

PM 104 PERSONALITY MODULE FOR 8085 MICROPROCESSOR

INSTRUCTION MANUAL

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

INSTRUCTION MANUAL

Tektronix, Inc. P.O. Box 500 Beaverton, Oregon 97077

Serial Number _

First Printing AUG 1980 Revised JUN 1981

070-2916-00

Copyright © 1980 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and www are registered trademarks of Tektronix, Inc. TELEQUIP-MENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

TABLE OF CONTENTS

Page

Page

LIST OF ILLUSTRATIONS	•	•	•	 •	•	•	•	•	•	iii
LIST OF TABLES	•	•	•				•	٠		iv
OPERATORS SAFETY SUMMARY	•	•	•		•	•	•	•	•	v
SERVICING SAFETY SUMMARY .	•									vii

Section 1 GENERAL INFORMATION

Manual Overview	1-1
Introduction to the PM 104	1-1
The PM 104	1-1
System Connection	1-1

Section 2 OPERATING THE PM 104

Storing the PM 104	2-1
Connecting the PM 104 to the Logic	
Analyzer	2-1
Connecting the PM 104 to the System	
Under Test	2-1
Operating the PM 104 with the 7D02 .	2-1
Distinctive Characteristics of the PM 104	2-1
Asterisks in the Display	2-3

Section 3 PM 104 SPECIFICATION

General	3-1
Electrical Specifications	3-1
Mechanical Specification	3-5
Environmental Specification	3-6

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNELONLY. TO AVOID PERSONAL INJURY, DO NOT PER-FORM ANY SERVICING OTHER THAN THAT CON-TAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

Section 4	THEORY OF OPERATION
	Plack Disgram Description

Block Diagram Description	4-1
T States	4-1
Address and Data Line Operation for a	
READ Machine Cycle	4-1
ALE and HOLD	4-1
Interrupts	4-1
The ECL Comparator	4-1
RESET OUT and /INTA	4-1
READY	4-2
IO/M, SØ and S1	4-2
CLOCK OSCILLATOR	4-2
Self-Test	4-2
Detailed Circuit Description	4-2
Upper Board	4-2
Timing and Synchronizing Signals	4-2
Address and Data Lines	4-2
Lower Board	4-3
Wait State Generator	4-3
Interrupt Latch	4-3
Instruction Fetch Cycle Generator	4-4
Self-Test	4-5

Section 5 PERFORMANCE VERIFICATION

Introduction	5-1
Performance Verification, Part I	5-1
Test Equipment Required	5-1
Preliminary Setup	5-1
Timing Option Checks	5-2
Wait State Circuitry Check	5-2
Test Circuit Data	5-2
Performance Verfication, Part II	5-3
Introduction	5-3

TABLE OF CONTENTS (cont)

Section 6 MAINTENANCE AND TROUBLESHOOTING

TROUBLESHOOTING	Page
Repair Service	6-1
Obtaining Replacement Parts	6-1
Ordering Parts	6-1
Cleaning Instructions	6-1
Exterior	6-1
Interior	6-1
General Operating Precautions	6-1
Personality Module Disassembly	6-1
Microprocessor Plug Disassembly	6-2
Logic Analyzer Plug Disassembly	6-2
Troubleshooting the PM 104	6-2
Preliminary Setup	6-2
TEST 1	6-3
TEST 2	6-4
TEST 3	6-4
TEST 4	6-7
TEST 5	6-9
TEST 6	6-9

Section 6	MAINTENANCE AND	
	TROUBLESHOOTING (cont)	Page
	TEST 7	6-10
	Timing Option Troubleshooting	6-10
	Troubleshooting By Signature Analysis	6-12
	General Discussion	6-12
	The Concepts of Signature Analysis	6-12
	Signature Analysis Operation	6-12
	PM 104 Signature Analysis	6-12
	PM 104 Signature Tables	6-13
	Signature Analyzer:	
	Sony/Tektronix Type 308 with	0.40
		6-13
	Upper Board Signature Tables	6-13
	PM 104 Self-Test Information	6-18
Section 7	ELECTRICAL PARTS LIST	7-1
Section 8	DIAGRAMS	8-1
Section 9	MECHANICAL PARTS LIST	9-1
Appendix A	PM 104 SIGNAL GLOSSARY	

@

LIST OF ILLUSTRATIONS

Fig. No.

Page

	PM 104 Personality Module	viii
1-1	PM 104 connected to a 7D02 logic analyzer and an 8085 system-under-test	1-2
2-1	PM 104 characteristics as displayed on the	_
	7D02 screen	2-2
4-1	Circuit block diagram	4-6
5-1	7D02 program FORMAT display for	
	checking Setup and Hold times	5-4
5-2	7D02 delay by 0 triggering arrangement for	
	Setup and Hold time check	5-5
5-3	Address and data lines displayed in binary	
	radix	5-6
5-4	7D02 delay by 1 triggering arrangement for	
	Setup and Hold check	5-7
6-1	Disassembling the PM 104 plug	6-2
6-2	Removing the top board of the PM 104	6-3
6-3	PM 104 boards connected for testing	6-4
6-4A	7D02 power-up failure display	6-5
6-4B	7D02 diagnostic monitor module test menu	6-6
6-4C	7D02 diagnostic monitor SELF TEST	
	STIMULUS display	6-7
6-4D	Successful module test display	6-8
6-5	Timing Option troubleshooting program.	6-11
6-6	Timing Option diagram	6-11
6-7	Typical data input to the Signature	
	Exerciser	6-13

LIST OF TABLES

Table No.

3-1	Electrical Specifications	3-1
3-2	Mechanical Specification	3-5
3-3	Environmental Specification	3-6
6-1	Timing Option Troubleshooting Program	
	Setup	6-10
6-2	Version 0.0 Checksum = 0284	6-19

Page

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

Terms In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

Terms As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

Symbols In This Manual

 \wedge

This symbol indicates where applicable cautionary or other information is to be found.

Symbols As Marked on Equipment

DANGER — High voltage.

ATTENTION - refer to manual.

Protective ground (earth) terminal.

Power Source

This product is intended to operate from a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use only a power cord that is in good condition.

For detailed information on power cords and connectors, see maintenance section.

Refer cord and connector changes to qualified service personnel.

Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type, voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Remove Covers or Panels

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICE SAFETY SUMMARY

FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on. Disconnect power before removing protective panels, soldering, or replacing components.

Power Source

This product is intended to operate from a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

2916-25

PM 104 Personality Module connected to a 7D02.

GENERAL INFORMATION

Manual Overview

This instruction manual includes complete information for operation and maintenance of the PM 104 Personality Module-a design tool for use by designers of 8085-based microprocessor systems. Section 1 provides a general introduction to the PM 104 and describes its physical construction. Section 2 gives details of connection and operation of the PM 104 with a Tektronix 7D02 Logic Analyzer and an 8085 System Under Test. Section 3 lists electrical, mechanical, and environmental specifications of the PM 104. Section 4 includes details of periodic maintenance and troubleshooting for the Personality Module. Section 5 is a detailed circuit description. Section 6 lists all replaceable electrical parts. Section 7 comprises the Schematics, Section 8 the Mechanical Parts List, and Section 9 a Signal Glossary. For the location of any specific information, refer to the Table of Contents.

Since the PM 104 is a tool for designers of 8085-based systems, it is assumed that you have access to an Intel 8085 Microcomputer System Design Data Manual or other manual relating to this microprocessor.

Reference is made throughout this manual to a Logic Analyzer. The Tektronix Logic Analyzer most often used with the PM 104 Personality Module is the 7D02 Logic Analyzer. For operation of the system as a whole, you will require a Tektronix 7D02 Operators Manual.

Introduction to the PM 104

The PM 104 Personality Module connects a Tektronix Logic Analyzer to an 8085-based System Under Test (S.U.T.). Circuitry in the PM 104 "personalizes" the Logic Analyzer to operate specifically with the 8085 microprocessor.

The PM 104

Physically, the PM 104 consists of a circuitry pod containing electrical components arranged on two printed

circuit boards designated the Upper Board (A1) and Lower Board (A2). One end of the circuitry pod connects to a twisted pair woven cable terminating in a microprocessor plug. The other end of the circuitry pod is connected to a ribbon cable which terminates in a Logic Analyzer plug. Figure 1-1 shows the PM 104 connected to a Logic Analyzer and a System Under Test for operation.

The circuitry pod includes:

An interface assembly that "personalizes" the Logic Analyzer to operate with the 8085 microprocessor.

A zero-insertion-force (ZIF) socket on the top side of the pod which contains the 8085 microprocessor from the S.U.T. when the system is connected for Logic Analysis.

Firmware that permits the Logic Analyzer to disassemble the information it receives into the mnemonics of the 8085.

Circuitry to generate the state clock and other inputs to the Logic Analyzer.

System Connection

When the Personality Module is ready for operation, the 8085 microprocessor in the System Under Test is removed from its normal circuit location and plugged into the ZIF socket on the top of the PM 104 circuitry pod. The Microprocessor Plug from the Personality Module is plugged into the microprocessor socket in the S.U.T., and the Logic Analyzer plug is connected to the 7D02. In this configuration, the 8085 drives the System Under Test as before, but through the PM 104. The Logic Analyzer now has access to the address, control, data, and clock lines from the microprocessor, while the Personality Module generates some additional information required by the Logic Analyzer.

@

Fig. 1-1. PM 104.

OPERATING THE PM 104

Storing the PM 104

When storing the Personality Module, always protect the Microprocessor Plug with a plastic protector, Tektronix Part No. 200-2445-00. This is necessary to prevent damage to the pins on the plug, and also to protect the Personality Module from static electricity.

Connecting the PM 104 to the Logic Analyzer

CAUTION

Be sure that power is removed from the mainframe before connecting the PM 104 to the 7D02 Logic Analyzer.

With power removed from the mainframe, insert the Logic Analyzer plug from the PM 104 into the socket at the lower edge of the 7D02 front panel. In the proper position for insertion, the label on the PM 104 Logic Analyzer plug is facing up.

Connecting the PM 104 to the System Under Test

Be sure System Under Test power is OFF before attempting to connect the PM 104. Also, before handling the microprocessor in the System Under Test (S.U.T.), ground yourself to drain off static electricity.

Remove the 8085 microprocessor from the S.U.T. and carefully insert it into the Zero Insertion Force (Z.I.F.) socket on the PM 104. Be very careful to insert the 8085 into the ZIF socket with pin 1 next to the lever on the ZIF socket.

To save wear on the microprocessor socket in the System Under Test, it's a good idea to insert an extra socket before actually plugging the PM 104 Microprocessor Plug into the S.U.T. Tektronix Part No. 136-0623-00, available from your Tektronix Field Office, is suitable for the purpose. With the extra socket in place, plug the PM 104 Microprocessor Plug into the microprocessor socket. Again, be sure the pin alignment is correct. Pin 1 of the PM 104 Microprocessor Plug is marked with a notch and an arrow.

Operating the PM 104 with the 7D02

NOTE

Since the PM 104 has no controls that affect the operation of the system, operation of the Personality Module requires that you have a copy of the 7D02 Operators Manual at hand, and are thoroughly familiar with Logic Analyzer operation before attempting to use the PM 104. The manufacturer's documentation of the 8085 being tested is also a necessary tool when logic analysis is being conducted.

Distinctive Characteristics of the PM 104

In setting up data displays on the 7D02, you'll notice that the Word Recognizer Test displays for the PM 104 differ somewhat from those illustrated in the 7D02 Operators Manual. Figures in that manual show an example of Word Recognizer Test #1 using a different Personality Module, with Control Line names somewhat different from those found in the PM 104. With the PM 104, INRQ replaces /NMI in the illustrated display, and IO/M takes the place of /IRQ. INRQ (Interrupt Request), when in a high state, indicates an interrupt request by one or more of the 8085 interrupts. IO/M (Input Output/Memory) designates whether a READ or WRITE operation is to be an IO or a Memory function. If IO/M is in a "1" state, the operation is IO; if "Ø", the READ or WRITE is to Memory. The other PM 104 Control Lines shown in the Word Recognizer test are INACK (Interrupt Acknowledge) and HOLD. In the data display on the Logic Analyzer, the INRQ and IO/M lines are the only ones actually displayed. When INRQ and IO/M are both "1", the indication may be that INACK is in a "1" state. When INRQ and IO/M both show as "1" on the Logic Analyzer Display, one of two conditions may be assumed:

1. There is an interrupt pending during an IO operation.

2. The microprocessor is in an Interrupt Acknowledge Machine Cycle.

This occurs because the microprocessor holds the IO/M line high during an Interrupt Acknowledge operation. You can tell which of the operations has occurred by checking the address for Memory or IO location. If it is a Memory location, the displayed "1"s indicate an Interrupt Acknowledge cycle (INACK). Also, if an Interrupt Acknowledge has occurred, the address following should show that the microprocessor jumped to an Interrupt routine.

Note in Fig. 2-1 that the program has been set to RISING EDGE OF CLOCK, DELAY CLOCK BY 2, C8=0, and C9=1. C8 corresponds to the ALE (Address Latch Enable) pulse that starts each 8085 Machine Cycle, and C9 corresponds to a Wait State at the microprocessor due to a low signal on the READY line. These two signals are used to synchronize the State Clock Generator with the beginning of each Machine Cycle and to provide a strobe at T3, allowing for Wait States. Using these standard clock qualifiers, the Logic Analyzer will store once for each Machine Cycle. If you change any of the parameters under USER CLOCK QUAL or USER CLOCK SYNTHESIS, the State Clock is changed accordingly. This feature allows for considerable versatility in observing the operation of the 8085 under test. For instance, if you want to observe what happens on a bus during each "T State", you can change the program to indicate DELAY BY 0. This provides a State Clock for each "T State" and may cause each line of the display to be repeated several times. Other Clock Qualifiers can also be entered to provide a variety of state clock configurations.

TEST 1
1IF
1 WORD RECOGNIZER # 1
1 DATA=XX
1 ADDRESS=XXXX
1 IO/M=X INRQ=X FETCH=X R/W=X
1 INACK=X HOLD=X EXT TRIG IN=X
1 TIMING WR=X
1THEN DO
1 TRIGGER O-MAIN
1 O-BEFORE DATA
1 0-SYSTEM UNDER TEST CONT.
1 O SYSTEM UNDER TEST CONT.
1 1 SYSTEM UNDER TEST HALT
1 1-USER CLOCK QUAL
1 O-RISING EDGE OF CLOCK
1 C9-C4 (ANDED CLOCKS)=XXXXXX
1 1-USER CLOCK SYNTHESIS
1 O-DELAY CLOCK BY 2
1 ESYNC: C6=X UR C8=0
I WAIT: C/=X UR C9=1
END IEST 1
DIDFLAT T PRUGRAM
2916-3

Fig. 2-1. PM 104 characteristics as displayed on the 7D02 screen.

You need to be aware, however, that information on the busses may be changing during a strobe pulse that occurs at a "T State" other than T3, and it is possible to have random data stored and displayed in such a case. After changing any of the parameters, you can easily return to the standard program setup by re-programming the Word Recognizer test to request STANDARD CLOCK QUAL.

Asterisks in the Display

Asterisks sometimes appear in the data column of a mnemonic display on the 7D02, indicating "No Valid Data Stored" at that location. The PM 104 decodes and displays information by first checking for the mnemonic type, then displaying it. If the mnemonic requires an 8-bit operand, the program advances to the next byte of stored information and tests to determine whether it is a FETCH cycle or a READ/WRITE cycle. If the byte is a READ/WRITE cycle, the data is displayed as the operand of the mnemonic. If it is a FETCH cycle, asterisks are displayed to indicate that no data has been stored for the operand. Asterisks are displayed most frequently in the high byte of the address operand for conditional jumps and calls when the condition is not met.

If the operand includes 2 bytes (an address), the mnemonic is displayed and the program advances two memory locations to get the high byte of the address. Then it decrements one byte to get the low address byte. Each time this operation is repeated, the program checks whether the cycle is a FETCH or a READ/WRITE.

If you choose to change the qualifiers for the State clock, or condense the data stored in memory by using a QUALIFY statement in the Word Recognizer setup, you must be careful to interpret the displayed information correctly. As an example, assume a portion of a program is made up of the following steps:

LXI	B,1ØØØH
MVI	M,41H
ADI	A1H

The normal 7D02 disassembly would be as follows (LOC, ADDR and INRQ - IO/M were chosen at random):

LOC	ADDR	OPERATION	INRQ—10/M
015	1234	LXI B,1000H	ØØ
016	1235	ØØ READ	ØØ
017	1236	IØ READ	ØØ
018	1237	MVI M,41H	ØØ
019	1238	41 READ	ØØ
01A	1239	ADI A1H	ØØ
01B	123A	A1 READ	ØØ

If you should choose, for example, to qualify on data bytes that end in 1 (i.e., Ø1, 11, 21, etc.), your disassembly would appear as follows:

LOG	ADDR	OPERATION	INRQ—IO/M
015	1234	LXI B, A141H	ØØ
016	1238	41 READ	ØØ
017	123A	A1 READ	Ø

This is because the Opcode for LXI B, D16 (Ø1H) and the data bytes 41H and A1H all meet the criteria of the qualification. However, the disassembly program cannot take into account the wide variety of qualifiers that are available to you as the operator. Therefore, it assumes that the data following the FETCH is the correct information for the operand. This circumstance can be recognized by checking the displayed addresses.

SPECIFICATION

General

This section of the manual lists the electrical, mechanical, and environmental characteristics of the PM 104 Personality Module. Since the PM 104 operates only as part of a Logic Analyzer system, all operating voltages and currents are furnished by the Logic Analyzer to which the PM 104 is connected. If verification of these listed electrical characteristics is required for customer incoming inspection or other purposes, the Performance Check protion of Section 4, Maintenance and Troubleshooting, lists all necessary test equipment and describes a procedure for complete verification.

Characteristics		Desc	ription		
Signal Inputs					
Maximum number of channels	34 Data - 8 Address - 16 Control - 10				
Control Line Usage		Control Line	Stored	Word Recognizer Input	Clock Qualifier
	READ /WRITE IO /MEM INRQ IFC INACK HOLD RESET OUT	- CØ - C1 - C2 - C3 - C4 - C5 - C6	X X X X	x x x x x x	X X X
	/HALTED /ALE WAIT	- C7 - C8 - C9			x x x
Microprocessor Capability PM 104 Signal Inputs	8085A 8085A-2				
Clock					
Maximum Frequency in	10 MHz				
Processor Halt	STTL level that is acquisition. In zer	approximately 90 o delay mode this) ns afte s is 2 qu e probe	r the 7D alified st	02 stops ate clocks

Table 3-1 ELECTRICAL SPECIFICATIONS

Table 3-1 (cont.)

Characteristics	Performance Requirements	Supplemental Information
8085 Probe		
Input Levels		0-7 V signal swings
Input Loading Capacitance		1 /2 LSTTL load 40 pf nominal
Voltage in Low Limits	Min. 0.0 V, Max. 0.6 V	
Voltage in High Limits	Min. 2.0 V, Max. 7.0 V	
Current in Low Limits (V. in Iow - 0.4 V)		-0.2 mA Max
Current in High Limits (V. in high = $+2.7$ V)		+0.02 mA Max
Threshold Voltage (V_1)		Fixed 1.4 V nominal TTL compatible
Hysteresis	$(V_{T} + - V_{T} -)$	
		0.2 V Min.
Maximum Voltage in Non-Operating Non-Destructive		-7 V to +15 V continuous Limited to 5 inputs pulled high simultaneously
Ready Output Drive V _{OH} V _{OL}	$.5 V I_{o} = -1 mA$	2.4 V $I_0 = 1 \text{ mA}$
Clock Input Characteristics at Pin 37 of ZIF Socket		
nput Impedance		50 k Ω nominal, 45 pf nom.
Clock Period	20 ns Min.	
Clock Pulse Width (min)		40 ns low, 70 ns high
Voltage in Low Limits (operating)	Min. 0.0 V, Max. 0.6 V	
Voltage in High Limits (operating)	Min. 2.0 V, Max. 7.0 V	
Hysteresis		0.2 V Min.
Threshold Voltage		Fixed 1.4 V nominal
Maximum Voltage in Non-Operating Non-Destructive		-15 V to +15 V
Propagation Delays through Personality Module		
Delay added to READY INPUT	35 ns Max.	From microprocessor plug to ZIF. Measured at 1.4 V with 8085 in ZIF
Address Information A0-A7		Valid at Trailing Edge of ALE

Table 3-1 ((cont.)
-------------	---------

Table 3-1 (cont.)		
Characteristics	Performance Requirements	Supplemental Information
C2-INRQ		
Intr, RST 5.5,RST 6.5		100 ns Max,
RST 7.5, TRAP		95 ns Max.
C3-IFC: IFC		105 ns Max. Following valid signals on S0,S1,I0-/M (S0=S1=1, I0-/M=0)
IFC due to First Machine Cycle of INTR Cycle		130 Max. Following valid signals on S0,S1, I0-/M & INTA S0=S1=I0-/M=1, INTA=0
C4- /INACK		90 ns Max. Following valid signals on S0,S1,I0-/M (S0=S1=IO-/M=1)
C7-HALTED due to:		
/HALT		85 ns Max. 90 ns Max.
READY HOLD		A low on /HALT or READY or a high on HOLD will generate a /HALTED on C7
C8-ALE		30 ns Max.
, Address Information A0-A7		Valid at Trailing Edge of ALE
C2-INRQ Intr, RST 5.5, RST 6.5	100 ns Max.	
RST 7.5, TRAP		95 ns Max.
C3-IFC: IFC		105 ns Max. Following valid signals on S0,S1,I0-/M (S0=S1=1, I0-/M=0)
IFC due to First Machine Cycle of INTR Cycle		130 Max. Following valid signals on S0,S1, $I0 - /M \& INTA$ S0=S1= $I0 - /M=1$, INTA=0
C4- /INACK		90 ns Max. Following valid signals on S0,S1,I0-/M (S0=S1=I0-/M=1)
C7-HALTED due to /HALT /BEADY		85 ns Max. 90 ns Max
READY HOLD		100 ns Max. A low on /HALT or READY or a high on HOLD will generate a /HALTED on C7
C8-ALE		30 ns Max.
C9-WAIT		75 ns Max. Following low going signal on READY

Characteristics	Performance Requirements	Supplemental Information
Delay, all other Channels		40 ns Max.
Delay through ECL clock		10.5 ns Min. to 14.5 ns Max.
Test Clock		180 ns Min 200 ns May Measured
		at TP7010 on lower board
Clock Pulse Width (high and low)		55 ns Min.
Oscillator, Micro- processor Plug		Operates with any recommended oscillator circuit. Refer to MCS-85 User's Manual and /or supplement for further information.
Crystal Mode		Parallel resonant
Frequency of Operation		10 MHz max. 1 MHz min.
LC Mode Frequency		6 MHz max. 1 MHz min.
RC Mode		Recommended values R≈10 kΩ C≈20 pf
Frequency		1.5 to 4 MHz Measured at ZIF socket Pin 1
Connections		
External Input Mode		
Probe Input		
Resistance		>400 kΩ at DC
Capacitance		10 pf, typical
Input Signal Requirements		
VIH		+2.5 V min.
VIL		0.6 V max.
Period		100 ns min (8005A-2) 160 ns min (8085 /8085A)
t _{high}		ns min.
t _{low}		50 ns min (8085A- <i>2</i>) 70 ns min (8085/8085A)
Clock Input Delay		Measured from microprocessor
(rising edge to		plug Pin 1 (X), to P7020
rising edge)		Pin 1 <40 ns

Table 3-1 (cont.)

I

Characteristics	Performance Requirements	Supplemental Information
System Specifications		
With 7D02 Data		
Set-up Time	50 ns max	Referenced to rising edge of T ₃
Hold Time	0 ns max	
Data Acquisition Rate Period	600 ns min.	
Address AØ-A7		Referenced to falling edge of ALE
Set-up Time		5 ns max
Hold Time		35 ns max
Address A8-A15		Referenced to rising edge of T ₃
Set-up Time		50 ns max
Hold Time		0 ns max
ALE		ALE high to T_1 rising edge
Set-up Time	40 ns max	
Hold Time	0 ns max	
HOLD		HOLD set-up time to trailing edge of CLK (T ₂ or TWAIT)
Set-up Time		120 ns max.
Hold Time		0 ns max.
READY		References to rising edge of T ₂
Set-up Time		135 ns
Hold Time		0 ns

Table 3-1 (cont.)

Table 3-2

MECHANICAL SPECIFICATION

Characteristics	Performance Requirements	Supplemental Information
Size		12 x 20 x 4.3 cm (4.7 x 8.0 x 1.7 in.)
Weight		1 kg. (2 pounds) with cables, approx.
Cable Length (Logic Analyzer to Pod)		1.22 m (4 ft.), approx.
Cable Length (Replacement Plug to Personality Module Pod)		.33 m (13 in.), approx.

Table 3-3

ENVIRONMENTAL SPECIFICATION

Personality Modules are class 3 instruments, per Tektronix Standard 062-2853-00. Specifications are listed below; exceptions to the standard are noted in the list.

Characteristics	Performance Requirements	Supplemental Information
Temperature		
Operating		-15° C to +55° C
Non-Operating		-62° C to +85° C
Relative Humidity		95 to 97% non-condensing five 24-hour cycles at 30° C to 60° C
Altitude		
Operating		4.5 km (15,000 ft.)
Non-Operating		15 km (50,000 ft.)

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

THEORY OF OPERATION

Block Diagram Description

The personality Module accesses all the address and data lines and most of the status and control lines of the 8085 microprocessor under test. It decodes the information on each of those lines, transmitting it to the Acquisition Memory of the Logic Analyzer for display in hexadecimal, octal, or binary modes. See Fig. 4-1.

NOTE

Throughout this manual, a slash (/) preceding a signal name or a portion of a signal name indicates that the signal is active when in the low state. For example, /HALT indicates that HALT is an active low signal. R/W implies Ø - Write, 1 - Read.

T States

The 8085 microprocessor can be driven by an external clock signal, or will generate its own clock with the addition of a crystal across its X1 and X2 inputs. The 8085 divides the signal at X1 by two and supplies a clock output signal on pin 37 to drive the other system components. Each clock cycle at pin 37 is described as a "T State." The Personality Module operates in synchronism with T States in all its functions, and throughout this description reference is made to each major occurrence as it relates to some part of a T State.

Address and Data Line Operation for a READ Machine Cycle

Sixteen address lines are taken from the 8085 in the ZIF Socket and applied to buffers in the PM 104. Address lines 8 through 15 are buffered by A1U3060, and lines Øthrough 7, described as ADØ through AD7 (the 8085 uses a multiplexed bus, and lines Ø through 7 contain both address and data information) are buffered by A1U3050. The lower 8 bits of address (ADØthrough AD7) are latched in A1U2050 during the first T State. The 8085 microprocessor generates ALE (Address Latch Enable) at the beginning (T1) of each Machine Cycle. The falling edge of ALE is set to guarantee that the address information is valid, and is used to latch AØ through A7 into A1U2050. Address lines 8 through 15 are sent immediately to the Logic Analyzer in asynchronous fashion, with lines 8 through 11 also used to address PROM A1U2035. All address information is at the 7D02 ready to be strobed in by the end of the first T State. During T2, the information on the lower 8 address lines changes from address to data. 8085 timing ensures that data is valid by the rising edge of T3, and a READ signal is produced to store the information. Thus, the Memory READ has occupied three T States.

ALE and HOLD

The ALE signal is buffered by A1U3020, inverted, and sent directly to the 7D02. /ALE appears at the Logic Analyzer on Control line C8 as ESYNC, which synchronizes the front end board of the 7D02. /ALE is again inverted through A1U2010 and sent to the Personality Module Lower Board (A2), where it is used to synchronize the Wait State Generator and the Instruction Fetch Cycle Generator. The HOLD signal is also inverted in Buffer A1U3020 and sent to the Lower Board to Latch A2U4030. There it is re-inverted and provided as a HOLD REQUEST signal to the Logic Analyzer, where its primary use is as a Word Recognizer.

Interrupts

The 8085 provides five different interrupts: INTR, TRAP, and RST 5.5, RST 6.5, and RST 7.5. The interrupts are buffered by A1U3020, then supplied as inputs to AND Gate A1U3030. The combination of A1U3020 and A1U3030 creates the equivalent of a 5-input NOR gate. Any interrupt that goes high produces a low state at the output of A1U3030. This output is sent to the Interrupt Latch on the Personality Module Lower Board which latches the INRQ line high for at least one instruction fetch cycle.

The ECL Comparator

Pin 37 of the ZIF Socket monitors the clock output of the 8085 on the Ø2 line. This signal is sent to A1U4060, a very fast ECL comparator, which outputs CLK and/CLK signals to the 7D02. The fast comparator is needed to get the Clock signal to the Logic Analyzer as quickly as possible. (The ECL Comparator also provides a constant 50 k Ω input impedance to the clock output, preventing excessive loading from the Personality Module circuitry.) A1Q2071, A1Q1075, and A1Q2070 with their associated circuitry from an ECL to TTL converter, which generates the Ø2TTL input to the Wait State Generator on the Lower Board.

RESET OUT and /INTA

The RESET OUT and /INTA lines are buffered by A1U3010. RESET OUT is then sent directly to the Logic

Analyzer on Control Line C6, and also supplied as inputs to the Interrupt Latch and the IFC Generator on the Lower Board. /INTA also becomes an input to the IFC Generator.

READY

The READY input to the processor is buffered in A1U3010 and combined with the /HALT line in A1U3030. The output is a RDY signal which adds Wait States when necessary between T1 and T3. These Wait States are produced by the Wait State Generator and supplied on Control Line C9. The RDY signal is combined with the HOLD signal in A1U2010-A1U3040 to generate HALTED, which appears on Control Line C7 at the 7D02 as /HALTED.

IO/M, SØ and S1

The IO/M (Input-Output Memory) line is buffered in A1U3010 and appears at the 7D02 on Control Line C1. If IO/M is in a 1 state at C1, an I/O instruction is indicated. If IO/M is in a zero state at this point, a Memory instruction is called for. IO/M is also used as an input to the Instruction Fetch Cycle Generator and Interrupt Acknowledge circuit. SØ and S1 are also buffered by A1U3010, and at its output are combined in AND gate A2U2010-A2U3040 to help

produce the INACK (Interrupt Acknowledge) signal at Control Line C4. S1 also appears as RD/WR (Read/Write) on line CØ. Among the three control lines SØ, S1, and IO/M, there can be eight combinations of zero and one states. The combination present at a given instant determines whether there will be an Instruction Fetch, an Interrupt Acknowledge, a Read/Write operation, an I/O Read, etc.

CLOCK OSCILLATOR

The microprocessor replacement plug contains a clock oscillator. This oscillator performs the function of the 8085 internal oscillator and provides low impedance clock signals to the Personality Module and to the 8085.

Self-Test

The Self-Test circuit has been designed into the Personality Module for the purpose of testing the operation of the module itself. This allows any apparent difficulties in the system to be localized to the PM 104 or the 8085 processor under test. It generates a simulated program which exercises most of the functioning circuits of the Personality Module. Self-Test also provides the stimulus for Signature Analysis.

DETAILED CIRCUIT DESCRIPTION

Upper Board

The Upper circuit board (A1) in the PM 104 Personality MOdule contains the buffers for the various processor lines from the ZIF Socket, as well as circuitry that accepts and processes address and data information from the System Under Test so that the disassembled information can be displayed on the 7D02. The ECL Comparator, which processes the incoming clock signal from the processor, is also located on the Upper Board.

Timing and Synchronizing Signals

Ø2 is the Clock signal from the processor on pin 37 of the ZIF Socket. Ø2 is input to pin 2 of ECL Comparator A1U4060, and emerges as two signal outputs; CLK at J1010 pin 2, and /CLK at J1010 pin 3. A1U4060 is a fast ECL Comparator, ensuring that Clock signals are transferred to the 7D02 in the shortest possible time. The CLK output from pin 7 and /CLK on pin 8 are also applied to the ECL-to-TTL converter circuit, A1Q1075, A1Q2070, and A1Q2071, where the Ø2TTL signal is generated for use on the Lower Board.

The other major timing signal from the 8085 processor is ALE (Address Latch Enable). ALE is on pin 30 of the ZIF Socket and is buffered in A1U3020, which also inverts it to /ALE and presents it to the Logic Analyzer as ESYNC on Control Line C8. /ALE acts to synchronize the Front-end board of the 7D02. The /ALE signal from the output of A1U3020 is also re-inverted to ALE in A1U2010 and used to latch AØ through A7 at Latch A1U2050. It is also sent to the Lower Board for use in synchronizing the State Machines via pin 4 of J3005.

Address and Data Lines

During T1 of the 8085 operating cycle, address information enters the Personality Module on ADØ through AD7 (pins 12 through 19 of the ZIF Socket) and on address lines A8 through A15 (pins 21 through 28 of the ZIF Socket.) Address lines AØ through A5 enter buffer A1U3060 through protection hybrids, each of which contains a spark gap with breakdown voltage of about 500 V, and a clamp diode to +15 V protected by an $\approx 600 \Omega$ current-limiting resistor. From the output of A1U3060, address information on these lines goes directly to J1010 and to the 7D02. A8 through A11 are also used in addressing PROM A1U2035. The lower 8 address bits on lines ADØ through AD7 pass through similar protection hybrids into buffer A1U3050. The 8085 bus, including lines ADØ through AD7, is multiplexed; each of these lines contain address and data at different points in the operating cycle. After the rising edge of T1, ALE goes low, latching address information AØ through A7 into Latch A1U2050. The output of A1U2050 during T1 is the lower 8 address bits, sent on the Logic Analyzer. During succeeding T States, the information on lines AD \emptyset through AD7 is the Op Code or data that the processor instruction operates on.

After the Acquisition Memory has been filled, the 7D02 pulls the LOOK input (J1010 pin 62) high. This causes A1U3060, A1U3050, and A1U2050 to go to a high-impedance state. The Logic Analyzer can then use the address and data lines on J1010 to access the Personality Module ROM to decode the information stored in memory. After a short delay, the /SEL P signal from the Logic Analyzer turns on the PROM and line driver A1U2020 to gather the decoding information required.

Lower Board

Circuitry on the Lower Board includes the three State Machines—the Wait State Generator, the Interrupt Latch, and the Instruction Fetch Cycle Generator. The Self-Test Circuitry is also located on the Lower Board.

Wait State Generator. The Wait State Generator, comprising A2U1020 and A2U2030, monitors the READY and /HALT inputs, and sends a WAIT signal to the 7D02 when either of the two monitored lines is pulled low. The 8085 processor looks at the READY line at the rising edge of T2. If the READY line is low and meets the required setup times, the processor inserts a Wait State in the machine cycle. One Wait State is added for each rising clock edge that occurs while the READY line is held low. The Wait State Generator checks the READY status between the rising edge of T1 and a time approximately 50 to 100 ns prior to the rising edge of T2. If the READY or /HALT line is low, a WAIT signal is sent to the 7D02 in time to cause the Logic Analyzer to simulate the 8085 and insert Wait States.

The READY and /HALT signals are buffered by A1U3010 on the Upper Board. READY enters the Personality Module through J6020 and passes through a protection hybrid into the A1U3010 buffer. READY and /HALT are buffered in A1U3010 pins 4 and 6 respectively, and are ANDed together at A1U3030 and A1U3040. If either input goes low, A1U3030 pin 12 goes low, and A1U3040 pin 8 goes high. The low at A1U3030 pin 12 pulls the READY input of the 8085 low to add Wait States. The RDY signal at A1U3040 pin 8 is sent to the Wait State Generator. ALE is also buffered and sent to the Wait State Generator via A1U3020 and A1U2010. ALE is high during T1 of all machine cycles except for the DAD instruction and during Bus Idle conditions. State Machine operation is as follows:

1. Assume that the READY and /HALT lines are high (no Wait States added).

Starting condition: A2U1020 pin 5 is low A2U1020 pin 9 is low.

- a) The rising edge of ALE clocks A2U1020-5 high.
- b) The rising edge of T1 clocks A2U1020-9 high.

A2U2030D is enabled to check RDY A2U1020-1 is pulled low and cleared A2U1020-12 goes low.

c) The rising edge of T2 clocks A2U1020-9 low.

A2U2030D is disabled until the next cycle.

d) The cycle repeats and the WAIT signal stays low.

2. Assume that RDY goes high, and Wait States are added.

- a) The rising edge of ALE clocks A2U1020-9 high.
- b) The rising edge of T1 clocks A2U1020-9 high.

A2U2030D is enabled to check RDY A2U1020-1 is pulled low and cleared A2U1020-12 goes low.

c) A2U2030D pin 11 goes low.

A2U1020-10 is low and pin 9 is held high, regardless of the clock at pin 11.

d) RDY goes low.

A2U2030D-11 goes high.

 e) The rising edge of Ø2TTL (T3) clocks A2U1020-9 low.

A2U2030D is disabled until the next cycle.

f) The cycle repeats.

Interrupt Latch. The Interrupt Latch, including A2U2020, A2U3030, and A2U1030, latches any interrupt and holds it to guarantee that the Logic Analyzer will see the interrupt request (INRQ) for at least one Instruction Fetch Cycle (IFC). All five 8085 interrupts-INTR, TRAP, RST 5.5, RST 6.5, and RST 7.5 are buffered by A1U3020 and combined into one signal by A1U3030 on the Upper Board. Any time any of the interrupts are pulled high, the /INT REQ signal to the latch circuit goes low. A2U4030B monitors the Wait State Generator and provides a clock pulse to the Interrupt Latch Circuit for T3 of every machine cycle. (This takes Wait States into account, since any Wait States inserted occur prior to T3). The Latch circuit sends a high signal to the 7D02 on the INRQ line as soon as any INT REQ occurs. This signal stays high until (a) INT REQ goes low, and (b) INRQ has been high for an Instruction Fetch Cycle. State Machine operation is as follows:

> System Reset: A2U2020-9 is high A2U2020-5 and -2 are low A2U3030 is disabled by a low on pin 10.

Theory of Operation-PM 104

- Assume no interrupts (/INT REQ is high). Nothing changes when T3 occurs Cycle repeats.
- 2. Assume Interrupt Request occurs, but not during
- IFC.
 - a) /INT REQ goes low.

A2U2020-9 goes low A high signal is sent to the 7D02 on INRQ A2U3030-11 is low (disabled).

b) The rising edge of T3 occurs.

Nothing changes.

3. Assume an IFC occurs next, but the request is still valid.

A2U3030 remains disabled due to the low on pin 11.

The rising edge of T3 causes no changes.

4. Assume that /INT REQ goes high.

A2U3030 is enabled to look for the next IFC.

a) The IFC occurs.

A2U2020-2 goes high.

b) The rising edge of T3 occurs.

A2U2020-5 goes high and clocks A2U2020-9 to a high state INRQ goes low A2U3030 is disabled by a low on pin 10.

c) The cycle repeats.

Instruction Fetch Cycle Generator. The Instruction Fetch Cycle Generator, which includes A2U3020, A2U3030, A2U2030, and A2U1030, provides an IFC signal to the 7D02 during all Instruction Fetch Cycles. It also generates IFC during the first machine cycle of an Interrupt Acknowledge (INA) machine cycle, due to a high on the INTR interrupt line.

The control lines SØ, S1, and IO/M can be used to determine most machine cycles of the 8085 processor. For an IFC, SØ and S1 are both 1 and IO/M is Ø. For an Interrupt Acknowledge cycle (INA) all three lines are 1. For most INA cycles, the 8085 is internally set to the RST Vector associated with a particular interrupt. However, the INTR interrupt requires that an external source provide the RST information. Therefore, although the SØ, S1, and IO/M lines signify an INA cycle, the 8085 is actually performing an Instruction Fetch Cycle. This special IFC is signaled by a low on the /INTA line. Since the 8085 is doing an IFC, the information on the data bus may be any valid Op Code. It might be a multiple-byte instruction. If we assume a 3-byte CALL instruction, the 8085 uses three INA cycles during

which the /INTA line is pulled low and the SØ, S1, and IO/M lines are high. The /INTA signal has the same timing as the /RD signal in a normal IFC.

The Instruction Fetch Cycle Generator sends an IFC signal to the 7D02 for the first machine cycle of each INA cycle caused by an INTR. The remaining machine cycles of a multiple-byte instruction are READ cycles. State Machine operation is as follows:

System Reset: A2U3020-8 is high A2U3020-6 and --12 are high /INTA is high A2U3020-2 is low A2U3030-2 is low (disabled).

1. Assume no INA cycles due to INTR.

a) A2U2030-10 is high (enabled).

- b) If SØ and S1 = 1 and IO/M = ϕ , IFC is high to the 7D02.
- c) If SØ, S1, and IO/M = 1, IFC is low and INACK is high.

2. Assume INA due to INTR occurs (3-byte CALL instruction).

a) SØ, S1, and IO/M = 1.

A2U2030-9 is high (IFC disabled).

b) /INTA goes low.

A2U3020-8 is clocked low A2U2030-10 is low (IFC and INACK are both high for this cycle) A2U3020-2 is high.

c) The rising edge of T3 occurs.

A2U3030-2 goes high (enabled.)

d) The next ALE occurs.

A2U3020-13 is pulled low A2U3020-8 goes high (enables A2U2030-10).

e) /INTO goes low.

Clocks A2U3020-11, but since the D is low, the /Q output stays high IO/M is also high, so A2U2030-1 is low, and IFC goes low INACK is high.

f) Third ALE occurs.

Steps 4 and 5 above repeat.

g) The 8085 enters a WRITE cycle due to the CALL instruction.

/INTA stays high IFC and INACK are low, due to the status of SØ, S1, and IO/M.

- h) ALE occurs—nothing changes.
- i) The rising edge of T3 occurs. A2U3020-6 goes high.
- j) The IFC generator is reset and ready for the next INA.

Self-Test

The Self-Test Circuitry in the PM 104 comprises A2U2010, A2U3010, A2U1005, A2U4010, A2U5020, A2U1010, A2U6005, and A2Q4006. When a Self-Test is

carried out, the 8085 microprocessor is removed from the ZIF Socket and the Microprocessor Plug is connected to the Self-Test socket on the bottom of the PM 104 Pod. The Self-Test exercises all of the lines from the ZIF Socket and provides the opportunity to observe the operation of each line on the 7D02 display.

A2Q4006 and associated circuitry functions as a 10-MHz oscillator to provide Self-Test timing. A2U2010 accepts the clock signal and generates TCLK and /TCLK signals.

A2U5020 is a buffer which takes its inputs from counter A2U3010 and A2U1005. A2U4010 is a 32-byte PROM which generates a number of different Self-Test functions. The Self-Test operation produces a display at the 7D02 which simulates an actual program, revealing the state of each line in the PM 104 at any given stage of the operation.

Fig. 4-1. Circuit Block Diagram.

PERFORMANCE VERIFICATION

Introduction

The procedures which follow provide a method of checking the operation and performance requirements of the PM 104. The procedure can be used for incoming inspection, familiarization, or system troubleshooting.

There are two parts to the Performance Verification. Part I described a procedure which allows you to verify that the Personality Module circuitry and the connections to the Logic Analyzer are functional and operating as expected. The Personality Module Self Test Stimulus will produce the necessary signals on all address, data, control, and clock lines to provide a preliminary check of the PM 104 circuits.

Part II describes a procedure to test the more specific performance requirements such as input impedance, actual threshold voltages, propagation delays within the module, etc. This procedure requires some physical disassembly of the Personality Module.

PERFORMANCE VERIFICATION, PART I

Test Equipment Required

Test Oscilloscope:

Vertical frequency response DC to 100 MHz Minimum vertical deflection factor 50 mV to 5 V/Div Dual Trace

Example, Tektronix Type 465

Pulse Generator:

Tektronix PG 508 or equivalent, with variable pulse width and amplitude

Digital Multimeter:

Tektronix DM 501A or equivalent

40-pin Socket:

40-pin dual in-line package socket, low profile Tektronix Part No. 136-0623-00 or equivalent

Other Equipment:

Small flat blade screwdriver Phillips screwdriver 3/32" Allen wrench

Preliminary Setup

With the 7D02 Logic Analyzer properly installed in a 7000-Series mainframe and the Power Switch in the OFF position, plug the PM 104 into the 7D02.

Turn the PM 104 upside down. With the flat blade screwdriver, pry open the Test Socket access door by

inserting the screwdriver in the small opening at the end of the access door and slowly applying pressure outward.

With the access door removed, plug the Microprocessor Plug into the Test Socket located inside the access opening. Be very sure pin 1 of the plug mates with pin 1 of the Test Socket. **Avoid twisting the cable.**

After checking that all connectors are secure, turn on the 7D02 Power Switch and observe the display. If everything is functioning properly, the "POWER-UP VERIFICATION" will indicate "PASS" for all diagnostic tests, and the display will change to indicate "POWER-UP DIAGNOSTICS COMPLETE."

Set the Channel 1 vertical input of the test oscilloscope to 1 Volt/Div and the horizontal sweep rate to 0.1 μ s/Div. Select Channel 1 for Vertical Mode. Then carry out the following steps:

1. Attach the oscilloscope probe ground lead to pin 20 of the ZIF socket (Zero Insertion Force Socket) on the Personality Module. Place the probe tip at pin 1 of the ZIF socket to see a pulse train with a period of 250 to 650 ns and minimum low time >60 ns. This signal is generated by an oscillator in the Microprocessor Plug, and its period is determined by an RC network at the Test Socket. The oscillator can be driven by any of the 8085/8085A or 8085A-2 clock driving circuits specified by Intel. (See Microprocessor Oscillator specifications for more details.(This check simply verifies that the components in the oscillator are functioning. 2. Turn the 7D02 Power Switch OFF and turn the PM 104 upside down again. Move the jumper strap on J6010 (located near pin 1 of the Self Test Socket) from the NORM position to the TEST position. This enables the PM 104 Self Test circuitry for the remainder of the Performance Verification tests.

NOTE

Be sure that the J6010 jumper strap is always restored to the NORM position at the conclusion of testing. This is necessary to conserve power and prolong the life of the components.

3. While holding down any one of the 7D02 input keys, turn the Power Switch ON and wait for the display to appear. The "POWER-UP VERIFICATION" should indicate that the "KEYBOARD" test has failed due to the key being held down. This allows access to the more detailed diagnostics in the 7D02 firmware.

4. Press the X (Don't Care) key on the 7D02 Numeric Entry keypad to enter the Diagnostic Monitor. A diagnostic menu will appear on the display.

5. Press 9 on the Numeric Entry keypad to enter the Personality Module diagnostics. The display will ask for "SELF TEST STIMULUS" which has been connected in earlier steps.

6. Press the START key to begin Self Test diagnostics. These tests check most of the PM 104 circuitry, as well as the connections to the 7D02 for all address, data, and clock lines, and most of the control lines. If everything is functioning properly, the display will indicate that all tests "PASS."

Timing Option Checks

The Personality Module Self Test circuit generates signals to check the Timing Option of the 7D02. If a Timing Option is installed, test these signals by making the following connections:

Connect a P6451 Data Acquisition Probe to the 7D02 Timing Input connector.

Attach the P6451 input leads to J6030 at the lower end of the Self Test Socket as follows:

- GND to J6030 Pin 1 (marked by an arrow on the circuit board)

- Channels 0 to 7 to J6030 pins 2 to 9 respectively. (J6030 pin 10 is used for signature analysis only.)

1. Press X (Don't care) to return to the Diagnostic menu.

2. Press B on the Numeric Entry keypad to enter Timing Option diagnostics.

3. Press START to begin diagnostic tests.

4. The display should show "PASS" for all three tests, indicating that the PM 104 is providing correct information to the 7D02.

5. The remaining checks will be accomplished by putting the 7D02 in its normal operating mode and setting up various conditions via the keyboard. To exit the Diagnostic Monitor, press the X key twice. The display will then read "POWER-UP DIAGNOSTICS COMPLETED."

Wait State Circuitry Check

The PM 104 Self Test generates one Wait State for each simulated machine cycle. The Wait State Circuitry can be checked as follows:

1. Press the WD RECOGNIZER key on the 7D02.

2. Using the CURSOR control keys, move the cursor to the "FETCH-X" box and enter a "1".

3. The cursor will move to the "R/W=X" box. Enter a "0". This sets the Word Recognizer to trigger on an Instruction Fetch Cycle (which is also a Write Cycle). Since this condition never occurs in actual operation, the 7D02 will not trigger.

4. Press TRIGGER.

5. Press START. The 7D02 starts searching for the trigger condition. In the upper right corner of the display, the message "8085 STOPPED" will flash on and off, indicating that the Wait State signals from the PM 104 are sent to the 7D02 correctly. Any of three conditions will produce the "8085 STOPPED" message:

- a) The microprocessor READY line is being pulled low by the System Under Test.
- b) The 7D02 is programmed to HALT the processor under test.

Test Circuit Data

1. Press the STOP key again to manually trigger the 7D02 and acquire the test circuit data. The information

displayed is produced by the Self Test circuitry. It does not represent a functioning program, but stimulates various Fetch, Read, and Write machine cycles, by providing the necessary signals on the bus and control lines. This simulated program starts at address ØØØØ and repeats every 64 memory locations. During each program cycle, all of the address, data, and control lines are pulled high and then low at least once to test for stuck lines. If any line contains wrong information, a failure will have occurred during the previously-described diagnostic tests.

2. Press the following keys to continue:

IMMEDIATE DISPLAY PROGRAM

3. The display will return to the Word Recognizer program. Using the Cursor control keys and the Numeric Entry keys, input the following information:

FETCH=X R/W=X 4. Move the cursor to "0-SYSTEM UNDER TEST CONT." and enter a "1". The display will change to "1-SYSTEM UNDER TEST HALT".

5. Press the START key several times while watching for the "8085 STOPPED" message, which will appear after the 7D02 has triggered and should remain on until the new display is generated. Since the Word Recognizer is set to trigger on all "don't cares", the display will show new information each time the START key is pressed.

This concludes Part I of the Performance Verification. Turn the 7D02 Power Switch to the OFF position. Remove the P6451 and the Microprocessor Plug from the Self Test circuitry and move the jumper on J6010 to the "NORM" position. Replace the access door by inserting the end opposite the screwdriver slot first, and applying pressure with the fingers to snap the door into place.

PERFORMANCE VERIFICATION, PART II

Introduction

The performance checks described in this part of the Performance Verification test PM104 specifications that are not checked by the Self Test function. Equipment used in this part of the procedure is the same as that listed at the beginning of the section. These tests will be easier to complete if a 40-pin DIP (Dual In-line Package) socket is plugged on the PM 104 Microprocessor Plug. The PG 508 Pulse Generator can then be connected via short (1-inch) leads from a female BNC connector to the designated pins on the DIP socket.

1. Check Maximum Voltage In Low Limits, Minimum Voltage In High Limits, data Setup Time and Hold Time for address and data lines.

a) Set the Test Oscilloscope as follows:

Vertical Mode	Channel 1
Vertical Deflection Factor	1 V/Div
Time/Div or Delay Time	0.5 <i>μ</i> s/Div
Ground	Channel 1 input

Center the trace with the Vertical Position control, and set for DC input. Connect the Channel 1 oscilloscope probe to the BNC plug from the PG 508. b) Power up the test oscilloscope and the PG 508 and set PG 508 controls as follows:

Period	1 <i>μ</i> s
Duration	50 ns
Back Terminated	
High Level	2.0 V
Low Level	0.6 V
Rise/Fall Time	5 ns
Normal/Complement Switch	Complement

- c) Observe a negative-going pulse 2 cm high, with a width of 1 cm, on the Test Oscilloscope CRT.
- d) Connect the P6508 signal lead to pins 12 (ADØ) and 37 of the Microprocessor Plug. Connect GND to pin 20. Check for a pulse width of 50 ns. Turn on the 7D02 Power switch.

NOTE

Most of the Performance Tests in this section involving the PG 508 require that connection is made to pin 37 (the clock signal), and some other pin on which the test signal is read.

Performance Verification—PM 104

e) To check the Setup and Hold times on the data and address lines, leave the PG 508 connections as described above. Press the Format key on the 7D02. Select binary address and data radices, as shown in Fig. 5-1. Press Format again. Make the following 7D02 key entries in sequence:

ELSE TRIGGER USER CLOCK QUAL USER CLOCK SYNTHESIS DELAY BY Ø (See Fig. 5-2) START SELECT ABSOLUTE DISPLAY MODE

f) Observe on the 7D02 the display that appears in Fig. 5-3. Note that the least significant bit of both the Address and Data displays (indicating the state of multiplexed line ADØ) is Ø. (All other displayed bits show as 1's in the figure, but since all other bits are floating in this display, they can be either 1 or Ø without affecting anything. We are only concerned with the state of Address Ø and Data Ø.) g) Change the 7D02 program to observe the display triggered on the falling edge of the clock. To do this, press the following 7D02 keys in sequence:

> IMMEDIATE DISPLAY PROGRAM

Move cursor to RISING EDGE OF CLOCK. Change program to FALLING EDGE OF CLOCK.

Set the PG 508 output to Normal. Check that the pulse width is still 50 ns at the threshold level.

Press START. Note that now Address \emptyset and Data \emptyset are both displayed as 1's.

h) Leaving the PG 508 connections on pins 20 and 37, carry out steps e), f), and g) for lines AD1 through AD7 (DIP socket pins 13 through 19) and for Address lines A8 through A15 on DIP socket pins 21 through 28. On lines AD1 through AD7, both the address and data bits in the display will be affected. On Address lines A8 through A15, you'll only be concerned with the Address bit.

FORMAT MODE PRESS "FORMAT" TO EXIT TIMING OPTION WORD RECOGNIZER **O-BINARY** WORD RECOGNIZER ADDRESS FIELD **O-BINARY** WORD RECOGNIZER DATA FIELD **O-BINARY** TIMING OPTION DATA DISPLAY **O-BINARY** O BINARY 1 OCTAL 2 HEX 3 ASCII ADDRESS FIELD DISPLAY **O-BINARY** DATA FIELD DISPLAY **O-BINARY** HIGHLIGHT MEMORY DIFFERENCES: 1-NO DISPLAY GLITCHES? 0-YES TIMING OPTION DATA INVERSION DATA=00000000

Fig. 5-1. 7D02 program FORMAT display for checking Setup and Hold times.

2916-6

TEST 1
1ELSE DO
1 TRIGGER O-MAIN
1 3-ZERO DELAY
1 O BEFORE DATA
1 1 CENTERED
1 2 AFTER DATA
1 3 ZERO DELAY
1 0-SYSTEM UNDER TEST CONT
1 1-USER CLOCK QUAL
1 O-RISING EDGE OF CLOCK
1 C9-C4 (ANDED CLOCKS)=XXXXXX
1 1-USER CINCK SYNTHESIS
1 O-DELAY CLOCK BY 2
1 ESYNC: CA=X DR C8=0
END TEST 1
DISPLAY
2916-7

Fig. 5-2. 7D02 delay by 0 triggering arrangement for Setup and Hold time check.

Replacement Plug Pin #	Bits Tested
12	AØ,DØ
13	A1,D1
14	A2, D2
15	A3, D3
16	A4,D4
17	A5, D5
18	A6, D6
19	A7,D7
21	A8
22	A9
23	A10
24	A11
25	A12
26	A13
27	A14
28	A15

2. Check /ALE Setup and Hold.

a) Turn the 7D02 Power OFF.

- b) Change the PG 508 Duration to 40 ns.
- c) Connect the PG 508 to ZIF socket pins 20 (Gnd), 30, and 37 (clock).
- d) Turn 7D02 power ON.
- e) Press the following 7D02 keys in sequence:

ELSE TRIGGER USER CLOCK QUAL USER CLOCK SYNTHESIS DELAY BY 1 (See Fig. 5-4) START

- f) The Logic Analyzer display should show SLOW CLOCK.
- g) Press the following 7D02 keys:

STOP IMMEDIATE DISPLAY PROGRAM

Fig. 5-3. Address and data lines displayed in binary radix. Note that the least significant bit of both address and data show as 0. (AD0 line low.)

- h) Change RISING EDGE OF CLOCK to: FALLING EDGE OF CLOCK Press START
- i) The 7D02 should now trigger and display.
- 3. Check Delay added to READY ≤35 ns.
 - a) Connect the PG 508 signal lead to DIP socket pin 35 only.
 - b) Connect test oscilloscope channel 2 to pin 35 of the ZIF socket on the Personality Module. Set Vertical Deflection factor on the test oscilloscope to 1 V/Div. (Use matched probes for these connections.)
 - c) Set the test oscilloscope Vertical Mode to Alt.
 - d) Ground both test oscilloscope channels and position both traces to the center horizontal graticule line.
 - e) Set both channels to DC.

- f) Determine the delay at 1.4 V (it must be <35 ns).
- 4. Check Wait State Line.
 - a) With the PM 104 connected to the 7D02 and configured for Self Test, program the 7D02 for Word Recognizer Test #1. Program the following:

ADDRESS ØØØØ USER CLOCK QUAL USER CLOCK SYNTHESIS DELAY BY Ø

- b) Press START, and note that each instruction is repeated three times in the Logic Analyzer display.
- c) Change the program to C9=X and press START. Notice that now each instruction is repeated four times in the Logic Analyzer display. This shows that the WAIT signal generated by the Self Test circuit is causing the 7D02 to wait one T State. The Self Test circuit generates all four T States, but with C9=1, the Wait State that is inserted is

Fig. 5-4. 7D02 delay by 1 triggering arrangement for Setup and Hold check.

not visible because the 7D02 does not store during the Wait State.

This completes the Performance Verification for the PM 104.

MAINTENANCE AND TROUBLESHOOTING

Repair Service

Properly handled and cared for, your PM 104 Personality Module will give dependable service for many years. However, should repair service be needed at any time, Tektronix, Inc. provides complete instrument repair at local Field Service Centers and at the Factory Service Center. Contact your local Tektronix Field Office or representative for further information.

Obtaining Replacement Parts

Most electrical and mechanical parts can be ordered through your local Tektronix Field Office or representative. However, you should be able to obtain many of the standard electronic components from local commercial sources in your area. Before you purchase or order a part from a source other than Tektronix, Inc., please check the Electrical Parts List for the proper value, rating, tolerance, and description.

Ordering Parts

When ordering replacement parts from Tektronix, Inc., it is important that all of the following information be included to ensure receiving the proper parts.

1. Instrument type (including modification or option numbers).

2. Instrument serial number.

A description of the part (if electrical, include circuit and assembly numbers).

4. A Tektronix Part Number.

Cleaning Instructions

This instrument should be cleaned as often as operating conditions require. Accumulation of dirt on components acts as an insulating blanket and prevents efficient heat dissipation, which can cause overheating and component breakdown.

Exterior. Loose dust on the Personality Module pod can be brushed off. Dirt that remains can be removed with a soft cloth dampened with a mild detergent and water solution. Abrasive cleaners should not be used.

Use only enough water to dampen the cloth or swab. Prevent water from getting inside the pod. Don't allow the Microprocessor Plug or Logic Analyzer Plug to get wet. DO NOT use chemical cleaning agents as they may damage the plastics used in the instrument. In particular, avoid chemicals that contain benzene, toluene, xylene, acetone, or similar solvents.

Interior. Dust in the interior should be removed with a jet of dry, low-pressure air, and use of a soft brush. After major repairs, flush the board well with clean isopropyl alcohol. Make certain resin and dirt are removed from the board.

General Operating Precautions

Some simple precautions in operating and handling the PM 104 will prevent unusual wear and tear and generally prolong the useful life of the instrument. These include:

1. Do not attempt to open the test socket door on the bottom of the pod except when Self Test is to be performed.

2. When disconnecting the Microprocessor Plug or the Logic Analyzer Plug, don't pull on the cables. Pull on the plugs themselves.

3. Keep superfluous objects such as hair, dust, jewelry, etc. out of the Pod casing.

Personality Module Disassembly

Access to test points and other interior features of the Personality Module can only be gained by disassembling the Pod case. Eight Allen screws hold the Personality Module together and secure cables and connectors at either end. To remove the top cover from the Pod, remove the four screws nearest the center of the pod with a 3/32" Allen wrench. Lift off the top cover. If the problem is with the Upper Board, troubleshooting can begin at this point.

To gain access to the lower board, remove the four screws attaching the cable hold-down clamps to the bottom cover, using a 3/32" Allen wrench and a 1/4" hex driver or hex wrench.
Maintenance and Troubleshooting-PM 104

Remove the hold-down clamps and gently life the circuit boards from the bottom cover. Carefully separate the two boards by disconnecting J3005 from P3005. See Fig. 6-1 for details.

Fig. 6-1. Disassembling the PM 104 plug.

Turn both boards component-side up and reconnect J3005 and P3005 so that the boards lie side by side and all components are exposed. All points are now accessible for troubleshooting.

To re-assemble the PM 104, reverse the above procedure.

Microprocessor Plug Disassembly

The pins on the Microprocessor Plug are very delicate and can be bent or broken quite easily. If this happens, it will be necessary to disassemble the Microprocessor Plug and replace the pin assembly. The pins are replaced as a unit, using the Tektronix Microprocessor Plug Contact Assembly, Tektronix Part No. 352-0536-00. To make this replacement, or to gain access to the circuit board inside the Microprocessor Plug, remove the two Phillips screws holding the contact assembly on the plug. Figure 6-2 shows details of disassembly. With a small screwdriver, gently pry the contact assembly from the circuit board connectors.

To re-assemble the Microprocessor plug, reverse the above procedure. Be sure pin 1 of the contact assembly matches pin 1 of the circuit board assembly. In fitting the protective face over the pins, the edge flanges of the face cover must be pried apart. Be careful that all pins are aligned with the holes and that none are bent down as the face cover is slid into place. Complete the re-assembly by replacing the Phillips screws.

Logic Analyzer Plug Disassembly

If it becomes necessary to disassemble the Logic Analyzer Plug, use the following procedure:

Remove the four screws holding the plug together with a 3/32" Allen wrench. Pull the halves of the connector apart, and remove the cable hold-down clamp. Remove the circuit board by lifting up on the connector end and sliding the board out of the plastic hold-down flanges.

Reverse this procedure for re-assembly of the Logic Analyzer Plug.

Troubleshooting the PM 104

When trouble occurs in the PM 104, several methods are available to the service technician for localizing and identifying the faulty component or circuit. Part I of the Performance Verification in Section 5 tests many of the functions of the Personality Module. The Diagnostic Monitor and Timing Option tests performed by the 7D02 and described below test all of the PM 104's functions and finally, the Signature Analysis described at the end of this section checks the condition of each logic circuit node in the Personality Module during a selected operating time window.

Preliminary Setup

To obtain access to the test points on the PM 104 Upper and Lower boards, complete the Personality Module dissassembly procedure described earlier in this section.

Connect the Microprocessor Plug to the Self-Test Socket on the Lower Board. (See Fig. 6-3.) Move the jumper strap on J6010 (located near pin 1 of the Self-Test socket) from NORM to TEST position. This enables the Self-Test circuitry of the PM 104 for the remainder of the diagnostic testing procedure.

While holding down any of the 7D02 keys, turn the 7D02 Power Switch ON and wait for the display to appear. The "POWER UP VERIFICATION" will indicate that the "KEYBOARD" test has failed, due to the key having been held down (Fig. 6-4A). This allows access to the more detailed diagnostics in the 7D02 firmware.

Press the X (Don't Care) key on the 7D02 Numeric Entry key pad to enter the Diagnostic Monitor. A diagnostic menu (Fig. 6-4B) will appear on the display.

Fig. 6-2. Removing the top board of the PM 104.

Press 9 on the Numeric Entry key pad to enter Personality Module diagnostics. The display next asks for "SELF TEST STIMULUS" (Fig. 6-4C), which has already been provided by connecting the Microprocessor Plug to the Self-Test Socket. Press the START key to begin the Personality Module tests which are described in the following paragraphs. When all tests have been successfully completed, the display shown in Fig. 6-4D appears.

TEST 1

The first test in the Diagnostic Monitor checks the Data line from the 7D02 to the Personality Module ROM for high and low data, checks the Logic Analyzer's ability to read the ROM, and checks the functioning of the /SEL P and LOOK lines from the 7D02 to the PM 104. The test reads a byte (ØE7H) in the Personality Module to determine the length of the ROM. Using this data, it locates the ROM Trailer and reads the value at location 3E7FC. This value is compared with the value at 3E7FD, which should be its complement. If the two bytes are not complementary, the displayed error message for a 2K ROM (the only size used in the PM 104) is:

1 FAIL 3E7FD - X

If an incorrect value is found at 3EØ1Ø, the error message is:

The X signifies the first non-complementary data bit when the two bytes are compared on a bit-by-bit basis from least significant to most significant bit. The most significant part of the address implies the ROM lengths, as indicated by the value at 3EØ1Ø. If the ROM cannot be read correctly,

Fig. 6-3. PM 104 boards connected for testing.

this byte may be any random value (as indicated by YY in the second error message display). If the ROM is not present in the circuit, or cannot be read at all, the value will usually be 3FFH.

If the part of the test just described passes, it is assumed that the ROM can be read correctly and the ROM location is checked. The value at 3E7F9 should be equal to ØE7H. If the Location Byte is correct, the test will print "PASS" followed by the ROM part number. If incorrect, the test will print "FAIL" followed by the part number—for example, 1 PASS 0835-00 or 1 FAIL 0835-00. This is the only place in the tests where any data follows the word "PASS". It is not a failure, but actually a way of verifying that the correct ROM is present. The part number prefix is 160-, so the complete ROM part number is this case is 160-0835-00.

TEST 2

This test ensures that all ROM addresses are read correctly, and that the ROM functions properly. A failure in Test 2 may imply a bad address line, or a faulty ROM. If a failure occurs, the information on the address lines may be checked with a test oscilloscope, or by Signature Analysis as described later in this section. Test 2 calculates a 16-bit checksum on the Personality Module ROM in accordance with standard Tektronix practice. In the test, the ROM Trailer is located using the value read from 3EØ1Ø in Test 1. The starting address of the checksum is determined. All bytes in the ROM except the two highest bytes are checksummed. When this calculation is complete, the result is compared to the sum of the values in the two remaining locations. If the values do not match exactly, the test fails and the calculated checksum value is displayed as 2 FAIL XXXX, where XXXX is the calculated checksum. If the first part of Test 1 failed, this test will probably also fail. However, if the second part of Test 1 failed, this test may still pass, since the checksum is location-independent.

TEST 3

Test 3 checks the clock circuitry and the /ALE line from the Personality Module to the 7D02. Failure of the system to trigger, if caused by the Personality Module, probably means that an address or data line or one of Control lines CØ-C5 has faulty information.

Prior to running this test, the four Word Recognizers are programmed according to data stored in the Per-

POWER-UP VERIFICA	TION
DIAGNOSTIC RDM PROGRAM RAM DISPLAY KEYBOARD OF601-7 FIRMWARE ROMS STATE MACHINE WORD RECOGNIZER ACQUISITION MEMORY FRONT END PER. MOD SYSTEM EXPANSION OPTION TIMING OPTION	PASS PASS FAIL 1 PASS PASS PASS PASS PASS PASS PASS PAS
PRESS X FOR DIAGNOSTIC N PRESS START TO BEGIN OPE	'ION I TOR ERATION
	2916-13

Fig. 6-4A. 7D02 power-up failure display.

sonality Module ROM. Since the PM 104 does not use the Expansion Option, the Address lines A16-A23 and Data lines D8-D16 are set to "Don't Care". The External Trigger and Asychronous Trigger are always set to "Don't Care". The Word Recognizers will remain programmed to these values throughout the remainder of the Personality Module Diagnostic Tests. The state machine is programmed as follows:

- 1 IF WR1 THEN TRIGGER MAIN AND TIMING
- 1 IF WR2 or WR3 or WR4, THEN DON'T TRIGGER
- 1 GOTO 1

and the Acquisition Memory Board is set for Ø Delay. The Front End Qualifiers and Clock Shifter/Divider are programmed according to data stored in the Personality Module ROM. After all setups are complete a DISPLAY command is sent and the slow clock detector is checked. A Slow Clock indication will result in the following error:

3 FAIL ØFF6Ø1 ; SLOW, OR NO CLOCK

If the clock appears to be running, the Personality Module ROM is read to determine how long the 7D02 should wait for a trigger to occur, then a STORE command is sent. After waiting the specified length of time, the Activity Monitor on the Acquisition Memory Board is examined to see if the main section has triggered and returned to Display Mode. If the Main Section is still in Store Mode, the following error is generated:

3 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

Failure to trigger can be caused by failure of the Personality Module to generate the WR1 value, failure of the Word Recognizer, the State Machine, or the Acquisition Memory to respond, or lack of State Clocks from the Front End board. A faulty Activity Monitor may also be responsible.

If the Main Section has triggered, a DISPLAY command is sent before proceeding further. This makes certain that the Timing Option will not remain in Store Mode and interfere with reading the Personality Module ROM. The next step is to read the "Last Address +1" Buffer and calculate the trigger location. The trigger location in the Acquisition Memory is examined and the data stored there is compared with the data in the Personality Module ROM that was used to program WR1. Any values that were set to "Don't Care" in WR1 are not compared. If the acquired data does not match the expected data, the following error is reported:

3 FAIL 2YYZZ-X ; TRIGGER VALUE INCORRECT

Maintenance and Troubleshooting-PM 104

YYZZ is the Acquisition Memory address which holds the data that does not match. The X is the first bit that did not match when comparison was made from least significant bit through most significant bit. The data is compared one byte at a time in the following order:

AØ-A7 A8-A15 DØ-D7 CØ-C5

0 - TEST ALL 1 - PROGRAM RAM 2 - DISPLAY 3 - KEYBOARD 4 - FIRMWARE ROMS 5 - STATE MACHINE 6 - WORD RECOGNIZER 7 - ACQUISITION MEMORY 8 - FRONT END 9 - PER. MOD SYSTEM A - EXPANSION OPTION B - TIMING OPTION F - SIGNATURE EXERCISER MENU X - EXIT DIAGNOSTIC MONITOR	DIAGNOSTIC MONITOR MODULE TEST	-
F - SIGNATURE EXERCISER MENU X - EXIT DIAGNOSTIC MONITOR	0 - TEST ALL 1 - PROGRAM RAM 2 - DISPLAY 3 - KEYBOARD 4 - FIRMWARE ROMS 5 - STATE MACHINE 6 - WORD RECOGNIZER 7 - ACQUISITION MEMORY 8 - FRONT END 9 - PER. MOD SYSTEM A - EXPANSION OPTION B - TIMING OPTION	
	F - SIGNATURE EXERCISER MENU X - EXIT DIAGNOSTIC MONITOR	

Fig. 6-4B. 7D02 diagnostic monitor module test menu.

The FAIL data is interpreted as follows:

YY=	ZZ=	X9 7	' e	5 5	; <u> </u>	ب ا	3 2		1	0
E0, E1, E2, E3	X0, X4, X8, XC	A7	A6	A5	A4	A3	A2	A1	A0	
E0, E1, E2, E3	X1, X5, X9, XD	A15	A14	A13	A12	A11	A10	A9	A8	
E0, E1, E2, E3	X2, X6, XA, XE	D7	D6	D5	D4	D3	D2	D1	D0	
E0, E1, E2, E3	X3, X7, XB, XF	-	-	C5	C4	C3	C2	C1	C0	

This type of failure may be caused by a faulty part in the Acquisition Memory, a bad Memory Address counter, or a faulty "Last Address +1" Buffer. If the Word Recognizer has triggered on the wrong word, or if the state machine

has sent Stop Trace prematurely, this failure might result. Still another possibility is that the Main Section failed to acquire data at all.

Fig. 6-4C. 7D02 diagnostic monitor SELF TEST STIMULUS display.

TEST 4

This test checks all four Word Recognizers, the two counters, the State Machine, and the Acquisition Memory. The four Word Recognizers are programmed as described in Test 3. The State Machine is programmed as follows:

1 QUALIFY ALL

- 1 IF WR2 OR WR3 OR WR4 THEN GOTO 1
- 1 IF WR1 THEN RESET CTR1 and CTR2, GOTO 2

2 QUALIFY ALL

- 2 IF WR1 or WR3 or WR4 THEN GOTO 2
- 2 IF WR2 THEN GOTO 3
- 2 ELSE INC CTR1

3 QUALIFY ALL

- 3 IF WR1 OR WR2 OR WR4 THEN GOTO 3
- 3 IF WR3 THEN GOTO 4
- 3 ELSE INC CTR2
- 4 IF WR1 or WR2 OR WR3 THEN GOTO 4
- 4 IF WR4 THEN (DON'T QUALIFY), AND
- TRIGGER BOTH
- 4 ELSE, QUALIFY

Starting in State 1, as each of the four Word Recognizers occurs in order, the State Machine advances to the next state. While in State 1, the two counters are reset. While in State 2. Counter 1 is incremented, and while in State 3, Counter 2 is incremented. As this takes place, the Acquisition Memory is acquiring data. When Word Recognizer 4 occurs, that one data sample is not stored, and both the Main Section and the Timing Option are triggered. At this point, the Acquisition Memory Delay Counter begins counting down 240 State Clocks. At the completion of the countdown, it ceases to acquire data. The Acquisition Memory contains the last 16 words generated immediately after Word Recognizer 4. If the Qualify RAM has worked properly, the Word Recognizer 4 value has not been stored. Counter 1 contains the number of clocks that occurred between Word Recognizers 1 and 2, and Counter 2 contains the number of clocks that occurred between Word Recognizer 2 and Word Recognizer 3. The Acquisition Memory Board is set for a delay of 240 clocks, and the Memory Address Counter is preset to ØFDH. The Front End Qualifiers and Clock Shifter/Divider are programmed according to data stored in the Personality Module ROM. After all setups are complete, a DISPLAY command is sent, and the Slow

Fig. 6-4D. Successful module test display.

Clock Detector is checked. A Slow Clock indication will result in the following error message:

4 FAIL ØFF6Ø-1 ; SLOW, OR NO CLOCK

If the clock appears to be running, the Personality Module ROM is read to determine how long the 7D02 should wait for a trigger to occur, then a STORE command is sent. After waiting the specified length of time, the Activity Monitor on the Acquisition Memory Board is examined to see if the Main Section has triggered and returned to Display Mode. If the Main Section is still in Store Mode, the following error message is generated:

4 FAIL 2E803-7 ; MAIN SECTION FAILED TO TRIGGER

Failure to trigger can be caused by failure of the Personality Module to generate any one of the four Word Recognizer values. Failure of the Word Recognizer, the State Machine, or the Acquisition Memory to respond, or lack of State Clocks from the Front End Board could cause this failure, as could a faulty Activity Monitor.

If the Main Section has triggered, a DISPLAY command is sent before proceeding further. This ensures that the Timing Option will not remain in Store Mode and interfere with the reading of the Personality Module ROM. The Memory Full bit of the Activity Monitor is examined next. As long as there are at least 16 clocks between the occurrence of Word Recognizer 1 and Word Recognizer 4, the Acquisition Memory must be full. If the Memory Full bit indicates otherwise, the following error message will result:

4 FAIL 2E8Ø3-5; MEM FULL BIT NOT SET

The next part of the test is a check of the counters. First the most significant bit of Counter 1 is read and compared with the expected value stored in the Personality Module ROM. If it matches, the least significant bit is compared, then Counter 2 is checked. If any byte fails to match exactly, the following error message will be printed:

4 FAIL 1E202-X; CTR1 MSB BIT X IS WRONG 4 FAIL 1E203-X; CTR1 LSB BIT X IS WRONG 4 FAIL 1E302-X; CTR2 MSB BIT X IS WRONG 4 FAIL 1E303-X; CTR2 LSB BIT X IS WRONG

If the counters function properly, the next step is to checksum the Acquisition Memory. All bytes between 2E000 and 2E3FF are added together and the result is

saved. The result of the checksum is compared with the expected data in the PM 104 ROM. Failure of the comparison will result in the following error message:

4 FAIL 3EØ35-X ; MAIN ACQ. MEM. FAILS CHECKSUM

Since this RAM is checked separately in the Acquisition Memory test, this test is primarily a test of the ability of the RAM to acquire data at high speed. This one checksum could point up an error in any of several areas, such as the Memory Address Counter, the Qualify RAM, or the PM 104 Data Buffers on the Word Recognizer Board. The PM 104 itself, the Front End Qualifiers, or the Acquisition Memory could also be faulty.

TEST 5

This test checks the ability of the State Machine time base to generate ms clocks, and the ability of CTR1 to count those clocks while operating in Control Mode. In Control Mode, the State Machine is programmed as follows:

- 1 RESET AND START CTR1 50 MS
- 1 STOP CTR2
- 1 GOTO 2
- 2 CONTINUE CTR1
- 2 STOP CTR2
- 2 GOTO 2
- 2 IF CTR1 = Ø THEN TRIGGER

The counters are both loaded with 48 (Desired count - 2) and placed in Control Mode (Decrement). The CTR1 time base is set to MS. A DISPLAY Command is sent, and the Acquisition Memory is set for zero delay. The Slow Clock Detector is checked for the presence of a clock from the PM 104. If none is present, the following error message appears:

5 FAIL ØFF6Ø-1 ; SLOW OR NO CLOCK FROM PER. MOD.

If a clock is present, a STORE Command is sent and the processor enters a delay loop for 46 ms. At the end of the delay, the Acquisition Memory Activity Monitor is checked to see whether the State Machine has timed out and returned to Display Mode. If this has occurred, the following error is displayed:

5 FAIL 2E8Ø-3; CTR1 TIMED OUT PREMATURELY

If the Main Section remains in Store Mode, the processor delays another 8 ms, then checks the Activity Monitor again. If the Main Section has not returned to Display Mode, this error message appears in the display:

5 FAIL 2E803-7 ; CTR1 DIDNT TIME OUT IN 50 MS

Since the processor and Counter 'Time Base are both derived from the same 6 MHz cyrstal, this is not intended as a check of absolute time base accuracy.

This type of error might be caused by failure of the Time Base Divider on the State Machine Board; by failure of the counter to count clock pulses correctly, or by failure of the State Machine to respond to the Counter reaching zero.

TEST 6

Test 6 checks the ability of the State Machine Time Base to generate μ s clocks, and the ability of Counter 2 to count those clocks while operating in Control Mode. The State Machine is programmed as follows:

- 1 RESET AND START CTR2 50000 US
- 1 STOP CTR1
- 1 GOTO 2

2 CONTINUE CTR2

- 2 STOP CTR1
- 2 GOTO 2
- 2 IF CTR2 = \emptyset THEN TRIGGER

The counters are both loaded with 49998 (Desired count -2), and placed in Control Mode (Decrement). The CTR2 Time Base is set to μ s. A DISPLAY Command is sent and the Acquisition Memory is set for zero delay. The Slow Clock Detector is checked for the presence of a clock from the PM 104. If none is present, the following error is displayed:

6 FAIL ØFF60-1 ; SLOW OR NO CLOCK FROM PER. MOD.

If a clock is present, a STORE Command is sent and the processor enters a delay loop for 46 ms. At the end of the delay, the Acquisition Memory Activity Monitor is checked to see if the State Machine has timed out and returned to Display Mode. If this has occurred, an error message is displayed:

6 FAIL 2E803-2; CTR2 TIMED OUT PREMATURELY

If the Main Section remains in Store Mode, the processor delays another 8 ms, then checks the Activity Monitor again. If the Main Section has not returned to Display Mode, the error message is:

6 FAIL 2E803-7; CTR2 DIDNT TIME OUT IN 50000 US

The processor and Counter Time Base are derived from the same 6 MHz crystal, so this is not intended as a check of absolute Time Base accuracy.

Maintenance and Troubleshooting-PM 104

Errors of this type may result from failure of the Time Base Divider on the State Machine Board, by failure of the counter to count the clock pulses correctly, or by failure of the State Machine to respond as the counter reaches zero.

TEST 7

This test checks the Control (Qualifier) lines C4-C9 on the Front End Board. The State Machine is programmed as follows:

- 1 IF WR1 THEN TRIGGER MAIN
- 1 GOTO 1

Word Recognizer 1 was programmed earlier to a value specified by the Personality Module. This test uses each of the Control Lines in turn to qualify out the value to which WR1 has been programmed. If the Control Line operates correctly, the State Clock that occurs with WR1 will be inhibited, and the State Machine will not see the Word Recognizer output. Thus, a PASS condition is indicated by the failure of the Main Section to trigger. A byte in the PM 104 ROM specifies how long the processor should wait for the trigger to occur.

The Clock Shifter/Divider, /ESYNC, and /WAIT are set up in the normal manner as specified by the PM 104 ROM. Six additional bytes in the Personality Module ROM specify the value to write to the Front End Board for each of the six Control Lines to inhibit State Clocks at the occurrence of WR1. The following sequence is repeated six times, once for each Control Line (or until a failure occurs).

READ VALUE FROM PER. MOD. ROM WRITE VALUE TO FRONT END LATCH SEND STORE COMMAND WAIT SPECIFIED LENGTH OF TIME CHECK ACTIVITY MONITOR ON ACQ. MEM. BOARD IF IN DISPLAY MODE PRINT FAIL AND STOP

Because of the way this test operates, a PASS indication may be caused by anything that prevents the Store/Display flipflop on the Acquisition Memory Board from returning to Display Mode. For example, lack of a Clock from the PM 104 may produce a PASS. However, if Tests 3 and 4 pass, it can be assumed that TEST 7 is operating correctly. Test failures on the respective Control Lines are indicated by the following error displays:

7 FAIL 3EØ39; C4 DIDNT INHIBIT TRIGGER
7 FAIL 3EØ3A; C5 DIDNT INHIBIT TRIGGER
7 FAIL 3EØ3B; C6 DIDNT INHIBIT TRIGGER
7 FAIL 3EØ3C; C7 DIDNT INHIBIT TRIGGER
7 FAIL 3EØ3D; C8 DIDNT INHIBIT TRIGGER
7 FAIL 3EØ3E; C9 DIDNT INHIBIT TRIGGER

Summary of Module Test Failures

Failures in the tests just described which result from SLOW or NO CLOCK may indicate one of the following defects:

1. J6010 is not in the Test position.

 $\ensuremath{\text{2.}}$ /ALE is not functioning correctly, so there is no ESYNC pulse.

- 3. WAIT is held high.
- 4. The Clock circuit of the PM 104 is inoperative.

Failure to read the Personality Module ROM correctly may be caused by a failing address or data line, or a failure on the LOOK or /SEL P lines from the 7D02.

Timing Option Troubleshooting

To set up the 7D02 for troubleshooting using the Timing Option, enter the DISPLAY PROGRAM Mode and move the cursor to the end of the program. Press and hold down the DELETE key to eliminate the existing program. Then perform the keystrokes shown in Table 6-1. (The program display is shown in Fig. 6-5.)

TABLE 6-1

TIMING OPTION TROUBLESHOOTING PROGRAM SETUP

Keystroke	Function
WD RECOGNIZER	Word Recognizer #1
1	Timing $WR = 1$
Ø	Sync
00000000	Word Recognizer = ØØØØØØØ
COUNTER	Counter #1 Ø-Events
COUNTER	
00250	Counter #1 = ØØ25Ø Events
TRIGGER	
1	Trigger 1 - Timing
1	Centered
END	End Test 1

Figure 6-6 is a timing diagram of Timing Option functions.

TEST 1
1IF
1 WORD RECOGNIZER # 1
1 DATA=XX
1 ADDRESS=XXXX
1 IO/M=X INRQ=X FETCH=X R/W=X
1 INACK=X HOLD=X EXT TRIG IN=X
1 TIMING WR=1
1 THRESHOLD V. = $0-PLUS$ 1.40
1 0-SYNC
1 O SYNC
1 1 ASYNC
1 WORD RECOGNIZER=00000000
1 THEN DO
1 COUNTER # 1 0-EVENTS
1 O-INCREMENT
1OR IF
1 COUNTER # 1 = 00250 0-EVENTS
ITHEN DO
1 TRIGGER 1-TIMING
1 1-CENTERED
1 THRESHOLD V. = $0-PLUS$ 1.40
1 0-SYNC, TRIGGER IMMEDIATE
END TEST 1
nem (v v ···) ann add () ar

2916-17

Fig. 6-5. Timing Option troubleshooting program.

Fig. 6-6. Timing Option diagram.

2918-78

TROUBLESHOOTING BY SIGNATURE ANALYSIS

General Discussion

The recent trend in digital system design is toward busstructured machines that make use of Large Scale Integration (LSI) components such as microprocessors, ROMs, RAMs, etc. By controlling communication and algorithmic interaction between bus devices, much of the dedicated hardware logic formerly used to handle complex signal and data processing is now replaced by software data manipulation. When logic signals are replaced by data bit streams in a microprocessor system, for example, functional characteristics of the circuit are difficult to associate with a particular part of the circuitry—and when a fault occurs, its location is extremely hard to pin down.

Board exchange and transition counting are two methods of troubleshooting that have been used widely in LSI systems, but both have severe limitations. A new troubleshooting technique that promises faster, more accurate results is Signature Analysis.

The Concept of Signature Analysis

The basic ingredients of Signature Analysis (SA) are "Data Compression" and "Circuit-generated Stimulus."

Data compression is accomplished in the signature analyzer by probing a logic test node from which data is input for each circuit clock cycle occurring within a circuit-controlled time window. Within the signature analyzer is a 16-bit feedback shift register into which the data is entered in either true or complement logic state, according to previous data-dependent register feedback conditions. There are 65,536 (2¹⁶) possible states to which the shift register can be set during a measurement window. These states are encoded and displayed as four hexadecimal characters known as a "signature". This four-character signature is a characteristic number representing time-dependent logic activity during a specified measurement interval for a given circuit node. Any change in the behavior of this node (even a transition that occurs one clock cycle late) will produce a different signature, indicating a probable malfunction in the circuit. A single logic state change on a node is all that's needed to produce a useful signature.

The signal that causes the node to produce a signature is the "stimulus." In SA, the stimulus is supplied by the product itself. In this way, a controlled environment is created wherein selected portions of the circuit are tested independently, while maintaining full dynamic operation. Synchronization and measurement intervals for the signature analyzer are controlled by the system under test. In microprocessor systems, the stimulus is a special program—which in the PM 104 is called Self Test.

Signature Analysis Operation

In operation, signals supplied to the signature analyzer start and stop a measurement time period (called a window or a gate). A clock input synchronizes and controls the data sample rate of the signature analyzer probe input so that data is input to the analyzer and processed every clock cycle within a start/stop interval. The start and stop inputs are individually selectable for logic "1" or "0" levels. The clock input is edge triggered, and can be selected for either rising or falling edges. In signature analysis for the PM 104, both start and stop are triggered on negative edges of the clock for all tests. Figure 6-7 illustrates the timing relationships and data generated in a typical measurement window.

PM 104 Signature Analysis

The Signature Tables which follow show the signatures displayed when circuits function properly at each functionally-important pin of each component and connector in the PM 104.

Fig. 6-7. Typical data input to the Signature Exerciser, illustrating the timing relationships between control signals.

PM 104 SIGNATURE TABLES

Signature Analyzer: Sony/Tektronix Type 308 with P6451 Probe

Dissassemble and lay out the Personality Module boards as described in "Personality Module Disassembly" at the beginning of this section. Set Lower board jumper J6010 to the TEST position, and J5030 in NORM position. Connect the Microprocessor Plug to the Self Test Socket on the Lower Board. Connect the Signature Analyzer probe clock lead to TP7010 on the lower board, and the start/stop lead to J6030 pin 9. Set start and stop triggering to negative edge. Power up the 7D02, program WR#1 for Address 111H and push the START button on the 7D02. **Upper Board Signature Tables**

A1U2010	
Pin	Signature
1	8PP5
2	35H1
3	C8HA
4	03PP
5	FA81
6	71C5
7	0000
8	
9	
10	82AH
11	3999
12	
13	
14	CC34

A1U2020		A1U3010	
Pin	Signature	Pin	Signature
1	CC34	1	0000
3	1875	2	C7F3
5	7P10	3	8P51
7	6PCP	4	03PP
9	77F7	5	191F
11	86PA	6	CC34
13	7P25	7	0001
15	5CP0	8	
17	P5PH	9	CF1A
17		10	0000
A1112035		11	CF1A
Din	Signature	12	
1	1875	13	0001
2	7P10	14	CC34
2		15	191F
5	7757	16	03PP
+ E	95DA	17	8P5A
5		19	C7F3
8	7 F25	10	0000
7		19	0000
8		20	0034
12	0000	A 11 12020	
18		ATU3020	Signatura
19	7P25	Pm 1	onno
20	0001		7105
21	CU34	2	7105 CE1A
22	5CP0	3	
23	P5PH	4	0400
24	CC34	5	A341 0DD5
		6	8PP5
A1U2050		/	F524
Pin	Signature	8	451H
1	0000	9	35H1
2	1875	10	0000
3	1875	11	8225
4	7P10	12	UP29
5	7P10	13	7P10
6	6PCP	14	35H1
7	6PCP	15	1875
8	77F7	16	3UFC
9	77F7	17	072P
10	0000	18	FA81
11	71C5	19	0000
12	85PA	20	CC34
13	85PA		
14	7P25		
15	7P25		
16	5CP0		
17	5CP0		
18	P5PH		
19	P5PH		

CC34

20

A1 Pir 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A1 Pir 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A1 Pir 1 2 3 4 5 6 7 8 9 10 11

A1U3030		A1U3060	
Pin	Signature	Pin	Signature
1	CC34	1	0000
2	03PP	2	9P77
3	31U1	3	P5PH
4	UP29	4	072P
5	35H1	5	5CP0
6	UA09	6	6PCP
7	0000	7	7P25
8	31U1	8	77F7
9	E524	9	85PA
10	A341	10	0000
11	CE14	11	85PA
12	03PP	12	7767
13	0011	13	7025
14	CC34	14	
14	0034	14	5CP0
A1112040		10	0720
A103040	O an atom	17	
Pin	Signature	17	POPH
1	8P5A	18	9277
2	C7F3	19	0000
3	3999	20	CC34
4	35H1		
5	03PP	IC TEST SOCKET	
6	9816	Pin	Signature
7	0000	1	
8	C8HA	2	
9	03PP	3	0001
10	CC34	4	
11		5	
12		6 ⁻	8PP5
13		7	451H
14	CC34	8	7P10
		9	1875
A1U3050		10	072P
Pin	Signature	11	CF1A
1	0000	12	P5PH
2	1875	13	5CP0
3	P5PH	14	7P25
4	7P10	15	85PA
5	5CP0	16	77F7
6	6PCP	17	5PCP
7	7P25	18	7P10
8	77F7	19	1875
9	85PA	20	0000
10	0000	21	P5PH
11	85PA	22	5CP0
12	7767	23	7P25
13	7P25	24	85PA
14	6PCP	25	77F7
15	5CP0	26	5PCP
16	7P10	27	0720
17	PSPH	28	9P77
18	1875	29	C7F3
10	0000	30	7105
20	0000	21	100
20	0004	01	

Maintenance and Troubleshooting-PM 104

IC TEST SOCKET (cont.)		A2U1030	
32		Pin	Signature
33	8P5A	1	0000
34	191F	2	253A
35	03PP	3	89FC
36	0000	4	0001
37		5	C8HA
38		6	CF1A
39	8PP5	7	A2FU
40	CC34	8	8400
A2111005		9	2322
Pin	Signaturo	11	9816
1	CC34	12	3UFC
2	0000	13	C6P2
2		14	072P
4		15	03PP
- 5		16	CC35
6		17	3200
7		18	9P0P
, 8	CC34	19	0000
10	8260		
11		A2U2010	
10	7767	No Signatures Taken	
12	95DA		
13	80FA 7D25	A2112020	
14	7P25	Pin	Signature
15	0001	1	CC35
4011010		2	9P0P
	Cimpotune	3	E9611
FIN 1	Signature	4	CC34
1	03PP	5	5HC1
2	50611	6	P685
3	F96U	8	
4	7105	9	841111
5		10	0400
8		11	5HC1
8		12	0034
9		12	
10	0034	15	0403
11		A2112030	
12	7103	Pin	Signature
15	0034	1	61911atar 0 6498
A0111000		2	824H
AZU 1020	Signatura	3	C6P2
FIII 1	Signature	4	82AH
1	0000	5	191F
2	7105	6	3200
3	0034	8	A498
	7105	9	191F
6	FA81	10	CH84
8	51183	11	03PP
0		12	C8HA
5 10		13	P4C7
10	USFF		
10			
12			
13	0034		

A2U3010		A2U4010	
Pin	Signature	Pin	Signature
1	CC34	1	C7F3
2	0000	2	8P5A
3		3	191F
4		4	7P10
5		5	1875
6		6	072P
7	CC34	7	9P77
9	CC34	9	8PP5
10	CC34	10	P5PH
11	5CP0	11	5CP0
12	P5PH	12	7P25
13	725C	13	85PA
14	96PF	14	77F7
15	826P	15	0000
			_
A2U3020		A2U4030	
Pin	Signature	Pin	Signature
1	CC34	1	35H1
2	072P	2	CC34
3	F96U	3	71C5
4	CC34	4	CC34
5	3072	5	35H1
6	8C46	6	8PP5
8	CH84	8	725C
9	06C0	9	F96U
10	CC34	10	CC34
11	072P	11	
12	8C46	12	5U83
13	6P2U	13	CC34
A2U3030		A2U5020	
Pin	Signature	Pin	Signature
1	71C5	1	0000
2	3072	2	
3	CC34	- 3	
4	0001	4	5CP0
5	0001	5	P5PH
6	6P2U	6	7P25
8	2534	7	6PCP
0 0	A2FU	8	8524
10	AZI O BLIEC	9	7767
11		11	7757
12	62211	12	85PA
12		12	60r A
10	0004	14	707
		15	P5DH
		16	50.00
		17	
		••	

18

19

A2U6005	
Pin	Signature
1	9P77
2	71C5
3	UP29
4	072P
5	072P
6	C71A
8	451H
9	UP29
10	UP29
11	F96U
12	725C
13	725C

U6030

Pin	Signature
1	0000
2	P5PH
3	P5PH
4	5CP0
5	5CP0
6	7P25
7	85PA
8	77F7

TEST POINTS

ТР	Signature
3020	F96U
7005	0001
7020	03PP
7025	71C5

PM 104 Self-Test Information

The Self Test circuitry in the PM 104 comprises an oscillator, a binary counter, a 32 by 8 PROM, and some additional logic gates which provide the Clock, ALE, and Wait signals. The counter outputs are used to address the PROM and to provide information on certain Address and Data lines. The outputs of the PROM provide signals on the remaining Address and Data lines, as well as the Interrupt and Control lines. These signals are used to drive the PM 104 circuits so as to simulate the information required to test as much as possible of the PM 104 circuitry. When stored in the 7D02 Memory, the test circuit signals can be disassembled and displayed in mnemonic mode. Many of the 8085A mnemonic types are simulated.

The Counter circuit counts from \emptyset to 63 and resets. During this cycle, each PROM location is addressed twice. Therefore, the information sent out from the PROM is used twice for each Counter cycle. You can see this by comparing the information at Test Circuit Address $\emptyset\emptyset\emptyset\emptysetH$ with $2\emptyset2\emptysetH$, or 41 \emptyset 1H with 6121H, etc. The result is that all address, data, control, and interrupt lines have been toggled at least once during each Counter cycle.

Table 6-2 gives detailed information about the signals that occur on the Self Test circuit lines for each Counter Step.

Table 6-2

VERSION 0.0 Check Sum = 0284

Binary Counter	Prom Code	Prom Addr (Hex)	Prom Code (Hex)	Cycle	INTA	RESET OUT	INTERRUPT REQUEST	HOLD-C5 HALTED-C7	INACK
AD5-A13 AD5-A13 AD3-A11 AD2-A11 AD2-A9 AD6-A8	Trap, Hold 7.5, A15 1NTR,A14 6.5, AD6 6.5, AD6 10/M S0 S0								
ØØØØØØ	00000001	ØØ	Ø1	WRITE	1	ø		Ø	Ø
000001	ØØ1ØØ111	Ø1	27	FETCH	ø	Ø	INTR	Ø	1
000010	00000010	Ø2	Ø2	READ	1	Ø		ø	ø
000011	ØØØØØØ1Ø	Ø3	Ø2	READ	1	Ø		ø	ø
ØØØ1ØØ	00011011	Ø4	1B	FETCH	1	Ø	5.5,6.5	Ø	ø
ØØØ1Ø1	00000010	Ø5	Ø2	READ	1	Ø		ø	ø
000110	Ø6ØØ11Ø11	ø	1B	FETCH	1	Ø	5.5.6.5	Ø	ø
000111	00011011	Ø7	1B	FETCH	1	Ø	5.5,6.5	ø	ø
ØØ1ØØØ	00000110	Ø8	Ø6	READ	1	Ø	, ,	Ø	ø
ØØ1ØØ1	ØØØØØ11Ø	Ø9	Ø6	READ	1	Ø		ø	ø
ØØ1Ø1Ø	Ø1ØØØØ11	ØA	43	FETCH	1	Ø	7.5	Ø	Ø
ØØ1Ø11	ØØØØØØ1Ø	ØВ	Ø2	READ	1	Ø	{	Ø	ø
ØØ11ØØ	00000011	ØC	ØЗ	FETCH	1	Ø		ø	ø
ØØ11Ø1	ØØØØ1Ø11	ØD	ØВ	FETCH	1	Ø	6.5	Ø	ø
ØØ111Ø	00000011	ØE	ØЗ	FETCH	1	Ø		Ø	ø
ØØ1111	10000111	ØF	87	READ	1	Ø	TRAP	1	1
Ø1ØØØØ	ØØØØØØ11	1Ø	ØЗ	FETCH	1	Ø		Ø	ø
010001	ØØØ11Ø11	11	1B	FETCH	1	Ø	5.5,6.5	ø	ø
Ø1ØØ1Ø	00000010	12	Ø2	READ	1	Ø		Ø	ø
010011	00000010	13	Ø2	READ	1	Ø		ø	ø
010100	00010011	14	13	FETCH	1	Ø	5.5	ø	ø
010101	00011011	15	1B	FETCH	1	Ø	5.5,6.5	Ø	ø
010110	00000001	16	Ø1	WRITE	1	Ø		Ø	Ø
Ø1Ø111	ØØØØØØØ1	17	Ø1	WRITE	1	Ø		Ø	Ø
Ø11ØØØ	00010011	18	13	FETCH	1	Ø	5.5	Ø	Ø
011001	00011011	19	1B	FETCH	1	Ø	5.5,6.5	ø	ø
011010	00001011	1A	ØВ	FETCH	1	Ø	6.5	ø	Ø
Ø11Ø11	00000011	1B	ØЗ	FETCH	1	Ø		Ø	Ø
Ø111ØØ	ØØ11111	1C	3F	FETCH	Ø	Ø	INTR,5.5,6.5	Ø	1
Ø111Ø1	00100111	1D	27	READ	Ø	Ø	INTR	Ø	1
Ø1111Ø	ØØ1ØØ111	1E	27	READ	Ø	Ø	INTR	Ø	1
Ø11111	00000001	1F	Ø1	WRITE	1	Ø/1		Ø	Ø

Binary Counter	Prom Code	Prom Addr (Hex)	Prom Code (Hex)	Cycle	INTA	RESET OUT	INTERRUPT REQUEST	HOLD-C5 HALTED-C7	INACK	_
AD5-A13 AD4-A12 AD3-A11 AD2-A10 AD2-A10 AD0-A8 AD0-A8	Trap. Hold 7.5, A15 1NTR, A15 5.5, AD7 6.5, AD6 6.5, AD6 81 10/M 81									_
100000	00000001	ØØ	Ø1	WRITE	1	ø		ø	Ø.	
100001	ØØ1ØØ111	101	27	FETCH	ø	ø	INTR	Ø	1	
100010	00000010	Ø2	Ø2	READ	1	Ø		ø	Ø	
100011	00000010	Ø3	Ø2	READ	1	ø		ø	Ø	
100100	00011011	Ø4	1B	FETCH	1	Ø	5.5,6.5	ø	Ø	
100101	00000010	Ø5	Ø2	READ	1	ø		ø	Ø	
100110	00011011	Ø6	1B	FETCH	1	ø	5.5,6.5	Ø	Ø	
100111	00011011	Ø7	1B	FETCH	1	Ø	5.5,6.5	Ø	Ø	
101000	00000110	Ø8	Ø6	READ	1	Ø		Ø	Ø	
101001	00000110	Ø9	Ø6	READ	1	Ø		Ø	Ø	
101010	01000011	ØA	43	FETCH	1	Ø	7.5	ø	Ø	
101011	00000010	ØВ	Ø2	READ	1	Ø		Ø	Ø	
101100	00000011	ØC	Ø3	FETCH	1	Ø		Ø	Ø	
101101	00001011	ØD	ØВ	FETCH	1	Ø	6.5	ø	Ø	
101110	00000011	ØE	Ø3	FETCH	1	Ø		Ø	Ø	
101111	10000111	ØF	87	READ	1	Ø	TRAP	1	1	
110000	00000011	1Ø	Ø3	FETCH	1	Ø		Ø	Ø	
110001	00011011	11	1B	FETCH	1	Ø	5.5,6.5	Ø	Ø	
110010	00000010	12	Ø2	READ	1	Ø		Ø	Ø	
110011	00000010	13	Ø2	READ	1	Ø		Ø	Ø	
11Ø1ØØ	00010011	14	13	FETCH	1	Ø	5.5	Ø	Ø	
110101	ØØØ11Ø11	15	1B	FETCH	1	Ø	5.5,6.5	Ø	Ø	
110110	00000001	16	Ø1	WRITE	1	Ø		Ø	Ø	
11Ø111	00000001	17	Ø1	WRITE	1	Ø		Ø	Ø	
111000	00010011	18	13	FETCH	1	Ø	5.5	Ø	Ø	
111001	00011011	19	1B	FETCH	1	Ø	5.5,6.5	Ø	Ø	
111010	00001011	1A	ØВ	FETCH	1	Ø	6.5	Ø	Ø	
111011	00000011	1B	Ø3	FETCH	1	Ø	1	Ø	Ø	
111100	ØØ111111	1C	3F	FETCH	Ø	Ø	INTR,5.5,6.5	Ø	1	
111101	ØØ1ØØ111	1D	27	READ	Ø	Ø	INTR	Ø	1	
111110	00100111	1E	27	READ	Ø	Ø	INTR	Ø	1	
111111	00000001	1F	Ø1	WRITE	1	Ø/1		Ø	Ø	

Table 6-2 (cont.)

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component number of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mfr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS

Abbreviations conform to American National Standard Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board illustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrical Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly A1 with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME & DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip
00853	SANGAMO ELECTRIC CO., S. CAROLINA DIV.	P O BOX 128	PICKENS, SC 29671
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01295	TEXAS INSTRUMENTS, INC., SEMICONDUCTOR	P O BOX 5012, 13500 N CENTRAL	
	GROUP	EXPRESSWAY	DALLAS, TX 75222
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
07263	FAIRCHILD SEMICONDUCTOR, A DIV. OF		
	FAIRCHILD CAMERA AND INSTRUMENT CORP.	464 ELLIS STREET	MOUNTAIN VIEW, CA 94042
12969	UNITRODE CORPORATION	580 PLEASANT STREET	WATERTOWN, MA 02172
14433	ITT SEMICONDUCTORS	3301 ELECTRONICS WAY	
		P O BOX 3049	WEST PALM BEACH, FL 33402
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
34335	ADVANCED MICRO DEVICES	901 THOMPSON PL.	SUNNYVALE, CA 94086
50434	HEWLETT-PACKARD COMPANY	640 PAGE MILL ROAD	PALO ALTO, CA 94304
51642	CENTRE ENGINEERING INC.	2820 E COLLEGE AVENUE	STATE COLLEGE, PA 16801
52648	PLESSEY SEMICONDUCTORS	1641 KAISER	IRVINE, CA 92714
54473	MATSUSHITA ELECTRIC, CORP. OF AMERICA	1 PANASONIC WAY	SECAUCUS, NJ 07094
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W. 12TH ST.	ERIE, PA 16512
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601

Replaceable Electrical Parts-PM 104 Instruction

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name & Description	Mfr Code	Mfr Part Number
۵1	670-6152-00		CKT BOARD ASSY PMIDA	80000	670-6152-00
A7	670-6153-00		CKT BOARD ASSY PM104	80009	670-6153-00
A3	670-6149-00		CKT BOARD ASSY: PROBE CONNECTOR	80009	670-6149-00
115			(NO ELECTRICAL PARTS)	00007	070 0149 00
A4			CKT BOARD ASSY:8085 PROBE		
			(NOT REPLACEABLE ORDER 175-2680-00)		
Al			CKT BOARD ASSY:PM104		
A1C2010	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AAB25U104M
A1C2020	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A1C2030	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A1C2040	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A1C2050	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A1C2060	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A1C4030	283-0346-00		CAP.,FXD,CER DI:0.47UF,+80-20%,100V	72982	8131-M100F474Z
A1C4050	283-0346-00		CAP.,FXD,CER DI:0.47UF,+80-20%,100V	72982	8131-M100F474Z
A1C4055	281-0810-00		CAP., FXD, CER DI:5.6PF, 0.5%, 100V	72982	1035D2ADC0G569D
A1C4060	283-0160-00		CAP.,FXD,CER DI:1.5PF,10%,50V	72982	8101A058C0K159B
A1C4061	283-0160-00		CAP.,FXD,CER DI:1.5PF,10%,50V	72982	8101A058C0K159B
A1C4064	283-0136-00		CAP., FXD, CER DI: 10PF, 5%, 50V	51642	A100050-NP0-100J
A1C4068	281-0765-00		CAP., FXD, CER DI: 100PF, 5%, 100V	51642	G1710100X5P101J
A1C5060	283-0136-00		CAP.,FXD,CER DI:10PF,5%,50V	51642	A100050-NP0-100J
A1C7060	283-0111-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8121-N088Z5U104M
A1C7061	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AAB25U104M
A1CR2062	152-0322-00		SEMICOND DEVICE: SILICON, 15V, HOT CARRIER	50434	5082-2672
A1CR2066	152-0322-00		SEMICOND DEVICE:SILICON, 15V, HOT CARRIER	50434	5082-2672
A1CR4020	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A1CR4030	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A1CR4035	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A1CR4050	152-0141-02		SEMICOND DEVICE: SILICON, 30V, 150MA	01295	1N4152R
A1CR4055	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
A1CR7060	152-0071-00		SEMICOND DEVICE:GERMANIUM, 15V, 40MA	14433	G865
A1Q1075	151-0427-00		TRANSISTOR:SILICON,NPN	80009	151-0427-00
A1Q2070	151-0427-00		TRANSISTOR: SILICON, NPN	80009	151-0427-00
A1Q2071	151-0282-00		TRANSISTOR:SILICON, NPN	80009	151-0282-00
A1R1005	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R1020	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R1030	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R1040	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R1050	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R1060	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R2055	307-0721-00		RES.,NTWK,FXD,FI:5,68 OHM,2%,1.5W	91637	MSP10A03680G
A1R2064	315-0102-00		RES.,FXD,CMPSN:1K OHM,5%,0.25W	01121	CB1025
A1R3070	315-0132-00		RES.,FXD,CMPSN:1.3K OHM,5%,0.25W	01121	CB1325
A1R3071	315-0202-00		RES.,FXD,CMPSN:2K OHM,5%,0.25W	01121	CB2025
A1R4020	315-0101-00		RES., FXD, CMPSN: 100 OHM, 5%, 0.25W	01121	CB1015
A1R4025	315-0272-00		RES., FXD, CMPSN: 2. /K OHM, 5%, 0.25W	01(27	GBZ/ZD
A1R4055	321-0344-00		KES., FXD, FILM: 37.4K OHM, 1%, U.125W	9163/	MEE1816010201E
A1K4UOU	321-0290-00		KES., FAD, FILM: 10.2K UHM, 1%, 0.123W	103/	mff1010G10201f
A1R4064	321-0631-00		RES.,FXD,FILM:12.5K OHM,1%,0.125W	91637	MFF1816G12501F
A1R5060	315-0822-00		RES., FXD, CMPSN: 8.2K OHM, 5%, 0.25W	01121	CB8225
A1R5064	321-0293-00		RES., FXD, FILM: 11K OHM, 1%, 0.125W	91637	MFF1816G11001F
A1R5068	321-0208-00		RES., FXD, FILM: 1.43K OHM, 1%, 0.125W	91637	MFF1816G14300F
A1U2010	156-0016 00		MICROCIPCUIT, DI REA INVERTER	01295	SN/4LSU4N3
A102020	120-0310-05		MICROCIRCUIT, DI:0-2 INP 3-STATE DFR, BURN	27014	DIJO I LO 7 /

Replaceable Electrical Parts—PM 104 Instruction

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name & Description	Mfr Code	Mfr Part Number
A1U2035	160-0835-00		MICROCIR: CUIT. DI: 2048 X 8 EPROM PROM	80009	160-0835-00
A1U2050	156-1065-01		MICROCIRLCUIT.DI:OCTAL D TYPE TRANS	34335	AM74LS373
A1U3010	156-0956-04		MICROCIRCUIT, DI: OCTAL BFR W/3	80009	156-0956-04
A1U3020	156-0914-03		MICROCIRCUIT, DI: OCT ST BFR W/3 STATE	80009	156-0914-03
A1U3030	156-0320-03		MICROCIRCUIT.DI; TRIPLE 3 INP NAND GATE	01295	SN74S11NP3
A1U3040	156-0382-02		MICROCIRCUIT, DI:QUAD 2-INP NAND GATE	01295	SN74LS00
A1U3050	156-0956-04		MICROCIRCUIT, DI: OCTAL BFR W/3	80009	156-0956-04
A1U3060	156-0956-04		MICROCIRCUIT, DI: OCTAL BFR W/3	80009	156-0956-04
A1U4010	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4015	155 - 0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4020	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4030	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4035	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1116050	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4000	155-0230-00		MICROCIRCUIT, LI: INPUT PROTECTION	80009	155-0230-00
A1U4000	155-0230-00		MICROCIECUII, LI: INPUT PROTECTION	80009	100-0230-00
A102004	152-0512 00		FILKOUIKUUII, LI: UMPAKATUK	52648	579000UM
MIVK4UJU	152-0512-00		SEMICOND DEVICE: ZENEK, IW, 9. IV, 5%	12969	028/09
A1VR7060	152-0195-00		SEMICOND DEVICE:ZENER, 0.4W, 5.1V, 5%	04713	SZ11755
A1VR7065	152-0193-00		SEMICOND DEVICE: ZENEK, U.4W, J.IV, JA SEMICOND DEVICE: ZENED O 411 OV 37	80000	3411/33 152-0611-00
A2			CKT BOARD ASSY:PM104		
A2C1010	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AAB25U104m
A2C1020	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A2C1510	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A2C2010	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A2C2020	281-0775-00		CAP.,FXD,CER DI:0.1UF,20%,50V	72982	8005D9AABZ5U104M
A2C3010	281-0775-00		CAP., FXD, CER DI:0.1UF, 20%, 50V	72982	8005D9AABZ5U104M
A2C3020	281-0775-00		CAP., FXD, CER DI:0.1UF, 20%, 50V	72982	8005D9AAB25U104M
A2C3540	290-0847-00		CAP., FXD, ELCTLT: 47UF, +50-10%, 10V	54473	ECE-BIAV470S
A204000	281-0775-00		CAP., FXD, CER D1:0.10F, 20%, 50V	/2982	8005D9AABZ5U104M
A2C4001 A2C4006	283-0687-00 283-0687-00		CAP.,FXD,MICA D:560PF,2%,300V CAP.,FXD,MICA D:560PF,2%,300V	00853 00853	D153E561G0 D153E561G0
420/010	281-0775 00		CAD EVD CED DT.O 1110 204 500	71000	8005004497501044
A204010	201-0//5-00		CAP., FAD, GER DI:U.IUF, 20%, 50V	72982	
A204030	201-0//5-00		CAP., FXD, CER DI: 0.10F, 20%, 50V	72982	000009AABZ00104M
A203010	203-0154-00		CAR., FAD, CER DI: 22FF, 56, 50V	72002	
A203020 A206005	201-0//2-00		CAR., FAD, CER DI: 0.10F, 20%, 50V	72002	00000000000000000000000000000000000000
A2C6005	281-0775-00		CAP., FAD, CER DI:0.10F, 20%, 50V CAP., FXD, CER DI:0.10F, 20%, 50V	72982	8005D9AABZ5U104M 8005D9AABZ5U104M
A2L3005	108-0719-00		COLL. RF: 805NH	80009	108-0719-00
A2Q4006	151-0190-05		TRANSISTOR: SILICON, NPN	80009	151-0190-05
A2R1030	315-0102-00		RES., FXD, CMPSN:1K OHM, 5%, 0.25W	01121	CB1025
A2R3006	315-0133-00		RES., FXD, CMPSN: 13K OHM, 5%, 0.25W	01121	CB1335
A2R3007	315-0332-00		RES.,FXD,CMPSN:3.3K OHM,5%,0.25W	01121	CB3325
A2R4020	315-0102-00		RES., FXD, CMPSN: 1K OHM, 5%, 0.25W	01121	CB1025
A2R4025	315-0102-00		RES.,FXD,CMPSN:1K OHM,5%,0.25W	01121	CB1025
A2R5010	315-0103-00		RES.,FXD,CMPSN:10K OHM,5%,0.25W	01121	CB1035
A2R6005	315-0102-00		RES.,FXD,CMPSN:1K OHM,5%,0.25W	01121	CB1025
A2U1005	156-0844-02		MICROCIRLCUIT, DI:SYN 4 BIT CNTR, SCRN	01295	SN74LS161A
A2U1010	156-0388-03		MICROCIRCUIT, DI: DUAL D FLIP-FLOP	07263	74LS74D
A2U1020	156-0388-03		MICROCIRCUIT, DI: DUAL D FLIP-FLOP	07263	74LS74D
A2U1030	156-0914-02		MICROCIRCUIT, DI: OCT ST BFR W/3 STATE OUT	01295	SN74LS240
A2U2U1U	156-0388-03		MICKOCIRCUIT, DI:DUAL D FLIP-FLOP	07263	/4LS/4D . 7/1S7/D
ALUZVZV	1,0-0,00-0,1		RIGROGIRGUII, DI; DUAL D FLIP-FLUP	07203	

Replaceable Electrical Parts—PM 104 Instruction

Component No	Tektronix Part No	Serial/ Eff	Model No. Dscont	Name & Description	Mfr Code	Mfr Part Number
	<u> </u>					
A2U2030	156-0382-02			MICROCIRCUIT, DI:QUAD 2-INP NAND GATE	01295	SN74LSUU
A2U3010	156-0844-02			MICROCIRCUIT, DI:SYN 4 BIT CNTR, SCRN	01295	SN74LS161A
A2U3020	156-0388-03			MICROCIRCUIT, DI: DUAL D FLIP-FLOP	07263	74LS74D
A2U3030	156-0722-00			MICROCIRCUIT, D1: TRIPLE 3-INP NAND GATE	80009	156-0722-00
A2U4010	160-0833-00			MICROCIRCUIT, DI:32 X 8 PROM, PRG	80009	160-0833-00
A2U4030	156-0331-00			MICROCIRCUIT, DI: DUAL D-TYPE, FLIP-FLOP	80009	156-0331-00
A2U5020	156-0956-02			MICROCIRCUIT, DI: OCTAL BFR W/3STATE OUT	01295	SN74LS244NP3
A2U6005	156-0382-02			MICROCIRCUIT, DI: QUAD 2-INP NAND GATE	01295	SN74LS00
A4				CKT BOARD ASSY:8085 PROBE		
A4C1040	283-0111-00			CAP., FXD, CER DI:0.1UF, 20%, 50V	72982	8121-NU8825U104M
A4CR2020	152-0008-00			SEMICOND DEVICE: GERMANIUM, 75V, 60MA	14433	61409
A402020	151-1031-00			TRANSISTOR: SILICON, FE, N-CHANNEL, DUAL	80009	151-1031-00
A4R1030	317-0131-00			RES., FXD, CMPSN: 130 OHM, 5%, 0.125W	01121	BB1315
A4R2020	317-0105-00			RES., FXD, CMPSN: 1M OHM, 5%, 0.125W	01121	BB1055
A4R2021	317-0105-00			RES.,FXD,CMPSN:1M OHM,5%,0.125w	01121	BB1055
A4R3030	317-0101-00			RES., FXD, CMPSN: 100 OHM, 5%, 0.125W	01121	BB1015
A4U2030	156-0645-00			MICROCIRCUIT, DI: HEX SCHMITT-TRIG INVERTER	80009	156-0645-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1.1-1972.

Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966	Drafting Practices.					
Y14.2, 1973	Line Conventions and Lettering.					
Y10.5, 1968	Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.					
Americ	an National Standard Institute					

1430 Broadway New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors = Values one or greater are in picofarads (pF). Values less than one are in microfarads (μF).

Resistors = Ohms (Ω).

The information and special symbols below may appear in this manual.-

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number *(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

Device Type	vcc	GND
2716	24	12
74LS00	14	7
74LS04	14	7
74LS11	14	7
74LS12	14	7
74S74 (LS)	14	7
74LS161	16	8
74LS240	20	10
74LS244	20	10
74LS373	20	10
81LS97	20	10
H1023	1	2
IM5610	16	8

IC Pin Information

A01 UPPER BOARD

Static Sensitive Devices See Maintenance Section

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

10

C5060

5064

1 UPPER BOARD DIAGRAM 1/	Α
--------------------------	---

ASSEMBLY A1								
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION			
C4030	D2	C2	82055	F3	B3			
			R4025	D2	C1			
CR4020	D2	C1						
			TP6020	F4	D1			
J1010	A5	A2						
J1010	A3	A2	U2010C	C5	B1			
J1010	F2	A2	U2020	E4	B2			
J1010	E1	A2	U2035	D3 ·	B2			
J1010	F5	A2	U2050	C5	B3			
J2030	• D3	A1	U3020B	C5	B1			
J3005	F5	B1	U3050	B3	B3			
J3005	F1	B1	U3060	B2	B3			
J6020	A5	D1	U4030A	A5	C2			
J6020	A2	D1	U4030C	A3	C2			
J7020	A3	D1	U4030D	A3	C2			
	1		U4035B	A4	C2			
R1005	F1	A1	U4035C	A4	C2			
R1005	F5	A1	U4035D	A3	C2			
R1030	F4	A2	U4040B	A4	C2			
R1040	F4	A2	U4040C	A4	C2			
R1040	F2	A2	U4040D	A4	C2			
81050	F3	A3	04050	A2	C3			
R1050	F2	A3	04055	A2	C3			
R1060	F3	A3		50				
R1060	FZ	A3	VR4030	EZ	CZ			
R1060	F4	AJ						
Partial A1 also shown on diagram 1B.								

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

PM104

A01 UPPER BOARD

Static Sensitive Devices See Maintenance Section COMPONENT NUMBER EXAMPLE

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

, ,

15

CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION
C2010	C1	В2		F5	B1	U2010A	C4	B1
C2020	C1	B1	J3005	A4	B1	U2010B	D3	B1
C2030	C1	B2	J3005	F2	B1	U2010E	C2	B1
C2040	C1	B2	J6020	A1	D1	U3010	83	B1
C2050	C1	83	J7020	A3	D1	U3010	B2	B1
C2060	C1	B3		_		U3020B	E1	В1
C4030	E5	C2	Q1075	C5	A3	U3020	82	B1
C4050	A4	C3	02070	D5	A3	U3030A	C3	B2
C4055	A5	C3	Q2071	D4	B3	U3030B	C3	B2
C4060	B5	C3				U3030C	C3	В2
C4064	B5	C3	R1020	F2	A1	U3040A	C2	B2
C4068	B5	C3	R1020	F1	A1	U3040B	D3	B2
C5060	В5	C3	R1020	F4	A1	U3040C	C4	В2
C7060	B5	D3	R1030	F1	A2	U3040D	C1	B2
C7061	C1	D3	R2064	D4	B3	U4010A	A2	C1
			R3070	C5	В3	U4010B	A2	C1
CR2062	C4	B3	R3071	D5	B3	U4010C	A3	C1
CR2066	D4	B3	R4020	E3	C1	U4015A	A2	C1
CR4020	E4	C1	R4025	E4	C1	U4015B	A2	C1
CR4030	E3	C2	R4055	A5	C3	U4015C	A3	C1
CR4035	D3	C2	R4060	B5	C3	U4020A	A3	C1
CR4050	A5	C3	R4064	B5	C3	U4020B	A3	C1
CR4055	A4	C3	R5060	B5	C3	U4020C	A3	C1
CR7060	B5	D3	R5064	B5	C3	U4020D	A3	C1
			R5068	B5	C3	U4030B	A2	C2
J1010	F5	A2				U4035A	A2	C2
J1010	F1	A2	TP1	F4	A1	U4060	B5	C3
J1010	A4	A2	TP2	F3	A1			
J1010	F4	A2	TP3	F3	A1	VR4030	E5	C2
J3005	F4	B1	TP4	F4	A1	VR7060	A4	D3
J3005	E1	B1		1		VR7065	B5	D3

1 UPPER BOARD DIAGRAM 1B

Static Sensitive Devices See Maintenance Section

Component Number A23 A2 R1234 Schematic - Circuit Number Assembly Number Ļ Subassembly Number (if used)

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

A01 UPPER BOARD

PM104

Scan by Zenith

Figure 8-2. A02 Lower board component locations.

2916-29

D

Static Sensitive Devices See Maintenance Section COMPONENT NUMBER EXAMPLE

-

30

2 LOWER BOARD DIAGRAM 2

ASSEMBL	.Y A2				
CIRCUIT NUMBER	SCHEM LOCATION	BOARD LOCATION		SCHEM LOCATION	BOARD LOCATION
C1010	A2	A1	TP4010	A2	B2
C1020	A2	A2	TP7005	D1	D1
C1510	A2	A1	TP7010	E3	D2
C2010	A2	A2	TP7020	D2	D2
C2020	A2	B2	TP7025	D2	D2
C3010	A2	B1	TP7030	A2	D3
C3020	A2	B2			
C3540	A2	B3	U1005	D1	A1
C4006	A1	B1	U1010A	D3	A1
C4007	A1	B1	U1010B	D3	A1
C4010	A2	B1	U1020A	A4	A2
C4030	A2	B3	U1020B	B4	A2
C5010	F1	C2	U1030A	E4	A3
C5020	A2	C3	U1030B	C4	A3
C6005	A2	C1	U1030C	B5	A3
C6006	A2	C1	U1030D	E4	A3
			U1030E	E5	A3
J1010	D3	A1	U1030F	E5	A3
J1020	B4	A2	U1030G	C3	A3
J1030	B3	A2	U1030H	E5	A3
J2020	D4	A2	U2010B	B1	B1
J5030	B1	C3	U2020A	D4	B2
J6010	A1	C1	U2020B	C4	B2
J6030	F4	C3	U2030A	D5	83
			U2030B	E5	В3
L3005	A1	B1	U2030D	D5	В3
			U2030D	B3	B3
P3005	A1	C3	U3010	C1	B1
P3005	F5	C3	U3020A	C5	B2
			U3020B	D5	B2
Q4006	B1	B1	U3030A	C5	B3
			U3030B	D4	B3
R1030	E4	A3	U3030B	C4	B3
R3006	81	B1	U3030C	E4	83
R3007	A1	BI	U4010	E1	81
R4020	04	82	U4030A	Eb	83
R4025	E5	82	U4030B	84	83
R5010	<u>⊦</u> 1	C2	05020H	81	C2
R6005	^{E2}	L C1	05020	£3	C2
TD1010			06005A	E2	
TP2010	A2			E2	
TP2010			060050	F2	
183020	U	B2	06005D	ີ້ເວ	U U

Static Sensitive Devices See Maintenance Section COMPONENT NUMBER EXAMPLE

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

PMI04 INSTRUCTION

2916 - 22

A02 LOWER BOARD

A02 LOWER BOARD

PM104

Scan by Zenith

Figure 8-3. A03 Probe connector board component locations.

2916-30

	A23	A2 R1	234	Ľ.
Assembly Number	Sub	assembly ber (if use	ed)	Schematic Circuit Number

Chassis-mounted components have no Assembly Numb prefix—see end of Replaceable Electrical Parts List.

ic

umber ist.
3 PROBE CONNECTOR BOARD DIAGRAM 3

ASSEMBLY A3						
CIRCUIT	SCHEM	BOARD				
NUMBER	LOCATION	LOCATION				
J1010	D1	B2				
J1010	A1	B2				
P7020	E1	B1				
P7020	C1	B1				

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

(CABLE) P/o JI0I0 5 6 7	COMPONENT NUMBER EXAMPLE	P/0 P7020	P/0 J1010 29 30	DI¢ DII	
$ \begin{array}{c} (CABLE) \\ P/o \\ JIOIO \\ \hline 5 \\ \hline 6 \\ \hline 7 \\ \hline \hline 7 \\ \hline $	Assembly Grout Number Number Number Number Number Number Number Number All seembly Number All seembly Number prefix—see end of Replaceable Electrical Parts List.	P/0 P7020			
	Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List. A I Ø A I I A I 2	5			
	A12	×		DIO	
		1 -			
	A13	\rightarrow			
		<u>></u>			
	A15	>9			
	A16				
	418				
		>13			
		>15	40		
			42		
			43	DIIT	
	Allt	>19	44		
	A115		46		
	Allo	>21	47		
	A117	>22	48		
	AIIB	>23	49	C3	
	011A	>24		٢4	
	A120	26	51	C5	
-26	A121	25	52	C6	
-27		>28	53	<u> </u>	
	A123	27		C8	
58	+15V D	58	55	٢٩	
56	+5V	>	63	/ 5EL P	
57		57	61	/HALT PUT	
45		>10	2	CLK	
	GND	20	3	/CLK	
4	\downarrow \downarrow \downarrow	30	65	LOOK	
60		40		Sensitive Devices NOTE: Table	8-1 shows IC
64		50	See See	Maintenance Section Pinout. (VCC	; & GND).
59	-15VD	59	AO3	S PM LOGIC ANALYZER PLUG BD.	
				2916-30	
PMI04 G	ENERAL PURPOSE PERSONALITY MO		AO	3 PM LOGIC ANALYZER	PILIG

A03 PROBE CONNECTOR

Figure 8-4. A04 PM104 probe plug board component locations.

2916-31

COMPONENT NUMBER EXAMPLE

	Component Number
Assembly Number	A23, A2, R1234 Subassembly Number (if used)

Chassis-mounted components have no Assembly Numbe prefix—see end of Replaceable Electrical Parts List.

LE

atic it er

Number List.

4 PM104 PROBE PLUG BOARD DIAGRAM 4

ASSEMBL		
CIRCUIT	SCHEM	BOARD
NUMBER	LOCATION	LOCATION
C1040	E2	A2
CR2020	B2	A1
CR2030	A1	B1
P6	C2	A1
P6	F2	A1
P6020	D2	A1
P7020	A2	A1
Q2020A	B2	A2
Q2020B	B1	A2
R1030	B1	A1
R2020	B1	A1
R2021	B1	A1
R3030	B2	A1
U2030A	C1	A2
U2030B	C1	A2
U2030C	C1	A2

Chassis-mounted components have no Assembly Number prefix—see end of Replaceable Electrical Parts List.

PM104

A04 PROBE PLUG

REPLACEABLE **MECHANICAL PARTS**

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix, Inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any, is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number

00X Part removed after this serial number

FIGURE AND INDEX NUMBERS

Items in this section are referenced by figure and index numbers to the illustrations.

FLCTRN

ELCTLT

ELEC

ELEM

EQPT

EXT

FLEX

FLTR

FSTNR

GSKT

HDL

HEX

HEX HD

HLCPS

HLEXT

IDENT

IMPLR

нν

1C

ID

FLH

FR

FT FXD

F1L

EPL

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column.

1 2 3 4 5 Name & Description

Assembly and/or Component Attaching parts for Assembly and/or Component ---*---Detail Part of Assembly and/or Component Attaching parts for Detail Part . . . * . . . Parts of Detail Part

Attaching parts for Parts of Detail Part ---*---

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol - - - * - - - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specified.

ITEM NAME

In the Parts List, an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possible.

	INCH
#	NUMBER SIZE
ACTR	ACTUATOR
ADPTR	ADAPTER
ALIGN	ALIGNMENT
AL	ALUMINUM
ASSEM	ASSEMBLED
ASSY	ASSEMBLY
ATTEN	ATTENUATOR
AWG	AMERICAN WIRE GAGE
BD	BOARD
BRKT	BRACKET
BRS	BRASS
BRZ	BRONZE
BSHG	BUSHING
CAB	CABINET
CAP	CAPACITOR
CER	CERAMIC
CHAS	CHASSIS
CKT	CIRCUIT
COMP	COMPOSITION
CONN	CONNECTOR
COV	COVER
CPLG	COUPLING
CRT	CATHODE RAY TUBE
DEG	DEGREE
DWR	DRAWER

ABBREVIATIONS

IN

INTL

MTG

OBD

оvн

OD

PL

PN

PNH

PWR

RCPT

RES

RGD

SCH

SCR

RLF

NIP

ELECTRICAL ELECTROLYTIC ELEMENT ELECTRICAL PARTS LIST EQUIPMENT EXTERNAL FILLISTER HEAD FLEXIBLE FLAT HEAD FILTER FRAME or FRONT FASTENER FOOT GASKET HANDLE HEXAGON HEXAGONAL HEAD HEX SOC HEXAGONAL SOCKET HELICAL COMPRESSION HELICAL EXTENSION HIGH VOLTAGE INSIDE DIAMETER IDENTIFICATION IMPELLER

ELECTRON

INCH INCANDESCENT INCAND INSULATOR INSUL INTERNAL LAMPHOLDER LPHLDR MACHINE MACH MECHANICAL MECH MOUNTING NIPPLE NOT WIRE WOUND NON WIRE ORDER BY DESCRIPTION OUTSIDE DIAMETER OVAL HEAD PHOSPHOR BRONZE PH BRZ PLAIN or PLATE PLSTC PLASTIC PART NUMBER PAN HEAD POWER RECEPTACLE RESISTOR RIGID RELIEF RTNR RETAINER SOCKET HEAD SCOPE OSCILLOSCOPE SCREW

SINGLE END SE SECT SECTION SEMICONDUCTOR SEMICOND SHIELD SHLD SHOULDERED SHLDR SOCKET SKT SLIDE SL SLFLKG SELF-LOCKING SLEEVING SLVG SPRING SQUARE SPR so STAINLESS STEEL SST STEEL SWITCH STL sw TUBE TERM TERMINAL THREAD THD тніск THK TENSION TAPPING TNSN TPG TRUSS HEAD TRH VOLTAGE VAR VARIABLE w/ WITH WSHR WASHER XEMB TRANSFORMER TRANSISTOR XSTR

Replaceable Mechanical Parts—PM 104 Instruction

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

Mfr. Code	Manufacturer	Address	City, State, Zip
000AH	STANDARD PRESSED STEEL CO., UNBRAKO DIV.	8535 DICE ROAD	SANTA FE SPRINGS, CA 90670
000BK	STAUFFER SUPPLY	105 SE TAYLOR	PORTLAND, OR 97214
00779	AMP, INC.	P O BOX 3608	HARRISBURG, PA 17105
19613	TEXTOOL PRODUCTS, INC.	1410 W PIONEER DRIVE	IRVING, TX 75061
22526	BERG ELECTRONICS, INC.	YOUK EXPRESSWAY	NEW CUMBERLAND, PA 17070
23880	STANFORD APPLIED ENGINEERING, INC.	340 MARTIN AVE.	SANTA CLARA, CA 95050
71785	TRW, CINCH CONNECTORS	1501 MORSE AVENUE	ELK GROVE VILLAGE, IL 60007
73803	TEXAS INSTRUMENTS, INC., METALLURGICAL		
	MATERIALS DIV.	34 FOREST STREET	ATTLEBORO, MA 02703
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
83385	CENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153

Replaceable Mechanical Parts-PM 104 Instruction

Fia
1 19
100

.

Fig. & Index No.	Tektronix Part No.	Serial/Mc Eff	idel No. Dscont	Qty	12345	Name & Description	Mfr Code	Mfr Part Number
1-1	334-3726-0	0		1	PLATE IDENTIM	T 8085 MICROPROCESSOR	80006	334-3726-00
-2	380-0593-0	0		1	HSG HALF, CKT I	BD:TOP	80009	380-0593-00
-3	211-0093-0	0		4	SCR,CAP,SOC HI	CATTACHING PARIS) D:4-40 X 0.75 INCH L,STL	000ВК	OBD
-4	380-0594-0	0		1	HSG HALF,CKT 1	BD:BOTTOM (ATTACHING PARTS)	80009	380-0594-00
-5	211-0093-0	0		4	SCR.CAP.SOC HI	$2:4-40 \times 0.75$ INCH L.STL	000BK	OBD
-6	210-0586-0	0		4	NUT, PL, ASSEM V	VA:4-40 X 0.25,STL CD PL	83385	OBD
-7	343-0836-0	0		4	CLAMP.CABLE: 3	.72 L.ALUMINUM	80009	343-0836-00
-8	200-2415-0	0		1	DOOR.ACCESS:PI	LASTIC	80009	200-2415-00
	175-2680-0	0		1	CA ASSY.SP.EL	SC:40.28 AWG.15.0 L	80009	175-2680-00
-9	386-3814-0	0		î	PLATE CONN 1		80009	386-3814-00
-10	352-0536-0	0		1	HOLDER CONT	ACT:40 PIN NYLON	80009	352-0536-00
10	552 0550 0	0		-	. 102521,0017	(ATTACHING PARTS)	0000)	552 (550 00
-11	211-0102-0	0		2	. SCREW, MACHII	VE:4-40 X 0.500",FLH,STL	83385	OBD
-12	334-3754-0	0		1	. MARKER, IDEN	C:MKD P7020	80009	334-3754-00
-13	334-3753-0	0		1	. MARKER, IDEN	C:MKD P6020	80009	334-3753-00
-14		-		1	. CKT BOARD AS	SSY:8085 PROBE(SEE A4 REPL)		
-15	131-2093-0	0		2	SKT, PL-IN	ELEK:MICROCKT, 20 CONT, LOW PE	23880	CSA-3200-208
-16	136-0252-0	1		6	CONTACT.EI	LEC:0.178 INCH LONG	00779	1-332095-2
-17	136-0252-0	7		14	SOCKET.PI	V CONN:W/O DIMPLE	22526	75060-012
-18	200-2429-0	0		1	CABLE NIP	ELEC:0.69 I. X 3.6 W	80009	200-2429-00
	131-2443-0	0		ĩ	CONN. RCPT. ELEC	CABLE 32/64 MALE	80009	131-2443-00
-19	334-3722-0	0		1	PLATE IDENT	MKD 6460 MICROPROCESSOR	80009	334-3722-00
-20	380-0591-0	0		î	. HSG HALF,CK	BD:TOP	80009	380-0591-00
2.1	011 0005 0	0		~		(ATTACHING PARIS)	0/10.47	0.2.2
-21	211-0225-0	0		2	. SCR, CAP, SOC	$HD:4-40 \times 0.312$ INCH, STL	UUUAH	OBD
-22	211-0093-0	0		2	. SUR, CAP, SOU	HD:4-40 X 0.75 INCH L,STL	UUUBK	OBD
-25	210-0551-0	0		4	. NUI,PLAIN,H	$1x.:4-40 \times 0.25$ INCH, STL *	63365	ORD
-24	380-0590-0	0		1	. HSG HALF, CK1	F BD:BOTTOM	80009	380-0590-00
-25	343-0836-0	0		2	. CLAMP, CABLE	3.72 L,ALUMINUM	80009	343-0836-00
-26	200-2412-0	0		2	. CABLE NIP,E	LEC:3.45 L X 0.05 ID	80009	200-2412-00
-27	175-2683-0	0		1	. CA ASSY,SP,H	ELEC:64,28 AWG,48.0 L	80009	175-2683-00
-28		-		1	. CKT BOARD AS	SSY:PROBE CONNECTOR(SEE A3 RE	PL)	
-29	131-0608-0	0		64	TERMINAL, H	PIN:0.365 L X 0.025 PH BRZ GC	LD 22526	47357
-30	361-0998-0	0		4	SPACER, CKT BD:	0.245 ID X 0.38 OD	80009	361-0998-00
-31		-		1	CKT BOARD ASSY	PM104(SEE Al REPL)		
-32	131-0590-0	0		25	. CONTACT, ELEC	C:0.71 INCH LONG	22526	47351
~33	131-0993-0	0		1	. BUS, CONDUCTO	R:2 WIRE BLACK	00779	530153-2
-34	136-0269-0	2		1	. SKT, PL-IN EI	EK:MICROCIRCUIT, 14 DIP, LOW C	LE 73803	CS9002-14
-35	136-0537-0	0		1	. SOCKET, PLUG-	IN:40 PIN, W/LOCKING LEVER	19613	240-0333-00-0602
-36	131-0608-0	0		112	. TERMINAL, PIN	1:0.365 L X 0.025 PH BRZ GOLD	22526	47357
-37	136-0252-0	7		10	. SOCKET, PIN (CONN:W/O DIMPLE	22526	75060-012
-38	131-0787-0	0		40	. CONTACT, ELEC	C:0.64 INCH LONG	22526	47359
-39	136-0634-0	0		6	. SOCKET, PLUG-	-IN:20 LEAD DIP,CKT BD MTG	73803	CS9002-20
-40	136-0578-0	0		1	. SKT, PL-IN EI	EK:MICROCKT, 24 PIN, LOW PROFI	LE 73803	C S9002-24
-41		-		1	CKT BOARD ASSY	(:PM104(SEE A2 REPL)		
-42	136-0263-0	4		25	SOCKET, PIN TER	M:FOR 0.025 INCH SOUARE PIN	22526	75377-001
-43	136-0634-0	0		1	. SOCKET.PLUG-	-IN:20 LEAD DIP.CKT BD MTG	73803	CS9002-20
-44	136-0260-0	2		1	. SKT, PL-IN EI	EK:MICROCIRCUIT.16 DIP.LOW C	LE 71785	133-51-92-008
-45	131-0993-0	0		6	. BUS, CONDUCTO	DR:2 WIRE BLACK	00779	530153-2
-46	131-0608-0	0		34	. TERMINAL PIN	1:0.365 L X 0.025 PH BRZ COLD	22526	47357
-47	136-0269-0	2		2	. SKT, PL-IN EI	EK:MICROCIRCUIT.14 DIP.LOW C	LE 73803	CS9002-14
-48	136-0623-0	0		1	. SOCKET, PLUG-	IN:40 DIP,LOW PROFILE	73803	CS9002-40
-49	337-2722-0	0		1	. SHIELD, ELEC:	ACCESS DOOR, BRASS	80009	337-2722-00

Index No.	Tektronix Part No.	Serial/Mo Eff	odel No. Dscont	Qty	12345	Name &	Description	Mfr Code	Mfr Part Numb
	070-2916-0	0		1	MANUAL, TECH: IN	STR,010-6460-	-03,8085	80009	070-2916-00

@

APPENDIX A PM 104 SIGNAL GLOSSARY

Introduction

D:--

The listings which follow describe each signal line within the PM 104 as it appears at each pin of every connector in the Personality Module. Some line titles appear more than once, and the active state and line definition may differ at one pin as compared to another because of the different purposes served by some signals at different locations within the Personality Module. For additional information, refer to Section 4, Theory of Operation.

1. Signals at J6020, interconnect from the Microprocessor Plug to PM 104 circuitry.

FIII		
No.	Signal	Definition
1	Vcc	Processor +5 V Supply from System Under Test.
3	HOLD	The Processor HOLD line. In active High level, this signal puts the processor in Hold condition and sends a /HALTED message to the 7D02.
5	HLDA	The Processor Hold Acknow- ledge. Not used by PM 104.
7	Ø2	The Clock Out signal from Processor Pin 37. An active High signal, used to Clock the System Under Test and synchronize the PM 104.
9	/RESET IN	The RESET signal from the S.U.T. to the Processor in the ZIF Socket. An active Low signal, not used by the PM 104.
11	READY	The READY signal from the S.U.T. to the Processor in the ZIF socket. An Active High signal whose low state causes the processor and the 7D02 to add Wait States.
13	IO/M	A control signal from the Pro- cessor used by the PM 104 to decode Processor status and Machine Cycle information. In High state, the indicated oper- ation is to IO; in Low state, to Memory.

15	S1	Same as Pin 13.
17	/RD	/READ. An active Low signal from the Processor, not used by the PM 104.
19	/WR	/WRITE. An active low signal from the Processor, not used by the PM 104.
21	ALE	Address Latch Enable. The ALE signal from the Processor. An Active High signal used to syn- chronize PM 104 and 7D02 circuits. ALE latches address information from the multiplexed address/data bus used by the 8085.
23	SØ	Same as Pin 13.
25,27, 29,31, 33,35, 37,39	A8-A15	Address 8 through Address 15 information.

2. J7020, interconnect from Microprocessor Plug to PM 104 circuitry.

Pin		
No.	Signal	Definition
1	X1	Clock input signal from the Microprocessor Plug to the Processor in the ZIF socket.
3	X2	Used to supply negative voltage to the oscillator in the Micro- processor Plug.
5	RESET OUT	The RESET OUT signal from the Processor. Active High from the Processor resets the S.U.T. and the PM 104 State Machines.
7 ,	SOD	Serial Out Data line from the Processor. Not used by the PM 104.
9	SID	Serial In Data line to the Processor. Not used by the PM 104.
11	TRAP	Interrupt Line to the Processor, Active High. Generates an Inter- rupt Request signal to the 7D02.

Appendix A—PM 104

13	RST 7.5	Same as Pin 11
15	RST 6.5	Same as Pin 11
17	RST 5.5	Same as Pin 11
19	INTR	Same as Pin 11
21	/INTA	Interrupt Acknowledge from the Processor. Not used in the PM 104.
23,25, 27,29, 31,33, 35,37	ADØ-AD7	The multiplexed Address/Data bus to and from the Pro- cessor.

3. J3005, the Interboard connector between Upper and Lower Boards in the PM 104.

Pin

No.	Signal	Definition
1	IFC	Instruction Fetch Cycle Signal, Active High. On Control Line C3.
2	/HALTED	Active Low when the READY line is pulled low, the /HALT line is pulled low, or the HOLD line is pulled high. /HALTED provides in- formation for the "8085 STOPPED" message. On Control line C7.
3	WAIT	WAIT is Active High when the READY line is pulled low or /HALT is pulled low. Adds Wait States to the 7D02. Is on Control Line C9.
4	ALE	An Active High signal, used to synchronize the State Machines.
5	IN AC	A partially-decoded Active High control signal used to produce INACK and IFC.
6	INACK	Interrupt Acknowledge. An Active High signal during Interrupt Acknowledge Machine Cycles.
7	/INTA	An Active Low Interrupt Acknowledge Signal from the Processor.
10	Ø2TTL	The TTL Level Clock generated by $\emptyset 2$.
11	RESET OUT	A RESET signal from the Processor, Active High.
12	/INRQ	This signal is Active Low when any Interrupt line is pulled high.
14	/HOLD	Active Low when the HOLD line goes high.

19	RDY	An Active High signal to the Wait State Generator and the /HALTED Generator when either READY or /HALT is pulled low.
20	/INT REQ	Active Low when any Interrupt line is High.
21	HOLD	Latched High when the HOLD line goes High, this signal indicates a HOLD request. It clears at the next ALE pulse.
25	/HALT	An Active Low signal, used only for testing purposes during

4. J1010, interconnection from the PM 104 to the 7D02.

manufacturing.

Pin		
No.	Signal	Definition
2	CLK	The Processor Clock Out signal at ECL levels.
3	/CLK	The Pin 2 signal inverted.
5-20	AØ-A15	The 16 Address lines to the 7D02.
2 9 -36	DØ-D7	The 8 Data lines to the 7D02.
46	RD/WR	In High state, a READ operation, and in Low State, a WRITE. This is Control Line CØ.
48	INRQ	When this line is High, the 7D02 is told there has been an Inter- rupt Request. Control Line C2.
49	IFC	An Active High line denoting an Instruction Fetch Cycle. This is Control Line C3.
50	INACK	This line is Active High during Interrupt Acknowledge cycles. Control Line C4.
51	HOLD	An Active High state informs the 7D02 there is a HOLD request. Control Line C5.
52	RESET OUT	This line is High during RESET operations. Control Line C6.
53	/HALTED	/HALTED is Low when the READY or /HALT lines go Low, or when HOLD goes High. It also supplies the "8085 STOPPED" information

Control Line C7.

54 55	/ALE WAIT	This line synchronizes the 7D02 State Clock Generator. It is Low during the ALE signal from the Processor. Control Line C8. Used to add Wait States to the 7D02.	62	LOOK	A normally Low signal. In the High state, it is sent from the 7D02 to turn off the buffers in the Personality Module so that the bus can be addressed by the PROM.
00		this line is High when READY or /HALT is Low. Control Line C9.	63	/SEL P	Normally in the High state. When this signal goes low, it is sent
61	/HALT	An Active Low signal from the 7D02 to the Personality Module, used to Halt the Processor Under Test.			from the 7D02 to the Personality Module to turn on the PROM and U2020 and read the PROM.

I

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

SERVICE NOTE

Because of the universal parts procurement problem, some electrical parts in your instrument may be different from those described in the Replaceable Electrical Parts List. The parts used will in no way alter or compromise the performance or reliability of this instrument. They are installed when necessary to ensure prompt delivery to the customer. Order replacement parts from the Replaceable Electrical Parts List.

CALIBRATION TEST EQUIPMENT REPLACEMENT

Calibration Test Equipment Chart

This chart compares TM 500 product performance to that of older Tektronix equipment. Only those characteristics where significant specification differences occur, are listed. In some cases the new instrument may not be a total functional replacement. Additional support instrumentation may be needed or a change in calibration procedure may be necessary.

Comparison of Main Characteristics				
DM 501 replaces 7D13				
PG 501 replaces 107	PG 501 - Risetime less than	107 - Risetime less than		
	3.5 ns into 50 Ω.	3.0 ns into 50 Ω.		
108	PG 501 - 5 V output pulse;	108 - 10 V output pulse		
	3.5 ns Risetime	1 ns Risetime		
PG 502 replaces 107				
108	PG 502 - 5 V output	108 - 10 V output		
111	PG 502 - Risetime less than	111 - Risetime 0.5 ns; 30		
	1 ns; 10 ns	to 250 ns		
	Pretrigger pulse	Pretrigger pulse		
	delay	delay		
PG 508 replaces 114				
	Performance of replacement equipment	nt is the same or		
2101	better than equipment being replaced.			
	DO 500 Desitive estat			
PG 506 replaces 106	rg 506 - Positive-going	106 - Positive and Negative-		
	nal at least 1 V	signal 50 ns and 1 V		
	High Amplitude out-	High Amplitude output.		
	put, 60 V.	100 V.		
067-0502-01	PG 506 - Does not have	0502-01 - Comparator output		
	chopped feature.	can be alternately		
		chopped to a refer-		
		ence voltage.		
SG 503 replaces 190,				
190A, 190B	SG 503 - Amplitude range	190B - Amplitude range 40 mV		
101	5 mV to 5.5 V p-p.	to 10 V p-p.		
067-0532-01	SG 503 - Frequency range	0532-01 - Frequency range		
007-0002-01	250 kHz to 250 MHz	65 MHz to 500 MHz		
SG 504 replaces				
067-0532-01	SG 504 - Frequency range	0532-01 - Frequency range		
	245 MHz to 1050 MHz.	65 MHz to 500 MHz.		
067-0650-00				
	TO 501 Trigger eutput			
100A	slaved to marker	100 Hz: 1 10 and		
	output from 5 sec	100 kHz Multiple		
	through 100 ns. One	time-marks can be		
	time-mark can be	generated simultan-		
	generated at a time.	eously.		
181		181 - Multiple time-marks		
184	TG 501 - Trigger output-	184 - Separate trigger		
	slaved to market	pulses of 1 and 0.1		
	output from 5 sec	sec; 10, 1, and 0.1		
	time-mark can be	ins, to and t µs.		
	generated at a time.			
2901	TG 501 - Trigger output-	2901 - Separate trigger		
	slaved to marker	pulses, from 5 sec		
	output from 5 sec	to 0.1 µs. Multiple		
	through 100 ns.	time-marks can be		
	One time-mark can	generated simultan-		
	be generated at	eously.		
	a line.			

	Scan by Zenith				
Tektro		UAL CHANGE INFORMATION			
Product: <u>PM 104</u>	PERSONALITY MODULE FOR	<u>3085 MICROPRO</u> Manual Part No.: <u>070-2916-00</u>			
	DE	SCRIPTION			
	TEXT (CHANGES			
SECTION 6 MAINT	ENANCE AND TROUBLESHOO	TING			
Pages 6-16, 6-1	7 and 6-18				
CHANGE TO:					
A2U1010		A2U1020 J1010 Removed			
Pin	Signature	Pin Signature			
1 2 3 4 5 6 8 9	03PP CC34 F96U CC34 71C5 FA81 03PP C8HA CC34	1 0000 3 CC34 5 0000 6 CC34 8 0000 9 CC34 10 0000 12 0000			
11		A2U1020 J1020 Removed			
12	CC34	Pin Signature			
A2U1010 J1010 Pin 1 5 6	Removed Signature CC34 CC34 0000	1 CC34 5 CC34 6 0000 8 0000 9 CC34 12 CC34			
8	0000	A2U1020 J1030 Removed			
, 12	CC34	Pin Signature			
A2U1020		1 03PP 8 03PP 9 C8HA			
Pin 1 2 3 4 5 6 8 9 10 11 12 13	Signature 5U83 CC34 71C5 CC34 71C5 FA81 5U83 P4C7 03PP 71C5 CC34	10 CC34			
	Pag	ge 1 of 6			

,

Product:	PM 104	Scan by Zenith Date:7-30-81	Change Reference:C3/781	۱
	D	ESCRIPTION		
A2U1030		A2U1030	J1030 Removed	
Pin	Signature	Pin	Signature	
1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17	0000 253A 89FC 0001 C8HA CF1A CH81 84UU 2322 9816 3UFC 19UC 072P 03PP CC35 32UU	2 8 12 18 A2U1030 Pin 2 8 12 18 A2U2020 Pin	UP5U 5U9A P4AP 456C J2020 Removed Signature 59P1 0086 CCC3 P2H5 Signature	
18 19 A2U1030	9POP 0000 J1010 Removed	1 2 3 4	CC35 9P0P F96U CC34	
Pin 2 5 7 8 9 11	Signature 828C CC34 P4F7 0086 0000 CC34 CC2	5 6 8 9 10 11 12 13	5HC1 P685 84UU CC35 5HC1 CC34 UA09	
12 13 15 18	5003 0000 3900	A2U2020 Pin	J1010 Removed Signature	
A2U1030 Pin 2 7 8 12 13 18	J1020 Removed Signature 59P1 P4F7 0086 CCC2 5UU3 P2H5	2 3 5 6 8 9 11 13	39CU 0000 0000 CC34 CCC2 0086 0000 2163	

ĺ

ł

Product:P	M 104	Date:	7-30-81	_ Change Reference: _	C3/781
		DESCRIPT	ION		
A2U2020	J1020 Removed		A2U2030	J1010 Removed	
Pin	Sigr	nature	Pin	Signa	ature
2 3 5 6 8 9 11	P2H5 0000 0000 CC34 CCC2 0086 0000	;) ; ; ; ; ; ; ; ; ; ;	1 3 8 11 12 13	HH5P 5UU3 HH5P 0000 CC34 CC34	
A2112020	.11030 Removed		A2U2030	J1020 Removed	
Pin	Diviner 00010	na tura	Pin	Signa	ture
2 3 5 6 8 9	456C P759 CC62 0056 P4AF 5119A		1 3 8 10 13	HH5P 5UU3 HH5P 66PF CC34	
9 11	CC62	,) -	A202030	J1U3U Kemovea	
12112020	12020 Demoved		Pin	Signa	ture
	JZUZU Kemoved	- +	13	СЯНА	
2	ว เมา กวนร	ature	A2U2030	J2020 Removed	
2 5 6 8	C868 035F CCC2	·	Pin 10	Signa 129H	ture
9	0086		A2U3010		
11	0000	1	Pin	Signa	ture
A2U2U3U Pin 1 2 3 4 5 6 8 9 10 11 12 13	Sign OC81 19UC 82AH 191F 32UU OC81 191F CH84 O3PP C8HA P4C7	ature	1 2 3 4 5 6 7 9 10 11 12 13 14 15	CC34 CC34 CC34 CC34 CC34 5CP0 P5PH 725C 96PF 826P	

		Scan by Zenith		
uct: <u>PM</u>	104	Date: 7-30-81	Change Reference: _	C3/781
	E	DESCRIPTION		
A2U3020		A2U3030		
Pin	Signature	Pin	Sign	ature
1 2 3 4 5 6 8 9 10 11 12 13	CC34 072P F96U CC34 3072 8C46 CH84 06C0 CC34 072P 8C46 6P2U	1 2 3 4 5 6 8 9 10 11 12 13	71C5 3072 CC34 0001 0001 6P2U 253A 3UFC UA09 6P2U CC34	
A2U3020	J1010 Removed	A2U3030	J1010 Removed	
Pin	Signature	Pin	Sign	ature
3 5 6 12 13	0000 0000 CC34 CC34 CC35	1 2 6 8 9 10 11	CC34 0000 CC35 828C P4F7 CCC2 2163	
A203020	Signature	12	CC35	
3 5 6 8 12 13	0000 0000 CC34 66PF CC34 CC35	A2U3030 Pin 2 6 8 9	J1020 Removed Sign 0000 CC35 59P1 P4F7	ature
A2U3020	J1030 Removed	10	CC35	
Pin 3 5 6 8 12	Signature P759 60P5 HCH1 129H HCH1	A2U3O3O Pin 2 8	J1030 Removed Sign 60P5 UN5U	ature
A2U3020	J2020 Removed	10	P4AP	
Pin 8	Signature 129H	A2U3O3 Pin 8 10	J2020 Removed Sign 59P1 CCC2	ature

Scan	by	Zenith
------	----	--------

Product:	PM104	

ł

_____ Date: <u>7-30-81</u> Change Reference: <u>C3/781</u>

	DESCRIPTION		
A2U4010		A2U4030 J1030 Remov	red
Pin	Signature	Pin	Signature
Pin 1 2 3 4 5 6 7 9 10 11 12 13 14 15 A2U4030 Pin 1 2 3 4 5 6 8	Signature C7F3 8P5A 191F 7P10 1875 072P 9P77 8PP5 P5PH 5CP0 7P25 85PA 77F7 0000 Signature 35H1 CC34 71C5 CC34 35H1 8PP5 725C	Pin 8 9 12 A2U5020 Pin 1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19	Signature 5F6H P759 03PP Signature 0000 5CP0 P5PH 7P25 6PCP 85PA 77F7 77F7 85PA 6PCP 7P25 P5PH 5CP0 0000
9 10 11 12 13 A2U4030 J1010 Removed Pin 3 5 6 8 9 12 A2U4030 J1020 Removed	F96U CC34 5U83 CC34 Signature CC34 0000 CC34 CC34 0000 0000	A2U6005 Pin 1 2 3 4 5 6 8 9 10 11 12 13	Signature 9P77 71C5 UP29 072P 072P CF1A 451H UP29 UP29 F96U 725C 725C
8 9 12	CC34 0000 0000	·	

Page 5 of 6

Product	• •	P	M	
	•	 _		-

104

Scan by Zenith Date: 7-30-81

_ Change Reference: _____C3/781

5

i

ł

1

Į

l

	DESCRIPTION		
A2U6005 J1010 Removed		TEST POINTS	
Pin	Signature	ТР	Signature
2 3 8 9 10	CC34 2543 9P77 2543 2543	3020 7005 7020 7025	F96U 0001 03PP 71C5
J6030			
Pin	Signature		
1 2 3 4 5 6 7 8	0000 P5PH 5CP0 5CP0 7P25 85PA 77F7		

MANUAL CHANGE INFORMATION

Date: <u>1-26-82</u> Change Reference: <u>C5/182</u>

Product: PM 104 PERSONALITY MODULE

Manual Part No.: 070-2916-00

DESCRIPTION

TEXT CORRECTION

SECTION 5 PERFORMANCE VERIFICATION

page 5-5 Fig. 5-2

1 0-DELAY CLOCK BY 2

CHANGE TO:

1 0-DELAY CLOCK BY 0

	Scan by Ze	enith	
Tektronix®	MANUAL Date: <u>9-23-81</u>	CHA	NGE INFORMATION Change Reference: <u>C4/981</u>
Product: PM 104 PERSONALITY MO	DULE FOR 8085 M	MICROPRO.	Manual Part No.:070-2916-00
	DESCRIP	TION	
	TEXT CHAI	NGES	
SECTION 3 SPECIFICATIONS			
Table 3-1 page 3-2 Hysteresi MOVE:	s under 8085 Pi	robe	
(V _T +-V _T -) from Performa	nce Requirement	ts to Sup	oplemental Information
Ready Output Drive V _{OL}			
MOVE: .5 V 1 ₀ = -1 mA from Pe	rformance Requ	irements	to Supplemental Information
Clock Input Characteristics			
at Pin 37 of ZIF Socket			
Input Impedance			
CHANGE TO:			
200 ns Min.			
		·	

MANUAL CHANGE INFORMATION

Date: <u>8-25-82</u> Change Reference: <u>C6/882</u>

Product: <u>PM 104 PERSONALITY MODULE</u>

____ Manual Part No.: <u>070-2916-00</u>____

DESCRIPTION

PARTS LIST ADDITIONS

SECTION 7 REPLACEABLE ELECTRICAL PARTS

page 7-3

ADD:

CR2030 152-0322-00 SEMICOND DEVICE:SILCON, 15V, HOT CARRIER