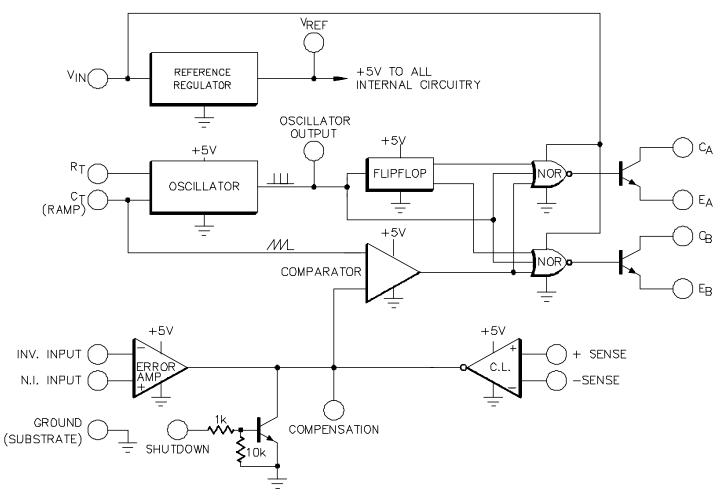
Regulating Pulse Width Modulator

SG1524/SG2524/SG3524

Product Overview

This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included in a 16-pin dual-in-line package is the voltage reference, error amplifier, oscillator, pulse width modulator, pulse steering flip-flop, dual alternating output switches, and current-limiting and shut-down circuitry. This device can be used for switching regulators of either polarity, transformer coupled DC to DC converters, transformer-less voltage doublers, and polarity converters, as well as other power applications. The SG1524 is specified for operation over the full military ambient temperature range of –55 °C to +125 °C, the SG2524 for –25 °C to +85 °C, and the SG3524 is designed for commercial applications of 0 °C to +70 °C.

Features


- 8V to 40V operation
- 5V reference
- Reference line and load regulation of 0.4%
- 100 Hz to 300 kHz oscillator range
- Excellent external sync capability
- Dual 50 mA output transistors
- Current limit circuitry
- Complete PWM power control circuitry
- Single-ended or push-pull outputs
- Total supply current less than 10 mA

High Reliability Features

Following are the high reliability features of SG1524:

- Available to MIL-STD-883, ¶ 1.2.1
- MIL-M38510/12601BEA SG1524J-JAN
- Level "S" processing available
- Available to DLA Standard Microcircuit Drawing (SMD)
- Radiation TID is available upon request

Figure 1. Block Diagram

Table of Contents

Pro	duct Overview	1
1.	Absolute Maximum Ratings	4
2.	Thermal Data	5
3.	Recommended Operating Conditions	6
4.	Electrical Characteristics	7
5.	Application Notes	9
	5.1. Oscillator	
	5.2. Current Limiting	
6.	Connection Diagrams and Ordering Information	.12
7.	Package Outline Dimensions	.13
8.	Revision History	.15
Mic	rochip Information	. 16
	The Microchip Website	. 16
	Product Change Notification Service	
	Customer Support	16
	Microchip Devices Code Protection Feature	.16
	Legal Notice	16
	Trademarks	. 17
	Quality Management System	18
	Worldwide Sales and Service	. 19

1. Absolute Maximum Ratings

Parameter	Value	Units		
Input voltage (+V _{IN})	42	V		
Collector voltage	40	V		
Logic inputs	-0.3 to 5.5	V		
Current limit sense inputs	-0.3 to 0.3	V		
Output current (each transistor)	100	mA		
Reference load current	50	mA		
Oscillator charging current	5	mA		
Operating Junction Temperature				
Hermetic (J, L packages)	150	°C		
Plastic (N, D packages)	150	°C		
Storage temperature range	-65 to 150	°C		
Lead temperature (soldering, 10 seconds) ²	300	°C		

Table 1-1. Absolute Maximum Ratings¹

- 1. Values beyond which damage may occur
- 2. Pb-free/RoHS peak package solder reflow temp. (40 sec. max. exposure) 260 °C (+0, -5)

2. Thermal Data

Table 2-1. Thermal Data¹⁻²

Value	Units
30	°C/W
80	°C/W
40	°C/W
65	°C/W
50	°C/W
120	°C/W
35	°C/W
120	°C/W
	40 65 50 120 35

- 1. Junction temperature calculation: $T_I = T_A + (P_D \times \theta_{IA})$
- 2. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

3. Recommended Operating Conditions

Parameter	Value	Units
Input voltage (+V _{in})	8 to 40	V
Collector voltage	0 to 40	V
Error amp common mode range	1.8 to 3.4	V
Current limit sense common mode range	-0.3 to 0.3	V
Output current (each transistor)	0 to 50	mA
Reference load current	0 to 20	mA
Oscillator charging current	30 µA to 2 mA	μA, mA
Oscillator frequency range	100 Hz to 300 kHz	Hz, kHz
Oscillator timing resistor (R _T)	1.8 to 100	kΩ
Oscillator timing capacitor (C _T)	1 nF to 1.0 μF	nf, μF
Operating Ambient Temperature Rang	je	
SG1524	-55 to 125	°C
SG2524	-25 to 85	°C
SG3524	0 to 70	°C

Table 3-1. Recommended Operating Conditions¹

Note:

1. Range over which the device is functional and parameter limits are guaranteed.

4. Electrical Characteristics

(Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG1524 with –55 °C \leq T_A \leq 125 °C, SG2524 with –25 °C \leq T_A \leq 85 °C, SG3524 with 0 °C \leq T_A \leq 70 °C, and +V_{IN} = 20V. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Reference Section1Output voltage $T_J = 25 \ ^{\circ}C$ 4Line regulation $V_{IN} = 8V to 40V$ 4Load regulation $I_L = 0 to 20 \ mA$ 4Temperature stability2Over operating temperature range4Output voltage range2Over line, load and temperature4Short circuit current $V_{REF} = 0V$ 2Oscillator Section3Initial accuracy $T_J = 25 \ ^{\circ}C$ 4Voltage stability $V_{IN} = 8V to 40V$ 4Maximum frequency $RT = 2 \ k\Omega, \ CT = 1 \ nF$ 5Sawtooth peak voltage $V_{IN} = 40V$ 5	Min.	Тур.	Max.	Min			Units
Output voltage $T_J = 25 \ ^{\circ}C$ 4Line regulation $V_{IN} = 8V \text{ to } 40V$ 4Load regulation $I_L = 0 \text{ to } 20 \text{ mA}$ 4Temperature stability2Over operating temperature range4Output voltage range2Over line, load and temperature4Short circuit current $V_{REF} = 0V$ 2Oscillator Section3Initial accuracy $T_J = 25 \ ^{\circ}C$ 3Min $\leq TJ \leq Max$ 3Voltage stability $V_{IN} = 8V \text{ to } 40V$ 4Maximum frequency $RT = 2 \ k\Omega, \ CT = 1 \ nF$ 3Sawtooth peak voltage $V_{IN} = 40V$ 3				Min.	Тур.	Max.	Onnes
Line regulation $V_{IN} = 8V \text{ to } 40V$.Load regulation $I_L = 0 \text{ to } 20 \text{ mA}$.Temperature stability2Over operating temperature range.Output voltage range2Over line, load and temperature.Short circuit current $V_{REF} = 0V$.Dscillator Section3Initial accuracy $T_J = 25 \text{ °C}$.Min $\leq TJ \leq Max$ Voltage stability $V_{IN} = 8V \text{ to } 40V$.Maximum frequency $RT = 2 k\Omega, CT = 1 \text{ nF}$.Sawtooth peak voltage $V_{IN} = 40V$.							
Load regulation $I_L = 0$ to 20 mA-Temperature stability2Over operating temperature range-Output voltage range2Over line, load and temperature-Short circuit current $V_{REF} = 0V$ -Oscillator Section3Initial accuracy $T_J = 25 \text{ °C}$ -Min $\leq TJ \leq Max$ Voltage stability $V_{IN} = 8V$ to 40V-Maximum frequencyRT = 2 kQ, CT = 1 nF-Sawtooth peak voltage $V_{IN} = 40V$ -	4.80	5.00	5.20	4.60	5.00	5.40	V
Temperature stability2Over operating temperature rangeOutput voltage range2Over line, load and temperatureShort circuit current $V_{REF} = 0V$ Oscillator Section3Initial accuracy $T_J = 25 \text{ °C}$ Min $\leq TJ \leq Max$ Voltage stability $V_{IN} = 8V \text{ to } 40V$ Maximum frequencyRT = 2 k Ω , CT = 1 nFSawtooth peak voltage $V_{IN} = 40V$	-	_	20	—	—	30	mV
Output voltage range2Over line, load and temperatureShort circuit current $V_{REF} = 0V$ Oscillator Section3Initial accuracy $T_J = 25 \text{ °C}$ Min $\leq TJ \leq Max$ $Min \leq TJ \leq Max$ Voltage stability $V_{IN} = 8V$ to $40V$ Maximum frequency $RT = 2 k\Omega, CT = 1 nF$ Sawtooth peak voltage $V_{IN} = 40V$	_	_	50	—	—	50	mV
Short circuit current $V_{REF} = 0V$ 2Oscillator Section ³ Initial accuracy $T_J = 25 \text{ °C}$ 2Min $\leq TJ \leq Max$ 2Voltage stability $V_{IN} = 8V \text{ to } 40V$ 4Maximum frequencyRT = 2 k Ω , CT = 1 nF2Sawtooth peak voltage $V_{IN} = 40V$ 2	_	_	50	—	—	50	mV
Oscillator Section3Initial accuracy $T_J = 25 \ ^{\circ}C$ 2Min $\leq TJ \leq Max$ 2Voltage stability $V_{IN} = 8V \text{ to } 40V$ 2Maximum frequencyRT = 2 k Ω , CT = 1 nF2Sawtooth peak voltage $V_{IN} = 40V$ 2	4.80	_	5.20	4.60	—	5.40	V
Initial accuracy $T_J = 25 \text{ °C}$ Ξ Min $\leq TJ \leq Max$ Ξ Voltage stability $V_{IN} = 8V \text{ to } 40V$ Ξ Maximum frequencyRT = 2 k Ω , CT = 1 nF Ξ Sawtooth peak voltage $V_{IN} = 40V$ Ξ	25	50	150	25	50	150	mA
Min \leq TJ \leq MaxMin \leq TJ \leq MaxVoltage stability $V_{IN} = 8V$ to $40V$ AMaximum frequencyRT = 2 k Ω , CT = 1 nFCSawtooth peak voltage $V_{IN} = 40V$ C							
Voltage stability $V_{IN} = 8V \text{ to } 40V$.Maximum frequencyRT = 2 k Ω , CT = 1 nF.Sawtooth peak voltage $V_{IN} = 40V$.	36	40	44	36	40	44	kHz
Maximum frequencyRT = 2 k Ω , CT = 1 nF2Sawtooth peak voltage V_{IN} = 40V2	34	_	46	34	—	46	kHz
Sawtooth peak voltage V _{IN} = 40V	_	0.1	1	—	0.1	1	%
	200	400	_	200	400	_	kHz
Sawtooth valley voltage V _{IN} = 8V	3	_	3.8	3	—	3.8	V
	0.6	1	1.2	0.6	1	1.2	V
Clock amplitude	3.2	_	—	3.2	—	_	V
Clock pulse width	0.3	_	1.5	0.3	—	1.5	μs
Error Amplifier Section ⁴							
Input offset voltage $R_S \le 2 \ k\Omega$.	_	0.5	5	—	2	10	mV
Input bias current —	_	1	10	—	1	10	μA
Input offset current	_	_	1	—	_	2	μΑ
DC open loop gain $R_L \ge 10 \text{ M}\Omega, \text{ T}_J = 25 \text{ °C}$	72	_	—	60	—	_	dB
$Output \ low \ level \qquad \qquad V_{PIN \ 1} - V_{PIN \ 2} \geq 150 \ mV \qquad $	_	0.2	0.5	—	0.2	0.5	V
Output high level $V_{PIN 2} - V_{PIN 1} \ge 150 \text{ mV}$	3.8	4.2	—	3.8	4.2	—	V
Common mode rejection $V_{CM} = 1.8V$ to $3.4V$	70	_	_	—	—	_	dB
Supply voltage rejection V _{IN} = 8V to 40V	55	_	—	—	—	—	dB
Gain-bandwidth product ² $T_J = 25 \text{ °C}$	1	2	_	1	2	_	MHz
P.W.M. Comparator ³							
Minimum duty cycle $V_{COMP} = 0.5V$	_	_	0	—	_	0	%
Maximum duty cycle V _{COMP} = 3.6V	45	49	_	45	49	—	%
Current Limit Amplifier Section ⁵							
Sense voltage T _J = 25 °C	100						
Input bias current	190	200	210	180	200	220	mV

Table 4-1. Electrical Characteristics

continued									
Parameter	Test Conditions	S	G152	4/SG2	524	SG35	24		Units
		Μ	lin.	Тур.	Max.	Min.	Тур.	Max.	
Shutdown Section									
Threshold voltage	T _J = 25 °C	0.	.5	0.8	1.2	0.5	0.8	1.2	V
	$Min \le T_J \le Max$	0.	.2	_	1.8	0.2	_	1.8	V
Output Section (Each Transis	or)								
Collector leakage current	V _{CE} = 40V	_	-	_	50	_	_	50	μΑ
Collector saturation voltage	I _C = 50 mA	-	-	—	2	—	—	2	V
Emitter output voltage	I _E = 50 mA	17	7	_	—	17	—	—	V
Collector voltage rise time	$R_{C} = 2 k\Omega$	-	-	_	0.4	—	—	0.4	μs
Collector voltage fall time	$R_{C} = 2 k\Omega$	-	-	—	0.2	—	—	0.2	μs
Power Consumption									
Standby current	V _{IN} = 40V			7	10	_	7	10	mA

- 1. I_L = 0 mA
- 2. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.
- 3. F_{OSC} = 40 kHz (R_T = 2.9 kΩ, C_T = 0.01 µF)
- 4. V_{CM} = 2.5V
- 5. V_{CM} = 0V

5. Application Notes

5.1 Oscillator

The oscillator in the SG1524 uses an external resistor R_T to establish a constant charging current into an external capacitor C_T . While this uses more current than a series-connected RC, it provides a linear ramp voltage at C_T which is used as a time-dependent reference for the PWM comparator. The charging current is equal to 3.6V/ R_T , and should be restricted to between 30 µA and 2 mA. The equivalent range for R_T is 100k to 1.8k.

The range of values for C_T also has limits, as the discharge time of C_T determines the pulse width of the oscillator output pulse. The pulse is used (among other things) as a blanking pulse to both outputs to insure that there is no possibility of having both outputs on simultaneously during transitions. This output dead-time relationship is shown in Figure 5-1. A pulse width below 0.35 microseconds may cause failure of the internal flip-flop to toggle. This restricts the minimum value of C_T to 1000 pF. (Note: Although the oscillator output is a convenient oscilloscope sync input, the probe capacitance will increase the pulse width and decrease the oscillator frequency slightly.) Obviously, the upper limit to the pulse width is determined by the modulation range required in the power supply at the chosen switching frequency. Practical values of C_T fall between 1000 pF and 0.1 µF, although successful 120 Hz oscillators have been implemented with values up to 5 µF and a series surge limit resistor of 100 ohms.

The oscillator frequency is approximately $1/R_T \times C_T$; where R is in ohms, C is in microfarads, and the frequency is in Megahertz. For greater accuracy, the chart in Figure 5-2 may be used for a wide range of operating frequencies.

Note that for buck regulator topologies, the two outputs can be wire-ORed for an effective 0-90% duty cycle range. With this connection, the output frequency is the same as the oscillator frequency. For push-pull applications, the outputs are used separately; the flip-flop limits the duty cycle range at each output to 0-45%, and the effective switching frequency at the transformer is 1/2 the oscillator frequency.

If it is desired to synchronize the SG1524 to an external clock, a positive pulse may be applied to the clock pin. The oscillator should be programmed with R_T and C_T values that cause it to free-run at 90% of the external sync frequency. A sync pulse with a maximum logic 0 of +0.3 volts and a minimum logic 1 of +2.4 volts applied to Pin 3 will lock the oscillator to the external source. The minimum sync pulse-width should be 200 nanoseconds, and the maximum is determined by the required dead-time. The clock pin should never be driven more negative than -0.3 volts, nor more positive than +5.0 volts. The nominal resistance to ground is 3.2k at the clock pin, ±25% over temperature.

If two or more SG1524's must be synchronized together, program one controller unit with R_T and C_T for the desired frequency. Leave the R_T pins on the target open, connect the C_T pins to the C_T of the controller, and connect the clock pins to the clock pin of the controller. Since C_T is a high-impedance node, this sync technique works best when all devices are close together.

Figure 5-1. Output Stage Dead-time Vs. Ct

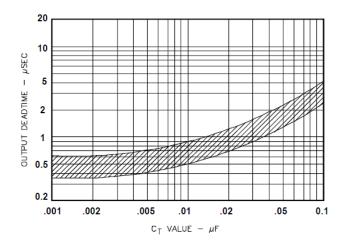
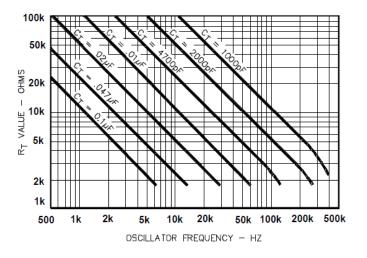



Figure 5-2. Oscillator Frequency Vs. R_T and C_T

5.2 Current Limiting

The current limiting circuitry of the SG1524 is shown in Figure 5-3. By matching the base-emitter voltages of Q1 and Q2 and assuming a negligible voltage drop across R1:

C.L. Threshold = $V_{BE}(Q1) + I_1 \times R_2 - V_{BE}(Q2) = I_1 \times R_2 \sim 200 \text{ mV}.$

Although this circuit provides a relatively small threshold with a negligible temperature coefficient, there are some limitations to its use because of its simplicity.

The most important of these is the limited common-mode voltage range: ± 0.3 volts around ground. This requires sensing in the ground or return line of the power supply. Also precautions should be taken to not turn on the parasitic substrate diode of the integrated circuit, even under transient conditions. A Schottky clamp diode at Pin 5 may be required in some configurations to achieve this.

A second factor to consider is that the response time is relatively slow. The current limit amplifier is internally compensated by R₁, C₁, and Q1, resulting in a roll-off pole at approximately 300 Hz. A third factor to consider is the bias current of the C.L. sense pins. A constant current of approximately 150 μ A flows out of Pin 4, and a variable current with a range of 0-150 μ A flows out of Pin 5. As a result, the equivalent source impedance seen by the current sense pins should be less than 50 ohms to keep the threshold error less than 5%.

Since the gain of this circuit is relatively low (42 dB), there is a transition region as the current limit amplifier takes over pulse width control from the error amplifier. For testing purposes, threshold is defined as the input voltage required to get 25% duty cycle (+2 volts at the error amplifier output) with the error amplifier signaling maximum duty cycle.

APPLICATION NOTE: If the current limit function is not used on the SG1524, the common-mode voltage range restriction requires both current sense pins to be grounded.

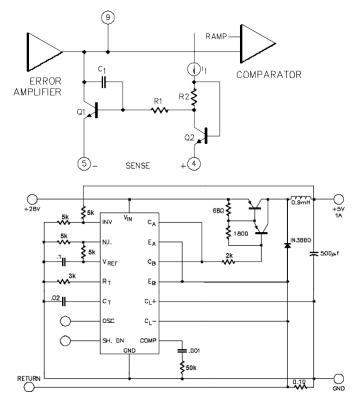
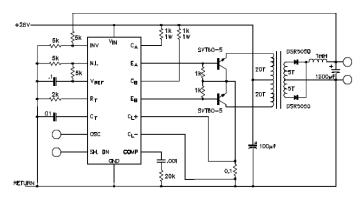



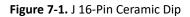
Figure 5-3. Current Limiting Circuitry of the SG1524

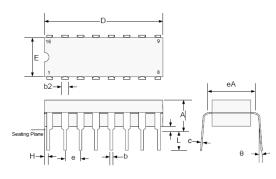
In this conventional single-ended regulator circuit, the two outputs of the SG1524 are connected in parallel for effective 0-90% duty-cycle modulation. The use of an output inductor requires and R-C phase compensation network for loop stability.

Push-pull outputs are used in this transformer-coupled DC-DC regulating converter. Note that the oscillator must be set at twice the desired output frequency as the SG1524's internal flip-flop divides the frequency by 2 as it switches the PWM signal from one output to the other. Current limiting is done here in the primary so that the pulse width will be reduced should transformer saturation occur.

6. Connection Diagrams and Ordering Information

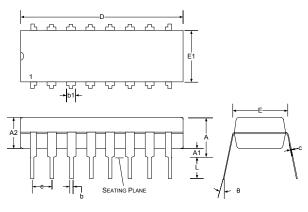
Package	Part No.	Ambient Temperature Range	Connection Diagram
16-Pin ceramic dip J-package	SG1524J-883B SG1524J-JAN SG1524J-DESC SG1524J SG2524J SG3524J	-55 °C to 125 °C -55 °C to 125 °C -55 °C to 125 °C -55 °C to 125 °C -25 °C to 125 °C -25 °C to 85 °C 0 °C to 70 °C	INV. INPUT $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 16 $\begin{bmatrix} V_{REF} \\ V_{IN} \end{bmatrix}$ OSC. OUTPUT $\begin{bmatrix} 2 \\ 15 \end{bmatrix}$ +V _{IN} OSC. OUTPUT $\begin{bmatrix} 3 \\ 14 \end{bmatrix}$ E _B +C.L. SENSE $\begin{bmatrix} 4 \\ 13 \end{bmatrix}$ C _B -C.L. SENSE $\begin{bmatrix} 5 \\ 12 \end{bmatrix}$ C _A R _T $\begin{bmatrix} 6 \\ 11 \end{bmatrix}$ E _A
16-Pin plastic dip N-package	SG2524N SG3524N	–25 °C to 85 °C 0 °C to 70 °C	C _T 7 10 SHUTDOWN GROUND 8 9 COMPENSATION N package: RoHS/Pb-free transition DC: 0503 ⁴ . 100% Matte tin lead finish.
16-Pin narrow body plastic SOIC D-package	SG2524D SG3524D	–25° C to 85 °C 0 °C to 70 °C	INV. INPUT $\begin{bmatrix} 1 & 16 \\ 1 & 16$


 Table 6-1.
 Connection Diagrams and Ordering Information¹⁻³


- 1. Contact factory for JAN product availability.
- 2. All packages are viewed from the top.
- 3. Hermetic packages J and L use Pb37/Sn63 hot solder lead finish. Contact factory for availability of RoHS versions.
- 4. RoHS compliant

7. Package Outline Dimensions

Controlling dimensions are in inches; metric equivalents are shown for general information.

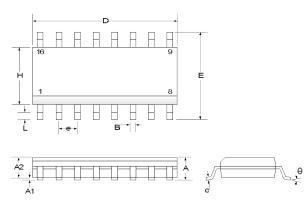


Dim. ¹	Millimeters	;	Inches	
Dim."	Min.	Max.	Min.	Max.
А	-	5.08	—	0.200
b	0.38	0.51	0.015	0.020
b2	1.04	1.65	0.045	0.065
с	0.20	0.38	0.008	0.015
D	19.30	19.94	0.760	0.785
E	5.59	7.11	0.220	0.280
е	2.54 BSC		0.100 BSC	
eA	7.37	7.87	0.290	0.310
Н	0.63	1.78	0.025	0.070
L	3.18	5.08	0.125	0.200
θ	-	15°	_	15°
Q	0.51	1.02	0.020	0.040

Note:

1. Dimensions do not include protrusions; these shall not exceed 0.155 mm (0.006") on any side. Lead dimension shall not include solder coverage.

Figure 7-2. N 16-Pin Plastic Dual Inline Package Dimensions


Dim. ¹	Millimeter	S	Inches		
	Min.	Max.	Min.	Max.	
А	—	5.33	—	0.210	
A1	0.38	—	0.015	—	
A2	3.30 Тур.		0.130 Тур.		
b	0.36	0.56	0.014	0.022	
b1	1.14	1.78	0.045	0.070	
с	0.20	0.36	0.008	0.014	
D	18.67	19.69	0.735	0.775	
е	2.54 BSC		0.100 BSC		
E	7.62	8.26	0.300	0.325	
E1	6.10	7.11	0.240	0.280	
L	2.92	0.381	0.115	0.150	
θ	_	15°	—	15°	

Note:

1. Dimensions do not include protrusions; these shall not exceed 0.155 mm (.006") on any side. Lead dimension shall not include solder coverage.

Figure 7-3. D 16-Pin Plastic SOIC

Dim. ¹	Millimeters		Inches		
Biili.	Min.	Max.	Min.	Max.	
A	1.35	1.75	0.053	0.069	
A1	0.10	0.25	0.004	0.010	
A2	1.25	1.52	0.049	0.060	
b	0.33	0.51	0.013	0.020	
с	0.19	0.25	0.007	0.010	
D	9.78	10.01	0.385	0.394	
E	5.79	6.20	0.228	0.244	
е	1.27 BSC		0.050 BSC		
Н	3.81	4.01	0.150	0.158	
L	0.40	1.27	0.016	0.050	
Θ	0	8	0	8	
LC ²	-	0.10	—	0.004	

- Dimensions do not include mold flash or protrusions; these shall not exceed 0.155 mm (.006") on any side. Lead dimension shall not include solder coverage.
- 2. Lead coplanarity

8. Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description
A	10/2023	Initial revision.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/ client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3321-1

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
handler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
el: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
echnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
/eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
lanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
l: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
x: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ıstin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
l: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
l: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ix: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
nicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
isca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
l: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
x: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ldison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
1: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
x: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
l: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen	161. 04-26-3446-2100	Tel: 31-416-690399
•	Tel: 86-592-2388138		Fax: 31-416-690340
bblesville, IN l: 317-773-8323	China - Zhuhai		
	Tel: 86-756-3210040		Norway - Trondheim Tel: 47-72884388
x: 317-773-5453 : 317-536-2380	101.00-730-3210040		Poland - Warsaw
s Angeles			Tel: 48-22-3325737
0			Romania - Bucharest
ission Viejo, CA			
1: 949-462-9523			Tel: 40-21-407-87-50
x: 949-462-9608			Spain - Madrid
l: 951-273-7800			Tel: 34-91-708-08-90
leigh, NC			Fax: 34-91-708-08-91
: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
l: 631-435-6000			Sweden - Stockholm
n Jose, CA			Tel: 46-8-5090-4654
l: 408-735-9110			UK - Wokingham
l: 408-436-4270			Tel: 44-118-921-5800
nada - Toronto			Fax: 44-118-921-5820
l: 905-695-1980			