NOTE

The $10 / 11 \mathrm{M} 1$ was supposed to have been redesignated 067-0522-00, but it never happened. Instead the 10/11M1 was redesigned for the 647A and will work just as well in the 647. The new design is called 067-0544-00 and it replaces the 10/11M1.

John Mulvey
Product Technical Information
January, 1967

(C) 1965, Tektronix, Inc. All Rights Reserved.

Usable in field instruments s/n 100-169
Effective Prod s/n 170

DESCRIPTION:

Assures meeting pulser frequency specifications by changing capacitors to tighten tolerance specifications. Pulse repetition rate ranges are $1-4 \mathrm{~Hz}, 250-750 \mathrm{~Hz}, 40-90 \mathrm{~Hz}$ and $400-900 \mathrm{~Hz}$.

Parts Removed:
Parts Added:
C113C $2.2 \mu \mathrm{f} 3 \mathrm{v}$
283-019
C113C $2.2 \mu \mathrm{f} 20 \mathrm{v}$
290-136
Cl13D $0.02 \mu \mathrm{f} 150 \mathrm{v} \quad 283-004$
Cl13D, Cll3F $0.01 \mu \mathrm{f} 250 \mathrm{v}$ 283-079

Parts Required for Field Installation:
See 'Parts Added'.
INSTALLATION INSTRUCTIONS:
a) Replace C113C located between CSA-2 and CSB-2, behind the PULSE AMPLITUDE potentiometer, with a 290-136 capacitor.
b) Replace C113D located between CSA-2 and CSB-1 with a 283-079 capacitor.
c) Add C113F, a 283-079 capacitor, located in parallel with C113D between CSA-2 and CSB-1.

Refer to drawing below and schematic on following page.

(continued)

PULSER DIODES CHANGED TO
PROVIDE A COST SAVING
INFORMATION ONLY
M8831
Effective Prod s/n 170
DESCRIPTION:
Provides a cost savings by replacing diodes D170 and D192 in the pulser circuit with less expensive diodes.

Parts Removed:
D170, D192 IN3605
152-141
Parts Added:
D170, D192 6185
152-185

Lffective Prod s/n 170
Usable in field instruments SN 100-169

DESCRIPTION:

Changes the type of material used in the manufacture of the lever knob from a charcoal gray cycolac X7 styrene to charcoal gray delrin 500. The delrin 500 lever knobs will not deform when subjected to environmental conditions.

Parts Removed: Parts Added:
Knob, lever, cycolac X7 styrene 366-0215-00 Knob, lever, delrin 500
366-0215-01
Parts Required for Field Installation:
See 'Parts Added'.
INSTALLATION INSTRUCTIONS:
Replace the SOURCE switch lever knob with a new 366-0215-01 lever knob.

067-0522-00 REPLACED BY 067-0544-00 INFORMATION ONLY
Effective Prod SN none given
FRONT PANEL SYMPTOM: None.
PROBLEM: The need for 067-0522-00 no longer exists because the 067-0544-00 test fixture can be used for both the Type 647 and 647A.

PRODUCTION CHANGE: The 067-0522-00 will cease to manufactured.

BE:fb

For Standardizing:

Type 647 and RM647 Oscilloscopes to achieve interchangeability with a number of 10 and 11-Series Plug-In Units.
For Setting:
Power supply voliages
Horizontal amplifier gain
Vertical amplifier gain
Vertical amplifier transient response

For Checking:

Power supply ripple and regulation under different load conditions.
The Type $10 / 11 \mathrm{Ml}$ is designed to operate from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$ and will perform to the following specifications throughout this range.
Oscilloscope gain can be adjusted to within $\pm 0.3 \%$ accuracy for the horizontal amplifier and within $\pm 0.7 \%$ for the vertical amplifier.
An internal fast-rise electronic pulser is adjustable in amplitude, polarity, and repetition rate. Pulse risetime is nominally 3 nsec. Time markers can be inserted through an external input.
A front-panel output can be used in conjunction with a test oscilloscope to monitor de error of the regulated power supplies. An output of 5 mv represents an error of 0.1%.
Non-operating environmental capabilities are identical to those of the Type 647.
Net weight is $43 / 4 \mathrm{lbs}$., shipping approx. 7 lbs .
TYPE 10/11M1 TEST UNIT
Each instrument includes: 2-instruction manuals (070-441).

TYPE 647 ACCESSORIES

PROBE CHARACTERISTICS WITH TYPE 1042 AMPLIFIER				
PROBE	P6006	P6007	P6008	P6009
ATTENUATION RATIO	10X	100X	10X	100X
INPUT RESISTANCE	$\begin{gathered} 10 \\ \text { megohms } \end{gathered}$	$\begin{gathered} 10 \\ \text { megohms } \end{gathered}$	10 megohms	10 megohms
INPUT CAPACITANCE (typical)	6.7 pf	2.1 pf	7.7 pf	2.6 pf
TOTAL RISETIME	$<10 \mathrm{nsec}$	$<10 \mathrm{nsec}$	<8.1 nsec	<7.1 nsec
VOLTAGE RAT. ING	600 volts dc or ac pk-to-pk*	1.5 kv dc or ac RMS, 4.2 kv ac pk-to-pk**	600 volts dc or ac pk-to-pk水水	1.5 kv dc or ac RMS, 4.2 kv ac pk-to-pk**
CABLE LENGTH	3.5 $\dagger \dagger$	3.5 $\dagger \dagger$	$3.5{ }^{\prime}$	9^{\prime}
PART NUMBER	010-127	010-150	010-129	010-170
*Peak-to-peak voltage derating is necessary for CW frequencies higher than 5.7 Mc . **Peak-to-peak voltage derating is necessary for CW frequencies higher than 200 kc . ***Peak-to-peak voltage derating is necessary for CW frequencies higher than 20 Mc . \dagger P6006 and P6007 Probes can be ordered in 6, 9, or 12 foot lengths at no additional cost. Longer lengths increase input				

For applications where increased input resistance, reduced loading of the circuit under test, and retention of maximum passband are required, P6008 and P6009 Probes are recommended. In applications where passband is not a prime consideration, P6006 and P6007 Probes can be used. All probes include a variety of tips for easy access to components, even in crowded circuit conditions. Easy adjustment is a feature of all probes. They are compensated by merely turning the probe body with respect to the probe base.

PLUG-IN EXTENSIONS

12" Rigid Extension (Part No. 013-077)
30" Flexible Extension (Part No. 012-080)

REAR-PANEL CONNECTOR

10-Pin Connector for remote single sweep reset and external use of power supply voltages (Part No. 131-300)

BNC to BSM ADAPTER

Converts front-panel outputs on the Type 11B2 to
accept BNC cables (Part No. 103-036)
From 1964-65 Catalog
Please refer to Terms and Shipment, General information page.

INSTRUCTION MANUAL

Serial Number

TYPE 10/11M1 TEST UNIT

WARRANTY

All Tektronix instruments are warranted against defective materials and workmanship for one year. Tektronix transformers, manufactured in our own plant, are warranted for the life of the instrument.

Any questions with respect to the warranty mentioned above should be taken up with your Tektronix Field Engineer.

Tektronix repair and replacement-part service is geared directly to the field, therefore all requests for repairs and replacement parts should be directed to the Tektronix Field Office or Representative in your area. This procedure will assure you the fastest possible service. Please include the instrument Type and Serial number with all requests for parts or service.

Specifications and price change privileges reserved.

Copyright © 1964 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved. Contents of this publication may not be reproduced in any form without permission of the copyright owner.

CONTENTS

Section 1 Warranty
Section 2 Characteristics
Section 3 Circuit Description
Section 4 Maintenance and Calibration
Section $5 \quad$ Parts List and Diagrams

A list of abbreviations and symbols used in this
manual will be found on page 5-1. Change
information, if any is located at the rear of the
manual.

SECTION 1

CHARACTERISTICS

General Description

The Type $10 / 11 \mathrm{MI}$ Test Unit is a single-unit calibration aid for the Type 647 or Type RM647 Oscilloscope. The unit is designed to calibrate and standardize both the vertical and horizontal circuitry of the Type 647. The Type 10/11M1 aids in setting the oscilloscope: (1) power supply voltages, (2) horizontal amplifier gain, (3) vertical amplifier gain, and (4) vertical amplifier transient response. The 10/11M1 aids in checking: (1) regulation of the power supplies at different load conditions, and (2) power supply ripple. In addition, an external time-mark signal may be applied to the Type $10 / 11 \mathrm{Ml}$ for calibrating or checking the sweep rates of the time-base unit used with the Type 647.

Specifications

VERTICAL DC CALIBRATE Accuracy	$\pm 0.7 \%$
HORIZ CAL Accuracy	
Pulser Risetime	Less than $3.3 \mathrm{nsec}, \mathrm{nom}$ - inally 3 nsec
Pulser Repetition Rates	$1-4 \mathrm{cps}, 250-750 \mathrm{cps}, 40-$ Pulser Amplitude and $400-900 \mathrm{kc}$
Flatness	Variable, $0-8 \mathrm{~cm}$ Ringing
	$\pm 0.5 \%$ after first 8 nsec Less than 2% peak-to- peak (at frequencies above 300 mc$)$

TIME MARK INPUT Sensitivity	Less than $150 \mathrm{mv} / \mathrm{cm}$
TIME MARK INPUT Bandwidth	Typically 3-db down below 7 kc and above 50 mc
TIME MARK INPUT Maximum Voltage	100 volts
POSITION Control Range	At least $\pm 3 \mathrm{~cm}$
DC ERROR Sensitivity	5 mv per 0.1% error
DC ERROR Accuracy	$\pm 0.25 \%$ absolute
iMechanical	Aluminum alloy chassis. Dimensions (overall): $14 \frac{1}{2^{\prime \prime}}$ (L) $\times 6 \frac{1}{4^{\prime \prime}}$ (H) $\times 41 / 4^{\prime \prime}(W)$. Weight: Approx. 4 lbs . 10 ozs.
Environmental	Meets all non-operating environmental specifications of the Type 647 Oscilloscope. Calibration accuracy specifications apply within a temperature range of 15° to $35^{\circ} \mathrm{C}$.

Accessories

Information on accessories for use with this instrument is included at the rear of the mechanical parts list.

OPERATING INSTRUCTIONS

FUNCTION OF FRONT-PANEL CONTROLS AND CONNECTORS

PULSE AMPLITUDE

PULSE RATE A five-position switch concentric with the PULSE AMPLITUDE control. Sets the repetition rate of the pulse when the VERTICAL switch is set to one of the PULSE POLARITY positions. The pulser is turned off when the switch is set to OFF.
6.3V AC AT

Lamp that lights to indicate the presence CONNECTOR of 6.3 V AC voltage at interconnecting plug.
POSITION Vertically positions the display when the plug-in unit is in the vertical opening of the oscilloscope and the VERTICAL switch is set to either TIME MARK or the PULSE POLARITY positions. The POSITION control has no effect when the VERTICAL switch is set DC CALIBRATE or when the Type $10 / 11 \mathrm{Ml}$ is in the horizontal plug-in compartment.

VERTICAL/

 HORIZ CALControl for adjusting pulse height when the VERTICAL switch is set to one of the PULSE POLARITY positions.

The positions labeled around the upper half of this switch apply and are in effect
when the Type $10 / 11 \mathrm{M1}$ is in the vertical plug-in compartment. Function of each position is as follows:

DC CALIBRATE positions (-3 CM and +3 CM) provide an accurate amount of deflection above and below the centerline for setting the gain of the vertical amplifier of the Type 647. When the vertical gain of the Type 647 is being set with a Type $10 / 11 \mathrm{M1}$, an 11 -series time base must be inserted in the horizontal plug-in compartment of the oscilloscope.

TIME MARK position allows an external time-mark signal to be connected to the TIME MARK IN connector and be displayed on the oscilloscope.
PULSE POLARITY positions (+ and -) reverse the polarity of the signal from the pulser.

The positions labeled around the lower half of this switch apply and are in effect when the Type $10 / 11 \mathrm{M1}$ is in the horizontal plug-in compartment. The HORIZ CAL positions of the switch provide the indicated amount of horizontal deflection for setting the centering and gain of the horizontal amplifier. When the horizontal centering and gain of the Type 647
are being set with a Type $10 / 11 \mathrm{M1}$, the oscilloscope vertical plug-in compartment may be left empty.

TIME MARK IN Connector for applying an external timemark signal when the VERTICAL/HORIZ CAL switch is set to TIME MARK.

ATTEN Variable attenuator for the signal applied to the TIME MARK IN connector.

LOAD Three-position switch that selects the amount of loading on the power supply of the oscilloscope.

SOURCE Two switches that determine the signal information appearing at the OUTPUT connector. The voltage SOURCE switch selects the desired power supply voltage of the oscilloscope. The other SOURCE switch determines what check may be made on a given supply voltage. In the RIPPLE position, the selected supply voltage is ac coupled to the OUTPUT connector. This blocks the dc component of the supply and allows only the ac or ripple voltage to appear at the OUTPUT connector. The GND position gives a convenient ground-reference without disconnecting and grounding the monitoring oscilloscope. The DC ERROR position compares the selected power supply voltage to an accurate reference voltage and couples the difference to the OUTPUT connector. A zero volt reading at the OUTPUT connector indicates that the power supply voltage is correct. A voltage reading at the OUTPUT connector indicates the power supply is incorrect (0.1% per 5 mv).

OUTPUT Output connector for monitoring the information selected by the SOURCE switches.

OPERATION

Specific operating information on the use of the Type 10/11M1 for calibrating and standardizing the Type 647 Oscilloscope is given in the oscilloscope instruction manual. The information presented in this manual is a general discussion on the various capabilities of the Type $10 / 11 \mathrm{M1}$ Test Unit.

The Type $10 / 11 \mathrm{M1}$ is most useful where more than one Type 647 is to be calibrated and standardized. In such a case, the gain, transient response, and power supplies of the oscilloscopes will be matched to a very high degree. This insures that the plug-in units used with the Type 647 can be freely interchanged from one oscilloscope to another without having to recalibrate the plug-in units.

Operating Instructions-Type 10/11M1

Oscilloscope Transient Response

The pulser contained in the Type $10 / 11 \mathrm{M1}$ Test Unit provides a fast-rise pulse for setting or checking the transient response of the oscilloscope. The risetime of this pulse is typically 3 nsec. To observe the output signal of the pulser on the oscilloscope, insert the Type 10/11M1 into the left-hand plug-in compartment and a time-base plug-in unit into the right-hand opening. Then, set the VERTICAL control of the Type $10 / 11 \mathrm{MI}$ to either + or - . When operating in the + position, use the positive-going edge of the displayed waveform to adjust oscilloscope transient response. When the VERTICAL control is set to - , use the negative-going edge of the waveform for transient response adjustments. The PULSE AMPLITUDE and RATE controls determine the amplitude and repetition rate of the Pulser. Set the controls of the time-base plug-in unit for a stable internally triggered display at the desired sweep rate. Once the time base is properly triggered, triggering will be unaffected by positioning or amplitude changes with the Type $10 / 11 \mathrm{M1}$.

Oscilloscope Vertical Deflection

The DC CALIBRATE positions of the VERTICAL switch provide an accurate dc signal that shifts the position of a free-running trace three divisions above or below the graticule centerline when the gain and centering of the Type 647 vertical amplifier are properly set. To insure correct average horizontal deflection voltage and vertical deflection sensitivity when this check or adjustment is made, the Type 10/11M1 must be in the oscilloscope vertical plug-in compartment, and an 11 -series time base must be in the horizontal plug-in compartment.

Displaying Time-Mark Signals

With the VERTICAL switch set to TIME MARK, an external time-mark signal may be applied to the TIME MARK IN connector for checking or calibrating the sweep rates of a time-base unit used with the Type 647. The ATTEN control varies the displayed amplitude of the signal applied to the TIME MARK IN connector and the POSITION control positions the display vertically on the screen. Whenever it is desired to display a signal applied to the TIME MARK IN connector, the Type $10 / 11 \mathrm{Ml}$ must be in the vertical plug-in compartment of the oscilloscope.

Horizontal Deflection Calibration

The $0,1,5,9$, and 10 positions of the HORIZ CAL switch provide accurate dc levels that shift the position of a displayed dot the indicated number of centimeters to the right on the screen. The 0 position corresponds to the first verti-
cal graticule line on the left-hand side of the screen. In the oscilloscope, the HORIZ GAIN and HORIZ CENT adjustments must be set to make the position of the displayed dot correspond to the settings of the HORIZ CAL switch. For this check or adjustment, the Type $10 / 11 \mathrm{M1}$ must be in the horizontal plug-in compartment of the oscilloscope.

Power Supply Checks and Adjustments

The two SOURCE switches allow ripple and dc error measurements to be made on each of the four regulated power supplies in the oscilloscope. These measurements and adjustments will be made while monitoring the signal voltage at the OUTPUT connector. Each of the measurements and adjustments is explained briefly in the following paragraphs.

Ripple Check. With the SOURCE switches set up for ripple measurement, the selected supply voltage is ac coupled to the OUTPUT connector of the Type $10 / 11 \mathrm{M} 1$. The ripple measurement at the OUTPUT connector should be measured with a highly sensitive peak-to-peak voltmeter or oscilloscope. Ripple checks can be made on each power supply in the oscilloscope at different load conditions as selected by the LOAD switch.

CAUTION

The Type $10 / 11 \mathrm{Ml}$ must be the only plug-in unit installed in the oscilloscope when the LOAD switch is set to FULL. Otherwise, the oscilloscope power supplies will be overloaded.

Voltage Check. The DC ERROR position provides a means of measuring the voltage of each oscilloscope power supply. The voltage amplitude at the OUTPUT connector is proportional to the per cent of voltage error of the power supply. Each 5 -millivolt multiple at the OUTPUT connector represents 0.1% error in the supply voltage. For example, a voltage reading of +10 millivolts at the OUTPUT connector would indicate that the supply being checked is actually 0.2% higher than nominal.

When checking or adjusting the supplies in the oscilloscope, start with the -75 -volt supply since this supply serves as a reference voltage for the other supplies in the oscilloscope. If the -75 -volt supply is incorrect, the other supplies will also be incorrect.

Multi-Trace Sync Pulse Check. A placarded test point in the Type 10/11M1 allows a check of the multi-trace sync pulse from a time-base plug-in unit. This sync pulse should appear at the end of each sweep of the time-base plug-in unit. For this check, the Type $10 / 11 \mathrm{Ml}$ Test Unit must be in the left-hand opening and the time-base plug-in unit must be in the right-hand opening of the oscilloscope. Also, the left-hand side panel of the oscilloscope must be removed to gain access to the multi-trace sync test point in the Type 10/11M1.

CIRCUIT DESCRIPTION

General Description

The Type $10 / 11 \mathrm{M1}$ contains a vertical input amplifier stage, a variable repetition rate fast-rise square-wave pulser, dummy load resistors, and accurate dc voltage circuits for calibrating gain and power supply voltages of the oscilloscope. The unit (and schematics) has two sections; Vertical and Horizontal. The Vertical circuitry appears on the schematic titled "Pulser Circuit" and the Horizontal circuitry appears on the schematic titled "Power Supply and Horizontal Calibration". In the following discussion, refer to the appropriate schematic to locate the components mentioned.

Pulser Circuit Schematic

The following discussion deals with all the circuitry that appears on the "Pulser Circuit" schematic.

Input Amplifier. The input amplifier, (or time-mark amplifier) is a conventional single-stage transistor amplifier with a grounded emitter and loaded collector. The amplifier (Q194) is feedback stabilized through R194. Voltage gain of the stage is about $1.33 \times$. The input signal (or time mark) is applied to the TIME MARK IN connector (J190) and is ac coupled to potentiometer R191 (ATTEN). The center arm of the potentiometer is coupled to the base of Q194. The diode D192 is connected to the base of Q194 to limit the negative voltage at this point.

The output signal from the collector of Q194 passes through C188 to the vertical amplifier of the oscilloscope when the VERTICAL/HORIZ CAL switch is set to TIME MARK. The signal from the collector of Q194 also passes through C198 to the time-base plug-in unit as an internal trigger signal.

Pulser Circuit. The Pulser circuit consists of a variablefrequency astable multivibrator Q115/Q125, current-switching transistors. Q134/Q144, and disconnect diodes D132, D133, D142, and D143. When the PULSE RATE switch is set to any position except OFF, the multivibrator free runs at a rate determined by the capacitance selected by the PULSE RATE switch. Q164 and Q174 are common-base stages which pass the differential current signal developed by the pulser and shift it to the proper dc level.

As the multivibrator flips back and forth, Q115 and Q125 are alternately turned on and off. The signal developed across R114 (from the collector of Q115) is coupled to the time-base plug-in unit for use as an internal trigger signal. The signal from the collector of Q125 turns Q144 on and off. Since Q144 is in series with Q134, both transistors turn on and off simultaneously. (Q134 has essentially a fixed voltage on its base due to D124.) The differential current supplied through R130 and R140 is either shunted through transistors Q134 and Q144 or is conducted through
the diodes D132, D133, D142, and D143. When the transistors Q134 and Q144 are "on" the diodes are "off". When the transistors are "off' the diodes are "on". Amplitude control R135 varies the amplitude of this switched differential current. The emitters of the grounded base transistors Q164 and Q174 present a low impedance and offer a summing point for the switched differential current, through R133 and R143; the positioning current, through R148 and R158; and the fixed bias current, through R161 and R171. The speed and quality of the "switching on" of the transistors Q134 and Q144 is better than "switching off" and the former step transition should be used for transient response adjustments. This transition can be recognized as the transition from the level variable with the amplitude control to the level variable only with position control.

RC networks R164/C164 and R174/C174 provide thermal balance on both sides of the push-pull circuit. This prevents distorting voltages due to thermal shift with dissipation changes in the transistors.

Power Supply and Horizontal Calibration

Load Circuitry. Dummy load resistors are used in the Type $10 / 11 \mathrm{M1}$ to check the oscilloscope power supply under different loading conditions. The LOAD switch, SW290, selects one of three loading conditions: ZERO, HALF, and FULL. In the ZERO position of the load switch, the only power drawn from the oscilloscope is that required for the Pulser circuit and the companion plug-in unit (if any). With the LOAD switch in the HALF position the approximate loading on the power supplies is as follows: -75 -volt supply, 7 watts; -15 -volt supply, 3.75 watts; +15 -volt supply, 11 watts; +100 -volt supply, 8 watts; +300 -volt supply, 4.5 watts. With the LOAD switch in the FULL position, loading is as follows: -75 -volt supply, 14.3 watts; -15 -volt supply, 5.6 watts; +15 -volt supply, 21.4 watts; +100 -volt supply, 15.9 watts; +300 -volt supply, 9 watts.

CAUTION

The Type $10 / 11 \mathrm{Ml}$ must be the only plug-in unit in the oscilloscope when the LOAD switch is in the FULL position; otherwise the power supplies of the oscilloscope will be overloaded.

Horiz Cal Circuitry. The Horiz Cal circuitry is a precision dc current source for calibrating the gain of the horizontal amplifier in the oscilloscope. Sensitivity of the horizontal amplifier in the oscilloscope is $347 \mu \mathrm{a}$ per division of deflection. Each 54 k resistor (R265 and R267) in the circuit can be thought of as supplying the proper amount of current for deflecting the oscilloscope beam exactly 4 divisions (centimeters). Each 216 k resistor (R264 and R269) deflects the beam 1 division (centimeter). The HORIZ CAL switch arranges the precision resistors in various ways to obtain $0,1,5,9$, and 10 divisions of deflection on the crt.

Circuit Description-Type 10/11M1

Dc Error Circuitry. The Dc Error circuitry checks the voltage of each power supply in the oscilloscope. The voltage at the OUTPUT connector of the Type $10 / 11 \mathrm{Ml}$ is proportional to a percentage of error in a given supply when the function switch is set to DC ERROR (i.e., each 5 millivolts at the OUTPUT connector equals 0.1% error in the supply voltage that is being checked).

Operation of the Dc Error circuitry is as follows: the circuit contains two Zener-regulated voltage dividers with nominal output voltages of +9 volts and -9 volts. The +9 -volt divider is regulated by Zener diode D206 and the -9 -volt divider is regulated with D214. These two voltages are used as the reference voltages when checking the various supply voltages of the oscilloscope. The + SUPPLY REF and -SUPPLY REF adjustments vary the dividers slightly so that they are in the range of adjustment of all of the CALIB adjustments (R220, R230, R240, and R250). This is necessary because of the voltage tolerance of the Zener diodes (D206 and D214). The voltage of each regulated supply in the oscilloscope is coupled through a resistance divider in the Error circuit. Each of these voltage dividers is designed to reduce the voltage of each supply to either + or -9 volts, depending on the polarity of the supply. The negative supply voltages are compared to the +9 -volt reference and the positive supply voltages are compared to the -9 -volt reference. The algebraic sum of the comparison of each supply voltage is coupled to the OUTPUT connector of the Type $10 / 11 \mathrm{M1}$. The algebraic sum of the comparison will be exactly zero volts when there is no error in the supply voltage (i.e., $(+9 \mathrm{v})+$ $(-9 v)=0 v$). Fig. 3-1 shows a simplified drawing of the Error circuit with the +100 -volt supply connected for comparison.

Fig. 3-1. Simplified schematic of the Error circuit with the +100 volt supply connector for comparison.

SECTION 4

MAINTENANCE AND CALIBRATION

Abstract

MAINTENANCE

\section*{Visual Inspection}

The instrument should be visually inspected occasionally for such defects as poor connections, broken or damaged ceramic terminal strips, improperly seated transistors, and heat-damaged parts. The remedy for most of these defects is obvious. But a heat-damaged component is usually the symptom of some defect that is not obvious. The cause of overheating should be determined and corrected before the part is replaced, otherwise the damage may be repeated.

Transistor Checks

Periodic preventive maintenance checks on the transistors in the Type $10 / 11 \mathrm{Ml}$ are not recommended. Satisfactory operation of the instrument in all respects is adequate assurance that the transistors are performing properly

Recalibration

To insure that the Type $10 / 11 \mathrm{Ml}$ maintains its accuracy, check the calibration after each 500 hours of operation or every six months if used intermittently. Complete calibration instructions appear later in this section.

The calibration procedure can also be helpful in isolating troubles in the instrument. Also, minor troubles in the instrument that may not be apparent during normal operation may be revealed and corrected during calibration.

Ordering Parts

Many of the components in the Type $10 / 11 \mathrm{Ml}$ are standard electronic parts that may be purchased locally. However, all parts in the instrument can be obtained from Tektronix through your local Tektronix Field Engineer or Field Office. Before ordering, consult the parts list of this manual to determine the value, tolerance, and rating required.

Some of the parts used in the Type $10 / 11 \mathrm{M1}$ are not standard parts and can only be purchased from Tektronix through your local Tektronix Field Engineer or Field Office.

Soldering to Ceramic Strips

Special silver-bearing solder is used to establish a bond to ceramic terminal strips in Tektronix instruments. This bond can be broken by repeated soldering (especially if ordinary tin-lead solder is used) or by excessive heating. The silverbearing solder used should contain about 3% silver. Silver-bearing solder is usually available locally or may be purchased from Tektronix in one-pound rolls; order by part number 251-514.

When soldering to ceramic terminal strips:

1. Use a wedge-shaped soldering iron tip about $1 / 8$ inch wide. This will allow you to apply heat directly to the solder in the notch and thereby reduce the overall heating effect.
2. Maintain a clean, properly tinned tip.
3. Use a hot iron for a short time. A 50- to 75-watt iron is usually adequate.
4. Avoid putting pressure on the strip with the soldering iron or other tools. Excessive pressure can crack or chip the strip.

Replacing Ceramic Terminal Strips

Fig. 4-1 shows an assembled ceramic terminal strip. Replacement strips with studs attached are supplied under a single part number and the spacers under another number. The original spacers may be reused if they are not damaged. Usually, the old strip can be pried or pulled out of the chassis with a pair of pliers. In some cases, you may choose to use a hammer and punch to drive the studs out of the chassis.

Fig. 4-1. Ceramic strip assembly.

Once the damaged strip has been removed, place the new or used (but undamaged) spacers in the chassis holes. Then carefully force the studs of the new strip into the spacers until they are completely seated. If necessary, use a soft-faced mallet and lightly tap the strip directly over the stud to seat the studs in the spaces.

Replacing Wafer Switches

Individual wafers are normally not replaced in the wafer switches. Complete switch assemblies, either wired or unwired, may be ordered from Tektronix. See the Parts List, Section 5 of this manual.

When soldering leads to a switch, do not let solder flow around and beyond the terminal rivet since this can destroy the spring tension of the contact.

Maintenance and Calibration-Type 10/11M1

Troubleshooting Aids

The Type $10 / 11 \mathrm{M} 1$ contains certain features intended to speed and simplify troubleshooting and maintenance. Most of the wire in the instrument is color coded to aid in circuit tracing. All regulated power supply leads are coded as follows:

1. The basic wire color indicates voltage polarity; tan for negative and white for positive.
2. The stripe colors indicate supply voltage according to the standard EIA color code. Stripes are read in the order of decreasing width.
For example, the -75 -volt supply leads are tan wire (negative) bearing stripes of violet (seven), green (five), and black (no zero).

The instrument contains a number of stable metal-film resistors identified by their gray background color and color-coding. If a resistor has three significant figures and a multiplier, it will be EIA color coded. If it has four significant figures and multiplier, the value will be printed on the body of the resistor. For example, a 333 k resistor will be color coded but a 333.5 k resistor will have its value printed on the resistor body. The color coding sequence is shown in Table 4-1 and Fig. 4-2.

Switch wafers shown on the schematics are coded to indicate the physical positions of the wafers on a rotary switch. The number portion of the code refers to the wafer position as counted from the front- or driven-end of the switch shaft. Letters F and R identify the front or rear of a given wafer.

Several diode types are used in the Type $10 / 11$ M1. Fig $4-3$ shows how to identify the polarity of the various diodes.

TABLE 4-1
Color Code Sequence

Color	1st Sig. Fig.	2nd Sig. Fig.	3rd Sig. Fig.	Multiplier	$(\pm) \%$ Toler- ance
Black	0	0	0	1	-
Brown	1	1	1	10	1
Red	2	2	2	100	2
Orange	3	3	3	1,000	-
Yellow	4	4	4	10,000	-
Green	5	5	5	100,000	0.50
Blue	6	6	6	$1,000,000$	0.25
Violet	7	7	7	$10,000,000$	0.10
Gray	8	8	8	$100,000,000$	0.05
White	9	9	9	$1,000,000,000$	-
Gold	-	-	-	0.1	5
Silver	-	-	-	0.01	-
No Color	-	-	-	-	10

CALIBRATION

Introduction

This portion of the manual contains a complete calibration procedure for the Type $10 / 11 \mathrm{Ml}$ Test Unit. The in-

Fig. 4-2. Standard EIA color code for metal-film resistors.
strument will not require frequent calibration but will need occasional adjustments as components age or are replaced.

Calibration is a valuable part of preventive maintenance since many types of minor troubles may be discovered and corrected before they become serious enough to disable the instrument. Also, certain troubles can be easily isolated to a particular section of the instrument by attempting calibration.

Equipment Required

1. Calibrated Tektronix Type 647 or Type RM647 Oscilloscope (plug-in extension required with Type RM647).
2. Calibrated Tektronix Type 11B-series time-base plug-in unit.
3. Dc differential voltmeter such as a John Fluke Model 803 or equivalent. Accuracy of at least $\pm 0.05 \%$ at readings of 15 volts, 75 volts, and 100 volts.
4. Test oscilloscope such as a Tektronix Type 530- or 540-series with a Type D Plug-In Unit. The oscilloscope must be dc coupled and have a deflection factor of 1 $\mathrm{mv} / \mathrm{cm}$.
5. A source of line voltage within the regulating range of the Type 647 Oscilloscope.

Preliminary Procedure

1. Insert the Type $10 / 11 \mathrm{Ml}$ into the left-hand plug-in compartment of the Type 647 Oscilloscope. (The right-hand compartment should be empty.)
2. Apply line power to the Type 647 and turn on its POWER ON switch.
3. Allow at least 5 minutes for the Type 647 to warm up and stabilize.
4. Set the front-panel controls of the Type $10 / 11 \mathrm{MI}$ and Type 647 as follows:

Type 10/11M1

PULSE RATE	OFF
POSITION	Centered
VERTICAL HORIZ CAL	TIME MARK
LOAD	ZERO
Other controls	Any position

Type 647

1 KC CALIBRATOR	OFF
INTENSITY	ccw
ON OFF	POWER ON
Other controls	Any position

Check and Adjustment Procedure

Dc Error Calibration. This procedure describes how to set the +SUPPLY REF, -SUPPLY REF, -75 V CALIB, -15 V CALIB, +15 V CALIB and +100 V CALIB adjustments. This is accomplished by first setting the power supplies of the Type 647 with the accurate differential voltmeter. Then, the Type $10 / 11 \mathrm{Ml}$ adjustments are set to match the power supplies of the Type 647. The complete procedure is as follows:

1. Connect the precision differential voltmeter (item 3 under "Equipment Required") to the -75 -volt supply in the Type 647 Oscilloscope.

NOTE

The -75 -volt supply leads in the oscilloscope are color coded: tan wire with a violet stripe, a green stripe, and a black stripe.
2. Adjust the -75 -volt power supply adjustments in the oscilloscope for a null of exactly 75 volts on the differential voltmeter.
3. Repeat steps 1 and 2 for the $-15-,+15-$, and $+100-$ volt supplies of the Type 647 Oscilloscope. The supply leads are color coded as follows:

$$
\begin{array}{ll}
\text {-15-volt supply } & \begin{array}{l}
\text { tan wire with a brown stripe, green } \\
\text { stripe, and a black stripe. }
\end{array} \\
\text { +15-volt supply } & \begin{array}{l}
\text { white wire with a brown stripe, green } \\
\text { stripe, and black stripe. }
\end{array} \\
+100 \text {-volt supply } & \begin{array}{l}
\text { white wire with two brown stripes } \\
\text { and a black stripe. }
\end{array}
\end{array}
$$

4. Connect the test oscilloscope litem 4 of "Equipment Required') to the OUTPUT connector of the Type $10 / 11 \mathrm{MI}$.
5. Free run the test oscilloscope and set the SOURCE function switch of the Type $10 / 11 \mathrm{M1}$ to GND.
6. Establish a ground reference on the test oscilloscope by positioning the free-running trace to the horizontal centerline.
7. Set the SOURCE function of the Type $10 / 11 \mathrm{M1}$ to DC ERROR.
8. Switch the SOURCE voltage switch of the Type 10/ 11 M 1 alternately between the -75 V and -15 V positions and set the deflection factor of the test oscilloscope so that the trace is on the screen in both positions of the SOURCE voltage switch. Do not move the POSITION control of the test oscilloscope as this will destroy the ground reference.
9. Adjust the -SUPPLY REF potentiometer in the Type 10/11M1 for approximately equal and opposite deflection above and below the ground reference point on the oscilloscope.
10. Repeat steps 8 and 9 using the +100 V and +15 V positions of the SOURCE voltage switch and adjust the + SUPPLY REF potentiometer in the Type 10/11M1 for approximately equal and opposite deflection above and below the ground reference point on the oscilloscope.
11. While switching between the GND and DC ERROR positions of the SOURCE function switch, adjust each of the CALIB adjustments of the Type $10 / 11 \mathrm{MI}$ to within ± 5 millivolts as measured on the test oscilloscope. See the following:

SOURCE Voltage Switch Setting	Adjust
-75 V	R220, -75 V CALIB
-15 V	R230, -15 V CALIB
+15 V	R240, +15 V CALIB
+100 V	R250, +100 V CALIB

12. Disconnect the test oscilloscope from the OUTPUT connector.

> STRIP LAYOUT~ $067.0522 .00 \quad(10 / 11 \mathrm{M})$

SECTION 5
 PARTS LIST and DIAGRAMS

PARTS ORDERING INFORMATION

Replacement parts are available from or through your local Tektronix Field Office.
Changes to Tektronix instruments are sometimes made to accommodate improved components as they become available, and to give you the benefit of the latest circuit improvements developed in our engineering department. It is therefore important, when ordering parts, to include the following information in your order: Part number including any suffix, instrument type, serial number, and modification number if applicable.

If a part you have ordered has been replaced with a new or improved part, your local Tektronix Field Office will contact you concerning any change in part number.

ABBREVIATIONS AND SYMBOLS

a or amp	amperes
BHS	binding head steel
C	carbon
cer	ceramic
cm	centimeter
comp	composition
cps	cycles per second
crt	cathode-ray tube
CSK	counter sunk
dia	diameter
div	division
EMC	electrolytic, metal cased
EMT	electroyltic, metal tubular
ext	external
f	farad
F \& 1	focus and intensity
FHS	flat head steel
Fil HS	fillister head steel
g or G	giga, or 10^{9}
Ge	germanium
GMV	guaranteed minimum value
h	henry
hex	hexagonal
HHS	hex head steel
HSS	hex socket steel
HV	high voltage
ID	inside diameter
incd	incandescent
int	internal
k or K	kilohms or kilo (103)
kc	kilocycle
m	milli, or 10^{-3}
mc	megacycle

mm meg or M met.	millimeter megohms or mega (10^{6}) metal
μ	micro, or 10^{-6}
n	nano, or 10^{-9}
Ω	ohm
OD	outside diameter
OHS	oval head steel
p	pico, or 10^{-12}
PHS	pan head steel
piv	peak inverse voltage
plstc	plastic
PMC	paper, metal cased
poly	polystyrene
Prec	precision
PT	paper tubular
PTM	paper or plastic, tubular, molded
RHS	round head steel
rms	root mean square
sec	second
Si	silicon
S/N	serial number
t or T	tera, or 10^{12}
TD	toroid
THS	truss head steel
tub.	tubular
v or V	volt
Var	variable
w	watt
w/	with
w/o	without
WW	wire-wound

SPECIAL NOTES AND SYMBOLS

Part first added at this serial number.
Part removed after this serial number.
*000-000 Asterisk preceding Tektronix Part Number indicates manufactured by or for Tektronix, or reworked or checked components.

Use 000-000
Part number indicated is direct replacement.
Internal screwdriver adjustment.
Front-panel adjustment or connector.

EXPLODED VIEW

EXPLODED VIEW (Cont'd)

REF.	PART NO.	SERIAL/MODEL NO.		Q	
No.		EFF.	DISC.	Y	DESCRIPTIO
14	$262-0671-00$ $\cdots--$ $260-0628-00$ --0 $210-0012-00$ $210-0840-00$ $210-0413-00$			$\begin{gathered} 1 \\ - \\ 1 \\ -1 \\ 1 \\ 1 \end{gathered}$	SWITCH, wired - VERTICAL Includes: SWITCH, unwired - VERTICAL Mounting Hardware: (not included) LOCKWASHER, internal, $13 / 8 \times 1 / 2$ inch WASHER, 390 ID $\times 9 / 16$ inch OD NUT, hex, $13 / 8-32 \times 1 / 2$ inch
15	$\begin{aligned} & 343-0007-00 \\ & \hdashline-- \\ & 210-0863-00 \\ & 211-0507-00 \end{aligned}$			$\begin{gathered} 1 \\ -1 \\ 1 \end{gathered}$	CLAMP, cable, $5 / 8$ inch Mounting Hardware: (not included) WASHER, "D" type, \#10 SCREW, $6-32 \times 5 / 16$ inch BHS
16	$\begin{aligned} & 131-0106-00 \\ & --- \\ & 210-0255-00 \\ & 210-0413-00 \end{aligned}$			$\begin{aligned} & 1 \\ & - \\ & 1 \\ & 1 \end{aligned}$	CONNECTOR, chassis mounted, BNC Mounting Hardware: (not included) LUG, solder, ${ }^{i 3} / 8$ inch NUT, hex, $3 / 8-32 \times 1 / 2$ inch
17	$\begin{aligned} & 366-0189-00 \\ & \hdashline 213-0020-00 \end{aligned}$			1 -1	KNOB, small red - AMPLITUDE Includes: SCREW, set, $6-32 \times 1 / 8$ inch HSS
18	$\begin{aligned} & 366-0175-00 \\ & \hdashline--0 \\ & 213-0004-00 \end{aligned}$			1 - 1	KNOB, small charcoal - PULSE RATE Includes: SCREW, set, $6-32 \times 3 / 16$ inch HSS
19	$\begin{aligned} & 262-0670-00 \\ & \hdashline-- \\ & 260-0627-00 \end{aligned}$			1 -1	SWITCH, wired - PULSE RATE Includes: SWITCH, unwired - PULSE RATE
20	384-0323-00			1	ROD, extension
21	376-0014-00			1 1	COUPLING, pot POT
	$\begin{aligned} & 210-0413-00 \\ & 210-0012-00 \end{aligned}$			- 2 1	Mounting Hardware: (not included) NUT, hex, $3 / 8-32 \times 1 / 2$ inch LOCKWASHER, internal, $13 / 8 \times 1 / 2$ inch
23	$\begin{aligned} & 210-0012-00 \\ & 210-0840-00 \\ & 210-0413-00 \end{aligned}$			$\begin{aligned} & - \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	Mounting Hardware For Switch Assembly: (not included) LOCKWASHER, internal, $13 / 8 \times 1 / 2$ inch WASHER, 390 ID $\times 9 / 16$ inch OD NUT, hex, $3 / 8-32 \times 1 / 2$ inch
24	$\begin{aligned} & 136-0181-00 \\ & --- \\ & 354-0234-00 \end{aligned}$			1 - 1	SOCKET, 3 pin transistor Mounting Hardware: (not included) RING, locking, transistor socket
25	$\begin{aligned} & \ldots \\ & 210-0012-00 \\ & 210-0840-00 \\ & 210-0413-00 \end{aligned}$			1 - 1 1 1	POT Mounting Hardware: (not included) LOCKWASHER, internal, $3 / 8 \times 1 / 2$ inch WASHER, 390 ID $\times 9 / 16$ inch OD NUT, hex, $3 / 8-32 \times 1 / 2$ inch
26	$\begin{aligned} & 136-0164-00 \\ & \hdashline-\cdots \\ & 210-0413-00 \\ & 210-0012-00 \\ & 210-0978-00 \\ & 210-0590-00 \end{aligned}$			1 - 1 1 1 1 1	SOCKET, lamp Mounting Hardware: (not included) NUT, hex, $3 / 8-32 \times 1 / 2$ inch LOCKWASHER, internal, $3 / 8 \times 1 / 2$ inch WASHER, $3 / 8$ ID $\times 1 / 2$ inch OD NUT, hex, $3 / 8-32 \times 7 / 16$ inch
27	333-0862-00			1 1	PANEL, front PLATE, front sub-panel
29	384-0615-00			4	ROD, spacer

EXPLODED VIEW (Cont'd)

EF.	PART NO.		Odel no.	Q	DESCRIPTION
No.	PART NO.	EFF.	DISC.	Y.	DESCRIPTION
30	$441-0584-00$ $-\cdots--$ $211-0507-00$ $211-0538-00$		169	3 3	CHASSIS, aluminum Mounting Hardware: (not included) SCREW, $6-32 \times 5 / 16$ inch BHS SCREW, $6-32 \times 5 / 16$ inch FHS phillips
31	670-0067-00			1	ASSEMBLY, printed circuit board Includes:
32	344-0064-00			8	Includes: CLIP, diode
33	136-0183-00			4	SOCKET, 3 pin transistor
34	- - - -			4	Mounting Hardware For Circuit Board Assy: (not included) SCREW, $4-40 \times 1 / 4$ inch BHS
	211-0116-00			4	SCREW, sens, $4-40 \times 5 / 16$ inch PHB
35	- - - -			1	RESISTOR, 8 watt
	- - - -			-	Mounting Hardware: (not included)
	211-0545-00			1	SCREW, $6-32 \times 1 \frac{1}{4}$ inches THS phillips
	210-0478-00			1	NUT, hex, resistor mounting
	210-0206-00			1	LUG, solder, SE10 long
	211-0507-00			1	SCREW, $6-32 \times 5 / 16$ inch BHS
36	- . - -			3	RESISTOR, 10 watt Mounting Hardware For Each: (not included)
	- - - -				
	211-0553-00			1	SCREW, $6-32 \times 1 \frac{1}{2}$ inches RHS phillips
	210-0601-00			1	EYELET
	210-0478-00			1	NUT, hex, resistor mounting
	211-0507-00			1	SCREW, $6-32 \times 5 / 16$ inch BHS
37	- - - -			1	RESISTOR, 20 wattMounting Hardware: (not included)
	- - - - -			-	
	212-0037-00			1	SCREW, $8-32 \times 1 \frac{3}{4}$ inches Fil HS
	210-0808-00			1	WASHER, centering
	210-0462-00			1	NUT, hex, resistor mounting
	210-0206-00			1	LUG, solder, SE10 long
	212-0004-00			1	SCREW, $8-32 \times 5 / 16$ inch BHS
38	- - - -			6	RESISTOR, 25 watt Mounting Hardware For Each: (not included)
	- . . . -			-	
	212-0037-00			1	Mounting Hardware For Each: (not included) SCREW, $8-32 \times 1^{3 / 4}$ inches Fil HS
	210-0008-00			1	LOCKWASHER, internal, \#8
	210-0809-00			1	WASHER, centering
	210-0462-00			1	NUT, hex, resistor mounting
	212-0004-00			1	SCREW, $8-32 \times 5 / 16$ BHS
39	131-0359-00			1	CONNECTOR, terminal feed-thruMounting Hardware: (not included)
39	- - - -			1	
	358-0176-00				Mounting Hardware: (not included) BUSHING, teflon
40	131-0227-00			1	CONNECTOR, terminal standoff Mounting Hardware: (not included) BUSHING, teflon
	- - - -			-	
	358-0176-00			1	
41	131-0096-00			1	CONNECTOR, chassis mounted, 32 contact, male Mounting Hardware: (not included)
	- - - -			2	
	211-0008-00				SCREW, $4-40 \times 1 / 4$ inch BHS
	210-0201-00			2	LUG, solder, SE4
	210-0406-00			2	NUT, hex, $4-40 \times 3 / 16$ inch
42	351-0063-00				
	$211-0012-00$			2	GUIDE, shoe, plug-in latch Mounting Hardware For Each: (not included) SCREW, $4-40 \times 13 / 8$ inch BHS
	210-0004-00			2	SCREW, $4-40 \times 13 / 8$ inch BHS LOCKWASHER, internal, \#4
	210-0406-00			2	NUT, hex, 4-40x $3 / 16$ inch

EXPLODED VIEW (Cont'd)

ELECTRICAL PARTS

Values are fixed unless marked Variable.

	Tektronix Part No.	Description Ckt. No.	
		Bulb	
B289	150-043	Bulb Ass'y, Incandescent	6.3 V AC AT CONNECTOR

Capacitors

Tolerance $\pm 20 \%$ unless otherwise indicated.
Tolerance of all electrolytic capacitors as follows (with exceptions):

$$
\begin{aligned}
3 V-50 V & =-10 \%,+250 \% \\
51 V-350 V & =-10 \%,+100 \% \\
351 V-450 V & =-10 \%,+50 \%
\end{aligned}
$$

Diodes

\(\left.\begin{array}{l}D124

D132

D142

D133

D143\end{array}\right\} \quad\)| $* 152-075$ | Germanium Tek Spec |
| :--- | :--- |
| | $* 152-193$ |\quad Tek GaAs (1 pair)

Diodes (Cont'd)

Ckt. No.	Tektronix Part No.	Description			
D170	Use *152-185	Silicon	Replace	e by 1 N 3605	
D192	Use *152-185	Silicon	Replace	e by 1N3605	
D201	†152-124	Zener	1N938A	$9 \vee\left(0.001 \% /{ }^{\circ} \mathrm{C}\right)$	
D202	†152-124	Zener	1N938A	$9 \mathrm{v}\left(0.001 \% /{ }^{\circ} \mathrm{C}\right)$	
D206	†152-174	Zener	1N938A	$9 \mathrm{v}\left(0.001 \% /{ }^{\circ} \mathrm{C}\right)$	Selected
D214	†152-174	Zener	1N938A	$9 \mathrm{v}\left(0.001 \% /{ }^{\circ} \mathrm{C}\right)$	Selected

Connectors

J190 131-106 Chassis Mt., 1 Contact, Female, BNC

Chassis Mt., Insulated, BNC

Inductor

L194
*108-088 $\quad 3.2 \mu \mathrm{~h}$

Transistors

Q115	$* 151-127$	Selected from 2N2369
Q125	$* 151-127$	Selected from 2N2369
Q134	$151-097$	2N955
Q144	$151-107$	2N967
Q164	$* 151-127$	Selected from 2N2369
Q174	${ }^{* 151-127}$	Selected from 2N2369
Q194	$* 151-127$	Selected from 2N2369

Resistors

Resistors are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R111	315-102	1 k	$1 / 4 \mathrm{w}$			5\%
R113	301-223	22 k	$1 / 2 \mathrm{w}$			5\%
R114	315-101	100Ω	$1 / 4 \mathrm{w}$			5\%
R115	315-131	130Ω	$1 / 4 \mathrm{w}$			5\%
R117	315-273	27 k	$1 / 4 \mathrm{w}$			5\%
R119	316-220	22Ω	$1 / 4 \mathrm{w}$			
R121	315-102	1 k	1/4 w			5\%
R123	301-223	22 k	1/2w			5\%
R124	302-102	1 k	1/2w			
R125	315-181	180Ω	$1 / 4 \mathrm{w}$			5\%
R127	315-273	27 k	1/4 w			5\%
R130	322-189	909Ω	1/4w		Prec	1\%
R133	321-068	49.9Ω	1/8 w		Prec	1\%
R135	311-007	$2 \times 1 \mathrm{k}$	2 w	Var		AMPLITUDE (Pulse)
R136	321-101	110Ω	1/8 w		Prec	1\%
R140	322-189	909Ω	$1 / 4 \mathrm{w}$		Prec	1\%
R143	321-068	49.9Ω	$1 / 8 \mathrm{w}$		Prec	1\%
R148	322-222	2 k	$1 / 4 \mathrm{w}$		Prec	1\%
R150	311-007	$2 \times 1 \mathrm{k}$	2 w	Var		POSITION
R152	315-362	3.6 k	$1 / 4 \mathrm{w}$			5\%

\dagger Temperature Compensated.

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Descrip				S/N Range
R153	315-242	2.4 k	$1 / 4 \mathrm{w}$			5\%	
R155	315-122	1.2 k	$1 / 4 \mathrm{w}$			5\%	
R158	322-222	2 k	$1 / 4 \mathrm{w}$		Prec	1\%	
R161	323-607	600Ω	$1 / 2 \mathrm{w}$		Prec	1\%	
R162	315-362	3.6 k	$1 / 4 \mathrm{w}$			5\%	
R163	315-242	2.4 k	$1 / 4 \mathrm{w}$			5\%	
R164	321-115	154Ω	1/8 w		Prec	1\%	
R165	315-122	1.2 k	$1 / 4 \mathrm{w}$			5\%	
R167	322-094	93.1 ת	$1 / 4 \mathrm{w}$		Prec	1\%	
R170	302-102	1 k	$1 / 2 \mathrm{w}$				
R171	323-607	600Ω	1/2w		Prec	1\%	
R174	321-115	154Ω	$1 / 8 \mathrm{w}$		Prec	1\%	
R176	322-085	75Ω	$1 / 4 \mathrm{w}$		Prec	1\%	
R177	322-094	93.1 ת	$1 / 4 \mathrm{w}$		Prec	1\%	
R182	323-685	52.7 k	$1 / 2 \mathrm{w}$		Prec	1/4\%	
R183	323-682	195.7Ω	$1 / 2 \mathrm{w}$		Prec	1/4\%	
R185	323-683	1.86 k	$1 / 2 \mathrm{w}$		Prec	1/4\%	
R186	323-684	1.928 k	$1 / 2 \mathrm{w}$		Prec	1/4\%	
R190	302-105	1 meg	$1 / 2 \mathrm{w}$				
R191	311-005	500Ω	2 w	Var		ATTEN	
R192	316-561	560Ω	$1 / 4 \mathrm{w}$				
R194	316-102	1 k	$1 / 4 \mathrm{w}$				
R195	315-202	2 k	$1 / 4 \mathrm{w}$			5\%	
R197	302-331	330Ω	$1 / 2 \mathrm{w}$				
R199	315-101	100Ω	$1 / 4 \mathrm{w}$			5\%	
R201	308-092	4.5 k	5 w		WW	5\%	
R202	308-322	970Ω	$1 / 2 \mathrm{w}$		WW	1\%	
R204	308-185	7 k	$1 / 2 \mathrm{w}$		WW	1\%	
R206	308-226	10 k	$1 / 2 \mathrm{w}$		WW	1\%	
R208	311-488	10 k	4 w	Var		-SUPPLY REF	
R214	308-185	7 k	$1 / 2 \mathrm{w}$		WW	1\%	
R215	308-185	7 k	$1 / 2 \mathrm{w}$		WW	1\%	
R216	308-226	10 k	$1 / 2 \mathrm{w}$		WW	1\%	
R218	311-488	10 k	4 w	Var		+SUPPLY REF	
R220	311-490	30 k	2 w	Var		-75V CALIB	
R222	323-276	7.32 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R225	323-498	1.5 meg	$1 / 2 \mathrm{w}$		Prec	1\%	
R227	308-327	41.6 k	$1 / 2 \mathrm{w}$		WW	1\%	
R230	311-489	15k	2 w	Var		-15V CALIB	
R232	323-328	25.5 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R235	322-610	500 k	$1 / 4 \mathrm{w}$		Prec	1\%	
R237	308-325	8.32 k	$1 / 2 \mathrm{w}$		WW	1\%	
R240	311-489	15 k	2 w	Var		+15 V CALIB	
R242	308-325	8.32 k	$1 / 2 \mathrm{w}$		WW	1\%	
R245	322-610	500 k	$1 / 2 \mathrm{w}$		Prec	1\%	

Resistors (Cont'd)

Ckt. No.	Tektronix Part No.		Descrip				S/N Range
R247	323-328	25.5 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R250	311-490	30 k	2 w	Var		+100 V	ALIB
R252	308-328	55.4 k	$1 / 2 \mathrm{w}$		WW	1\%	
R255	323-498	1.5 meg	$1 / 2 \mathrm{w}$		Prec	1\%	
R257	323-274	6.98 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R259	*308-090	0.25Ω	1 w		WW		
R260	323-291	10.5 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R262	323-382	93.1 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R264	308-309	216 k	$1 / 4 \mathrm{w}$		WW	1/4\%	
R265	308-308	54 k	$1 / 4 \mathrm{w}$		WW	1/10\%	
R267	308-308	54 k	$1 / 4 \mathrm{w}$		WW	1/10\%	
R269	308-309	216 k	$1 / 4 \mathrm{w}$		WW	1/4\%	
R270	323-291	10.5 k	$1 / 2 \mathrm{w}$		Prec	1\%	
R272	323-382	93.1 k	$1 / 2 w$		Prec	1\%	
R291A	308-155	800Ω	25 w		WW	5\%	
R291B	308-029	400Ω	20 w		WW	5\%	
R291C	305-223	22 k	2 w			5\%	
R293A	308-160	60Ω	8 w		WW	5\%	
R293B	308-012	40Ω	10 w		WW	5\%	
R295A	308-233	25Ω	25 w		WW	5\%	
R295B	308-174	117Ω	8 w		WW	5\%	
R295C	308-188	3Ω	25 w		WW	5\%	
R295D	308-184	7.5Ω	25 w		WW	5\%	
R295E	308-165	0.5Ω	5 w		WW	5\%	
R297A	308-102	1.25 k	25 w		WW	5\%	
R297B	308-053	8 k	5 w		WW	5\%	
R297C	308-147	750Ω	25 w		WW	5\%	
R299A	308-025	20 k	10 w		WW	5\%	
R299B	308-023	10 k	10 w		WW	5\%	

Switches

Unwired Wired

SW113	$260-627 * 262-670$	Rotary
SW170	$260-628 * 262-671$	Rotary
SW250	$260-630$	Rotary
SW259	$260-490$	Lever
SW270	$260-629 * 262-672$	Rotary
SW290	$260-626$	Rotary

Transformer

