1 Nov. 1977

WILSONVILLE
LIBRARY

Tektronix Enters New Market
with 8002 Microprocessor Lab

Tektronix Enters New Market
with 8002 Microprocessor Lab

ELECTRO ‘77
ANNOUNCEMENT

On April 19, at the Electro 77 show in
New York, the Logic Development
Products group formally introduced the
Tektronix 8002 Microprocessor
Laboratory (ML).

The 8002 is a “general purpose” design
tool because it can be used to develop
software for more than one kind of
microprocessor (the user adapts the
8002 system to each kind of
microprocessor by using an emulator
module board specific to that
microprocessor). Most other entrants in
the microprocessor design aid field are
dedicated to one microprocessor or
another.

For the microprocessor system designer
who uses different kinds of
microprocessors from one project to
another, the ML is an attractive
alternative to buying an additional
design aid for each one. (Besides saving

the cost of extra equipment, the designer
also saves time by not having to learn to
operate more than one design aid.) The
ML is now available for work with 8080,
6800, Z80, 9900 and 8085
microprocessors. Emulator modules for
others will be added to the product line
soon.

THE COMPETITION

The market for design aids will be at
least $40 million this year, and at least
$100 million by 1980. In that market, the
8002 Microprocessor Lab faces two
kinds of competition: direct and
indirect. The 8002 is a multiple
microprocessor support machine; other
MDA'’s on the market are designed for
use with a single microprocessor. They
cost as much as the 8002 and are less
versatile. New generations of
microprocessors will quickly obsolete
the single chip design aids. The 8002
faces direct competition from Intel,
Motorola and Texas Instruments.

Besides the features of the 8002 itself, a
big selling point is the fact that the 8002
is the only multiple microprocessor
support design aid on the market
backed by a service organization as
large as Tektronix’ worldwide service

group.

THE PEOPLE BEHIND
THE MDA

The MDA engineering, manufacturing
and marketing groups (part of Logic
Development Products) live in building
39. There are three engineering groups:
hardware, software and human factors
engineering.

OPERATION

Following is a description of the
hardware and software features of the
8002. This discussion has been
abstracted from the first section of the
8002 Microprocessor System User’s
Manual (part number 070-2313-00).

FOR MORE
INFORMATION

If you would like more information
about the 8002 Microprocessor Lab,
call Ken Yabuki on ext. 6419 or drop by
39-282. Ken is the Logic Development
Products marketing operations
manager.

BASICS OF THE MICROPROCESSOR

DESIGN LAB

INTRODUCTION

Developing microprocessor-based
products requires a new kind of design
tool: the microprocessor design aid
(MDA). The objective of an MDA is to
provide all members of a design team
with a common working tool that
closely approximates the real product
they are trying to develop.

An MDA helps designers develop
software and hardware, then helps
integrate the two into a complete stand-
alone microprocessor-based product.

FEATURES

System Programs Can Make A
Difference

The 8002 Microprocessor Lab (ML),
like most MDA'’s has three basic
elements: a central processing unit,
memory and input/output (I/O)
facilities. It also contains system
programs that perform supervisory
functions. The editor and user programs
help enter microprocessor instructions
into the 8002 and assemble these
instructions into a meaningful program
for the prototype instrument under
development.

Debugger programs monitor the user
program as it is executing on the ML
emulator processor (a microprocessor
within the ML, identical to the
microprocessor in the prototype). If
errors are discovered and corrections
must be made, the system programs help
make the corrections.

So, "system” programs perform support
functions and "user” programs are
developed, tested, and debugged on the
MDA.

Memory and I/ O Capability

The 8002’s large memory contains both
resident RAM (Random Access
Memory) and on-line disc storage which
allows information to be stored on disc
until it is needed, then quickly
transferred into the ML’s RAM work
space for processing. Efficient memory
and I/ O capability inan MDA decrease
the development cycle turn-around
time. The 8002 features a fast and
convenient flexible disc operating
system with a total dynamic RAM
storage capacity of 64k bytes (in
Program Memory) and approximately
660k bytes of on-line storage capacity in
the flexible disc unit.

Emulation is the method employed by
the 8002 to check out a user program.
Typically, an MDA that uses emulation
contains a hardware model of the
prototype microprocessor. This model
may use discrete logic, a microprocessor
of another type, or a microprocessor
identical to the prototype micro-
processor. The 8002 uses substitutive
emulation (the MDA emulator
processor is identical to the prototype
MiCroprocessor).

THE VALUE OF IN-
PROTOTYPE TESTING

Typically, the simplest MDA’s do not
have the facilities for hardware devel-
opment and testing. More complete
MDA’s provide limited signal
monitoring functions, but most of these
functions can also be handled by
conventional hardware test equipment.
The 8002 has the ability to swap known-
good hardware elements into the
prototype hardware and also swap
known-good software programs.

The basic idea is to connect portions of
the MDA circuitry to the prototype
hardware in the early stages of
development so that the two parts can
be exercised together as one complete
microprocessor-based system. The
combined unit then runs under the
control of the developmental software
while being supervised by the 8002’s
debug system program. This technique
is called in-prototype testing and allows
the system subcomponents (both
hardware and software) to be tested,
debugged, and verified as soon as they
are complete. So, the entire prototype
system is developed from the ground up
on verified building blocks. The worry
about a total system failure at the end of
the development cycle is thus eliminated
from the very start. The value of in-
prototype testing cannot be over-
emphasized.

MICROPROCESSOR
DEVELOPMENT CYCLE

Unified hardware/software effort from
conception to completion eliminates
hard-to-find system integration bugs.
This harmony can be achieved when a
common environment is available to all
members of the design team. The figure
on the next page illustrates the
microprocessor development cycle
when the 8002 is used.

HARDWARE

The center of 8002 internal architecture
is a system microprocessor that uses
other microprocessors to perform
different software and hardware
support functions. The 8002 contains
16k bytes of system RAM memory and
up to 64k bytes of RAM Program
memory. The 8002 also supports two
flexible disc drives with approximately
330k bytes on each disc.

Start
Software
Design

Define
Prototype
Functions

Start
Hardware
Design

Design
Software
(Flow Chart)

!

= Enter & Edit
Source Code

Assemble
Object Code

Debug
Program

Everything
OK?

8002
uProcessor Lab

'

Integrate

— the

System

Final
Debug

Build
Production
Models

Evaluate
Different
Microprocessors

|

Design
Microprocessor
Support Logic

|

Breadboard &
Evaluate Each
Circuit

Build
Prototype
Hardware

Debug
Prototype
Hardware

YES

Microprocessor development cycle with
8002 Microprocessor Lab.

Everything
OK?

An 8002 system block diagram is shown
below.

The system contains three micro-
processors — the system processor, the
assembler processor, and the emulator
processor. The microprocessors reside

on separate 8002 mainframe plug-in

circuit cards that are connected to each
other through a system bus. Also
residing in the 8002 mainframe is the
optional PROM programmer, the RS-
232-C interface (with three I/ O ports),

1 161 Lyt 4
the 16k byte system memory, and the

standard 16k byte program memory
(expandable to 64k).

The flexible disc unit communicates
with the other system components
through the system processor. Other
optional system peripherals such as the
CT8100 CRT Terminal and the LP8200

mn Patandnee A nzantaazrmtAanda tha

T3 S x
Line Printer communicate with the

system through the RS-232-C interface.

The 8002 Microprocessor Lab block
diagram. Peripherals PROM
(Optional) Sockets
rototype ——— Emulator PROM L—ISystem
Control Processor Fnstef?ach Programmer g:';z:;"sor Terminal (Not
Probe (Opt) (Optional) (Optional) Supplied)
System Bus System Bus
Program Real Time System
Memory 16K :::z;ns:;? Prototype Memory
(Opt to 64K) Analyzer (Opt) 16K

SOFTWARE

TEKDOS

TEKDOS (Tektronix Disc Operating
System) is the operating system for the
8002 and is loaded from the system disc
into the flexible disc unit each time the
system is powered up. TEKDOS
contains the supervisory software
programs for the system.

The Text Editor

The Text Editor is invoked by the
TEKDOS EDIT command to (1) enter
new user programs into memory, then
store the programs on disc; (2) correct
user programs that fail to pass through
the Tektronix Assembler; and (3) add,
delete, or modify program segments
that fail to pass through the debugger
system.

The Tektronix Assembler

After a source program has been entered
and stored on a flexible disc by the text
editor, the user program must be
translated into machine-executable
object code. This function is performed
by the assembler which then stores the
assembled object code in another file on
the disc.

The assembler is loaded from disc into
program memory and runs on the
assembler processor. The assembler
uses free space in program memory for
1/ O buffers and symbol tables. A
different version of the assembler exists
for each microprocessor supported by
the 8002. Each version is loaded into the
system by inserting a different system
disc into the flexible disc unit.

The Linker

The linker software is considered a sub-
module‘of the assembler software and is
provided with each system disc. The
linker is used to join several smaller user
program modules into one large
program. This feature allows different
software engineers to work on program
segments independently, and then join
the segments into a large workable
program.

The Emulator

The emulator software allows user
programs to be loaded into the optional
emulator processor for testing and
debugging.

The Debugger System

Since the assembler software can only
detect syntax errors in the user program,
some program logic errors may remain
undetected until the user program is
executed on a real microprocessor. The
debugger system monitors user program
execution on the emulator processor
and the prototype microprocessor. The
debugger software allows you to
examine, trace, modify, and change
portions of your program as the
program executes. This feature ensures
that the user program will be clean and
free of bugs before it is placed in
PROM:s and plugged into the prototype
instrument.

The PROM Programmer

The PROM Programmer software
supervises and controls the transfer of
user programs between the 8002
program memory and PROM . chip
plugged into the 8002 front panel.

[

9}

SOFTWARE AND
FIRMWARE ARE
VALUABLE PROPERTY

It seems so easy to those of us who work
with computers or microprocessors: a
few keystrokes, a few lines of code, and
our system is doing something new and
different. Maybe even doing something
really clever and interesting. And part of
the fun is telling people about it.

Be careful. You may be literally giving
away the store!

As microprocessors become increas-
ingly important components in
Tektronix products, the firmware which
programs them becomes as much a
proprietary resource as the CRT
construction techniques or our IC
masks. But there is one major dif-
ference: firmware can be listed, copied,
and modified far more easily than
hardware can. That means potential
competitors can easily use it — if they
get their hands on it.

EXAMPLE

A recent example of the problems which
can arise occurred with the 4051 firm-
ware. There is no doubt that a great deal
of Tektronix money went into

developing the system code which has
been the basis of the 4051’s success ...
would you believe $10 a byte?

We recently found that a small
California operation is openly offering
‘information on how to modify the
- firmware, including ways to bypass the
secret locks on tapes. As a result, we can
no longer assure potential software
developers of 4051 applications that
their tapes will not be copied.

Larry Mayhew,
Group Vice
President,
Information
Display Group

And that is not the end of the problem.

‘Several companies now offer add-on

memory and peripherals for the 4051.

Not only do their products deny us the
sales (and profit-share) dollars, but they
present a problem when the field service
technician tries to provide the expected
high level of customer support, because
the non-Tek memory must be removed.

PREVENTION

Given that outside access to the code
must be restricted, what can we do
about it? There are several things, the
most important of which is to be aware
of the legal status.

Firmware is the property of the devel-
oper, and has the status of a trade secret.
That means that information we have
access to in the course of our duties still
belongs to Tektronix, and it’s illegal to
use it for anything else. We have all
signed a document in which we not only
agree to keep secrets, but also to assign

all inventions to Tektronix. That means -

all of our bright ideas, which relate to
our work, belong to Tektronix.

So there’s no doubt Tektronix has the
right to protect its investment. It is to
our own advantage, too, because it helps
keep the company a strong and viable
competitor which can continue to
provide opportunities for employees.

The key to the situation is professional
behavior which means at all times
considering both the privileges and
duties we have as Tektronix employees
when we act.

Bill Walker, Group
Vice President, Test
and Measurements

These guidelines may help:

1. Don’t talk to anyone who is not a
Tektronix employee about the
details of our products which are not
yet announced. If any doubt exists
consult your manager or the product
group responsible for the product.

2. If an employee whom you don’t
know is seeking information, find
out why. Tektronix prides itself on
being an open company, but there
ought to be some real need before
proprietary information is
discussed.

3. Help maintain building security. It is
just courtesy to say “can I help you”
to visitors to an area, and it is
especially important to know who is
in an area nights and weekends.

4. Lock sensitive information in a desk
or filing cabinet. Just keeping it out
of sight is one of the most important
security factors.

5. Keep hobbies and work separated.
The hobby world is open and
friendly, and no place for informa-
tion which must be protected.

If we all are aware of how important it is
to keep our internal knowledge inside,
we will all benefit from the profitable
use of that information and from
Tektronix’ market leadership.

— Larry Mayhew
— Bill Walker

AVOID DUPLICATION:

Every large institution faces the
problem of duplication of effort by
isolated groups. In an advanced
technology company, the problem is
aggravated by the need for con-
fidentiality: proprietary or sensitive
material can’t be widely published even
inside the company because it may leak
to the outside world. Yet there is still a
need for each group to know what

others have done because developments

in one group may advance the work
done in another group, or at least
duplication of work may be avoided.

Asastep in that direction, the Technical
Information Department maintains a
file for designs which have not yet found
an immediate application. So far, the
following people have contributed to
the special design file: Bruce Campbell,
Keith Parker, Ron Robinder, Gary
Spence, and Dick Sunderland.

If you have a design you would like to
keep alive but which doesn’t have a
direct product application in your area,
give Technical Information a call. The
following is a list of the special designs
that have already been received. If you
would like a copy of one of the designs
listed, give Technical Information a call
(ext. 5674) or drop by 50-462.

USE THE SPECIAL DESIGN FILE

TITLE

7 in. long, E4810X

Start-Run-Reset-Timer

High-Speed Photodetector

Remote Gain Amplifier

T800 Vertical Pulser

E.C. Board, Tek 31 Universal Interface

E.C. Board, Stepping Motor Control Logic, E4301X
E.C. Board, Stepping Motor Driver, E4813XA

E.C. Extender Board, 22/44 contacts on 0.156 centers,

Power Converter, Power Line to Single Output
Thermoelectric Heater-Cooler, +85°C to +5°C
Differential Instrumentation Analysis Amplifier

Vacuum Station Controller and Monitor System

Elevated Grid Unblanking Circuit

Logarithmic Amplifier for UTI 1200 Quadrupole Gas Analyzer
Dual Filament Automatic Cathode Breakdown Unit

Process Gas Analysis Program for Tek 31 Calculator

Heat Tape Temperature Controller
BCD Interface for Systron Donner 7005 DVM

10 kHz to 3 MHz Sample Rate CCD Driver

7000 Series Universal Power Plug-in

512 X 512 D-to-A Converter Display with Readout
104A/volt Current Amplifier

80 MHz Variable Duty Cycle Square Wave TTL Clock Drive
Quick and Dirty Scan Converter Circuit

A SOLUTION TO
M36 JITTER
PROBLEM

The familiar M36 channel switch has
been accused (rightfully in most cases)
of causing CRT readout character jitter.
The portion of this jitter actually due to
the M36 can be explained by the signal
distortion produced by thermal effects
within the chip (past and present
crosstalk, and self-heating).

A very low-jitter M36 can be made by
disabling and bypassing two of the
problem transistors in the M36 (Q7 and
Q8, if you have your IC catalog handy).
The penalty is that the designer must
now arrange to handle the bias current
changes that occur with different
modes.

Because of the increasing need to
display alphanumerics on CRT screens,
a jitter-free channel switch may have
wide usage. Call me if you need details
and/or to inform us of probable
applications. This circuit can be done
with a simple mask change, but a new
circuit that has all the benefits of an M36
and is also jitter free is another project
altogether and not available yet..

— Carl Battjes ext. 5811 (50-316)

ENGINEERING NOTEBOOKS

As Bill Walker pointed out in the last
issue of Engineering News, engineering
notebooks are valuable because they
provide evidence in patent disputes and
because they are a convenient reference
for engineering information. In the
following article, the Patents and
Licenses department answers some of
the questions frequently asked about
engineering notebooks.

WHY ARE THEY USED?

Engineering notebooks have two main
functions. One is to provide the
information Tektronix may need to
prove that disputed inventions were
conceived and reduced to practice by
Tektronix employees. The other
functionis to provide a reference source
for engineering concepts and data.

In disputes concerning inventions, time
is a critical element. Engineering
notebooks can show when the concept
of the invention was recorded and when
the working model of the invention was
made. Evidence of those dates is
required by the U.S. Patent and
Trademark Office when more than one
inventor is attempting to patent the
same invention.

WHAT ARE THEY?

Tektronix engineering notebooks are
bound volumes of lined and con-
secutively-numbered pages. Each
notebook is assigned a number and is
issued to the person who signs for it. If
you have a notebook but you are leaving
Tektronix, you must return it to the
Patents and Licenses Department
because the notebook is Tektronix

property.

HOW SHOULD THEY BE
USED?

When you start a new project or
experiment go to Patents and Licenses

8

and pick up a notebook. This book is
assigned to you by name and number.
As your project develops, include
sketches, block diagrams, schematics,
theory of operation, test data and
anything else that will establish the
concept and the working model of the
invention. Of course, unnecessary
information clutters the book and
weakens its value as a reference.

Concepts and data should be recorded
as soon as they are available to avoid the
inaccuracies and omissions that seem to
occur with the passage of time. The
pages must be dated and signed by two
witnesses. While it isn’t necessary to
witness every page, witnessing every five
or ten pages should include a statement
about which pages are being covered.

WHERE DO I GET ONE?

You can obtain an engineering
notebook from the Patents and Licenses
Department by calling ext. 7787.

MAKING
PHYSICISTS
MORE VISIBLE

Jim Deer (Component Engineering) is
compiling a list of Tektronix employees
who are members of the American
Physical Society. That information will
be used to increase the visibility of
physics as a profession at Tektronix. If
you are an APS member, please notify
Jim on ext. 7711 or drop by 58-299.

DEMAND HEAVY
FOR TEKTRONIX
STANDARD

Abbreviations, Acronyms, and
Symbols (Tektronix Standard 062-
1737-00) brings together most of the
“short-forms” used inside Tektronix.
This standard also includes the
American Standards Institute (ANSI)

"Y1.1 Standard on Abbreviations.

The Tektronix compiled portion of 062-
1737-00 may be obtained from
Reprographics by calling ext. 5577. The
ANSI portion of the standard may be
ordered to your account number
through Technical Standards (call ext.
7976); the cost is $12.

WHAT IS THE

COMPETITION

DOING WITH
GPIB?

Would you like to see how Hewlett-
Packard, Wavetek and Fluke are
designing their GPIB instrument
interfaces? Maris Graube, the Tektronix
corporate interface engineer, has
instrument manuals from those three
companies and others too. The
manuals, which are available as loaners,
describe in detail the workings of the
instruments and their interfaces (some
of the manuals include schematics). If
you would like to borrow one, call
Maris on ext. 6234.

P70 JI9 W2| J3 P3
CoN DIO|

2i:§|moz
il pros
3)

L] oroa

HP-1B | 4 >r—
DATA < [
LINES L ;l DI0S
13 > T
[| \
HP1B AN :I DIOE i
SIGNALS RN]
ARE AN | oror ‘7,00
Low TRUE| 7/ :I ' \
i 'l oros]
L1 Y1—

&
Part of a Hewlett-Packard schematic
showing GPIB data lines.

IN-CIRCUIT EMULATION USING THE TARGET

MICROPROCESSOR

Steve presented this paper at
ELECTRO/77 in New York in April.

Steve Dum, Human
Factors
Engineering, ext.
7161.

ABSTRACT

This paper looks at several approaches
to developing microprocessor design
aids (MDA’s) from the user’s viewpoint.
The paper identifies the features that the
user wants in an MDA, and then
describes the approaches the MDA
designer can take to provide those
features. The paper next discusses the
factors the designer needs to consider
for one of those approaches: in-circuit
emulation. The last section looks at an
example use of an MDA.

INTRODUCTION

Special tools are required to efficiently
develop a microprocessor system. In
general, these can be classified as
microprocessor design aids (MDA’s)
The objective of the MDA’s is to mimic
the action of the microprocessor so the
system can be developed in a user-
controlled atmosphere. Both emulation
and simulation are methods of doing
that. However, only a portion of the
microprocessor system can be checked
out if the MDA does not have in-circuit
emulation.

This paper will look at several ap-
proaches to designing MDA’s. It will
identify the features that a user will need
in an MDA. The paper describes
approaches the MDA designer can take
to provide these features. We will then
show how in-circuit emulation relates to
those approaches. We will also show
that in-circuit emulation using the target
microprocessor is one of the better
approaches to use. Finally, we will give
an example of how this can be used in a
specific design.

Figure 1 shows an example of a micro-
processor design aid system. The target
microprocessor system is a prototype of
the product the user is designing.

THE FEATURES THE
USER DESIRES IN AN
MDA

Verification

The primary use of the MDA is for
verification of the target microprocessor
system functions. For the firmware,
each routine must be checked to make
sure it produces the proper outputs for
all valid inputs. The hardware must be
checked to make sure the address and
data buses are functional, and that the
related logic works.

Input/ output circuits must be checked,
too. Often this is the most difficult part
of the system to check out, because the
I/ O circuits usually operate asyn- -
chronously (relative to the micro-

processor). If the target system will be
used for event timing or sequence
timing, this logic must be verified, too.

Storage

Loading and saving program object
code on some external medium is
another desirable feature.

Examine

The ability to examine memory loca-
tions, registers, and 1/ O ports of the
target microprocessor system is also

important.

Change

The user also wants the ability to alter
memory locations, registers and I/ O
ports of the target microprocessor
system.

Software Trace

Another feature is executing one in-
struction at a time and displaying the
status of the registers (this allows the
designer to verify program execution).

MDA SYSTEM

TERMINAL

MAINFRAME

FLOPPY DISC OR
OTHER MASS STORAGE UNIT

1

QI

) o

DEBUG CABLE

MICROPROCESSOR

. TARGET SYSTEM |
USER S MICROPROCESSOR SYSTEM!

Figure 1. Example microprocessor design aid configuration. 9

Disassembly

A sixth feature is the ability to dis-
assemble the executed instructions. It’s
unreasonable to expect the designer to
memorize the bit patterns for each
microprocessor instruction, especially
when the software can do the decoding
for him.

Timing Statistics

A seventh feature is the ability to gather
statistics on timing. This allows iden-
tification of the most time-consuming
areas of the user program.

I/0 Statistics

Input/output operations usually occur
asynchronously. Statistics about I/ O
performance greatly aid in analyzing
and debugging the I/ O routines.

Download Capability

The user also wants the ability to load
programs from a timeshare computer
(preferably directly without resorting to
paper tape or other storage media).

Transparency

It is of utmost importance that the user
program has full usage of the address
and I/O space of the user’s micro-
processor. If the MDA requires that a
block of user address or I/ O space not
be used, then the MDA itself cannot be
used in some otherwise valid user
applications.

Breakpoints

Often the user wants to be able to
interrupt his program when a set of
conditions have been met. A breakpoint
is the place where execution of the
program is interrupted. The MDA may
use either the hardware or the software
to detect the breakpoint conditions and
stop the user program. Breakpoint
conditions may include specific
addresses that appear on the bus, the
status of the read/write line, micro-

10

processor control signals, or even
external user-defined signals. With the
program stopped, the user can examine
or change the status of the target system.
The user can then continue the exe-
cution of the program.

Memory Mapping

A general purpose development aid is
one that the designer can use through-
out the development cycle right down to
debugging the etched circuit board
prototype with ROMs or PROMs
inserted. This means the MDA must be
able to replace the microprocessor in the
prototype target system with a debug
cable and continue to emulate its action
in the prototype system. (This is in-
circuit emulation, which is described in
detail later.) When using the debug
cableitisimportant to be able to use the
memory in the prototype system or to be
able to disable the memory in the
prototype system and substitute for it
memory in the MDA system. The MDA
should do this without requiring any
special circuitry in the prototype target
system.

Hardware Trace

The features we have talked about don’t
allow the designer to completely debug
the target system because some of them
don’t operate in real time. Including a
logic analyzer as part of the MDA can
correct that problem. The logic analyzer
gives the designer a look at program
timing and response characteristics. The
designer may also use the logic analyzer
to store

— selected bus cycles,

— selected op code cycles,

— or all bus cycles.

The logic analyzer’s clock may be
conditioned so that the logic analyzer
will store subroutine calls and returns,
jumps, branches, stack operations, or
information when the output from a
complex comparator is true, or a match
is obtained from a content-addressable
memory (CAM). The trigger for the
logic analyzer can be generated from the
same conditions that generate the clock.

‘Normally however, the trigger is either
the output of the CAM, or the signal
that results from filling the logic
analyzer buffer.

Software Development

If the MDA is, in fact, a computer
system, then providing the user with
software development capability is also
reasonable. The user will have a com-
plete microprocessor system develop-
ment package if the MDA provides an
editor and an assembler (and perhaps a
PROM programmer).

APPROACHES TO MDA
DESIGN

Emulation vs. Simulation

There are two basic modes of MDA
operation: simulation and emulation
(see figure 2). Simulation is a method of
checking out the target microprocessor
system firmware. In this mode, the
MDA includes a software interpreter.
The interpreter “simulates” the action of
the object code as though the code were
running on the target microprocessor. -

Emulation is another way of checking
out firmware for the target system. In
the emulation mode, the MDA uses a
hardware model to mimic the micro-
processor. To build the model, the
MDA designer may use bit-slice archi-
tecture, discrete logic, or even the target
microprocessor itself (with some
additional support hardware). If the
MDA designer uses the target micro-
processor as the model, the mode is
called "substitutive emulation”.

Target System Considerations

Different kinds of microprocessor
target systems call for varied emphasis
on each of the verification procedures
performed by the MDA.

If the microprocessor system is
firmware-intensive and makes many
analytical or mathematical calculations,
then the designer will spend the most
time verifying the algorithms and

ironing out miscellaneous bugs in the
code. A software simulator may be an
adequate verification tool.

nrx the other hand

On the other hand, if

working on a control application he will
spend most of his time analyzing the
operation of the target system hardware
while it is either controlling the target
microprocessor or being controlled by
the target microprocessor. Here a
hardware emulator with in-circuit
emulation is the most effective verifica-
tion tool. ;

the Ann;nan ig
G QOGIEITT 15

Since most applications involve both
control and analytical calculations to
some degree, in-circuit emulation is the
ideal approach because it can handle
either type of application.

Simulation

signers tend to use high level languages.
If the designer is using a high-level
language, there is less concern with the
machine instructions actually executed.
Program flow and the values of defined
variables then become the most
important information.

In-Circuit Emulation

An MDA can provide the hardware and
software features we have mentioned
throughout the development process ...
but only if the MDA lets the designer
replace the target microprocessor with a
debug cable. See figure 3. The debug
cable allows the user to perform
emulation of the target microprocessor
within the prototype system. Thus he
can test the target system hardware and

Emulation

Substitutive

/0 Debug
Cable

With Debug
Cable

With Debug

|

Bit-Slice Discrete Logic

W/0 Debug
Cable

W/0O Debug
Cable

With Debug

Cable Cable

Figure 2. Microprocessor design aid configurations.

The type of source language the designer
uses to develop the system also affects
the designer’s choice of an MDA.
Today, most microprocessor system
designers use assembly language (a low
level language) to develop firmware.
For assembly language development,
the ability to observe each instruction
executed and the contents of the micro-
processor registers is very important to
the designer.

Microprocessor programs are getting
longer (and more expensive to produce);
designer’s time is becoming more
expensive. At the same time, high level
translators are becoming more efficient
and the price of ROMs is going down.
So it’s not surprising that more de-

software as it will appear in the final
product.

In-circuit emulation can be used with
any of the emulation methods described
earlier. The purpose of each of the three
routes to emulation is to mimic the
microprocessor used in the target
system. It’s difficult to use discrete logic
or bit-slice emulation and get an exact
mimic. The problem is to guarantee that
the circuitry emulates the micro-
processor exactly.

Each microprocessor has its own
idiosyncrasies. The idiosyncrasies may
result either from design faults, over-
sights, or simply arbitrary decisions by
the chip designer. Guaranteeing that

Need debug cable Prototype
o use the &DA testing
I
Test
Pre-production
Instrument

discrete hardware emulation, bit-slice
emulation, or software simulation will
have the same idiosyncrasies as the
target microprocessor is virtually
impossible. For example, the micro-
processor manufacturer may release a
new version of a mask to correct bugs in
the old design. The trouble is, the new
version may contain new bugs. Consider
the market for 8080 equivalents. There
are microprocessors available that are
99.9 percent the same as the Intel 8080A,
however, the equivalents set flags
differently than the 8080A under some
conditions.

If the development tool cannot account
for all of the idiosyncrasies of the target
microprocessor, correct emulation isn’t
assured. There is a way to get that
assurance: use the same microprocessor
as the target device (substitutive
emulation).

e e R o P A O P Uy N A,

Can use the
MDA without
debug cable

[Dovelop Software I

Make ROMs

Final

I Develop Havdwnul

Test
Production
Instrument

Figure 3. Microprocessor system design
process.

11

DEBUG CABLE DESIGN
CONSIDERATIONS

General

The goal of in-circuit emulation is to
provide the user with emulation
capability at any time he would usually
have the microprocessor inserted in the
target system. While the debug cable is
inserted, the target system circuits
should see the same signals from the
cable that they would see from the
microprocessor. This is not always
possible because at times the user wants
to execute only one instruction at a time.
Executing one instruction at a time
forces the MDA to stop the micro-
processor perceived by the target system
after each instruction. Now, let’s look at
some of the problems the MDA must
solve in trying to match the debug cable
responses to those of the target
microprocessor.

Stopping the Microprocessor

The MDA must be able to stop the
microprocessor. One way the MDA can
do this is by giving a Pause or Halt
signal to the microprocessor. This
technique is useful only if the MDA can
examine the status of the micro-
processor once it is stopped.

WRITING A
PAPER?

One of the main functions of
the Technical Information
Department is helping
Tektronix engineers
communicate with the
technical world outside
Tektronix.

If you are writing a paper for
a conference, an article for a
magazine, or presenting a
technical talk, give Tech-
nical Information a call
(ext. 5674). We provide
editing, typing, and illus-
trating for papers and
articles, and coaching and
graphics for slide shows.

12

A second method of stopping the
microprocessor is to use interrupts.
When the microprocessor is interrupted
the MDA diverts status information
from storage in the user’s memory into a
special cache in the MDA. The MDA
then maps some debug software into the
microprocessor’s address space. This
software, along with any necessary
hardware, lets the MDA access any
target microprocessor status it needs.
The software also provides for any other
data transfers necessary to enable the
other MDA features. When the user is
ready to resume program execution, the
MDA will restore the microprocessor’s
status and then map the special memory
out of the microprocessor’s address
space.

A third way to stop the microprocessor
is to force a jump instruction onto the
microprocessor’s data bus. This enables
the MDA to force the target micro-
processor into a special software service
routine as in the interrupt method
above. In order to do this, the micro-
processor must provide a signal which
shows that the first cycle of an
instruction has been fetched. A
hardware latch is needed to save the
program counter of the microprocessor
when the MDA forces the jump
instruction onto the bus.

Of the three methods described above,
the third provides the least possibility of
affecting the target microprocessor’s
status, while still remaining generally
applicable. For this reason it is probably
the best choice for a universal MDA
designed for today’s microprocessors.

Handling Interrupts

The MDA designer must give special
attention to interrupts at two points:
when the MDA stops the target micro-
processor, and when it resumes the
operation of the target microprocessor.
When the MDA stops the target micro-
processor, the MDA must mask out the
interrupts so that spurious actions do
not occur. However, when the MDA
resumes target microprocessor
operation, actions consistent with the
target system interrupts should occur.

For example, if the target micro-
processor has a non-maskable interrupt
while it is stopped, then the interrupt
should appear to occur when the MDA
restarts the target microprocessor.

Whenever the MDA runs the target
microprocessor in a non-real-time
mode, (a software trace mode for
example), interrupts will not occur
exactly as they would in real time. The
user must be aware of this and use real-
time debug aids, such as the hardware
trace to debug his interrupt handling
routines.

Matching Signal Characteristics

The signal characteristics of the debug
cable should match the signal charac-
teristics of the microprocessor. When
the cable replaces the microprocessor in
the target system, delays are introduced
by the cable length and associated logic.
Also, the loading and the drive power of
the debug cable and the microprocessor
may not be the same.

Today, debug cables are designed with
buffers located close to the micro-
processor substitution socket of the
cable. This eliminates some of the noise
problems of the long debug cable. The
buffers may be 15 to 50 cm from the
socket in order to allow the target
system designer access to the proto-
type. The prototype breadboard system
may be wire-wrapped with a
considerable length of wire going to the
microprocessor socket. This wire length
along with the buffer-to-socket wire
length may make noise a serious
problem for the debug cable. The noise,
loading and drive characteristics of the
debug cable are areas the MDA designer
needs to focus his attention on in the
future.

ANEXAMPLE USING IN-
CIRCUIT EMULATION

To illustrate the MDA concepts we’ve
talked about. let’s consider an examnle

about, let’s consider an example
of an engineer designing a point-of-sale
(POS) terminal (see figure 4). At the
beginning of the development process,
the hardware engineer sketches out the
hardware design. The firmware engineer
will do the same for the firmware. They
will discuss the trade-offs between
hardware and firmware. Next, they will
implement their designs.

The firmware engineer will use the
MDA to develop and debug the soft-

ware even before the hardware engineer -

has the hardware working. The
hardware engineer will use the MDA to
check out the hardware operations of
the prototype circuits.

Next, the two engineers integrate their
designs. They will use in-circuit emu-
lation to verify that the firmware can
drive the hardware. First, they load the
firmware into the memory in the MDA
and map the firmware into the target
system by using the memory mapping
features of the MDA.

After they’ve ironed out the bugs in the
POS terminal they will burn the firm-
ware into a PROM for final test of the
POS terminal prototype using in-circuit
emulation without memory mapping.
Finally, the designers will plug the
microprocessor in the POS (they now
have stand-alone prototype).

At later development stages, the

designers can unplug the micro-
processor and plug in the debug cable to
track down bugs. For example, if mask
ROMs arrive from the manufacturer
but don’t work when they’re put into
production-stage terminals, the
designers can use in-circuit emulation to
isolate the problem with the new ROMs.

The in-circuit emulation development
tool gives the designer debug capability
from the design concept to the produc-
tion stage. Using substitutive emula-
tion with the MDA gives the designer
added assurance that the debug cable
will respond in the same manner as the
target microprocessor.

THE ISO

The International Organization for
Standardization (ISO) is an agency
whose objective is to secure the benefits
accruing from agreement on inter-
national standards: the expansion of
trade, improved product quality,
increased productivity, and reduced
prices for the consumer.

The ISO works to establish standards in
most every area of technology except
electrical and electronic which are the
special domain of the International
Electrotechnical Commission (IEC).
The two organizations have been
affiliated since 1947.

ISO standards presently have no legal
force nationally or internationally, but
if several countries adopt them as
national standards for inspection and
certification then they can influence
trade.

The ISO was formed in 1947 as the
successor to the International Fed-
eration of the National Standardi-
zation Associations. The American
National Standards Institute (ANSI)
has been a member of the ISA and later
the ISO in the form of the American
Standards Associaton and the United
States of America Standards Institute.

If you need more information about the
ISO or other standards organizations,

give me a call on ext. 7976.

— Chuck Sullivan

FIRMWARE
DEVELOP
AND

| HARDWARE
| DEBUG
| PHASE

H

POS
PROTOTYPE

SYSTEM
INTEGRATION |
PHASE

i MA!T‘F,[REM,E
A e |
b (B oo

DEBUG CABLE

OPERATIONAL
POS
., TERMINAL

Figure 4. MDA configurations in the .
design process.

13

Help is on the way for GPIB

It is becoming apparent that the
semiconductor manufacturers are
as aware of the GPIB (General
Purpose Interface Bus) market
potential and its attendant
problems as are the instrument
makers. Motorola is about to
introduce a GPIB interface chip
(the MC68488). The product
preview sheet lists these major
features of the MC68488:

M6800 bus compatibility
Single or dual primary
address recognition
Secondary address capability
Complete source and accep-
tor handshakes
Programmable interrupts
— RFD holdoff to prevent
data overrun
— Operates with DMA
controller

Serial and parallel polling
capability

Talk-only or listen-only
capability

Selectable automatic fea-
tures to minimize software
Synchronization trigger
output

We've reprinted the pinout dia-
gram below for your information.
On the next page we’ve also
reprinted the general description
and system block diagram directly
from the Motorola product
preview. For more information,
call Jim Howe on ext. 5698 or
drop by 58-299 (Component
Evaluation).

Jim’s evaluation of the MC68488
recently appeared in Component News.

GENERAL DESCRIPTION

The IEEE 488 instrument bus
standard is a bit-parallel, byte-
serial bus structure designed for
communication to and from
intelligent instruments. Using this
standard, many instruments may
be interconnected and remotely
and automatically controlled or
programmed. Data may be taken
from, sent to, or transferred
between instruments. A bus
controller dictates the role of each
device by making the attention
line true and sending talk or
listen addresses on the instrument
bus data lines; those devices
which have matching addresses
are activated. Device addresses
are set into each GPIA (General
Purpose Interface Adapter) from
switches or jumpers on a PC '

VDD
GRD

HANDSHAKE i, D0

=o——=")
e 203, | M6800
BUS MC3448 REN D4 > DATA
MGMT. ? ‘“ iFC 05" BUS

an 2o
¢ DAC - -/

MC3448 RED RSO

DAV RS1

MC68488 W

GPIA s

L DIO1 - 'RNV

MC3448 DI0?2 '

oK ASE
— - > r———-’
1 Dioa 1RIG RESET
I EAE DMA RE

’ MC3448 DIO6 | - G
$_—‘ 0107 DMA GRANT
N Y, L
\f
DATA IO O<} 12 | |
GRD

The new Motorola MC68488 GPIA (General Purpose Interface Adapter) works with standard 488-bus driver
IC’s (M(C3448 in this diagram) to meet IEE 488 specifications.

14

board by a microprocessor as a
part of the initialization

attention line true, instrument bus — B /oletotalk EERER
d] b tt listen, -
commands may also b€ sent to , and control

single or multiple GPIA’s. [eg calculator [HEEEE

. , i
Information is transmitted on the =..=--
instrument bus data lines under RN

sequential control of the three i
handshake lines. No step in the ; :
sequence can be initiated until the

previous step is completed.
Information transfer can proceed

— (8 tines)

sequence. - . 1
When the controller makes the Device A -lll e
I

as fast as the devices can respond, Device B DATA BYTE
but no faster than the slowest Able to talk [l TRANSFER
CONTROL

device presently addressed as and listen
active. This permits several devices eg digital

of different speeds to receive the . imeter
same data concurrently.

The GPIA is designed to work
with standard 488-bus driver IC’s
(MC3448’s) to meet the complete
electrical specifications of the
IEEE 488 bus. Additionally, a
powered-off instrument may be

powered-on without disturbing the oo HST%EF%E
488 bus. With some additional to”'étaene EEN MANAGEMENT
logic, the GPIA could be used eg signal

with other microprocessors. | generator

The MC68488 GPIA has been
designed to interface between the
MC6800 microprocessor and the
complex protocol of the IEEE 488
instrument bus. Many instrument
bus protocol functions are handled

automatically by the GPIA and .
require no additional MPU action. Device D

Other functions require minimum onlyable [IR
MPU response due to a large to talk =R

EE
number of internal registers egoeunier =-.-
conveying information on the state |

of the GPIA and the instrument =
bus.

15

ENGINEERING SOURCEBOOK TO BE REVISED

The staffs of Engineering News and Component News are about to begin revising the Who, What, When, Where, How

engineering sourcebook.

Ifyou have a copy now, we would like to have your input to help us revise the book. Give us a call (ext. 5674) or drop by 50-462.

If you prefer writing out your comments, please fill in the questionnaire below.

Have you used the sourcebook often? O Fewer than five times? [Five to ten times? O Ten to twenty times? [0 More

than twenty times?

Is the book more valuable for [the contacts (names, telephone numbers and locations) or for O the description of what

each group does?

How would you like to see the book organized? El Aibhabetically by name of the group? 00 Along organizational lines
(by business unit, division and department) O By each group’s place in the NPI (New Product Introduction) process?

What groups would you like to see included in the sourcebook that aren’t in the present version?

What would improve the sourcebook for you?

Please mail to 50-462. Thank you.

Maureen Key

60 553

Vol. 4, No. 12, 1 Nov. 1977. Editor: Burgess
Laughlin, ext. 5468. Art Director: Scott
Sakamoto. Published by the Technical
Information Dept. (part of Test and
Measurement Operations) for the benefit of
the Tektronix engineering and scientific
community in the Beaverton-Wilsonville
area.

16

Why EN?

Engineering News serves two purposes.
Long-range, it promotes the flow of
technical information among the diverse
segments of the Tektronix engineering and
scientific community. Short-range, it
publicizes current events (seminars, new
services available, and notice of
achievements by members of the technical
community). '

Contributing to EN

Do you have an article or paper to contribute
or an announcement to make? Contact the
editor on ext. 5468.

How long does it take to see an article in
print? That is a function of many things (the
completeness of the input, the review cycle
and the timeliness of the content). But the
minimum is three weeks for simple
announcements and about five weeks for
articles.

The most important step for the contributor
is to put his message on paper so that the
editor will have something to work with.
Don’t worry about problems with
organization, spelling or grammer. The
editor will take care of those when he puts the
article into shape for you.

