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A sign of old age is when you stop paying atten-
tion to your birthdays. Three years isn’t very old,
but in the world of fledgling publications, it's
respectable. Those of us who have worked on
HANDSHAKE since its beginning, have learned so
much these past three years, we expected to see
many more candles on our cake.

But our premature gray hairs are not why this is
one issue late. You, our readers, pick up
HANDSHAKE to learn about the world of digital
signal processing. Sometimes the articles we
assemble simply don’t allow the few extra inches of
space for these pleasant, though extraneous
announcements.

We welcome the beginning of HANDSHAKE's
fourth year, and hope to continue for many more
years bringing you news of the latest advancements
in signal processing techniques.

Has HANDSHAKE helped you? Drop us a line
to let us know which articles have been most helpful
and what kind of articles you would like to see in the
future.

Copyright © 1979 Tektronix, Inc. All rights reserved.
TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Printed in U.S.A.

page2

HANDSHAKE, WINTER 78-79



The 4051 Signal Processing ROM

Pack — something new
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Articles in previous issues of HANDSHAKE
have discussed how a TEKTRONIX 4051 Graphic
System can be used as a controller for a signal pro-
cessing system containing either the TEKTRONIX
Digitizing Oscilloscope or 7912AD Programmable
Digitizer. This compatibility is made possible
through the use of a common bus: the IEEE 488
interface, more commonly referred to as the
General-Purpose Interface Bus (GPIB). The
Summer, 1978 issue of HANDSHAKE contained an
article which explored how the 4051/7912AD really
works as an automatic waveform acquisition
system. But, still, something was missing — until
now.

Does your bus have power steering

Connecting instruments via the IEEE 488 Bus
guarantees you many things, but not necessarily
optimal software compatibility. 4051 BASIC, for
example, was not specifically designed for signal
processing and so lacks some of the powerful array
processing commands included in TEK SPS BASIC
software. Operating a signal processing system
without these functions can be like driving a transit
bus through a busy downtown area without the
benefit of power steering. The scheduled stops are
made and the destination is reached, but the trip is
much slower and the driver is winded from the
efforts of turning that wheel.

The 4051R07 Signal Processing ROM Pack No.1,
a small Read-Only Memory device that fits into one
of the 4051 backpack slots or into a ROM Expander
slot, makes signal processing power available at the
4051 keyboard.

HANDSHAKE, WINTER 78-79

The seven new functions — MIN, MAX, CROSS,
DIF2, DIF3, INT, DISP — can all be executed in an
immediate mode directly from the 4051 keyboard, or
they can be incorporated into a BASIC program.
These ROM Pack algorithms work two to ten times
faster than the equivalent 4051 BASIC programs
(often containing slow, repetitious FOR loops). In
addition, the functions consume little or no space in
the 4051 read/write memory.

The ROM Pack functions, which are really sub-
routines set in firmware, operate on data that must
be in the form of one-dimensional floating-point
arrays when the subroutines are CALLed into
action.

Let’s briefly discuss the functions, most of which
are old friends of TEK SPS BASIC users.

MIN (Minimum) Performs a fast search of the
data and returns both the smallest numeric
value and its location in the data array.

MAX (Maximum) Works like MIN but returns
the value and location of the largest
numeric value in the data array.

MIN and MAX replace program subroutines that
slowly searched an array, element by element, com-
paring elements until, the desired maximum or
minimum value was known.

One of the more useful applications of MIN and
MAX is to normalize an array to values between
zero and one. The following statements can accom-
plish this.

CALL “MAX”, A,V1,1
CALL “MIN”,A, V2,1
LET A =(A—-V2)/(V1-V2)

The array, A, is normalized by first subtracting the
minimum value of the array from each element in
array A. Each resulting value is then divided by the
difference between the maximum and minimum
values of the original array.

When used with the DISP function, MAX and
MIN are also useful for graphing data of an un-
known numeric range. The ‘“‘Getting the most out of
TEK BASIC graphics” column presents an example
of how these three commands work together.

CROSS (Crossing) locates each point where data
meet a specified threshold.

The CROSS function provides the means for
determining the point(s) at which the array values
cross a designated level. If the array values reach
the threshold more than once, you can specify which

crossover location you want returned. If, on the
continued on page 16
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Getting the most out of TEK BASIC graphics ___ /<)

New ROM Pack

makes quick graphing possible

The TEKTRONIX 4051 Graphic System, out-
fitted with the 4051R07 Signal Processing ROM
Pack makes a powerful controller for waveform pro-
cessing. Three of the ROM Pack functions,
MINimum, MAXimum, and DISPlay, which are
actually firmware subroutines, are particularly
useful in the graphics side of signal processing —
when you want to see the acquired signal, in an
informative way.

A fast, unlabeled graph of an array can be done in
four 4051 BASIC program statements (Fig. 1, lines
45 through 60), even when the range of the data in
the array is unknown. The sine wave used as an
example is generated in lines 10 through 30. The
VIEWPORT in line 35 overrides the default
viewport (full-screen graphing), and places the
graph in the upper right corner of the screen. Lines
45 and 50 use the MIN and MAX functions to deter-
mine the minimum and maximum data values. and
place them in variables V1 and V2. The WINDOW
statement in line 55 ensures that the entire array
will be graphed; since, N is defined as the size of the
array, and V1 and V2 are the array’s minimum and
maximum values. Once graphed, you can PRINT
V1 and V2 to see the data range.

If, however, you want labeled graticules, and if
you want to graph waveforms as well as arrays, you
need the program in Fig. 2. This program provides a
graph of an array, such as in Fig. 3, or a graph of a
waveform, as in Fig. 4.

The listing in Fig. 2 is well documented so the
flow of the program can be easily followed by read-
ing the REMark lines (program segments are

‘9 CALL "INT".Q-B

25 LET A=2¥PI&B

38 LET R=SINCAD

35 UIEWFORT 69,120,306, 100
49 LET N=512

45 CALL "MAX" A U2,1

S50 CALL "MIN"sAsU1,1

5SS WINDOW 1,H, UI;U/

60 CALL "DIZP",

emphasized by boldfaced type). The program
appears long, but the working portion, with REM
lines deleted, is just 86 lines.

Before the program can be run there are several
variables that must be defined (lines 100 through
145). A one-dimensional array, A, and N, the size of
the array, must be defined. Also, the flag, W1, must
be set to zero (for an array) or to one (for a wave-
form). If W1=1, then three additional variables
must be defined: H, the horizontal scale factor (the
data sampling interval); H$, the horizontal scale
units (usually some division of time); and V$, the
vertical scale units (volts in our example). The
horizontal scale factor will be used to properly scale
the horizontal axis.

The section of the program beginning with line
200 ensures a constant array or waveform (such as a
DC signal) is properly graphed. Next, the graticule
is sized and drawn beginning at line 250. Line 265
makes the horizontal dimension of the graticule
equal to the size of the array and the vertical dimen-
sion equal to the difference of the array’s minimum
and maximum. Then, the AXIS statement in line
275 constructs the graticule from a FOR loop series
of X-Y axes.

The expression, (M2—M1)/8*%8+M1, in line 265
points out an interesting programming problem
that deserves amplification. You might correctly
expect the maximum Y value in the window state-
ment to be written as, simply, M2; since the expres-
sion technically equates to M2. Notice, however,

Fig. 1. Sine wave generation and graphing using 4051 BASIC with the new ROM pack.
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100 REM ROUTINE TO GRAPH AN ARRAY OR WAVEFORM
105 REM INPUTS: A - ARRAY TO GRAPH

110 REM N - SIZE OF THE ARRAY

115 REM W1 - WAVEFORM FLAG: SET W1=1 IF WAVEFORM UNITS ARE
120" REM TO BE PRINTED, AND FOR HORIZONTAL SCALING;
125 REM SET W1=0' IF NOT.

130 REM IF W1=1 THEN THE FOLLOWING VARIABLES MUST BE SET;

135 REM H - HORIZONTAL SCALE FACTOR

140° REM H$ - HORIZONTAL SCALE UNITS

145 REM V$ - VERTICAL SCALE UNITS

150" REM

155 REM ROM PACK ROUTINES CALLED: MIN,MAX,DISP

160 REM

165 REM PAGE SCREEN.

170 PAGE

175 REM  GET MINIMUM (M1) AND MAXIMUM (M2) OF ARRAY A.
180 REM

185 CALL "MIN",A,M1,T1

190° CALL "MAX",A,M2,I2

195 REM

200 REM  CHECK FOR COMSTANT ARRAY.

205 REM

210 IF M2<>M1 THEN 235

215 M2:=M2+4

220 M1=M1-U

225 REM  SET DEFAULT VALUE FOR NUMBER OF VERTICAL GRATICULE
230 REM  LINES (G), THEN CHECK ARRAY SIZE.

235 G=10

240 IF N=>10 THEN 260

245 G=N

250 REM DRAW GRATICULE.
255 REM

260 VIEWPORT 20,120,18,90

265 WINDOW @,N,M1,(M2-M1)/8%84M1
270 FOR I=0' TO G MAX 8

275 AXIS @,d,N/G¥I,(M2-M1)/B%1+M1

280 NEXT I

285 REM LABEL VERTICAL AXIS.

290 REM

295 REM FIRST GET VERTICAL SCALE NORMALIZING FACTOR FROM SUBROUTINE.

300 A1=ABS(M2) MAX ABS(M1)
305 GOSUB 770

310 V1=K

315 VIEWPORT @,120,18,90
320/ FOR I=0' TO 8

325 A1=(M2-M1)/8%14M1

330° REM

335 REM NORMALIZE VALUE FOR LABELING, . . .
340 A1=A1/107V1

345 REM

350 REM - « . AND ROUND TO THOUSANDTHS.

355 A1=INT (A1%1000+0.5)/1000
360 P$=STR(A1)
365 P=LEN(P$)

370 REM
375 REM MOVE TO APPROPRIATE LEVEL ACCORDING TO WINDOW PARAMETERS,
380 REM AND LENGTH OF NUMBER TO BE PRINTED.

385 MOVE N/120%(21-P*1.79),A1#107V1
390 P$=SEG(P$,2,P)

395 PRINT P$

409 NEXT I

405 REM LABEL HORIZONTAL AXIS; SCALE FOR PROPER HORIZONTAL LABELING.

410 REM

415 IF W1<>0 THEN 430

420 H=1

425 REM GET HORIZONTAL SCALE NORMALIZING FACTOR FROM SUBROUTINE.
430 A1=N*H

435 GOSUB T7@

440 H1=K

4u5 VIEWPORT 20,120,13,90

45@ FOR I=0 TO G STEP 2

455 A1=N/G*I*H

460 REM

465 REM NORMALIZE VALUE FOR LABELING,

470 A1=A1/10"H1

475 REM

480 REM AND ROUND TO THOUSANDTHS.

485 A1=INT(A1%1000+0.5)/1000

490 P$=STR(A1)

495 P=LEN(P$)

500 REM

505 REM MOVE TO APPROPRIATE POINT ACCORDING TO LENGTH OF NUMBER
510 REM AND WINDOW PARAMETERS.

515 MOVE A1%10°H1/H-P/2%1.79%N/100,M1

520 PRINT A1

525 NEXT I

530 REM  PRINT WAVEFORM UNITS IF APPLICABLE.
535 REM

540 IF W1=0 THEN 585

545 VIEWPORT @,120,18,98

550 REM

555 REM  PRINT VERTICAL SCALE UMITS, . . .
560 P=LEN(V$)

565 MOVE N/120%(21-P*1.79),M2

570 PRINT V$

575 REM

580 REM - - . AND VERTICAL NORMALIZATION FACTOR IF APPLICABLE.

585 IF V1=0 THEN 632

59¢° VIEWPORT @,120,18,95

595 U$=STR(V1)

600 U$="(E"&U$

605 U$=U$&")"

610 P=LEN(U$)

615 MOVE N/120%(21-P#1.79),M2
620 PRINT U$

625 REM

630 REM  PRINT HORIZONTAL SCALE UNITS, . . .
632 IF W1=0 THEN 665

635 VIEWPORT 20,120,8,90

640 P=LEN (H$)

g s w

645 MOVE N/100*(50-P*1.79/2),M1

650 PRINT H$

655 REM

660 REM . . . AND HORIZONTAL NORMALIZATION FACTOR, IF APPLICABLE.

665 IF H1=0 THEN 720

670 VIEWPORT 20,120,5,90

675 U$=STR(H1)

680 U$="(E"&U$

685 U$=U$&")"

690 P=LEN(U$)

695 MOVE N/100%(50-P*1.79/2) ,M1

709 PRINT U$

705 REM

710 REM  DRAW GRAPH OF ARRAY.

715 REM

720 VIEWPORT 20,120, 18,90

725 WINDOW 1,N+1,M1,M2

730 CALL "DISP",A

735 PRINT

740 RETURN

745 REM  END OF 4051 GRAPHICS ROUTINE.
750 REM

755 REM  SUBROUTINE TO NORMALIZE SCALING
760 REM INPUTS: A1 - NUMBER TO BE NORMALIZED

765 REM OUTPUTS: K - NORMALIZATION FACTOR (POWER OF 10)
770 K=0

775 IF ABS(A1)<100@ THEN 795

780 K=K+1

785 A1=A1/1000

79@¢ GO TO 775

795 IF K<>0 THEN 820

800 IF ABS(A1)=>1 THEN 820

805 K=K-1

810 A1=A1*1000

815 GO TO 80¢

820 K=K*3

825 REM K NOW EQUALS POWER OF TEN MORMALIZATION FACTOR.

Fig. 2. 4051 BASIC routine used to graph arrays and waveforms with graticules and scaling information.

that in line 275, the AXIS statement employes the
expression, (M2—M1)/8*1+M1, to construct the
eight vertical graticule divisions (eight division lines
plus a base line at M1). Because of the possible
rounding or truncating during a math operation,
the last time through the loop (I=8) might result in
a value greater than M2. Using the same expression
in the WINDOW statement as occurs the final time
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through the axis loop, therefore, ensures a maxi-
mum Y value for the graticule window that will
always be equal to or greater than M2. Without this
clever technique, we would, at times, get a graph
minus a top graticule line.

The graph’s labels are handled in a way which
avoids printing long, difficult to read numbers. This
continued on page 15
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A closer look at some basic signal

processing operations

If scores were kept, false assumptions would
probably come out the winner for generating mea-
surement errors. This is particularly true in using
digital signal processing systems since analog
operations are being digitally executed and most of
us are conditioned to analog rather than digital
thinking. However, the course to preventing the
resulting errors of illusion is relatively painless. In
virtually all cases, it is certainly less painful than
reverting to the old analog methods of solving
analog problems. The course is to simply gain and
maintain an organized and detailed awareness of
what happens to a signal during digital processing.

To help you gain (if you are new to digital signal
processing) and maintain (if you are an old hand at
it) this organized and detailed awareness, let’s take
a digital look at some basic signal processing opera-
tions, starting with array storage and moving right
into some specialized commands like MAX, MIN,
CROSS, INT, and DIFF.

Getting the data straight

The first step in digitally analyzing an analog
signal is to acquire and convert the signal to a
digital format. Acquisition is done in a familiar
analog manner, often with digital versions of analog
instruments. Conversion takes place soon after with
an analog-to-digital converter (ADC).

State-of-the-art ADCs are of such high resolution
that a digitized signal may appear on a display as a
continuum (Fig. 1a). But it isn’t. It’s a series of dots.
The illusion is similar to that of newspaper photos.
The printed picture appears to the unaided eye as a

asalessalossalanaals,
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a. The 512 samples of a digitized signal are
close enough to each other to provide the
appearance of a continuous signal.

continous-tone photo but, on close inspection, turns
out to be a series of dots—in effect, a digital version
of the analog world. With displays of digitized
signals, however, the illusion may even be further
heightened by straight-line connection of the dots
(Fig. 1b).

This illusion of continuity has its visual benefits.
For one, it serves to remind us that we are analyzing
an analog signal. But, at the same time, it is im-
portant to remember that the analysis is actually
taking place digitally, on a digital or dot version of
the analog signal.

It is also important to remember that this digital
version of the signal is simply a string of numbers
—an array—and not the actual signal. The numbers,
themselves, represent vertical signal amplitudes at
discrete sample points along the signal. The posi-
tion of each number in the series represents its hori-
zontal time location on the signal (Fig. 2). Memory
areas, called arrays, are designated in the signal
processing system for storing these strings of num-
bers, and they can be thought of as tables such as
you might construct with pencil and paper. The big
difference is that signal processing arrays or tables
usually have many more entries—512 elements or
more—than you would normally tabulate by hand.

The signal processing array is the ADC’s view of
the signal. The array arrangement, its scale factors,
digital sampling interval, and the data contained in
it are all that the signal processing software has to
work on. What we might be tempted to assume
about the signal’s activity before sampling and
digitizing begins, between sample points (array

b AR

.93 +—r—r—r—r—t—

e
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®

b. However, a closer look at one of the peaks
reveals that the digitized signal is a series of
dots, which are often straight-line-connected
for display.

Fig. 1. Don’t let the illusion of continuity cloud your thinking when you are dealing with digitized signals.
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Fig. 2. Before analog signals can be processed, they must be digitized and stored in the processing unit’s memory.

elements), or after sampling ends has no affect on
the system. The system operates just on the num-
bers given it. Only in special cases does it make
some limited assumptions about data possibilities
beyond the array ends.

Some basic processing—by the numbers

Almost without exception, signal processing
takes place element-by-element, starting with the
first element in the array and progressing to the last
element in the array.

For example, let’s say you have acquired a wave-
form, and it has been digitized and transferred into
a software defined array. Now maybe you want to
add a constant to it: let’s say the signal is stored in
array A, it is a voltage, and you want to add a four
volt bias to it. The signal processing BASIC state-
ment for doing this is

LET A=A+4

When this executes, the first signal element in A
has a value of four added to it. Then four is added to
the second element, to the third, and so on until all
of the array elements have been processed.

This same element-by-element process is also
used in subtracting a constant from an array,
multiplying an array by a constant, or dividing an
array by a constant. It is also used in adding one
array to another array, subtracting one array from
another, multiplying one by another, or dividing one
by another. For example, in

LET A=A/B

where A and B are arrays, the first element of A is
divided by the first element of B, the second element
of A is divided by the second element of B, and so on

HANDSHAKE, WINTER 78-79

until each element of A has been divided by the cor-
responding element in B.

It all seems ho-hum simple. And it is, if you avoid
the more common pitfalls by keeping the following
DOs and DON’Ts in mind:

* DON'T attempt to combine (+, —,/,*) arrays of
different lengths since the element-by-element
processing will not complete.

* DON'T combine (+,—,/,*) arrays with
different sampling intervals because the dif-
ferent time scaling may lead to erroneous or
confusing results.

* DO be cautious of dividing by zero or very
small numbers (such as occur at zero crossings
on repetitive waveforms) since this can lead to
uninterpretable results.

® DO know the dynamic range of your proces-
sing software and how it rounds or truncates
numbers.

Organized searches

Most signal processing needs go beyond simple
mathematical combinations of constants and wave-
forms. In many cases, the processing is done on a
single waveform and amounts to searching it for
specific points, such as a maximum or minimum
value or some value in between. To help speed this
type of waveform processing, signal processing soft-
ware usually contains a MAX, a MIN, and a CROSS
function.

The MAX and MIN functions are straightfor-
ward in operation. When invoked, they simply
search the specified waveform array for the maxi-
mum or minimum value stored in the array. For
example, in TEK SPS BASIC software, the
statement
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A closer look at some basic signal
processing operations

LET M=MAX(A)

causes a search of array A for the maximum value in
A and stores that value in variable M for later use.

Another feature sometimes available with the
MAX and MIN functions is the ability to also
return the array location of the maximum or
minimum. This feature is included with the func-
tions on the 4051R07 Signal Processing ROM Pack
designed for use with the TEKTRONIX 4051
Graphic System. For example, the statement

CALL “MIN”,AM,L

causes the ROM Pack routine to search array A for
its minimum value, store that value in variable M,
and store the array index (location) in variable L.

In all cases, the MAX and MIN functions operate
just on the values stored in the waveform array. If
you do not take care in digitizing your signals, the
values returned by the MAX or MIN may not
exactly reflect what you might be expecting from
the analog signal. Two cases where this can happen
are illustrated in Fig. 3. Avoiding them is a matter
of staying keenly aware of what your signals are
doing and how they are being digitially represented.

Another more general search is provided by the
CROSS function. Again, it operates on the array
version of the signal, and the essentials of its opera-
tion are illustrated in Fig. 4. Special options are
usually added in specific software packages to
narrow the cross search. As examples, the CROSS
function may optionally be able to begin at a spec-
ified point in the array, or it may be directed to
search only a specific zone in an array, or it may be
directed to look for a crossing beyond the first
crossing.

MAX - NOISE
SIGNAL — — «— SPIKE
MAXIMUM
a.
siGNAL A T A
MAXIMUM 0 ACTUAL
il SIGNAL
MAX — == DIGITIZED
VERSION

(Insufficient Points)

Fig. 3. Most errors in using the MAX and MIN func-
tions stem from ‘‘ideal’” assumptions about the
“real” waveform or its digitized representation. As
examples, in “‘a’’ a noise spike causes a higher than
expected value for the maximum, and in “b” insuf-
ficient sampling can cause a lower than expected
value.

ARRAY VALUE

/ Cross at 3.5 = |

ARRAY A

Search Level

ARRAY SUBSCRIPT

shilfelliliziile

Fig. 4. Searching array A with the TEK SPS BASIC LET I=CRS(A,.02) statement or the CALL “CROSS™ A,.02,1
statement of the 4051 Graphic System operating with the 4051R07 Signal Processing ROM Pack. The search
starts with element zero and moves through the array looking for either a value equal to the search level or a set of
values indicating that the search level has been crossed. In the latter case, the returned cross location is an

interpolated value.
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Rise time, fall time, pulse width

Combined in a program with the MAX and MIN
functions, the CROSS function provides a variety of
signal processing possibilities. Probably the most
universal of these is pulse or transient analysis.
Example programs and waveforms for a simple
analysis sequence are shown in Fig. 5. The routines
there, one in TEK SPS BASIC and the other in 4051
BASIC with the Signal Processing ROM Pack,
search the waveform array to determine both the
MAX and MIN values. These are, in turn, used to
determine 10% and 90% levels on the pulse. These
levels are then searched with the CROSS function to

U
8

n
P

\
\
\

aasalensalaaselasaalasaslansalasaalanss

2] S LAkkd LAkt LA Rkt L) LAt thada L g i
%] 2 4.016.018.0210.02
1 3.015.017.019.02
1 E=8lS

RISE TIME= 7.9898S5E-04
FALL TIME= 7.983986E-04
So% WIDTH= 3.91389E-03

190 REM TEK SPS BASIC PULSE ANALYSIS
195 LET A=A-MIN(A)

115 LET MA=MAX(A)

12¢0 LET T9=CRS(A,.9*MA)

125 LET T1=CRS(A,.1%MA)

130 LET RT=(T9-T1)®HA

135 LET T9=CRS(A(T9+.5),.9%*MA)

14¢ LET T1=CRS(A(T1+.5),.1%MA)

145 LET FT=(T1-T9)#*HA

15@ LET T5=CRS(A,.5%MA)

155 LET PW=(CRS(A(TS5+.5),.5%MA)-T5)*HA
16@ END

30@ REM GRAPH PULSE ANALYSIS RESULTS
395 VIEWPORT 50,350,410 ,650

310 SETGR VIEW

315 GRAPH WA

320 SMOVE @,300

325 PRINT "RISE TIME=";RT

33¢ PRINT "FALL TIME=";FT

335 PRINT "S0% WIDTH=";PW

34¢ END

find data for computing rise and fall times. Also, the
50% level is found for computing the 50% pulse
width.

Admittedly, the example of Fig. 5 is somewhat
idealized. Indeed, there are even a variety of ideal-
ized pulses beyond the simple square pulse used—
transients from high-voltage protection testing,
pulse trains from pulse coded modulation systems,
and pulsed radio frequencies, to name just a few.
Each class has its special and often differing anal-
ysis approaches and requirements. But the pulse
shown in Fig. 5 is probably the most commonly
known type and serves well for illustrating the basic
analysis concepts.

RISE TIME=?.939
FALL TIME=?. 932

199 REM 4@51 BASIC PULSE ANALYSIS
195 CALL "MIN",A,M1,I1

110 LET A=A-M1

115 CALL "MAX",A,M2,I2

120 CALL "CROSS",A,®.9%M2,T9
125 CALL "CROSS",A,0.1%M2,T1
130 LET R=(T9-T1)*H

135 CALL "CROSS",A,0.9%M2,T9,2
140 CALL "CROSS",A,@.1%M2,T1,2
145 LET F=(T1-T9)%*H

15¢ CALL "CROSS",A,0.5%M2,T5
155 CALL "CROSS",A,@.5%M2,T6,2
16@ LET W=(T6-T5)%*H

165 END

300 REM GRAPH PULSE ANALYSIS RESULTS
305 PAGE

31¢ CALL "MIN",A,M1,I1

315 VIEWPORT 6.4,44.9,52.1,82.6
320 WINDOW 1,512,M1,M2

325 CALL "DISP",A

330 VIEWPORT @,130,0,100

335 WINDOW @,13¢,8,100

349 MOVE @,38.5

345 PRINT "RISE TIME=";R

350 PRINT "FALL TIME=";F

355 PRINT "5@% WIDTH=";W

360 END

Note: The pulse is stored in array A and the sampling interval (\t) is stored in HA for the TEK

SPS BASIC routine and H for the 4051 BASIC routine.

Fig. 5. Two simple routines, one in TEK SPS BASIC and the other in 4051 BASIC, for analyzing well-behaved
pulses. Though the language syntax varies, the analysis concepts and processes remain the same. For more
details, see the accompanying short article, “‘Basic pulse analysis.”
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A closer look at some basic signal
processing operations

Also, in practice, pulses of any kind will often
carry noise and may be distorted by overshoot,
undershoot, and various degrees of ringing. When
these conditions appear, you must take additional
programming steps to ensure that the cross search,
for example, does not find the 90% point on a noise
spike or on part of the ringing instead of on the
actual pulse edge. Also, remember that on noisy or
ringing pulses, the maximums and minimums will
be defined as the peaks of the noise or ringing,
which may not be what you want. All of these things
can be taken care of by additional programming
steps, by using the zoning options provided in some
software packages, or even by more sophisticated
approaches to pulse analysis.

Basic pulse analysis

Well-behaved pulses, those free of perceptible
noise and abberations, can be analyzed quickly and
accurately with very simple waveform processing
routines. Two such routines are shown in Fig. 5.
They follow the same process and vary only in their
language syntax.

The analysis process begins at line 105. In the
TEK SPS BASIC routine, line 105 finds the
minimum value of the pulse and subtracts that
value from the pulse array. The same thing is done
in lines 105 and 110 of the 4051 BASIC routine,
where line 105 calls the Signal Processing ROM
Pack MIN function into action and then subtracts
the minimum value (the minimum value is stored in
M1 and its location in I1) from array A in line 110.

Finding the minimum and subtracting it is a very
simple yet highly important step. Regardless of
pulse position (positively or negatively biased) or
polarity, subtracting the minimum forces it to the
zero-level base line. By forcing the pulse to this
“standard” position, a lot of extra manipulation
required for special cases can be eliminated.

With the pulse shifted to the zero level, a deter-
mination of its parameters can begin. The first para-
meter found is pulse height since it is key to deter-
mining the rest of the parameters. And, since the
pulse has previously had its minimum subtracted so
that all its values are positive from zero to the pulse
maximum, pulse height is simply the maximum
value of the pulse. This is found in line 115 of each
program,

The next parameter is rise time (fall time or
negative rise time for a negative-going pulse). This
is found by lines 120, 125, and 130 of each program.
Line by line, these segments use the cross function
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One approach, commonly used for distorted or
noisy square pulses, uses a histogram routine for
statistically defining the pulse top and bottom.
Other approaches include various combinations of
the maximum and minimum functions along with
the histogram. These approaches and more will be
discussed further in the next issue of
HANDSHAKE. But, for now, we need to finish the
groundwork by looking at two additional analysis
operations, integration and differentiation.

The power of integration

Beyond rise time and fall time, it is often im-
portant to know the energy contained within a
pulse. This is particularly important for people

to find T9 (the 90% crossing point on the pulse), T1
(the 10% crossing point), then rise time by com-
puting the sample point difference between T1 and
T9 and multiplying by the sample interval (HA or
H). For this particular process, the computed rise
time is positive for a positive-going pulse. A nega-
tive-going pulse is indicated by a negative value for
the rise time.

Fall time is computed in the next three lines of
the program by much the same technique. The dif-
ference, however, is that the cross searches are set
to find crosses on the second transition rather than
the first. In the case of the TEK SPS BASIC
program, CRS (A(T9+.5),.9*MA) causes the cross
search for 90% of MA to begin half an increment
after the position of the first 90% crossing. The
“CROSS’’,A,.9*M2,T9,2 operates slightly dif-
ferently by essentially saying, ‘‘search array A
along a level of .9*M2 until you cross the waveform,
putting the location of that cross into variable T9,
but don’t stop the search until you have found the
second crossing.” The crossing points thus found
for the 90% and 10% levels of the second transition
are used in line 145 of each program to compute fall
time. Again, the returned results will be positive to
indicate a positive-going pulse or negative to
indicate a negative-going pulse.

Then, after finding fall time, the final lines of the
100-series lines compute 50% pulse width in much
the same manner. Of course, further lines could be
added to compute other widths, proximal and distal
times. Also, FOR loops and an incremented cross-
ing variable could be used to perform the same
analysis sequence on second and third pulses in a
series of pulses.
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dealing with lasers and for people involved in
transient recording and analysis.

Most waveforms acquired for measurement are
not directly representative of energy. Instead, they
are usually only proportional to energy and must,
therefore, be at least corrected by some multiplica-
tive factor. Once this is done, the total energy in the
waveform, a laser pulse for example, can be com-
puted by integrating to obtain the area contained by
the pulse.

The specific integration routine used by TEK
SPS BASIC and the 4051 Signal Processing ROM
Pack operates by the following algorithm.

B(1)=0
B(n)=Bn—1)+.5*A(n—1)+A(n))
for n=2, 3,..., N

In this algorithm, A is the array being integrated, B
is the array that will contain the results, n is the
element number, and N is the last element of the
array. This algorithm follows the trapazoidal rule
for integration and amounts to computing and
summing the incremental areas under the straight-
line-connected data points of the array (see Fig. 6).
In the case of a waveform array, the algorithm
changes slightly to incorporate the time between
samples (/A\t) such that

B(n)=Bn—1)+(At/2)*(A(n—1)+A(n))
forn=2, 3,..., N

In either case, the total area under an array or wave-
form is the value contained in the last element of the
resultant array, B(N). This is the value you will be
interested in when computing pulse energy.

Basic pulse analysis

The final steps of the program get the data out.
These programming steps, contained in the 300-
series of lines in Fig. 5, consist primarily of graphics
commands specialized to the systems being used.
Because of their specialized nature, saying more
about them wouldn't really add much conceptually
to what is going on. They simply operate as a group,
often interactively, to output the date in the format
you choose. In the case of Fig. 5, they cause the
pulse and its computed parameters to be output to a
graphics terminal in the format shown.

For the results output in Fig. 5, it is interesting to
note some slight differences. Most obvious, of
course, is the fact that the TEK SPS BASIC routine
plotted the pulse on a graticule while the 4051
BASIC routine did not. An additional 4051 BASIC
routine, discussed in the ‘‘Getting the most out of
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a. The six-element array with areas shown for
integration.
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b. The six-element array containing the point-
by-point integral of a.

Fig. 6. The software integration routine of TEK SPS
BASIC and the 4051 BASIC Signal Processing
ROM Pack produces a point-by-point sum of areas
as the result. The total area under the waveform is
contained in the last element of the resultant array.

TEK BASIC graphics’ column in this issue, can be
used to overlay a graticule on the pulse. Probably of
more concern than the graphics, however, are the
differences in the computed pulse parameters. First
of all, notice that the differences are very slight. For
example, the fall time output by the TEK SPS
BASIC routine is 7.98986E-04 while that output by
the 4051 BASIC routine is 7.989852414E-4. Since
the same pulse generation routines were used for
each analysis, the differences can be attributed to
system differences. Different processors and soft-
ware packages were used and slight variations in
algorithm implementations, roundoff methods, and
so forth are to be expected. In this case, a quick
computation of percentage difference shows a figure
orders of magnitude less than that normally
tolerated in virtually any measurement situation.
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A closer look at some basic signal
processing operations

Although possibly on a more mundane level,
another use of the integrate command is in com-
puting the root-mean-square (RMS) value of wave-
forms. This is not necessary for TEK SPS BASIC
users since an RMS function is provided in that
software package, but it can be quite useful for
users of 4051 BASIC, which does not have an RMS
function.

The computation path consists of squaring the
array, integrating the squared array, then taking
the square root of the integrated array after it has
been divided by the number of array elements. The
last element of the resulting array is the RMS value
of the original array and corresponds to

RMS=|/1 |7vxt)dt
i

the formula for computing the RMS value of a wave-
form, except that the operation is done over N, the
array length, instead of T, the period of the
waveform.

Both TEK SPS BASIC users and 4051 BASIC
users should think about this latter point in terms of
how waveforms are actually placed in arrays. It has
a direct affect on the RMS result!

To explain, real-life waveforms are usually
acquired and digitized in such a manner that a non-
integer number of cycles are placed in the array. It
may be 3.674 cycles or some other oddball number
of cycles. Rarely do the periods of real-live wave-
forms correspond nicely enough to sweep speed for
an exact integer number of cycles to be acquired
into an array.

So, in real-life operation, N in no practical way
corresponds to T. This means that if you blithely
apply the RMS function of TEK SPS BASIC or use
integration with the 4051 to compute the RMS
value, you will get the RMS value of the array
values but not necessarily the RMS value of the
waveform being represented. Remember, the soft-
ware works on the numbers you give it ... all of
them. So, to get the correct RMS value for a stored
waveform, you must pick out of the array only those
values representing an integer number of cycles for
use in the computation.

For most types of waveforms, you can use the
CROSS function to get the integer number of cycles.
Begin with the first array value as the search level.
Then search along this for the second repetition of
the value, or whatever repetition represents a period
of the waveform you are dealing with. Then note the
array location where the repetition begins. Let’s
say, for example, that this occurs at element 277 of
the 512-element array. To compute the RMS value
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of the waveform cycle with TEK SPS BASIC,
simply use the zone feature with the RMS function
—LET R=RMS(A(0:277)) for the example crossing.
This causes the RMS function to be confined to
elements 0 through 277 of the array, which we said
for the sake of example would represent one cycle of
the stored waveform.

In the case of 4051 BASIC, which does not pro-
vide the zone operation, you must confine your
operation by other means to the region of the array
defined to cover one cycle of the waveform. This is
easily done by noting (via the CROSS command) the
element marking the first repetition. Again, we'll
say it is 277. Go ahead and square the entire array
and integrate it. Now comes the change. Divide the
squared and integrated array by the element
number marking the end of the first repetition, 277
in this case. Take the square root of the divided
array, then look at element 277 for the RMS value of
the waveform.

Beyond pointing out the possibility of making
grave errors in computing RMS values of wave-
forms, all of this serves to reiterate an important
point made near the beginning of this article. Wave-
form processing software can be designed to operate
on a variety of waveform arrays. But it can only
operate on the numbers placed in those arrays. It
cannot make assumptions from those numbers
about what kind of waveform might be in the array
or about its arrangement in the array. Therefore,
successful measurements still hinge on your knowl-
edge and skill. The software just removes the
drudgery of repeated operations and the chance of
error in highly complex and involved manipulations.

And, to continue to reiterate the importance of
gaining and maintaining an organized and detailed
awareness of what happens to a signal during
digital processing, let’s take a look at another
aspect of the integration routine. There are some
further benefits to be derived from a detailed aware-
ness of what is done.

In particular, let’s look at the property that, as
the number of samples or array elements considered
increases, trapazoidal integration comes closer to
simply summing the sample values. A simple ex-
periment in TEK SPS BASIC demonstrates this.

The experiment consists of using a small array,
say ten elements, and setting the array to a value
equal to the reciprocal of the number of elements,
1/10 in the case of the ten-element array. Integrat-
ing this ten-element array produces a final value of
0.9 for the area contained (there are 9 intervals, each
containing an area of 1/10). On the other hand, sum-
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ming the ten elements produces a value of one.
Increase the array size to 100. Set it to 1/100, and
repeat the process. The integrate routine returns an
array with a final value of 0.989999, and summing
the 100 elements of 1/100 still results in one. Try it
with 300 elements. Then go to 512 elements, the
standard array size for signal processing, and the
integral result is 0.998047—very close to a value of
one. In fact, it’s within 0.2%.

So what good is this seemingly trivial information?

Well, for one, TEK SPS BASIC users might find
it useful for summing the values of the elements in
an array. It’s faster than a FOR loop. Users of 4051
BASIC do have an advantage here, though, in that
4051 BASIC already has a SUM function for sum-
ming array elements.

But there is more to this than just summing.
Let’s look at the array resulting from integrating a
512-element array whose elements have been set to
1/5612. Such an array is shown in Fig. 7. As seen
there, the result is a linear ramp. In itself, such a
ramp can find immediate use as a comparison
standard in various linearity tests and measure-
ments. A less obvious use, however, is as a seed for
generating a variety of ideal waveforms.

As an example, let’s generate 4.5 cycles of a sine
wave. Array A is the generated ramp running from
zero to nearly one. Multiply this ramp by
2%3.14159%4.5 (27 times the number of cycles
desired), and you have a new ramp running from
zero radians to the value in radians corresponding to
the angular dimension of 4.5 cycles of a sine wave.
Use the sine function, LET A=SIN(A), and the
2%*3.14159* 4.5 radian ramp is turned into the sine
wave shown in Fig. 8. Or maybe you would like to
have the sine wave advanced or delayed by say /2
radians. To do this, simply add or subtract

1.e
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Fig. 7. A linear ramp, running from zero to nearly
one, obtained by integrating a 512-element array set
to a constant value of 1/512.
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Fig. 8. Sine wave array generated by LET A=SIN
(2%3.14159%4.5*A), where A is the ramp array shown
in Fig. 7.

3.14159/2 from the ramp just prior to using the sine
function. Or maybe you would like a square wave
instead of a sine wave; to get one, just operate on
the generated sine wave with the SGN function to
turn all positive values of the sine wave array to +1
and all negative values to —1. Or, for a triangular
wave, integrate the square wave. As you can see,
there are all kinds of possibilities.

Waveform arrays generated in such a precise and
controlled manner have a variety of uses. For one,
because they are not plagued by noise, aberrations,
etc., you know exactly what the waveform is and
what its parameters are. Thus, you have an ideal
learning aid for exploring the various functions and
operations of software. Also, such known wave-
forms are excellent for use in simulations and as
standards for checking out and debugging analysis
routines.

Looking for change

The opposite of integration is differentiation.
And, in signal processing systems, this operation
can be implemented in several ways. Both TEK SPS
BASIC and the 4051 Signal Processing ROM Pack
provide differentiation in two-point and three-point
algorithms.

The two-point algorithm operates as follows

B(n)=A(n+1)—A(n)
B(N)=B(N—1)

n=1,2,..,N—1

where A is the array being differentiated, B is the
array that contains the results, n is the array ele-
ment being operated on, and N is the last element of
the array. As can be seen from the above equations,
the algorithm simply computes the incremental
change (slope) on an element-by-element basis.

In the three-point derivative, the operation is a
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A closer look at some basic signal
processing operations
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b. Two-point derivative smoothing: top, one
interation,; bottom, 30 iterations.
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Fig. 9. Alternately integrating and differentiating will tend to smooth out noise spikes and other very rapid

transitions.

little more complex, computing the slopes as follows

B(1)=(—3*A(1)+4*A(2)— A(3))/2

B(n)=(A(n+1)—A(n—1))/2
forn=2,3,...N—1

B(N)=(A(N-2)—4*A(N—1)+3*A(N))/2

Except for some special manipulation at end points,
the algorithm obtains the change at each point by
computing the average change between points one
increment to either side.

In use, the two-point algorithm is more sensitive
to change—able to turn the corners faster. It is the
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choice for catching quick changes in waveform
direction. For example, it is often used in differ-
entiating step response to get impulse response,
whose peak value depends upon catching rapid
initial changes in the step. However, care must be
taken with two-point differentiation since a noise
spike can send the results soaring beyond expected
levels.

The three-point algorithm, on the other hand,
tends to smooth over noise spikes because of its
averaging, This makes it the choice for computing
rates of rise or fall where you would prefer to sup-
press fast changes. In fact, the averaging property
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can be used to reduce or smooth (actually filter) out
noise spikes on waveforms. This is done by alter-
nately integrating and differentiating the wave-
form. Be sure the integration is done first, however,
since differentiating removes any constant (DC)
component from the waveform.

To get a better feel for the properties of the two
differentiation algorithms, refer to Fig. 9. There, a
spike is integrated then differentiated in a loop
using first the two-point then the three-point
algorithm.

Figure 9a shows the spike to be operated on. It is
a single point of value one in an array of zeros. In
Fig. 9b, the spike has been integrated and two-point
differentiated once, then integrated and two-point
differentiated 30 times. In Fig. 9¢, the process was
repeated with the three-point algorithm. In both
cases, note that the spike is broadened and its am-
plitude reduced—smoothed—but more so for the
three-point derivative. Also, note that two-point
differentiation causes the spike to be shifted to the
left, while three-point differentiation does not.

This effective filtering, and especially the time
shift for the two-point algorithm, are good points to
keep in mind when using the differentiation rou-
tines. They are minimal for single iterations but can
become noticeable in analysis sequences requiring
several differentiation operations. Also, it is well to
remember that differentiation, no matter how it is

" implemented, removes any DC component from the

waveform. So, if it is important to you, the DC value
should be computed and saved. Or the original
waveform with the DC term should be stored in a
separate array for later reference.

In fact, in any waveform processing situation, it
is a good idea to archive the original waveforms
and do the processing on copies. This way, any un-
expected turns in processing needn’t be disastrous.
You can always go back to the original data for
another copy of the waveform. This provides a
worthwhile measure of comfort when you are new to
signal processing or trying out new routines, and it
is certainly a mandatory practice for anyone dealing
with transients or any other one-of-a-kind waveform.

By Bob Ramirez

HANDSHAKE Staff
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Fig. 3. Graphed array with graticule overlayed by
the program in Fig. 2.

is done by normalizing the labels for both the
vertical (line 295) and the horizontal (line 425) axes
to values between 0.001 and 1000 (or —1000 and
—0.001) using the subroutine which begins on line
755. The normalizing factor referred to is that power
of 10 by which the axis labels must be multiplied to
obtain the actual value. Figure 4 uses this notation
on the vertical axis, and the normalizing factor is
printed as E-69 beneath the units label (volts). (The
negative 69th power of ten is expressed as E-69 in
BASIC).

Once the graticule and all the labels are made, the
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SECONDS

Fig. 4. Graphed waveform, including scale factors,
with graticule overlayed by the program in Fig. 2.

data array is graphed. Line 725 sets the data
window so the graphed array always occupies the
entire graticule (the maximum X and Y axis values
of the array equal the size of the graticule).

4051 users will appreciate the speed with which
the graphics program executes — a courtesy of the
4051R07 Signal Processing ROM Pack. The MIN
and MAX operations are 10 times faster than their
4051 BASIC program equivalents, DISP is at least

twice as fast. mf

By Walt Robatzek, HANDSHAKE Staff,
program contributed by
Laurie DeWitt, SPS Software Engineer
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continued from page 3

The 4051 Signal Processing ROM Pack
— something new

other hand, the array values do not cross the thres-
hold at all (or not the number of times you requested)
a minus one (—1) is returned.

The CROSS command is useful for examining
switching transistor parameters. CROSS can be
used to find the 10% and the 90% levels of a pulse
which in turn will yield delay time, rise time, fall
time, etc. (see “How Quick Is Your Switch”,
HANDSHAKE, Vol.2 No.2 Winter 76-77). Some RF
measurement systems find the CROSS function
helpful. “Swept RF Measurements — A Realistic
Approach”, HANDSHAKE, Vol.3 No.2 Winter 77-
78 uses a crossing function in a programmed search
for sweep blanking intervals.

DIF2 (Two-point derivative) Provides a simple,
forward two-point derivative (slope) of
specified data.

DIF3 (Three-point derivative) Similar to DIFZ2,
but determines the slope using a three-
point algorithm.

DIF2 calculates slope by stepping through the
array and determining the slope between each two
array elements. This procedure results in accurate
slope estimates of rapidly changing data: pulses,
transients, square waves — a valuable tool if you're
interested in slew rates of fast-changing events.
However, in the case of slowly varying data, such as
a sine wave, any quickly varying noise riding on the
sine wave would be unduly emphasized.

The three-point derivative, DIF3, tends to yield
more accurate results for slowly varying data such
as sine waves. This algorithm steps through each
element of the array, calculating the slope through
the two adjacent elements at each step. This pro-
cedure tends to smooth over high-frequency noise or
jitter.

INT (Integral) Determines the integral (area
under the curve of specified data) by using a
trapezoidal approximation to an ideal
integral.

The INT function rapidly determines the energy
contained in a pulse — a real time saver in laser and
optical fiber measurements.

DIF2 or DIF3 and INT are inverse operations. In
mechanical measurements, for instance, where your
acquired data array might be graphed as distance
versus time (feet vs seconds), differentiating the
array will return velocity (feet/sec. vs time). Taking
the second derivative yields an acceleration array
(feet/sec? vs time). The integral of acceleration
returns velocity, and likewise, the integral of
velocity brings you back to distance vs time.

DISP (Display) Provides a graph of the raw data.
No graticule or labels are provided.

Graphing is done in less than half the time re-
quired by an equivalent 4051 BASIC routine. If you
cannot know in advance the numeric range of the
data you wish graphed, possible clipping of the data
extremes can be avoided by using the MAX and
MIN ROM Pack functions. These can acquire data
limits and assign them to variables used by the
WINDOW command. Then, when DISP is used, a
graph of all the data in the array results.

As you can see from the varied suggestions, the
possible applications of the ROM Pack are myriad.
The seven 4051R07 Signal Processing ROM Pack
#1 functions provide valuable tools for waveform
processing, but, like our bus, power steering only
makes the trip faster and easier, it is up to the

transit authority to map out the routes.

by Walt Robatzek,
HANDSHAKE Staff
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