Tektronix
 COMMITTED TO EXCELLENCE

MULTIPURPOSE TEST STATION M.P.T.S.
 GPIB programmable
 SWITCH MATRIX

Tektronix, Inc.
P.O. Box 500

Copyright © 1983 Tektronix, Inc. All rights reserved. Contents of this publication may not be reproduced in any form without the written permission of Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign patents and/or pending patents.

TEKTRONIX, TEK, SCOPE-MOBILE, and
 registered trademarks of Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K. Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

table of contents

Page
Title page
Table of Contents 1
List of Illustrations 4
List of Tables 5
Operators Safety Summary 6
Sarvica Safety Summary 7
Static Sensitive Components 8
Switching Matrix Front Panal 9
SECTION 1 INTRODUCTION AND SPECIFICATIONS 1-1
Description 1-1
General Specifications 1-1
Performance Specifications 1-2
Physical Characteristics 1-3
SECTION 2 OPERATOR/PROGRAMMER INSTRUCTIONS 2-1
Installation and Removal, General 2-1
Installation and Removal, Cabling 2-2
Front Panel Controls and Indicators 2-6
Performance Check 2-6
SECTION 3 THEORY OF OPERATION 3-1
Introduction 3-1
Block Diagrams 3-1
GPIB Listener Interface 3-2
Latch Driver Circuits 3-3
MPTS I/O Coaxial Matrix 3-4
Diode Relay Circuits 3-4
Backplane Wiring, Card Cage 3-5
Power Supplies 3-5
GPIB System Concepts 3-6
Introduction 3-6
A Typical GPIB Systam 3-7
GPIB Signal Line Definitions 3-1ø
SECTION 4 PROGRAMMING INFORMATION 4-1
Introduction 4-1
Programming Using MPTS Drivers 4-1
Low-Level Programming 4-3
SECTION 5 CALIBRATION 5-1
SECTION 6 PARTS LISTS 6-1
Parts Ordering Information 6-1
Component Number System 6-1
Electrical Parts, Listener Interface 6-3

Mechanical Parts，Listener Interface	6－4
Electrical Parts，Latch Drivar	6－5
Mechanical Parte，Latch Drivar	6－7
Elect．\＆Mech．Parts，Relay Diode	6－8
Electrical Parts，I／O Matrix（Relays）	6－9
Mechanical Parts，Complete Assembly	6－9】

SECTION 7 DIAGRAMS 7－1
General Block Diagram 〈有〉 7－2
Detailed Block Diagram 〈1〉 7－3
GPIB Listener Interface Schematic 〈2〉－7－4
Latch Driver Card Schamatic 〈3〉 7－5
Card Cage Backplane Wiring Diagram 7－6
Diode Relay Circuit Board Layout 7－7
MPTS I／O Matrix Schematic 〈6＞－7－8
Extender Card ＜7＞ 7－9
SECTION B INDEX 8－9

LIST OF ILLUSTRATIONS

Fig. No.
Page

	Frontispiece: Switching Matrix	8
2-1	Semirigid Interconnect Cables	2-4
2-2	Additional Interconnect Cables	2-5
3-5	A Typical System Using the GPIB	3-8
3-6	ASCII \& IEEE 488 (GPIB) Code Chart	3-9
3-7	Example of Data Byte Traffic on the GPIB	3-11
3-8	Typical Handshake Timing Sequence	3-1
3-9	The Handshake Flowchart	3-12
7-1	General Block Diagram	7-2
7-2	Detailed Block Diagram - <1>-	7-3
7-3	GPIB Listener Interface Schematic - <2>-	7-4
7-4	Latch Driver Card Schematic - <3>-	7-5
7-5	Card Cage Backplane Wiring Diagram - \lll-	7-6
7-6	Diode Relay Circuit Board Layout - < $<$ -	7-7
7-7	MPTS I/O Matrix Schematic - <6>-	7-8
7-8	Extender Card - <7>	7-9

LIST OF TABLES

Table No. Page
2-1 MPTS Input Relay Configuration 2-1
2-2 MPTS Output Relay Configuration 2-2
2-3 Matrix Cabling, Loads and Shorts 2-3
2-4 Input Matrix Cabling 2-3
2-5 Output Matrix Cabling 2-3
2-6 Interconnect Matrix Cabling 2-4
3-9 Major GPIB Interface Functions 3-7
7-1 List of Schematics, Assemblies, and Diagrams 7-1

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking. or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

\dagger
This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

DANGER - High voltage.
Protective ground (earth) terminal.
ATTENTION - refer to manual.

Power Source

This product is intended to operate in a power module connected to a power source that will not apply more than

250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type. voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Operate Without Covers

To avoid personal injury, do not operate this product without covers or panels installed. Do not apply power to the plug-in via a plug-in extender.

SERVICE SAFETY SUMMARY
 FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone
 Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages exist at several points in this product. To avoid personal injury. do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels soldering, or replacing components.

Power Source

\therefore : This product is intended to operate in a power module connected to a power source that will not apply morethan 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power module power cord is essential for sate operation

. STATIC-SENSITIVE COMPONENTS

The following precautions are applicable when performing any maintenance involving internal access to the instrument.

Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. Table 6-1 lists the relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

When performing maintenance, observe the following precautions to avoid component damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers or on a metal rail. Label any package that contains static-sensitive components or assemblies.
3. Discharge the static voltage from your body by wearing a grounded antistatic wrist strap while handling these components. Servicing static-sensitive components or assemblies should be performed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by their bodies, never by their leads.

Table 6-1
Susceptibility
to Static Discharge Damage

Semiconductor Classes	Relative Susceptibility Levels
MOS or CMOS microcircuits or discretes, or linear microcircuits with MOS inputs. (Most Sensitive)	1
ECL	2
Schottky signal diodes	3
Schottky TTL	4
High-frequency bipolar transistors	5
JFETs	6
Linear microcircuits	7
Low-power Schottky TTL	8
TTL	9

-Voltage equivalent for levels: (Voltage discharged from a 100 pF capacitor through a resistance of 100Ω.)

00 to 500 V	$4=500 \mathrm{~V}$	400 to 1000 V (est.)
$2=200$ to 500 V	$5=400$ to 600 V	$8=900 \mathrm{~V}$
3 = 250 V	$6=600$ to 800 V	$9=1200 \mathrm{~V}$

7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work-surface covering capable of generating a static charge.
9. Use a soldering iron that is connected to earth ground.
10. Use only approved antistatic, vacuum-type desoldering tools for component removal.

Frontispiece: I/O Switching Matrices

0

SECTION 1

INTRODUCTION AND SPECIFICATION

1.1 DESCRIPTION

The ø67-1896-99 Switching Matrix provides microwave path switching for the E67-1』93-99 MPTS Automatic Test Systam. It is a GPIB programmable instrument with a 58 ohm characteristic impedance. The matrix configuration is a 6 by 6 crosspoint, is each of the six. inputs can be connected to any of the six outputs. A 6 to 1 preselector (a switch with 6 inputs, one output) is in series with each of the 6 inputs. This makes a 36 by 6 crosspoint configuration. Crosspoints and preselectors can by programmed separately: any combination of relay closures can be made simultaneously. However, if more than one crosspoint is closed on any one path, the impedance of the path will no longer be $5 \rrbracket$ ohms.

1.2 GENERAL SPECIFICATIONS

Power:	989-125/218-25』 VAC $47 / 63 \mathrm{~Hz} 15 \rrbracket \mathrm{VA}$
Configuration:	36×6 crosspoint when the six, 6 : 1 preselectors are included.
Interface:	IEEE-STD-488-9978 L2

1．3 PERFORMANCE SPECIFICATIONS

Closed Path

Frequency：	DC to 3 GHz
Risetime：	＜78ps
Impedance：	5】 ohms
VSWR ：	＜＝1．2 ： 1
Insertion Loss：	＜＝ $1 . \varnothing \mathrm{db}$ ¢ 1 GHz
	＜$=1.5 \mathrm{db} @ 2 \mathrm{GHz}$
	＜$=2 . \square \mathrm{db}$－ 3 GHz
Isolation：	＞ 68 db e 1 ¢0 MHz
	＞ 52 db © 3 d dHz

Thermal Offset：＜＝100 uV
DC Resistance：＜＝ 1 dy mohm
Max Voltage： $2 \not \subset$ Volts

Open Path
Max Voltage： $1 \varnothing \square \rrbracket V$（contact to contact）
1月』』 V（contact to shield）
Transition
Switching Time：＜＝50 ms
Power：$\quad 5 \square$ Watts（average）
Reliability

1．4 PHYSICAL CHARACTERISTICS

$$
\begin{array}{ll}
\text { Size: } & 8.75^{\prime \prime} \times 19 " \times 2 \varnothing " \text { Rack Mountable } \\
\text { Weight: } & 3 \rrbracket \mathrm{Lb} .
\end{array}
$$

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

SECTION 2

OPERATOR/PROGRAMMER INSTRUCTIONS

2.1 INSTALLATION AND REMOVAL, GENERAL

The front panal of the switching matrix has mounting holes to install up to 18 single-pole-six-throw, SP6T, solenoid-activated microwave coaxial switches. Depending on the system requirements where the switching matrix is being applied, there may be fewer than 18 relays installed. The card cage backplane, however, is always wired to energize all 18 relays.

The rack mounts for the matrix are standard 19 inch which slide out.
In MPTS, the number of relays on the input matrix is different from that for the output matrix. This difference is shown by the following table which is ordered according to the physical placement of the relays.

TABLE 2-1: MPTS INPUT MATRIX RELAY CONFIGURATION

TABLE 2-2: MPTS OUTPUT MATRIX RELAY CONFIGURATION

2.2 INSTALLATION AND REMOVAL, CABLING

In MPTS, the matrix connections are all made to the front panel with 3 mm SMA female connectors using \quad D. 141 inch $0 D$ semirigid coaxial cable and flexible coaxial cable.

!l!|l!! CAUTION $1\|!\| \|!$

to Prevent damage to the instrument, go to the front and remove all power cords AND ALL COAXIAL CABLES WHICH CONNECT TO OTHER INSTRUMENTS BEFORE SLIDING MATRIX FOR INSTALLATION OR REMOVAL. DO NOT USE EXCESSIVE FORCE TO CONNECT OR disconnect the coaxial cables.

In installation, the cables should be the last items to connect. In removal the cables should be the first items to disconnect. Especially in the case of the semirigid coax, avoid the use of excessive force on the cables or their connectors. Thay are easily damaged.

An easy method of making the front panel cable connections is to use an assembled MPTS System as a model. The cable connection are shown below and on the I/O Matrix Pullout. The "drawings" of the cable types listed below are shown in Figures 2-1 and 2-2.

TABLE 2－3：MATRIX CABLING，LOADS AND SHORTS

TABLE 2－4：INPUT MATRIX CABLING

Connections	Cable	1	Connections	Cable
K198－K298	－G	I	K324－K242－	－B
K96】－K26】	－G	1	K334－K243	－D
K22ன－K128		I	K216－K361	－
K252－K325	－A	1	K261－K316	－E
K352－K225	－A	1	K266－K366－	－F
K214－K349	－A	，	K265－K356	－E
K314－K241－	－A	，	K332－K223－	－D
K262－K326	－B	1	K255－K355	－F
K362－K226	－B	，	K354－K245－	－
K251－K315	－B	1	K254－K345－	－${ }^{\text {B }}$
K213－K331	－ 8	1	K344－K244	－F
K264－K346	－B	1	K212－K321－	－B
K215－K351－	－B	1	K322－K222－	－F
K263－K336	－	1	K211－K311	－F
K253－K335	－B^{8}	1	K312－K221	－B
K224－K342－	－B	I		

TABLE 2－5：OUTPUT MATRIX CABLING

Connection	Cable	1	Connection	Cable
K118－K21』	－6	1	K25y－K95』	－G
K211－K311－	－F	I	K251－K315	－B
K212－K321	－B	1	K252－K325	－A
K213－K331	－B	1	K253－K335	－B
K214－K341	A	1	K254－K345	－B
K216－K361－		1	K256－K365	－D

OPERATOR/PROGRAMMER INSTRUCTIONS
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWItching MATRIX

TABLE 2-6: INTERCONNECT MATRIX CABLING

Connection	Cable
HP 8656, K164*	H
WAVETEK, K163 I	I
WAVETEK, K113 I	J
ATTEN OUT, K161 I	K
NOR OSC SENSE, K122 \|	L
PS 5ø3, K123 \|	N
K116	0
K166	P
K126	Q
K121	R
K36 COMM	5
K24 COMMON,K25 COMMON \|	T
K363 OUTPUT MATRIX	U
K124	V
PULSE GEN TO ATTEN I	W
K111, NOR OSC OUT \|	X
DMM BNC BLOCK \|	Y
K116 OUTPUT MATRIX \|	Z
K156 OUTPUT MATRIX I	AA
DMM BNC BLOCK I	BB
K115 OUTPUT MATRIX I	CC
A Gate Sel. Dutput to	
Counter A Gate Input	DD
X HATCH TO I115	EE
Y HATCH TO I116	FF
Z HATCH TO I125	GG
0155, A Gate Sel. Inputl	HH
HP 8656, K164 I	II

* Note: K164 means 1164 of K16, etc.
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

OPERATOR/PROGRAMMER INSTRUCTIONS
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

5. $21 / 2^{\prime \prime}\left|\frac{\text { S3 }}{\text { SMALE COMMON }} \underset{153 / 4^{\prime \prime}}{\text { SMA }}\right| 21 / 2^{\prime \prime}$

Note: see Fig. 2-4 for Y.

Figure 2-2: Semirigid Interconnect Cables (H-Z)

$X-Y-Z$ PATTERN GEN CABLES a-GATE PHASE SEL CABLES

Cable II

2.3 FRONT PANEL CONTROLS AND INDICATORS.

Other than the extensive cable connectors already mentioned, there are no indicators or manual controls on the front or rear panels. The Switching Matrix cen be controlled only from the GPIB.

2.4 PERFORMANCE CHECK

After all semirigid cabling has been installed on the relays, the paths between the "preselector" inputs and the "outputs" should be verified for both path resistance and $5 \varnothing$ ohm integrity. See circuit description for the meanings of preselector and output relays.

Path closures can be accomplished by using either Kermit or BASIC with direct GPIB instructions. See the Programming Section which follows this section. Consult the Matrix Schematic, Pullout 6, for individual J numbers.

The series path resistance should be less than 50 milliohms.
The integrity of the 58 ohm characteristic impedance path should be ver : ad using a TDR procedure. A 7512 with a S-52 pulse generator head anc - 6 sampling head or similar TDR sampling system should be used. Consult eiverer the 7512 or S-52 Operator manual for a detailed explanation. All paths from the preselector to the outputs should be verified for 50 ohm $+\mathbb{D} .5 \mathrm{ohm}$.
]
-
』

O I
${ }_{\|}^{\|}$

SECTION 3

THEORY OF OPERATION

3．1 INTRODUCTION

This section of the manual contains the theory of operation of the circuitry used in the 167 －1896－99 Programmable Microwave Switching Matrix．Individual descriptions are separated into the following parts：GPIB Listener Interface， Latch－Drivers Circuitry，Diode Relay Circuite，MPTS I／O Matrix，Card Cage
skplane Wiring，and Power Supplies．The diagrams are segmented according to circuit function．Refer to appropriate diagrams in the Diagram Section of this manual while reading the circuit description．

3．1．1 BLOCK DIAGRAMS 《ヨ〉

There are two block diagrams．The General Black Diagram 〈g〉（Figure 6．1）gives the general structure of the matrix system．Although two relays from the input matrix are shom as examples，the output matrix has essentially the same structure．The main changes are the number of ralays，the line and relay numbers and the direction of signal flow in the matrix lines．

Very simply stated，when the GPIB Interface raceives a relay command string it energizes the latch drivers which switch the relays to the desired positions．

While the second or Detailed Block Diagram 〈१〉（Figure 6．2）does not show specific relays，it does show more schematic detail．It also shows the diamond ＜＞numbers for handy reference to the schematics which follow．To keep oriented，one should refer to it from time to time as one studies the diagrams and reads the circuit descriptions．

3．2 GPIB LISTENER INTERFACE 〈2＞

The discussion to the circuitry of the GPIB Listener Interface essumes that the reader has some familiarity with the IEEE Std 488－1975．Supplemental reading in the＂GPIB System Concepts＂part at the end of this section will be of help． In addition，there are good booklets on the subject．

Referring to＜2＞Figure 7．3，the Interface Card in the card cage contains the Fairchild 96LS4BB GPIB chip，U42』．This chip is e TTL LSI circuit containing all of the logic necessary to interface talk，listen，and talk／listen typa instruments and system components in accordance with the IEEE 488 standard for programmable instrumentation．

In this application，the $U 42 \varnothing$ is configurad to be a listener．There are several componants near U420．The device address switch，S41月，consists of five SPST switches whose positions determine the listen address of the instrument．The addressed LED，DS 3日g，lights when the instrument is in the listening mode．RC components set the clock frequency and initialize the chip． Connections to ground and to pull－up resistors establish the listener mode．
The connections from the GPIB connector to the GPIB chip also go to invertino buffers，U231．these invert the negative logic signals on the bus to pr－．．．．．． Logic signals for the Latch Drivers in the remainder of the card cage．s a tri－state device；it is enabled only when the GPIB chip gets its ife 7 address and the＇NOT－LAD＇signal goes Low．

The outputs of the tri－state buffer，U231，drive inputs of U13g，en eight bit comparator，and backplane pins A9 through A6．The aight bit comparator is arranged to watch seven data lines of the bus with half of its inputs．It compares these bits with the bit pattern：घlgl191 which is hard wired to the other half of its inputs．（ 1 g®11g1 is the ASCII character for the＇carriage return＇．）

When the interface is processing bytes to the Latch Driver circuit cards，U130 pin 19 （SHIFT／NOT－LOAD STEERING）ramains high．This high state enables U140 pin 18 and disables U148 pin 4.

For each valid byte，the RXST output，pin 38 of U420，goes high．U241 is a two bit shift register that is clocked by U42g pin 42，the＇NOT－CP＇signal．RXST is applied to the input of the two bit shift register．The＇NOT－Q＇output（pin 8 of U249，which is jumper－connected to the RXRDY input）by going low signals the 488 chip that the data transfar is complate．

The signal at pin 8 of U241，called the SHIFT－LOAD PULSE，is high for two clock periods，and when the U13Ø pin 19 output is high and U948 pin 98 is enabled， this produces a shift pulse，BSHF，on interface pin A7．

When the data on the bus is a carriage return，the output of U13g pin 19 goes low，disabling U148 pin 18，and enabling U140 pin 4．The SHIFT－LOAD PULSE is then steered to interface pin AS and becomes the BLOAD pulse．
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

A command on the GPIB bus called INIT, or CLEAR will excite the 488 chip to produce 'not CLR' output on U42g pin 32. This is applied to the card cage interface through U96日 pins 3-4-5-6 and becomes the 'not BCLR' signal to clear the bits in the latch-driver cards.

When the command etring directed to the switching matrix interface is completed, the controller issues the UNLISTEN command. This makes the GPIB interface inactive, 'not LAD' goes high... turning off the ADDRESSED LED and switching the Ue31 buffers to their disabled state.

3.3 LATCH-DRIVER CIRCUITRY 〈3>

Each Latch Driver card is capable of storing two "bytes" of six bits. Since there are six letch-driver cards in the card cage, the total capacity is 12 , six-bit bytes. In accordance with the GPIB standard, the data string sent to this instrument will always be composed of 12 bytes terminated by a carriage return.

Each latch-driver card (<3> Figure 7-4) consists of four hax-D type flip-flops, 12 transistor-relay drivers and thair respective base resistor networks. The inputs on the connector backplane C1 through C6 are coted to the inputs of U3; the outputs of $U 3$ feed the inputs of 44 . The outputs of U4 connect to connectors A1 through A6 to shift date on to the next latch-driver card.

The outputs of U3 and U4 are also applied to the inputs of UY and U2. The outputs of U1 drive six base resistor natworks for relay driving transistors Q1 through 06. U2 outputs do the same for 07 through Q12. A high bit on the output of any flip-flop will turn on its respective transistor and complete the circuit to energize the relay coils attached to that transistor output.

The BSHF shift pulse, on connection C7, is connected to shift the U3 and U4 flip-flops. C9, the BLOAD signal, loads the U3 and U4 outputs into the U1 and U2 flip-flops, respectively. When a BCLR signal which is an active low occurs on CB, all the flip-flop bits are set to zero (the cleared state).

The inputs of the first latch-driver card in the card cage receives data from the GPIB listener interface card; each succeeding latch-driver card receives data from the card preceding it. When the GPIB listener interface card outputs a shift pulse, BSHF, the data on the inputs of US shifts into U3, the data on the outputs of U3 shifts into U4, the date from the outputs of U4 shifts into the $u 3$ flip-flops of the next card, and so on...

When there have been 12 shifts, the first data in has reached the sixth latch-driver card and rests in the $U 4$ flip-flops there. When the carriage return character, which indicates the end of the data string sent to this switching matrix, is recognized and decoded by the B-bit comparator of the GPIB listener interface, B BLOAD eignal is generated. This BLOAD signal excites ali

U1 and U2 flip-flops and causes them to load thamselves with the outputs of all the corresponding U3 and U4 flip-flops. Those outputs which are high will turn on their respective transistors and the relays will energize the next path configuration.

3.4 DIODE RELAY CIRCUITS <5>

Mounted on the rear of each relay is a circular circuit board, <5> Figure 7-6, that provides the means for connecting the relay coils to the driver transistors in the latch-driver cards. The circuit boards contain a diode decross each relay coil to clamp the inductive back-emf when the relay is de-energized.

3.5 MPTS I/O COAXIAL MATRIX <6>

The relays used in the g67-1896-99 GPIB Programmable Microwave Switching Matrix are single-pole-six-hrow, SPGT, solenoid activated microwave switches. The operating frequency range is from $D C$ to 18 GHz . They have $5 \boxminus$ ohm characteristic impedance and low insertion loss and VSWR. The connectors are 3 mm SMA female, and the coaxial "plumbing" in the matrix can be semirigid or flexible coax cable. All switches are independently activated by the bits set in the latch-driver cards in the matrix card cage as described under Latched Driver Circuitry.

The front panel of the switching matrix has mounting holes to install up to 18 coaxial switches. Depending on the system requirements where the switching matrix is being applied, there may be fewer than 18 relays installed. The card cage backplane, however, is always wirad to energize all 18 relays.
<6> Figure 7.7 shows the standard MPTS Input Matrix of 14 relays and the MPTS Output Matrix of 9 relays. The relays with the connectors labeled in the "d-one hundreds" are called the preselectors. The connectors labeled "J-two hundreds" and "J-three hundreds" form the outputs. The relays connected to J1XX, comprise a maximum of 36 inputs; the relays connected to J3XX comprise a maximum of 6 outputs, so the MAXIMUM format of each matrix is a 36 to 6 crosspoint matrix. As previously stated, MPTS does not at present use the maximum configuration either in the Input or the Output Matrix.
The labeling of the J - numbers is devised so that the source and destination of the paths can easily be traced. For example, $J 121$ input on the preselectors goes to the trunk $12 \varnothing$ and on to $22 \varnothing$ on the output relay. The 221 path ends up at 312. To simplify the labeling, the J's were omitted from the internal lines.
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

Except for the number of relays, the Input and Output matrices have the same components, the same line and essentially the same component labels. K11 is labeled "IN" in the input matrix and "OUT" in the output matrix, but otherwise the labeling is exactly the same.

Signals can flow equally wall in either direction in the matrices. This means that the terms 'input' and 'output' used in describing the matrix are not to be taken seriously. In the Output Matrix the preselector is really a post-selector.

3.6 CARD CAGE BACKPLANE <4>

The card cage contains seven card connectors which are wired according to <4>. The right-most card slot (the left-most in $\langle 4\rangle$] is configured to receive a GPIB listener interface card ONLYI The other six card slots are identical and configured to accept the latch-driver cards. The backplane is wire-wrapped to bus the supplies and grounds to all circuit boards. The GPIB data, handshake, and bus management signals are wirad from the GPIB connector on the rear panel of the switching matrix package to the GPIB interface card slet. Data out of the interface is applied to the data in connections of the adjacent slot. Data connections are "daisy-chained" throughout the latch-driver card slots as described in 4.3 above. The signals produced by the GPIB listener interface: BSHF, BLOAD, and BCLR are bussed to all latch-driver cards.

The latch-driver transistor outputs are brought out in seven conductor ribbon cabling, containing the six outputs plus the 24 volt supply which completes the relay energizing circuit. There are 18 sets of 7 conductor ribbon cables; 6 comprise the bits and drives for the preselectors, and 12 comprise the connections to the pairs of relays that form the output relay paths.

3.7 POWER SUPPLIES <1>

The supplies for the switching matrix are the +5 volt supply for the card cage electronic circuits, and a +24 volt supply for the microwave coaxial relays. The supplies are conventional linear regulated ones mounted in an open frame beside the card cage. The supply is OEM currently obtained from the POWER MATE company.

3.8 GPIB SYSTEM CONCEPTS

GPIB SYSTEM CONCEPTS

INTRODUCTION

The GPIB is a digital interface that allows efficient communication between the components of an instrumentation system.

The primary purpose of the GPIB is to connect selfcontained instruments to other instruments or devices. This means that the GPIB is an interface system independent of device functions.

There are four elements of the GPIB: mechanical. electrical. functional. and operational.

> Of these four. only the last is device-dependent. Operational elements state the way in which an instrument reacts to a signal on the bus. These reactions are devicedependent characteristics and state the way in which the instruments use the GPIB via application software.

Mechanical Elements

The standard defines the mechanical elements cables and connectors Standardizing the connectors and cables ensures that GPIB-compatible instruments can be physically linked together with complete pin compatibility.

The connector has 24 pins, with 16 assigned to specific signals and eight to shields and grounds. Instruments on the bus may be arranged in a linear or star configuration.

Electrical Elements

The voltage and current values required at the connector nodes for the GPIB are based on TTL technology (power source not to exceed -5.25 V referenced to logic ground). The standard defines the logic levels as follows Logical 1 is true state, low-voltage level ($\leqslant-0.8 \mathrm{~V}$). signal line is asserted Logical 0 is false state. high-voltage level $(\geqslant-2.0 \mathrm{~V})$, signal line is not asserted

Messages can be sent over the GPIB as either activetrue or passive-true signals Passive-true signals occur at a high-voltage level and must be carried on a signal line using open-collector devices. Active-true signals occur at a low-voltage level.

Functional Elements

The functional elements of the GPIB cover three areas

1. Ten interface functions (listed in Table 3-9) that define the use of specific signal lines sothat aninstrument can receive, process. and send messages The ten inter-
face functions - with their allowable subsets-provide an instrumentation system with complete communications and control capabilities.

Not every instrument on the bus has all ten functions because only those functions important to a particular instrument's purpose need be implemented
2. The specific protocol by which the interface functions send and receive their limited set of messages.
3. The logical and timing relationships between allowable states for the interface signal lines.

Table 3-9
MAJOR GPIB INTERFACE FUNCTIONS

Interface Functions	Symbol
Source Handshake	SH
Acceptor Handshake	AH
Talker or Extended Talker	or TE
Listener or Extended Listener	Lor LE
Service Request	SR
Remote-Local	RL
Parallel Poll	PP
Device Clear	DC
Device Trigger	DT
Controiler	C

A TYPICAL GPIB SYSTEM

Figure 3-5 illustrates an example of the GPIB and the nomenclature for the 16 active signal lines. Only four instruments are shown. but the GPIB can support up to 15 instruments connected directly to the bus. However, more than 15 devices can be interfaced to a single bus if they do not connect directly to the bus but are interfaced inrough a primary device Such a scheme can be used for programmable plug-ins housed in a mainframe where the mainframe is addressed with a primary address code and the plug-ins are addressed with a secondary address code.

The instruments connected to a single bus cannot be separated by more than 20 meters (10 al cable lengin) and at least one more than half the number of instruments must be in the power-on state. To maintain the electrical characteristics of the bus, a device load must be connected for each iwo meters of cable length Although instruments are usually spaced no more than two meters apart. they can be separated farther if the required number of device loads are lumped at any one point

Controllers, Talkers, and Listeners

A talker is an instrument that can send data over the bus, a listener is an instrument that can accep: data from the bus. No instrument can communicate until it is enabled 10 do so by the controller in charge of the bus.

A controller is an instrument that determines by a software routine, which instrument will talk and which instruments will listen during any given time interval. The controller also has the ability to assign itself as a talker or listener whenever the program routine requires in addtion to designating the current talker and listeners for a particular communication sequence. the controller has the task of sending special codes and commands (called interface messages) to any or all of the instruments on the bus.

Interface Messages

The IEEE standard specifies that the interface messages, as shown in Fig 3-6. ASCII \& IEEE 488 (GPIB) Code Chart, be used to address and control instruments interfaced to the GPIB. Interface messages are sen: and received only when the controller asserts the ATN bus line. The user can correlate interface message coding 10 the ISO 7-bit code by relating data bus lines DlO 1 through DI07 to bits 1 ithrough 7 , respectively.

Interface messages include the primary talk and listen addresses for instruments on the bus addressec commands (only instruments previously addressed 10 listen respond to these commands). universal commancs (all instruments. whether they have been adaressec or not respond to these). secondary addresses for devices interfaced through their primary instrument and secondary commands. At present. the standard classifies only two interface messages as secondary commands Parallel Poll Enable (PPE) and Parallel Poll Disable (PPD) (Parallel Poll Enable means that after the controller configures the system for a parallel poll (PPC command, all instruments respond at the same time with status information on receipt of PPE)

Fig. 3-5. A typical system using the general purpose interface bus (GPIB).

ASCII \& IIEE 488 [GPIB] CODE CHART

Device Dependent Messages

The IEEE standard does not specify coding of devicedependent messages, messages that control the device's internal operating functions. After addressing (via interface messages) a talker and listener(s). the controller unasserts the ATN bus line. When ATN becomes false. any commonly-understood B-bit binary code may be used to represent a device-dependent message.

The standard recommends that the alphanumeric codes associated with the numbers, symbols, and upper case characters (decimal 32 to decimal 94) in the ASCII Code Chart be used for device-dependent messages One example of a device-dependent message is the ASCII character string

MODE V; U/D 5E-3; FREO 1E3

which may tell an instrument to set its front-panel controls to the voltage mode. with 5.0 millivolt output at a frequency of 1000 Hz .

When 8 -bit binary codes other than the ISO 7 -bit code are used for device-dependent messages, the most significant bit must be on data line DIOB (for bit 8)

To summarize the difference between interface and device-dependent messages, remember that any message sent or received when the ATN line is asserted (true) is an interface message Any message (data bytes) sent or received when the ATN line is unasserted (false) is a device-dependent message

GPIB SIGNAL LINE DEFINITIONS

Figure 3-5 shows the 16 signal lines of the GPIB functionally divided into three component busses an eight-line data bus. a three-line transfer control (handshake) bus and a five-line management bus

The Data Bus

The data bus has eight bidirectional signal lines. DIOT itrough DIOB Information, in the form of data bytes. is transferred over this bus. A handshake sequence between an enabled talker and the enabled listeners transfers one
data byte (eight bits) at a time Data bytes in an interface or device-dependent message are sent and received in a byte-serial, bit-parallel fashion over the data bus

Since the GPIB handshake sequence is an asynChronous operation. the data transfer rate is only as fast as the slowest instrument involved in a data byte transter at any one time. A talker cannot place data bytes on the bus faster than any one listener can accept them

Figure 3-7 illustrates the flow of data bytes when a typical controller sends ASCII data io an assignedistener on the bus. The first data byte. decimal 44. enables device 12 as a primary listener and the secondary address. decimal 108, enables a plug-in device as the final destination of the data to follow. The data is the iwo ASCII characters, A and B (decimal 65 and decimal 66)

The decimal value for B is specified as negative to activate the EOI line and signify the end of the devicedependent message. The controller activates the ATN line again and sends the universal unlisten (UNL) and untaik (UNT) commands to clear the bus Six hands hake cycles on the Transfer Bus are required to send the six data bytes

The Transfer Bus (Handshake)

Each time a data byte is sent over the data bus an enabled talker and all enabled listeners execute a handshake sequence via the transfer bus The transferbus signal lines are defined below. Figure 3-8 illustrates the basic timing relationship between the three signals The ATN line is shown to illustrate the controllers role in the process. A flowchart for the handshake sequence is shown in Fig 3-9

Not Ready For Data (NRFD). An asserted NRFD signal line indicates one or more assigned listeners are not ready to receive the next data byte from the talker when all of the assigned listeners for a particular data byte transter have released NRFD. the NRFD line becomes unasserted (high). The RFD message (Ready For Datal tells the: alker it may place the next data byte on the data bus

Data Valid (DAV). The DAV signal line is asserted (low) by the talker after the talker places a data byte on the data bus When asserted. DAV tells each assignedistene: that a new data byte is on the data bus The talker is inhibited from asserting DAV as long as any listener hoids the NRFD signal line asserted
M. P. T. S. GPIB PROGRAMMABLE MICRTwavF SwItching MATRIX

Fig. 2-7. An example of data byte traffic on the GPIB.

P19. 3-8. A typical handshake timing sequence (idealized). Byte capture time is de pendent on the slowest instrument involved in she handshake.

THEDRY OF OPERATION
M. P. T. S. GPIB PRogrammable microwave switching matrix

~~

Fig. 3-9. The handshake flow charl.

Not Data Accepled (NDAC). Each assigned listener holds the NDAC signal line low-true (asserted) until the listener accepts the data byte currently on the data bus. When all assigned listeners accept the current data byte. the NDAC line becomes unasserted, telling the talker to remove the data byte from the bus. The DAC message (Data Accepted) tells the talker that all assigned listeners accepted the current data byte.

When one handshake cycle transfers one data byte. the listeners reset the NRFD line high and the NDAC line low before the talker asserts DAV for the next data byte transfer NDAC and NRFD both high at the same time is an invalid state on the bus.

The Management Bus

The management bus is a group of five signal lines which are used to control the operation of the GPIB IFC. ATN. SRQ. REN, and EOI.

Interface Clear (IFC). The system controller asserts the IFC signal line to place all interface circuitry in a predetermined quiescent state which may or may not be the power-on state.

Only the system controller can generate this signal. The IEEE standard specifies that only three interface messages (universal commands) be recognized while IFC is asserted Device Cleap (DCL). Local Lockout (LLO), and Parallel Poll Unconfigure (PPU).

Attention (ATN). A controller asserts the ATN signal line when instruments connected to the bus are being enabled as talkers or listeners and for other interface control traffic. As long as the ATN signal line is asserted (ATN = 1), only instrument address codes and control messages are transferred over the data bus With the ATN signal line unasserted only those instruments enabled as a talker and listener(s) can transier data. Only the controller can generate the ATN signal

Service Request (SRQ). Any instrument connected to the bus can request the controller's aftention by asserting the SRQ line. The controller responds by asserting ATN and executing a serial poll to determine which instrument is requesting service. (An instrument requesting service identifies itself by asserting its DiO7 line after being addressed.) After the instrument requesting service is found. program control is transferred to a service routine for that instrument. When the service routine is completed program control relurns to the main program When polled. the instrument requesting service unasserts the SRQ line

Remote Enable (REN). The system controller asserts the REN signal line whenever the interface system operates under remote program control. Used with other control messages. the REN signal causes an instrument on the bus to select between iwo alternate sources of programming data A remote-local interface function indicates to an instrument that the instrument will use either information input from the front-panel controls (Local) or corresponding information input from the interface (Remote)

End or Identify (EOI). A talker can use the EOI to indicate the end of a data-transfer sequence The talker asserts the EOI signal line as the last byte of data is iransmitted Inthis case. EOl is essentially a nintindata line and must observe the same setup times as the DIO lines When the controllep is listening it assumes that a data byie received is the last byte in the transmission (if the EOI signal line has been asserted) When the controller is talking. it may assert the EOI signal line as the las! byte is transferred The EOI signal is also asserted with the ATN signal if the controller conducts a parallel polling sequence. EOI is not used during serial polling

NOTE

For detalled information on GPIB specifica:ions refer to IEEE 488-1975 (Revised 1978), publishea Dy the Institute of Electrical and Electronics Eng neers 245 East 47in Street. New York. New York 11117

॥
$\mathbb{\|}$
$\mathbb{\|}$

SECTION 4

PROGRAMMING INFORMATION

4.1 INTRODUCTION

Because the Switch Matrix is the heart of the MPTS system, it is desirable that this section include fairly complete programming information. It is divided into two headings: Programming Using Drivers and Low-Lavel Programming.

4.2 PROGRAMMING USING MPTS DRIVERS

Matrix connections for the two $867-1897-99$ matrices are spacified by the CONNECT and DISCONNECT driver calls.

Calling convention
Calling the driver to open relays is done with:
DISCONNECT (COMMAND\$, RESULT\$, ECODE\%)
In this case, COMMAND usually has two components separated by a space: a matrix pin designation, and a device port name. (See Section 18.3). Calling the CONNECT driver is analogous to the DISCONNECT call.

Commands

Disconnect and Connect commands include the following:
COMMAND: ACTION:
INIT At the next XQT command open all relays and clear pending relay commands.

XAT The XRT command simultaneously enables all relay closures and openings specified
since the last XQT was received．
pin port At the next XQT command，connect or disconnect the path between the matrix pin designation ［131ø，I32】．．．or 0310，032ø．．．）and the spec－ ified test device port．

Matrix pins designations include the following： INPUT PINS： DESCRIPTION：

I310 or CH1
channel 1 on the IUT
I32』 or CH2
1330 or СНЗ
I340 or CH4
I350 or ZAXIS
I368 or INCOM
channel 2 on the IUT
channel 3 on the IUT
channel 4 on the IUT Z axis output of IUT common path to output matrix
OUTPUT PINS：
0310 or AGATE
032ן or BGATE
033D or CALDUT
0348
035】
O360 or OUTCOM

> A gate output from the IUT
> B gate output from the IUT
> calibrator output from IUT
> unused on the IUT
> unused on the IUT
> common path to input matrix

Test device port names include the following：

INPUT DEVICE
PORT NAMES：
SNWAVE
FUNCT
SQWave
CALIB
PULSE
NOROUT
NORSEN
DMMHI
XHATCH
YHATCH
ZHATCH
SPLITA
SPLITB
COMMON
GND
$2 \not 2 V O L T$
CH2OUT

DESCRIPTION：
sinewave generator
function gen．standerd output
function gen．precision sqwave
calibration generator
pulse generator
normalizer oscillator output
normalizer oscillator sense
digital multimeter
X output of pattern gen．
Y output of pattern gen．
Z output of pattern gen． power splitter output A power splitter output B common line to out matrix ground
$2 \varnothing$ VOLT DC supply
Ch 2 I．U．T output

OUTPUT DEVICE PORT NAMES:

CNTRA
CNTRB
SPLIT
GND
LOAD
COMMON

DESCRIPTION:
counter/timer input A counter/timer input B power splitter input
system ground *
5 g ohm load
common line to in matrix

For detailed information on exactly how to implement these commands, see Section 19, "Writing a Program" in MPTS CB PROGRAMMING MANUAL.

The matrix terminal also can be specified in lieu of a name (i.e. J 199 etc.). See section 22, "Advanced Programming Tachniques" in MPTS CB PROGRAMMING MANUAL.

4.3 LOW-LEVEL PROGRAMMING

In MPTS programs, we normally use MPTS drivers to send commands to the switching matrices. However, for diagnostics and other purposes it may be necessary to talk more directly to the matrices. This is called low-lavel programming.

Even in low-level programming, we talk to the input and output matrices using the GPIB. The input matrix address is 18 E . The output matrix address is 101 . Following the address, a string of 12 ASCII characters plus a carriage return is sent to the matrix. Each character represents the binary code for one relay. The system can best be explained by the en example.

To connect the celibrator (CALIB) to channel 1 (CH1) the string is:

(in Kermit]

\{in BASIC

The e's are open-ralay commands. The bytes are conventionally numbered as shown in the table below:

TABLE 4-1: STRING/BYTE RELATIONSHIPS

The only bytes without open-ralay commands, are numbers 3 and 4. Each byte sets a particular relay as shown in the next table.

PROGRAMMING INFORMATION

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

TABLE 4-2: RELAY-BYTE RELATIONSHIPS

In our example, byte 4 sets K 12 , and byte 3 sets K 22 . The next thing is to determine what MH " in byte 4 does to K 12 and what "A" in byte 3 does to K22. This we get from Table 3.

TABLE 4-3: BINARY-ASCII-DECIMAL CHART

In the table above, only the last 6 bits are of much interest. Since the single closures: ASCII ABDHP are the most important, they will be explained in detail.

The matrix paths 1 through 6 may be selectively closed by setting the corresponding bit in a message byte high $(=1)$. The correspondence between bit numbers and paths is show in the Table 4:

TABLE 4-4: MESSAGE BYTE FORMAT

As shown in Table 3, message bytes for the six single-closure paths correspond to the following ASCII codes:

PATH SELECTED	ASCII CHAR
none	$=====$
1	A (64)
2	B (66)
3	D (68)
4	H (72)
5	P (BD)
6	

Path number 1 above always corresponds to a line number ending in 1 on the MPTS I/O Matrix Diagram, path number 2 corresponds to a line number ending in 2 etc. Referring to the MPTS I/D Matrix Diagram in the Pullout Saction for the connections, we see that in relay K12, and K22 for example:

PATH SELECTED	K12 LINE NO.	K22 LINE NO.
1	1121	221
2	$J 122$	222
3	1123	223
4	1124	224
5	1125	225
6		
		226

From Table 4 and the MPTS I/O Matrix Diagrem, it should now be clear that the "H" in byte 4 of our example connects J124 of K12 to line $12 \varnothing$ (the calibrator), and the "A" in byte 3 connects line 22% of K22 to line 221.

However for relays in the 6X6 matrix, this is not the complete story. Look again at the MPTS I/D Matrix Diegram. The relays are hard-wired so that if 211 of K21 is connected to 21ø, then 311 of K31 also is connected to 131』; or if 212 of K21 is connected to 218, then 321 of K32 also is connected to I320; etc. Therefore, the A in byte 3 also connects line 312 of K31 to I31d which is channel 1 of the oscilloscope. This completes the explenation of our example.

More than one path in a given ralay can be selected at a given time by setting more then one bit in message byte. The details of how to do this are shown in

Table 3. However, this will result in loss of the $5 \varnothing$ ohm environment within the matrix path, and should only be used in low frequency or high impedance

CALIBRATION

This unit does not need calibration. See Section 2-4 for performance check.

『
-
\|
\|
O\|
【
d
d

॥

SECTION 6
REPLACEABLE PARTS LIST ø67-9896-99

6.1 Parts ordering information

Raplacament parts are available from or through your local Taktronix Inc. Field Office or representative.

It is important, when ordering parts, to include the following information in your order: Part number, instrument typa or number, serial number, and modification number if applicable.

Change information, if any, is located at the rear of this manual.

6.2 Component Number System

A list of essamblies can be found at the beginning of the Electrical Parts List. The essemblies are listed in numerical order. When the complete component number is known, this list will identify the assembly in which the part is located.

A numbering method has bean used to identify assemblies, subsesemblies, and parts. For example the Component Number:

A1C14D
consists of Assembly Number, A1 followed by Circuit Number, C14D. Read: Capacitor 148 of Assembly A1.

Only the circuit number will appaar on the diagrams and circuit board illustrations. Each diagram is marked with the essambly number.

The Electrical Parts List is divided and arranged by assamblies in numerical sequence (e.g., sessembly $A 9$ with its subassamblies and parts, precedes assembly

REPLACEABLE PARTS LIST $167-9$ 996-99
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

A2 with it subassemblies and parts).
Chassis-mounted parts have no assambly number prafix and are located at the end
of the Electrical Parts List.

REPLACEABLE ELECTRICAL PARTS 67ø-7634-88 (<2> Listener Interface A1) Of SWITCH MATRIX

COMPONENT						
NUMBER	I PART	NUMBER	1	DESCRIPTION	1	NOTES

M．P．T．S．GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

REPLACEABLE MECHANICAL PARTS 670－7694－』り（＜2＞Listener Interface A1） of SWITCH MATRIX

PART NUMBER	$\begin{aligned} & \text { I QTY } \\ & \text { I PER } \end{aligned}$	DESCRIPTION			1	NOTES
	1				1	
185－816】－8】	12		cuit Boa	Ejector	1	
	1				I	
136－『269－y2	13	IC	Socket	14DIP	1	
136－8578－】1	12	IC	Socket	24DIP	1	
136－8634－】】	11	IC	Socket	$2 ¢ \mathrm{DIP}$	1	
	1				I	
214－ø579－ø】	116	Tes	t Points			
214－1337－ヵ1	12	Pin	，Roll		I	
	1		，Roll	\cdots		

REPLACEABLE ELECTRICAL PARTS 67@-7691-88 ($\langle 3\rangle$ Letch Driver A2) of SWITCH MATRIX

REPLACEABLE ELECTRICAL PARTS 670-7631-8ן (<3> Latch Driver A2) of SWITCH MATRIX

COMPONENT NUMBER	1	PART	1	DESCRIPTION	1

REPLACEABLE PARTS LIST $167-1896-99$
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

Page 6-7

REPLACEABLE MECHANICAL PARTS 67®-7691-8® (<3> Latch Driver A2)
of SWITCH MATRIX

REPLACEABLE ELECTRICAL PARTS ■67-7693-®y (<5> Relay Diode Board A4) of SWITCH MATRIX

REPLACEABLE MECHANICAL PARTS 67Ø-7693-g0 (<5> Relay Diode Board A4)
of SWITCH MATRIX

I	PART NUMBER	$\begin{aligned} & \text { I QTY } \\ & \text { I PER } \end{aligned}$	DESCRIPTION	1	NOTES
	1-1857-	17	ght Pin Car	I	7 of

REPLACEABLE ELECTRICAL PARTS MP-91996- 83 (<6> MPTS I/O Motrix A5) of SWITCH MATRIX

COMPONENT NUMBER	I PART	NUMBER	1	DESCRIPTION	1

A5K19IN	$1200 x-2000 x-2 x$	RF Coax Switch 06-413k3		
A5K12IN	1 n	n ${ }^{\text {n }}$ (${ }^{\text {a }}$	\| OMATEKU	part number
A5K16IN	1	\| n	I	
A5K21 IN	I	n	,	
A5K22IN	1 "	n	1 n	

A5K34IN	1	n	1	n	1	n
A5K35IN	1	n	1	n	n	
A5K36IN	1	n	1	n	n	
A5K110UT	1	n	1	n	n	n
A5K150UT	1	n	1	n	1	n
	n	n	n			

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

REPLACEABLE MECHANICAL PARTS of SWITCH MATRIX $067-1096-99$

| PART QTY
 NUMBER I PER I DESCRIPTION | NOTES |
| :--- | :--- | :--- | :--- | :--- | :--- |

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

REPLACEABLE MECHANICAL PARTS of SWITCH MATRIX 167-1』96-99

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

SECTION 7

DIAGRAMS

TABLE 7-1: LIST OF SCHEMATICS, ASSEMBLIES, and DIAGAMS

M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWItCHING MATRIX

Figure 7-1 GENERAL BLOCK DIAGRAM 《G>

MECHANICAL LAYOUT

NOTE:
CIRCUIT BOARD MUST SLIDE OVER TERMINAL POSTS ON RELAYS . DIODE MOUNTING IS NOT CRITICAL.

> O

SECTION 8

INDEX

ASCII-decimal chart 4-6
byte 4-4
cabling 2-2, 2-3
calibration 5-1
characteristic impedance 2-9
circuit description 3-1
close rolays 4-1
configuration, matrix 2-1
CONNECT 4-1
controls 2-9
crosspoint 1-1
DISCONNECT 4-1
general specifications 1-1
I/O matrix control 4-1
indicators 2-9
installation 2-1
Kermit 4-3
open relays 4-1
parts list 6-1
performance check 2-9
performance specifications 1-2
physical charactaristics 1-2
pin 4-2
pins, input 4-2
port 4-2
port names 4-2
porte 4-2
preselector 1-1
print command 4-3
M. P. T. S. GPIB PROGRAMMABLE MICROWAVE SWITCHING MATRIX

```
programming . . . . . . . . . . . . 4-1
programming, driver . . . . . . . . . 4-1
programming, low level . . . . . . . . 4-3
ralay matrix programming . . . . . . . . 4-1
ramoval . . . . . . . . . . . . . . . . 2-1
rasistance, path . . . . . . . . . . . 2-9
string . . . . . . . . . . . . . . . . . 4-4
switching time . . . . . . . . . . . . . 1-2
theory of operation . . . . . . . . . . 3-1
```

