 

1-47 RFFT 



TEK SPS BASIC Signal Processing Package 

SA: the data sampling interval for waveform WA 
SB: the data sampling interval for waveform WB 
SC: the data sampling interval for waveform WC 

HA$: the horizontal units for waveform WA 
HB$: the horizontal units for waveform WB 
HC$: the horizontal units for waveform WC 

VA$: the vertical units for waveform WA 
VB$: the vertical units for waveform WB 
VC$: the vertical units for waveform WC 

N: the length of the time-domain argument (WA or A) 

Direct Transform. Using the above notation, these rules apply for a 
direct transform when the target for the real components is a waveform 
(WB) and/or the target for the imaginary components is a waveform (WC). 
An ampersand (&) indicates that the units strings are concatenated (joined 
together). 

CASE 1: The source argument is a waveform; both target arguments are 
waveforms. For example: 

RFFT WA,WB,WC 

Then: 

SB and SC = 1 /(N * SA) 

HB$ and HC$ {"HZ II if HA$ = "S"} = "!" & HA$ if HA$ i II S II 

VB$ and VC$ = VA$ & HA$ 

CASE 2: The source argument is a waveform; the target for the real components 
is a waveform, but the target for the imaginary components is an array. 
For example: 

RFFT WA,WB,C 

Then: 

SB, HB$, and VB$ are assigned values as in CASE 1. 
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CASE 3: The source argument is a waveform; the target for the real components 
is an array, while the target for the imaginary components is a waveform. 
For example: 

RFFT WA,B,WC 

Then: 

SC, HC$, and VC$ are assigned values as in CASE 1. 

CASE 4: The source argument is an array; both target arguments are waveforms. 
For example: 

RFFT A,WB,WC 

Then: 

SB and SC = 1 
HB$, HC$, VB$, and VC$ = null string 

CASE 5: The source argument is an array; the target for the real components 
is a waveform, but the target for the imaginary components is an array. 
For example: 

RFFT A,WB,C 

Then: 

SB, HB$, and VB$ are assigned values as in CASE 4. 

CASE 6: The source argument is an array; the target for the real components 
is an array, while the target for the imaginary components is a waveform. 
For example: 

RFFT A,B,WC 

Then: 

SC, HC$, and VC$ are assigned values as in CASE 4. 
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Inverse Transform. Using the same notation, these rules apply for an 
inverse transform when the target (WA) is a waveform. An ampersand (&) 
indicates that the units strings are concatenated (joined together). 

CASE 1: The source of the real components is a waveform. (It does not 
matter if the source of the imaginary components is a waveform or an array.) 
For example: 

RFFT WA,WB,WC,INV 

or 

RFFT WA,WB,C,INV 

Then: 

SA = 1 I ( N * SB) 

HA$ {"S" if HB$ = "HZ II } = "!" & HB$ if HB$ i "HZ" 
VA$ = VB$ & HB$ 

CASE 2: The source of the real components is an array. (It does not matter 
if the source of the imaginary components is a waveform or an array.) For 
example: 

RFFT WA,B,WC,INV 

or 

RFFT WA,B,C,INV 

Then: 

SA =1 
HA$ and VA$ = null string 
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RFFT1 (Ronresident) 

Examples: 

RFFT1 A,INV 
10 RFFT1 X(0:63),TB(0:15) 
20 RFFT1 X,T,DIR 
30 RFFT1 Y 

Syntax Form 

I floating-point array I [ 
[line no.] RFrT1 · floating-point waveform 

[' 
DIR 
INV 
string expression 

] 

Descriptive Form: 

!simple numeric variable'] 
floating-point array . \ 

[line no.] RFFT1 time domain data or frequency domain data [,sine table] 
[,direct or inverse transform switch] 

Purpose: 

The RFFT1 command performs a single-argument fast Fourier transform 
on real-valued data via a power-of-two algorithm. The single argument 
format conserves data space. In standard memory systems, this allows longer 
arrays to be transformed than with RFFT. 

Discussion: 

Like the RFFT command, the RFFT1 command computes the fast Fourier 
transform of an input array or waveform. However, unlike the RFFT command, 
which stores the results of the transform in separate arrays, the RFFT1 
command overwrites the input array with the results of the transform. 
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The format of the RFFT1 command is illustrated by the following 
example: 

RFFT1 X,TB 

The first argument (X in the example) initially contains the data to be 
transformed. It must be array, or contiguous subarray of length 

results of the command. 

The second argument (TB in the example) is optional. If it is specified, 
the transform is table driven. If the argument is a simple numeric variable, 
that variable is autodimensioned to an array of length N/4 and filled by 
RFFT1 with sine terms needed by the transform, creating the table. Subsequent 
executions of RFFT1 do not require regeneration of the table if the source 
and target array lengths remain unchanged and the table is not altered. 
(The table can be generated by the CONVL, CORR, and RFFT commands also. 
For more information about the table, see the RFFT command.) If the argument 
is an array, it must be of length N/4. RFFT1 checks the first element of 
the array. If it is the correct value, the array is assumed to be the 
proper sine-values table. If the first element is an incorrect value, RFFT1 
fills the array with the correct sine values. If the argument is not 
present, the necessary sine terms are generated as needed. This latter 
method saves memory at the cost of longer execution times. 

The optional keyword or string expression specifies whether a direct 
transform or inverse transform is performed. If the keyword DIR or any 
string expression other than "INV" is present (or if no keyword or string 
expression is included as in the preceding example), a direct Fourier 
transform is performed. If the keyword INV or a string expression that 
equals "INV" is present, the inverse transform is performed. For example, 
for a statement such as: 

RFFT1 X,TB,INV 

the data in the input array (X) is assumed to contain FFT data and it is 
then replaced with the results of the !FT operation. 
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Theory or the FFT/IFT Operation 

Like the RFFT command, the RFFT1 command transforms time-domain 
information into the frequency domain, or inversely, frequency-domain data 
into the time-domain. 

The algorithms used for the direct and inverse transform are the same 
ones used in the RFFT command. However, since only one argument is used 
for both source and destination, some decoding of the output is required. 

In the case of the direct transform, the time-domain information is 
transformed into the real and imaginary components of the discrete Fourier 
coefficients. These two data arrays overwrite the source data. Assuming X 
is the data array, the storage format following execution of RFFT1 (direct 
transform) will be: 

X(0) = DC term 
X(1) = Nyquist term 
X(2) = Real part of 1st Fourier coefficient 
X(3) = Imaginary part of 1st Fourier coefficient 
X(4) = Real part of 2nd Fourier coefficient 
X(5) = Imaginary part of 2nd Fourier coefficient 

X(N-2) =Real part of (N/2-1)th Fourier coefficient 
X(N-1) =Imaginary part of (N/2-1)th Fourier coefficient 

When an inverse transform is to be performed, the frequency domain 
data should be stored in the X array in the above manner. This data is 
then replaced by the time-domain information when the command is executed. 

See the RFFT command description for more information about the Fourier 
transform. 
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Units and Data Sampling Interval (DSI) Definitions 

The following list describes how the vertical and horizontal units 
and data sampling interval are automatically assigned when a waveform is 
the source/target for the RFFT1 command. To simplify this discussion, it 
is assumed that WA is a waveform. Accordingly, the following conventions 
are used: 

SA: the sampling interval for waveform WA 

HA$: the horizontal units for waveform WA 

VA$: the vertical units for waveform WA 

Also, an ampersand (&) indicates that the units strings are concatenated 
(joined together). 

Direct Transform. These rules apply when the source/target for the 
direct transform is a waveform. For example: 

Then: 

RFFT1 WA 

SA is changed to: 1/(N * SA) 
VA$ is changed to: VA$ & HA$ 

HA$ is changed to: {"HZ" 
11 / 11 & HA$ 

if HA$ = "S"} 
if HA$ i "S" 

Inverse Transform. These rules apply when the source/target for the 
inverse transform is a waveform. For example: 

RFFT1 WA,INV 

Then: 

SA is changed to: 1/(N * SA) 
VA$ is changed to: VA$ & HA$ 

HA$ is changed {"S" if HA$ = "HZ"} to: 
"/" & HA$ if HA$ i "HZ" 
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SECTION 2 

GLOSSARY 

aliasing. A phenomenon whereby high-frequency spectral components appear 
to be low-frequency components in an FFT spectrum. Aliasing occurs when 
the real-time input signal is sampled at too low a sampling rate. To avoid 
aliasing, the input signal must be sampled at a rate at least twice that 
of the highest frequency component of significance that is present in the 
input signal. 

analog signal. A signal that is continuous in time (or any other appropriate 
independent variable) and that exhibits a continuous range of analog values. 

analog-to-digital converter. A circuit or device that converts an analog 
signal into a corresponding digital representation of that signal. 

autocorrelation. The process of correlating a signal with itself. (See 
"correlation" and "cross-correlation.") 

complex conjugation. The process of negating the imaginary part of a complex 
number to obtain the complex conjugate. (The complex conjugate of a+jb is 
a-jb; the complex conjugate of 3-j5 is 3+j5.) 

complex number. A number having the form a+jb, where a is the real part 
and jb is the imaginary part. (j = {::i.) 

convolution. An operation mathematically similar to correlation. Like 
correlation, convolution can be thought of as successively shifting, 
multiplying, and integrating the two arrays (or waveforms) to be convolved. 
However, in the case of convolution, one of the waveforms is reversed in 
time before performing the shifting-multiplication-integration process. 
Convolution can be performed by computing the FFT of each signal to be 
convolved, multiplying these two FFT results, and then computing the !FT 
of the product. 

correlation. A mathematical operation that indicates the similarity between 
two waveforms as a function of the delay (time-shift). Correlation can be 
thought of as successively shifting (by some horizontal increment), 
multiplying, and integrating the two signals to be correlated. From a 
mathematical standpoint, correlation can be achieved by computing the FFT 
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of each signal to be correlated, then forming a complex-conjugate product 
from the FFT results, and finally taking the IFT of the product. 

cross-correlation. The process of correlating two different waveforms. 
(See "correlation" and "autocorrelation.") 

data sampling interval (DSI). The time between acquisition of two successive 
data samples in a digitized waveform. 

differentiation. An important mathematical operation that forms the basis 
of differential calculus. From an intuitive standpoint, the derivative at 
a given point of a function, array, or waveform corresponds to determining 
the slope of the curve at that point. 

digitize. To perform an analog-to-digital conversion upon a signal, usually 
representing some physical measurement. 

fast Fourier transform (FFT). A computer algorithm for converting a signal 
from the time domain to the frequency domain. 

frequency domain. Refers to a way of representing a signal such that its 
amplitude is expressed as a function of frequency. 

frequency response. The response of a circuit, device, or system when 
different frequencies are applied to it. 

horizontal scale factor (HSF). The scale that applies to the time scale 
(horizontal axis) of the waveform acquired via an oscilloscope or signal 
processing system. On an oscilloscope, the HSF is usually expressed in 
terms of time per graticule division. Some HSFs are 1 sec/div, 50 ms/div, 
and 500 us/div. 

imaginary number. A number having the form jb, where b is a real number 
and j = {::1. 

impulse response. The response of a circuit, device, or system when an 
impulse is applied to it. (Theoretically, an impulse is a spike with zero 
width, infinite amplitude, and unity area. In a practical sense though, 
an impulse has finite amplitude -- great enough to elicit a response but 
not enough to damage the system -- and non-zero width. The width must be 
much less than the expected response time of the system.) 
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integration. An important mathematical operation that forms the basis of 
integral calculus. From an intuitive standpoint, the integral of a function, 
array, or waveform corresponds to determining the area under the curve or 
the energy contained in a pulse. Integration and differentiation are inverse 
processes. 

inverse Fourier transform (IFT). A mathematical operation for converting 
a signal from the frequency domain to the time domain. The FFT and IFT are 
inverse operations. That is, the IFT of the FFT of a signal is equivalent 
to the signal itself. 

Nyquist frequency. The highest frequency (fn) that can be digitally 
represented for a given sampling rate (fs) or sampling interval (.6t). fn 
= fs/2 = 1/(2.6t) 

Nyquist Sampling Theorem. This theorem states that the sampling rate of a 
waveform digitizer must be twice that of the highest frequency component 
in the waveform being sampled. When this condition is not fulfilled, aliases 
(false frequency components) appear in the digitized waveform. 

phase. 1) The angular relationship between current and voltage in alternating 
current circuits. 2) The angular displacement of a sinusoid from the phase 
@position. (See Fig. 2-1.) Phase is usually expressed in radians. 

y 

2743-08 

Fig. 2-1. A sinusoid with zero phase (symmetric 

about the y-axis). 

polar form. An output format of the Fourier transform in which the spectral 
components are expressed in terms of magnitude and phase data. The polar 
form of the result of the FFT is derived from the rectangular form by 
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applying the formulas M = YR2 + I2 and O = arctan (I/R) where R and I are 
the reals and imaginaries, and M and O are the magnitude and phase values, 
respectively. (See "rectangular form.") 

real number. Any rational or irrational number. (A rational number can be 
expressed as the quotient of two integers.) 

real-time process. A process in which, on the average, the computing 
associated with each sampling interval can be completed in a period less 
than or equal to the sampling interval. 

rectangular form. An output format of the Fourier transform in which the 
spectral components are expressed as real and imaginary numbers. 

root-mean-square (RMS) value. The effective value of a varying or alternating 
voltage. It is equivalent to that value which would produce the same power 
loss as if a continuous voltage of that value were applied to a pure 
resistance. (In sine-wave voltages, the RMS voltage is equal to 0.707107 
times the peak voltage.) 

signal averaging. The process of acquiring a given number of whole-waveform 
samples, summing them, and dividing by the number of acquired waveforms. 
Signal averaging improves the signal-to-noise ratio. 

spectral components. Refers to significant amplitudes existing at certain 
frequencies within the spectrum. 

spectrum. A graph of signal amplitude (or energy) versus frequency. 

time domain. A way of representing a signal such that the signal amplitude 
is expressed as a function of time. 

vertical scale factor (VSF). The scale that applies to the vertical axis 
of data acquired via an oscilloscope or signal processing system. On an 
oscilloscope, the VSF is usually expressed in terms of volts per graticule 
division. Some VSFs are 5 volts/div, 20 mV/div, and 10 mV/div. 

window. Refers to the total period during which whole-waveform data is 
being acquired, or in which processed data is being displayed. Because the 
data acquisition process amounts to multiplying a waveform train by a 
rectangular window, data acquisition is sometimes referred to as "windowing 
a waveform." 
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