Tektronix
 COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION AT THE REAR OF THIS MANUAL.

TM 5003
 POWER MODULE

Tektronix, Inc.
P.O. Box 500

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS ii
LIST OF TABLES iii
OPERATORS'S SAFETY SUMMARY iv
SERVICE SAFETY SUMMARY v
Section 1 SPECIFICATION
Instrument Description 1-1
Performance Conditions $1 \cdot 1$
Electrical Characteristics 1-1
Environmental Characteristics 1-4
Physical Characteristics $1-5$
Section 2 OPERATING INSTRUCTIONS
Introduction 2.1
Power Source Requirements 2-1
Fuse Replacement 2-1
Table Top Use $2 \cdot 1$
Plug-in Installation and Removal $2 \cdot 1$
Family Compatibility 2-2
Customizing the Interface 2-2
Rear Panel $2-2$
Option 02 2-2
Repackaging information 2.2
Stacking and Rackmounting $2 \cdot 4$
CAUTION
The following servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing other than that contained in operating instructions unless you are qualified to do so.

Section 3 THEORY OF OPERATION

Introduction 3-1
Line Selector and 60 Hz Transformer $3 \cdot 1$
Rectifiers and Filters $3 \cdot 1$
20 kHz Output Stage 3-1
Control Logic and Drivers 3-1
Output Regulator 3-3
Overvoltage and Overcurrent Detectors 3-4
Control Circuit Regulator 3.4
Main Interface 3-5
Page PageSection 4 CALIBRATION
Performance Check Procedure 4-1
Introduction 4-1
Test Equipment Required 4-1
Test Loads for the Performance
Check Procedure4-1
4-4
Performance Check Summary Sheet -
Internal Adjustment Procedure. $4-5$
Introduction 4-5
Services Available $4-5$
Test Equipment Required 4-5
Adjustment Access $4-5$
Power Limit Adjustment 4-5
Section 5 MAINTENANCE
Preparation for Use 5.1
Static Sensitive Components $5 \cdot 1$
Cleaning 5-2
Obtaining Replacement Parts 5-2
Soldering Techniques 5-3
Semiconductors 5-3
Multipin Connectors 5-3
Instrument Disassembly 5-3
Circuit Troubleshooting 5-6
Rear Interface Information 5-7
PWR Indicator 5-7
Pin Assignments 5.7
Section 6 OPTIONS
Introduction Option 02 6-1
System Design Directions 6.1
Wire Use 6-1
Section 7 REPLACEABLE ELECTRICAL PARTS
Section 8 DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONSComponent Reference ChartsSchematic Diagrams
Section 9 REPLACEABLE MECHANICAL PARTSFig. 1 Exploded View
Accessories

LIST OF ILLUSTRATIONS

Fig. No.		Page
2-1	TM 5003 rear panel	2-2
2-2	TM 5003 bottom view	2-3
2-3	TM 5003 front view	2-4
2-4	Plug-in installation and removal	$2 \cdot 5$
2.5	Keying assignments for family functions. One of the many possible sequence combinations	2-5
$3 \cdot 1$	Various waveforms and time relationships for power on, off, fault and low line.	3-2
3-2	Input line connections for 110 V and 220 V operation.	3-3
4-1	Possible loads for use in performance check procedure. See text	4-1
4-2	Test setup for performance check steps 1,2 and 3 and location of connections for adjustment step 1	4-3
4-3	Location of voltage buses and adjustments	4-5
5-1	Line cord options for the TM 5003	5-1
5-2	Line voltage jumper positions	5-2
5-3	Orientation and disassembly of multipin connector	5-3
5-4	Rear view of TM 5003	5-4
5.5	Guide rail and air baffle removal	5-4
$5 \cdot 6$	Removal of interface circuit board support.	$5 \cdot 4$
5.7	Removal of dc power supply primary board	$5 \cdot 4$
5-8	Partial de power supply primary board removal	5-5
$5 \cdot 9$	Secondary board and partial primary transtormer removal.	5-5
5-10	Location of PNP series pass transistors and partial transformer removal	5-5
5.11	NPN Series Pass Transistors	5-5
5-12	PWR signal timing diagram	5-7
5-13	Rear interface connector asignments	5-8
5-14	Rear panel GPIB connector J1110 viewed from fear of power module (IEEE Standard	
	No. 488).	5-9
8-1	Dc power supply, primary, secondary and line filter boards	
8-2	Dc power supply regulator waveforms	
8-3	Main interface board (A10)	
8.4	GPIB interconnect board (back side)	

LIST OF TABLES

Table
No. Page
1-1 Electrical Characteristics 1-1
1-2 Environmental Characteristics. 1.4
1-3 Physical Characteristics 1.5
4-1 Suggested Test Equipment 4-2
5-1 Relative Susceptibility to Static Discharge Damage 5-2
8-1 Partial A11, A13 and A14 Component
Reference Chart
8-2 Partial A11 Component Reference Chart
8-3 A10 Component Reference Chart

OPERATORS SAFETY SUMMARY

The general safety information in this part of the summary is for both operating and servicing personnel. Specific warnings and cautions will be found throughout the manual where they apply, but may not appear in this summary.

TERMS

In This Manual

CAUTION statements identify conditions or practices that could result in damage to the equipment or other property.

WARNING statements identify conditions or practices that could result in personal injury or loss of life.

As Marked on Equipment

CAUTION indicates a personal injury hazard not immediately accessible as one reads the marking, or a hazard to property including the equipment itself.

DANGER indicates a personal injury hazard immediately accessible as one reads the marking.

SYMBOLS

In This Manual

This symbol indicates where applicable cautionary or other information is to be found.

As Marked on Equipment

DANGER — High voltage.

Protective ground (earth) terminal.

ATTENTION - refer to manual.

Power Source

This product is intended to operate from a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This product is grounded through the grounding conductor of the power module power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the product input or output terminals. A protective ground connection by way of the grounding conductor in the power module power cord is essential for safe operation.

Danger Arising From Loss of Ground

Upon loss of the protective-ground connection, all accessible conductive parts (including knobs and controls that may appear to be insulating) can render an electric shock.

Use the Proper Fuse

To avoid fire hazard, use only the fuse of correct type, voltage rating and current rating as specified in the parts list for your product.

Refer fuse replacement to qualified service personnel.

Do Not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere unless it has been specifically certified for such operation.

Do Not Operate Without Covers

To avoid personal injury, do not remove the product covers or panels. Do not operate the product without the covers and panels properly installed.

SERVICE SAFETY SUMMARY FOR QUALIFIED SERVICE PERSONNEL ONLY

Refer also to the preceding Operators Safety Summary.

Do Not Service Alone

Do not perform internal service or adjustment of this product unless another person capable of rendering first aid and resuscitation is present.

Use Care When Servicing With Power On

Dangerous voltages may exist at several points in this product. To avoid personal injury, do not touch exposed connections and components while power is on.

Disconnect power before removing protective panels, soldering, or replacing components.

Abstract

Power Source This product is intended to operate from a power source that will not apply more than 250 volts rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

SPECIFICATION

Instrument Description

The TM 5003 is a three compartment power module compatible with TM 500-5000 series plug-ins. The power module features a pulse width modulated switching do power supply. All dc voltages are regulated. The unit has forced air cooling.

Three individual connectors, one for each compartment, provide connections to each GPIB compatible plug-in. These connectors feed to a GPIB interface board, then to a standard GPIB connector on the rear panel. All GPIB connections are separate from the board rear interface connector.

Performance Conditions

The electrical characteristics in this specification are valid only if the TM 5003 has been adjusted at an ambient temperature between $+20^{\circ} \mathrm{C}$ and $+30^{\circ} \mathrm{C}$. The instrument must
be in a noncondensing environment whose limits are described under the environmental part. Allow 30 minutes warm-up time for operation to specified accuracy; 60 minutes after exposure to or storage in a high humidity (condensing) environment. Any conditions that are unique to a particular characteristic are expressly stated as part of that characteristic.

The electrical and environmental performance limits; together with their related validation procedures, comprise a complete statement of the electrical and environmental performance of a calibrated instrument.

Items listed in the Performance Requirements column of the Electrical Characteristics are verified by completing the Performance Check in the Calibration section of this manual. Items listed in the Supplemental Information column are not verified in this manual.

Table 1-1
ELECTRICAL CHARACTERISTICS

Characteristics	Performance Requirements	Supplemental Information
Supplies		
$+26 \mathrm{~V} \mathrm{dc}$		
Tolerance ${ }^{\text {a }}$	+23.7V to 28.3 V	
PARD $^{\text {b }}$		$\leqslant 2.5 \mathrm{~V}$ peak to peak
Maximum load		1 A per compartment
Maximum load $\frac{\mathrm{di}}{\mathrm{dt}}$		$10 \mathrm{~mA} / \mu \mathrm{S}$
$-26 \mathrm{~V} \mathrm{dc}$		
Tolerance ${ }^{\text {a }}$	-23.7V to -28.3V	
PARD ${ }^{\text {b }}$		$\leqslant 2.5 \mathrm{~V}$ peak to peak
Maximum load		1 A per compartment
Maximum load $\frac{\mathrm{di}}{\mathrm{dt}}$		$10 \mathrm{~mA} / \mu \mathrm{S}$

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Information
$+8 \mathrm{Vdc}$		
Tolerance ${ }^{\text {a }}$	+7.6V to $+8.5 V$	
PARD ${ }^{\text {b }}$		$\leqslant 600 \mathrm{mV}$ peak to peak
Maximum load		3 A per compartment
Maximum load $\frac{\mathrm{di}}{\mathrm{dt}}$		$20 \mathrm{~mA} / \mu \mathrm{S}$
25 V ac (2 each compartment)		
Range		$\begin{aligned} & 25.0 \mathrm{~V} \text { rms }+10 \%,-15 \% \\ & \text { floating } \end{aligned}$
Maximum load		1 A rms per winding
Maximum floating voltage		350 V peak from chassis ground
17.5 V		
		$20.5 V+10 \%,-20 \%$ with grounded center tap
Maximum load		350 mA per compartment
Maximum plug-in power ${ }^{\mathrm{c}}$ draw from mainframe		30 watts dc or 50 VA ac
Combined power draw ${ }^{c}$ Sharing Limitation		$\mathrm{VA}_{\mathrm{ac}}+2.67\left(\right.$ watts $\left._{\text {dc }}\right) \leqslant 100$
Series Pass Transistors		
Type		One NPN and PNP per compartment
Maximum dissipation		10 W each, 20 W total
Maximum floating voltage		350 V peak
Source Power Requirements		
Voltage Ranges		Selectable (nominal): $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}, 200 \mathrm{~V}$. 220 V , and 240 V . (250 V maximum on 240 V range)
Tolerance		+ $7 \%-10 \%$
Line Frequency		48 Hz to 60 Hz
Maximum Power Consumption		300 VA

Table 1-1 (cont)

Characteristics	Performance Requirements	Supplemental Iniormation
Fuse Data $100 \mathrm{~V}, 110 \mathrm{~V}, 120 \mathrm{~V}$ ranges		$4 \mathrm{~A}, 3 \mathrm{AG}$, medium blow
$200 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$ ranges		$2 \mathrm{~A}, 3 \mathrm{AG}$, fast blow
Miscellaneous Maximum recommended plug-In power dissipation One-wide		
Two-wide		15 W
Recommended adjustment interval		1000 W

${ }^{\text {a }}$ Worst case: Low line with full load and high line with no load. These limits include PARD.
${ }^{\text {b Periodic and Random Deviation. See National Electrical Manufacturers Association (NEMA) Standards Publication No. PY1-1972. }}$
${ }^{\mathrm{c}}$ At nominal line voltage.

Table 1-2
ENVIRONMENTAL CHARACTERISTICS

Characteristics	Description
Temperature	Meets MiL-T-28800B, class 5.
Operating ${ }^{\text {a }}$	$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Non-operating	$-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Humidity ${ }^{\text {a }}$	$95 \% \mathrm{RH}, 0^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ Exceeds MIL-T-28800B, $75 \% \mathrm{RH}$, to $40^{\circ} \mathrm{C}$ class 5. $45 \% \mathrm{RH}$, to $50^{\circ} \mathrm{C}$
Altitude	Exceeds MIL-T-28800B, class 5.
Operating ${ }^{\text {a }}$	4.6 Km ($15,000 \mathrm{ft})$
Non-operating	$15 \mathrm{Km}(50,000 \mathrm{ft})$
Vibration ${ }^{\text {c }}$	$0.38 \mathrm{~mm}\left(0.015^{\prime \prime}\right)$ Meets MIL-T-28800B, peak to peak, 5 Hz to class 5. $55 \mathrm{~Hz}, 75$ minutes.
Shock ${ }^{\text {c }}$	30 g 's ($1 / 2 \mathrm{sine}$) 11 ms duration, 3 shocks in each direction along 3 major axes, 18 total shocks. Meets MIL-T-28800B, class 5.
Bench Handling ${ }^{\text {c }}$	12 drops from 45° Meets MIL-T-28800B, $4^{\prime \prime}$ or equillbrium, which- class 5. ever occurs first.
Transportation ${ }^{\text {d }}$	Qualified under National Safe Transit Association Preshipment Test Procedures 1A-B-1 and 1A-B-2.
EMC	Within limits of MIL-461A tests RE02, CE01, CE03, RS01, CS01, CS02 and VDE 0871.
Electrical Discharge	20 kV maximum charge applied to instrument case.

EElectrical load in accordance with Section 2.2.1.
${ }^{\text {b }}$ System environmental specifications subject to individual plug-in specifications.
cTested with mechanical load of $9.5 \mathrm{lbs} . \pm 1 / 2 \mathrm{lb}$. evenly distributed. (A three-wide plug-in with three rear support pins and two rear interface ECB's.) Requires retainer clips.
dWithout mechanical load (plug-ins).

Table 1-3
PHYSICAL CHARACTERISTICS

Characteristics	
Maximum recommended plug-in weight	
One wide	$3 \mathrm{lbs}(1.4 \mathrm{~kg})$
Two wide	$6 \mathrm{lbs}(2.7 \mathrm{~kg})$
Net weight (without plug-ins)	$19 \mathrm{lbs}(8.6 \mathrm{~kg})$
Maximum overall dimensions	
Height	$193.8 \mathrm{~mm}(7.63$ inches)
Width	$229.84 \mathrm{~mm}(9.049$ inches)
Length	$476 \mathrm{~mm}(18.74$ inches)
Enclosure type and style per	
MIL-T-28800B	
Type	Iii
Style	E (with 040 rackmount kit style F)
Finish	Powder coated aluminum
Frame	Vinyl clad aluminum
Covers	

OPERATING INSTRUCTIONS

Introduction

The TM 5003 Power Module is calibrated and ready for use when received. A list of standard accessories (and part numbers) is located in the back of this manual.

Power Source Requirements

WARNING

AC Power Source and Connection. This instrument operates from a single-phase power source. It has a three-wire power cord and two-pole, three-terminal grounding type plug. The voltage to ground (earth) from either pole of the power source must not exceed the maximum rated operating voltage, 250 volts.

Before making connection to the power source, determine that the instrument is adjusted to match the voltage of the power source, and has a suitable two-pole, three-terminal grounding-type plug. Refer any changes to qualified service personnel.

Grounding. This instrument is safety class I equipment (IEC designation). All accessible conductive parts are directly connected through the grounding conductor of the power cord to the grounding contact of the power plug.

The power input plug must only be inserted in a mating receptacle with a grounding contact. Do not defeat the grounding connection. Any interruption of the grounding connection can create an electric shock hazard.

For electric shock protection, the grounding connection must be made before making connection to the instrument's input or output terminals.

See Fig. 2-1. Refer to the line voltage and fuse data label on the rear panel.

To ensure proper cooling, do not operate the power module with any cover removed.

Fuse Replacement

Turn the slotted section of the line fuse holder counterclockwise and remove the fuse. Replace the fuse with the proper type as shown on the rear panel label.

Table Top Use

The power module may be operated with the front raised. To raise the front of the instrument extend the front feet as shown in Fig. 2-2.

Plug-In Installation and Removal

Turn the power module off before inserting or removing the plug-in; otherwise, damage may occur to the plug-in circuitry.

NOTE
The DC 505, DC 505A and LA 501W plug-ins are not compatible with this power module.

Check to see that the plastic barriers on the interconnecting jack of the selected power module compartment match the cutouts in the plug-in circuit board edge connector. Align the plug-in chassis with the upper and lower guides (see Fig. 2-3 and 2-4) of the selected compartment. Push the plug-in chassis in and press firmly to seat the circuit board edge connector in the interconnecting jack. Turn the power module on.

Fig. 2-1. TM 5003 rear panel.

Family Compatibility

Mechanically, TM 500-5000 plug-in modules are very similar to other Tektronix product families. However, they are not electrically compatible. Therefore, the TM 5003 interface has barriers on the mating connectors between pins 6 and 7 to ensure that incompatible plug-ins cannot be inserted. See Fig. 2-5. A compatible module will have a matching slot between pins 6 and 7 of its main circuit board edge connector. This slot and barrier combination is the primary keying assignment.

TM 500-5000 compatible plug-in modules are also identified by the white color of the release latch.

Customizing the Interface

The modularity of this instrumentation system provides for many different functions to be performed by the plug-in modules. Specific functions are grouped into families or classes, of which there may be several plug-in module members. For instance, some classes are Power Supplies, Signal Sources, Measurement, and so forth. Each module member of a functional family will have a second slot, peculiar to its family assignment, located in its edge connector. The TM 5003 user can select one or more compartments, to accept only members of that family, by installing a second
barrier in the interface connector to match the module's slot location. An entire TM 5003 can be set up in this manner for specific work functions. For extra barriers, order Tektronix Part No. 214-1593-02.

Rear Panel

The rear subpanel has a connector mounting plate for bnc and multipin connector mountings. Customer or factoryinstalled connectors and wiring (Option 02) can provide external access to the interface. This feature makes the TM 500-5000 Series Modular Instrumentation System very flexible in bench-top or rack mounted systems.

Option 02

Qualified service personnel see Section 6 in the Service Section of this manual for information on Option 02.

Repackaging Information

If the Tektronix instrument is shipped to a Tektronix Service Center for service or repair, attach a tag showing owner (with address) and the name of an individual at your firm to contact. Include the complete instrument serial number and a description of the service required.

Fig. 2-2. TM 5003 bottom view.

Fig. 2-3. TM 5003 front view.

Save and reuse the package in which your instrument was shipped. If the original packaging is unfit for use or not available, repackage the instrument as follows:

Surround the instrument with polyethylene sheeting to protect the instrument finish. Obtain a carton of corrogated cardboard of the correct carton strength having inside dimensions of no less than six inches more than the instrument dimensions. Cushion the instrument by tightly packing three inches of dunnage or urethane foam between carton and instrument on all sides. Seal the carton with shipping tape or an industrial stapler.

The carton test strength for this instrument is 350 pounds per square inch.

Stacking and Rackmounting

TM 5003s with their cabinets and feet in place may be stacked on top of each other. Give adequate spacing for the necessary ventilation.

The TM 5003 is designed to be half-rack width. Field conversion kits with slide-out tracks are available to mount one or two TM 5003s or a TM 5003 and other instruments, in a standard 19 -inch rack. Vertical space needed is 7 inches.

Fig. 2-4. Plug-in installation and removal.

Fig. 2-5. Keying assignments for family functions. One of many possible sequence combinations.

THEORY OF OPERATION

Introduction

For ease in understanding, this description refers to the schematics located in the pullout pages at the rear of this manual. Also refer to the block diagram located in the pullout pages and the timing diagram in Fig. 3-1. Each block in the block diagram is outlined on the schematics.

The TM 5003 uses a pulse width modulated switching supply for dc voltages. A 60 Hz transformer provides the ac voltages necessary for plug-in operation. Connections to the six plug-in compartments as well as the series pass transistors are shown on schematic

Line Selector and 60 Hz Transformer

Ac power is applied to the voltage-select terminals through FL500 and a discrete line filter composed of T1000, L1000 and L1100. Line transients are filtered to ground through C1000 and C1100.

The two primary windings on 1500 are connected in parallel for 115 V operation or in series for 230 V operation. Winding taps are provided for various line voltages around the nominal values. The secondaries provide ac voltages to the various plug-in compartments.

Rectifiers and Filters

The ac line voltage is applied through negative temperalure coefficient resistances RT1020 and RT1110 to the rectifier diodes. As these resistances are highest when cold, the surge currents, charging the high voltage capacitors when line voltage is applied, are limited, thus preventing component failure. These resistors then self heat to a low resistance.

In 220 V operation the four diodes function as a bridge rectifier. See Fig. 3-2. When the voltage select circuit is set for 110 V operation only the two series diodes operate. The circuit then becomes a voltage doubler with an output of approximately 350 V dc. The neon bulb in this circuit flashes to indicate when dc voltage is present.

The rectified and filtered dc is applied through L1220 and C1210, a low pass filter, and passes through R1210 and CR1303, to the collector of Q1301.

20 kHz Output Stage

The output stage is a half bridge type with proportional base drive. The turns' ratios and phasing of T1430 are such that only a small amount of base drive power is needed to start conduction in either Q1301 or Q1300. Positive feedback from T1430 supplies base current for the remainder of the power cycle. When both base drive transistors, Q1400 and Q1401, (shown on schematic 2>) are saturated, T1740 is essentially shorted, terminating base current for either output transistor. Output transistors Q1300 and Q1301 alternately conduct at a 20 kHz rate. Their on and off times are adjusted by the regulation circuitry. Diodes CR 1300 and CR 1301 prevent base to coiiecior current flow in Q1300 and Q1301 at turn off. The base switching action of these transistors is improved by networks C1401 and R1400 for Q1301, and C1411 and R1410 for Q1300. A series resonant filter between the transistors and the output transformer, T1210, is composed of C1320 and L1200. During Q1300 and Q1301 off time, the tank current generated by L1200 and C1320 passes through CR1302 and CR1300.

The 20 kHz output voltage is stepped down to the correct levels by J1210.

Three sets of full wave diode rectifiers are provided for each of the three dc voltage outputs. Schottky diodes are used in the +8 V supply for reduced forward voltage drop. All filters are L-C pi-sections. Bleeder resistors are provided for all filter capacitors.

Control Logic and Drivers

U1620E and U1620F are inverting amplifiers. Their outputs control the base drive transistors Q1401 and Q1400. Collector voltage for these transistors is applied from the 10 V bus through a center tapped winding on the base drive transformer (T1430). Reverse polarities across Q1401 or Q1400 are prevented by CR 1501 and CR 1500. When either one or both of these transistors (Q1730, Q1731) are on, either one or both of the output transistors (Q1300, Q1301) are off. The bases of Q1400 and Q1401 are also controlled, through R1511 and R1520, by the collector of Q1650. During power up or power down, the collector of Q1650 goes positive. This action turns Q1401 and Q1400 on to turn the output transistors off. This is necessary as the control circuitry is undefined during power up or power down.

Fig. 3-2. Input line connections for 110 V and 220 V operation.

When pins 1 of U1610A and 13 of U1610B are low, no drive is applied to the output stage. With one gate output high and the other low base drive is applied to one output transistor. Input pins 5 and 10 connect to the wait flip flop, U1720A. Input pins 3 and 12 connect to U1720B, the dead time multivibrator. Input pins 4 and 1 connect to the output of the stop monostable, U1600A. Pins 2 and 9 connect to the complement outputs of the divide by 2 flip flop, U1600B. With any one or all of these inputs high, the output lines are low and no drive is applied to one or both of the output transistors.

The dead time multivibrator circuitry determines the minimum off time of the output trtansistors. Dead time is necessary to allow one output transistor to completely turn off before the other turns on. At start up the A input (pin 12) of U1720B goes low. This allows U1720B to trigger on the clock signal at the B input (pin 11). The minimum timing period of $U 1720 \mathrm{~B}$, determined by R1610 and C 1700 , is $5 \mu \mathrm{~s}$. This pulse width is lengthened by C1710, CR1710 and CR1711 as the voltage on C1730 and C1831 is decreased. The pulse width of the power supply output varies for soft start and power limit. When pin 10 of U1720B is high, both output transistors are off.

Dead time or output transistor off time is maximum with C1730 and C1831 discharged and minimum charged. The output power available gradually increases as these capacitors charge during soft start. The soft start prevents high input currents, to capacitors, from damaging circuit components. When pin 6 of the wait multivibrator U1720A goes high for any reason (fault), pin 8 of U1620D goes low discharging C1730 and C1831. Under normal operation, when power is turned on, C1730 and C1831 charge to the voltage at pin 8 of U16200 as determined by R1820 and R1830. This takes approximately $1 / 2$ second.

The power limit control is R1830. For maximum power this control must be in the full clockwise position (maximum resistance). For servicing the control can be adjusted for reduced power output levels. This is accomplished by reducing the resistance of R1830, limiting the voltage across C1730 and C1831.

The purpose of flip flop U1600A is to vary the on time of the output transistors consistent with the output voltage level. When pin 6 of U1600A goes high, pin 1 also goes high. This action shuts down the base drive circuitry, reducing power output. The length of time pin 6 remains high is controlled by the Output Regulator circuitry. The rising portion of the waveform at pin 4 of U1600A resets the flip flop for a low condition at pin 1.

Flip flop U1600B divides the 40 kHz output waveform from U 1720 B to 20 kHz . The pulse from the dead time multivibrator, $\mathrm{U1720B}$, is applied to the clock terminal (pin 11) of $U 1600 B$. The Q terminal of $U 1600 \mathrm{~B}$ is connected to its D input. The multivibrator U 1600 B toggles on the rising edges of the dead time multivibrator (U 1720 B) output.

Output Regulator

The 40 kHz clock oscillator, which provides the basic timing necessary for the control circuitry, is composed of U1620A, B and C. Feedback occurs from pin 6 of U1620C and pin 4 of U1620B to pin 1 of U1620A. The output voltage at pin 4 of U1620B is high for about $4 \mu \mathrm{~S}$ and low about $21 \mu 5$. This nonsymmetrical duty cycle is accomplished by CR1720 and is necessary for proper operation of U1720B.

The positive going output pulses from the clock oscillator charge C1450 to about 9.5 V through CR1610. When the positive pulse at pin 4 of U1620B drops to $0 \mathrm{~V}, \mathrm{C} 1450$ discharges through R1452 causing a falling ramp waveform of about 50 mV peak to peak amplitude to appear at pin 4 of U1540A.

The +8 V from the power supply output is applied to voltage adjust potentiometer R1530. The voltage on pin 4 of U1540A is +7.15 V , the reference voltage generated in U1550. Also, on pin 4 is a negative going 40 kHz ramp as previously described. This ramp is ac coupled to pin 4 through C1451. On the rising edge of each clock pulse, the ramp goes positive rapidly. Pin 2 of U1540A is low. At some point, during the ramp decay, the ramp voltage and the feedback voltage at pin 5 are equal. At this point, pin 2 goes high, terminating the drive pulse through the logic circuitry,. The higher the output voltage, the earlier in the ramp cycle pin 2 goes high.

Overvoltage and Overcurrent Detectors

Pin 11 of U1540D, the negative overvoltage detector. connects to a voltage divider between the -26 V supply and the reference +7.15 V . Should pin 11 go more negative than pin 10, pin 13 goes low shutting off the output. The input of U1540D is protected from a negative voltage by CR1840.

Primary current in output transformer T1210 flows through T1000 <1>. The secondary voltage of T1000 is proportional to the primary current. The secondary voltage of T1000 is rectified by CR1511, CR1512, CR1502 and CR1510 and terminated in R1510. When the primary current in T1000 exceeds a predetermined limit, the voltage at pin 6 of U 1540 B exceeds the 7.15 V reference at pin 7 . Pin 1 goes low turning off the output transistors via the wait multivibrator.

The +26 V is applied through R1462 and CR1451 to pin 8 of U1540C, the positive overvoitage detector. The +8 V is also applied through R1453 and CR1450 to pin 8. Pin 9 of comparator $U 1540 \mathrm{C}$ connects to the +7.15 V reference voltage. If pin 8 of U1540C goes more positive, pin 14 goes low. This action triggers U1720A the wait multivibrator, turning the supply off for about 3 seconds. The soft start cycle follows. The negative going pulse from U1540C is time delayed by R1840 and C1830.

When +10 V is applied at power up. C1630 holds pin 3 (clear) of U1720A low for a short period. This overrides the A and B inputs of U1720A, causing pin 6, the Q output, to remain low. Overvoltage or overcurrent causes a low at pin 4 of U1720A causing one high level pulse of about 3 sec onds duration at pin 6 . This 3 second pulse duration time is
determined by C 1620 and R1720. The clock pulse retriggers U1720A if the fault persists. The purpose of CR1730 is to discharge C1630 when ac power is removed from the supply. Noise from the limit circuitry is filtered by C1830.

Control Circuit Regulator

The 16 V ac winding on $T 500$ is applied through F1660 to rectifier diode CR1561, which charges filter capacitor C1761 to approximately +20 V . The +20 V is applied to voltage regulator U1550. This regulator outputs two voitages: +10 V which is used throughout the entire supply and +7.15 V , a reference voltage, at pin 6 .

The line detector circuitry is composed of CR1560, C1851, Q1650 and associated components. When normal line voltage is applied, the voltage across C1851 is approximately 20 V . Transistor Q1650 is on and pin 2 of U1550 is about 0.2 V above ground. If about two cycles of line voltage are missed or the line voltage goes low Q1650 no longer saturates. The collector of Q1650 rises, disabling the series pass transistor located internally in U1550. The +10 V is removed from the power supply during line drop out to prevent discharge of the main filter capacitors in the output stage. Positive feedback is provided through R1750 to the base of Q1650 to improve the switching action.

The PWR signal circuitry (U1850) provides a signal to each compartment in the power module to give power supply status information to the plug-ins. See the rear interface information part of the Maintenance section (Section 50 of this manual for timning information.

Pin 7 of U 1850 goes low when the rising voltage at pins 2 and 6 reaches $2 / 3$ of the value of the voltage connected to pin $4(+10 \mathrm{~V})$. Pin 7 of $U 1850$ connects to the base of Q1125 3 . This transistor inverts the signal from pin 7 to the plug-in compartments.

When the line power goes low or off, pin 13 of U 1550 goes low. This action raises pin 7 of U1850 turning off the PWR signal. Pin 7 of U1720A is also low during the 3 second wait state. The cathode of CR1830 is pulled low which turns off the PWR signal.

The soft start feature also controls the PWR signal. This is accomplished through R1821.

When a fault occurs, pin 6 of U1720A goes high. When the fault is removed pin 6 of U1720A goes low causing pin 8 of U1620D to go high. As the voltage at the junction of R1821 and R1820 goes high pin 6 and 2 of U1860 also go high causing the PWR signal to go high.

Main Interface 3

The various ac and dc supply voltages as specified are available at the rear interface connectors for each plug-in
compartment. Each compartment has a pnp and an npn transistor intended as series pass elements. Connecting pins to these elements are shown on the schematic.

WARNING

THE FOLLOWING SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID PERSONAL INJURY, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

CALIBRATION

PERFORMANCE CHECK PROCEDURE

Introduction

This procedure checks the Electrical Performance Requirements as listed in the Specification section in this manual. Perform the internal adjustment procedure if the instrument fails to meet these checks. If recalibration does not correct the discrepancy, circuit troubleshooting is indicated. Also, use this procedure to determine acceptability of performance in an incoming inspection facility.

Performance check may be done at any ambient temperature between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$.

Test Equipment Required

The test equipment listed in Table 4-1, or equivalent, is suggested to perform the performance check in the adjustment procedure.

WARNING

Dangerous voltages are present inside this instrument. Exercise caution as this procedure requires removal of the power supply cover.

Test Loads For The Performance Check Procedure

To do the performance check procedure the supplies must be loaded. Maximum load for the +8 V supply is 9 A and for the 26 V supplies 3A. Maximum dissipation from these loads is 72 W and 78 W . The total power draw from any combination of the +8 V and $\pm 26 \mathrm{~V}$ supplies is 90 W or 30 W per compartment. Figure 4-1 shows suggested loads.

Fig. 4-1. Possible loads for use in performance check procedure. See text.

Any combinations of resistors with sufficient dissipation is satisfactory. Connect the loads to the instrument with not over 1.5 feet, for each lead, of 12 AWG for the 8 V load and 16 AWG for the 26 V load. The ground lead should not exceed 1.5 feet of length and must be \#12 AWG or larger. For convenience, use quick disconnect terminals to connect the loads to the voltage buses in the instrument (Tektronix Part Number 131-1563-00).

Table 4-1
sugGested test Equipment

Description	Minimum Requirements	Performance Check Step	Adjustment Procedure Step	Recommended Equipment
Digital Multimeter	$+8 \mathrm{~V},-26 \mathrm{~V}$, +26 V	All	1	Tektronix DM 505
Test Load Unit	All		See text	
Variable Voltage Transformer	All	1	VARIAC W10MT3W Autotransformer General Radio USA	

As considerable heat is generated in the test loads do not apply power longer than necessary to complete tests.

1. Check +26 Vdc

a. Connect the test equipment as shown in Fig. 4-2. Adjust the line voltage to the TM 5003 for 10% below the nominal line voltage.
b. Set the load for maximum.
c. CHECK-that the dvm reads from +23.7 V to +28.3 V .
d. Change the line voltage to 7% above the nominal.
e. Remove the load from the supply.
f. Set the +8 V load for maximum.
g. CHECK-that the supply reads from +23.7 V to $+28.3 \mathrm{~V}$
h. Remove the connections to the +26 V bus for the next step.

2. Check - 26 Vdc

a. Connect the test equipment as shown in Fig. 4-2. Adjust the line voltage to the TM 5003 for 10% below the nominal line voltage.
b. Set the -26 V load for maximum.
c. CHECK-that the dvm reads from -23.7 V to -28.3 V .
d. Change the line voltage to 7% above the nominal.
e. Remove the -26 load from the supply.
f. Set the +8 V load for maximum.
g. CHECK-that the supply reads from -23.7 V to -28.3 V .
h. Remove the connections to the -26 V bus for the next step.

3. Check +8 Vdc

a. Connect the test equipment as shown in Fig. 4-2. Adjust the line voltage to the TM 5003 for 10% below the nominal line voltage.
b. Set the +8 V load for maximum.
c. CHECK- that the dvm reads from +7.6 V to +8.5 V .
d. Change the line voltage to 7% above the nominal.
e. Remove the load from the supply.

Fig. 4-2. Test setup for performance check steps 1,2 and 3 and location of connections for adjustment step 1.

[^0]g. Remove all connections

PERFORMANCE CHECK SUMMARY SHEET

This sheet may be duplicated and used as a short form performance check procedure. Perform the check and record the reading in the "Measured" column. Compare the reading with the upper and lower limits. After maintenance or adjustment again perform the procedure and compare the readings.

Step	Description	Minimum	Measured	Maximum

INTERNAL ADJUSTMENT PROCEDURE

Introduction

This procedure should be performed if the instrument fails to meet the performance requirements of the electrical characteristics listed in the specification section of this manual. To ensure continued instrument accuracy, it is recommended that adjustment be performed every 1000 hours of operation or every 6 months if used infrequently. Adjustment is also recommended following instrument repair or modification. Adjustments must be made in an ambient temperature of $+20^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$.

Services Available

Tektronix. Inc. provides complete instrument repair and adjustment at local field service centers and at the factory service center. Contact your local Tektronix field office or representative for further information.

Test Equipment Required

Test equipment (or equivalent) listed in Table 4-1 is required for adjustment of the TM 5003. Specifications given for the test equipment of the minimum necessary for accurate adjustment. All test equipment is assumed to be correctly calibrated at operating within specification. If other test equipment is substituted, the calibration setup may need to be altered to meet the requirements of the equipment used.

Adjustment Access

Remove the top cover to gain access to the +8 V and ground buses and the adjustment. Figure 4-3 shows the adjustment locations.

Power Limit Adjustment

The Pwr Lim adjustment R1830 is used for troubleshooting only. Before commencing calibration make certain this adjustment is fully cow.

1. Adjust 8 V Adj

a. Connect the dmm to the +8 V and Gnd terminals as shown in Fig. 4-2. The voltage bus location is shown in Fig. 4-3.

Fig. 4-3. Locations of voltage buses and adjustments.
b. Set the line voltage to nominal for the selected range.
c. CHECK -for a reading of 8.2 V .
d. ADJUST-R1530, 8 V Adj, for a dviri reading of 8.2 V .
e. Remove all connections.
f. This completes the internal adjustment procedure.

MAINTENANCE

Preparation For Use

Figure 5-1 illustrates the line cord options available for the TM 5003. Fuse data is printed on the rear panel and in the specification section of this manual. After determining the nominal line voltage, refer to Fig. 5-2 for proper jumper positions. Select the line voltage closest to the nominal for the range used.

Static Sensitive Components

CAUTIOM
Static discharge can damage any semiconductor component in this instrument.

This instrument contains electrical components that are susceptible to damage from static discharge. See Table 5-1 for relative susceptibility of various classes of semiconductors. Static voltages of 1 kV to 30 kV are common in unprotected environments.

Observe the following precautions to avoid damage:

1. Minimize handling of static-sensitive components.
2. Transport and store static-sensitive components or assemblies in their original containers, on a metal rail, or on conductive foam. Label any package that contains static-sensitive assemblies or components.
3. Discharge the static voltage from your body by wearing a wrist strap while handling these components. Servicing static-sensitive assemblies or components should be peformed only at a static-free work station by qualified service personnel.
4. Nothing capable of generating or holding a static charge should be allowed on the work station surface.
5. Keep the component leads shorted together whenever possible.
6. Pick up components by the body, never by the leads.
7. Do not slide the components over any surface.
8. Avoid handling components in areas that have a floor or work surface covering capable of generating a static charge.

Fig. 5-1. Line cord options tor the TM 5003.

Fig. 5-2. Line voltage jumper positions.
9. Use a soldering iron that is connected to earth ground.
10. Use only special antistatic suction type or wick type desoldering tools.

Table 5-1
RELATIVE SUSCEPTIBILITY TO STATIC DISCHARGE DAMAGE

Cleaning

This instrument should be cleaned as often as operating conditions require. Loose dust accumulated on the outside of the instrument can be removed with a soft cloth or small brush. Remove dirt that remains with a soft cloth dampened in a mild detergent and water solution. Do not use abrasive cleaners.

The best way to clean the interior is to blow off the accumulated dust with dry, low-velocity air (approximately 5 $\mathrm{lb} / \mathrm{in}^{2}$) or use a soft brush or cloth dampened with a mild detergent and water solution.

Circuit boards and components must be dry before applying power.

Obtaining Replacement Parts

Electrical and mechanical parts can be obtained through your local Tektronix Field Office or representative. However, it may be possible to obtain many of the standard electronic components from a local commercial source. Before purchasing or ordering a part from a source other than Tektronix, inc., check the Replaceable Electrical Parts list for the proper value, rating, tolerance, and description.

NOTE

When selecting replacement parts, remember that the physical size and shape of a component may affect its performance in the instrument.

Some parts are manufactured or selected by Tektronix, Inc., to satisfy particular requirements or are manufactured for Tektronix, Inc., to our specifications. Most of the mechanical parts used in this instrument have been manufactured by Tektronix, Inc. To determine the manufacturer, refer to the Replaceable Parts list and the Cross Reference index, Mfr. Code Number to Manufacturer.

When ordering replacement parts from Tektronix, Inc., include the following information:

1. Instrument type and option number.
2. Instrument serial number.
3. A description of the part (if electrical, include complete circuit number).
4. Tektronix part number.

Soldering Techniques

WARNING

To avoid electric-shock hazard, disconnect the instrument from the power source before soldering.

The reliability and accuracy of this instrument can be maintained only if proper soldering techniques are used when repairing or replacing parts. General soldering techniques which apply to maintenance of any precision electronic equipment should be used when working on this instrument. Use only $60 / 40$ rosin-core, electronic grade solder. The choice of soldering iron is determined by the repair to be made.

When soldering on circuit boards or small wiring, use only a 15 watt, pencil type soldering iron. A higher wattage soldering iron can cause the etched circuit wiring to separate from the board base material and melt the insulation from small wiring. Always keep the soldering iron tip properly tinned to ensure the best heat transfer to the solder joint. Apply only enough heat to remove the component or to make a good solder joint. To protect heat sensitive components, hold the component lead with a pair of long-nose pliers between the component body and the solder joint. Use a solder removing wick to remove excess solder from connections or to clean circuit board pads.

Semiconductors

To remove in-line integrated circuits use an extracting tool. This tool is available from Tektronix, Inc.; order Tektronix Part Number 003-0619-00. If an extracting tool is not available, use care to avoid damaging the pins. Pull slowly and evenly on both ends of the integrated circuit. Try to avoid disengaging one end before the other end.

Multipin Connectors

The pin connectors used to connect the wires to the interconnecting pins are clamped to the ends of the wires. To replace damaged multi-pin connectors, remove the old pin connector from the holder. Do this by inserting a scribe between the connector and the holder and prying the connector from the holder. Clamp the replacement connector to the wire. Reinstall the connector in the holder.

If the individual end lead pin connectors are removed from the plastic holder, note the order of the individual wires for correct replacement in the holder. For proper replacement see Fig. 5-3.

Fig. 5-3. Orientation and disassembly of multipin connectors.

Instrument Disassembly

WARNING

Use caution when operating this instrument with the side panels removed as dangerous voltages are present.

To remove the top, bottom and side panels, remove the four screws attaching the feet to the rear of the instrument and slide the panels to the rear. See Fig. 5-4. To remove the interface circuit board, remove the plug-in guide rails and air baffles shown in Fig. 5-5. Next remove the interface circuit board support by removing the screws shown in Fig. 5-6. Before removing the main interface circuit board, make certain the connections to the board are either unplugged or unsoldered. Remove the two screws holding the board to the mainframe. To remove the rear panel, remove the four screws shown in Fig. 5-4. After these screws are removed, the rear panel may be laid aside. To remove the dc power supply primary board remove the screws shown in Fig. 5-7 and Fig. 5-8. See Fig. 5-9 to remove the secondary board. Fig. 5-10 also shows the location of the PNP series pass transistors. The NPN series pass transistors are shown on Fig. 5-11 after removal of the dc power supply primary board. Fig. 5-9 and Fig. 5-10 also show primary power transformer removal.

WARNING

Dangerous voltages may be present on the filter capacitors on the dc power supply board for several minutes after line voltage removal.

Remove these screws and feel and slide the covers to the rear. Remove the inner four corner screws to remove the instrument backplate.

Fig. 5-4. Rear view of TM 5003.

Fig. 5-5. Guide rail and air baffle removal.

When reinstalling the connections to the series-pass transistors, make certain the connections are correct.

These screws attach the interface board support. After this support is removed, remove two screws to remove the interface board.

Fig. 5-6. Removal of interface circuit board.

Fig. 5-7. Removal of dc power supply primary board.

Fig. 5-8. Partial dc power supply primary board removal.

Remove these screws and those shown on Fig. 5-10 to
\qquad remove transformer assembly.

Fig. 5-9. Secondary board and partial primary transformer removal.

Fig. 5-10. Location of PNP series pass transistors and partial transformer removal.

Fig. 5-11. NPN series pass transistors.

Circuit Troubleshooting

To help locate a fault in the dc power supply, first disconnect P1463. The location of this plug on the interface board may be determined from the parts location grids located in the pullout pages at the rear of this manual. Make certain the line selector is properly set. Connect the power module to a variable voltage transformer. Slowly apply line voltage to the power module. Observe the indicator lamp DS1320. The location of this lamp may be determined from the parts location grids, also. If the lamp flashes at a regular rate, the high voltage (300 VDC) supply is probably operating properly. Turn off the line power. Turn the PWR LIM (R1830)
fully ccw. The location of this control is shown in the parts location grid. Replace P1463. Connect a dVm across the 8 V bus. Apply ac line power at the nominal line voltage to the power module. Slowly turn the PWR LIM control R1830 clockwise and observe the dVm reading. The Dvm should read from about 7.5 V to about 8.5 V when R1830 is fully cw. Next adjust the +8 V ADJ, R1530, for exactly 8.20 V at no load with nominal line voltage. Next check the voltage across R1510, the current sense resistor. This should be from about 0.2 V to about 0.4 V . Verify the current limit by shorting out any of the voltage buses and noting the recovery of the supply after about a 3 second delay. Check the +26 V outputs for limits within specification.

REAR INTERFACE INFORMATION

PWR Indicator

A signal out on pin 6B on the rear interface connector provides the plug-ins with power supply status information. See Fig. 5-12. This signal is TTL compatible with $\leqslant 30 \Omega$ output impedance. The maximum plug-in load per compartment is one standard TTL load. No pullup resistors are allowed. The maximum capacitance per compartment must not exceed 150 pF . The fall and rise time (tf and tr) is \leqslant $5 \mu \mathrm{~s}$.

Pin Assignments

Figure $5-3$ shows the pin assignments for the power module outputs. Pins 14 through 28 are reserved for signal connections. See sections 2 and 6 of this manual and the plug-in manuals for further information.

Figure 5-4 shows the pin assignments for the GPIB rear panel connector.

t_{0} mainframe power switch is turned on.
$t_{\text {! }}$ mainframe supplies stabilize within specified limits.
(t_{0} to $\mathrm{t}_{1} \approx 0.5 \mathrm{~s}$).
t_{2} PWR goes high and remains high until the mainframe power switch is turned off or a fault condition occurs. (t_{1} to $t_{2} \approx 0.5$ s).
t_{3} PWR goes low. This transition will occur at least 150μ sec prior to the +8 V supply dropping below 15% of its specified value. This transition occurs either when the power switch is turned off, or when the power supply detects an overcurrent or overvoltage fault condition. The $150 \mu \mathrm{sec}$ is not guaranteed under all fault conditions.

Fig. 5-12. PWR signal timing diagram.

Interface connections viewed from rear of power module. Pins 14 through $\mathbf{2 8}$ are used for signal connections.

Fig. 5-13. Rear interface connector assignments.

Rear panel GPIB connector $\$ 1110$ viewed from rear of power module (IEEE Standard No. 488).

Fig. 5-14. Rear panel GPIB connector J1110 viewed from rear of power module (IEEE Standard No. 488).

OPTIONS

Introduction Option 02

This factory installed option adds 25 -mil square pin connectors to the rear of the interconnecting jacks at all pins from 14A and B to pins 28A and B. This option also adds three bnc connectors and one 25-pin connector to the rear panel. These connectors are not prewired in order to give as much flexibility as possible. Prepared jumpers, coax cables, and interconnection jack barriers are included in the TM 5003.

System Design Directions

1. Plan the plug-in location in the mainframe based on operator convenience as well as interface connections.
2. Plan the wiring between interconnecting jacks and to the rear panel connectors before starting assembly. A mating rear panel 25 -pin connector is provided for external cabling.

NOTE

There are no pin assignments for the rear panel connectors, due to the great variety of possible connections.

When high frequency or fast digital signals are involved, plan the wiring to minimize crosstalk. Make allowance for possible auxiliary ground connections.

The 25-pin rear panel connector may be easier to connect if it is removed from the rear panel and remounted after connections are made. Remove the top rear cabinet piece for ease of access.
3. Pin assignments for individual plug-ins will be found in the appropriate instruction manual.
4. Instail an interconnection jack barrier at the appropriate tocation on the interconnection jack. Reter back to operating instructions for keying assignments for family functions.
5. Select and install the wires (hookup or coaxial cable) following the guidetines in the Wire Use part of these instructions.
6. Wires or cables which may be at large potential differences should be dressed or bundled so as to avoid contact. Keep all interface wiring away from the power module primary line wiring.

Maximum input voltage is $\leqslant 60 \mathrm{Vdc}$ or $\leqslant 42.4 \mathrm{Vdc}$ peak to peak. Limit input power to $\leqslant 150 \mathrm{~W}$ per comnection.
7. There is an empty cutout which will mount the standard IEC digital interface connector. The connector is not supplied with this option.

Wire Use

1. Hook up wire with square pin receptacles on both ends. These may be used for low frequency or dc circuits where impedance levels and crosstalk are not a problem. The wire is supplied for connection between compartments (adjacent or nonadjacent) or between a compartment and the rear panel. For connection to the rear panel, cut to length then tin and soider the end going to the rear panel connector.
2. Coaxial wire with square pin receptacles on both ends. These are used for connections which require shieiding or which must maintain a 50Ω characteristic impedance. The outer conductor should be connected to either chassis ground or circuit ground. Plug-in lines which require coax leads usually have a specified ground pin assignment. If necessary, establish auxiliary ground connections at the appropriate wire ends. The coaxial wire is supplied for connection between compartments (adjacent or nonadjacent) or between a compartment and the rear panel. For connection to the rear panel, cut to length then tin and solder the end going to the rear panel connector.

REPLACEABLE ELECTRICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are avalable from or through your loca: Tektronix, inc. Field Office or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part your local Tekironix, Inc. Field Office or representative will contact you concerning any change in part number.

Charge information, if any, is located at the rear of this manua:

LIST OF ASSEMBLIES

A list of assemblies can be found at the beginning of the Electrical Parts List. The assemblies are listed in numerical order. When the complete component num ber of a part is known, this list will identify the assembly in which the part is located.

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

The Mtr. Code Number to Manufacturer index for the Electrical Parts List is located immediately after this page. The Cross Index provides codes, names and addresses of manufacturers of components listed in the Electrical Parts List.

ABBREVIATIONS
Aboreviations conform to American National Standard Y1.1.

COMPONENT NUMBER (column one of the Electrical Parts List)

A numbering method has been used to identify assemblies, subassemblies and parts. Examples of this numbering method and typical expansions are illustrated by the following:

Read: Resistor 1234 of Assembly 23

Read: Reslslor 1234 of Subassembly 2 of Assembly 23

Only the circuit number will appear on the diagrams and circuit board illustrations. Each diagram and circuit board iflustration is clearly marked with the assembly number. Assembly numbers are also marked on the mechanical exploded views located in the Mechanical Parts List. The component number is obtained by adding the assembly number prefix to the circuit number.

The Electrica! Parts List is divided and arranged by assemblies in numerical sequence (e.g., assembly $A T$ with its subassemblies and parts, precedes assembly A2 with its subassemblies and parts).

Chassis-mounted parts have no assembly number prefix and are located at the end of the Electrical Parts List.

TEKTRONIX PART NO. (column two of the Electrical Parts List)

Indicates part number to be used when ordering replacement part from Tektronix.

SERIAL/MODEL NO. (columns three and four of the Electrical Parts List)

Column three (3) indicates the serial number at which the part was first used. Column four (4) indicates the serial number at which the part was removed. No serial number entered indicates part is good for all serial numbers.

NAME \& DESCRIPTION (column five of the Electrical Parts List)

In the Parts List, an Item Name is separated from the description by a colon (!). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H6-1 can be utilized where possibte.

MFR. CODE (column six of the Electrical Parts List)

Indicates the code number of the actual manufacturer of the part. (Code to name and address cross reference can be found immediately after this page.)

MFR. PART NUMBER (column seven of the Electrical Parts List)

Indicates actual manufacturers part number.

Mir. Code	Manufacturer	Address	City, State, Zip
000FJ	MARCOM SWITCHES INC.	67 ALBANY STREET	CAZENOVIA, N.Y. 13035
00779	AMP, INC.	P O BOX 3608	HARRISBURG, PA 17105
00853	SANGAMO ELECTRIC CO., S. Carolina div.	P O BOX 128	PICKENS, SC 29671
01002	general electric company, industrial		
	AND POWER CAPACITOR PRODUCTS DEPARTMENT	JOHN STREET	HUDSON FALLS, NY 12839
01121	ALLEN-BRADLEY COMPANY	1201 2ND STREET SOUTH	MILWAUKEE, WI 53204
01281	TRW ELECTRONIC COMPONENTS, SEMICONDUCTOR operations	14520 AVIATION BLVD.	LAWNDALE, CA 90260
01295	texas instruments, inc., semiconductor GROUP	P O BOX 50I2, 13500 N CENTRAL EXPRESSWAY	DALLAS, TX 75222
02777	HOPKINS ENGINEERING COMPANY	12900 FOOTHILL BLVD.	SAN FERNANDO, CA 91342
03508	general electric company, semi-conductor PRODUCTS DEPARTMENT	ELECTRONICS PARK	SYRACUSE, NY 13201
04222	AVX CERAMICS, DIVISION OF AVX CORP.	P O BOX 867, 19TH AVE. SOUTH	MYRTLE BEACH, SC 29577
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
05397	UNION CARBIDE CORPORATION, MATERIALS SYSTEMS DIVISION	11901 Madison avenue	CLEVELAND, OH 44101
05828	general instrument corp electronic SYSTEMS DIV.	600 W IOHN ST.	HTCKSVILLE LI, NY 11802
0726.3	FAIRCHILD SEMICONDUCTOR, A DIV. OF FAIRCHILD CAMERA AND INSTRUMENT CORP.	464 ELLIS STREET	MOUNTAIN VIEW, CA 94042
08057	MAGNETICS DIV Of SPANG INDST. LNC.	230 ADRIAN RD.	MILLbRAE, CA 94030
12969	UNITRODE CORPORATION	580 PLEASANT STREET	WATERTOWN, MA 02172
141.93	CAL-R, INC.	1601 OLYMPIC BLVD.	SANTA MONICA, CA 90404
14433	ITT SEMICONDUCTORS	3301 ELECTRONICS WAY PO BOX 3049	WEST PALM BEACH, FL 33402
14552	MICRO SEMICONDUCTOR CORP.	2830 F FAIRVIEW ST.	SANTA ANA, CA 92704
14604	ELMNOOD SENSORS, INC.	1655 ELMWOOD AVENUE	CRANSTON, RI 02907
14752	ELECTRO CUBE INC.	1710 S. DEL MAR AVE.	SAN GABRIEL, CA 91776
15454	RODAN INDUSTRIES, INC.	2905 BLUE STAR ST.	ANAHEIM, CA 92806
22526	BERG ELECTRONICS, INC.	YOUK EXPRRESSWAY	NEW CUMBERLAND, PA 17070
27014	NATIONAL SEMICONDUCTOR CORP.	2900 SEMICONDUCTOR DR.	SANTA CLARA, CA 95051
27264	MOLEX PRODUCTS CO.	5224 KATRINE AVE.	DOWNERS GROVE, IL 60515
32997	BOURNS, INC., TRIMPOT PRODUCTS DIV.	1200 COLUMBIA AVE.	RIVERSIDE, CA 92507
54473	MATSUSHITA ELECTRIC, CORP. OF AMERICA	1 PANASONIC WAY	SECAUCUS, NJ 07094
55210	GETTIG ENG. AND MFG. COMPANY	PO BOX 85, OFF ROUTE 45	SPRING MILLS, PA 16875
55680	NICHICON/AMERICA/CORP.	6435 N PROESEL AVENUE	CHICAGO, IL 60645
56289	SPRAGUE ELECTRIC CO.	87 Marshall St.	NORTH ADAMS, MA 01247
59660	TUSONIX INC.	2155 N FORBES BLVD	TUCSON, AZ 85705
71400	BUSSMAN MFG., DIVISION OF MCGRAWEDISON CO.	2536 W . UNIVERSITY ST.	ST. LOUIS, M0 63107
72982	ERIE TECHNOLOGICAL PRODUCTS, INC.	644 W .12 TH ST.	ERIE, PA 16.512
74276	SIGNALITE DIV., GENERAL INSTRUMENT CORP.	1933 HECK AVE.	NEPTUNE, NJ 07753
75042	TRW ELECTRONIC COMPONENTS, IRC FIXED RESISTORS, PHILADELPHIA DIVISION	401 N. BROAD ST.	PHILADELPhIA, PA 19108
78488	STACKPOLE CARBON CO.		St. Marys, Pa 15857
80009	TEKTRONIX, INC.	P O BOX 500	BEAVERTON, OR 97077
82877	ROTRON, INC.	7-9 HASBROUCK LANE	WOODSTOCK, NY 12498
84411	TRW ELECTRONIC COMPONENTS, TRW CAPACITORS	112 W.	OGALLALA, NE 69153
90201	MALLORY CAPACITOR CO., DIV. OF P. R. MALLORY AND CO., INC.	3029 E. WASHINGTON STREET P. O. BOX 372	INDIANAPOLIS, IN 46206
91637	DALE ELECTRONICS, INC.	P. O. BOX 609	COLUMBUS, NE 68601
95238	CONTINENTAL CONNECTOR CORP.	34-63 56TH ST.	WOODSIDE, NY 11377

Component No .	Textronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A10	670-6800-00		CKT board assy:main interconnect	80009	670-6800-00
			(Standard only)		
A10	670-6898-00		CKT BOARD ASSY:MAIN INTERCONNECT	80009	670-6898-00
			(OPTION 02 ONLY)		
All	670-6802-00		CKT board assy: Power supply secondary	80009	670-6802-00
Al3	670-6801-00		CKT board assy:poher supply primary	80009	670-6801-00
A14	670-7057-00		CKT board assy:line filter	80009	670-7057-00
A16	670-7179-00		CKT board assy:g ibib interface	80009	670-7179-00

Al0	----- -----
A10C1010	281-0774-00
Al0C1011	281-0775-00
Al0C1012	281-0775-00
A10c1020	281-0775-00
Al0cto21	281-0774-00
Al0C1110	281-0774-00
Al0C1210	281-0774-00
A10C1211	281-0775-00
Al0C1212	281-0775-00
A10C1213	281-0774-00
A10C1220	281-0775-00
A10Cl221	281-0774-00
A10Cl310	281-0774-00
A10C1311	281-0775-00
A10C1312	281-0775-00
A10C1320	281-0775-00
Al0C1321	281-0774-00
Al0CR 1010	152-0198-00
Alocrioll	152-0198-00
Al0CR1120	152-0198-00
al0e 500	276-0599-00
A10J1000	131-1078-00
Al0J1110	131-0608-00
Al0.J1110	131-0608-00
AlOJ 1200	131-1078-00
Al0J1300	131-1078-00
Al0Q1125	151-0462-00
Al0rlil2	308-0142-00
AlOR1126	315-0332-00
AlORI 127	308-0740-00
AlOR1210	315-0100-00

CKT BOARD ASSY:MAIN LNTERCONNECT CAP., FXD, CER DI: $0.0220 \mathrm{~F}, 20 \%, 100 \mathrm{~V}$ CAP., FXD, CER DI:0.1UF, 20%, 50 V CAP., FXD, CER DI:0.1UF, 20\%,50V

72982 8005D9AAB250104M 72982 8005D9AAB2SU104M 72982 8005D9AABZ5U104M CAP., FXD, CER DI:0.022UF, $20 \%, 100 \mathrm{~V}$

CAP., FXD, CER DI:0.022UF, 20\%,100V CAP., FXD, CER DI: $0.022 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$ CAP., FXD, CER DI:0.1UF, $20 \%, 50 \mathrm{~V}$ CAP., FXD, CER DI:0.1UF, 20\%, 50V CAF., FXD, CER DI:0.022UF, $20 \%, 1004$ CAP., FXD, CER DI:0.1UF, 20%, 50 V

CAP.,FXD,CER DI:0.022UF, 20\%, 100 V CAP., FXD, CER DI: $0.0220 \mathrm{~F}, 20 \%, 100 \mathrm{~V}$
CAP., FXD, CER DI:0.1UF, 20\%, 50V
CAP., FXD , CER DI:0.1UF, 20\%, 50V
CAP., FXD, CER DI: $0.1 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$
CAP., FXD, CER DI: $0.022 \mathrm{UF}, 20 \%, 100 \mathrm{~V}$
SEMICOND DEVICE:SILICON, 200V,3A SEMICOND DEVICE: SILICON, 200V,3A SEMICOND DEVICE:SILICON, 200V,3A CORE, EM:TOROID, FERRITE 0.615 OD CONNECTOR,RCPT::28/56 CONTACT TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025 \mathrm{PH}$ BRZ GOLD (QTY OF 33 STANDARD)

TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD 2252647357
(QTY OF 93 OPTLON 02)
CONNECTOR,RCPT,:28/56 CONTACT 95238 600-1156Y256DF30
CONNECTOR,RCPT, :28/56 CONTACT 95238 600-1156Y256DF30
TRANSISTOR: SILICON, PNP
RES.,FXD, WW: 30 OHM, 5%, 3W
RES.,FXD,CMPSN: 3.3K OHM, $5 \%, 0.25 \mathrm{~W}$
RES., FXD, WW: 20 OHM, 1%, 3 W
RES., FXD, CMPSN: 10 OHM, $5 \%, 0.25 \mathrm{w}$

95238	$600-1156 Y 2560 F 30$
04713	TIP 30 C

91637 RS2B-K30R00J

01121 CB3325
91637 RS2B-K20RU0F
01121 CB1005

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mfr Part Number
All	----- -----		CKT BOARD ASSY: POWER SUPPLY SECONDARY		
Allci020	283-0203-00		CAP., FXD, CER DI: $0.47 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8131N075E474M
A11C1030	290-0901-00		CAP. , FXD, ELCTLT: $800 \mathrm{UF},+50-10 \%, 50 \mathrm{~V}$	05397	VPR811N050N1L3B
Allc1210	283-0203-00		CAP, ,FXD, CER DI: $0.47 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8131 NO 075474 M
AllC1230	290-0901-00		CAP., FXD, ELCTLT: $800 \mathrm{UF},+50-10 \%, 50 \mathrm{~V}$	05397	VPR811N050N1L3B
AllC1231	290-0818-00		CAP, , FXD, ELCTLT: 390UF, +100-10\%,40V	56289	672D397H040DS5C
Al1C1240	290-0818-00		CAP., FXD , ELCTLT : 390UF , +100-10\%, 40V	56289	672D397H040DS5C
AllC1310	283-0203-00		CAP., FXD, CER DI: $0.47 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8131N075E474M
AllC1320	290-0929-00		CAP. , FXD, ELCTLT: 66000F $,+100-10 \%, 12 \mathrm{~V}$	90201	VPR662NO12N2C3B
AllCl340	290-0929-00		CAP. , FXD, ELCTLT : 6600UF $,+100-10 \%, 12 \mathrm{~V}$	90201	VPR662NO12N2C3B
A11C1410	281-0813-00		CAP., FXD CER DI:0.047UF, $20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
Al1C1411	283-0203-00		CAP.,FXD, CER DI:0.47UF, $20 \%, 50 \mathrm{~V}$	72982	8131 N 075 E 474 M
A 11 Cl 412	283-0203-00		CAP.,FXD, CER DI: $0.47 \mathrm{UF}, 20 \%, 50 \mathrm{~V}$	72982	8131N075E474M
All 1420	290-0929-00		CAP. , FXD , ELCTLT: $6600 \mathrm{UF},+100-10 \%, 12 \mathrm{~V}$	90201	VPR662N01 2N2C3B
AllCl450	285-0889-00		CAP., FXD, PLSTC: $0.0027 \mathrm{UF}, 5 \%, 100 \mathrm{~V}$	01002	61F10AC272
Al1C1451	281-0773-00		CAP., FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	6C70-1C103K
Al1C1620	290-0804-00		CAP, , FXD, ELCTLT: $10 \mathrm{UF},+50-10 \%, 25 \mathrm{~V}$	55680	25ULAIOV-T'
Al1C1621	283-0680-00		CAP., FXD, MICA D: 330PF, $1 \%, 500 \mathrm{~V}$	00853	D155E331F0
Al1c1630	281-0773-00		CAP.,FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	6070-10103k
AllCl631	281-0775-00		CAP., FXD, CER DI:0.1UF,20\%, 50V	72982	8005D9AABZ5U104M
A11C1640	283-0142-00		CAP., FXD, CER DI:0.0027UF, $5 \%, 200 \mathrm{~V}$	59660	875-571-Y5E0272J
AllC164l	281-0813-00		CAP., FXD CER DI:0.047UF, $20 \%, 50 \mathrm{~V}$	04222	GC705-E-473M
AllCl700	283-0672-00		CAP., FXD, MICA D: $200 \mathrm{PF}, 1 \%, 500 \mathrm{~V}$	00853	D155F2010F0
Al1C1710	283-0659-00		CAP.,FXD, MICA D: $1160 \mathrm{PF}, 2 \%, 500 \mathrm{~V}$	00853	0195c116160
Al1cl730	290-0771-00		CAP., FXD, ELCTLT : $2200 \mathrm{~F},+50-10 \%, 10 \mathrm{VDC}$	54473	ECE-AlOV220L
AllCl740	281-0814-00		CAP., FXD, CER DI: $100 \mathrm{PF}, 10 \%, 100 \mathrm{~V}$	04222	GC70-1-A101K
Al1C1760	290-0804-00		CAP., FXD, ELCTLT: 10UF, $+50-10 \%, 25 \mathrm{~V}$	55680	25ULAIOV-T
AllCl761	290-0919-00		CAP.,FXD, ELCTLT:470UF, $+50-10 \%$, 35V	55680	35ULB470-T
All C1830	281-0788-00		CAP.,FXD, CER DI:470PF, $10 \%, 100 \mathrm{~V}$	72982	8005H9AADW5R471K
Al1C1831	290-0771-00		CAP., FXD, ELCTLT : 220 UF , +50-10\%, 10VDC	54473	ECE-AIOV220L
Al1C1850	281-0773-00		CAP, , FXD, CER DI: $0.01 \mathrm{UF}, 10 \%, 100 \mathrm{~V}$	04222	6C70-1Cl03K
AllCl851	290-0891-00		CAP., FXD, ELCTLT : $1 \mathrm{UF},+75-10 \%, 50 \mathrm{~V}$	55680	25U1Al0V-T
AllCR500	152-0762-00		SEMICOND DEVICE:SILICON, $35 \mathrm{~V}, 30 \mathrm{~A}$	01281	SD-241
AllCR1010	152-0655-00		SEMICOND DEVICE: SILICON, 100V, 3A	03508	Al 15 AX 39
AllCRL020	152-0655-00		SEMICOND DEVICE; SILICON, $100 \mathrm{~V}, 3 \mathrm{~A}$	03508	Al 154 AX 39
AllCR1021	152-0655-00		SEMICOND DEVICE:SILICON, $100 \mathrm{~V}, 3 \mathrm{~A}$	03508	Al15AX39
AllCR1120	152-0655-00		SEMICOND DEVICE:SILICON, 100V, 3A	03508	Al15AX39
AllCR1450	152-0141-02		SEMICOND DEVICE: SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
AllCR1451	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
AllCR1500	152-0107-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 400 \mathrm{MA}$	01295	G727
AllCR1501	152-0107-00		SEMICOND DEVICE:SILICON, 400V,400MA	01295	G727
AllCR1502	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1 N 4152 R
AllCR1510	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
AllCR1511	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
AllCR1512	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
AllCR1550	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
AllCR1560	152-0066-00		SEMICOND DEVICE:SILICON, 400V,750MA	14433	LG4016
AllCR1561	152-0066-00		SEMICOND DEVICE:SILICON, 400V, 750 MA	14433	LG4016
AllCR1610	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
AllCR1640	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152R
AllCR1660	152-0066-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 750 \mathrm{MA}$	14433	LG4016
AllCR1661	152-0066-00		SEMICOND DEVICE:SILICON, 400V,750MA	14433	LG4016
Al1CR1710	152-0141-02		SEMICOND DEVICE:SILICON, $30 \mathrm{~V}, 150 \mathrm{MA}$	01295	1N4152R
A) 1 CR1711	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R
AllCR1720	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1*4152R
AllCR1730	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1N4152k
AllCR1731	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150MA	01295	1N4152R

Component No.	Tektronix Part No.	Serial/Modet No. Eff Dscont	Name \& Description	Mir Code	Mir Part Number
A11CR1830	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
A11CR1840	152-0141-02		SEMICOND DEVICE:SILICON, 30V, 150 MA	01295	1 N 4152 R
AllCR1841	152-0141-02		SEMICOND DEVICE:SILICON, 30V,150MA	01295	1N4152R
A. 1E500	276-0635-00		CORE, EM: TOROID, FERRITE	08057	7J-41405-TC
Al1F1660	159-0022-00		FUSE, CARTRIDGE: 3AG, 1A, 250V, FAST-BLOW	71400	AGC 1
AllJ1060	131-1816-00		TERM, QIK DISC.:0.25 X 0.315×0.032 DOUBLE	00779	41480
Al1J1160	131-1816-00		TERM, QIK DISC. $0.25 \times 0.315 \times 0.032$ DOUBLE	00779	41480
Al1J1260	131-1816-00		TERM,QIK DISC. $0.025 \times 0.315 \times 0.032$ DOUBLE	00779	41480
AllJl300	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025 \mathrm{PH}$ BRZ GOLD (QTY 3)	22526	47357
Al1J 1360	131-1816-00		TERM, QIK DISC.:0.25 X 0.315×0.032 DOUBLE	00779	41480
A11J1463	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025 \mathrm{PH}$ BRZ GOLD (QTY 3)	22526	47357
A1lLI 140	108-1041-00		COIL, RF:FXD, 25UH	80009	108-1041-00
Al1E1141	108-1041-00		COIL, RF:FXD, 25UH	80009	108-1041-00
Al1L1430	108-1022~00		COIL, RF:FIXED, 11UH	80009	108-1022-00
Al 1 Q1400	151-0302-00		TRANSISTOR:SILICON,NPN	07263	5038487
AllQ1401	151-0302-00		TRANSISTOR:SILICON, NPN	07263	S038487
Al1Q1650	151-0190-00		TRANSISTOR:SILICON, NPN	07263	S032677
AllR1150	308-0426-00		RES., FXD, WW: 470 OHM, $5 \%, 3 \mathrm{~W}$	91637	CW2B-470ROJ
Al1R1250	308-0426-00		RES. , FXD, WW: 470 OHM, $5 \%, 3 \mathrm{~W}$	91637	CW2B-470ROJ
AllR1350	308-0402-00		RES.,FXD, WW: 30 OHM,5\%,5W	14193	SAV46
AllR1360	321-0338-00		RES., FXD, FILM: 32.4 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFFi816G32401F
Al1R1361	315-0751-00		RES., FXD, CMPSN: 750 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C67515
A11R1400	315-0751-00		RES., FXD, CMPSN: 750 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C67515
Al1R1410	3:5-0103-00		RES , FXX , CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
A11R1440	321-0249-00		RES.,FXD,FILM: 3.83 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G38300F
AllR144]	321-0279-00		RES.,FXD,FILM:7.87K OHM, $1 \%, 0,125 \mathrm{~W}$	91637	MFF1816G78700F
Al1R1442	315-0104-00		RES.,FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{w}$	01121	CB1045
AllR1450	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
AllR1451	315-0224-00		RES.,FXD, CMPSN: 220 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2245
Al1R1452	315-0154-00		RES., FXD, CMPSN: 150 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1545
AllR1453	321-0225-00		RES.,FXD,FILM:2.15K OHM, 1\%,0.125w	91637	MFF1816G21500F
Al1R1460	321-0279-00		RES.,FXD,FILM: 7.87 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G78700F
AllR1461	321-0279-00		RES.,FXD, FILM:7.87K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G78700F
AllR1462	321-0322-00		RES., FKD, FILM: 22.1 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G22101F
Al1R1500	315-0622-00		RES., FXD, CMPSN: 6.2 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB6225
Al:R1501	315-0622-00		RES., FXD, CMPSN: 6.2 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB6225
AllR1510	323-0117-00		RES., FXD, FILM: 162 OHM, 1\%,0.50W	75042	CECTO-1620F
AllR1511	315-0103-00		RES., FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
AllR1520	315-0103-00		RES.,FKD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
AllR1521	315-0102-00		RES., FXD, CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C61025
A11R1530	311-1225-00		RES., VAR, NONWIR:1K OHM, 20\%,0.50W	32997	3386F-T04-102
A11R1540	315-0104-00		RES., FXD , CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Al1R1541	315-0103-00		RES, FXX, CMPSN:10K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
AllR1550	315-0130-00		RES., FXD, CMPSN: 13 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1305
Al1R1610	321-0308-00		RES., FXD, FILM: 15.8 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G15801F
Al1R1620	321-0349-00		RES.,FXD,FILM:42.2K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G42201F
Al1R1621	321-0356-00		RES.,FXD,FILM: 49.9 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G49901F
AllR1630	32:-0279-00		RES.,FXD,FILM: 7.87 K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF18169787005
AlIR1631	315-0332-00		RES., FXD, CMPSN: 3.3 K OHM $, 5 \%, 0.25 \mathrm{~W}$	01121	CB3325
AllR1632	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C81045
AllR1640	315-0913-00		RES.,FXD, CMPSN: 91 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB9135
AllR1650	321-0241-00		RES.,FXD,FILM:3.16K OHM, $1 \%, 0.125 \mathrm{~W}$	91637	MFF1816G31600F
Al1R1651	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
AllR1652	315-0130-00		RES., FXD, CMPSN: 13 OHM, 5\%,0.25W	01121	CE1305
AllR1653	315-0130-00		RES., FXD, CMPSN: 13 OHM, 5\%, 0.25 W	01121	CB1305

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
All R1720	315-0224-00		RES., FXD, CMPSN: 220 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2245
AllR1730	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
All 17740	315-0333-00		RES., FXD, CMPSN: 33 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3335
AllR1741	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
AllR1742	321-0279-00		RES.,FXD, FILM; 7.87 K OHM, 1\%, 0.125 W	91637	MFF1816G78700F
AllR1743	315-0332-00		RES., FXD, CMPSN: 3.3 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3325
Al1R1750	315-0913-00		RES., FXD, CMPSN:91K OHM , $5 \%, 0.25 \mathrm{~W}$	01121	CB9135
AllR1751	315-0822-00		RES., FXD, CMPSN: 8.2 R OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB8225
AllR1752	315-0223-00		RES., FXD, CMPSN: $22 \mathrm{~K} 0 \mathrm{OHM}, 5 \%, 0.25 \mathrm{~W}$	01121	CB2235
AllR1820	315-0102-00		RES.,FXD,CMPSN: 1 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1025
AllR1821	315-0223-00		RES., FXD, CMPSN: 22 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2235
A11R1830	311-1228-00		RES., VAR, NONWIR: 10 K OHM, $20 \%, 0.50 \mathrm{~W}$	32997	3386F-TO4-103
All 1880	315-0103-00		RES.,FXD, CMPSN:10K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1035
All 18184	315-0103-00		RES.,FXD, CMPSN: 10 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	C31035
Altri842	315-0104-00		RES., FXD, CMPSN: 100 K OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1045
Alltioon	120-0747-00		XFMR, TOROLD: 55 tURNS, SINGLE	80009	120-0747-00
Al1mi210	120-1332-60		XFMR, PWR, STPDN: HF CONVERTER	80009	120-1332-00
Allu 1540	156-0411-00		MICROCIRCUIT, LI:QUAD-COMP, SGL SUPPLY	27014	LM3398
Allu1550	156-0071-00		microcircuit, li:voltage regulator	04713	MC1723CL
Al101600	156-0366-00		MICROCIRCUIT, Di:dUAL D-TYPE F-F	80009	156-0366-00
Allul610	156-0754-00		MiCROCIRCUIT, di:dual 4 -INPUT NOR GAtes	80009	156-0754-00
A1141620	156-074.5-00		microcircuit, di:hex inverter	80009	156-0745-00
Allu1 720	156-11.52-00		microcircuit, di : dual prcn retr reset mm	80009	156-1152-00
Allu1850	156-0402-00		MICROCIRCUIT, Li: TIMER	27014	SL34829
Allvel 753	152-0243-00		SEMICOND DEVICE:2ENER, $0.4 \mathrm{~W}, 15 \mathrm{v}, 5 \%$	14552	TD3810983
Allwl 630	131-0566-00		BUS CONDUCTOR:DUMMY RES,2.375,22 AWG	55210	L-2007-1

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A13	----------		CKT board assy: POWER SUPPLY PRIMARY		
Al3C1000	283-0263-00		CAP., FXD, CER DI: $0.0022 \mathrm{UF}, 20 \%, 3000 \mathrm{~V}$	56289	33 c 319
A13C1120	285-1218-00		CAP., FXD, PLASTIC: $0.27 \mathrm{UF}, 10 \%, 250 \mathrm{VAC}$	14752	230D1E274K
A13C1130	290-0715-00		CAP., FXD, ELCTLT: $7200 \mathrm{~F},+50-75 \%, 200 \mathrm{~V}$	56289	68D10729
Al 3C1200	283-0187-00		CAP., FXD, CER DI: 0.047 UF , $10 \%, 400 \mathrm{~V}$	72982	8131N401×5R0473K
Al3C1210	285-0981-00		CAP., FXD, PLSTC: $2.00 \mathrm{~F}, 10 \%, 400 \mathrm{~V}$	14752	C-2176-1
A13c1220	283-0044-00		CAP., FXD, CER DI:0.001UF, 3000 V	72982	3903Bw902Y5S102m
A1301230	290-0715-00		CAP., FKD, ELCTLT: $7200 \mathrm{~F},+50-75 \%, 200 \mathrm{~V}$	56289	68D10729
A13C1310	283-0000-00		CAP, , FXD, CER DI:0.001UF, $+100-0 \%, 500 \mathrm{~V}$	72982	831-516E102P
A13C1320	285-1205-00		CAP, , FXD, MTLZED:0.06UF, 5%, 1000V	84411	TEK-210
A13C1321	283-0178-00		CAP., FXD, CER DI:0.1UF, $+80-20 \%$, 100 V	72982	8131 1145651 1042
A13C1401	283-0194-00		CAP., FXD, CER DI:4.7UF, 20%, 50 V	72982	8151N0572500475m
A13c1411	283-0194-00		CAP., FXD, CER DI:4.7UF, 20\%, 50V	72982	8151N0572500475m
A13C1412	283-0000-00		CAP., FXD, CER DI: $0.001 \mathrm{UF},+100-0 \%, 500 \mathrm{~V}$	72982	831-516E102P
Al3CR1120	152-0750-60		SEmiCOND DEvice: Rect bridge, $600 \mathrm{~N}, 3 \mathrm{~A}$	05828	RKBPC606
Al 3CR1 300	152-0400-00		SEMICOND DEVICE:SILICON, $400 \mathrm{~V}, 1 \mathrm{~A}$	80009	152-0400-00
Al3CR1301	152-0655-00			03508	A115AX39
A13CR1302	152-0400-00		SEMICOND DEVICE:SIEICON, $400 \mathrm{~V}, 1 \mathrm{~A}$	80009	152-0400-00
Al3CR1303	152-0655-00		SEMICOND DEVICE:SILICON, 100V, 3A	03508	A115AX39
A 13 DS 1320	150-0030-00		LAMP, GLOW: NEON, $\mathrm{T}-2,60$ TO 90 VOLTS	74276	NE2V-T
A13E1120	119-0181-00		ARSR, elec surge 230 V , Gas filied	80009	119-0181-00
A13E1220	119-0181-00		ARSR, ELEC SURGE: 230 V , Gas filled	80009	119-0181-00
Al3J1000	131-2247-00		TERM, FEED THRU: 3 PIN, INSULATED	27264	09-60-1031
A13J1420	131-2247-00		term, Feed thru: 3 Pin, insulated	27264	09-60-1031
Al3J1430	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} \times 0.025 \mathrm{PH}$ BRZ GOLD (QTY 3)	22526	47357
A13L1112	108-1037-00		COLL, RF:FXD,500u torotd	80009	108-1037-00
Al3L1200	108-0678-00		COLL, RF:IMH	80009	108-0678-00
A13L1220	108-0973-00		COIL, RF:FIXED, 14004	80009	108-0973-00
A13Q1300	151-0678-00		TRANS ISTOR:SILICON, NPN	04713	MJEL3005
A13Q1301	151-0678-00		TRANS ISTOR:SILICON, NPN	04713	MJE 13005
Al3R1120	315-0361-00		RES., FXD, CMPSN: 360 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB3615
Al 3 R1130	303-0154-00		RES., FXD, CMPSN: 150 K OHM, 5%, 1 W	01121	GB1545
A13R1200	315-0101-00		RES., FXD, CMPSN: 100 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB1015
Al 3 R1210	308-0365-00		RES. , FXD, WW: $1.50 \mathrm{HM}, 5 \%, 3 \mathrm{~W}$	91637	CW2B-1R500J
Al3R1220	301-0471-00		RES., FXD, CMPSN: 470 OHM, $5 \%, 0.50 \mathrm{~W}$	01121	EB4715
A13R1230	303-0154-00		RES., FXD, CMPSN: 150 K OHM, 5%, IW	01121	GB1545
A) 3 R1310	305-0470-00		RES., FXD, CMPSN:47 OHM, 5\%,2W	01121	HB4705
A13R1320	315-0240-00		RES., FXD, CMPSN: 24 OHM, $5 \%, 0.25 \mathrm{~W}$	01121	CB2405
Al3R1330	301-0685-00		RES., FXD, CMPSN: 6.8 M OHM $, 5 \%, 0.50 \mathrm{~W}$	01121	EB6855
A13R1400	308-0686-00		RES., FXD, WW: 2.2 OHM, $5 \%, 2 \mathrm{~W}$	75042	BWH-2R200J
A 13 R 1410	308-0686-00		RES., FXD, WW: 2.2 OHM, $5 \%, 2 \mathrm{~W}$	75042	BWH-2R200J
A13R1420	301-0331-00		RES., FXD, CMPSN: 330 OHM, 5\%,0.50W	01121	Eb3315
Al3RT1020	307-0350-00		RES., THERMAL: 7.5 OHM, $10 \%, 3.9 \% / \mathrm{DEG} \mathrm{C}$	15454	75DJ7R5R0220SS
Al3RT1110	307-0350-00		RES., THERMAL: 7.5 OHM, $10 \%, 3.9 \% /$ DEG C	15454	7SDJ7R5R0220SS
Al 3 T1430	120-0744-00		XFMR, TOROID: 5 WINDINGS	80009	120-0744-00

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
A14	-----		CKT BOARD ASSY:LINE FILTER		
Al4C1000	283-0263-00		CAP.,FXD, CER DI:0.0022UF, 20\%, 3000v	56289	330319
A14C1100	283-0263-00		CAP., FXD, CER DI: $0.0022 \mathrm{UF}, 20 \%, 3000 \mathrm{~V}$	56289	330319
Al4Cl101	283-0417-00		CAP., FXD, CER DI:0.22UF, $20 \%, 400 \mathrm{~V}$	72982	8151-400-651
A14J1100	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025 \mathrm{PH}$ BRZ GOLD (QTY 4)	22526	47357
Al4J1101	131-0608-00		TERMINAL, PIN:0.365 L X 0.025 PH BRZ GOLD (QTY 4)	22526	47357
A14J1102	131-0608-00		TERMINAL,PIN:0.365 L X 0.025 PH BRZ GOLD (QTY 4)	22526	47357
A14J1103	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025 \mathrm{PH}$ BRZ GOLD (QTY 4)	22526	47357
A14J1104	131-0608-00		TERMINAL,PIN:0.365 L. X 0.025 PH BRZ GOLD (QTY 4)	22526	47357
A14J1105	131-0608-00		TERMINAL, PIN: $0.365 \mathrm{~L} X 0.025$ PH BRZ GOLD (QTY 2)	22526	47357
A14L1000	108-0902-00		COIL, RF: $0.4 \mathrm{MH}, \mathrm{FIXED}$	80009	108-0902-00
Al4L1 100	108-0902-00		COIL, RF $: 0.4 \mathrm{MH}, \mathrm{FIXED}$	80009	108-0902-00
Al4R1000	315-0911-00		RES, , FXD, CMPSN: $9100 \mathrm{HM}, 5 \%, 0.25 \mathrm{~W}$	01121	C39115
Al4T1000	120-1337-00		TRANSFORMER, RF: COMMON MODE	80009	120-1337-00

Al6J1110

CKT BOARD ASSY:
CONN,RCPT,ELEC:RT-ANGLE, 2/100.025 SQ PINS 22526 65268-008 CONN,RCPT,ELEC:CKT BD, 24 CONTACT $00779552791-2$

Component No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Name \& Description	Mfr Code	Mir Part Number
			CHASSIS PARTS		
B500	119-0721-00		FAN, VENTILATING: $75 \mathrm{CFM}, 7 \mathrm{~W}, 115 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$	82877	027119
F500	159-0036-00		FUSE,CARTRIDGE: 3AG,7A, 125V,5SEC (STANDARD ONLY)	71400	GLH 7
F500	159-0017-00		FUSE, CARTRIDGE: 3AG,4A, 250V, FAST BLOW (OPTIONS A1, A2,A3,A4 ONLY)	71400	MTH4
FL500	119-0389-00		FILTER,RAD INTE: $115 / 230 \mathrm{~V}, 3 \mathrm{~A}$	02777	F11935-3
Q500	151-0373-00		TRANSISTOR:SILICON, PN?	80009	151-0373-00
Q 510	151-0436-00		TRANSISTOR:SILICON, NPN	80009	151-0436-00
Q520	151-0373-00		TRANSISTOR:SILICON, PNP	80009	151-0373-00
Q 530	151-0436-00		TRANS ISTOR: SILICON, NPN	80009	151-0436-00
Q 540	151-0373-00		TRANSISTOR: SILICON, PNP	80009	151-0373-00
Q 550	151-0436-00		TRANS ISTOR:SILICON,NPN	80009	151-0436-00
5500	260-1961-00		SWTTCH, ROCKER:DPST, 6(4)A, 250Y	000Fs	OBD
S50.	260-1710-00		SW, THERMOSTATIC:10A, 250 V , OPEN 206 deg	14604	2450-47-16
T500	120-1333-00		XFMR, PWR, STPDN:LF	80009	120-1333-00

DIAGRAMS AND CIRCUIT BOARD ILLUSTRATIONS

Symbols

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975.

Logic symbology is based on ANSI Y32.14-1973 in terms of positive logic. Logic symbols depict the logic function performed and may differ from the manufacturer's data.

The overline on a signal name indicates that the signal performs its intended function when it is in the low state.

Abbreviations are based on ANSI Y1,1-1972.
Other ANSI standards that are used in the preparation of diagrams by Tektronix, Inc. are:

Y14.15, 1966 Drafting Practices.
Y14.2, 1973 Line Conventions and Lettering.
Y10.5, 1968 Letter Symbols for Quantities Used in Electrical Science and Electrical Engineering.
American National Standard Institute 1430 Broadway
New York, New York 10018

Component Values

Electrical components shown on the diagrams are in the following units unless noted otherwise:
Capacitors $=$ Values one or greater are in picofarads (pF). Values less than one are in microfarads ($\mu \mathrm{F}$).
Resistors $=$ Ohms (Ω).

The information and special symbols below may appear in this manual.

Assembly Numbers and Grid Coordinates

Each assembly in the instrument is assigned an assembly number (e.g., A20). The assembly number appears on the circuit board outline on the diagram, in the title for the circuit board component location illustration, and in the lookup table for the schematic diagram and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assemblies in numerical sequence; the components are listed by component number "(see following illustration for constructing a component number).

The schematic diagram and circuit board component location illustration have grids. A lookup table with the grid coordinates is provided for ease of locating the component. Only the components illustrated on the facing diagram are listed in the lookup table. When more than one schematic diagram is used to illustrate the circuitry on a circuit board, the circuit board illustration may only appear opposite the first diagram on which it was illustrated; the lookup table will list the diagram number of other diagrams that the circuitry of the circuit board appears on.

Fig. 8-3. Line Filter Board.

PARTS LOCATION GRID

Fig. 8-2. Dc Power Supply Primary Board.

ASSY A11
COMPONENT NUMBER EXAMPLE
Fig. 8-1. Dc Power Supply Secondary Board.

$\overbrace{\text { A23,A2 R1234 }}^{\text {Component Number }}$		
Assembly Number		Schematic Circuit Number

Static Sensitive Devices
See Maintenance Section

Table 8-1
 COMPONENT REFERENCE CHART

Table 8-2
COMPONENT REFERENCE CHART

P/O Al1 ASSY			Dc POWER SUPPLY REGULATOR <2>		
CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
C1020			R1442	88	E5
${ }^{\text {C1210 }}$	F88	${ }^{\text {B3 }}$	R1450	07	E5
C1310	F8	D3	R1451	E4	E6
C1410	D7	E2	R1452	${ }_{\text {C6 }}$	E6
C1411	${ }^{\text {C6 }}$	E3	R1460	${ }^{\text {c4 }}$	E6
${ }^{\text {C1412 }}$	86 C8	E2	R1461	84	E6
C1451	${ }_{C 8}$	E5	R1462	B4	E6
C1620	H4	F3	R1500	M1	E1
${ }^{C 1621}$	${ }^{57}$	F3	R1510	E5	E2
C1630	H6 F6	F4 $\mathrm{G4}$	R1511	J1	E3
${ }_{C} \mathbf{C 1 6 4 0}$	${ }_{\text {E7 }}$	G4	R1520	J1	E3
C1641	C8	G5	R1521	M2	E3
C1651	E2	F6	R1530	88	F4
C1700	${ }_{4} \mathrm{~L}$	G2	R1541	D5	F5
${ }_{C}^{C 1710}$	K $\mathrm{K6}$	G2 $\mathrm{G4}$	R1550	D3	F6
C1740	F2	G5	R1610	L4	F2
C1760	E2	G6	R1620	H7	G3
C1761	C1	G6	R1620	H7	${ }_{\text {F4 }}$
C1830	H5	${ }^{\mathrm{H}} 3$	R1631	F8	F4
${ }_{C} \mathbf{C 1 8 5 0}$	K6 J 2	H 4 H 5	R1632	E3	F4
C1851	C2	G6	R1640	${ }^{\text {C6 }}$	F5
			R1651	E2	F6
CR1451	${ }_{C 4}$	E6	R1652	B3	G6
CR1500	M1	F1	R1653	${ }^{\text {c3 }}$	F6
CR1501	M3	E2	R1730	H6	G4
CR1550	C1	${ }_{6}{ }^{\text {F }}$	R1740	F5	G5
CR1561	C1	F6	R1741	E5	G5
CR1610	E6	F3	R1742	${ }^{\mathrm{H} 2}$	G5
CR1640 CR1650	${ }^{\text {D7 }}$	F6	R1750	D2	G5
CR1660	c3	F68	R1751	C2	G6
CR1710	K5	G3.	R1752	C2	G6
CR1711	K5	H3	R1821	K6	${ }_{\text {H3 }}$
CR1720 CR1730	H7 H6	G3	R1830	K6	H4
CR1731	K6	G4	R1840	H 5 H 5	H 4 H 5
CR1830	K5	H 4 H 5	R1841	H5	H5 H5
CR1840 CR1841	E3	H 5 H 5			
CR184	H3	H5	U1540A	E8	F5
F1660	B2	F7	U1540C	F4	${ }_{55}$
J1300	M1	D2	U1540D $\mathbf{U 1 5 5 0}$	F3	F5
${ }^{\mathrm{J} 1463}$	K1	E6	U1600A	M6	F1
			U1600	M4	F1
P1300	M1	D2	U1610 ${ }^{\text {d }}$	L3	F2
P1463	K 2 $\mathrm{B1}$	E6	U1620A	E7	F3
			${ }_{\text {U1620 }}$	F7 7	${ }_{\text {F3 }}$
Q1400	M1	E1	U16200	J6	F3
Q1650	M3	E2	U1620E	${ }^{6}$	${ }^{\text {F3 }}$
R1360	E3	D6	U1720A	${ }^{5} 4$	${ }_{63}$
R1361	J2	D6	U17208	14	G3
R1400	D6	E2	U1850	H3	H5
R1440	日8	E5	VR1753	C2	H6
			W1630	F7	G3
		1 ASS	own on		

Fig. 8-4. De Power Supply Regulator Wavetorms.

Table 8-3
 COMPONENT REFERENCE CHART

A10 ASSY				MAIN INTERFACE 3>	
CIRCUIT NUMBER	SCHEMATIC LOCATION	$\begin{aligned} & \text { BOARD } \\ & \text { LOCATION } \end{aligned}$	CIRCUIT NUMBER	SCHEMATIC LOCATION	BOARD LOCATION
C1010	H 4 J 4	C4	$\begin{aligned} & \mathrm{J} 1210 \\ & \mathrm{~J} 1300 \end{aligned}$	$\begin{aligned} & \mathrm{J} 8 \\ & \mathrm{C} 1 \end{aligned}$	$\begin{aligned} & \mathrm{B6} \\ & \mathrm{~J} 4 \end{aligned}$
C1012	J5	C5	P1110	L6	F7
C1020	J7	C6	P1140	B7	F7
C1021	F8	C6	P1210	K8	B6
C1110	C6	F6	01125	K6	H7
C1211	F4	F4	R1123	K7	H8
C1212	F5	F5	R1126	K6	F7
C1213	C7	F6	R1127	K6	H8
C1220	F7	G6	R1210	J5	H5
C1221	E8	G6	E510	L5	CHASSIS
C1310	C3	H 4 H 5	P500	C5	CHASSIS
C1312	D5	H5	P510	C6	CHASSIS
C1320	D7	16	P520	E5	CHASSIS
C1321	C8	17	P530	E6	CHASSIS
$\begin{aligned} & \text { CR1010 } \\ & \text { CR1011 } \\ & \text { CR1120 } \end{aligned}$		B5	P540	H5	CHASSIS
	L4	B5	P550	H6	CHASSIS
	L4	D6	Q500	B5	CHASSIS
J1000 $\$ 1110$ J1110 J1200	H2	C4	Q510	B6	CHASSIS
	L6	F7	Q520	D5	CHASSIS
	B7	F7	0540	F5	CHASSIS
	E2	G4	0550	F6	CHASSIS
			T500	B3	CHASSIS

PARTS LOCATION GRID

COMPONENT NUMBER EXAMPLE
Fig. 8-5. Main Interface Board. prefix-see end of Replaceable Electical Parts List.

ASSY A16

Fig. 8-6. GPIB Interconnect Board (back side).

COMPONENT NUMBER EXAHPLE

TM 50Ø3

COMPONENT NUMBER EXAMPLE

Chassis-mounted components have no Assembly Number prefix-see end of Replaceable Electrical Parts List.

GP IB INTERCONNECT

REPLACEABLE
 MECHANICAL PARTS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix. Inc. Field oflice or representative.

Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. it is therefore important, when ordering parts, to include the following information in your order Part number, instrument type or number, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix, Inc. Field Office or representative will contact you concerning any change in part number.

Change information, if any. is located at the rear of this manual.

SPECIAL NOTES AND SYMBOLS

X000 Part first added at this serial number
$00 \times \quad$ Part removed after this serial number

FIGURE AND INDEX NUMBERS
Items in this section are referenced by figure and index numbers to the illustrations.

INDENTATION SYSTEM

This mechanical parts list is indented to indicate item relationships. Following is an example of the indentation system used in the description column

72345
Name \& Description
Assembly andior Component
Attaching parts for Assembly and/or Component
-.. *--
Detaif Part of Assembly andior Component
Attaching parts for Detall Part

- - * - -

Parts of Detail Part
Attaching parts tor Parts of Detail Part

Attaching Parts always appear in the same indentation as the item it mounts, while the detail parts are indented to the right. Indented items are part of, and included with, the next higher indentation. The separation symbol-- - .- - indicates the end of attaching parts.

Attaching parts must be purchased separately, unless otherwise specitied.

ITEM NAME

In the Parts List an Item Name is separated from the description by a colon (:). Because of space limitations, an Item Name may sometimes appear as incomplete. For further Item Name identification, the U.S. Federal Cataloging Handbook H5-1 can be utilized where possible.

ABBREVIATIONS

"	1 NCH	ELCTRN	ELECTRON
\#	NUMBER SIZE	ELEC	ELECTRICAL
ACTR	ACTUATOA	ELCTLT	ELEC'ROLYTIC
ADPTR	ADAPTER	ELEM	ELEMENT
ALIGN	ALIGNMENT	EPL	ELECTAICAL PAATS LIST
AL	ALUMINUM	EQPT	EQUIPMENT
ASSEM	ASSENELED	EXT	EXTERNAL
ASSY	ASSENBLY	FIL	FILLISTER HEAD
ATTEN	ATTENUATOR	FLEX	FLEXIELE
AWG	AMERIGAN WIRE GAGE	FLH	flat head
80	BOARD	FLTR	FILTEA
BRKT	BAACKET	FR	FRAME or FRONT
BRS	BRASS	FSTNR	FASTENER
BRZ	BRONZE	FT	FOOT
BSHG	BUSHING	FXD	FIXEC
CAB	CABINET	GSKT	GASKET
CAP	CAPACITCR	HDL	HaNLLE
CER	GERAMIC	HEX	HEXAGON
CHAS	CHASSIS	HEX HO	HEXAGONAL HEAD
CKT	CIRCUIT	HEXSOC	HEXAGONAL SOCKET
COMP	COMPOSITION	HLCPS	HELICAL COMPRESSION
CONN	CONNECTOR	HLEXT	HELICAL EXTENSION
COV	COVER	HV	HIGH VOLTAGE
CPLG	COUPLING	10	INTEGAATED CIRCUIT
CRT	CATHODE RAY TUBE	10	INSIDE DIAMAETER
DEG	DEGREE	IDENT	IDENTIFTCATION
DWR	DRAWEA	IMPLR	IMPELLER

IN	INCH
INCAND	INEANOESCENT
INSUL	INSULATOR
INTL	INTERNAL
LPHLDA	LAMPHOLDER
MACH	MACHINE
MECH	MECHANICAL
MTG	MOUNTING
NIP	NIPPLE
NON WIRE	NOT WIaE WOUND
OBD	ORDEA BY DESCAIPTION
0 O	OUTSIDE DIAMETER
OVH	OVAL HEAD
PH BRZ	PHOSPHOR BRONZE
PL .	PLAIN or Plate
FLSTE	PLASTIC
FN	PART NUMBER
PNH	PAN HEAD
PWR	POWER
RCPT	RECEPTACLE
RES	PESISTOR
AGO	RIGID
RLf	felief
RTNA	RETAINER
SCH	SOCKET HEAD
SCOPE	OSCILLOSCOPE
SCR	SCREW

SE	SINGLE END
SECT	SECTION
SEMICOND SEMICONDUCTOR	
SHLO	SHIFLD
SHLDR	SHOUIDERED
SKT	SOCKET
SL	SLIDE
SLFLKG	SELF-LOCKING
SLVG	SLEEVING
SPR	SPRING
SQ	SOUARE
SST	STAINLESS STEEL
STL	STEEL
SW	SWITCH
T	TUBE
TERM	TERMINAL
THD	THAEAD
THK	THICK
TNSN	TENSION
TPG	TAPPING
TRH	TRUSS HEAD
V	VOLTAGE
VAR	VARIABLE
W:	WITH
WSHA	WASHER
XFAP	TRANSFORMER
XSTA	TRANSISTOR

CROSS INDEX-MFR. CODE NUMBER TO MANUFACTURER

Mir. Code	Mariufacturer	Address	City, State, Zip
\$3629	PANEL COMPONENTS CORP.	2015 SECOND ST.	BERKELEY, CA 94170
OOOEL	PORTLAND SCREW CO.	6520 N . BASIN AVE.	PORTLAND, OR 97217
00779	AMP, INC.	P O BOX 3608	HARRISBURG, PA 17105
02114	FERROKCUBE CORPORATION	PO BOX 359, MARION ROAD	SAUGERTIES, NY 12477
04713	MOTOROLA, INC., SEMICONDUCTOR PROD. DIV.	5005 E MCDOWELL RD, PO BOX 20923	PHOENIX, AZ 85036
08530	RELIANCE MICA CORP.	342-39 TH ST.	BROOXLYN, NY 11232
13511	AMPHENOL CARDRE DIV., BUNKER RAMO CORP.		LOS GATOS, CA 95030
22526	berg electronics, inc.	YOUK EXPRESSWAY	NEW CUMBERLAND, PA 17070
24618	TRANSCON MFG. $C 0$.	2655 PERTH ST.	dallas, TX 75220
27264	molex products co.	5224 Katrine ave.	DOWNERS GROVE, IL 60515
70485	ATLANTIC INDIA RUBBER WORKS, INC.	571 W. POLK ST.	CHICAGO, IL 60607
71279	Cambridge thermionic corp.	445 CONCORD AVE.	CAMBPIDGE, MA 02138
31468	ITT CANNON ELECTRIC	666 E. DYER RD.	SANTA ANA, CA 92702
71785	TRW, CINCH CONNECTORS	1501 MORSE AVENUE	ELK GROVE VILLAGE, IL 60007
73743	FISCHER SPECIAL MFG. CO.	446 MORGAN ST.	CINCINNATI, OH 45206
73803	texas instruments, inc., metallurgical MATERIALS DIV.	34 FOREST STREET	ATTLEBORO, MA 02703
78189	ILLINOIS TOOL WORKS, INC. SHAKEPROOF DIVISION	ST. CHARLES ROAD	ELGIN, IL 60120
80009	TEKTRONIX, INC.	P O B0X 500	BEAVERTON, OR 97077
80126	PACIFIC ELECTRICORD CO.	747 W. REDONDO BEACH, P O BOX 10	GARDENA, CA 90247
81041	hOWARD INDUSTRIES, DIVISION OF MSL industries, inc.	P O BoX 287	MILFORD, LL 60953
83385	GENTRAL SCREW CO.	2530 CRESCENT DR.	BROADVIEW, IL 60153
86928	SEASTROM MFG. COMPANY, ING.	701 SONORA AVENUE	GLENDALE, CA 91201
93907	TEXTRON INC. CAMCAR DIV	600 18TH AVE	ROCKFORD, IL 61101
95987	WECKESSER CO., INC.	4444 WEST IRYING PARK RD.	CHICAGO, IL 60641
98159	RUBBER TECK, INC.	19115 HAMILTON AVE., P O BOX 389	GARDENA, CA 90247

Fig. \&

Index No.	Tektronix Part No.	Serial/Model Na . Eff Dscont	Oty	12345 Name \& Description	Mir Code	Mfr Part Number
1-1	348-0544-05		4	rTMr, cab Cover:corner earth brown, pC (attaching parts)	80009	348-0544-05
-2	213-0782-00		4	SCREW,TPG, TF: $8-32 \times 0.625$ FILA, STEEL CD PL	93907	OBD
-3	348-0282-00		1	FLIPStand, Cab. $03.438 \mathrm{H}, \mathrm{SST}$	80009	348-0282-00
-4	348-0596-00		4	PAD, CAB. FOOT:0.69 x $0.255 \times 0.06, \mathrm{PU}$	80009	348-0596-00
-5	348-0617-04		4	FOOT, CABENET: BOT, EARTH BROWN	80009	348-0617-04
-6	390-0647-03		1	CABINET, TOP:0.5 RACK X 17.956	80009	390-0647-03
-7	390-0783-03		1	CAbINET, SIDE;7.0 x 17.966,AL, EARTH BROWN	80009	390-0783-03
-8	390-0645-03		1	Cabinet, TOP:0.5 Rack x 17.956	80009	390-0645-03
-9	390-0784-07		1	CAbINET, SIDE:7.0 x 17.966,W/HOLES	80009	390-0784-07
-10	200-2191-03		2	CAP, RETAINER:PLASTIC, EARTH BROWN	80009	200-2191-00
-11	367-0248-07		1	HANDLE, CARRYING: $16.34 \mathrm{~L}, \mathrm{~W} / \mathrm{CLIP}$, PLASTIC	80009	367-0246-07
-12	351-0619-00		3	guide, plog-in : bottom	80009	351-0619-00
-13	378-0182-00		2	BAFFLE,AIR:	80009	378-0182-00
-14	378-0171-00		1	GRILLE, PLASTIC:6.542 $\times 1.126$	80009	378-0171-00
-15	200-2576-00		1	COVER, SWITCH:PLASTIC	80009	200-2576-00
-16			1	SWITCH, ROCKER: (SEE S500 REPL)		
-17	200-2565-00		1	COVER, SWitch: Plastic	80009	200-2565-00
-18	426-1785-01		1	fr panel, cab: front (attaching parts)	80009	426-1785-01
-19	211-0541-00		6	SCREW,MACHINE:6-32 X 0.25"100 DEG,FLH STL	83385	OBD
-20	124-0354-03		1	STRIP, TRIM: CORNER, TOP, EARTH BROWN, 17.41 L	80009	124-0354-03
-21	124-0355-03		1	STRIP, TRIM:CORNER, BOT, EARTH BROWN, 13.9 L	80009	124-0355-03
-22	124-0380-01		1	STRIP, TRIM: $17.41 \mathrm{~L}, \mathrm{CORNER} \mathrm{W} / \mathrm{STEP}$, TOP	80009	124-0380-01
-23	124-0381-01		1	STRIP, TRIM:13.91 L, CORNER W/STEP, BOT	80009	124-0381-01
-24	343-0003-00		2	CLAMP, LOOP:0.25 INCH DIA	95987	$1-46 \mathrm{R}$
-25	211-0578-00		2	Screw, Machine: 6 -32 X 0.438 Inch, PNH Stl	83385	OBD
-26	210-0457-00		2	NUT, PL, ASSEM WA:6-32 $\times 0.312 \mathrm{INCH}, \mathrm{STL}$	83385	OBD
-27	210-0863-00		2	WSHR,LOOP CLAMP:FOR $0.50^{\prime \prime}$ WIDE CLAMP,STL	95987	C191
-28	426-1469-04		1	frame, cabinet:rear, al (attaching parts)	80009	426-1469-04
-29	213-0863-00		4	SCREW, TPG, TF: $8-32 \times 1.375$, TAPTITE	93907	OBD
-30	426-1777-00		2	FR SECT, PWR MDL:UPPER	80009	426-1777-00
-31	426-1776-00		2	FR SECT, PWR MDL:LOWER	80009	426-1776-00

(31). (46) (44) (43) (42) (30)

Fig. \&

Index No .	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mir Code	Mir Part Number
2-1	348-0640-00		6	GROMMET, PLASTIC: BLACK, ROUND , 0.188 ID	80009	348-0640-00
-2	214-3026-00		6	SPRING, GROUND:CU BE	80009	214-3026-00
-3	386-4503-00		1	SUPPORT,CKT BD:ALUMINUM (attaching parts)	80009	386-4503-00
-4	211-0516-00		4	SCREF, MACHINE:6-32 x $0.875 \mathrm{INCH}, \mathrm{PNH}$ STL	83385	OBD
-5	2:1-0244-00		6	SCR, ASSEM WShr: $4-40 \times 0.312$ INCH, PNH STL	78189	OBD
-6	380-0655-00		3	hous ing, CONN: FLOATING, PLASTIC (attaching parts)	80009	380-0655-00
-7	211-0295-00		6	SCREW, SHOULDER:2-56 X 0.54 L , HEX HD	80009	211-0295-00
-8	175-3247-00		1	CA ASSY, SP, ELEC: 20,28 AWG, 11.4 L	22526	OBD
-9	346-0032-00		1	Strap, Retaining:0.075 dia X 4.0 L , MLD Rbr	98159	2859-75-4
-10			1	CKT BOARD ASSY:MAIN INTERCONNECT(SEE AIO REPL) (attaching parts)		
-11	211-0601-00		4	SCR,ASSEM WSHR: 6-32 x 0.312 , DOUBLE SEMS	83385	OBD
	----- -----		-	CKT board assy includes:		
-12	129-0814-00		6	. SPACER, POST:0.622 W/4-40 INT THD	80009	129-0814-00
-13	----- ----		1	. transistor: (see aloq1125 Repl) (attaching parts)		
-14	210-0244-00		1	. Terminal, lug:\#10, ring, solderless, cu tin pl	86928	A373-148-1
-15	210-0406-00		1	. NUT, PLAIN, HEX.:4-40 X 0.188 INCH, BRS	73743	2X12161-402
-16	214-1593-02		3	. KEY, CONN PLZN:CRT Bd Conn	80009	214-1593-02
-17	----- -----		3	. CONNECTOR, RCPT: (SEE Al0J1000,J1200, J1300 Repl)		
-18	----- -----		3	. TERMINAL, PIN: (SEE AloJl110 Repl)		
-19	386-4504-00		1	SUPPORT,CKT BD:LEFT,ALUMINUM (attaching parts)	80009	386-4504-00
-20	212-0023-00		2	SCREW, MACHINE:8-32 X 0.375 INCH, PNH STL	83385	OBD
-21	210-0008-00		2	WASHER,LOCK:TNTL, 0.172 ID X $0.331^{\circ} \mathrm{OD}$, STL	78189	1208-00-00-0541C
-22	386-4501-00		1	SUPPORT,CKT BD:RIGHT, ALUMINUM (attaching parts)	80009	386-4501-00
-23	212-0023-00		2	SCREW, MACHINE:8-32 X 0.375 INCH, PNH STL	83385	OBD
-24	210-0008-00		2	WASHER, LOCK: INTL, 0.172 ID X $0.331^{\prime \prime}$ OD, STL	78189	1208-00-00-05410
-25	----- -----		1	CKT BD ASSY: POWER SPLY SECONDARY(SEE All REPL) (attaching parts)		
-26	211-0244-00		5	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL - - * - - -	78189	OBD
	-...--		-	. CKT board assy includes:		
-27	136-0514-00		1	. Skt, Pl-in elec: Microcircuit, 8 dip	73803	CS9002-8
-28	136-0269-02		5	. Skt,pl-in elek:microcircuit, 14 dip,low cle	73803	Cs9002-14
-29	136-0260-02		1	. SKT,PL-IN ELEK:MICROCIRCUIT, 16 dip, Low Cle	71785	133-51-92-008
-30	348-0005-00		1	- gromet rubber: 0.50 inch dia	70485	230
-31	214-2610-00		1	- Bolt, L: $4-40 \times 1.85 \times 1.5$, BRASS	02114	OBD
-32	210-0586-00		2	. NUT, PL, ASSEM WA:4-40 X 0.25, STL CD PL	83385	OBD
-33	210-0287-00		2	. terminal, lug:\# 6 ring	00779	34142
-34	----- -----		1	- SEMICORD DEVICE: (SEE AllCR500 REPL) (attaching parts)		
-35	211-0578-00		2	. SCREW, machine:6-32 x 0.438 inch, pnh Stl	83385	OBD
-36	210-0457-00		2	. NUT, PL, ASSEM WA:6-32 $\times 0.312$ INCH, STL	83385	ObD
-37	210-0202-00		1	. TERMINAL, LUG:0.146 ID, LOCKING, BRZ TINNED	78189	2104-06-00-2520N
-38	210-0967-00		2	, WSHR, Sholldered:0.157 id X 0.375 INCH OD	80009	210-0967-00
-39	386-0978-00		1	- INSULATOR, PLATE: TRANSISTOR, MICA	80009	386-0978-00
-40	214-3140-00		1	HEAT SINK, XSTR:T0-3, AL	80009	214-3140-00
				(attaching parts)		
-41	211-0097-00		2	. SCREW,MACHINE:4-40 X 0.312 INCH,PNH STL	83385	OBD
-42	136-0252-07		9	. Socket, pin Conn:W/o dimple	22526	75060-012
-43			6	- terminal, PIN: (SEe allji 1300,J1463 repl)		
-44	344-0154-03		2	. clip, electrical: fuse, Ckt bd mt	80009	344-0154-03

Fig. \& Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mfr Code	Mfr Part Number
2-45	---*- ---		4	```- TERM,QIK DISC:(SEE AllJ1060,J1160,J1260, - Jl360 REPL) (attaching parts)```		
-46	211-0097-00		4	. SCREW, MACHINE:4-40 X 0.312 INCH, PNH STL	83385	OBD
-47	210-0586-00		2	- NUT, PL, ASSEM WA:4-40 $\times 0.25, \mathrm{STL}$ CD PL	83385	Obd
-48	343-0149-00		2	CLAMP, LIOOP: NYLON	80009	343-0149-00
-49	343-0150-00		2	clamp, Tie down: (attaching parts)	95987	OBD
-50	211-0658~00		2	SCR,ASSEM WSHR:6-32 $\mathrm{x}^{(0.312 \mathrm{~L}, \mathrm{PNH}, \mathrm{STL}}$	78189	OBD
-51	343-0213-00		1	CLAMP, LOOP : PRESS MT, PLASTIC	80009	343-0213-00
-52	---------		3	TEANSISTOR: (SEE Q500, Q520, Q540 REPL) (attaching parts)		
-53	211-0012-00		3	SCREW, MACHINE: $4-40 \times 0.375$, PNH STL CD PL	83385	OBD
-54	210-1122-00		3	WASHER, LOCK: 0.228 ID X 0.375 INCH OD, STL	04713	B52200F006
-55	342-0163-00		3	IASULATOR, PLATE:XSTR,0.675 X 0.625×0.001 "	80009	342-0163-00
-56	361-1101-00		1	SFACER,SLEEVE:3.1 L X 0.196 ID,AL (attaching Parts)	80009	361-1101-00
-57	212-0543-00		1	SCREW, MACHINE: $10-32 \times 3.750 \mathrm{HEX}$ hd	83385	OBD
-58	220-0410-00		1	NLT, EXTENDED WA: $10-32 \times 0.375$ INCH, STL	83385	OBD
-59	407-1174-01		2	bRACKET, XFMR:ALUMINUM (attaching Parts)	80009	407-1174-01
-60	212-0020-00		4	SCREW, MACHINE:8-32 $\times 1.0$ Inch, pNh stl	93907	OBD
-61	210-0458-00		4	NUT, PL, ASSEM WA:8-32 $\times 0.344$ INCH, STL	78189	511-081800-00
-62	342-0028-00		2	Insulator, PLate:0.600 W X 1.700 INCH LONG	80009	342-0028-00
-63	--7-------		1	XFMR, PWR, STPDN: (SEE T500 RePL)		
-64	361-1059-00		2	SPACER, BAR:0.5 SQ X $5.44 \mathrm{~L}, \mathrm{AL}$	80009	361-1059-00
-65	212-0008-00		2	SCREN, MACHINE:8-32 X 0.500 INCH, PNH STL	83385	OBD
-66	386-4502-00		1	SUPPORT,XFMR:ALIMINUM (attaching parts)	80009	386-4502-00
-67	211-0504-00		2	SCREw, MACHINE: $6-32 \times 0.25 \mathrm{INCH}, \mathrm{PNH}$ STL	83385	OBD
-68	212-0023-00		4	SCREW, MACHINE: 8 - 32×0.375 INCH, PNH STL	83385	OBD
-69	210-0008-00		4	WASHER, LOCK: INTL, 0.172 ID $\times 0.331^{\circ O D}$, STL	78189	1208-00-00-0541C
-70	210-0202-00		1	TERMINAL, LUG: 0.146 ID, LOCKING, BRZ TINNED (attaching parts)	78189	2104-06-00-2520N
-71	211-0507-00		1	SCREW, MACHINE:6-32 X 0.312 INCH, PNH STL. - - * - -	83385	OBD
-72	----- --..--		1	CKT BOARD ASSY:LINE FILTER(SEE A14 REPL) (attaching parts)		
-73	211-0244-00		3	SCR,ASSEM WSHR: $4-40 \times 0.312$ INCH, PNH STL - - * - -	78189	OBD
-75	129-0161-00		22	- TERMINAL, PIN: (SEE A14J1100,J1101, 11102 ,	80009	129-0161-00
-76	131-1896-00		2	- JI103, J1104, 31105 REPL)	80009	131-1896-00
-77	006-0531-00		3	Strap, tiedown, e:blue plastic beaded	24618	700-3688
-78	441-1549-00		1	Chas is fepr mbl: Primary fower supply, left (attaching parts)	80009	441-1549-00
-79	212-0023-00		2	SCREW, MACHINE:8-32 ${ }^{\text {a }} 0.375$ InCh, Pnh Stl	83385	OBD
-80	210-0008-00		2	WASHER,LOCK: INTL, 0.172 Id $\mathrm{X} 0.331^{\prime \prime} \mathrm{OD}, \mathrm{STL}$	78189	1208-00-00-0541C
-81	211-0244-00		2	SCR, ASSEM WSHR: $4-40 \times 0.312$ INCH, PNH STL	78189	OBD
-82	----- -----		1	CKT board assy: POWER Sply primary (SEE al3 REPL) (attaching parts)		
-83	211-0244-00		3	SCR, ASSEM WSHR:4-40 X 0.317 INCH, PNH STL	78189	OBD
-84	210-0202-00		1	terminal, LuG:0.146 id, Locking, brz tinned	78189	2104-06-00-2520N
-85	211-0507-00		3	SCREW, Machine: $6-32 \times 0.312$ InCh, PNH STL	83385	OBD

Fig. \& Index No.	Tektronix Part No.	Serial:Model No. Eff Dscont	Qty	12345 Name \& Descriotion	Mfr Code	Mfr Part Number
2-	----- -----		-	- CKT board assy includes:		
-86			33	. TERMINAL,PIN: (SEE A13J1430 REPL)		
-87	346-0032-00		1	. Strap, Retaining: 0.075 dia $\times 4.0$ L, MLD Rbr	98159	2859-75-4
-88	343-0769-00		1	- CLAMP,Pot CORE:		
-89			2	- TERM, FEEDTHRU: (SEE A13J1000, J1420 Repl)		
-90	131-0373-00		1	. TERMLNAL, STUD:0.593 L	71279	572-4894-01-0516
-91	200-2269-00		1	- COVER,XSTR:	80009	200-2269-00
-92	211-0511-00		2	(attaching parts) SCREW, MACHINE:6-32 X 0.500, PNH,STL,CD PL	83385	OBD
-93	----- -----		2	- TRANSIStor; (SEe al3q1300, Q1301 Repl)		
-94	342-0458-00		1	. insulator, PLATE :TRANSISTOR, MICA	08530	ObD
-95	342-0449-01		1	- insulator, plate: Transistor, aldmina, printed	80009	342-0449-01
-96	214-3141-00		1	. heat Sink, XSTR: (2)TO-220,AL	80009	214-3141-00
-97	----- -----		3	TRANSISTOR: (SEE Q510,Q530, Q550 REPL) (ATTACHING PARTS)		
-98	211-0012-00		3	SCREW,MACHINE:4-40 x 0.375, PNH STL CD Pl	83385	OBD
-99	210-1122-00		3	WASHER,LOCK:0.228 id X 0.375 INCH OD, STL	04713	B52200F006
-100	342-0163-00		3	INSULATOR, PLATE: XSTR, $0.675 \times 0.625 \times 0.001^{11}$	80009	342-0163-00
-101	441-1551-00		1	CHASSIS, PWR MDL: PRIMARY POWER SUPPLY, RIGHT (attaching parts)	80009	441-1551-00
-102	211-0507-00		2	SCREW:MACHINE: 6-32 X 0.312 INCH, PNH STL	83385	OBD
-103	441-1550-00		1	Chassis, phr mdi: secondary power supply (attaching parts)	80009	441-1550-00
-104	2.12-0023-00		2	SCREW, MACHINE: 8-32 X 0,375 TNCH, PNH STL	83385	OBD
-105	210-0458-00		2	NUT, PL, ASSEM WA: $8-32 \times 0.344 \mathrm{INCH}, \mathrm{STL}$	78189	511-081800-00
-106	-----		1	CKT BOARD ASSY:GPIb INTERFACE(SEE A16 REPL) (attaching parts)		
-107	211-0244-00		2	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL - - - * - -	78189	OBD
	----- -----		-	. ckt board assy includes:		
-108	333-2648-00		1	- PANEL, FROAT:GPib (attaching parts)	80009	333-2648-00
-109	129-0721-00		2	- SPACER, POST:0.625 L, W/4-40 Ext Thd	80009	129-0721-00
-110	220-0555-00		2	. nut, plain hex. 8 -32 $\times 0.25$ Inch Stl	000EL	OBD
-111	210-0244-00		1	- terminal, ide:	86928	A373-148-1
-112	--		1	- CONn, RCPT, ELEC: (SEE A16J1110 REPL) (Attaching parts)		
-113	213-0267-00		2	. SCREW, MACHINE:4-24 X 0.375 INCH, PNH STL	83385	OBD
-114	210-0003-00		2	- WASHER,LOCK: EXT, 0.123 ID X $0.245^{\prime \prime}$ OD, STL - - * - -	78189	1104-00-00-0541C
-115	----- -----		1.	. CONN,RCPT, ELEC: (SEE A16J1010 REPL)		
-116	200-2222-00		1	GUARD, FAN:	81041	6-182-033
-117	211-0513-00		4	SCEEW, Machine: ${ }^{\text {(attaching Parts) }} \times$	83385	OBD
-118	210-0457-00		4	NUT, PL, ASSEM WA: 6-32 X 0.312 INCH, STL	83385	OBD
-119	--..--		1	FAN, VENTILATING: (SEE b500 repl)		
-120	134-0159-00		3	BUTTON, PLUG:0. 38 DIA, PLASTIC	80009	134-0159-00
-121	200-2500-00		1	(STANDARD ONLY) COVER,GPIB:ALUMINUM	80009	200-2500-00
	--...-........			(STANDARD ONLY) (attaching parts)		
-122	211-0244-00		2	SCR,ASSEM WSHR:4-40 X 0.312 INCH, PNH STL (STANDARD ONLY)	78189	OBD
-123	210-0586-00		2	NUT, PL, ASSEM WA:4-40 X $0.25, \mathrm{STL}$ CD PL (STANDARD ONLY)	83385	OBD
-124	131-0955-00		3	CONN, rCPT, ELEC: BNC, FEMALE	13511	31-279
-125	210-0255-00		3	(OPTION O2 ONLY) TERMINAL, LUG:0.391" Id int tooth	80009	210-0255-00
				(OPTION O2 ONLY)		

Fig. \& Index No.	Tektronix Part No.	Serial/Model No. Eff Dscont	Qty	12345 Name \& Description	Mir Code	Mfr Part Number
2-126	131-0570-00		1	CONNECTOR, RCPT, : 25 PIN, MALE (OPTION 02 ONLY) (attaching parts)	71468	DB25P
-127	211-0008-00			SCREW, MACHINE: $4-40 \times 0.25 \mathrm{INCH}$, PNH STL (OPTION 02 ONLY)	83385	OBD
-128	210-0586-00			NUT, PL, ASSEM WA:4-40 $\times 0.25$, STL CD PL (OPTION 02 ONLy)	83385	OBD
-129	----- --.			FILTER,RAD INTE: (SEE FL500 REPL) (attaching parts)		
-130	211-0012-00		2	SCREW, MACHINE:4-40 X 0.375, PNH STL CD PL	83385	OBD
-131	210-0586-00		2	NUT, PL, ASSEM WA:4-40 X $0.25, \mathrm{STL}$ CD PL	83385	OBD
-132	200-2264-00		1	cap., fuseholder:3ag fuses	53629	031.1666(MDLEEU)
-133	204-0832-00		1	BODY, FUSEHOLDER:3AG, $5 \times 20 \mathrm{Mm}$ FUSES	53629	031.1673(MDLFEU)
-134	334-3379-03		1	MARKER, IDENT:MARKED GROUND SYMBOL	80009	334-3379-03
-135	333-2723-00		1	PANEL, Rear :	80009	333-2723-00
-136	213-0801-00		4	(ATTACHING PARTS) SCREW, TPG, TF: - 32×0.312, TAPTITE, PNH	93907	OBD

Fig. \&

Index	Tektronix	Serial/Model No.					Mfr
No.	Part No.	Eff	Dscont	Qty 12345	Name \& Description	Code	Mir Part Number

WIRE ASSENBLIES

Fig. \& Index No.

Tektronix Serial/Model No. Part No. Eff Dscon Dscont Qty 12345 Name \& Description

Mfr Code Mir Part Number

ACCESSORIES

-1	$161-0066-00$
-2	$161-0066-09$
-3	$161-0066-10$
-4	$161-0066-11$
-5	$161-0066-12$
	$-070-2955-00$

1 CABLE ASSY, PWR, $: 3,18$ AWG, $115 \mathrm{~V}, 98.0 \mathrm{~L}$
80009 161-0066-00

- (STANDARD ONLY)

1 ABLE ASSY, PWR; 3,0.75MM SQ,220V,96.0 L

- (OPTION Al ONLY)

1 CABLE ASSY, PWR: $3,0.75 \mathrm{MM}$ SQ, $240 \mathrm{~V}, 96.0 \mathrm{~L}$

- (OPTION A2 ONLY)

1 CABLE ASSY, PWR: $3,0.75 \mathrm{MM}$ SQ, 240V,96.0 L

- (OPTION A3 ONLY)

1 CABLE ASSY, PWR:3,18 AWG,240V,96.0 L 80126 OBD

- COPTION A 4 ONLY)
) MANUAL, TECH: INSTRUCTION

80126
80126 OBD
80126 OBD
80126 OBD

80009 070-2955-00

MANUAL CHANGE INFORMATION

At Tektronix, we continually strive to keep up with latest electronic developments by adding circuit and component improvements to our instruments as soon as they are developed and tested.

Sometimes, due to printing and shipping requirements, we can't get these changes immediately into printed manuals. Hence, your manual may contain new change information on following pages.

A single change may affect several sections. Since the change information sheets are carried in the manual until all changes are permanently entered, some duplication may occur. If no such change pages appear following this page, your manual is correct as printed.

SERVICE NOTE

Because of the universal parts procurement problem, some electrical parts in your instrument may be different from those described in the Replaceable Electrical Parts List. The parts used will in no way alter or compromise the performance or reliability of this instrument. They are installed when necessary to ensure prompt delivery to the customer. Order replacement parts from the Replaceable Electrical Parts List.

CALIBRATION TEST EQUIPMENT REPLACEMENT

Calibration Test Equipment Chart

This chart compares TM 500 product performance to that of older Tektronix equipment. Only those characteristics where significant specification differences occur, are listed. In some cases the new instrument may not be a total functional replacement. Additional support instrumentation may be needed or a change in calibration procedure may be necessary.

Comparison of Main Characteristics		
DM 501 replaces 7D13		
$\begin{array}{r} \hline \text { PG } 501 \text { replaces } 107 \\ 108 \end{array}$	PG 501-Risetime less than 3.5 ns into 50Ω. PG 501-5 V output pulse: 3.5 ns Risetime	107 - Risetime less than 3.0 ns into 50Ω. 108-10 V output pulse 1 ns Risetime
PG 502 replaces 107 108 111	PG 502-5 V output PG 502 - Risetime less than $1 \mathrm{~ns} ; 10 \mathrm{~ns}$ Pretrigger pulse delay	108-10 V output 111 - Risetime $0.5 \mathrm{~ns} ; 30$ to 250 ns Pretrigger pulse delay
PG 508 replaces 114 $\begin{array}{r} 115 \\ 2101 \end{array}$	Performance of replacement equipment is the same or better than equipment being replaced.	
PG 506 replaces 106 $067-0502-01$	```PG 506 - Positive-going trigger output sig- nal at least 1 V; High Amplitude out- put, 60 V. PG 506 - Does not have chopped feature.```	106 - Positive and Negativegoing trigger output signal, 50 ns and 1 V ; High Amplitude output, 100 V . 0502-01 - Comparator output can be alternately chopped to a reference voltage.
$\begin{array}{r} \text { SG } 503 \text { replaces } 190 \\ 190 \mathrm{~A}, 190 \mathrm{~B} \\ 191 \\ 067-0532-01 \end{array}$	$\begin{aligned} & \text { SG } 503 \text { - Amplitude range } \\ & 5 \mathrm{mV} \text { to } 5.5 \mathrm{~V} \text { p-p. } \\ & \text { SG } 503 \text { - Frequency range } \\ & \\ & 250 \mathrm{kHz} \text { to } 250 \mathrm{MHz} . \end{aligned}$	190B - Amplitude range 40 mV to 10 V p-p. 0532-01 - Frequency range 65 MHz to 500 MHz .
SG 504 replaces 067-0532-01	SG 504 - Frequency range 245 MHz to 1050 MHz .	0532-01 - Frequency range 65 MHz to 500 MHz .
067-0650-00		
$\begin{array}{r} \text { TG } 501 \text { replaces 180, } \\ 180 \mathrm{~A} \\ \\ 181 \\ 184 \\ \\ 2901 \end{array}$	TG 501 - Trigger outputslaved to marker output from 5 sec through 100 ns . One time-mark can be generated at a time. TG 501 - Trigger outputslaved to market output from 5 sec through 100 ns. One time-mark can be generated at a time. TG 501 - Trigger outputslaved to marker output from 5 sec through 100 ns . One time-mark can be generated at a time.	180A - Trigger pulses 1,10, $100 \mathrm{~Hz} ; 1,10$, and 100 kHz . Multiple time-marks can be generated simultaneously. 181 - Multiple time-marks 184 - Separate trigger pulses of 1 and 0.1 sec; 10, 1, and 0.1 ms ; 10 and $1 \mu \mathrm{~s}$. 2901-Separate trigger pulses, from 5 sec to $0.1 \mu \mathrm{~s}$. Multiple time-marks can be generated simultaneously.

NOTE: All TM 500 generator outputs are short-proof. All TM 500 plug-in instruments require TM 500-Series Power Module. REV B, JUN 1978

Date: 2-25-81 \qquad Change Reference: CLI/281
Product: TM 5003 POWFR MODULE
Manual Part No.: 070-2955-00

DESCRIPTION

TEXT CORRECTION

Page 1-4 Table 1-2
Characteristic Shock, Description column
REMOVE: The footnote reference "e"

CHANGE footnote co read as follows:
${ }^{c}$ Tested with mechanical load of $9.5 \mathrm{lbs} . \pm 1 / 2 \mathrm{lb}$. eventy distributed. (A three-wide plug-in with three rear support pins and two rear interface ECB's.) Requires retainer clips.

REMOVE: Footnote e.

CONMITTELTO EXCELIENCE
Date: 8 -23-82
Change Reference: $\mathbf{M 4 7 3 7 9}$
Product: TM5003 Power Module
Manual Part No.: 070-2955-00

DESCRIPTION

EFFECTIVE SERIAL NUMBER: (Std.) B010470 (Option 2) B010500

ChANGE TO:
AllR1621 321-0306-00 RES.,FXD,FILM:15K OHM,1\%,0.125W
ADD:
Al1R1615 311-1232-00 RES.,VAR,NONNIR:50K OHM, 0.5 W
DELETE:
A11W1630 131-0566-00 BUS CONDUCTOR:DUMMY RES, 2.375,22AWG
These changes are on the A-11 DC Power Suoply board which changes to 670-6802-01 DC POWER SUPPLY REGULATOR 2 SCHEMATIC - PARTIAL

A-Il CIRCUIT BOARD - PARTIAL

ADD:
Add to Internal Adjustment Procedure, page 4-5: Delete step 1-f.
2. Adjust Clock Oscillator (SN BOlO470 and above whenever Ul620 is replaced.)
3. Connect a probe from the test oscilloscope to the ungrounded end of R1510.
b. Adjust RI615 for a frequency of between 40 kHz and 42 kHz at R 1510.
c. This completes the internal adjustment procedure.

Date: \qquad Change Reference: \qquad C3/0784

Product: TM 5003 Power Module
Manual Part No.:

DESCRIPTION

PG 76

CUSTOM INTERFACING INFORMATION

Refer to the following pull-out page and Sections 2, 5, and 6 for information on custom interfacing such as Option 2.

ACCESSORIES FOR OPTION 2

REPLACEABLE PARTS LIST

Fig. \&

CROSS INDEX—MFR. CODE NUMBER TO MANUFACTURER

Mir. Code
Manufacturer
Address
City, State, Zip

71468	ITT CANNON ELECTRIC	666 E. DYER RD.	SANTA ANA, CA 92702
80009	TEKTRONIX, INC.	PO BOX 500	BEAVERTON, OR, 97077

Fig. 8-7. Main Interface Board (backside, Assy A 10)

A 10 MAIN INTERFACE BOARD CUSTOM INTERFACING AID

Page 2 of 2

Date: \qquad Change Reference: \qquad M54950

Product: TM 5003 Power Module
Manual Part No.: \qquad

Effective Serial B011155:

REPLACEABLE ELECTRICAL PARTS LIST CHANGE:

CHANGE TO:

	Tektronix	Serial/Model No.		
Component No.	Part No.	Eff	Dscont	Name \& Description
A14	$670-7057-01$	B011155	CKT BOARD ASSY:LINE FILTER	

The 670-7057-01 is the same as the 670-7057-00 except for:

CHANGE TO:

A14C1101 285-1218-00 B011155 CAP,FXD,PLASTIC:0.27UF,10\%,400VDC

NOTE To accommodate the new oversized C1101, $11 / 2$ inches of insulation sleeving (Tektronix part no. 162-0593-00) is added over the base part of the capacitor and 1 inch of insulation sleeving (Tektronix part no. 162-0914-00) is added to one lead.

EFF SN BO11245

SCHEMATIC CHANGES

DIAGRAM 2 DC POWER SUPPLY - Partial
CHANGE: The value of VR1753 from 15 V to 12.5 V
The value of R1750 from 91 K to 130 K
The value of R1751 from 8.2 K to 820 OHM
The value of R1752 from 22 K to 3 K
The value of Cl851 from luF to $10 u F$
The value of R 1621 from 15 K to 30.1 K
The value of Rl620 from 42.2 K to 30.1 K
MOVE: R1615 as shown below.

CHANGE: The value of R1615 from 50 K to 25 K

[^0]: f. CHECK - that the supply reads from +7.6 V to +8.5 V .

