MARCH 1984
ION
TE K ::[\é)FRO WBE'\éﬁTNOLOGISTS

TECHNOLOGY

report

COMPANY CONFIDENTIAL

III HII||lll!llll|Illlllilllmlllllillllllllllml g
[o %tmllIIIIIIIIIIIIIIIHIHIHIII lllﬂlllllllﬂlll S

B mmmuuummmmmumm LT
Ly m|nmumunmmlmnnmmmnmmt 3

E
EEEEEEEEEEEEEEEEEEEE

CONTENTS

The Architectural Evolution

of a High-Performance Graphics Terminal
Technical Standards

Circuit Simulation on a

PersonalComputer

Developing a Display Memory for

High-Resolution Raster Graphics
Papers and Presentations

Volume 6, No. 3, March 1984. Managing
editor: Art Andersen, ext. MR-8934, d.s.
53-077. Cover: Jackie Miner; Graphic illus-
trator: Nancy Pearen. Composition editors:
Jean Bunker and Sharlet Foster. Published
for the benefit of the Tektronix engineering
and scientific community.

Copyright© 1984, Tektronix, Inc. All rights
reserved.

Why TR?

Technology Report serves two purposes.
Long-range, it promotes the flow of technical
information among the diverse segments of
the Tektronix engineering and scientific com-
munity. Short-range, it publicizes current
events (new services available and notice of
achievements by members of the technical
community).

CORRECTION

Micheal Cranford, Electronic Systems Lab.

In the February issue of Technology Report, we incorrectly iden-
tified Micheal Cranford, a co-author of "“Perceived Brightness and
Color Contrast of Color Displays,” as a member of the Imaging
Research Laboratory. Mike is a senior engineer in the Electronic
Systems Laboratory, but he has made substantial contributions
to the work of the Imaging Research Laboratory and to other
organizations. [J

TECHNOLOGY
REPORT

THE 4115B:

THE ARCHITECTURAL EVOLUTION
OF A HIGH-PERFORMANCE
GRAPHICS TERMINAL

| Douglas J. Doornink is a senior electronic engi-
neer in Graphic Systems Products (GSP). He was
the leader of the hardware development project
for the 4115B. After joining Tek in 1974, he par-
ticipated in the design of the 4112, 4027, 4025,
4024, and 4081. Doug holds an MSEE from Stan-
| ford University. His BSEE is from the University of
2| Washington.

John C. Dalrymple is a senior electronic engineer
in Graphic Systems Products. He lead the team that
developed the picture processor for the 4115B.
John joined Tek in 1976 and has done research in
color anti-aliasing, display-processor architecture
for directed-beam refreshed displays, and display-
processor architecture for intelligent oscilloscopes.
John's MSEE and BSEE are from Oregon State
University.

This article is a case study of the design of the Tektronix
4115B. It details the design constraints, shows how the ar-
chitecture evolved from the Tektronix 4113, and shows how
performance was gained by adding a microcoded picture
processor and some special-purpose hardware. This arti-
cle was adapted from a paper given at Spring COMPCON,
1984.

The task given the designer is usually not to design the “best”
or ultimate product but rather to squeeze the most out of a de-
sign — given many constraints. These constraints range all the
way from how much the customer is willing to pay to how big
the product can or must be. In 1981, the GSP engineering
group was asked to design a “high-performance” graphics
terminal.

High performance in computer graphics requires interactivity,
and interactivity hinges on the speed at which an image can be
produced or changed on the screen. The system must respond
to the user in the appropriate amount of time, or productivity will
suffer and frustration will increase. The challenge for the design-
ers of a high-performance graphics terminal is to squeeze out
the most speed given a set of real-world constraints.

This article reviews the design of the Tektronix 4115B and, in
particular, the picture processor. First, we will discuss the back-
ground and motivation behind the design; this discussion will

analyze the Tektronix 4113 and its performance bottlenecks. We
will then discuss the system partitioning of the 4115B and the
tradeoffs made, show how the right balance of hardware and
microcode can substantially increase performance, and look at
how the completed design performs.

Background and Motivation

Even though most engineers would like to start each new de-
sign from the ground up, this is not the job usually given. Be-
cause most products are not designed in a vacuum, product
design means specific requirements and hard constraints. Prod-
ucts are designed within an environment that includes other
products, customer desires, and technology limitations. This
was very much the case with the design of the Tektronix 4115B
graphics terminal.

Functional requirements

Since the 4115B was to be a member of the 4110 family, the
most important functional requirement was family compatibility.
The 4110 family was modeled after the SIGGRAPH CORE,"
which includes the ability to store and transform picture seg-
ments. Compatibility with all the 4110 family commands was
necessary. There were raster display commands implemented
in the 4112 and 4113. These commands were similar to those in
the Raster Extension to the Core System.2 Compatibility with all
raster and color features of the Tektronix 4113 was necessary
because it was the only color-raster member of the 4110 family.

Because the 12-bit coordinate system in the then current 4110
family was inadequate for many applications being addressed
by computer graphics, a 32-bit coordinate system requirement
was added to the design goals. This extension had to be com-
patible with the old 12-bit system, of course.

In addition, the 4115B was to be compatibile with ANSI X3.64
alphanumeric control commands. This would allow the terminal
to be used with the many alphanumeric-oriented programs
available. This compatability was essential. Even though the
4115B is a high-performance graphics terminal, it is frequently
used for alphanumeric data entry and editing. Most users ex-
pect their $20,000 terminal to be able to do what their $500 ter-
minal can do.

TECHNOLOGY
REPORT

Performance requirements

Interactivity is the primary requirement of a high-performance
graphics terminal. Another word for interactivity is speed. To be
interactive in a man-machine environment, the long-standing
rule of thumb was “response within two seconds.”” This rule
has been superseded because exposure to personal computers
and single-user systems has increased user expectations.4 Func-
tions done locally on a terminal are expected to be done quick-
ly, if not instantaneously.

On the 4110 terminals, this meant that the re-draw and manipu-
lation of picture segments, which are stored locally in the ter-
minal, must be done quickly. Dragging and transforming of
segments should happen instantly. Picture segments of several
thousand vectors are not unusual; pictures with tens of thou-
sands of vectors are common.

Another performance requirement was high display quality.
1280 x 1024 pixels is now mandatory for a high-resolution dis-
play. For picture stability, 60-Hz noninterlaced scanning is re-
quired; anything less tires users with flicker.

A third requirement was that the new terminal must support a
display of 256 colors simultaneously. This meant at least eight
bits per pixel, or eight planes of display memory.

Physical constraints

The 4115B was to be an addition to a family; this predetermined
physical constraints. The 4110 family was pedestal based; there-
fore the 4115B had to fit into the pedestal. (See figure 1(A).) The
established card cage had room for only 18 circuit cards; all of
the display system plus all options had to fit. We knew six circuit
cards would be needed for the display memory and controller
and that nine would be needed for the options common to the
4110 family. We could use only three 8.5 x 11-inch boards for
the picture processor (figure 1(B)). This definitely restricted the
amount of circuitry that could be used for the picture processor.

The power for the system as a whole was fixed at 500 watts.
This limit was important when it came to making tradeoffs be-
tween hardware, software, and microcode in the system
architecture.

Technological constraints

Because the development schedule for the 4115B was to be
short, we had to use off-the-shelf parts — no custom VLSI. We
also had to use as many existing 4110 circuit cards as we could.
This meant staying with the processor (8086), option cards, and
bus structure used in the previous 4110 terminals. This limited
system architecture to 1-M byte address space and 16-bit data
paths.

Bottlenecks in the 4113

The 4113 was the functional model for the 4115B, but the 4113
had some shortcomings for high-performance graphics; the
most important was its picture-segment re-draw speed. The
4113 outputs constant-time vectors to the screen at about 1000
fully transformed vectors per second.

== O% ’<—11.25 IN.—>|

o —r
—F{—

= N | 85IN
= —_
(b)
13 IN.
17 IN. >

(@)

Figure 1. (a) Front view of the 4115B pedestal. The card-
cage dimensions, and (b) circuit-card dimensions were
the primary physical constraint for the new terminal.

Also, the 4113 couldn’t keep up with sustained communications
at 19.2 kilobaud. The 4113 could sustain only 9600 baud without
overflowing the communications buffer.

8086 overloaded

In the 4113, there is a definite imbalance between hardware and
firmware.

Although there was a hardware vector generator in the 4113,
the firmware in a 8086 microprocessor did most of the work.
Running in the 8086 was a message-based multitasking operat-
ing system, which also handled all host communications and
peripheral management. In the graphic pipeline, 8086 firmware
did all command parsing and decoding. It also did the display-
list creation and traversal, 2D transformations, panel-scan con-
version, and dot-matrix character setup.

The hardware vector generator was a slave to the 8086, doing
only actual vector generation and controlling writing to the frame
buffer. Also, the hardware performed block moves in the frame
buffer for dialog-area scrolling since the dialog area in the 4113
was in the frame buffer. The hardware vector generator could
do 2600 full-screen vectors per second and 100,000 short vec-
tors per second; so it was not the bottle neck.

TECHNOLOGY
REPORT

Data flow in the 4113 input system, all data.— except report data — goes to the display

Figure 2 shows the data flow in the basic 4113. The data origin-
ates from one of three sources: the RS-232 interface, the key-
board, or the graphic input devices. After going through the

command interpreter, the communication system, or the graphic voked|unti the very:and of the data fiow.

driver. The display driver is shown in detail in figure 3. The heart
of this driver is the transform system: Ultimately, all of the data
paths lead to the transform system, and the hardware is not in-

HOST
RS-232 REPORT
<
g
a
DISPLAY £
COMMANDS | O
1T}
(0w
COMMAND DISPLAY DISPLAY
KEYBOARD 7‘/(/ INTERPRETER DRIVER HIW
/
HIW
9 / SPECIFIC
GRAPHIC \CURSOR POSITIONING
INPUT SCROLLING MOTION
PICK DATA AND CURSOR POSITIONS
INPUT ’
DEVICES

Figure 2. 4113 basic data flow. Data originates from three sources: the RS-232 interface, the keyboard, graphic input

devices. The display driver is shown in detail in figure 3.

VIEW LIST

SIDING AND
SCAN-LINE STRUCTURES

MOVE, DRAW,
MARKER

@ HARDWARE

D FIRMWARE

Figure 3. 4113 display-driver data flow. Ultimately, all paths lead to the heart of the system, the transform system. The
hardware is a slave to the 8086, invoked only at end of data flow. There was a software/hardware unbalance.

TECHNOLOGY

BRESENHAM’S LINE-DRAWING ALGORITHM

Bresenham'’s algorithm is designed so that each iteration changes one of the coordinate values by + 1. The other coordinate
may or may not change, depending on the value of an error term maintained by the algorithm. This error term records the dis-
tance, measured perpendicular to the axis of greatest movement, between the exact path of the line and the actual dots gener-
ated. In the example below, where the x axis is the axis of greatest movement, the error term e is shown measured parallel to
the y axis. The following description of the algorithm assumes this particular orientation of the line.

At each iteration of the algorithm the slope of the line, Ay/Ax, is added to the error term e. Before this is done, the sign of e is
used to determine whether to increment the y coordinate of the current point. A positive e value indicates that the path of the
line lies above the current point; therefore the y coordinate is incremented, and 1 is subtracted from e. If e is negative the y co-
ordinate value if left unchanged. Thus the basic algorithm is expressed by the following PASCAL program:

{Note: e isreal; x, y, deltay are integers}
e: =(deltay/deltax)— 0.5;
for i:=1 to deltax do begin
Plot(x,y);
if e > 0 then begin
W=yl
e=e—1
end;
X:=x+1;
e: = e+ (deltay/deltax)
end;

The weakness of this sequence of operations lies in the division required to compute the initial value and increment of e. This
division can be avoided, however, since the algorithm is unaffected by multiplying e by a constant: only the sign of e is tested.
Thus by multiplying e by 2Ax we produce the following program, requiring neither divisions nor multiplications:

{Note: all variables are integers}
e:=2 x deltay —deltax;
for i:= 1 to deltax do begin
Plot(x,y);
if e > 0 then begin
W= ATl
e:=e+(2 » deltay —2 « deltax)
end
else e:=e+2 » deltay;
X=x+1
end;

A full implementation of Bresenham’s algorithm involves allowing for other cases besides 0 <Ay<Ax, the case discussed above.
At the same time the algorithm can be somewhat simplified by using only integer arithmetic. Bresenham'’s algorithm avoids gen-
erating duplicate points. Because it also avoids multiplications and divisions, it is well suited to implementation in hardware or

on simple microprocessors.

— From Principles of Interactive Graphics, Newman and Sproull

In addition to performing few processes by hardware, the 4113 Breaking The Bottlenecks
gsed a low-level interface to the hardware vector generator. The Adding a picture processor

firmware had to calculate all the parameters for a Bresenham
vector algorithm® and load the parameters into registers on the ~ To achieve the design goals of the 4115, we had to open the

vector generator. The Bresenham algorithm was then executed ~ bottlenecks of the severely overloaded 8086 and mostly idle
in the hardware. vector-generator hardware. We took a conventional approach:

TECHNOLOGY
REPORT

VIEW LIST

COMMAND
INTERPRETER

DISPLAY LIST
"

SIDING AND
SCAN-LINE STRUCTURES

PANEL BUFFER

LK% x X208
G 0.0.0.0.0,°°,
SRR
2020203070026

X
ROSIEXEIEAIRIRY
1020,%5262020202026%

%

*
D FIRMWARE

%

% MICROCODE

@ HARDWARE

Figure 4. 4115B display-driver data flow. We offloaded lower-level graphics processing from the 8086 by replacing the
vector-generator hardware with a microprogrammable bit-slice “picture processor.”

replacing the vector-generator hardware with a microprogram-
mable bit-slice “picture processor,” so that the lower-level
graphics-processing functions could be offloaded from the
8086. This new division of labor can be seen in figure 4. Along
with the bit slice, this processor contains several hardware ac-
celerators for speed-critical tasks. It was constrained to fit on
two standard-sized (11.25x 8.5 in) cards.

The 4115B picture processor is an instruction-set processor that
executes programs (display lists) built by code running on the
8086. The initial specification of the display-list format was done
by software engineers who were designing the 8086 code and
by microcoders who would be implementing the instruction set.
The specification evolved as the implementation proceeded;
however, task partitioning between the 8086 and the picture
processor did not change drastically after the first specification.

8086 tasks

In the 4115B, the 8086 retains the multitasking operating system,
host communication, peripheral management, and display-list
management functions discussed in the description of the 4113.
The code significantly differs from that of the 4113 in several key
areas:

(1) Most data paths are now 32-bits wide to support the 32-bit
coordinate space.

(2) New algorithms and data structures allow faster, more
space-efficient creation of many small graphic segments.

(3) New code drives the hardware dialog overlay and cursor
overlay (not present in the 4113).

(4) The numeric co-processor (8087) is used for the precise
arithmetic operations needed to generate graphic-image
transforms for the picture processor.

Additionally, the 8086 assists the picture processor in the scan
conversion of panels (filled areas). For this task, the picture pro-
cessor transforms coordinates from the display list and sends
them to the 8086. The 8086 then builds temporary data struc-
tures, which it passes back to the picture processor. The picture
processor uses these data structures to compute and fill the set
of pixels interior to the specified area. Finally, the 8086 deletes
the temporary structures.

Picture processor tasks

The picture processor executes commands from a display list
resident in system memory. It transforms graphic primitives,
described in a 32-bit integer coordinate space, into 1280 x 1024
pixel screen-coordinate space and clips the results to rectangu-
lar viewports on the screen. It scan converts the transformed
primitives and writes pixels into the frame buffer. Using informa-
tion from the display list, the picture processor controls the ap-
pearance parameters (primitive attributes such as line style,
whether areas are to be filled or left hollow, background trans-
parency of dot-matrix characters, etc.).

TECHNOLOGY
REPORT

The picture processor can traverse a display list in one of three
modes. In the default mode, all attribute commands are obeyed
and all visible portions of primitives are drawn. In the erase
mode, all visible portions of primitives are drawn in a solid color
(fixed when the mode is entered) and the attribute-setting com-
mands are ignored. In the pick mode, nothing is drawn; instead,
the picture processor informs the 8086 about items that would
have intersected the viewport. In this case, the 8086 has given
the viewport the size and position of a very small pick aperture.

Adding hardware to the picture processor

When a user is locally panning and zooming on a retained pic-
ture, the entire picture must be re-transformed and re-drawn
each time the "“view"” key on the terminal is pressed. A principal
design goal for the 4115B was to both speed up local redraw to
at least 20 times that of the 4113. It was clear that some hard-
ware help for point transformations would be beneficial. Also, in
increasing drawing speed, vectors would need much attention
since terminal applications were vector intensive. Therefore, we
optimized picture-processor hardware for vector-drawing speed.
The following sections describe how we partitioned tasks be-
tween the 4115B picture-processor hardware and its microcode.

Display-list traversal

Since the picture processor is an independently executing proc-
essor, it must acquire the system bus and perform data trans-
fers to and from system memory and I/O devices. In the 4115B,
the details of these low-level operations are hidden from the
microcode. Two hardware state machines (both resident in one
registered PAL) implement the bus acquisition and data-transfer
protocols.

The machines are activated by a single microinstruction. The
microcode can then continue executing until it needs the results
of a bus-read or until it tries to start another bus operation. At
that time, a hardware “wait” mechanism temporarily halts the
picture processor until the original cycle has been completed.
Thus, microcode does not have to test any status flags to see if
a transfer has been completed prior to starting another transfer.

The terminal bus has 20 address bits (referencing 1 Mbyte) and
16 data bits. Maximum bus bandwidth is obtained by perform-
ing 16-bit transfers on even-address boundaries. The picture-
processor instruction set (display list) consists of one- and two-
byte opcodes, with operand lengths ranging from zero to tens
of bytes.

Most operands are immediate data following an opcode. There-
fore, a display-list fetch-ahead system was built in microcode.
Routines needing operands from the display list make subrou-
tine calls to this system, which manages a three-byte fetch-
ahead queue and always does 16-bit bus transfers at even
addresses.

If the execution of an opcode references data from outside the
instruction stream, another set of subroutines is used, which de-
stroys information in the queue. These may be eight- or 16-bit
transfers at arbitrary addresses. The queue state must be re-
stored (by calling a subroutine) before the next opcode is fetched.
Transfer-of-control opcodes flush and refill the queue.

2D point transformation

To assist in transforming points from 32-bit terminal-coordinate
space to screen-coordinate space, we added low-cost serial/
parallel multiplier hardware to the picture processor. This hard-
ware consists of two 24-bit shift registers linked in a ring with
two 25L.S14 chips,6 which are controlled by a hardwired state
machine and a combinational PAL.

Like the bus-data transfer circuitry, this hardware is activated
by, and can operate in parallel with, microcode. Data items are
loaded by microcode into the shift registers and the multiplicand
is input to the 25L.S14s. Then, a control register is loaded with a
shift-count value.

When the control register has been loaded, the state machine
automatically switches the clock period for the 25L.S14s and
shift registers from 163 nsec/cycle to 65 nsec/cycle and begins
shifting and decrementing the shift counter. During this time,
any microinstruction that attempts to access or change the data
in the 25L.S14s, shift registers, or control register will be held off
by the wait mechanism described previously.

The shift operation is completed when the shift counter reaches
zero, and the result of the multiplication is read by microcode
from the shift registers. Up to 48 x 48-bit multiplications are per-
formed using multiple passes and partial-product accumulation
in microcode.

Scan conversion

Scan conversion is the process of converting primitive descrip-
tions (such as vector endpoints or polygon vertices) together
with attribute information (such as line color or area-fill pattern)
into the set of pixel addresses in the frame buffer to be modified
and into the pixel data to be written at those addresses.

The 4115B includes special frame-buffer-interface (FBI) hard-
ware, resident on one standard-sized card. It is designed to
hide the details of frame-buffer memory organization from the
picture processor. The frame buffer appears as a 2D array of
8-bit pixels. Also included in the FBI hardware are X- and Y-
address registers (both registers can be incremented, decre-
mented, held, or loaded on each cycle) and two sets of pixel-
data registers. Either set of registers can be selected on each
microcycle. A four-pixel cache with automatic swapping hard-
ware contains a copy of the current frame-buffer region being
accessed by the picture processor.

The FBI is augmented by additional hardware on the picture
processor for boosting vector performance. The control signals
that drive the FBI can come either directly from the current
microinstruction (during vector setup) or from a 32-deep FIFO
memory that queues up address-stepping and data-register-
selection commands for the FBI. These commands are used
during the actual drawing of vectors. The address-stepping
commands trace out the trajectory of the vector, and the data-
register-selection commands select between foreground and
background colors for dashed lines.

TECHNOLOGY
REPORT

During vector drawing, special hardware around the bit-slice
processor allows the inner loop of Bresenham’s algorithm[5] to
execute in a single 163-nsec cycle. During each cycle of this loop,
a bit is generated that selects one of two inputs to the FIFO pipe-
line: (1) step the FBI address along the long axis of the vector,
or (2) step diagonally one unit in the direction of both axes.

Simultaneously, a bit from the dash pattern (stored in the same
shift registers used for multiplication) is loaded into the FIFO pipe-
line, and the shift registers are rotated one bit position. As long
as the FIFO is not full, it will accept input at the full 163-nsec/pix-
el rate. The FIFO is emptied by the FBI at an average rate of
about 1 usec/pixel.

When the FIFO fills up, the wait mechanism holds off further in-
puts until the FBI has unloaded the FIFO. Also, the wait mecha-
nism prevents direct microcode access to the FBI as long as the
FIFO is not empty. Because of the FIFO, the fetching and setup
of a vector can be overlapped with the writing of the previous
vector’s pixels into the frame buffer.

For scan conversion of solid-filled areas, up to 80 pixels at a time
(along a scan line) are written into the frame buffer. When an
area is to be filled with a pattern consisting of two colors, the
FIFO and the two pixel-data registers are used. When an area is
filled with a general fill pattern (arbitrary size up to the limit of
system memory and up to 8 bits per pixel), there is no hardware
help.

Three area-fill algorithms are implemented in the microcode:

(1) A speed-optimized rectangle-fill algorithm with trivial rejec-
tion and clipping for rectangles whose sides are vertical and
horizontal.

(2) A microcode-only algorithm for unclipped polygons with up
to 16 sides.

(8) A general panel algorithm for areas that may be clipped, may
have holes in them, and are unrestricted as to the number
of edges.

In the general panel algorithm, the picture processor passes
transformed vertices to the 8086 (through a shared buffer in sys-
tem memory) and the 8086 builds data structures for the micro-
code to use when it fills the panel. Because of the handshaking
overhead the general panel algorithm has the slowest panel-
filing performance.

System Performance

It is not enough to say “the system must be fast” and use that state-
ment as a design goal. To know if the design is good enough,
one must have numbers against which design-goal achieve-
ment can be measured. Early in the design of the 4115B, we
established performance metrics that we felt were appropriate in
light of the application targets for the 4115B. Our metrics dealt
with drawing speed: vectors per second, segments per second,
and simple panels per second. All of these metrics assumed the
application of a 2D transform as part of the drawing process.

After analyzing sample pictures from typical applications, we
determined that the average vector length was 10 pixels on a
1280 x 1024 display. Pictures in this category averaged 30,000
vectors; pictures with longer vectors typically have fewer vec-
tors. The worst-case application had only one vector per seg-
ment, while in the best case, all vectors would be in one seg-
ment. Both cases needed benchmarking because each picture
segment incurs significant picture-processor overhead.

Another important picture type uses “simple panels” — simple
panels have fewer than 16 edges. A prime example of simple-
panel use is in a solids model that uses a mesh description and
generates the image with a lot of quadrilaterals. For these images,
the quadrilaterals have an area of about 100 pixels. In other applica-
tions, such as VLSI CAD, the areas to be filled are even simpler —
rectangles whose sides are vertical and horizontal. For CAD ap-
plications, we benchmarked rectangle-fill performance using
rectangles with an area of 100 pixels.

Comparing Performance: 4115B vs. 4113

Figure 5 compares the 4115B with the 4113 using the previously
defined metrics. The performance gained by adding a microcoded
picture processor is dramatic. The line-drawing performance
gained by adding the FIFO is shown in figure 6.

4115B
D 4113

l

50 k
SHORT VECTORS/SEC

1k

12k
“ SEGMENTS/SEC

i % SMALL SIMPLE PANELS/SEC

10k
4 SMALL RECTANGLES/SEC

I T [
10 100 1k 10k 100 k

*FROM DISK FILE — NOT IN A DISPLAY LIST

Figure 5. 4115B versus 4113 performance. Scale is
logarithmic. Performance metrics assume that graphic
primitives are repainted from retained segments.

TECHNOLOGY
REPORT

40

1.22 uSEC/PIXEL

T

w
o
1

n
o
1

\

160 NSEC/PIXEL

VECTOR TIME (uSEC)

-
[S)
|

I [I [
5 10 15 20 25 30

VECTOR LENGTH (PIXELS)

Figure 6. 4115B vector drawing performance. The effect
of having a FIFO between the picture processor and the
frame buffer can be clearly seen. The initial slope is 163
nsec per pixel (microcode instruction time). The final
slope is 1.22 msec, the worst-case rate for writing pixels
to the frame buffer.

From figure 6, one can see that the basic setup time for a vector,
including the transform time, is about 18 usec. The initial slope is
163 nsec per pixel, the microcode instruction time. As the FIFO
becomes more than half full, the output port has priority and we
see the knee in the curve. The final slope of the graph is 1.22
usec per pixel, which is the worst-case rate at which the pixels
can be written into the frame buffer.

It is also interesting to compare the performance of the 4115B with
that of other architectures and implementations. Four architec-
tures are compared in figure 7. The 4113 is at one end of the
spectrum, an example in which a single microprocessor does
most of the work. We included the Apollo DN420 as an example

of a graphic system having a microprocessor and hardware op-
timized for BITBLT-type functions. The third example is the
4115B, in which the work is divided between a microprocessor
and a microcoded picture processor. The final example is the
Seillac-7 in which the work is done by a pipeline of a 32-bit bit-
slice processor, two 16-bit bit-slice processors, two 16-bit micro-
processors, a 4 x 4 matrix multiplier, a clip circuit, and a
perspective circuit.

Remaining Issues

The 4115B project did not address several functional extensions
and performance issues: we did not implement 3D transforms or
picture-segment hierarchy, although these are natural extensions
to the 4115B feature set. The main reason these features are not
in the 4115B now is that our resources were limited. When we
prioritized features, these two fell below the cut line.

Another functional issue is standardization, GKS!"! in particular.
Tektronix supports GKS as a standard, but since the 4110 family
was not an implementation of GKS, the 4115B could not imple-
ment GKS and still be a part of the 4110 family.

Some performance areas were not addressed by the 4115B proj-
ect. Although one can do picture dynamics on the 4115B, it was
never designed to do animation; the performance necessary for
animation was beyond the scope of the 4115B.

We did not attempt more than eight planes, which would allow
the display of more than 256 colors at a time. Restricting the
4115B to eight planes was necessary because of limits in the
frame-buffer system — not because of picture processor capacity.

Finally, we did not optimize the system for BITBLT-type opera-
tions as has been done in some work-station architectures. The
Apollo DN420 engineering work station is a good example of
this architecture. Our application and system architecture re-
quired optimization toward line drawing.

SHORT VECTORS
a3 i PER SECOND
APOLLO DN420 12k
41158 50 k
SEILLAC-7 400 k
T T
1k 10k 100 k ™

*ESTIMATE, DEPENDS ON APPLICATION

Figure 7. Vector-drawing performance of different architectures.

1 TECHNOLOGY
REPORT

Conclusion

The architecture development of the 4115B was an evolutionary
step rather than a revolutionary jump. The main reason for this
was the set of constraints placed on the project and architecture
by the product-family environment in which it was developed. In
spite of this, dramatic performance improvements were made,
and the requirements of interactivity were met by adding a micro-
coded picture processor and partitioning the work among firm-
ware, microcode, and hardware. Because of this balancing,
brute force was not necessary for high performance.

References

[1] “Status Report of the Graphics Standards Planning Com-
mittee of ACM/SIGGRAPH,” published as Computer
Graphics, vol. 11, no. 3 (Fall, 1977).

[2] “Status Report of the Graphics Standards Planning Com-
mittee of ACM/SIGGRAPH,” published as Computer
Graphics, vol. 13, no. 3 (August 1979).

[3] J. Martin, Design of Man-Computer Dialogues, Prentice-
Hall: Englewood Cliffs, N.J. (1973).

[4] J.D. Foley and A. Van Dam, Fundamentals of Computer
Graphics, Addison-Wesley: Reading, Mass. (1982).

[5] J.E. Bresenham, “Algorithm for Computer Control of
Digital Plotter,” IBM System Journal, vol. 4, no. 1 (1965).

[6] “Bipolar Microprocessor Logic and Interface,” Advanced
Micro Devices, Sunnyvale, CA (1983).

[7] Graphical Kernel Standard (GKS) International Standards
Organization (ISO) Draft International Standard (DIS)
7942,

TECHNICAL STANDARDS

Technical Books Available
The Technical Standards library of technical volumes is growing.
Here are some recent additions:

Mark’s Standard Handbook for Mechanical Engineers, a
dictionary.

IEEE Standard Dictionary of Electrical and Electronic Terms.
|IEEE STD 141-Recommended Practice for Electric Power
Distribution for Industrial Plants.

If your interest is in a field affected by standards, we may have
the book you need. You don’t have to buy; we’'ll lend it.

Books and Reports

100C '81 — Third International Conference on Integrated Op-
tics & Optical Fiber Communication — April 27-29, 1981. This is
a technical digest. A number of test procedure documents from this
document are also available. May be purchased or borrowed.

NTIS — Directory of Computer Software Applications on Energy
- Available for loan.

NASA — A Catalog of Selected Computer Programs — Title, number
and a brief description of the program included. Available for
loan.

New Standards

EIA-RS-505 — Packaging for Return CRT Glass Component

EIA-RS-455-47-1983, FOTP-47, Output Far-Field Radiation Pattern
Measurement, $6.00

EIA-RS-455-51-1983, FOTP-51, Pulse Distortion Measurement of
Multimode Glass Optical Fiber Information Transmission Capacity,
$6.00

EIA-RS-455-87-1983, FOTP-87, Fiber Optic Cable Knot, $5.00

ANSI X3.99-1983, Optical Character Recognition (OCR) — Guide-
lines for OCR Print Quality, $6.00

ANSI X3.103-1983, Unrecorded Magnetic Tape Minicassettes
for Information Interchange, Coplanar 3.81 mm (0.150 in) $6.00

Information regarding standards, publications, and workshops
can be obtained by contacting Technical Standards, 627-1800,
Leah D'Grey.

G 1

CIRCUIT SIMULATION ON A
PERSONAL COMPUTER

Brian L. Biehl is a senior SW/HW engineer in Integrat-
ed Circuits Engineering (ICE), part of the Technol-
ogy Group. Brian joined Tek last year from the
Harry Diamond Laboratories in Washington, DC.
Brian holds a PhD and BS in electrical engineer-
ing from the University of Maryland. His MSEE is
from Catholic University.

A simulator program such as SPICE2 running on a desktop
computer at IBM-mainframe speeds would be most desir-
able. Although such desktop technology is not yet here,
even an 8-bit personal computer can perform SPICE-like
simulations fast enough to be considered interactive. This
article examines just what performance can be achieved
with a circuit-simulation program running on an 8-bit-
microprocessor-based system and compares that perfor-
mance with simulations run on 16- and 32-bit computer
systems.

Using small computer systems for circuit simulation is not new.
Simulation programs such as BIAS-D' have been available for
desktop calculators since 1972. The main disadvantage of these
programs was not in the programs themselves but in the com-
puter systems on which they executed. These computers were
memory, speed, and language limited. The largest memories
available were 16-Kbytes of RAM, with cassette tape as the stor-
age media. Many tradeoffs were required just to get a 10-node
circuit to execute in a reasonable time.

It was not until the mid 1970s that virtual-memory minicomputer
systems such as the PRIME 350 were available, allowing more
than 64-Kbytes of RAM memory to be addressed without overlay
or segmentation. The virtual memory coupled with a fast cache
memory increased throughput to where these $100K to $200K
minicomputers were comparable to the large mainframe com-
puters in speed and memory-address space. These systems
have grown into the PRIME 750s and the DEC VAXs of the
1980s.

In the late 70s came the “home computer” - the personal com-
puter or “PC.” These computers contained 8-bit microproces-
sors and used audio cassettes for program storage. The casset-
tes were soon replaced by 80- to 100-Kbyte 5-1/4-inch floppy-
disk drives. These systems were still memory and speed limited,
but rather than costing $20,000, they cost less than $3,000. An-
other favorable aspect for simulation is that the PC systems are
not language limited, working comfortably in high-level lan-
guages such as FORTRAN, Pascal and C.

Now we are seeing desktop “workstations” based on 16-bit
microprocessors. These desktop systems have dual- or quad-
density floppies or even 5-inch hard disks and 128 Kbyte or

more of addressable RAM. This environment seems attractive
for computer-aided design. Just what are the capabilities of
these small systems?

Bias-D, a Small-System Circuit Simulation Program

Circuit simulation program BIAS-D was first written in BASIC for
the HP 9830 desktop calculator.! Later it was converted to For-
tran and executed on the HP 1000, DEC 11/45, PRIME 400 and
IBM 370/168.2 BIAS-D was then modified to run on a Z80-based
CROMEMCO system* with 64-Kbytes of RAM.

This modified version of BIAS-D (called Micro-BIASD) executes
on any CP/M system having 48 Kbytes of memory (excluding the
operating system). Program overlays on disk are not required.

The capabilities and features of Micro-BIASD are listed in Table 1.
The 50-node capability is based on a 90-percent-sparse circuit
with less than 75 elements. The node capabilities and element
count can be adjusted depending on the available memory. The
circuit elements are stored in a linked-list integer array with 16
bytes allocated to store resistors, current sources and voltage
sources; 24 bytes allocated to store capacitors and inductors;
32 bytes for transistors and 40 bytes for models. (The contents
of each list can be found in reference 3, page 77.) Micro-BIASD
also uses sparse-matrix storage, along with its associated pointer
arrays.

Nodes: 50, not including voltage sources and ground
Element Types: 75 (total) dynamically allocated
e Capacitors
e Inductors
e \oltage sources
e Current sources
e Bipolar transistors (npn and pnp)
Model Types (built-in):
e PUL - pulse (vi, Vi, td, tr, tw, period)
e SIN - sine wave (id, vp, freq, phi)
e EXT - Any arbitrary v(t)
e NPN - Ebers-Moll (bf, br, is, va, ir)
e PNP - Ebers-Moll
e TEM - Temperature (temp coefficients for
R, C, and Beta)
Analysis Types:
e DC operating points
e Transient
e Small signal frequency response
Features:
e Insert elements
e Alter elements (single value or sweep)
e | oad circuit file to or from disk
e Save dc, transient or ac analyses data to disk
e Print circuit data at any time
e Graphics interface built-in

Table 1. What Micro-BIASD can do on a personal computer.

1 TECHNOLOGY
REPORT

The speed-improvement techniques used in Micro-BIASD include
node reordering and sparse-matrix decomposition. But prepro-
cessed array storage, a speedup technique used on many large
simulation programs - including SPICE, isn’t used. Instead, the
admittance values are computed “as needed.”

If the preprocessed array were used, it would contain computed
admittance values to be entered into the linear admittance array.
For example, a resistor R is stored in the processed array as 1/R.
Also required are the four pointers to where this admittance is
added to the admittance array. Using this processed array only
slightly increases simulation speed for circuits with less than 50
nodes. More significant for small computer systems, the processed-
array technique takes more than 2 Kbytes of memory.

In BIAS-D, NPN and PNP transistor models are like SPICE level-
1-bjt models without voltage-dependent junction capacitors and
series collector, base, and emitter resistors. But the model does
have a low-current-beta-roll-off parameter not in the SPICE level-
1 model.

The data is inputed using a semi-free format similar to SPICE. The
element names are limited to two characters and the nodes limited
to no more than 99. An example of the input format of Micro-
BIASD is given in figure 1. This is the input representation of the
24-node five-transistor circuit shown in figure 2.

Micro-BIASD is interactive therefore it can (at anytime):

e |nsert circuit elements or models using an INSERT command.

e Alter models or element values using an ALTER command.
Element values may be swept using ALTER.

e Save modified circuits to a disk file using a SAVE command.
Saved circuits and others can be re-entered later from the
disk using a LOAD command.

e Print circuits to the screen or printer using a PRINT command.

Table 2 shows how Micro-BIASD uses memory space for its most-
used functions and for the operating system and the Fortran li-
brary. The memory utilization by Micro-BIASD is compiler depen-
dent. In this case, since the system memory available for use is
64 Kbytes, 10 Kbytes are available for adding more nodes or
elements, graphics (about 6 Kbytes), a MOS-transistor model,
and so forth. The data in table 2 was obtained using the Micro-
soft Fortran 80 compiler. Coding parts of the program in Z80 as-
sembly language would reduce memory needs and speed exe-
cution time. However, the code would be less portable.

Computer System Requirements

To execute Micro-BIASD at least this is needed:

e A CPU with 64K of RAM

e CP/M or any operating system supporting Fortran

e One disk drive of at least 81 Kbyte

e A monitor or terminal

Compiling and linking Micro-BIASD requires either two 81-Kbyte
disk drives or one 320-Kbyte drive. Such a system including For-
tran and CP/M software could cost less than $850 if a home-brew

system such as “BigBoard” is used. Turnkey systems such as a
KAYPRO cost $1200 to $1800.

*TEST CIRCUIT CKT13 (24 NODES)
* % * INTEGRATED PREAMPLIFIER * * *
* % * RESISTORS
R16112K

R2737.5K

R34 0680

R4 769K

R5 8 0 5K

* TRANSISTORS
Q1321123 M2

Q2 34 21 43 M2

Q36251 44 M2

Q4 64 61 53 M2

Q5 72 31 83 M2

* VOLTAGE SOURCES
VB+ 706.1

VS901M1

Ccs911U

* BASE RESISTORS

RB1 111 100

RB2 2 21 100

RB3 5 51 100

RB4 6 61 100

RB5 3 31 100

* COLLECTOR RESISTORS
RC1 332 100

RC2 3 34 100

RC3 6 62 100

RC4 6 64 100

RC57 72 100

* EMITTER RESISTORS
RE5838 10

RE4 535 10

RE3 44 410

RE2434 10

RE1232 10

*JUNCTION CAPACITORS
CE11122P

CC11132P

CE22132P

CC22142P

CE35162P

CC35142P

CE46152P

CC4 616 2P

CE53172P

CC53182P

M1 PUL 0-1 .5U .5U 5U .5U
M2 NPN 100 1 5E-15

END

Figure 1. Twenty-four node benchmark circuit listing for
the circuit shown in figure 2.

Figure 2. This five-transistor amplifier circuit with 24 nodes
was simulated to evaluate the simulation possibilities of
personal computers.

MR 3

Function Size (Kbytes)
Operating System (cp/m) 8.0
Common (no ac) 6.0
Ac Common 2.4
Input/output 9.8
Setup 4.9
Bjt Model 3.4
Analysis (no ac) 6.5
Ac Analysis 3.8
Fortran Library 9.2
TOTAL (Kbytes) 54.0

Table 2. Memory utilization for Micro-BIASD on CP/M For-
tran. On a 64K system, 10 Kbytes are available for more
nodes, graphics, and other models.

Speed Comparisons of
Computer Systems Using BIASD

Since BIASD is in standard FORTRAN it should execute without
modification — except for timing and disk /O routines — on most

8-bit to 32-bit CPUs. Table 3 compares the execution times of 12
systems including a VAX 11/780 running VMS Fortran for a tran-
sient analysis of 101 timepoints for the 24-node circuit in figure 2.

The total time on the VAX was 12 seconds versus 82 minutes for
the CROMEMCO. The systems are listed in the approximate order
of execution time. As expected, 8-bit CPUs are slower than 16-bit
CPUs, which are slower than 32-bit CPUs.

Speed Differences
Table 3 shows some interesting speed-related items:

e Floating point hardware halved execution times, for both the
APOLLO (16-bit CPU) and the VAX 11/780 (32-bit CPU).

e Fortran compiler efficiency significantly shortened execution
speed for identical VAX 11/780s. One ran UNIX; the other ran
VMS.

e SPICE2 executed about 60% slower than BIASD on a VAX
11/780 but executed about twice as fast (not shown) as BIAS-D
on an IBM 370/168.1%!

The speed differences resulted from differences in hardware or soft-
ware (or both). In the 8-bit CPUs, the primary limit is the double-
precision multiply speed. The speed of a double-precision (64 bit)
multiply on a 4-MHz Z80 (MicroSoft Fortran) is 10 ms; on the
VAX 11/780 VMS Fortran, it is 2 ps.

The compiler determines how efficiently hardware interfaces with
software. Efficiency also depends on the programmer’s skills,
how well the machine-instruction set utilizes the hardware, and
other factors. Compiler-caused speed differences can range
from a factor of two to as much as four or five®! (see table 3).

Time Speed
per relative
Operating System & Features iteration to VAX* #
8-bit CPU
CROMEMCO CR2D (CDOS,

4 MHz, Z80) 11s 410
TARBELL (CP/M, 4 MHz, Z80) 11s 410
16-bit CPU
APOLLO (virtual memory, cache,

68000)

a) 8 MHz clock 370 ms 14
b) 10 MHz clock, f.p. hdwr. ++ 140 ms 5.2
HP-21MX (RTE IlI; f.p. hdwr.;

4 8-bit double precision) 230 ms 8.5
PDP 11/45 (RSX 11D; f.p. hdwr.) 94 ms 35
HP-1000F (RTE VI; f.p. hdwr.;

4 8-bit double precision) 61 ms 2.2
32-bit CPU
VAX 11/750 (VMS 3.1; cache;

virtual memory)

a) without f.p. hdwr. 61 ms 2.2
b) with f.p. hdwr. 37 ms 1.4
SEL 32/27 (no f.p. hdwr.) 58 ms 2.1
PRIME 400 (PRIMOS; cache;

virtual memory, f.p. hdwr.) 64 ms 2.4
VAX 11/780 (cache; virtual

memory; f.p. hdwr.)

a) Unix (Berkeley version 4.2) 43 ms 1.6
b) VMS (rev 3.2) 27 ms
IBM 370/168 (MVS/TSO; cache;

f.p. hdwr.) 4.5ms 0.16
SPICE2G.6 (on a VAX 11/780 VMS) 43 ms 1.6
*running CKT13 (24 nodes, 5 bipolar transistors)
**relative to a VAX 11/780 VMS FORTRAN (with optimization)
++f.p. hdwr. = floating point hardware

Table 3. Speed comparisons of computer systems running
BIASD.

Program size affects execution speed. Large programs require

more paging (disk I/O is slower than RAM). This is shown by the
slower execution of SPICE on a mini compared to the faster ex-

ecution on a mainframe.

Interactive circuit simulation requires execution speeds of one-
iteration-per-second or faster — any slower and you bore the
user. The 4-MHz Z80 took 82 minutes for a 101-point transient
analysis — at 11-seconds-per-iteration, this is definitely not in-
teractive (see table 3). At one-second-per-iteration the same
analysis would take 7.5 minutes — marginal yes, but tolerable.

-I TECHNOLOGY
REPORT

Conclusions

A circuit simulator with SPICE-like capabilities can run on 8-bit
microprocessor based systems. The primary sacrifice is execu-
tion speed. The data indicate that with floating-point hardware
8-bit systems could be interactive (less than one-iteration-per-
second). However, the data also show 16-bit systems, even
without the floating-point hardware, are faster.

Other observations:
e Circuit simulation programs running on small systems need to
be tuned for that system to speed up execution.

e Compilers need to take advantage of the hardware and the
particular microprocessor’s instruction set.

e Floating point hardware is needed to speed up double-
precision multiplies.

e Simulator programs should be scaled to the size of the exe-
cuting system.

For More Information
For more information, call Brian Biehl 627-4073 (59-316). [J

References

[1] Brian L. Biehl, “BIAS-D: A Semi-Interactive Circuit Analysis
Program for Desktop Calculators and Minicomputers,”
Eighth Annual Asilomar Conference on Circuits, Systems
and Computers, December 1974.

[2

—_—

Larry W. Nagel, “SPICE2: A Computer Program to Simu-
late Semiconductor Circuits,” Electronics Research Lab,
ERL-M520, University of California, Berkeley, May 1975.

Brian L. Biehl, “Interactive Electronic Circuit Simulation on
Small Computer Systems,” Harry Diamond Labs, HDL-
TM-79-30, 120 pps., November 1979. (Available from the
Defense Documentation Center, Alexandria, VA.)

Brian L. Biehl and Charles W. Cairns, “BIAS-D as a
Microcomputer-Based Circuit Simulator,” Twelfth Annual
Asilomar Conference on Circuits, Systems and Com-
puters, December 1978.

[3

—_—

[4

—_—

[5] Avram Tetewsky, “Benchmarking FORTRAN Compilers,”

BYTE, February 1984, page 217.

—_—

DEVELOPING A DISPLAY MEMORY
FOR HIGH RESOLUTION
RASTER GRAPHICS

Greg Thompson is an electronic design engineer
in Graphics Systems Products (GSP), part of IDG.
Greg joined Tek in 1977. He holds a BSEE from
the University of Portland and an associate de-
gree from Mount Hood Community College.

Raster graphic terminals are demanding increasingly den-
ser memories. This article, after tracing the evolution of
raster graphics, describes the decisions and the approaches
used in designing a display memory for the 4115B, a high-
resolution raster graphics terminal.

The Evolution of Raster Graphics

The display devices developed in the mid-sixties and still in use
today are called vector stroke or calligraphic displays. They con-
sist of a display processor, a display buffer memory, and a CRT
with its associated electronics. The buffer stores the computer-
produced display list or display program which contains points,
line plotting commands, and character plotting commands.

These commands are interpreted by the display processor,
which converts digital values to analog voltages that displace
an electron beam writing on the phosphor coating of the CRT.
Since the light output of the phosphor decays in tens or at most
hundreds of microseconds, the display processor must cycle
through the display list to refresh the phosphor at least 30 times
a second to avoid flicker.

The buffer memory required to develop and display typical line
drawings (8 to 32 kilobytes) and a processor fast enough to re-
fresh at least 30 times a second were both very expensive in the
sixties. Thus in the late sixties the advent of the DVST or direct-
view storage tube (which obviated both the buffer and the re-
fresh process) was a vital step in making interactive computer
graphics affordable.

In the DVST, the image is stored by writing it once on a storage
target carrying a bistable storage phosphor. This type of storage
tube is still popular for applications that require large numbers
(tens of thousands) of precise lines

and characters but do not need dynamic picture manipulation.

A mid-seventies achievement was an inexpensive raster display
based on television technology. The development that made
raster graphics possible was inexpensive solid-state refresh buf-
fer memories, considerably larger than those of a decade ago
at a fraction of the price of earlier systems.

MR8 5

ADDRESS
L] : I gNTH:OjL]
TIMING

CONTROLLER
INTERFACE

V-

BIT MAPPED MEMORY ARRAY

CESSOR

PICTURE PRO
INTERF,

> VIDEO TO CRT

VIDEO/CRT
INTERFACE

+ PIXEL DATA

CONTROL |
LINES
4~ ADDRESS LINES

PICTURE PROCESSOR READ/WRITE DATA

Figure 1. Fundamental bit-plane memory architecture.

Fundamental Bit-Plane Architecture

As shown in figure 1, basic bit-plane architecture consists of four
blocks: a bit-mapped memory array (where the image is stored),
a timing controller interface (that controls the scanning of memo-
ry array to the CRT screen), a picture processor interface (for
reading and writing the image into the memory), and a video/
CRT interface.

In raster displays, the display primitives such as lines, characters
and solid areas (typically polygons and rectangles) are stored in
a refresh buffer as individual picture elements called pixels. The
image is formed from a set of horizontal raster lines, which are
simply a matrix of pixels covering the entire screen.

Much more data storage is needed for raster scan displays than
for refreshed vector or DVST displays. An entire image of say,
512 lines, each containing 512 pixels, must be stored in a “bit-
map” memory, which contains all the points necessary to map,
one for one, the points on the screen.

Timing controller interface

A raster display memory has an interface to a controller to gen-
erate the timing signals needed by both the display memory
and the CRT (figure 2). This interface consists of the address
lines and the memory read/write control lines. These address/
control lines control the scanning sequence of the bit map and
the loading and shifting of the parallel-to-serial shift register, and
other control lines such as the RAS and CAS signals for dynamic
RAMs.

ADDRESS
MUX

SEL[M)

EADDRESS LINES TO MEMORY ARRAY

wWCwW VWOMDOO>»

N
1
SEL

CONTROL
LOGIC

- coL

LA ——>RAS)
———>CAS

L wae]

[———> SHIFT REGISTER LOAD | CONTROL FOR PARALLEL-TO-

[———> SHIFT REGISTER SHIFT | SERIAL SHIFT REGISTERS

CONTROL LINES TO MEMORY ARRAY

nCmw rOITH4Z00

—
N

Figure 2. Address Bus interface.

Video/CRT interface

Although the frequency of access is limited by the bit-map
memory’s access time, pixel information in the memory is ac-
cessed fast enough to refresh the CRT at least 30 times a sec-
ond. Enough pixels must be accessed and shifted from the
memory to the CRT to allow time to get the next set of pixels
from the display memory to be shifted out. This accessing and
shifting is done by the parallel-to-serial interface.

Pixel information accessed from the memory is some n pixels
wide (called “word width”). The word is latched into a parallel-
to-serial shift register (figure 3). Pixel information is then either
shifted out serially to the CRT as video — a sequence of pixels -
or is processed further for color or gray-scale displays.

1 TECHNOLOGY
REPORT

Picture processor interface

The bit-map memory also has an interface to the picture proces-

sor (figure 4). The picture-processor interface provides the path
for pixels to be read or written from/to the bit map; so the pic-
ture processor can create the image that appears on the CRT.
The picture processor accesses the bit map during horizontal
and vertical blanking, when the CRT is not being refreshed.

The picture processor can be given more "“accesses” to the bit
map by cycling the display RAMs at twice the speed needed to
refresh the screen. Although this increases word width, it signifi-
cantly speeds memory access by the picture processor.

It is faster memory access that makes higher performance pos-
sible in a raster-scan graphics terminal.

4115 Design Goals

Design goals for the Tektronix 4115 Graphic Display Terminal
were high performance, high resolution, and little or no flicker.
To avoid flicker, we used a 60 Hz noninterlaced raster rather
than the usual 30 Hz, interlaced format.

The resolution was to be 1280 by 1024 pixels with an ability to
simultaneously display 256 different colors. We chose to go for
high resolution and many colors to position the 4115 for
CADI/CAM applications.

To reach the desired resolution, 1280 by 1024, 1,310,720 indivi-
dual pixels per bit plane were needed. To display 256 colors si-
multaneously, eight bit planes would be required.

Eight nanosecond/pixel rate

Choosing the pixel rate for 60-Hz, noninterlaced operation was
our first engineering decision. Scanning 1024 lines in less than
16.66 milliseconds means a time-per-line of about 16 microsec-
onds. And 1280 pixels per line means about 12 nanoseconds
per pixel. After allowing for horizontal and vertical blanking times,
the actual values are 15.62 microseconds per horizontal line
and 8.14 nanoseconds per pixel.

VIDEO DATA
=2 TOCRT

N/2 PIXELS

SHIFT REGISTER
LOAD™| LOAD

SHIFT REGISTER __| SHIFT
cLock cLOCK

CONTROL LINES
FROM TIMING
CONTROLLER

S|

SO

PIXEL DATA

FROM MEMORIES NIZEIXELS

{ NPIXELS

LOAD

SHIFT
CLOCK

S/ =SERIAL DATA IN
SO =SERIAL DATA OUT

1

Figure 3. Parallel-to-serial shift registers, P/O Video/CRT
interface.

PIXEL DATA PATH

CONTROL — BI-DIRECTIONAL DATA

SELECTOR LOGIC

~— TO/FROM

N BITS WIDE MEMORY
ARRAY

FROM CONTROL
LOGIC

TO/FROM
PICTURE
PROCESSOR

M BITS WIDE

Figure 4. Picture processor interface.

Word Width

With the intended resolution of 1280 by 1024, our next step was
deciding what dynamic RAMs to use. A few calculations indicated
that the entire 1280 by 1024 pixels would map directly into eighty
16,384 by 1 dynamic RAMSs. This choice set the word width to
80 pixels.

The 80 pixel word width and pixel rate of 8.14 nanoseconds re-
quired memory access within 651 nanoseconds. This access
time meant that the memory cycle time could be cut in half to
325.4 nanoseconds — because most memories can be accessed
in less than 300 nanoseconds — to give the picture processor
more access time. Thus, we could achieve design goals without
using faster, more expensive RAMs.

Dynamic RAM technology and the 80 pixel word width meant
that each bit-plane would require 80 RAMs. Since one of the de-
sign goals was to display 256 colors at once, eight bit planes
were required.

Because the 4115 was to be mounted in an existing terminal
pedestal (with no change), space requirements for the eight bit
planes complicated design. Finding space for eight bit planes
meant fitting two planes on a single circuit board. With current
dynamic RAM technology, putting 160, 16 pin ICs plus support
logic on a 8.5 by 11 inch circuit board seemed impossible.

At the time of the design effort - December 1981 — the only RAMs
available were 16 K by 1. However, Texas Instruments was talk-
ing about a 16 K by 4 device, but wasn't sure they could meet
the necessary delivery dates.

Design solutions

The tentative design solution for the board-space problem was
to develop a hybrid memory board using a ceramic, single inline-
package with four 16 K by 1 RAMs. This approach created a 16 K
by 4 device which solved the problem of board space - but this
device cost too much to produce and did not meet reliability
requirements.

So while one team worked to improve the reliability of this hybrid
memory, a second design team developed an alternative mem-
ory board using the Texas Instruments TMS4416, 16 K by 4 dy-
namic RAM. We decided that if TI made its promised delivery
dates, we would use TM4416 instead of the hybrid memory
board.

RN 17

ADR MUX/ADR DVR } FIO
PIO
~_P/O ADDRESS BUS INTFC | VIDEOICRT
r . ! MEMORY PLANES ! INTFC
CAS ARRAYA , 80 80| | 2, TOTIMING
% 7
> WLEN FYN T LD LD CONTROLLER
WE RAS 20 — —
FBADRS _ 14 SED .
TO
FBADR18
2:1 >
SEL |
—— 80
o 4 TOIFROM
coLt y—ecLd—» = ADDRESS BUS A6 #—> PICTURE
) | INTERFACE % PROCESSOR
FiAS RAS |
Lo SELECT ~L_ P/o PICTURE
= ~ PROCESSOR INTFC
MEMWR-0 M 20 20)(
FBSELA-0 2 21
FBSELB-0 ™ 20
2 F >
SCRNREQ >M—{ecL
TO
SALD1 H—{TO
SRCLK1
SRLDO M ECLl
SALLRO >— 7o)
20 20
RASSELO-RASSEL19 y—pfp—ot—X
s J}PDATWR
PDATRD-PDATWR Y= i
FBADrO-FBADr4 ;,lj OF L X
20 10
SELECT)|
< P/O PICTURE
1 PROCESSOR INTFC

Figure 5. 4115 bit-plane memory architecture.

Well, TI came through. By using one TM4416 instead of four 16 K
devices per single inline package, costs were cut more than half
and memory-part count was cut by a factor of four. System costs
were also lowered because fewer interconnections and support
logic were required.

Also, by using the TMS4416, power consumption was significant-
ly cut. Power supply margins were increased and electrical noise
was reduced. And, with lower heat dissipation and fewer inter-
connections, system reliability would be improved.

4115 Bit-Plane Memory Architecture

The 4115 bit-plane memory includes three blocks described next
and shown in figure 5.

Parallel to serial shift register

The parallel to serial shift register takes 80 pixels in parallel from
the memories and shifts these bits two at a time to the controller.

The timing controller takes these two bits along with bits from the
other bit planes and uses them as an index into two parallel color
look-up tables, the output from the look-up tables is then multi-
plexed out to a digital to analog converter to become the video
used by the color monitor.

Address-bus interface

The address-bus interface is shared by both the timing controller
and the picture processor. It consists of the 19 address lines
and the memory read/write control lines. The other control lines
(RAS, COL, CAS) and the Shift register load and shift register

clocks are generated by the timing controller. The frame-buffer-
select lines are generated by the picture-processor interface to
select the desired memory plane for reading or writing. This
means any combination of memory planes can be read or writ-
ten without disturbing any of the other memory planes.

Picture-processor interface

The picture-processor interface consists of an 80 bit to 4 bit bi-
directional multiplexer. The reason for this 80 to 4 bit interface is
that the picture processor reads or writes only a nibble. The nib-
ble consists of four adjacent pixels on a horizontal line, from
each of the eight planes.

Summary

In the seventies, semiconductor memory made raster graphics
affordable. But as the resolution of raster graphic terminals in-
creased so did the density of the memory array needed to sup-
port the display.

Increasingly denser memories are an on-going problem in de-
signing today’s raster graphic terminals. Higher cost per unit,
lower reliability, and more circuit board space all create
difficulties.

The development of an integrated circuit memory to support the
raster graphics market will undoubtedly ease both design and
cost constraints and contribute to the increased performance of
future raster graphic terminals.

For More Information

For more information, call Greg Thompson, 685-3092, 63-205.
|

TECHNOLOGY
REPORT

1

PAPERS AND PRESENTATIONS

The table below is a list of papers pub-
lished and presentations given during
recent months.

While providing recognition for Tektronix
engineers and scientists, the presenta-

tion of papers and articles contributes to
Tektronix’ technological leadership image.

If you plan to submit an abstract, outline,
or manuscript to a conference committee
or publication editor, take advantage of
the services that Technology Communi-
cation Support (TCS) offers.

TCS provides editorial and graphic assis-
tance to Tektronix engineers and scien-
tists for papers and articles presented or
published outside Tektronix and obtains
patents and confidentiality reviews as
required.

Call Eleanor McElwee on ext. MR-8924.
O

Recent EIA Phosphor Screen
Registrations

1976 CIE-UCS Chromaticity
Diagram with Color Boundaries

Development of a Computer-to-
Computer Interface

Graphic Workstation
Requirements

for Computer-Aided Design for
Electrical Engineering

High Speed, Latchup-Free,

0.5 um-Channel CMOS Technology
Using Self-Aligned TiSi2 and
Deep-Trench Isolation

EMI Shielding with Electroless
Copper

Designing a Reconfigurable
Automated Test System:
A Common-Sense Approach

Peter Keller
Peter Keller

Garey Fouts

Robert Chew

Tad Yamaguchi

Larry Helton
David Jordahl

Thomas Gifford
N.D. Gerbracht
David Laib

DECEMBER
TITLE AUTHOR PUBLISHED PRESENTED
Television — Why We Use It and Rex Stevens International
How It Works Television
A Process for Two-Layer Gold Doug Summers Solid-State
IC Metallization Technology

Proceedings of SID
Proceedings of SID

Proceedings of 5th
International
Computervision
Conference

Nikograph Conference,
Tokyo, Japan

International Electron Devices
Meeting (IEDM),
Washington, D.C.

Society of Mechanical
Engineers Chapter Meeting,
Portland, OR

Automated Manufacturing '83
and Test Instrumentation
Conference, Brighton, England

Continued

Technology Report
MAILING LIST COUPON

(1 ADD
[0 REMOVE
Not available to

field offices or
outside the U.S.

MAIL COUPON
TO 53-077

Name:
Payroll Code:

D.S.:

(Required for the mailing list)

For change of delivery station, use a directory
change form.

RO

JANUARY

TITLE

AUTHOR

PUBLISHED

PRESENTED

Spectrum Analyzer is Portable
Lab Assistant

The Optical Time-Domain
Reflectometer (OTDR)

BASIC Language
Telecommunications

An Experimental Color Monitor
for Vision Research

Dave Barnard
Richard Osborn
Bob Broughton

John McCormick
Gerald Murch

Microwaves & RF

Laser Focus

Dr. Dobb’s Journal

SPIE Conference,
Los Angeles, CA

Lyle Leavitt
SQA Contributions to a Quality George Tice Reliability and Maintainability
Software Product Symposium, San Francisco, CA
COMPANY CONFIDENTIAL
NOT AVAILABLE TO FIELD OFFICES
18Cd3d AYCTONHIZL
TI13ENECT 3 GYVHILE
tLG-61

DO NOT FORWARD

Tektronix, Inc. is an equal opportunity employer.

