3
|

- COMPANY CONFIDENTIAL

Written and compiled by
Bill Baunach
-
r
. _

] COMMITTED TO EXCELLENCE

Copyright © 1981, Tektronix, Inc. All rights reserved. Printed in U.S.A. Tektronix products are covered by U.S. and foreign patents,
issued and pending. Information in this publication supersedes that in all previously published material. Specification and price
change privileges reserved. TEKTRONIX, TEK, SCOPE-MOBILE, and ¥ are registered trademarks of Tektronix, Inc. TEL-
EQUIPMENT is a registered trademark of Tektronix U.K. Limited. For further information, contact Tektronix, Inc.. P.O. Box 500,
Beaverton, OR 97077. Phone 503-644-0161. TWX 910-467-8708. Cable: Tektronix. Subsidiaries and distributors worldwide.

o

TABLE OF CONTENTS

L. CUSTOMERS, SYSTEMS, AND YOU

Why Customers Buy GPIB
Tek's Commitment

Sales Opportunity

Using This Workbook

IT. SYSTEM OVERVIEW

Hardware
Software
Benefits
Self-Test

[II. THE GENERAL PURPOSE INTERFACE BUS

IEEE 488 Definitions
Typical Data Transfer
Hardware Characteristics
GPIB-Compatible

System Specifications
Self-Test

IV. = TEK CODES AND FORMATS

Codes and Formats Definitions

Benefits
Self-Test

I-1

I-2
I-5
I-6
I-8

-1

-1

I1-10
II-17
f1-21

-1

-2

11-10
1-12
m-14
I-19
111-23

IV-1

Iv-2
IV-16
IV-18

V’

VI.

4050 OPERATION

Getting Started

Arithmetic

Editing Keys

Peripheral Control Keys
Simple 4050 Operation

User Definable Keys (UDK's)
Peripherals

Demonstration Software
Self-Test

4050 BASIC PROGRAMMING

What is a Program
Computation in Basic

Print

Program Control

Putting Intelligence In Your Program
More Control

Subroutines

Strings

Input/Output over the GPIB
RBYTE/WBYTE

Serial Poll

Tape Commands

User Definable Keys
Miscellaneous

Bibliography

Self Test

APPENDICES

A.
B.
C.

ASCIl/GPIB CHART
ANSWERS TO SELF-TESTS
GLOSSARY

V-1

V-1

V-5

V-10
V-12
V-13
V-15
V-16
V-17
V-28

Vi-1

VI-2

Vi-6

VI-10
VI-16
VI-17
VI-21
VI-25
VI-29
VI-37
VI-40
VI-42
VI-45
VI-49
VI-53
VI-54
VI-55

CA-1

B-1
C-1

I. CUSTOMERS, SYSTEMS, AND YOU

The use of the IEEE 488 General Purpose Interface Bus (GPIB) on
Tektronix instruments offers you, as Tek Sales Engineers, a new set of
opportunities (and challenges). The GPIB is making a significant impact on
Tektronix and on your job. GPIB systems are important because they provide
a major benefit to our customers. This booklet is designed to help you
understand how GPIB systems work, why customers need them, Tektronix'
commitment to GPIB, and the sales opportunity created by your customers'

needs.

The current economy and the competitive business climate are
creating serious problems for your customers. As a result, customers are
demanding increases in the productivity of their labor and in the productivity

of their capital (money).

GPIB instruments provide you with a significant opportunity,
because they provide the benefit of increased productivity to your customer.
The systems capability that GPIB makes practical'can be a big part of the
solution to the economic difficulties facing our customers. This systems
capability is a logical evolutionary development of the technology which

supports our traditional test and measurement marketplace.

GPIB has changed the way customers perceive the solutions to
their measurement problems. Now, customers can easily connect many
products together. Stand-alone products will continue to be purchased, but
many of your customers are now interested in systems and the products which

can be put into them. Figure 1-1 diagrams the new situation.
GPIB systems are part of a long-term trend. Customers who

require test and measurement gear such as we provide are becoming more

systems oriented. Let's look at why this is.

I-1

ANOTHER
TEK PRODUCT

COMPUTING
! CONTROLLER

GPIB INTERFACE

Fig. 1.1. GPIB enables collections of products to work together. It provides for increased ca-
pabilities beyond stand-alone products.

WHY CUSTOMERS BUY GPIB

As mentioned earlier, many of the benefits that customers derive

from systems boil down to one thing: increased productivity, the ability to

produce more or better products with less time, less money, or both. Systems
with GPIB programmable instruments provide this increased productivity
through:

e Saved time and money, less labor and less skilled labor

e Automated measurements, documented results

e Fewer errors

e More exhaustive testing

e Testing of complex devices which could not practically be

tested manually

o Increased speed and accuracy of tests
e Easy-to-reconfigure systems
e Consistent results

Because electronic equipment is becoming more complex, and
because the supply of highly trained labor is very limited, manufacturers are
finding it necessary to automate their measurement and test procedures. The
need to automate is occurring in all phases of a product life-cycle, i.e.,

research, design, and manufacturing.

Because of the relative shortage of trained electronic engineers
and technicians, those available must be used more effectively. Systems
allow routine measurements to be automated, freeing engineers for more
creative tasks such as design and analysis, and freeing technicians to solve

the really tough problems.

Before the GPIB was developed, development of instrument
systems was economically feasible only in manufacturing environments where
the volume of testing was very high, or where the cost of the system was low
compared to the value of the measurement/test results. The high costs of
these systems resulted from the fact that a custom interface had to be
designed for each instrument in a system, a costly proposition. These custom
interfaces also resulted in high programming and maintenance costs. Now the

GPIB makes more systems economical and practical.

It is now possible to assemble an automated measurement system
with relative ease, so system development costs can be reduced
dramatically. Thus, automated measurement systems are now feasible for
engineering benches, low-volume production, quality assurance, and many
other applications where such systems were previously impractical or too

expensive.

I-3

MARKET ENVIRONMENT

The GPIB is a product feature purchased by our traditional
customers. Virtually all GPIB products are eventually interfaced with
controllers into systems, either temporarily or permanently.

Tek did some research in 1978 to find out to what degree GPIB
had permeated the marketplace. We polled about 200 Tek customers. At
that time we found that:

e 67% have GPIB equipment

® 39% currently use GPIB gear in systems

® 28% currently use GPIB gear stand-alone (28 + 39 = 67)
e Of the 28% using products stand-alone,

o 12% will put it into a system within 12 months

e 12% will put it into a system between 12 and 18

months
® 4% are hedge buyers

Therefore, of the group questioned, fully 63% either are or will

be using GPIB products in systems. Your customers are buying or thinking

about buying systems.

Today, on these instruments where the customer pays extra for
the GPIB (468, 5223, 492), more than one-fourth are being ordered with the
GPIB option.

I-4

TEK'S COMMITMENT

Tektronix is committed to supplying GPIB-compatible
instruments. There is a corporate policy which states that all new Tek
products must be GPIB-compatible unless it is unreasonable for the intended

marketplace.

There are two reasons for this. The research that we have done
including inputs from the sales force, indicates that our customers are
demanding GPIB compatibility for their instruments, i.e., our products. Some
customers, as many of you already know, will not or cannot buy test and

measurement gear unless it is GPIB-compatible. That is strong motiviation.

The other reason is that Tek itself needs to increase productivity
to maintain long-term profitability. We have recognized that computer-aided
systems can provide a significant means to achieve such an increase. We are
establishing computer-aided systems in many diverse facits of our operation
-- research, design, manufacture (we even have some robots), and test. Since
computer-aided sytems are helping us to increase productivity, then surely
they can help our customers as well. For test and measurement kinds of
products, GPIB compatibility is a major step towards the development of

systems solutions.

Fortunately, Tek is not entirely new to the field of instrument
systems. We have been actively engaged in selling waveform-oriented
systems (Signal Processing Systems) since 1973. This expertise in
waveform-related systems is an important advantage to us, and waveform
products (digitizers and spectrum analyzers) will continue to be a major part
of our GPIB product offerings. It is also important because we have had the
advantage of several years' experience to learn how best to handle software
interfaces for measurement instruments and data. The result of this learning
is the Tek Codes and Formats Standard; it is a major step toward improving

compatibility between devices.

I-5

SALES OPPORTUNITY

Tektronix GPIB instruments present you with a new set of
challenges and opportunities. With the new challenges that GPIB products
pose come the rewards of selling large ticket systems. The way you sell will
be affected. For example, with collections of products such as GPIB systems
suggest, there will need to be more team selling activities among the
different sales and support groups. The GPIB presents a challenge to all of
us. Because it is a major customer benefit, it represents a significant

opportunity as well.

GPIB systems must often be sold higher in an organization than
stand-alone instruments. As package price increases, the purchase approval
moves further up in the chain of command. When you sell at higher levels,
product features are not of great interest to the manager. More important is
the economic benefit; you will need to sell productivity. When you are selling
complete systems (those sales that include a controller), you will seldom be
making a pitch to the end user. Even as you get closer to the end user
though, you will need to sell specific product (system) benefits rather than

features because there will be too many features to discuss. However, you

must know the features which provide the benefit.

When you start to work with customers who are thinking about

buying GPIB products, they will fall into three categories:

e Those buying stand-alone as a hedge or for future system

application
e Those buying a complete system

e Those buying a product for use in a system using either a

Tek or non-Tek controller

I-6

Although what you emphasize with each customer will be
different, every one will want and need to discuss system concepts.
Newcomers to GPIB systems will need to learn about general concepts and
benefits. Those who have some experience with GPIB systems will be more
interested in specific product compatibilities in regard to their applications

and/or existing systems needs.

The rewards in selling GPIB systems are commensurate with the
challenges that they pose. GPIB-compatible products are typically priced at
a premium because of the digital hardware and software which make them
easy to interface. (Remember that the alternative is expensive custom
interfacing.) Full systems, of course, carry a fairly high pricetag. Selling one

is gratifying and moves you closer to target more quickly.

There are a couple of other rewards less obvious than the
commissions from selling high price products. Selling a system usually means
easily selling additional complementary products where the extra dollars sold
is far greater than the effort required to earn them. For example, once a
computer terminal is sold, it is easier to sell a hard copy unit. Or, more to
the point, once a TM5000 mainframe is sold, it will be easier to convince a
customer to fill in all the holes. Our experience in SPS has shown that a
complete system sale will typically net three times more dollars than an (SPS)
stand-alone product sale. The effort expended is not three times as much.
Also, when a customer wants to add new products to a system that customer

will normally turn to the source of previous products.

There is also an advantage in selling higher in an organization.
When you start to sell to high level managers and learn their concerns, you
will gain a perspective of business organizations that you cannot acquire when
selling to a service department manager. You may even learn enough about a
company to find additional departments that need our products which you

might not otherwise have found. And the business acumen gained will be

invaluable.

USING THIS BOOKLET

The primary purpse of this booklet is to enable you to effectively
represent Tektronix' GPIB products, sytems, and services in a competent,

positive, and productive manner.

Specifically, to be able to effectively sell Tektronix' GPIB

products and systems, you will need to be able to:
e Speak intelligently about GPIB, systems, and software.
e Relate software and systems potentials to customers.

® Describe the features and benefits of Tek's Codes and

Formats Standard.

o Be confident and effective in the presence of Tek

controllers, especially 4052 and 4041.
o Connect pieces of gear on the GPIB.

e Operate computer demo tapes for instrumentation

products.
o Recover from difficulties on demo tapes.
e List programs.
e Read (analyze) simple programs that are well documented.

e Control GPIB devices from the 4052 keyboard.

I-8

This is a tall order, but a necessary one. Remember, the long
term trend is towards systems. This booklet is a step towards meeting these
objectives. We have tried to make this workbook as brief and concise as
possible without making any assumptions about prior system/programming
experience. It has been our intent that all the material contained in this
booklet is directly applicable to your sales environment, acknowledging that

each of vou has an individual approach to your customers.

A word about programming. Chapter VI is a short primer on
programming the 4052 with special emphasis on instrumentation applications.
It is not our intent that you become a computer programmer. However,
introduction to programming is essential for you to understand the needs and
concerns of your customers and to understand the potentials of products,
systems, and software. Just as it is impossible to describe the flavor of an
apple to a person who has never tasted one, it is equaly impossible for vou to

discuss GPIB systems without taking a bite into programming.

Computers have added a number of words to our language, and
although it may be circumstantial, it seems that ever since the advent of
computers, acronyms have invaded the simplest of sentences. To make life a
little easier, all acronyms and computer/systems terms are included in a

glossary in Appendix C.

Probably the best approach to the remaining chapters of this
booklet is to read the self test at the end of a given chapter first. These self
tests cover the major objectives of each chapter. They do not, however,
cover the explanations of why a particular answer is the way it is. Knowing

the questions on the tests will help provide direction for your reading.
Answers to the self tests are in Appendix B.

If you get stuck in a problem or have a question about a concept,
the IDD Systems Analysts have been asked to give you a hand when you need
it. You are also encouraged to call Bob Young, ext. 1504 (Walker Road), of
GPI Marketing (formerly TM500) if you have questions -- he is expecting your

call.

II. SYSTEM OVERVIEW

The system solves your customers' needs. The GPIB helps make
systems possible by providing a common link between system components.
GPIB allows the various devices to communicate and therefore to function as

a whole. But remember, customers have the total system uppermost in their

minds, not the interfacing scheme.

In this chapter, we are going to describe system 1) hardware

components, 2) software components, and 3) benefits.

HARDWARE

Virtually all instrumentation systems have at minimum the
following generic components.

e Some INSTRUMENTS. There are either stimulus
instruments, such as function generators, pulse
generators, etc. or measurement instruments, such as

counters, waveform digitizers, and multimeters.

e A CONTROLLER. This controls all system
communication, makes decisions, establishes the
sequence of activity, and processes results. This is
generally a small computer.

e A KEYBOARD or KEYPAD, which provides user input

and interaction with the system. Lets the user command

the system.

e A DISPLAY, which provides the user output to monitor
the system. Usually this is a crt or LED display.

-1

° A MASS STORAGE device to hold software and data -- N

probably a tape unit or disk drive.

Except for a very few cases, all systems must have one of each

of the above hardware components.

Here is an example of a typical instrumentation system:

Fig. 2.1. In a WP1310 system, the 4052 contains four of the five generic system components.

Figure 2.1 shows the WP1310 which roughly consists of a 7854

and a 4052. Do these two units include the five generic system components

mentioned above? Sure, and this points to a common fact. Many times, more
than one system component (function) is built into one unit. In the case of
the 4052, the unit includes: 1) the CONTROLLER, a microprocessor,
memory, and associated hardware; 2) the KEYBOARD; 3) the DISPLAY, crt;

and 4) the MASS STORAGE, the DC300 tape drive. This leaves the 7854 as
the INSTRUMENT. S

-2

The reasons for breaking out the various system components are:

1) so that you don't forget to discuss any of them when you are consulting

with customers; 2) because a customer may already own some of the

components; and 3) because customers may want to choose among several

alternatives in each category to help meet their specific requirements.

The system component list above stated minimum requirements.

Here is the same list in a general form:

INSTRUMENTS. Measurement (acquisition) and stimulus.

CONTROLLER. Communicates, sequences, and processes.

User INPUT devices. Keyboards are a must, but we might
also include graphic tablets, joysticks, thumbwheels, and

some card readers.

User OUTPUT devices. Usually crt screens, but also

might include line printers, hard copy units, and plotters.

MASS STORAGE devices. Hard and flexible disks,

cartridge tapes, and large mag tapes.

MULTIFUNCTION INTERFACES. Programmable signal
routing switches (multiplexers), D/A and A/D converters,
and other DUT interfaces. Used especially in production

testing environments.

Figure 2.2 shows how the above components are logically

connected. Not surprisingly, the system controller is at the center of the

action.

II-3

COAX MEASUREMENT

Fig. 2.2. A generalized instrumentation system schematic.

Let's take a moment to look at the considerations a customer
may need to take into account regarding each class of device and how it
impacts the total system capability. We will begin to see here, and discuss
more in the next chapter, that a customer is interested not only in the
capability (i.e. specifications) of particular measurement instruments, but of

the system as well. And that this system specification is from no means

derived by the sum of the specs of the various components.

First, though, let's look at the considerations regarding
components.

-4

&
MULTIPLEXER sTtuus — -
INSTRUMENTS _——_——
GPIB I INPUT I
(KEYBOARD) |
GPIB
CONTROLLER RS232C | l
OR
INTERNAL l OUTPUT |
CUSTOM (SCREEN)
: | |
GPIB
MASS T TERMINAL) o
STORAGE (TERMINAL)

INSTRUMENTS

With GPIB systems, you have the opportunity to learn many new
technical and sales skills; however, all the skills and knowledge that you have
used in the past are still required. You must offer test instruments which
provide the salient signal characteristics which meet the customer's
measurement requirement. Here we are talking about the entire range of
products that you have been selling in the past. A system product has a GPIB
interface on the back, but there are many other considerations when selecting
an appropriate instrument. These include throughput, level of intelligence,
compliance with Tek Codes and Formats, etc. These special considerations
are discussed in the next chapter in the section "System Considerations."
Examples from the current Instruments Division product line include: 7854,
5223, 468, 492P, 7612D, 7912AD, and the CG551AP, and the first wave of
TM5000 products.

CONTROLLERS

Considerations include the size of user memory (temporary
memory to store programs and data, contents lost when power is turned off),
computational speed, interface (communication) speed, ease of programming
(language), ease of use and availability of peripherals, and built-ins (such as
graphics screen, tape drive, and GPIB port). As an example, let's suppose two
customers are going to make different measurements, but they both need a
net output (answer) twice a second. The first customer can make a
measurement with a DMM and the second with a waveform digitizer. The
second customer needs a controller with an interface speed substantially
faster than the first since the second customer will be transferring as much
as 1,000 times more data over the GPIB in the same amount of time.
Therefore, a controller with a much faster interface data rate is required.

Tek's GPIB controllers are the 4050 Series and the new 4041.

II-5

INPUT DEVICES

For instrumentation systems, the standard user input device is a
keyboard; however, these days, User Definable Keys are a great convenience
to the operator. UDK's are typically special keys on the keyboard which have
the ability to call software routines that are in the controller. Since users
can write these routines in any way they choose, the keys are said to be "user
definable." The benefit is that a user need only press one key, rather than a
whole sequence.

The 4050 Series instruments have their own input and output
devices built in, but for the new 4041, any of Tek's terminals is an appropriate
input device. These includes the 4006, 4010, 4014, 4024, and 4025 terminals.

(Actually the 4041 can be used without a terminal by using the LED display
and the optional keyboard.)

OUTPUT DEVICES

The customer may frequently have a need for more than one kind
of output device. The standard will normally be a screen for text (such as for
listing programs), but may also include graphics capability. In addition, most
folks will need some form of hard documentation. On small systems this
might be a thermal tape printer. For a normal terminal it will more likely be
a hard copy unit or a line printer. For some customers who supply the U.S.
Government, the hard copy documentation is an important feature of the
system because each piece of gear they ship has to have the calibration
results affixed to it. The ability to automate this documentation requirement
may provide a huge cost savings. Yet other customers will want a plotter
because they need to produce graphs which are print quality for trade journals
or which are in color. Examples include the 4631 and 4611 hard copy units,

the 4662 plotter, and the terminals mentioned above under input devices.

-6

MASS STORAGE

Customer considerations pertaining to mass storage are: 1)
speed--the rate at which data must be stored for each experiment/DUT in
semi-permanent form (such as for reliability statistics); and 2) quantity--if
the customer needs to store complete waveform records for each test, then a
lot of storage is required. There are three typical forms of mass storage
these days: a) serial tape cartridges (like the 4050 tape); b) flexible disks; and
c) hard disks. The above are in order of speed, quantity, and expense. Hard
disks are the fastest, hold the most data, and are the most expensive.
Currently Tek's mass storage devices include the 4907 flexible disk file
manager and the 4924 cassette tape drive as well as the built-in tape drive in
the 4050 Serijes.

MULTIFUNCTION INTERFACES

Ahal A new category. Multifunction interfaces include signal
multiplexers, A/D and D/A converters, and other interfacing devices that

help connect a DUT to a measurement or stimulus instrument.

Multiplexers will be important devices in production test and
other dedicated system applications where signals will need to be routed to
different points on the DUT. The multiplexer can be used also to connect
different points to a measurement device or from several DUT's to one

instrument (see Figure 2.3).

DUT

DUT

MULTIPLEXER Z— — ——

Fig. 2.3. A signal multiplexer is used to switch many incoming signals to one output signal or
vice versa.

I1-7

Fig. 2.4. The elements in a WP3100 are different from those in a WP1310, but both systems
have the five generic system components.

I1-8

——

Several parameters must be considered when selecting a
multiplexer including insertion loss, cross talk, maximum voltage, bandwidth,
etc. Tek will have signal multiplexers on the market with the introduction of
the first wave of TM5000.

The above discussion was somewhat lengthy because I wanted to
give you some idea of the myriad ideas that will be in your customers' heads
when they start talking about systems. When a customer starts talking about
the finer details of mass storage requirements, it is time to bring in the aid of
your local IDDSE.

One last example of a system, Figure 2.4, shows a WP3100 with
some options. Take a moment to identify the generic components of the
system. (Note: The 4010 terminal is typical in that the INPUT and OUTPUT
are built into one unit but logically separate.)

SOFTWARE

Stand-alone products by themselves can do what they always
have done -- provide specific tools. In manual tests, an operator is always
required to set up the instrument(s), apply it (them) to the device under test,
make the actual measurement, compute the specific parameter required, and
interpret the results. Although we will discuss benefits later, we can see that
a system is going to assist the user. Software can take care of many of the

above activities.

Just as there are minimum requirements for hardware in a
system, there are also minimum requirements for software. They are as

follows:

e APPLICATION SOFTWARE. These are the programs and
routines written to perform the specific measurement and
documentation task that the customer is trying to
accomplish. They are normally written by the customer

or an outside consultant whom the customer hires.

-9

o IMPLEMENTATION LANGUAGE. This is the high level —

language (e.g., BASIC) in which the customer programs
the application. It is sometimes referred to as the
operating system software. It usually includes the first
level interfacing software (called drivers) to all outside
equipment, plus math packages to ease the programmer's
job (remember that even division is a complex operation
to a computer). The implementation language is virtually

always provided by the vendor of the controller.

e DEVICE DEPENDENT CODE. This is the specific
command set of each of the GPIB instruments. Each
device has its own set of control words, and these must be
learned for the user to have complete command over a

unit.

Let's discuss each level of software in just a little more detail.

APPLICATIONS

When the system the customer has decided to purchase is
delivered, the real investment in the system is just beginning. Now the task
begins of codifying the measurement process in terms the system can deal
with; i.e., the customer must program the application. Each customer has a
very specific measurement situation which is peculiar entirely to that
customer, and might include statistical data needs, documentation needs,
go/no-go boundary limits, and computational requirements. The people
making the measurement are the best qualified to define the process which
the system must execute to accomplish their task. Application software
defines this process, and the fact that each customer perceives his or her
situation as unique is why "general purpose" application software is not
practical. As sales engineers you should not need to get involved in your

customer's application software; however you will have application software

of your own, called demonstration programs. The advantage to you of these T

I1-10

demo programs is that they can exercise GPIB instruments without your
having to get too familiar with the language (device dependent codes) of each
one. There is a special advantage to your customers as well. If you provide
them a listing of the demonstration program, they will have an excellent
example of how the various components of the system (languages and
hardware) all work together. Such an example frequently makes the
difference between customers new to controllers and programmable
instruments who are completely mind-boggled, and those who have some
experience and training and the confidence to undertake the programming of
their application. In addition, the demo programs will sometimes have
program segments (called subroutines) which are directly applicable to the
Customers' needs, and they may want to lift this directly out of your demo
and into their applications. Great!

Here is a segment of application software which sets a
hypothetical programmable power supply (device address 3) to 15.7 volts,
written for a Tek 4052;

PRINT @3: "15.7"

Although most application programs will be longer than this one,
the line illustrates that a user needs to know three things to successfully
make a system operate:

l. The specific tasks and in what sequence the system is to
perform them (the application).

2. The computer's language (implementation language).

3. The language (commands) that the instruments require to

make them function properly (device dependent codes).

The user seldom has to know much about the operation of GPIB since the

software (drivers) automatically handles GPIB operation.

II-11

IMPLEMENTATION LANGUAGES

Implementation languages (generally referred to as high level
languages) such as BASIC or FORTRAN provide the application designer a
vehicle with which to more easily program a computer to do a specific task.
These languages generally use English words and algebraic equations to
specify to the computer what to do. Typically the implementation language
will include: a) math routines to interpret and compute complicated (as well
as simple) arithmetic expressions; b) first level communications routines
(called drivers) to handle interface functions at the hardware level; c) control
routines which can make decisions based on other calculations and looping
control (computers love to do repetitive tasks); and d) formatting routines to
handle input and output tasks for the user (to the terminal) and to mass

storage devices.

Tektronix is supplying GPIB controllers in which the
implementation language is BASIC. BASIC is a good language to work with,
but it is not the only possible implementation language. In case your
customers should confront you with some other possibilities, let's discuss

some of the alternatives and their pros and cons.

BASIC is a common, easy-to-learn, easy-to-program, interpretive
language. A word of caution--although there is an ANSI standard minimal
BASIC which defines some of the rudimentary commands, each BASIC tends
to have its own extensions (new or modified commands) and subtle syntax
(spelling and placement) conventions. An interpretive language is one in
which the user types in English-like lines of code (the program) and, when
executed, the computer interprets (translates) each line, one at a time, into
the machine language that the computer is able to execute. The computer
executes one line and then goes on to the next. The disadvantage to this is
that if the computer is in a loop (executing the same lines repeatedly), it has
to translate and execute this same group of lines over and over. The language

has no ability to remember the translated machine code and, of course, the

1-12

translation process takes time. So the advantages of BASIC are:
easy-to-learn, industry familiarity and acceptance, highly interactive, and
easy-to-modify programs. The disadvantage is that for some applications,
BASIC is too slow. Curiously, the fact that BASIC's do not comply with an
overall standard is an advantage in that we can define extensions which allow
for extremely flexible, yet easy-to-use, GPIB control and input/output
statements. This is true of the 4050 Series and especially true of the new
4041.

FORTRAN, ALGOL, and PASCAL are all compiler languages.
Compilers take the entire program that the user writes and translates the

entire thing to machine code at one time. The computer then throws out the
original user's typed program and the translater program. What is left is a
small, neat bundle of machine code that directly executes the user's original
intent. Most compilers have some sort of standardization of the language
specification. The advantages of compiler-based languages are: reduce space
(memory) requirements, speed efficiency, and language standardization.
Disadvantages are: more difficult languages and set-up parameters, the need
to learn editors and resource allocation systems, and more time-consuming

program modification.

There is one other option a user has in writing an application
program for a system: assembly languge. Assembly language is really the
language of a particular computer or microprocessor, except expressed in
mnemonics that a human can more readily understand. (An assembler is a
small program that converts the human-understandable mnemonics into

machine code.) For example:

MOV L,H 00111100

The command MOV L,H is a mnemonic instruction which the
8080 microprocessor can execute if given the correct binary representation,
which is 00111100. There is a one-for-one mapping between an assembly
language mnemonic and its equivalent machine-code binary instruction. The

advantages for a customer in programming like this are maximum

II-13

optimization for speed and memory utilization, complete flexibilty in using a
given processor's architectural advantages, and flexibility in adding
non-standard hardware directly into the processor's bus structure. The
reasons very few folks do this (i.e., the disadvantages) are: the need to know
a processor's architecture and detailed operation, many times more
time-consuming to write, excessively difficult to modify after project
completion, and very detailed documentation is required. Typically, the only
situation where a customer would program an application using assembly
language would be in a dedicated production environment where each second
saved in a test cycle representes many dollars saved, and where the system is

to remain unaltered for several years.

A word about firmware. Firmware is software which has been
placed in read-only mémories (ROM's). There is no real difference between
firmware and software. They compute the same, they control the same, they
both have bugs (errors), and they look identical on paper. However, because
firmware is committed to ROM's, it is more difficult to change (which is
usually done by replacing the ROM's). Our BASIC is implemented in firmware
and, therefore, has the advantage that when you turn the power on to the -
computer, the software (i.e., BASIC) is ready to operate. In a computer that
does not use firmware, a user must first load the language from a mass
storage device into the computer's volatile memory (RAM - read/write
memory). From this point on it is all the same. (Note: This is also true for
GPIB instruments. Most instruments have firmware which controls their -
functions and operation but it is all just software that has been committed to
ROM. Not many instrument designers want to put a mass sto.rage device

inside an instrument, although it has been done.)

DEVICE-DEPENDENT CODE

All instruments which communicate across the GPIB will have

some sort of specific command set unique to each device. For example:

FREQ 10.7M;SPAN 500K

n-14

will put the 492P into a center frequency position of 10.7 MHz with a
resolution of 500K Hz/div. Sending the 7854 this same sequence of
characters has an altogether different effect -- namely to give the user an
error message and to sit idle. Therefore, the user must learn the commands
(device-dependent code) for each instrument to be used. Tektronix has made

this chore easier by defining common message structures and error code

generation schemes (see Tek Codes and Formats in Chapter IV). Nonetheless,
a spectrum analyzer is a spectrum analyzer and a scope is a scope and never
the device-dependent codes shall meet. (That is, the actual commands

themselves will be different for each device.)

The codes which are device-dependent will always be the same
for a specific préduct, but the computer statement which sends them to the
instrument will depend on the implementation language being used. For
example, suppose we want to send "FREQ 10.7M" to a 492P with with GPIB

address 7, then:

(1) 200 PRINT @7:"FREQ 10.7M"
(2) 200 PUT "FREQ 10.7M" INTO @9,39

where (1) is the application line that would be used for the 4052, and (2) is
what it would look like for SPS BASIC (the 39 at the end of the statement is
the absolute GPIB listen address, 32+7 = 39). To do it in FORTRAN would

look something like:

. : . WRITE (39,50)
' 50 FORMAT ("' FREQ 10.7M"/)

and to send the same message in assembly language would look like a small

novel filled with gibberish.

People may sometimes ask, "Are your instruments programmed
in BASIC?™ You can now see that this question does not make sense. BASIC
is a high level implementation language used in many controllers. The
instruments never see the implementation language of the controller (BASIC,
PASCAL, HPL, FORTRAN, etc.); they see only their device-dependent
commands which are sent by the controller. (HPL is the quasi-BASIC
language used by the HP 9825.) -

I-15

By the way, the manner (format) in which data comes out of the
instrument is also called device-dependent code and is essential for the user
to know. Since the GPIB standard doesn't define this, it is possible for data to
come out as ASCII, EBCDIC*, binary, BCD, etc. Again, the Tek Codes and
Formats Standard has taken steps to ensure that there is compatibility and
consistency between Tek products, thereby making the customer's job a lot

easier when multiple Tek products are used.

A last note about software as a whole. For the user, the
software reference manual is the single most important part of the product
he has to work with during the design. Unlike hardware (a scope, for
example), a software package is totally useless without a well-written
reference manual, because, without a manual, the user has no idea what the
commands are. So you have something new to sell - the fact that Tek writes
and produces some of the most thorough, easily read reference manuals in the
industry. Don't take this lightly; anyone who has tried to work through some
of our competitors' reference manuals knows just how frustrating and

time-consuming working with a poor set of manuals can be.

BENEFITS

Every customer has a unique set of reasons for buying anything,
but with systems it is especially important to home in early on the specific
features and benefits in which a particular customer is interested. The
reason is simple: there are so many features and so much flexibility in any
given system that to describe or demonstrate the reasonable combinations of
just the significant features may literally take days or weeks. Those of you
who try to sell a 7854 by demonstrating every button on the waveform
calculator know how time-consuming this is. With systems, the problems will
just get worse and the chances to bungle in front of a customer increase
substantially. Therefore, probably the best way to sell systems (or anything

else) is to sell benefits that solve specific customer needs, and when doing

*See Glossary for definitions

II-16

a demo, generally stick to the demo tape provided. Doing extemporaneous

programming to attempt to solve a particular customer situation is very
dangerous. It invites trouble, demonstrates lapses in your product knowledge,

and leads to further, "Well, then let me see you do this."

So what are frequent system benefits? First, in many cases you
may not sell an entire system, but just a GPIB instrument. However, even if

you sell the whole thing, some of the most important benefits to the customer

will be in your selecting measurement equipment which meets the technical
specifications of that customer's measurement requirement. First and
foremost, the customer has to make a needed measurement.

Systems proper, however, do have added benefits. These are to:

Reduce labor costs. This most often is a result of the speed of

the automated system. For example, if prior to the system five
people were required to test all of the parameters of a device,
then conceivably with one system and one operator all the same
measurements could be made, and in substantially shorter time.
Another way to reduce labor cost is for the system to do entirely
an operation that had been done by hand. For example, some
labs used to take photos of scope traces, hand digitize the
waveform, and then load this data into a computer for
processing. With a waveform digitizer and a computer, the
activity of hand digitizing and typing data into a computer is
replaced. Another way to reduce labor cost is by lowering the
skill level required to make certain measurements. Be careful
with this one, as a system may require relatively expensive
programmers and maintenance personnel. However, if the
system is to go in a dedicated production environment,
frequently actual measurement tasks can be made by folks who
have little understanding of the system, of software, of

instrumentation, or even of the device being tested.

11-17

Release engineers from drudgery and increase the use of their

creative skills. The rapid growth of the electronics industry has

caused a shortage of qualified electrical and electronic
engineers. Measurement systems have the potential to increase
the effectiveness of engineers by relieving them from doing
routine measurements. For example, an engineer designing a
filter will periodically need to test the design over a specific
frequency range to see how the design is progressing. Depending
on the resolution requirement, the frequency range, and available
equipment, the designer may need to make fifty or more
measurements, each requiring setting a generator, making a
reading, and plotting the data. Not only is this extremely boring,
it is time-consuming and, therefore, expensive. An appropriate
combination of acquisition and stimulus equipment coupled to a
computer and a short program can literally get the job done in
seconds. The engineer has more time to design and the customer

gets his product out the door that much faster.

Provide insight by coupling analysis with measurement. Many

times a system is able to provide information to a user in a
different form from that provided by measurement devices
alone. And sometimes this new way to look at the data makes
the difference between an unsolved problem and a solved one.
The system provides two capabilities that a user may never
easily have had before: 1) complex mathematical computation
capability, and 2) data storage and statistical analysis
capability. As an example, suppose you are trying to electrically
harden equipment to withstand large electro-magnetic pulses
(like signals generated from lightning). To do this the customer
must characterize the frequency vs. amplitude waveform of the
equipment-under-test when lightning strikes. Because of the
single-shot nature, only a waveform digitizer coupled with a

controller able to compute the FFT (Fast Fourier Transform)

I-18

will be capable of providing the necessary data. Or, as another
example, folks who use large turbo-machinery need to monitor
the turbines for bearing wear and damage. They do this by

digitizing the output of transducers mounted on the bearings and
then taking the FFT to look at the spectral output. When the

amplitudes exceed a certain level, they know it is time to

replace the bearings.

One last example: suppose a customer has installed a system to
QC a particular GPIB compatible counter. They decide to check
the accuracy by generating different frequencies on a frequency
synthesizer and log the output of the counters onto the disk. At
the end of the week they average the data and realize that for

25% of the counters, they are getting inaccurate reading at one
particular frequency. By giving that data to the engineers, they
are able to find a component problem that might otherwise have

gone undetected.

Reduce human error and increase measurement accuracy and

consistency. Particularly in a production test environment, the
system benefit of being able to reduce measurement error is
especially easy to claim. Measurement errors are made when: 1)
a less-skilled operator does not read the instrument properly, 2)
the operator is bored and reads the instrument in a sloppy
manner, 3) the operator cannot visually resolve the output of the
instrument simply due to visual limitation; or 4) multiple
operators making the same measurement use slightly different

methods to do so. There is little question that a system can
make these measurements more accurately, more consistently,

and generally faster, without ever getting tired or bored. The
net result is usually a consistent, high-quality output from the
operation which makes your customer more productive and more

competitive.

11-19

CHAPTER Il SELF TEST

Answer the following questions. Then compare your responses to the answers

in Appendix B at the back of this booklet.

L. What are the five minimum generic hardware components that

will be found in any instrumentation system?

2. Draw a block diagram of the components and how they are

connected to one another.

3. List two specific examples by product number of each generic
component from the Tektronix product line. (One product may

be found in more than one category.)

11-20

L"o

What is the sixth system hardware component that is likely to be found in

most ATE and production test environments?

If a customer needs to generate print-quality graphics from the results of

an experiment, what kind of specific product would you recommend?

List three considerations a customer may take into account when
selecting a controller for an instrumentation system? (Do not include

price.)

List two basic classes of mass storage devices.

List the three minimum software components required in an operational

instrumentation system.

In a couple of sentences, describe the difference between a compiler and

an interpreter.

11-21

10. Give two reasons why it is unlikely that a customer would implement a

system using assembly language.

11. As far as results are concerned, would you say that firmware and

software are significantly different? Why?

12. Why are manuals important to a system implementor?

13. List three benefits which are unique to systems and the system feature

which allows this benefit to be realized.

11-22

III. THE GENERAL PURPOSE INTERFACE BUS

The concept of instrumentation systems began to evolve in
people's minds during the 1960's when computers started to invade business
and scientific domains. So some folks thought that putting together a
computer and a digital instrument would be a practical idea in high volume
applications. The reason for the "high volume' qualification is that the cost

of interfacing was so high that the payback had to be high also.

The problem with these early systems was that custom

interfacing was required. The problems with custom interfacing are:

1. The designer's need to learn the bus architecture of the
computer.

2. Need to design specific interface (tailored, naturally to
the particular instrument's requirements).

3. Need to document interface.

4. Need to train maintenance personnel.

5. And, the worst, the need to start the whole list again if a

new instrument is added.

Figure 3.1 represents the problems of the old way of interfacing.

INTERFACE
E A INSTRUMENT A
COMPUTER B INSTRUMENT B
c INSTRUMENT C

Fig. 3.1. Problem before GPIB: 1) too many lines; 2) each interface different; 3) point-to-point
connection only.

-1

The concept of a general-purpose interface bus evolved at Hewlett-Packard
to solve some of these problems. The IEEE 488 1978 standard is what
resulted.

IEEE 488 DEFINITIONS

The IEEE 488 1978 is a booklet published by the IEEE which
defines an interface standard intended for small instrumentation systems.
The interface designs based on this standard are called, variously, the GPIB,
the HP-IB (HP's implementation of IEEE 488), IEC 625-1 interface (an

international standards group), and the IEEE 488 interface.

The IEEE 488 standard defines the mechanical, electrical, and
functional characteristics of the interface. This leaves the operational

characteristics to be defined by the instrument designer.

(Just because a manufacturer claims that a product is IEEE 488
compatible does not necessarily mean that it actually complies to the

standard. Tektronix extends every effort to ensure that all GPIB products do,
in fact, comply precisely with the standard.)

MECHANICAL

The standard defines precisely the nature of the 24-pin connector
which is mounted on each instrument. The bus is defined as a standard cable

with the proper mating connectors and 24 wires (shown in Figure 3.2). (The
IEC 625-1 European standard uses a 25-pin connector much like an RS232C

connector.) Sixteen of the wires carry signals; the remainder are grounds and
the cable shield.

111-2

Fig. 3.2. The GPIB connector.

ELECTRICAL

The standard defines the driver and receiver circuits for the
interface. The voltage and current values required at connector nodes are
based on TTL technology (voltage not to exceed 5.25 V). And logic levels are
also defined, whereby a signal line is asserted (logic true) when in a
low-voltage state (< 0.8 V), and unasserted (logic false) when in high-voltage

state (=2.0 V) and is called negative true logic.

FUNCTIONAL

The functional elements of the GPIB are problably the least
understood, yet some of the most important, aspects of the standard as far as
systems use and development are concerned. However, before we can discuss

the functional elements of the GPIB, we need some signal line definitions.

I11-3

Figure 3.3 shows a "typical" GPIB instrumentation configuration, it also

breaks out the GPIB into three sub-groups which are called: the DATA bus,
the INTERFACE-MANAGEMENT bus, and the TRANSFER (or handshake) bus.

INSTRUMENT A |]]]H[
ABLETO
CONTROL, TALK
& LISTEN
(CONTROLLER) DATA BUS
(8 SIGNAL LINES)
INSTRUMENTB | |
TALKAND [TRANSFER BUS
LISTEN - (HANDSHAKE)
(DIGITAL - (3 SIGNAL LINES)
MULTIMETER)
INSTRUMENTC §_|
LISTENONLY J—
(SIGNAL —
GENERATOR) [—
INTERFACE
MANAGEMENT BUS
(5 SIGNAL LINES)
INSTRUMENTD |
TALKONLY |
(COUNTER) | DIO 1-8 — DATA INPUT/
- T ™ ~ st ives
DAV — DATAVALID
~rvervvrveveve NRFD — NOT READY FOR DATA
st ttls NDAC — NOT DATA ACCEPTED
IFC — INTERFACE CLEAR
< ATN — ATTENTION
SRQ — SERVICE REQUEST
= REN — REMOTE ENABLE

EOI — END ORIDENTIFY

Fig. 3.3. The GPIB is made up of a data bus, a transfer bus, and an interface management
bus. Devices connected to the bus can be categorized as Talkers, Listeners, Control-
lers, or combinations thereof.

nI-4

DATA

The data bus has eight of the 16 signal lines of the GPIB. These
lines are bidirectional, carrying a data byte either to or from a given
instrument. As with all the signal lines, these lines are shared among all of

the devices connected to the system, which is why the GPIB is called a bus.
Therefore, information that is being made available to one instrument is, in
fact, available to all instruments simultaneously. Because the lines are
shared, the controller must designate which instruments are to use the bus at

any one time. This is discussed below.

TRANSFER

Three lines (NRFD - Not Ready For Data; DAV - Data Valid; and
NDAC - Not Data Accepted)) are used for a handshake to ensure that data is
properly sent and received. The handshake sequence is completely defined by

two of the interface functions (SH and AH, see Table 1) specified in the
IEEE-488. Therefore users never need to concern themselves with the
operation of the handshake bus. If it is not working correctly, then one of the

devices on the bus needs to be repaired.

There are a couple of characteristics of data transfers, however,
that are worth remembering. A complete cycle of all three handshake signals
occurs for each byte of information transmitted on the data bus. This insures
that the GPIB is fully asynchronous. With an asynchronous bus, both slow and

fast devices can communicate on the bus. The rate of data transfer is

determined by the speed at which data can be transferred to/from the slowest

device involved in the transaction. Notice that the transfer rate is not

determined by the speed of the slowest device connected on the bus, but by
the speed of the slowest device involved (addressed) in the current

transmission.

-5

So, the data rate automatically increases whenever the slower devices are not

involved in the transaction. The transfer bus is so fully asynchronous that

even if an instrument should radically change transmission rates in the middle

of a single message, the data will not be lost.

INTERFACE-MANAGEMENT

The remaining five signa! lines are used for managing the bus.
The most important of these for understanding how the GPIB works is the

attention line, ATN.

Since all the instruments share the GPIB lines, the controller
must designate which instruments are to use the bus for talking and listening
at any given time. Sd, one major responsibility of the CONTROLLER is to
specify (address) one TALKER to send data, and one or more LISTENERS to

receive data. The controller does this by sending specific interface messages

over the data bus. Interface messages, which are completely defined by the
IEEE 488 standard (summarized in Table 1), are distinguished from

device-dependent messages (identical to device dependent codes described in

Chapter II) whenever the controller asserts the ATN line. To reiterate, only
the controller can assert the ATN signal and, when it does, the information

present concurrently on the data bus is to be interpreted by the instruments
as an interface message. If ATN is unasserted then the information present
on the data bus is data or commands (device-dependent messages) being sent

to or from instruments and/or the controller.

A complete summary of allowable interface messages is provided
in Table 1. The messages themselves are listed in the third column. The ten
interface functions which are able to acknowledge these messages are listed
and described in the first two columns. We'll come back to these in just a

moment.

-6

The other four interface-management signals are:

e Service Request (SRQ) - Any instrument can assert this
line at any time to request service from the controller. It
is the controller's responsibility to decide when to
acknowledge the SRQ, and then to determine which

instrument has requested service and why.

e End or Identify (EOI) - for most manufacturers (HP
excluded), this line is asserted by the talker concurrent
with the last data byte in a given message. In this manner
it indicates to the listeners and the controller that it has
completed sending a particular device-dependent
message. (HP simply does not use this line and generally
sends an ASCII line-feed character as the last data byte.
See Chapter IV.)

e Remote Enable (RI;ZN) - The controller asserts this line to
tell the instruments that they are going to be controlled
remotely (i.e., from the computer). When REN is asserted
and the instrument is addressed, this signal causes the
instruments to ignore inputs from the front panel and to

accept information sent to them over the GPIB.

e Interface Clear (IFC) - The controller asserts (actually
pulses) this line to place all the device interfaces in a
known quiescent state, e.g., initialization or power-up
state. The devices must respond to this signal even if

they are not addressed to be listeners.

1-7

TABLE 1. INTERFACE FUNCTIONS AND CORRESPONDING COMMANDS

FUNCTION

DESCRIPTION

ASSOCIATED MULTILINE (8-bit
INTERFACE MESSAGES

Command and address are merged in these 8-bit messages

Talker (T)

Listener (L)

Source Handshake (SH)

Acceptor Handshake
(AH)

allows instrument to
send data

allows instrument to
receive data

synchronizes message
transmission
synchronizes message
reception

8-bit messages comprising commands

Remote-Local (RL)

Device Clear (DC)

Device Trigger (DT)

Service Request (SR)

Parallel Poll (PP)

Controller (C)

allows instrument to
select between GPIB
interface and front-
panel programming

puts instrument in
initial state

starts some basic
operation of
instrument

request service from
controller

allows up to eight
instruments simultan-
eously to return a
status bit to the
controller

sends device addresses

and other interface
messages

I11-8

MTA My Talk Address

MSA My Secondary Address

MLA My Listen Address

MSA My Secondary Address

none

none

GTL (Go To Local)
LLO.(Local Lockout)

DCL (Device Clear)
SDC (Selected Device

GET (Group Execute
Trigger)

SPE (Serial Poll Enable)

SPD (Serial Poll Disable)

PPC (Parallel Poll Configure)
PPU (Parallel Poll Unconfigure)
PPE (Parallel Poll Enable)

PPD (Parallel Poll Disable)

UNT (Untalk)
UNL (Unlisten)
TCT (Take Control)

Now, let's get back to the functional elements of the IEEE 488
standard. The standard defines ten functions or tasks that a given
“instrument's interface may perform (Listed in Table 1). These functions are
activated or deactivated by various interface messages sent by the controller
to the instrument interfaces. All of these functions are optional, allowing the
designer of GPIB-compatible instruments to choose only those suitable for the
particular instrument. For example, a simple power supply might only require
Listener and Acceptor Handshake functions. With these, the power supply
could receive commands from the controller regarding what voltage to put
out. Another example is the 468. It requires only the Talker, Source
Handshake, and Acceptor Handshake functions. Since the 468 does not
acknowledge any device-dependent commands, it does not ever need to be a
listener. However, to acknowledge its talk address, the 468 does require the
Acceptor Handshake function. With that it knows when to start transmitting

its data.

More complex GPIB instruments incorporate a half dozen or so of
the functions, but will generally exclude the controller function. However,
you and your customers should check to be sure that, for a given application,
the desired functions are incorporated. Many instruments are labeled
"[EEE 488 Compatible" or "GPIB Compatible," but in the extreme, the label
could only mean that the instruments have the standard connector (with

termination) and none of the functions implemented!

Further, even though an instrument may be able to perform the
general function required, the user needs to know the capabilities of the
instrument with regard to that function. Within each function, the IEEE 488
standard defines several levels of capability. (These functional subsets are
frequently listed in a user's manual to define instrument capability: e.g., AHI,
~ SHI, L2, T2, RLO, DCI, CO, etc. The numbers following the function

abbreviations describe a specific interface capability. A 0 means the
function is not implemented.) The prospective buyer/user should check with

the instrument's vendor to be sure that the instrument can perform as needed.

IH-9

A TYPICAL DATA TRANSFER

Now that the various signal lines, message types, and functions
have been explained, let's see what happens on the bus when, for example, a
simple power supply is programmed to put out 15.7 V. First, the controller
asserts the attention line and sends out the listen address of the power supply
(the user will have set that address with the switches on the back panel of the
power supply). At this point, the controller is sending interface messages,
and all the devices are receiving the data by handshaking with the controller.
Only the device whose address switches match the listen address sent by the
controller will become a listener. Other devices ignore this interface
message (see Figure 3.4). Next, the controller unasserts the attention line,

and makes itself a talker.

Now, a device-dependent message is sent to the power supply,
which at this point is a listener. In this example, the device-dependent
message consists of the four characters "15.7" coded in ASCII (Figure 3.4c).
Note that the End or Identify (EOI) line is asserted with the last character,
telling the power supply that the message is through and can now be
executed. The power supply then puts out 15.7 V. Figure 3.4 portrays

graphically the entire message sequence just described as generated by a
4052.

The simple program developed by the user (who wanted the
power supply to put out 15.7 V) enabled the controller to do all that was

required.

I11-10

PRINT

Interface
Messages

Power Supply

Controller

Ok ik k ki k= O O

Interface

Listen Messages

Power Supply
- Q

Controller

MSB

LSB

Address

Device -
Dependent
Messages

Power Supply

Controller

SOk O=u OO

ASCII &
Characters °¢

Fig. 3.4. This sequence shows that first the interface message is sent (a,b) and then is fol-
lowed by the device-dependent data (c). The combined message illustrates the activ-
ity of the ATN and EO! lines.

m-11

GPIB HARDWARE CHARACTERISTICS

There are some hardware characteristics of the GPIB which fall
out from the mechanical and electrical specifics but which were not
mentioned earlier. Because of the impact that these characteristics may
have on your customers' systems, they are worth remembering.

e Cable length of up to 20 meters with a device load for
every two meters of cable. This implies that the GPIB is
intended for bench-top or rack-mounted systems, not for
intra-building systems.

Instrument Instrument Instrument Instrument
b c d

(Controller)

Linear Configuration
Instrument
C
_ Instrument ’ Instrument
d

Star Configuration

Fig. 3.5. The GPIB, with its standard connector, gives versatility in system set-up.

m-12

e Up to 15 devices (1 controller and 14 instruments) may be
connected in linear, star, or combination configurations
(see Figure 3.5). This allows for greater flexibility than
conventional point-to-point interfacing like that which we
discussed at the beginning of this chapter.

e Maximum data rate of up to 250 kilobytes/second over a
distance of 20 meters (with 2 meters per device), or 1
megabyte/second over a distance of 15 meters, tuned up.
See IEEE standard 488 1978 for details. Obviously this
specifies maximum data rates and for any given
combination of devices the speed of transfer will depend
on the instruments involved in the transmission. We'll

discuss throughput in the next section.

e More than two-thirds of the connected devices must be
powered-up in order for any GPIB communication to
occur. This is worth mentioning for two reasons. If you
are doing a demonstration of just one programmable
product and the controller but have three instruments
connected to the system, then it will be necessary to turn
on at least two of them. Also, your customers may have
fairly sizable collections of equipment all connected
together on the GPIB. However, during a particular test
or experiment, the user only needs a couple of devices. If
he doesn't disconnect the other units, he will need to turn
on more than two-thirds of them.

Mm-13

GPIB-COMPATIBLE

The term "GPIB-Compatible" has different meanings to different
people. In this section we will discuss what GPIB-compatible means
technically and also introduce the concept of "system-compatible." Finally,
we will work with the idea of system specifications and why these may be

intrinsically different from a summary of the specs for all the devices.

HARDWARE VS. SOFTWARE

As we learned earlier, the term GPIB-compatible, in the extreme
technical sense, only means that a device has the GPIB connector attached to
the box. It may have no wires connected to the inside of the box. However,
this is not very realistic.

A manufacturer who wants his unit to communicate will have
implemented some subset of the ten interface functions that we described
earlier. At the absolute minimum, a manufacturer will have included the
Acceptor Handshake function and either the Listener function or the Talker
plus Source Handshake functions. With these minimum functions
implemented a device will be able to 1) handshake properly, 2) respond to its
ADDRESS, and, 3) either send or receive some kind of data. That is a lot

more than "it's only guaranteed not to smoke!"

There is a catch, however. I just said that a device is able to
either send or receive "some kind of data." The device-dependent messages,

the data, are in no way defined by the IEEE standard. Unfortunately, some
manufacturers have been pretty creative in how they define and structure the
messages that control their instruments. For example, the message "20R 5S*"
may mean, "Send a voltage measurement in range 5 at a rate of 20/second

continuously." The good news is that this message is in ASCII and not
EBCDIC* as it might have been.

*See Glossary

n-14

The point I want to make, however, is this: if we have a product
that truly conforms to the IEEE 488 standard, along with adequate
documentation (about 70%), a completely flexible GPIB controller and
software driver (about 75% of those with GPIB capability), and a creative and
well-versed software engineer (hard to say how many of these there are), then
no matter what the data format is like, we can guarantee communication will
occur. The problems with this are: 1) that it may take an inordinately long
time to achieve the communication; 2) internal software documentation will
be complex and/or incomprehensible, and 3) software maintenance, when
required, will be long, tedious, and expensive. We will talk about Tek's

solution to these problems in the next chapter (Tek Codes and Formats).

SYSTEM CONSIDERATIONS

We have already discussed that, when they select equipment for
a GPIB system, customers will need to consider the interface functions
provided by a given instrument and the ease of use (programming). In this
section we will discuss how a given application may require different types of

instrument "intelligence," and what these types are.

There are, roughly speaking, four distinct categories of

instrument intelligence.

l. non-programmable
2. programmable
3. distributed processing

4. key-stroke programmable

As with any list of this sort, there are gray areas between some categories
and different levels of capability within each class. Nonetheless, I think this

list will suffice when talking with your customers.

m-15

NON-PROGRAMMABLE

An example of a non-programmable instrument is the 468. When
told to do so, the 468 sends its waveform. That's it. That is its major
capability on the GPIB. Devices like this are good for monitoring activities
which only change within a given setting's range, or where a user is constantly
present to be interactive with the controls. However, non-programmable
products are not good in automated production test environments where an
entire multi-faceted test procedure is expected to be handled essentially
without operator interaction. As it applies to GPIB, non-programmable refers
to the inability to remotely (via GPIB) change any operational settings or

controls of an instrument.

PROGRAMMABLE

An instrument is programmable if some or all of its functions or
settings can be remotely actuated via GPIB. There are many levels of
programmability. In fully programmable products all settings are externally
alterable. In partially programmable products, some subset of the controls is
remotely programmable. Examples of fully programmable instruments
include the 7612D, 7912AD, 492P, CG551AP, and all first-wave TM5000.
Examples of partially programmable products include the 5223 and the 7854

(although the mainframe is generally fully programmable, the necessary
plug-ins are non-programmable).

The degree to which an instrument is programmable determines
the degree to which an application can be more fully automated. Customers
who are trying to completely automate a test procedure will need to buy
instruments which allow remote control of those functions that they will
require to change. Most measurements do not require that all settings be
changed and, for this reason, some controls are more likely than others to be

programmable or not. For example, the focus control on a scope does not

1I-16

/\

generally need to be changed during the course of a measurement and,

therefore, may not necessarily be made programmable by the manufacturer.

DISTRIBUTED PROCESSING

Distributed processing is defined as the capability of an
instrument to manipulate (i.e., process) data independent of the act of data
acquisition or signal generation. Generally speaking, products which have
distributed processing capabilities will be acquisition instruments and not
stimulus instruments. What would be the point in doing data analysis in a
power supply or a function generator, since the data is normally going in to
those devices, not coming back to the controller? An example of distributed
processing would be the 7912AD's capability to normalize its data.
Remember the 7912AD raw data has two trace edges and may have some
horizontal addresses with no data at all. The 7912AD has internal routines
which interpolate for non-existant data and which compute one single trace
out of the original two. Another example is the 7854's ability to compute

rise-time, pulse width, integrated waveform, signal averaging, etc.

For the most part, the distributed processing capabilities of a
given instrument will provide the kind of computations that we would expect
most customers to make anyway. This is the benefit to the customer.
Because the processing is done in the instrument, the user is not required to
program that computation in the main controller. In waveform products, the
distributed processing capability might include the calculation of a waveform
parameter (such as P-P, or risetime), and sending this single value will
suffice, rather than sending the entire waveform; therefore, data
transmission is much faster. Programming becomes easier, calculation speed
is usually faster (because the routines are written in assembly fanguage in the
instrument versus BASIC in the controller), and the customer will be able to
use the device more effectively (the routines in the instrument may trigger

use of them). The most important benefit is usually ease of use; the unit is
more friendly.

1nI-17

KEYSTROKE PROGRAMMABLE

Think of your handy programmable calculator and you know what
keystroke programmable means. A more rigorous definition is the ability of
an instrument to store a sequence of instructions, provide (request) input and
output, and choose between alternative actions based on inputs or processed
information. The obvious example of keystroke programmable instrument is
the 7854. The waveform calculator allows the user to store any sequence of
the available keys, to automatically acquire data, and to make decisions (the
IF keys) based on that data.

Typically, being keystroke programmable is not an important
characteristic of a system device, but important when the device is to be
used stand-alone. The ability to store data and make decisions is generally
optimized in the system controller. Nevertheless, a particular program
sequence may execute substantially faster or easier in the instrument. With a
keystroke programmable product plus a controller, you have a distributed
network; a network is a system of devices with more than one controller,
each processing data independently of the other but occassionally

communicating with each other.

A subset of keystroke programmable which may be very
important to a system user, is an instrument's ability to be internally
sequenced. Internally sequenced is the capability of an instrument to store
only a sequence of commands and to execute them either repeatedly or on
some sort of trigger (such as Group Execute Trigger). Frequently, the ability
to be internally sequenced is restricted to a narrow range of an instrument's
command set. For example, there may not be much point in sequencing the
horizontal and vertical amplifier sections of an oscilloscope. But it may be
very useful to sequence "single sweep arm, acquire data" so that those
commands can be repeated very rapidly a dozen times or whatever is
required. Doing this decreases transmission time because the commands do
not need to be sent repeatedly.

1I-18

Finally, note that the level of programmability, having
distributed processing capability and being keystroke programmable are each
product features which are independent of the others. They do not logically
form a hierarchy (although some overlapping always occurs). So, when the
customers are making their instrument selection, all three categories of
instrument intelligence must be considered and judged in light of their

measurement and system requirements.

SYSTEM SPECIFICATIONS

When trying to determine the measurement capability of a
system, the user has to consider several factors. The first of these you are
all familiar with; that is, the measurement capability of the individual
instruments which make up a system. There are two other specifications (at
least) which are unique to a given system configuration and which, in fact,
can never be fully specified until the application is completely developed.

These are throughput and, for lack of a better term, software-enhanced
calibration.

Throughput is simply the time it takes to complete one cycle of a
major activity of the system. This doesn't necessarily mean that it has to be
one complete cycle of the full application of the system. An example: let's
say a 5223 is coupled with a 4052 and an R08 Signal Processing ROM pack
(which includes the FFT) to monitor the vibration of the bearings of a large
turbine. The system process is to capture a single record of data, transfer
the data to the 4052, compute the FFT, check to see if any amplitude is
greater than a predetermined threshold level, and sound a buzzer if it is. This
process constitutes one cycle of the system application, and the time it takes
to complete one cycle is the throughput. Although this application is not
time-critical and, therefore, throughput is not a particular customer concern,

let's look at the factors which cause the throughput time to increase.

1I-19

Each subprocess (i.e., capture record, transfer data, compute
FFT, do comparison check) within a given application cycle takes some
amount of time to complete; typically, these times add to total throughput
time in a serial fashion. Takihg our example above, none of the activities we
described could have occurred until the previous activity had finished. So,
recording the data takes time, added to the time to transfer the data, added
to the time to compute the FFT, etc.

It is because these processes add serially that a given throughput
specification cannot normally be known prior to full application
development. However, throughput rates that we can provide will include 1)
the time it takes to transfer data out of an instrument (and to a given
controller), and 2) the amount of time it takes to do complex data processing
(like the FFT). Production test applications will be the most time critical
because they will need to justify the expense of the system in terms of the
increased pieces tested/hour. For waveform digitizers or spectrum analyzers,
the largest time consumers will be data transfers (because of the large
quantity of data) and numerical processing (for the same reason). For
counters, multimeters, and most stimulus products, the factors are in test
set-up, measurement time, and in data processing. Both of these assume that
the applications are in more or less completely automated environments. If

this is not true, then the single overriding time consideration will be operator

interaction.

Software-enhanced calibration is the capability of an
instrumentation system to increase the accuracy or response characteristics
of a particular instrument beyond its individual specifications. For example,
if a particular digital oscilloscope has a bandwidth of 100 MHz, then we can,
through software, characterize the roll-off of that unit, given that we have a

leveled sinewave generator good to 500 MHz. In the future, when we acquire

I11-20

data we can map the original data through a correction program, the output
of which is a roll-off corrected signal, and thereby effectively increasing the
bandwidth of the original scope. These digital filtering techniques are by no

means simple procedures, but may be worth discussing with your most

technically competent customers.

A simpler example would be when the user has a programmable
function generator and needs a leveled sinewave through some frequency
range with greater accuracy than is specified. As long as the output
characteristics are consistent (i.e., non-random) and, given either a scope or a
digital multimeter with the desired level of accuracy, a correction table
could be generated that provides a different amplitude command for each
frequency to the function generator to force it to generate the proper
output. Again, these techniques are not simple, but they are capabilities that

stand-alone instruments cannot provide.

-21

REVIEW

Let's take one last brief look at some of the considerations that you and
your customers will need to ponder when selecting instruments for a

particular application.

Does the instrument:
e Execute some or all front-panel functions (i.e., is it
partially or fully programmable)?

Request service and respond to status inquiries?

e Process measurement results before sending (i.e., data

reduction of analysis, distributed processing)?

e Store and execute mini-programs to be triggered through
GPIB (i.e, key stroke programmable or internally
sequenced)?

e Execute self-diagnostic programs?

e Accept English-like commands?

e Check the syntax of commands before executing? And

with what constraints?
e Check the validity of what the instrument is being
programmed to do and then do nothing if it can't execute

properly?

Follow Tek's Codes and Formats standard?

And above all else:

e Does it meet the technical specifications required to

make the measurement? -

11-22

CHAPTER 1II

SELF TEST

I. How many signal lines comprise the data bus on the GPIB?

2. What primary aspect of the GPIB is defined by the mechanical

specification?

3. List two problems that a system designer faced when trying to interface

products prior to GPIB. Explain how GPIB overcomes these.

4. What interface signal line allows instruments to easily distinguish
between interface messages and device-dependent messages coming from

the controller? In what case is it asserted?

5. What determines the rate of data transfer over the GPIB?

11-23

6.

10.

1.

12.

13.

Is the GPIB considered synchronous or asynchronous? What is the

advantage of this?

When can an instrument assert the SRQ line in relation to the other

signals on the GPIB?

According to the IEEE-488 standard, what interface functions must be

present in every GPIB instrument? List two other functional categories.

What is the maximum cable length in a GPIB system?

How many devices can be connected in a GPIB system?

How many devices must be powered up for a GPIB system to run properly?

Some people say that GPIB only guarantees that two pieces of gear
connected together "won't smoke." Given a flexible controller and even
a minimally functional GPIB product, what are two other capabilities

that we can safely guarantee?

List three types of instrument intelligence and a brief sentence about
what each means.

I11-24

14. What are two kinds of systems specifications that are over and above

instrument specs?

15. List three major considerations a customer may make when selecting

GPIB-compatible instruments.

I1-25

IV. TEK CODES AND FORMATS

As we have seen, the IEEE 488 standard has made instruments
more compatible in a system environment; that is, they are easier to
interface together to perform some task. Establishing this compatibility is
the primary function of the standard. However, it is only the first step

toward further standardization that will achieve even greater compatibility.

We mentioned earlier that, given a flexible enough
implementation language such as our 4050 BASIC, a user could probably get
communication to occur on any IEEE 488 compatible instrument. However, it
is also conceivable that the applications engineer/programmer will spend as
much or more time trying to program and debug the communications
activities as on the rest of the application! This is not a productive use of the

programmer's or engineer's time.

Perhaps, then, the most important rationale behind Tektronix
Codes and Formats is to increase ease-of-use and customer productivity, not
only during system development, but also for future software maintenance

and system re-configuration. An important benefit of easy-to-use

instruments is that, for most applications, it will be easier for an engineer to

develop the application software without an external support programmer.
The intention of the Codes and Formats standard is to:

e Define device-dependent message formats and codings and
thus minimize the operational incompatabilities
encountered in assembling systems from devices
compatible with IEEE Standard 488 1978, and

® Minimize the cost and time required to develop system
and applications software by making it easier for people
to generate and understand the necessary device

dependent coding.

V-1

Beyond the Codes and Formats standard, there is also a need for
a philosophy of designing instruments which are friendly to the user. That is,
they are controlled over the bus in easily understood commands and are
resistant to operator errors. Since the application of this philosophy is
different for each type of instrument, it cannot be included as a specific
standard. However it is the application of this philosophy which assures an
increase in productivity. Other instruments, whose designs are based on the
simplicity of an instrument's hardware logic, are going to be more difficult to

use.

CODES AND FORMATS DEFINITIONS

The Tektronix Codes and Format standard augments the
IEEE 488 standard by specifying in rigorous detail the codes and formats of

device dependent messages between instruments and/or the controller. Codes

are the form in which numbers, data, and messages must appear; and formats

are the order, syntax, and control protocol that these messages must use.

The standard:

e establishes a common message structure.

e describes communication elements and how they may be

combined.

e defines control protocol.

e defines status bytes for error handling.

e standardizes features that are particularly important to

test, measurement, and analysis systems.

These five categories encompass the primary features (definitions) of the
Tektronix Codes and Formats standard; we will examine the benefits both as

we go along and in a summary at the end of the Chapter.

Iv-2

MESSAGE STRUCTURE

The structure of messages sent to or received from a Tektronix
instrument are defined very explicitly. A message is a complete transaction
over the bus which starts when a device is initially addressed to talk or listen
and terminates when the talking device asserts EQI (End or Identify). The
message itself consists of one or more message units. If there is more than

one message unit, they will be separated by semicolons.
Here are examples of message units:

VPOS 15 (PS5010)

VPOS 15; IPOS .1 (PS5010)
FUNC TRI (FG5010)

Notice that a message unit consists of a header (VPOS, IPOS, FUNC) followed
usually by an argument (15, .1, TRI). (Headers are always characters, whereas
arguments may be either characters like TRI or numbers like .1, 15.) A
header frequently describes some control on an instrument and the argument
describes what that control is to be set to. In the above examples, VPOS 15
means we are going to set the positive voltage supply to 15 volts. IPOS .l
means we want to current limit the positive supply to 100 mA. And finally,
FUNC TRI puts a function generator into triangle waveshape function.

Again, notice that when we want to send more than one message unit, we

separate them with semicolons.

It is also in these message units that we incorporate the "human
compatible" design philosophy that is essential for easy-to-use instruments.
Ease-of-use or friendliness of instruments is a very real concern to customers

in trying to increase productivity.

For example, a power supply can be designed in one of two basic

ways. The first is with minimal intelligence so that it can accept some

V-3

"hieroglyphics" -- which it, in turn, can conveniently interpret and execute.
One power supply requires the sequence 0 8 E 3 to put out 20 volts. Here the
"0" stands for the 0 - 36 volt range, and the "8E3" is the ASCII representation
of the hexadecimal commands required as shown in Figure 4.1. In this case

the power supply only needs a four-byte latch and a simple D/A converter to
be programmable.

To represent the 20 Volts we want from the 36 Volt power supp
let the caleulator first compute

20/36 = V/4095

V = (20 * 4095)/36 = 2275
Then we need g subroutine to convert 2275 {base 10
decimal equivalent (base 16).

its hexa-

16 until the re-
ing the fractional
nultiplving the frac-

The wav the calculator will do this is to divide
mainder is less than the base 16, pach time con
part of the remainder into a whole number
tion by the base. 16.

227516 — 1421875,
Plv: VPOS 20.0

Brd character)

To get an integer remainder vou m
AB75 * 16 =
142/16 = 8,

PS 5010

Multiplv

875 * = 14 {2nd character)

8 is less than 16, thergiffre there is no turther division and 8 is the

1st character.

In hex. vou woylf write 8 14 3 as 8E3.

e card address, the “0" control character provides a
put. high range [see the truth table for the control
.) The " ="" separates address from data.

The first 2 i
pasitive
charac,
Wi e SNR 488-4 and a binary board, SN 488B, set to address #3,
calculator should transmit the following:

3 = 08E3

Fig. 4.1. Using human-understandable mneumonics (right} makes programmers and mainte-
nance personnel more productive. Using cheaper hardware logic (left) to keep prod-
uct price down a few dollars is never really cost-effective for the customer.

On the other hand, the power supply can be designed with a
microprocessor and intelligence to accept human readable numbers. In this
example, to put out 20 volts, the programmer simply sends the character
sequence "VPOS 20.0". This second method of interacting is a great deal
more convenient for people, not only when the computer program is first
written but also later, when someone other than the original programmer has

to find out what the program is supposed to do.

IV-4

o

wm

QUERIES

So far we have only really discussed how we control an
instrument to make it change some setting. In many cases the instrument is
already set up or has been changed by hand and the computer needs to know
what these current settings are.

Most instruments cannot satisfy this need. With Tek
instruments, there are two ways to find instrument settings. One way is to
query (to ask a question of) the instrument for a particular setting. For
éxafnple, let's say an operator manually set the frequency of the FG5010 to
2.53 KHz. If the computer needed to know this, it would simply send the
query "FREQ?" and the FG5010 would respond "FREQ 2530;" for a frequency
of 2530 Hz. Byl the way, if you sent the same command "FREQ?" to a 492P
spectrum analyzer, it would respond with the current setting of the center
fréquency. Remember Tektronix Codes and Formats does not define the
specific messages themselves, but the syntax or format in which they will be
transmitted. Normally, any header which, with its various arguments,
changes an instrument's function, can be used in the form of a query to find

out the current setting of that function. For example:

HEADER ARGUMENT QUERY
V/D 2. V/D?
FREQ 10M FREQ?
VPOS 15 VPOS?

The other way to find the settings of an instrument is to send the
query "SET?". Most Tek instruments will respond to this by sending the
computer all their current settings and status information. This is a

convenient and important feature of our products to the user.
Many customers will want to set up a particular instrument

manually to make a certain measurement. Imagine that you are trying to set

up an oscilloscope to examine a signal and you have only a vague conception

IV-5

of the signal's parameters. It will likely be easier to adjust the oscilloscope's
controls manually (time/div, trigger mode, volts/div) than to try to program
these over the GPIB. But once you have found the signal, you want the
computer to remember, or LEARN, these settings. People who are familiar
with hardware, but new to programming will prefer this manual set-up also.
In either case, the application program only needs to send "SET?" and the
instrument will send back all its settings. If these are stored on tape or disk,
then, when the user next wants to make a similar measurement, he simply
sends the original settings that the instrument gave him back into the
instrument. The response to "SET?" is data that are exactly in the proper
format to set the instrument back to those control positions should they have
been changed in the meantime (such as turning the power off). Customers
may ask if our products have a LEARN mode; that is exactly what "SET?"
provides. This query makes it possible to develop a program using an
instrument's front panel as an input to the computer. Using this feature, a
programmer may never have to know the instrument's GPIB commands. Very

few non-Tek instruments have this capability.

There are other queries that are common to most Tek

instruments:

"ERR?" is used for returning detailed error conditions in an
instrument. The instrument will respond with a number that is a

code for the particular problem.

"ID?" makes an instrument identify itself by sending information
as instrument type, model number, firmware version, etc. This
feature is useful for identifying a particular device in the field

and potentially for self-configuring systems.

Although we will discuss this in detail in Chapter VI, let's put
these message units in the context of a #4052 and, say, an FG 5010. To tell
the FG (device address 24) to generate square waves, the application program

line would look like:

IV-6

310 PRINT @24:"FUNC SQU"
To ask it what frequency it is currently generating, we would program:

525 PRINT @24:"FREQ?™
530 INPUT @24:A$

The string variable AS would be loaded with the appropriate response from

the instrument. If we then typed:
PRINT A$
the computer would respond with:
FREQ 1180;
where 1180 means 1.18 kHz. (Program statements such as PRINT A$ typed

without a line number will execute immediately. See Chapter V.)

COMMUNICATION ELEMENTS

We have seen how to control an instrument's setting and how to
find out where the settings are, but we also need to communicate results.
For a DMM the data for a DC volts measurement will be pretty simple, but
for an oscilloscope? For that there are lots of data for a single waveform,

and there is a need to specify how the data are sent.

It's relatively easy to tell a person that a particular number
format is to be used; most people understand what a number is. A
microprocessor in an instrument, however, has no such knowledge and must be

told -- explicitly and unambiguously -- how to send or how to receive
numbers. Otherwise, it can send or receive something that is "obviously”

wrong.

Iv-7

Because nearly all of today's GPIB instruments use ASCll-coded

characters to send and receive data, Tek has chosen ASCII coding as standard.

In addition, nearly all instruments that send or receive numbers
use the ANSI X3.42 standard format. This format states in effect that there
are three types of numbers -- integers, reals, and reals with exponents -- and
that they should be sent with the most significant character first. Table |
shows examples of these formats.

If a device makes a group of measurements and is asked to report
them, then this requires that a group of numbers be sent. To separate one

number from the next, a comma (,) is used. For example, the position

coordinates from a digitizer might be sent as .732, 1.52.

TABLE 1

NUMBER FORMATS (ANSI X 3.42)

NRI 375 Value of "0" must not contain
(Integers) + 8960 a minus sign.

-328

+0000
NR2 +12,589 Decimal point should be preceded
(Reals) 1.37592 by at least one digit.

-00037.5

0.000 Value of "0" must not contain a

minus sign.

NR3 -1.51E+03 Value of "0" must contain an NR?2
(Reals with +51.2E-07 zero followed by a zero
exponent) +00.0E+00 exponent with plus sign.

V-8

Note however, that while a number has been defined, its use has not. It does
not matter whether the number is sent from a multimeter, a counter, or a
spectrum analyzer. In all cases, the syntax or structure of the number is
identical. Having this well-defined format for using a number allows

instruments to send and receive numbers without confusion.

There are other data types also. In some instances (like plotters
or printers) these more complex forms will be sent to a device, but more
frequently in Test and Measurement applications, these data types will be

coming out of the device:

String Arguments - for sending text to a display or
printer.
Binary Block Arguments -- for sending binary data blocks of

known length, such as waveforms.

End Block -- for sending binary data of

unknown length.
These same general formats can be used for all types of

communications over the bus -- commands to instruments, data from

instruments, text to be displayed, and others.

CONTROL PROTOCOL

While standardizing the Codes and Formats syntax does foster
greater compatibility between devices using the GPIB, it alone does not solve
all compatibility problems. Well-defined operational conventions are also
needed. Conventions for using the GPIB are analogous to good manners when
using the telephone -- one party should not hang up before the other has

finished speaking. The following is an example of the lack of good manners in
two devices using the GPIB.

IV-9

+3.75 CR LF FLUKE DMM

CONTROLLER

LF + 204 CRLF

+ 2.04 CRLF

Fig. 4.2. Without a standard message termination, the user must take care that each listener
understands the same message termination convention. In this example, the talking
instrument uses CR LF as the message termination (a), while the listening controller
understands CR as the message terminator (b). When the controller accepts the next
message, the first character encountered is the LF left from the last message (c),
which the controller may interpret as an illegal character since it is expecting a nu-
meric value.

IvV-10

Suppose a computer has requested a voltage reading from a
multimeter over the GPIB. The multimeter sends the number and terminates
the transmission with the characters CR (carriage return) followed by LF
(line feed) (Figure 4.2A). The computer, however, understands the CR by
itself terminates a message. The computer "hangs up'" after receiving the CR
and leaves the LF character in the multimeter unsent (Figure 4.2B). The next
time the co:mputer asks for a multimeter reading, the multimeter sends LF,
the character left over from the previous measurement, followed by the
measured values (Figure 4.2B). The computer does not know what to make of
a number preceded by an LF character. It stops and indicates an error.
Although both devices are GPIB compatible, they do not work together
because the IEEE 488 standard has not defined the conventions, "manners,"
for how the bus is to be used. To avoid such incompatibilities, a standard way
to terminate messages is needed. Two methods are commonly used. The first
is to send some printer format characters such as CR or CR LF. The other is
to assert the EOI line when the last data byte of a message is sent. The first

“method was adequate for simple instruments that sent or received only ASCIIL
coded numbers. However, today's more intelligent devices have to send
messages representing digitized waveforms or programs for a microprocessor
in an instrument. Some of these messages may contain binary data to reduce
transfer time. Certain sequences of binary coded bytes (00001101, 00001010),
if interpreted as ASCII, will appear to be a CR LF and thus be
misinterpreted. The second termination method has no such problems.

Asserting the EOI line unambiguously terminates the message.

The Codes and Formats standard states that instruments sending
messages must terminate them by asserting the EOI line concurrently with

the last byte of the message (Figure 4.3).

Iv-11

3.75
e DM5010

EOI

Fig. 4.3. Setting the EOQI line concurrent with the last byte of a message provides an unambi-
guous message terminating convention.

Other problems can be created by instruments which execute
each individual command as received. For example, suppose a programmable
high-voltage power supply that can be set as high as 1000 V has been set to
put out 10 V and limit current at 2 A. Then it is sent the message "VOLTS
1000, CURR 10E-03", that is, 1000 volts output limited at 10 mA. Lacking
good message handling conventions, the supply goes to 1000 V output
immediately upon receiving the first part of the message. But because the
current limit is still 2 A, the value from the previous setting, the supply
either crowbars or damages the equipment connected to it. For proper
operation, the programmer should have changed the current setting first.
Only then should the voltage be changed. It is much easier and safer using a
power supply which does not execute any command before the entire message

is received and terminated by asserting the EQI line (Figure &.4).
We can define a message as a complete block of information that

begins when a device starts sending data and ends when EOQOI is sent or

received concurrently with the last data byte.

IV-12

VPOS 32;IPOS .05

——

PS 5010 EOI

10 Volts
1.6 Amps

IPOS .05

——

PS 5010 EQI

T
10 Volts
1.6 Amps

PS 5010

C. r___/_/
32 Volts
.05 Amps

Fig. 4.4. Tektronix instruments wait for the message terminator (EOI} before execution of any
command in the sequence.

Talkers Talk. There is a further refinement to the message
convention. When a device is made a talker, it should always say something.
If it has nothing to say and will have nothing to say for an indefinite period of
time, it should send a byte of all ones concurrent with EOI. This lets the
listening device know that no meaningful data is forthcoming. Therefore, the
"talked with nothing to say" byte is a null message. This convention prevents
hanging up of the GPIB while the computer waits for a device to talk that will

never send a message.

Listeners Listen. A listening device should always handshake. It
should not stop handshaking just because it does not understand or cannot

execute a particular message.

IvV-13

When In Doubt, Shout. If the listening device is confused after

EOIl is received, it should send out a service request and, on a serial poll,
notify the controller that nonsense has been received. Under no

circumstances should a device execute a message it does not understand.

Some non-Tektronix devices do not follow this convention -- with disastrous
results. A particular power supply can be sent four letter O's instead of four
zeros, a common human mistake, and this supply will put out its maximum

voltage instead of the intended zero volts.

ERROR HANDING AND STATUS BYTES

The IEEE 488 standard defines a facility for an instrument to
send a byte of status data to the computer, but, except for one bit, the
standard does not define the meaning of the bits. The IEEE 488 standard
assigns bit 7 to mean that a device is or is not requesting service. Thus, bit 7

cannot be used for other purposes.

However, there is a common need for instruments to report
certain kinds of status or errors to the computer. So a status byte convention
is established for this by the Tek standard. One common need is for
instruments to report if they are busy or ready. Bit 5 is used for this
purpose. Another common need is for instruments to report if they are

encountering abnormal conditions. Bit 6 is selected.

There are more complex conditions besides busy/ready or
normal/abnormal. These are listed in Table II. While these status bytes are
generally useful for most purposes, certain instruments may have conditions
that are peculiar to them. To report these status states, bit 8 is used to
indicate that the status byte is not the common type, but particular to an

instrument.

v-14

Providing a standard coding for the status byte is convenient for
the person programming the computer that runs the instrument system. If all
the instruments have common status byte codings, then a common status byte
handling routine is written for all instruments, not a separate one for each.
But even with all the possibilities allowed by status bytes, it is often
necessary to send more detailed information to a computer. In these cases
the query "ERR?" is used. The instrument will then send back an explicit

error code to the computer.

TABLE II
TEK CODES AND FORMATS
STATUS-BYTE DEFINITIONS

Decimal
X=0 X-=1
Abnormal Conditions Binary
ERR query requested 011X 0000 96 112
Command error 011X 0001 97 113
Execution error 011X 0010 98 114
Internal error 011X 0011 99 115
Power fail 011X 0100 100 116
Execution error warning 011X 0101 101 117
Internal error warning 011X 0110 102 118
X=1 if instrument busy
Normal Conditions
No status to report 000X 0000 0 16
SRQ query request 010X 0000 64 80
Power on 010X 0001 65 81
Operation complete 010X 0010 66 82

IV-15

BENEFITS

Since we have been discussing specific benefits that match with
particular features, the following list summarizes the major overall benefits

of Tek Codes and Formats.

System users who incorporate instruments that comply with the

Codes and Formats Standard as well as use easily understood commands, will
find that:

e Writing the system software will be easier because
different instruments communicate with the same data
format and with the same protocol. Therefore, one

applications-level driver will be sufficient for all.
e Programs will be self-documenting. As long as commands
are human intelligible, programs will be easier to read,

write, and especially maintain.

e System change, or expansion, will require less software
modification. Many support subroutines, such as error

handling and data drivers, can continue unchanged.

¢ Programmer only needs to learn one set of conventions for

all instruments, not one for each. Training time is shorter.
e Development time is faster.

e Debug time is shorter and easier because there are only a

few central applications level software drivers.

Basically, then, the features of our intelligent instruments make .

them both compatible with computers and friendly to people.

Iv-16

Given a powerful enough computer, and a clever enough programmer, most of
today's devices that use the IEEE 488 bus can be made to do whatever they
were designed to do: compatibility can be forced. Without well-defined
codes and formats and without operational conventions and easily understood
commands, instruments appear incompatible or unfriendly. With Tek Codes
and Formats and with known operational conventions, devices using the GPIB
become friendly as well as compatible, thereby allowing the user to spend
more time on the task at hand, rather than figuring out how to make the

system work -- increased productivity with Tek GPIB instruments.

1v-17

oy
.

IV. SELF-TEST

What are three general areas that Codes and Formats define?

Codes and Formats is a specification for device dependent messages or

interface messages. Which one?

One type of message unit consists of a header and an argument. For
example: FUNC SIN. This command would cause an FG5010 to generate
a sinewave. If someone had manually set up the instrument, what query
message could the controller send to find out what type of waveshape the

FG was generating?

What ASCII character does Codes and Formats define to separate

message units?

IV-18

What command do most Tek instruments respond to which cause them to

send the position (value) of all their controls and status?

What query will elicit detailed error information?

List two types of communication elements defined by Codes and Formats.

How do all Tek instruments designate the termination of a particular

message?

List three user benefits of Codes and Formats.

IV-19

e

V. 4050 OPERATION

As we have discussed earlier, the 4052 (or 4051 or 4054) has four
of the five generic system functions built into one single unit. These four
generic functions are the user input (keyboard), the user output (crt screen),
the controller (the microprocessor, memory, BASIC, interfaces, etc.), and the
mass storage device (the DC300 tape unit). This chapter will discuss the

operation of each of these parts and some examples and exercises of their use.

This chapter and the next will require that you have a 4050
Series controller available. In the following sections, the text will describe
some functions of the 4050, then a couple of examples will be shown, followed
by a few exercises. Unless you are very familiar with the 4050, do all the
exercises so that you can become comfortable with it. In the near future you
will be doing a fair percentage of your demonstrations with a 4050 Series
controller. And even when you are not doing a demo, you will find yourself

discussing controllers much more than in the past. Knowing and seeing how

one works will amply pay off.

GETTING STARTED

Turn ON the 4050 (hereafter we will use 4050 to mean any one of
the three 4050 Series controllers) by flipping the power switch located under
the right front corner of the unit (Figure 5.1). The four green indicator lights
on the panel will turn on briefly, but only the POWER light should remain on.

Disconnect any GPIB gear that may be attached to the controller.

=

INDICATOR
LIGHTS

BODOD:

\
|]

POWER
LIGHT

i
|

2

\

POWER SWITCH

Fig. 5.1. Power switch, indicator lights, and PAGE key.

When the 4050 powers up, it is immediately ready to go to work.
Remember, BASIC is implemented in ROM (Read Only Memory). That the
operating system is immediately available at power-up is a feature of —
firmware-implemented language. Other systems will require that the

operating system software be loaded from a mass storage device. .

At power-up, you will notice the screen "writing up," becomming

bright. This is normal. Press the HOME/PAGE key (Figure 5.1) and the
screen will be blank except for a small faint blinking rectangle, called the

cursor, in the upper-left corner of the screen.

The cursor is analogous to the position of the carriage on a -
typewriter. Whenever you strike a character, that character will appear at
the current position of the cursor. As we will see later, the cursor sometimes -
becomes a blinking question mark when the 4050 is under program control and

is waiting for input from the keyboard.
Before we can describe the 4050, there are a couple of
definitions worth knowing. The following is a very short 4050 program:
199 PAGE

11g PRINT "THIS IS A SHORT PROGRAM" ..
126 END

V-2

L

The 4050 has two general modes of command entry. When a user types

statements (i.e., complete 4050 executable lines) with line numbers preceding

them as in the above program, then the command entry is said to be in

deferred or program mode. Llne numbers (e.g., 100, 110, 120 above) are used

by the computer so that it knows in what order the programmer wants the
statements executed. In deferred mode, the statements will not execute until

the user types RUN; program execution is deferred until that time.

If we type a statement on the 4050 keyboard without a line
number, then when we press the RETURN key, the statement will execute

immediately; this kind of command entry is called immediate mode. Now,

knowing what line numbers are and the difference between immediate and

deferred modes, let's use the 4050.

Type about a half-dozen arbitrary characters (trying not to spell
a word) on the 4050, and follow these by pressing the RETURN key. Notice
that as soon as you hit the RETURN key, the characters are retyped, but a
message which says SYNTAX ERROR and an arrow is positioned over the
third character. It should look something like this:

l SYNTAX ERROR
SLDFLKZ

When this happens, it means that you typed something that the
4050 did not know how to interpret. You can bet that this is not the last time
you will see this message. It will happen whenever you misspell a word or type
a statement in the wrong order. Order, spelling, the placement of commas
and spaces are, in computer jargon, called syntax. Although syntax isn't much
fun, it is essential for the computer to be able to execute your intent as

directed by your program lines.

Error messages work in the users behalf to indicate problems

that otherwise wouldn't show up until the program was executed.

Anyway, to clear this error condition when it occurs, press the
CLEAR key (Figure 5.2). Then retype the line correctly. You will notice
that, if you try using the RETURN key to clear a syntax error, it will simply
retype your original line and the error message.

EDITING /

KEYS i \
N |

— {
f
00000

[] = = |

//@@%@%ﬁ%ﬁgg@
REPRINT/CLEAR

f

Fig. 5.2. The REPRINT/CLEAR key.

When the screen is full, it is indicated by a faint blinking F (for

full) in the upper-left corner. Pressing the PAGE key erases the screen and
returns the cursor to the HOME (upper-left corner) position.

Also, if the screen information should fade out on you, it is
because there has been no screen activity for 100 seconds. To return the
screen to full brightness, just press the SHIFT key. (Pressing any other key

will also bring the screen back, but the character is also typed, which might
not be desired.)

e

USER DEFINABLE ' AUTQ = STEP ‘“PERIPHERAL
B EDITING KEYS NUMBER PROGRAM CONTROL KEYS

Fig. 5.3. Keyboard controls.

ARITHMETIC

The 4050 can be used as a simple calculator without the need to
write a program at all. To do this, just type the calculation on the NUMERIC
KEYPAD (Figure 5.3) in the same manner you would write the computation on
paper. To make the 4050 actually compute the expression, the RETURN key

must be pressed.

Here are some examples:

7+8 (RETURN) Addition

15

12-3 (RETURN) Subtraction
9

120*3 (RETURN) Multiplication
360

V-5

144/12 (RETURN) Division
12
1242 (RETURN) Powers
144

These are all pretty simple because they involve only one
operator (i.e., +, -, /, *,). However, it is important to note that between any
two operands (numbers or intermediate results) one operator is required. For
example, 3(2) might be read as 3 times 2, however the 4050 will give you a

syntax error because it needs an operator.

When we start mixing operators, we have to be aware of the
computer's math hierarchy. This simply means that multiplication and
division operations are calculated prior to addition and subtraction; powers
are calculated before multiplication and division. Parentheses allow for
computations done in a sequence other than the defined heirarchy. For

example:

3+5%4 (RETURN)

23 Multiplication done first
(3+5)*4 (RETURN)

32 Parentheses change thc order
4*312 (RETURN)

36 Power done first

(4%3)12 (RETURN)

144 Parentheses change the order

Multiplication and division are on the same level of hierarchy,
and addition and subtraction are both one level lower. In these cases, the

computation is performed left-to-right. For example:

4/2%3 (RETURN)

6 Computation done left-to-right
4/(2*3) (RETURN)
0.666666666667 Parentheses change the order

V-6

Care must be exercised in translating algebraic expressions into

BASIC. Note that arithmetic expressions are represented in BASIC by a
single line of numbers and symbols. This can present some difficulties in

translating an expression like the following:

4x +7
2X -3

A first attempt to convert this expression into an arithmetic expression in
BASIC might yield this:

4*X + 7/2%X-3

This comes out to be interpreted as:

4X +7X -3
2

The problem can be resolved through the use of parentheses:
(4*X + 7)/(2%X-3)

Parentheses are used in BASIC as they are used in conventional algebraic

notation.

With the following arithmetic expressions, first calculate them
yourself the way you think the 4050 would, then check your answers by typing

them into the machine.

2+8/4
4%2-6
612/9
4-(2+3)
12/2%3
21(2+1)

V-7

So far we have been using mostly whole numbers, but the
numbers that the 4050 uses are the same as those defined by the Tek Codes
and Formats. There are integer numbers: 45, -27, 1, 0; there are decimal
numbers: 2.7, -8.9, -6.0; and there are numbers expressed in scientific
notation: 2.0E-3, -7.9E8, 0.E0. Scientific notation is composed of a mantissa

and an exponent. For example:

2.83 E6

——

mantissa exponent

This is equivalent to the value 2.83 X 106,

The 4050 controllers have 12 digits of precision (this is a

computer term analogous to resolution) and a numeric range of 8E307 to
-8E307. Anywhere you would want or expect to specify a number (except line

numbers), you can use any of the above notations.

Suppose we want to compute the system risetime of a scope with

risetime of 3.5E-9 seconds (3.5nS) and a probe with risetime of 7.0E-8 seconds

(70nS), then:

T
or R system =1[(TR probe)2 * (TR scope)2

(3.5E-942 + 7.E-842)4 .5
7.008744538E-8

Remember that a power of 1/2 is equivalent to a square root.

The 4050 Series controllers also provide users with commonly

used functions. These are:

ABS absolute value
ACS arc cosine
ASN arc sine

ATN arc tangent
COS cosine

EXP ex

INT integer part
LGT log base 10
LOG log base e
SIN sine

SQR square root
TAN tangent

There are also some special functions for matrices and arrays (see 4050
Operators manual for details). You must type functions followed by

parentheses as in these examples:

7*LGT(100)
SQR(3.512+7.01 2)

where the part inside the parentheses is called the argument of the function.
Functions are used in expressions just like any other value. Type the above

examples and see what you get.

A word about the trigonometric functions. When the 4050 is
powered up, all trig functions are computed in radians. If you want to use
degrees, you must type SET DEG either as part of your program or in
immediate mode (i.e., without a line number so that it executes

immediately). To return to radians, type SET RAD.

EDITING

Fig. 5.4. The Editing keys.

V-9

EDITING KEYS

For the purposes of this text, we will only discuss some of the
editing keys. For a complete desciption read pages 9-21 through 9-23 of the
4050 Series Operator's Manual.

Following are explanations of the functions of the editing keys.

Notice that the rubout, backspace, and space functions can also be performed

with keys on the alphanumeric keyboard.

——————

RUBOUT

BACKSPACE

RUBOUT

SPACE

Pressing this key while holding down the SHIFT key is
equivalent to pressing the RUB OUT key on the
alphanumeric keyboard. If a character is displayed beneath
the cursor, it is replaced with the "space" character. If a
character is not displayed beneath the cursor, the cursor
backspaces one character position and then performs its

function.

Pressing this key by itself duplicates the function of the
BACKSPACE key on the alphanumeric keyboard; the cursor

moves one character position to the left.

Pressing this key while holding down the SHIFT key is
equivalent to pressing the RUBOUT editing key, except that
the cursor moves to the right instead of the left. If a
character is displayed beneath the cursor, it is replaced with
a "space" character. If a character is not displayed beneath
the cursor, the cursor moves one character position to the

right and then performs its function.
Pressing this key by itself is equivalent to pressing the

SPACE bar on the alphanumeric keyboard. The cursor

moves one character position to the right.

V-10

REPRINT Pressing this key while holding down the SHIFT key displays
the current contents of the line buffer on the next display
line. The cursor also moves down one line while retaining its

position in the line.

This provides a good tool to use when a line has type-overs,
rubouts, etc. Pressing SHIFT-REPRINT provides a "clean"
line to check before pressing the RETURN key.

CLEAR Pressing this key by itself clears (erases) the contents of the
line buffer. This is a good tool to use when it's easier to

rewrite a statement than to edit it.

RECALL LINE Entering a line number and then pressing this key alone
recalls that program line from RAM and places a copy of it
into the line buffer. The cursor is positioned at the end of
the recalled line. You can perform your editing functions

and then press RETURN to replace the initial line with the
edited line.

Do the following short exercise. Type the following program line
into the 4050:

19 PRINT "THIS IS AN EXAMPLE OF A PRINT STATEMENT"

Conclude this line by pressing RETURN. Now experiment with the editing
keys; use especially RECALL LINE (that's how you will get it back into the
line buffer), RUBOUT, BACKSPACE, and REPRINT. Reprint the line after
using Rubout and Backspace to get a feel for how they differ.

Perhaps the simplest way to edit a program line, however, is to
simply type the same line number over followed by the correct statement.
This will always update the statement at that line number to the most

recently typed line.

V-11

PERIPHERAL CONTROL KEYS

Figure 5.5 shows the peripheral control keys.

AUTO LOAD

REWIND

I vl < -
| RPN %%@\ MAKE COPY
7

AUTO LOAD

REWIND

MAKE COPY

Fig. 5.5. The Peripheral Control keys.

Pressing the AUTO LOAD key rewinds the internal magnetic
tape, locates the first ASCII program on the tape, loads the

program into the 4050 memory (RAM), and begins executing

the program. (The program doesn't have to be located in the
first tape file.)

Pressing the REWIND key causes the 4050 to rewind the
tape cartridge in the magnetic tape unit. Pressing this key
is the same as executing the BASIC statement FIND #.

Pressing the MAKE COPY key causes an attached hard copy
unit (an optional peripheral) such as the #611 or 4631 to

make a paper copy of the information on the display.

V-12

SIMPLE 4050 OPERATION

To see the 4050 actually operate, we are going to need to enter a
couple of short programs (We will explain in detail what the program
statements do in Chapter VI. This section is to familiarize you wilth the DEL
ALL, LIST, and RUN commands.) Before typing in any new programs,
however, we need to clear the computer's memory of any previously entered

programs or variables. On the 4050, type:
DEL ALL (RETURN)

This command deletes the contents of the entire user's memory.

Now type in the following program (note that on a computer a
zero (#) and the letter O have completely different effects and cannot be

used interchangeably):

188 PAGE
118 PRINT "THIS IS A SHORT PROGRAM*
{20 EHD

To make sure that you have typed this correctly, use the LIST
command to print out the program. Do this now by typing in: LIST (RETURN).

If it is OK, we can RUN it; if not, use the EDIT keys to correct
the program. (Remember, the easiest way to edit a line is simply to retype
the line number followed by the correct statement.) Type: RUN (RETURN).

The RUN command is used to begin program execution from the lowest line

number.

Now, without deleting the current program in memory, type the

following lines:
588 PAGE
518 PRINT *THIS PROGRAM IS IN AN IWFINITE LOOP"

520 HOME
538 GO TO 518

V-13

To list the program or to verify correct entry, you can type just
LIST or you can type LIST 500, 530. (By now you will probably have noticed
that the 4050 does not do anything until the RETURN key is pressed. The
EDIT keys function without first pressing RETURN because they work on the
current line. From now on, we will assurne that all lines must be terminated
with a RETURN.) LIST, by itself, prints out all program lines currently in
memory (RAM -- everything the user enters is in RAM; BASIC is in ROM).
LIST with two line numbers following it (e.g., LIST 500, 530) will print out
only the lines of the program between and including those two line numbers.

To execute this program, type: RUN 500. By putting a line
number following RUN, we can begin the execution of a program at any
point. As you probably have gathered by now,this second program is in an

infinite loop. Quoting from the operator's manual:

BREAK The BREAK Kkey is used to interrupt a program. Two levels
of interrupt are provided: a program interrupt and a
program abort. For a program interrupt, press the BREAK
key once. This causes the BREAK indicator on the front
panel to light up. Program execution stops after the current
BASIC line, an interrupt message appears on the screen, and
the BREAK light goes out. To restart the program at the
point of interruption, enter RUN followed by the line
number that is printed in the message and press RETURN.

For a program abort, press the BREAK key twice in quick
succession or press it once while the BREAK light is on.

Program execution is aborted immediately.

To restart the program at the beginning, enter RUN and
press RETURN. Attempting to restart the program at the
point of interruption may give you questionable results,

depending on the operation in progress when the interrupt
occurred.

V-14

USER DEFINABLE KEYS (UDK's)

We will discuss how to program the UDK's in the next chapter.
They are mentioned here so that you are familiarized with their benefits and
their location on the keyboard. The UDK's will be used extensively in various

demo packages for some instrurnents.

The UDK's are the ten keys in the upper left corner of the 4050
keyboard. With these ten keys, you can make up to 20 separate subroutine
calls. Ten are actuated by simply pressing the appropriate key; the other ten
are actuated by first holding down the shift key and then pressing the UDK.

Basically speaking, the User Definable Keys provide a convenijent
means either to interrupt a program so that it can go off and run some
previously defined subroutine, or to cause a branch at a decision point to one
of a selection of alternative software paths. The user has complete control
over what software activity the UDK will initiate.

User Definable Keys are frequently a benefit to your customers
because, through applications programming, the customer can develop
software which is to be used by operators totally unfamiliar with computers
or programming. The less skilled operator may need to respond to the 4050
occassionally, such as for verifying that a set-up operation has been
completed. By using the UDK's, the operator never needs to interact with the
BASIC language itself. In this manner, the operator needs to press only one
key, rather than many. Easier-to-use, faster, easier-to-learn--all these

benefits make for increased productivity.

V-15

PERIPHERALS

When a customer is judging a computer either for an
instrumentation control application or for practically any other use, one of
the main considerations will be what kind of peripherals are already designed
to hook up to the product. The 4050 has a GPIB interface port, so the literal
answer is that the 4050 is designed to work with any IEEE %#88-compatible
product. However, the 4050 Series controllers do have some specific
peripherals for which all of the communication drivers are built into the
BASIC language. This allows the programmer/engineer to control these
devices from a high-level language and not get bogged down in specific device

codes.

The following Tek products will probably be the most common

non-instrument peripherals your customers will be most likely to ask about.

e 4631 HARD COPY UNIT. Provides high quality, high

resolution paper copies of any image written on the
4050 crt.

® 4611 HARD COPY UNIT. Provides the same function

as the 4631, but is a lower resolution, lower cost

alternative. Per-copy cost is substantially less

expensive as well.

e 4907 FILE MANAGER. Provides floppy disk mass

storage where files can be accessed directly (as opposed

to sequentially as on the internal tape) and by name
(rather than by number). Provides twice the storage of

a tape on a single disk. Comes in one, two, and three
drive configurations.

e 4924 CARTRIDGE TAPE DRIVE. This is an auxiliary

tape drive which uses tapes indentical to the 4050

Series controller. Data format and control commands
are the same as those for the 4050 internal tape

cartridge.

V-16

e 4662 DIGITAL PLOTTER. Provides exceptionally high

resolution plots with various pens and on many different

media (paper, mylar, etc.). The 4663 is a two-pen

plotter capable of handling much larger paper.

e ROM PACKS. These provide software (high level)
extensions to the already powerful 4050 BASIC. Note
especially the two Signal Processing ROM packs. These
provide essential array processing functions that would
be useful on waveforms of any digitizer or spectrum
analyzer. These should be an easy additional item for
any waveform instrument/4050 combination sale. They
are well worth the price to customers. Functions
included on the R07: maximum, minimum, integration,
differentiation, and quick graphics. On the R08, they
include: FFT, convolution, correlation, and related

utility functions.

DEMONSTRATION SOFTWARE

As Tek continues to bring out more GPIB-compatible products,
you will probably see your product demonstrations begin to change. Although
most of the new products can be demonstrated in a stand alone fashion, a few
cannot (e.g. the 7912AD), and most will have capabilities available via the
GPIB which are simply not accessible from the front panel (e.g., the 492P).
Still other products just do not make any sense without a controller (e.g., the

CG551AP cannot increase scope calibration productivity without one, and the
7612D cannot make any measurements without one).

Some increasing percentage of your product demos, therefore,
will be made with a controller attached. In many cases, the controller will be

a 4052, The graphics capability of the 4052 lends itself particularly well to
these kinds of presentations.

V-17

Each GPIB product announced will generally be introduced to the
field accompanied by a demo tape. These tapes make it easier to demo the
major features and benefits of a product and will allow you not to have to
remember the specific command set for each instrument. Also, as mentioned
earlier, these programs (as a listing) can be given to your customers and will

almost always speed up the learning process and reduce frustration.

Remember, these tapes are your applications software to help
you sell. Although the demo tapes are written to be easy to use, it is
important that you see the tape run once so that you know what it does, and

so that you can most effectively incorporate its action into your sales call.

Because the business units recognize the importance these tapes
will have in supporting your sales demos, standards have been created for
these programs so that there is assurance that they are easy-to-use and
create minimal operator traps of their own. These standards also provide
commonality among the demo tapes so that once you have learned the skills

to operate one of them, the rest will be easier to learn.

Demo tapes generally fall into one of three categories:
e Page-to-page tutorial
e Menu selectable features/applications

e Specific application demonstration

Because each of these categories is distinctly different, we have included an
example of the output of each. You may discover that not every type or
demo program is completely suitable for every product/controller demo you

want to give. Normally, however, they are intended to be general enough to
cover a broad range of different customers' interests.

V-18

The most important single instruction for running any demo tape

is to follow closely the directions that will be printed on the screen as the

demo tape progresses. Once in a while the original programmer forgets to
check for a valid entry. For example, if the program asks for you to select a
menu item between 1 and 5 and you type 7, occasionally you can get some
weird results-—-typically, the program it will catch the error and ask you to

re-enter the number. To avoid difficulty, follow the printed instructions.

PAGE-TO-PAGE TUTORIAL

Take a look at all of Figure 5.6. This is an excerpt of the output
of the DC5010 demo tape.

After auto-loading the tapes, the controller will ask you for the
address of the DC5010 (not shown). Then the software lists the various
features inherent in the product (Fig. 5.6b). Following that, by pressing UDK
1, the program follows a sequence through illustrations and examples of those
features, one at a time. Figures 5.6c through 5.6f are examples of the
formats used to show some of those features. (Notice the page numbers in

the upper right corner of each page.)

The User Definable Keys for page-to-page tutorials are to move
the user from one page to the next (UDK 1) or to move to an arbitrary page in
the demo (UDK 3). The UDK's used in this fashion have limited flexibility.

UDK 10, like all demos, will list the available UDK menu which,

in this case, is Figure 5.6a.

USER KEYS

1 PAGE FORMWARD
2 PAGE BACKWARD
3 SELECT PAGE

6 CONTINUE PAGE
1@ LIST USER KEYS

PRESS USER KEYS

pcseie

498 MHz Programmable Counter-/Timer

% DUAL DC -« 488 MHz Input Channels

¥ Probe Compensation Capability for Precise Measurements
% Auto Triggering Mode

¥ Fully Programmable Signal Conditioning
% Displays Only Accurate Measurement Data
% Reciprocal Frequency A

% Period A

% Hidth A

% RisesFall A

% Tine A-B with AVERAGIMG

¥ Neasurement NULL Capability

% EASY to Program in English Mnemonics

Press USER KEY &1 to continue

Fig. 5.6.

V-20

DCSe10 PROBE COMPENSATION 3

% Proper probe compensation is critical to timing measurements.
¥ Observe undesirable effects of uncompensated probes on the
measurement of signal propagation throush the DUT circuit,
~ CONMECT o P6125 probe to channel A input and TPZ.
COMNECT a P5125 probe to chanmel B input and TP4.
Press USER KEY 6 to continue . .

~ HOTE 200% varioction in measurement as you change
both probe compensation adiustments,

% DCS818 Probe Comp Mode permits precise compensation of probes.

ficcurate probed megsurements are ensured.

Press USER KEY 1 to continue . .

C.
DCS018 Chanmel R Measurements 4
. . Unlike other universal counters, the DCS@10 displays only ‘GO0D’
digits for all its measurement modes. This means that you can believe
all the digits that you see.
¥ FREQUENCY A - Period is medasured and the reciprocal displayed
as Freauency.
Low frequency measurement time is shorter and RESOLUTION
is improved over conventional counters,
1.8 Hz input signal:
A conventional counter with 10 second sate displays 1.8 Hz,
The DC3@16 in AUTO AVERAGES mode displays 1.90608000 Hz.
400 MHz BW (58 ohms> with 78 mv P-P sensitivity
2 PERIOD A - 3,125 ns to 45 min, with #30 qttsec resolution
 WHIDTHA -~ 4 ns to 7 hrs, SLOPE selects + or - pulse
DUT signal measurements: FREQGUENCY = 4.46553E+7 Hz
PERIOD = ©8.8223937 usec
+ WIDTH = 8.81176 usec
d.

Fig. 5.6. (continued)

V-21

DCSB18 TIME A+B 8

X TIME INTERVAL between events on Channel & and B
- Range 8.8 nsec (with NULL) to 8.6 hqurs
- Repetition rates to 890 MHz -~ Averaging to 1019

% MNeasure transit time throush a circuit.
Attach a P6125 probe to channel A input and TP2,

A B
+18 TP2 P4

+3 A
| | 1 Q3 ¥ -—1_1-— 5]
-18 B

Attach a P6125 probe to channel B input and TP4,
Press USER KEY 6 to continue . .

t

% Transit time = 0.186 nsec
Measured at S0% amplitude, using TIME A+B and AUTO TRIG

Press USER KEYS to continue . .

DC581@ PROGRAMMING 1

% Instrument messages are ASCII characters.
English mnemonics are used in a standard message syntax:
(example) HWIDTH A for WIDTH A fumnction
LEV 1.8; for 1.8 v TRIGGER LEVEL
X A1l front panel parameters may be manually set up and then
queried by the controlier.
Send: SET?
Receive :
FREQ A3;CHA AjATT 13C0U DC;SLO POS;TER HIGH;LEU ©.8883CHA B3ATT 13COU

DC3SLO POS;TER HIGHFLEV ©,8883AVE -150PC OFF30VER OFF3PRE OFF3FIL OFFIN
ULL OFF3DT OFF;USER OFF3RQS OHj

Note correspondence between the settings response above and
lighted front panel buttons.

Non-front panel system status is also included in the message
eg. RAS ON; (ability to assert GPIB SRQ line)

THIS CONCLUDES THE DCS918 DEMO

Fig. 5.6. (continued)

V-22

LN

This example is characteristic of page-to-page tutorial demos.
They tend to lead you through some or all of the features of the particular
product. As with this example, the features will be shown primarily via the
4050 keyboard, with only occassional references to the front panel of the
product. Therefore, the demo tape shows the product from the systems

vantage point and would augment the typical stand-alone product demo that

would generally be given first.

Because these demos are designed to provide a complete
overview of a product, they are usually lengthy. For this reason, a
page-to-page demo will have a page-forward, page-backward, and
go-to-page-n feature to allow you to tailor your demo to specific customer
needs. You only need to show those pages of the demo-tape where your
customer's interests lie. Trying to show an entire page-to-page tutorial
depending at the stage of the sale, is too time consuming and ineffective.

Use only what you need.

MENU SELECTABLE FEATURES/APPLICATIONS

These kinds of demos make extensive use of the UDK's or a
master menu. This kind of software allows you to select a set of specific
features or applications to demo, based on a list of choices. To make a
choice, you simply press the appropriate UDK indicated on the master list.
This allows you to specify the order and extent of the features that you feel
are important to the customer. Menu selection is in contrast to the
page-to-page type of program where you are more inclined to follow the
order provided by the tape. Each has advantages. Frequently a
menu-selectable format will not provide the customer with a tutorial service

to the same degree that the page-to-page format will.

Figure 5.7 is an excerpt of the output of the 7612D demo tape.
The first frame determines what hardware you have available (Fig. 5.7a) and
what the address of the 7612D is. After the initial questions and answers, the
"master menu" is listed (Fig. 5.7b). The software will wait here until a UDK

is pressed.

V-23

This is the main "decision branch" of the program and allows you to control
what feature you want the customers to see next. In this example, acquiring
data is typically the first task desired, so you would press UDK 2 (or 12).
From that point, any of the computations may be appropriate. Examples
shown are determination of pulse parameters from histogram data (Fig. 5.7d),
and the FFT (Fig. 5.7e).

Again, you can see that this type of format gives you the
flexibility to establish the order of features and benefits you feel is important

to show to a particular customer.

76120 - 40%50-Series Demo Softwgre
Copyright ¢c) 19808 Tektronix, Inc.
A1l Rights Reserved
Do you wish to have audible prompts (Y/N> 7H
Is there a 465xRkB7 installed (Y/N) 7Y
Is there a 405xR08 installed? (Y/N> 7¥
Do you wish to have a menu printed (Y/H) 7Y

What is the primary address of the 76120 (1--38) 76

MENU
Function

b
1]
'

Restore. Learnad front panel settings
Acauire channel B data
Select segnent

Read seamnent from file
Min-max P.P.A.

Histogram P.P.H.

Integrate

Differentiate

RESTHRRT

Learn front panel settings
Acquire channel A data
Save segmant on filg

Learn show cycle

Apply cosing taper

FFT .

Correlate
Convolwve
Cycle 7 Stop cycle

D CO ~d O LN e T e W0 CO m 2 00 o G oy e

[e

Fig. 5.7.

V-24

ACRUIRE CHANNEL A DATA

18 U
1.2
1.8
8.8
B.G,F___
2.4
8,2
G.Br
-8.3
st l——
.80 ©8.51 1.2 1.54 2.5 2.56 32,07 3.58 4,18 4.861 35,12
. 1.8E-6 5 512 Samples
Press RETURN to continue
C.
8 U PULSE PARAMETERS FROM HISTOGRAM
1.2,
1.9
8.3]
.6 g = m = = = = s o~ == === ===
8.4
8.2
9.9
~-9.3
8.900.511.821.542.0852,563,073.584.104,615.12
1.0E-€¢ § S12 Sanmples
Rise time 5,764625668E~-8 Slew rate 1.328559875E+7
Fall time 6.0892653555E-8 Sleuw rate 1.32133293148E+7
Pulse width 2.696385791E-%
Fress RETURH to continue
d.

Fig. 5.7. (continued)

V-25

100 dbu FAST FOURIER TRAMSFORM
oy gt

1.4

-

-9.3 . N i . s a N N
8.p8 ©.25 @©.50 ©.75 1.0 1.25 1,50 1.75 2,88 2.25 2.58
18000889 Hz 257 Sanmples

"

Prezg RETURH to continue

Fig. 5.7. (continued)

SPECIFIC APPLICATION DEMONSTRATION

Because applications for different products will be very diverse,
there is a wide range of styles, techniques, and formats that these kinds of
demo tapes may use. In fact, there are as many possibilities in this category

as there are potential applications for your customers.

The common characteristic with this class of demo tape is that it
demonstrates a product's features by inference. That is, while the program's
apparent task is to describe and execute some particular application, it is, at
the same time, using various features of a product to demonstrate that

application. If it is at all similar to the customer's application, the demo tape
becomes an extremely effective sales tool. Not only will customers see their

V-26

applications being performed, they will know that software for those general
tasks have already been writtten. A listing of the demo tape provides
customers with an enormous headstart in getting their application software

written.

Figure 5.8 shows the two frames which make up a very effective
applications demo for the 492P. The application here is to compute the Total
Harmonic Distortion for a sine wave which is attached to the 492P. What this
illustration cannot show is how the software sequences the 492P through
many frequency ranges, finds the individual harmonics, determines the
amplitudes, and calculates the THD. The whole process takes about a minute
and a half. If that is what the customer wants to do, this may be the extent
of the product demo.

:xx!*t#ttttttttttttttttttttttttttxttx:
: AUTOMATED HARMONIC AMALYSIS DEMO ;
RXXKEKEERRRRRRERRERRRERRERRERERERRKRKE
ENTER FREQUENCY OF FUNDAMENTAL IN MHZ: 28
ENTER NUMBER OF HARMONICS DESIRED: 6
EXAMINING SIGNALS...
a.
~~ HARMONIC DISTORTION ANALYSIS --
FREQ AMPL REL. DB adb
e 91
2.8E+7 24.88 9.00 -20db |
4.8E+7 -12.08 ~36,88)
6.8E+7 1.36 -23.52
8.BE+7? -19,09 -43.88 -48db ;
1.9E+8 -11.88 ~36.76 4
-60db |
-BBdb L
- HARMONICS -
TOTAL HARMONIC DISTORTION EQUALS 7 PERCENT
DO YOU WANT TO DO ANOTHER ANALYSIS (YES OR NO)
b.

Fig. 5.8.

V-27

V. SELF TEST

Using a 4051 or 4052, demonstrate to your own satisfaction that

you know how to do the following:

1. Power-up the 4050 and erase the screen.

2. Type the following statement into the 4050:

199 PRINT "THE BUTLER DID IT"
using the EDIT keys change this to read:
189 PRINT "THE BUTLER DID NOT DO IT"

3. Calculate the following arithmetic statements:
a. 4.25-1.78 =
6.23x9E2
b. 7.5 =
3.2-8.8%

4. Print lines 200 through 400 on the 4050 screen of a program in user

memory.

Answer the questions below. Then check your responses against
the Answer Key provided in Appendix B.

5. What does the BREAK key do?

V-28

6. To enter a line into memory, or to get any immediate mode line to

execute, what key must be pressed at the end of the line?

7. What is the difference between immediate mode and deferred mode?

8. Write the 4050 math expression which would calculate the following:

73.6 + 13,2 =
(14.6-8)2

9. What is a benefit of UDK's (User Definable Keys)?

10. List two general types of demonstration software.

V-29

11.

12,

13.

Which UDK in standard Tek demonstration programs is always used to

return you back to the master menu or master selection list?

What additional product(s) should you almost always be able to sell with

any waveform instrument/4050 product combination?

List two other important non-instrument peripherals that a customer

might be interested in when buying a #050-series controller.

V-30

VI. 4050 BASIC

In working with a computer, a programmer must communicate
with the computer. In order to do that, the programmer must use a language
that the computer understands. There are many different computer
languages. The one described in this chapter is BASIC. It is composed of
English words and common mathematical symbols. When arranged in a

precise and logical manner, these words and symbols become instructions to

the computer and, eventually, programs.

Computers actually have a pretty limited range of capabilities.
The tasks they can perform, however, they do many times faster and more

accurately than people. These capabilities can be grouped into four areas:

e Calculation - number crunching

e Control - specifying a sequence of activities based on

inputs and making decisions which allow for alternative

sequences

Remembering - storing and analyzing large quantities of
data

e Communication - accepting inputs and generating

outputs in a variety of forms

As we will see, almost every computer program has elements of

all of these.

The following sections are a brief introduction to BASIC. The
last page of this chapter lists several books or manuals that are a more
complete introduction to BASIC. The best book as far as the 4050 is
concerned is PLOT 50 Introduction To Programming In Basic, since it

VI-1

completely describes the 4050 language with its particular syntax. Not all

BASIC's are alike so, if you use an alternate source book, be aware of
differences in syntax and some command names.

There is information in this chapter that is repeated from the
previous chapter, particularly regarding formation of mathematical
expressions. This was done to make both chapters more complete. Since it is
written in a slightly different form, it probably won't hurt to read through it
quickly. If you get hung up on a concept, remember to get assistance from
the Systems Analysts or GPI Marketing.

WHAT IS A PROGRAM?

148 END

This program consists of five statements. Every statement is
preceded by a line number. Line numbers must be positive integers within the
range of 1 to 65000. You can enter statements into the computer with any
line number, but the computer will execute your program in numerical

sequence, starting at the lowest line number. (Some instructions alter this
flow. These are discussed later.)

Just as line numbers are required for program statements, so are
commands required; these are special words that describe the action the
computer is to take when the statement is executed. In line 100, the action is
to INPUT information from the keyboard. In this case, three variables are
input, having assigned variable names of A, B, and C. When the computer

executes this statement, the variables A, B, and C will contain the values you
entered from the keyboard.

VI-2

Line 110 contains a LET statement. It tells the computer to LET
the previously undefined variable Z contain the sum of the input values of A,
B, and C. Had you entered 1, 2, and 3 when the INPUT instruction was
performed, Z would now contain the value of 6. Notice that the equal sign
does not mean the same as it does in a mathematical equation. Here, it
means "let the variable on the left of the equal sign become equal to the
value of the expression on the right."

An expression is a combination of defined variables, operators,
and constants that result in a numeric value. Variables and constants are also
called operands, or what the expression is to evaluate. Operators define the

arithmetic operation to be performed in the expression (i.e., multiply, add,
etc.).

Line 120 is an example of an expression containing a variable,
operator, and constant. The "3" in line 120 is defined as a constant because it
can never be redefined, or placed to the left of the equal sign. The value of 3

is 3 no matter what programming language you use.

The value of variable Z will be replaced by the value of the
expression on the right side of the equal sign. The old value of Z will be lost

forever. The operator is the "/" sign, which tells the computer to divide the
value of the variable Z by the constant 3.

In line 130, the instruction is to PRINT the computed value of Z

on the terminal. Line 140 simply tells the computer to halt execution of the
program.

Let's take a moment to execute this program. Before typing this
program into the 4050, first type the command DELETE ALL. This will clear
the memory (RAM) of any previous programs and variables. After executing

this command we are assured of a clear scratch pad to start working on our
new problem,

VI-3

108 INPUT A,B,C
110 LET Z=a+B+C
120 LET 2=2/3
138 PRINT 2

148 END

Take time now and type in the above program.

When it is all typed in, check it for correctness by using the LIST
command. (If you need to edit it, use the Edit Keys. See Chapter V.) If it is
all right, begin execution by typing RUN. When the program first starts
executing, notice that the cursor has become a blinking question mark "?" and
that the 1/O indicator light is turned on over on the right side of the 4050.
The blinking ? means that the computer is waiting for the user to type data in
on the keyboard. You can do this either by entering three numbers separated

by commas, or three numbers separated by the RETURN key.

Review
The example is an entire program, consisting of input,
processing, and output. Before going further, let's review the fundamentals

just covered.

So far, we have discussed:
PROGR AMS, which contain a series of logically ordered
STATEMENTS, which are instructions to the computer to perform
certain operations. Each statement must be preceded by a
LINE NUMBER, a positive integer (whole number) between 1 and
65000. Statements will be executed by the computer in
sequence, beginning with the lowest numbered statement. Line
numbers are generally "gapped" (usally by 10) to make room for

additional statements.
COMMANDS, or statement types, tell the computer what kind of

operation to perform in processing the statement.

Vi-4

VARIABLES are used to hold information (data values). A
variable is named with one or two characters, the first being a
letter, the second (optional) must be a digit (0-9). Examples of
variable names are T, T9, Z. (BASIC on the 4041 will allow
variables to have eight character names.)

CONSTANTS are actual numbers, and must be placed to the
right of the equal sign in a LET statement.

OPERATORS are symbols used to define the mathematical operation
to be performed in the statement. Operators are:

t+ meaning raise to the power of

*

meaning multiply

meaning divide

+ ~

meaning add
- meaning subtract
(Note: The = sign really means "replaced by" not "equal
to.")
OPERANDS are defined variables or constants that, in conjunction
with the operator, determine the value of the expression.
EXPRESSIONS are a series of operands and operators that are

evaluated by the statement.

BASIC is a "free form language." All this means is that spaces don't matter
in your statements. The only rule about spaces is that one must follow the
last character of the command whether it is PRINT, LET, or whatever. Both
the following examples are correct.

LET X5=12 + 3/ 9

LET X5=Z+3/9

In this chapter, each section will conclude with one or more
additional examples similar to the ones described in the text. These
additional examples will not be as thoroughly described and are to be used to

test your understanding of the concepts introduced.

VI-5

Look over the following examples. If you do not completely
understand how they would operate, type them into the 4050 and execute
them.

INIT intitializes the 4052. All
99 INIT

180 INPUT A3,B8,CH variables are set to a "neutral”

}53 'ﬁ&}n?gswe*cg state (neither zero or space),

130 END other 4052 characteristics are
set to their default conditions.

5@ INIT

188 INPUT A3

{;g ﬁ;‘?“;jg,ea Why doesn't Z print?

138 PRINT R

148 PRINT 2

COMPUTATIONS IN BASIC

Most mathematical problems can be solved with your computer.
But before your computer can know how to do the job, you must tell it
exactly what steps to take and in what order to take them. You have to use
the computer's language.

BASIC recognizes the following symbols for arithmetic

operations. The priorities are discussed shortly.

SYMBOL EXAMPLE MEANING
1 X1ty Exponentiation, 1st priority
* X*Y Multiplication, 2nd priority
/ X/Y Division, 2nd priority
+ X+Y Addition, 3rd priority
- X-Y Subtraction, 3rd priority

Vi-6

Writing expressions, or formulas, in BASIC is similar to writing
an algebraic expression. However, all arithmetic operators (symbols) must be
present. With algebra, it is possible to say XY and mean "X times Y," but not
in the computer's language. The multiplication symbol must be present.
"X*Y" is correct. If the symbol were left out, the 4050 would see "XY" and

give you a syntax error.

Besides the five mathematical operators, other special
"functions" are included in 4050 BASIC to further extend its power. In the

following table, X may be a constant, variable, or expression.

FUNCTION MEANING

SQR(X) square root of X

EXP(X) e raised to the X power

LOG(X) natural logarithm of X

LGT(X) logarithm to the base 10

ABS(X) absolute value of X

INT(X) next lowest integer from X

SIN(X) sine of X

COS(X) cosine of X

TAN(X) tangent of X

ACS(X) arc cosine of X

ASN(X) arc sine of X

ATN(X) arc tangent of X

RND(X) generate random number between 0 and |
SGN(X) returns a +1 if X is positive, 0 if X is zero,

-1 if X is negative

These functions are used within the expression to be

evaluated. For example, to solve the problem:
Vyr 2
Y +Z

3z

X =

VI-7

The following statement would work.

LET X = SQR(Y 12+212)/(3*Z)
It is assumed, of course, that the variables Y and Z have been previously
defined, in either a LET, INPUT, or READ statement.

In the expression above, the computer finds the value of Y
squared, and then adds the value of Z squared, creating the "argument" for
the square root function. In "computerese," an argument is some value that a
routine or function needs to do its job. The square root function needs

something to take the square root of.

When an expression contains operators of the same priority, the
calculations are performed in a left-to-right direction. For example, in the
expression:

34+2-3+5
the computer would add 3 and 2, getting 5. It then would subtract 3 from 5,
resulting in 2, and finally add 5 to get a final value of 7.

Watch what happens when you mix priorities.
X+.707%Y-1

In this expression, the computer will first find the product of
.707 times Y, then add X, and finally subtract 1. If you had wanted to muliply
the sum of X and .707 by Y, and then subtract 1, the expression should be
written as:
(X+.707)*Y-1

Parentheses are also used to get around some restrictions in
BASIC. For example, no two operators may appear side by side. To solve the
addition of 3 plus minus 4, the following statement could be used:
LET X = 3+(-4)

VI-8

Parentheses can also be used to nest functions within function

arguments. For example:

LET X=SINC(SERC4¥23)
LET X=hRBS(COSCSQRC3. 1415937
LET X=LOGUEXPC4¥EQR(S5I2

These are legal BASIC statements.

On the 4050, all trigonometric functions are calculated based on
angles expressed in radians. This can be changed, however. If you want the
angles expressed in degrees, just enter a program line of SET DEG and all
further calculations will be computed in that manner. To return to radians,
enter SET RAD.

The command LET, by the way, is optional. That is, if you leave
it out of a program statement, it will still perform the same activity.

Henceforth, we will leave out the word LET in all assignment commands.

Here are some program examples:

160 INIT

118 INPUT A5
120 X9=SIN{(AS)
138 PRINT X9

198 INIT

185 LET 2=}

110 LET X=SINC(S@R(4%2)>
128 PRINT ¥

180 INIT

183 LET 2=1

110 X=ABS(COS(SAR(3, 1413))
120 PRINT X

1e8 INIT

185 SET DEGREES

118 X=ABS(COS{SQR{3,1415)
128 PRINT X

VI-9

PRINT o

The PRINT command is one of the more versatile commands in
BASIC.

Calculations may be performed in PRINT statements. A simple
program that computes the length of the hypotenuse of a right triangle, when

the length of the other two sides are known, could be written in two
statements.

Y
}HE LENGTH QF THE THIRD SIDE IS, "JSQR(Xt2+Y12)

Line 100 gets the values of the two known sides from you, and
line 110 prints the message, computes the answer, and then prints it. Quote
marks (") are used whenever the programmer wants to print a specific
message. The quotes surround (programmers say "delimit") the message to be
printed. The semicolon in line 110 delimits the end of the message and the
value to be printed. If a comma had been used, the value of the third side
would have been printed in a tab zone, right justified about 18 spaces from -
the end of the message. The semicolon packs the two fields (the message and
the value of the expression) closer together, leaving only two spaces between

the Ist value (the message) and the next.

To execute this program, just type RUN after entering the two
statements. When the question mark appears, enter two numbers (X and Y),
separated by a comma. The answer appears as soon as you enter the carriage @~
return. Remember, though, if you want to enter a new program after an old

one has been run, type DELETE ALL first to clear memory. -

VI-10

Output from several PRINT statements can be printed on the

same line by using the semicolon. Try the following:

1@

119 PRINT J;
128 J=J+1

13¢ GO 7O 118

Note: If your mathematical sense is bothered by

J =3 + 1, you should know that, in LET statements, the = sign
does not mean "equals." Rather, the = sign means "replaced by."
In this case, the old value of J, plus one, replaces J in storage.

This program prints each value of J in a tab zone, across the
screen of the terminal. When the line is full, a carriage return and line feed

is automatically inserted, and printing continues on the next line.

We will see also that the PRINT command is very useful in

controlling devices over the GPIB. We'll come back to that later.

DRESSING UP YOUR PROGRAM

Most programs can be improved; the problem is knowing when to
stop. Improvements in our averaging program are obvious. How many
numbers should be entered? One way to find out is to LIST the program and
look for INPUT statements. Another is to enter one value at a time, each
followed by a carriage return. If the proper number of values has not been
entered yet, the computer continues with the cursor question mark until
enough values have been entered to satisfy the INPUT statement.

VI-11

The easiest way is to have the program tell you just what is
expected. Try this example (be sure to DELETE ALL before entering the

example).

100 PRINT "ENTER THE THREE UALUES. SEPARATED BY COMMAS"
118 INPUT A,.B.C

120 2=(A+B+C) -3

130 PRINT 2,"1S THE AVERRGE"

148 STOP

Note the changes. A new PRINT instruction has been added to

tell the user what input is expected.

Type RUN and carriage return and check your output. It should
look like this:

RUN
ENTER THE THREE VALUES, SEPRRATED BY COMMAS

14243 - b
é ’ 1S THE AVERAGE The user enters these numbers

STOP IN LINE 140

It's time now for you to write some programs. Before you do
that, however, let's look at one more example of a slightly more complex
program.

PRINT "This program computes the roots of a two degree polynmial”

100
118 PRINT "Enter A, By and C of the eguation AXT2+BX+C=@"
128 INPUT A.BsC

130 REM

:gg EE: FIRST WE WILL SEE IF THERE ARE ANY IMAGINARY ROOTS
160 R=B12-4¥A%C

178 REM

igg EE: IF THERE ARE IMAGINARY ROOTS, WE WILL GOTO 3S6

200 IF R<® THEN 356

218 REM

%gg EE: IF THE ROOTS ARE REPL, GO AHEAD AND CALCULATE THEM

240 Ri=(-B+SQR{RI)~ (2¥A)
258 R2=(-B~SQ@R(R)I I/ (2¥R)

270 REM PRINT THE RESULTS

380 PRINT "The roots of the equation “"iA}"XP2+";Bi"X+";Ci"=9"
310 PRINT "are "sRIi:" and "jR2

340 GO TO 11@
368 REM HERE IS OUR "ERROR" HANDLING ROUTINE
380 PRINT “"THERE WARE NO REAL ROOTS"

410 GO TO 118

VI-12

This program is pretty straightforward, although there are a
couple of commands we have not discussed yet. All of the REM commands
(for REMARK) are simply comments to anyone who might be reading the
program. These remarks are extremely valuable to programmers who might
have to come back to a program after a long time has elapsed. They are also
useful to a new programmer who may be required to update or maintain a

program that someone else has written.

This program is actually very similar to the examples we have
just seen. Lines 100 through 120 request data; lines 160, 240, and 250

compute some arithmetic; and line 310 prints out the result.

We'll discuss IF...THEN and GO TO statements in the next section.

Here are a couple of problems for you to program and then to
enter into the 4050. When writing programs, do it on paper, not the 4050.

You will find this less frustrating and far less prone to error.

For these first couple of exercises, we will provide a flowchart.
Flowcharts are extremely valuable tools in diagramming the flow of activity
and information through a program. Without a flowchart to guide you,
programming a task becomes a hit or miss proposition. Even experienced
programmers will generally write a flowchart for any application that looks
like it will require more than 20 lines of code. You might be amazed at how
complex a program can be written with just 20 lines. The example we just

looked at only had 12 executable lines.

Flowcharts are quite simple, really. Beginning and endings of
programs are shown by an oval. Computations and input/output activities are
diagrammed with a rectangle. That's all we need for now. By the way,
possible answers to the exercises are at the end of the chapter. There are, of
course, many possible ways to program and solve any given problem. Very
rarely do two experienced programmers write exactly the same instructions

to solve a particular problem.

VI-13

EXERCISES

I. Ask for the period of a waveform then compute and print its

frequency.

(BEGIN ’

Enter a value
from the keyboard
and put itin
variable P.

|

Compute
1/p and put
result in F.

Print
“Frequency is”

2. Write a program that requests the risetime of a probe and
the risetime of an oscilloscope and computes the system

risetime.

(BEGIN)
|

Enter R1
and R2

Compute

s = VIR1? + (R2)

Print S.

END

VI-14

3. To determine the phase-shift of an oscilloscope, we can put
it into XY mode and put the same sinewave signal into both

sides. The result we get will look something like this:

a

L

/l

To calculate the phase shift, we measure the length of a and b

and compute arc sine (a/b).

Write a program to request a and b and compute the phase shift.

‘ BEGIN '

Entera, b

. a
P = arc sine —
b

Y
Print phase shift

END

VI-15

PROGRAM CONTROL

Program control commands are those BASIC commands which
alter the order of execution from the normal flow. Remember that the
normal flow is from the lowest line number up through ever-increasing line

numbers.

Let's take care of two control commands right off the top. The
STOP and END commands can be used anywhere in a program when you want
it to terminate execution. Normally you would expect to put them at the
physical end of a program but, frequently, you will see them in various spots
in the middle. This is either because the logical end of the program is not at
the physical end (a very common occurrence because of subroutines and error
handling routines), or because there are multiple paths the program may take
and each path requires a termination point. STOP and END are, for the most
part, identical, except that the STOP command will print at the line where it
stops. END doesn't print anything. Try the following brief exercise to see
the difference between STOP and END.

Line 120 — PI is a function for

109 INIT the trig. value 3.1415---
118 INPUT V3

120 R4=U2-PI Type RUN What happens?
138 PRINT R4

142 STOP

Change line 140 to: 140 END.
Now what happens?

Another control command is GOTO. GOTO is used to transfer
program control to a specified line number unconditionally, i.e., every time a
GOTO command is encountered, the program is transferred to the line
specified in the statement. GOTO's are often found at the end of programs or
at the end of other logical routines, typically in spots you might otherwise use
STOP, except that you want to run the program repeatedly. GOTO's can be
used to create "loops." A "loop" is a section of programming which circles

back on itself some number of times. The following example is an infinite
loop:

VI-16

=@

=]+1

RINT "THIS IS LINE "I
0 70 t18

€1 U= e

Note that I=I+1 is "mathematically"
invalid. What I=I+1 really means to
the 4052 (or any computer) is "I
is-replaced-by I+1. That is, the equal
sign means "replaced by" to the 4052,

In line 120 the semi-colon (;)
suppresses the spacing to just one
space (rather than 18 in BASIC).

Try this by changing the semi-colon to
a comma.

Virtually all "endless loop" programs are created with at least

one GOTO. The BREAK key is used to terminate these programs. If you are

not sure what the above program does, type it in and RUN it.

PUTTING INTELLIGENCE IN YOUR PROGRAM

So far, the way we have been using the 4050 is more or less as an

overgrown calculator. Computers have the ability to "make decisions" based
on inputs and this is one of their major features.

The following program sums a list of numbers. It will accept any

quantity of numbers but will print the sum only when you enter a zero.

160
118
128
130
1408
158
160
179
189
190
200

PRINT "THIS PROGRAM SUNS UaLUES™
PRINT "EHTERING m UALUE OF ZERO"
PRINT "PRINTS THE SUM RHD STOPS®

$=8

PRINT "ENTER & URLUE"
INPUT U

IF U=8 THEHN 199

S5=5+U

GO TO 148

PRINT "THE SUM IS ":8&
STop

Line 130 "forces" S=0.
Doing this assures us that the value
named S will be zero to begin with.

Note that lines 140 prints a "prompt
message" to help the person using the
program.

DELETE 130, type RUN and see what
message you get.

VI-17

Line 130 initializes variable S to a value of #. Since this is the
variable in which we are going to hold the sum, we have to give it a beginning
value. Most large programs will have several lines of initialization. Lines

140 and 150 request and accept a value from the keyboard.

Line 160 is our decision-making line. If the user has entered a
zero, the program transfers its control to line 190, If the value is anything
other than zero, the program just "falls through" to the next line at 170. Line
170 adds the new value V to the summation variable S. S is keeping the
running total as the user enters each new value; then we go back for another

number.

Eventually, when the user types zero, control jumps to line 190

where we print the sum.

The format of an IF statement is:
IF condition THEN line number

The condition is the logical expression that is tested. If the
logical expression is true, the computer branches to the specified line
number. If the statement is false, the computer goes on to the next line of

the program.

The condition is similar to an expression, but no action is taken

other than evaluation of the condition to determine if it is true or false.

For example, the statement:
IF X=Z THEN 209
would send the computer off to statement 200 if X was equal to Z. If X were
not equal to Z (a false statement), then program control goes to the line

immediately following the IF statement.

VI-18

Relational operators are used to define a condition. On either

side of the condition may appear variables, constants, or expressions.

RELATIONAL
OPERATORS EXAMPLE
= IF X=Z
< IF 4+Q<T*Z
<= IF Z<=Y
> IF 5*%Z>Z+Y
== IF Y>=Z
<> IF Y<>Z

THEN
THEN
THEN
THEN
THEN
THEN

MEANING
Equal to

Less than
Less than or equal to

Greater than
Greater than or equal to

Not equal to

Note: The = sign in an IF statement means "equal to," unlike the

same symbol in LET statements.

A very common application in a production test environment will

be to measure a value and to see if it is within specified limits. For example,
a DMM will be connected to a DUT which is stimulated by a power supply.

We will want to see if the output of the DUT responds within a particular

range.

The following program simulates the above problem where the

"pass" range is from 5 to 6 volts:

30 INIT ‘

188 PRINT "ENTER VOLTAGE"

118 INPUT U

120 IF U=5 THEN 130

130 PRINT "DEFECT-OUTPUT LOW"
148 GO TO 109 .

158 IF U=6 THEN 1889

169 PRINT "DEFECT-OUTPUT HIGH"
70 GO TO 100

180 PRINT “PART PASSES"

130 GO TO 108

VI-19

How would you stop this program?

(one way would be
to add: 115 IF V=-999 THEN 200)

Try it and see.

By providing a logical ending to

this program, we have used -999 (a
"control" value). -999 was used
because in this case it could never
be a real value found with this data.

Type this program in and RUN it if you wish.

In this program, lines 120 and 150 are testing the boundary
conditions; if they are both true, the part passes. If either one of them is

false, then the part is out of range.

EXERCISES
The IF...THEN statement adds one more flowchart diagram to

our collection. It looks like this:

No

Yes

GOTO commands will simply appear as lines going from one box
to another point in a program. There will be arrows on the line to describe

the direction of program flow.

4, Write a program which allows the user to enter upper and
lower boundary limits. Then, based on keyboard entries,
check to see if the keyboard entry is above, below, or within

the appropriate range.
Write a flowchart first. Use a separate sheet of paner.
5. Write a program which averages n numbers. (Again, there

are many wys to write this program. The flowchart
diagrams one method.)

V1-20

‘ BEGIN ,

!

Enter N which
is the number of
values to be
averaged.

Initialize

M =N

Input a
value.

S+V-V
Sum the new value.

\

N = N-1
Decrement
the counter.

Print the
average.
S/M

END

MORE CONTROL

Let's look at another way to write the program you just wrote for
exercise 4. In exercise 4 we used a counting variable N to keep track of how

many values had been entered. We can also do this with a FOR/NEXT loop.
It might look like this:

VI-21

98 INIT
18d
118
129
138
140
158
160
79
18@
13

5=8
INPUT N

FOR I=1 TO N

INPUT ¥

S=8+X

NEXT 1

PRINT “THE AUERAGE IS ";S-N
STOP

PRINT "INPUT NUMBER OF UALUES TO BE AVERAGED"

PRINT "ENTER EACH URLUE, ONE-AT-A-TIME"

Note: Actually, line
118 S=@ can be placed
anywhere between
line 90 and line 140.

Lines 150 and 160 are enclosed in a loop. They will be repeated

as many times as necessary to accept the number of data values you have.

FOR/NEXT loops allow you to program

boring and repetitive

tasks without having to program boring and repetitive statements. For

example, two ways to find the sum of the first 10 integers are:

100 LET S=1+42+3+445+E+7+8+9+106
118 PRINT S

8 FOR ¥=1 TG 10
0 S=S+¥
g NEXT ¥

(3]
11
12
130 PRINT S

Both programs used almost the same amount of characters. But

you can see that to find the sum of the first thousand integers requires

making only one change in the second example, but 990 additions to the first.

The format for the FOR statement is
Index

Y
FORI=JTOK STEP Z
Initial Value

V1-22

Final Value

4 __ Stepping Value

The index must be a simple variable (not dimensioned) and is the
variable that will be incremented each time the loop is performed. The intial
value may be a constant, simple variable or expression. The index will be set
equal to the initial value on the first pass through the loop. Termination of
the loop is decided by the final value. Again, a constant, simple variable or

expression may be used to tell the computer when the loop is completed.

The stepping value is optional. If it is left out, a value of +1 is
assumed. If included in the statement, whatever value (a constant, simple
variable, or expession) used will be added to the index on each pass. If the
stepping value is negative, the initial value must be greater than the final

value.

The terminator of the loop is the NEXT statement. The
argument for this statement must match the index variable of the last FOR
statement executed.

Any number of statements may appear between the FOR and
NEXT statement, even other FOR/NEXT loops. There are some restrictions

on this "nesting" of loops, however,

Nesting means that the body of a FOR/NEXT loop can contain an
additional FOR/NEXT loop. Consider the following program segment:

95 PAGE

188 FOR I=1 70 3
118 FOR J=1 T0 5§
128 PRINT I,J
138 HEXT J

148 PRINT

138 NEXT 1

160 END

The first time this program segment is executed, I (in the "outer"

loop) retains the value of 1 while J (in the "inner" loop) assumes the values of

1, 2,3,4,and 5. Then, I is incremented to the value of 2, and J again
becomes 1, 2, 3, 4, and 5.

V1-23

Finally, I becomes 3, J goes through its 5 values, and the outer loop
terminates. This operation can be seen in the output produced by the above

program segment.

LA I AN AW

Toraronsm T s bt e P
(SO AN R IWE g

[CRE R EVEINE /]
N & GATV

Loops can be nested in this fashion indefinitely. One thing to watch out for
when nesting loops is to make sure that the loops do not "cross." That is, the

control paths for nested loops should look like this:
—=FOR A =1TO 10

FORB=1TO S5
(Body of loop)

NEXT B

L NEXT A
The control paths should not look like the following:

—=FORA=1TO 10

r———>FORB=1TO5

(Body of loop)

NEXT A

— NEXT B

VI-24

SUBROUTINES

Suppose you had a calculation to perform at several different
points in your program. You could code in the instructions every time it was
necessary, but that wastes computer memory. Subroutines avoid this
problem. A subroutine is one or more statements that can be called into use

from any part of the program.

Another way to look at subroutines is to say that they are
programs within larger programs. The main program will generally execute
the subroutine several times. Sometimes they are even called sub-programs.

Anyway, subroutines will require that we know two new commands.
GOSUB line number

and RETURN

The GOSUB command is very much like a GOTO command

except that, when it is executed, the program remembers where it came

from. At the end of a subroutine, a RETURN statement will send program
control back to the line following the one having GOSUB on it.
Let's look at two examples. The first example prints one row of

asterisks across the #050 screen. The screen is 72 characters wide:

3@ INIT

35 PAGE

189 REM PRINT A ROW

{18 GOSUB Sag

128 PRINT "THIS 1S TEXT®
138 REM THIS IS ANOTHER ROMW
148 GOSUB 500

158 STOP

160 END

588 REM SUBRDUTINE TO PRINT ASTERISKS
518 FOR I=} TO 72

928 PRINT "x"i

530 HEXT |

348 RETURN

VI-25

Admittedly, this is not too exciting an application, but the
important thing is to observe the use of GOSUB and RETURN statements.

In line 110, we execute a GOSUB 500, This is identical to a
GOTO 500 (except that the computer remembers where it came from) and
program control is transferred to line 500. Lines 510 through 530 print out 72
asterisks all on one line (notice the use of the semicolon at the end of 520).
Line 540 returns program control to the line immediately following the
GOSUB which called it (i.e., transferred control to it). In line 12 we print

some text; then, in line 140, we go back to the subroutine again.

The subroutine executes as before, but when we Hit the RETURN
statement, we go back this time to line 150. We will see later that the
RETURN statement is used in other contexts such as for interrupt handling,
and for UDK's, but in each case it acts just the same as here. Whenever
RETURN is executed, control is passed back to the line immediately
following the point at which control was transferred to the subroutine (in the

above example, the GOSUB statements).

Another example. Suppose you are writing a demo program, and
you would like to border the entire 4050 screen with asterisks. We know that
the screen is 72 characters wide and 33 tall. Of course, it could be done with

32 print statements, but that's pretty inefficient. Here's how it could be done:

108 INIT

183 REM LINE 738 HAS S8 SPACES BETWEENW THE QUOBTE MARKS

186 REW LINE 748 HAS 12 SPACES FOLLOWIHG THE QUOTE MARK

119 PAGE

260 GOSUB 708

Eég gg'i‘tElT This command does not work on

230 PRINT " THIS IS FRAME OHE"
234 CALL '-NHIT",;-{‘\/ the 4051.

235 PAGE

246 GOSUB 798

256 HOME

260 PRINT

278 PRINT " THIS IS FRAME THO"

288 END

788 REN SUBROUTINE TO PRINT FRAME
1@ GOSUB 388

728 FOR K=1 TD 33

738 PRINT “¥

748 PRINT " X"

738 NEXT K

768 GUSUB 360

778 RETURH

808 REM SUBROUTINE TO PRINT ROW OF ASTERISKS
818 FOR J=1 70 72

828 PRINT "¥"i

838 HEXT J

948 RETURN

VI-26

This program is somewhat similar to the last example, but there

are a few noteworthy differences. Notice first that the same subroutine that

we used to print a row of asterisks in the last example is also in this example

at lines 800

through 830.

In this program, however, we GOSUB at line 200, and this

subroutine is supposed to generate a frame of asterisks. But look, the first

thing it does is to go to another subroutine. This is called nesting

subroutines.

Now the computer not only has to remember that it made one

subroutine entry from line 200 but another one from line 710. The computer

keeps track

of these so that the first RETURN it encounters will send

program control back to the statement just following the last GOSUB it

executed. If you trace through the program flow of the above program, I

think you find that this is what you would have expected.

8 1
169
11e
128
138
149
158
160
178
130
Sae
510
320
5§30
5408

EXERCISES

Type the following program in and RUN it.

NIT

FAGE

REM ANOTHER SUBRDUTINE EXAMPLE
FOR J=1 TO 10

GUSUB 168

NEXT J

END

REM SURDUTINE TO PRINT A PERIOD REPEATEDLY
PRINT "NO."3J;"."

RETURN

REM SUBROUTINE TO PRINT ASTERISKS
FOR I={ TO 72

PRINT "x"3j

NEXT [

RETURN

6. Using a FOR/NEXT loop, print out the numbers 1 through 15

in a vertical column on the screen.

VI-27

Compute the mean and the variance of a set of N numbers
where the computer asks what N is. Use a FOR/NEXT loop.
(There is no special notation for FOR/NEXT loops in
flowcharts; they look like IF diagrams. This is because any
FOR/NEXT loop could be replaced by a counting variable
and an IF statement, though less efficiently.)

n 2
1 n 1] < E X)
. 2 i= !

mean = — X variance = 2 xt oL 4

n : i

i=1 i=1 n
(BEGIN)
Enter N.
- Get value.
!

Compute the
sum of the
values.

\

Square the value
and keep a running
total of the sum
of the squared values.

Compute and print average.
Compute and print variance.

END

V1-28

STRINGS

All of the programming techniques discussed so far have been
concerned with arithmetic data--numbers have been read into the memory,
something is done to the numbers, and numbers appear as output. In some of
the examples, alphabetic data has been carried along in the form of literal
strings used to enhance output or prompt for input. Up to now, however, no

operations have been performed on alphabetic data, or "character strings."

BASIC provides a number of built-in facilities for processing
character strings or non-numeric data. The reason you are being introduced

to strings is that most GPIB products communicate in ASCII strings (see
Chapter 1V).

String data can be assigned to string variables with the familiar
assignment operator. String variables consist of one letter (A through Z)
followed by a dollar sign ($), as in AS, BS, X$, etc. String assignment

examples:

16D A$="ABCDE"
110 B$="PROGRAM"
120 Cs=ns

Generally, string assignment statements look like:
target string=source string
which means that characters are transferred from the source string to the
target string. The source string can be a previously defined string variable

(as in line 120 above) or a character string enclosed within quotes (lines 100
and 110 above).

Try this program:

39 INIT

3% PRGE

188 LET As$="ABCDE"
118 B$="PROGRAM"
128 C#=ns

Now add lines 130,140,150 as shown.
125 REM ADD THE FOLLOWING INSTRUCTIONS
138 PRINT C$;"=Cs"

148 PRINT B$;"=B$"
158 PRINT A$3"=ns$"

VI-29

String variables in the 4050 have a default length of 72
characters. This corresponds to the maximum number of characters that can
be printed on one line of the display. The total length of a string variable can
be thought to consist of a working size and a physical size. To illustrate,

consider a statement like:

509 A$="JOHN DOE"
where A$ has not been previously dimensioned. This commits space in the
memory as shown below:
(1) (2) (3) (4) (B) (6 (7) (8) {9) (10) {11) (12) (13)) (71) (72)
[vfofn[n] [ofofel | [[[| L [|
. Working size (8 char.) ————]| {

l—— Physical size (72 char. by default) !

Assuming for the moment that no further characters are to be added to AS,
the resulting situation is that a significant amount of space in memory is left
unused. The way around this is to allocate space using a DIM statement. DIM
statements are also used for numeric arrays, but they are beyond the scope of
this text. The form of the DIM statement for strings is:

DIM string variable (numeric expression)
where the numeric expresson is rounded to an integer and becomes the
physical size of the string. Strings may be dimensioned longer than 72
characters; the maximum length is bounded only by the amount of memory
available. Continuing with the example of "JOHN DOE", a more appropriate
utilization of memory results through the following program segment:

569 DIM AS(8)

51§ LET A$="JOHN DOE"

This allocates memory for AS as follows:
[+]o[H[N] [olole
working mzej
physical size

Here, the working size and the physical size are the same, resulting in a more

efficient use of memory space. In using GPIB products, however, we will see
that we frequently need fairly long strings (such as when an instrument
returns the settings and status of all its controls).

VI-30

Of course, you will get an error message if you try to stick more

characters into a string variable than it has been dimensioned for.

The INPUT and PRINT statements can be used with string data in
essentially the same manner as with numeric data. A statement like:
15 INPUT A$S
behaves as before, placing a question mark on the screen indicating that the
BASIC interpreter is awaiting data. You then enter the appropriate character
string and press RETURN. The string need not be enclosed in quotes. If the

string is enclosed in quotes, then the quote marks just become part of the
string.

String variables can also be mixed with numeric variables in a
PRINT statement, as in:

28@ PRINT X$;2;C$
or, look at this GPIB example:
288 CS="FREQ"
214 PRINT @24:C$:H
Here, a FG5010 at device address 24 would have changed its frequency to

whatever value was contained in the variable H (assuming it was within range).

STRING COMPARISON

Control of program execution can be accomplished through string
comparisons resulting in conditional transfers. The method is quite similar to
the way in which numeric comparisons are performed, using an
IF...THEN...statement as before. The syntax form is essentially the same:

IF condition THEN line number

The only difference is the way the condition is constructed, taking the form:
character-string relational-operator character-string

where the relational-operator, as before, can be any of the six relational

operators and character-string can be either a string constant or a string

variable.

VI-31

Some examples of string IF...THEN... statements: '“~

188 IF A$=B$ THEH 560
110 IF A$:F$ THEN 684
128 IF B$="END" THEN 399

Characters are represented in the 4050 using the ASCII code. In
this scheme, each character in the set of 128 characters has a unique decimal
equivalent within the range of 0 through 127. Thus, "A" is 65, "6" is 54, "" is
33, etc. (Appendix A has an ASCII chart showing these decimal values.) The
fact that each character is represented numerically forms the basis for
making string comparisons. You can say that "A" is less than "B" because _

"A", in ASCII decimal equivalence, is 65, while "B" is 66.

Character strings are evaluated on a character-by-character
basis from left to right. The first character inequality discovered in the two
strings determines the relationship. Consider the following two character

strings:
{1} (2) {3} (4) (5) (6) (7) (8) (9) (10} (11)

Ol plalr[e[n][T|H][E]s]1] 5]
@[r[afrle|n|T[H]E]s[e]s] -

In comparing these two strings, the BASIC interpreter
determines that string 1 is greater than string 2. This relationship is
determined when the 10th pair of characters (the first inequality) is
examined. The first 9 pairs are equivalent, but in the 10th pair the "I'" has a
numeric representation greater than "E". No further comparisons are

performed once the first inequality is located.

Occasionally in GPIB applications a user will want to link several

strings together to form a command to send an instrument.

Concatenation is the process of linking (or joining) character

strings together. If you concatenate a "T" and an "H" and an "E",

VI-32

you get "THE". Concatenation is accomplished with the concatenation
operator, which is the ampersand symbol (&). You concatenate string
constants as shown below:

149 AS="CHARACTER"&"STRING"
which yields "CHARACTERSTRING". Or, the operation can involve string
constants and string variables, as in

148 AS=BS&"ES"

114 AS="ANTI"&BS

Also, concatenation can involve string variables such as:

12 AS=BS&CS

Remember, the target variable (the string variable to the left of
the equal sign) must be dimensioned long enough to accept the new (and

presumably longer) string.
The following section on string functions may be skipped. It is

included as reference because string functions will invariably show up in any

GPIB applications program.

STRING FUNCTIONS

In working with GPIB products, we will be dealing with ASCII

strings quite frequently-that is how we communicate with GPIB products
much of the time (not all — remember binary blocks from Chapter 1V, etc.)

Several string functions allow us to manipulate these strings so
the computer can more effectively deal with certain parts of the data that an
instrument sends back. These are usually parts of the "applications level"

communications drivers we discussed in Chapters Il and 1V.

When a string contains an unkown number of characters, as might
be the case when bringing in data from a GPIB instrument, you can determine
the current length (or number of characters) by employing the built-in length
function. This is written and used in a manner which is essentially the same

as the mathematical functions.

VI-33

The LEN function returns an integer indicating the number of
characters, or working size, of the specified string variable. An example:
1#¢ LET AS="ALPHABET"
11 LET X=LEN(A$)
In this case, X is assigned the number 8. LEN works just like a math function,

except that it has a string argument.

You can extract a substring from an existing string with the
three-parameter SEG (for segment) function. This has the form:

string var.=SEG(string var., numeric exp., numeric exp.)
where the first numeric expression specifies the starting position of the
substring within the string, and the second numeric expression specifies the

number of characters contained in the substring. A short example:

The READ command and DATA work
108 READ A$ with each other. DATA permits the
igg g’;SEE(”sEvﬁ) ., programmer to include in the program
138 PBIST SENR' JONES data to be read by the program
(usually constant values)

If you use READ you must also use
DATA.

In this case, BS is assigned the substring "JONES", which is a 5 character
substring starting at the 7th position of A$ (counting the blank character). A

further example:

3% PAGE

188 A$="SUBSTRING"

119 FOR I=1 TO LEN(A$)
120 B$=SEG(R$.I,1>

138 C#=SEGCAs.1, DD

148 PRINT B$,C$

158 NEXT I

VI-34

The output from the above example:

S

Su

suB

SUBS
SUBST
SUBSTR
SUBSTRI
SUBSTRIN
SUBSTRING

N Z e X 4300 U

Sometimes when getting data out of a GPIB product, you get
ASCII strings of which only a small portion represents a number. The problem
is that, if the computer needs to use the ASCII representation of a number as
a computer representation (called floating point) of that number, then we

need a method of conversion.

For instance, you might be confronted with ACSII numbers,

which are really characters, when you need their decimal counterparts
instead. Obviously, you can't expect to get the square root of the letter "7"
because it is a character like "X" and "?". What is needed is the means to
convert between ASCII numbers (character strings) and their numeric

equivalents. This capability is provided by a function called VAL (for value).

The VAL function takes the forms:

target string var.=VAL(string var.)
where argument string variable refers to an existing character string which

contains elements of the following character set:
The letters 0 through 9

The monadic operators "+'" and "-"
The decimal point

The exponent symbol "E"

VI-35

For example:

3.4

1860 As="1
110 B=UAL Cas
126 PRINT

Statements 100 and 110 cause the numeric value B to receive the value
123.4. This example is, perhaps, an over-simplification, because it is
equivalent to writings

100 LET B=123.4

However, you can get the idea behind the VAL function.

EXERCISES

Frequently, a program will execute some computation once, then
ask the user if it is to be run another time. To do this requires adding a
PRINT statement to ask the user the question, an INPUT statement for the
reply, and an IF statement so that, if the user says "YES", it goes back to the

beginning; otherwise, it stops.
8. Take the program you wrote in exercise | and modify it so

that it asks if the user wants to execute the program again,

and then do it if the response is "YES".

VI-36

INPUT/OUTPUT OVER THE GPIB

Input and output of data over the GPIB is, in many cases, not
much more complex than input and output from the keyboard and screen of
the 4050. This is particularly true for products like the TM5000 instrument;
data input from waveform products and spectrum analyzers are a little more
complex because of the quantity of data and the fact that the data it comes
over the bus in binary rather than ASCII numbers.

To send data to an instrument, we use the PRINT statement.

Here are some examples:

1) 109 PRINT @18:"FREQ A" (DC5010)
2) 100 PRINT @14:"SPAN 1gK" (492P)
3) 100 PRINT @9,1:"V/D .2" (7A16P)

In each of these examples, we are simply changing the
setting of some control. Notice the syntax. The PRINT statement is
followed by an "(@" character which is then followed by a GPIB address
(valid addresses are @-30) and a colon (:). The first two examples show
instruments which are addressed with a primary LISTEN address
(because the instrument is going to LISTEN to the controller) only.
Example 3 requires both a primary address (9) and a secondary address
(1). This is because the 7A16P is a plug-in to a larger product, such as a
7612D, and its connection to the GPIB is not from the back of the

plug-in directly, but through the mainframe.

In the above examples, the commands the device-dependent
messages are made up of string constants (e.g., "FREQ A", "V/D .2"). It
doesn't always have to be like that. Suppose we want to generate a
signal which steps through 100 Hz increments using the FG 5010. That

would look something like this:

169 FOR 1=1494 TO 509d STEP 109

11¢ PRINT @24:"FREQ ";I
(program 10 measure response)
380 NEXT I

VI-37

The first time through, the message FREQ 1000 would be sent to
the FG; the next time, it would be FREQ 1100 and so on.

To send data to an instrument (i.e., address it to be a LISTENER)
we use the PRINT command. To make the instrument send data back to the
computer, we use the INPUT command (i.e., make the instrument a
TALKER). Normally, though, before we can ask the instrument to tell us
something, we must ask it what to tell us. So most INPUT statements are

preceded immediately by a PRINT statement. For example:

1) 192 PRINT @24:"FUNC?" (FG5010)
118 INPUT @24:A$

2) 199 PRINT @I8:"SEND" (DC5010)
119 INPUT @18:N

3) 149 DIM AS(209)
119 PRINT @24:"SET?" (FG5010)
120 INPUT @24:A$

In the first example, we query the FG5010 what function it is
currently in. Assuming it is generating sinewaves, AS will be loaded with the

string "FUNC SINE;".

The second example is indicative of several of the TM5000
products. When we send the "SEND" command, the instrument will respond
by sending back its current reading, which will depend on what function it
happens to be in. So if the DC5010 happens to be in TIME A-to-B mode, it

will send back the time interval value. Note that it sends back a value only,
and no header information; this is easier for the applications programmer to
deal with since it can be read directly into a numeric variable and not a string

variable.

VI-38

The last example retrieves all the setting information from the
FG 5010, Except for the length of the string variable, this sequence would
look identical for any product conforming to the Tek Codes and Formats.

Let's look at one more example, which is a modification to the
program you wrote for exercise 5. This program asks for upper and lower

boundary limits, then takes a voltage reading from the DM 5010 to see if it is
within that region.

PRINT @16:°0CU3R0S OFF"
PRINT "ENTER UPPER, THEH LOWER BOUNDRARY"

TNPUT UL

140 PRINT "ATTACH DEVICE TO BE TESTED"

150 REM INPUT STATEMENT WAITS UNTIL OPERATOR READY
160 INPUT W$

170 PRINT @162 "SEND"
5 e HEE
208 PRINT "OUT GF RANGE -- HIGH" This program will not run
216 GO TO 149 without a DM5010 attached.
220 IF N=»L THEN 250

230 PRINT "OUT OF RANGE -- LOW"

240 GO TO 140

250 PRINT "IN RANGE -- PASS"

260 GO TO 148

. i P pe [
[Ll " dand
QQ@QE"

In this program line 100 sets up the DM to monitor DC voltage; it
also turns off all SRQ interrupts. (We did this because we haven't discussed
polling yet.) We get the boundaries and allow the operator to attach the
DUT. Notice that in line 160 we have an INPUT statement; this is not to ~
enter information, but just to wait for the operator to complete attaching the
DUT. When he is, he presses RETURN and the program goes on; we never use
W3 again in the program.

Lines 170 and 180 get the measured voltage and the rest of the

program determines whether it is within range as before.

VI-39

RBYTE/WBYTE

Occasionally we need to communicate over the GPIB using binary
data rather than ASCII. The major advantage to this is that fewer bytes have
to be transmitted to convey an equal amount of information. (For example,
to send the value 250 over the bus in ASCII takes four bytes: 2-5-0 and a
delimiter, usually a comma or space. In binary, it takes one byte which in
binary is 11111010.) This is particularly valuable for waveform products

where large quantities of data need to be transmitted.

The following program reads a 256 element record from the

7612D. (To communicate with the 7612D, we always need to send a
secondary address, even to the mainframe.)

8 DIM A(256)

@ PRINT @6,0:"READ R.1"

® WBYTE @70,96!

0 RBYTE X,‘a’gZ,ﬂ,N,R
(scaling routine)

(processing routine)

Although we have not discussed numeric arrays, line 100 creates
enough memory space to contain an array (collection of ordered numbers) of
256 elements (each single value in an array is called an element). Line 110
instructs the 7612D to send the waveform record in channel A, record number
1, as soon as it is made a TALKER.

The WBYTE (Write Byte) command in line 120 addresses the
7612D to be a TALKER. The number 70 is created, based on the fact that the
7612D has a device address of 6 and, to create an "absolute TALK address,"
we add an offset of 64 for TALKERs (for LISTENERS, we add an offset of 32
to the device address to create the absolute LISTEN address). The PRINT and
INPUT statements automatically add an offset of 32 and 64, respectively.
WBYTE allows for much greater flexibility including setting up instrument to

VI-40

instrument communication without the controller having to act as
intermediary. The number 96 is the absolute secondary address of the
mainframe. The secondary address, in this case @, is added to an offset of 96
to create the absolute SECONDARY address.

Anyway, line 110 addresses the 7612D to be a TALKER. Line
120 causes the 4050 to begin handshaking the data in. The group of variables
in this line is due to the Codes and Formats definition of a binary block. The

data are loaded into the corresponding variables like this:

o Byte Count 256 Data Points Check :
L j | 1) Loy e ey 1 | 1 —1
X B A W R

Needless to say, when we start using RBYTE and WBYTE, we are
beginning to get into more elaborate programming. With our 7612D program
we have only scratched the surface, because we also need to scale the data to
adjust for voltage sensitivity, ground zero reference, and time-per-sample

information.

Write byte (WBY TE) can also be used to send interface messages
other than addressing. For example, to send the Device Clear message over
the bus (see Table 1, Chapter III), we would type:

WBYTE (@20:
where the "@" symbol means to send the information on the GPIB, and 20 is
the decimal equivalent code for DCL (Device Clear) as defined by the IEEE
488 standard. Appendix A provides an ASCII/GPIB chart that shows which
numeric codes send particular GPIB interface messages. Take a moment now

to look at this chart.
To review then, RBYTE and WBY TE are used to send and receive

binary data across the GPIB and WBY TE is also used to send interface
messages as defined by the IEEE 488 standard.

VI-41

EXERCISE

9. Write a program which prompts the user to set up the front
panel of an FG5010 (device address 24). Then have the
program wait for the user by using an INPUT AS statement.
AS will not be used later. The program should then ask for
and retrieve the settings of the instrument. Finally, print
them on the screen of the 4050, (Remember that the
settings will require a string variable with enough space for

150 characters.)

10. What command would you use to send an LLO (Local

Lockout) interface message to all instruments on the GPIB?
(Use Appendix A.)

SERIAL POLL

Until now we have seen that the responsibility of the GPIB

applications programmer has been to specify a sequence of activity and to

provide for appropriate communication between various devices. There are,

of course, many other details of programming a given task, but the last major
function we will discuss is that of handling SRQ (Service Request) interrupts.
The special characteristic of interrupts which make them somewhat different
from our previous discussions is that they may occur asynchronously from any
other system activity. For this reason, they need to be handled by special

routines which are outside the primary flow of the main program.

VI-42

There are two steps in dealing with interrupts. The first is
acknowledging that an interrupt has occurred. The second is determining
which device initiated the interrupt and why.

To enable a program to acknowledge an SRQ interrupt, ON SRQ
is used. It looks like:

ON SRQ THEN line number
where the specified line number is the location where the service routine
begins when an SRQ is asserted. This statement is usually one of the first
lines of a program because, if an SRQ is being asserted and there is no ON
SRQ statement, the 4050 will print an error message (NO SRQ IN
IMMEDIATE LINE) and stop.

Remember that for any group of up to 14 products there is only
one SRQ signal line coming into the back of the #050. Therefore, when the
4050 recejves an interrupt, the controller has the responsibility to identify
which instrument caused the interrupt. This is done using the POLL
command. Examples are:

POLL Z,Y; 14
POLL M,N;6;3;9,8:L

The first example is the simplest possible POLL statement since
the two target variables (Z,Y) are always required and are followed by the list
of valid GPIB addresses. In the first example the list of addresses includes
only one. This means that there is only one GPIB instrument connected to the
4050 capable of generating an SRQ. In the second example, devices with
addresses of 6, 3, primary 9, secondary @, and the address defined by the
value of L are connected. It is important that all valid GPIB addresses are
listed in the POLL statement because, if they are not, the 4050 will stop upon

receiving SRQ from a non-addressed device.

VI-43

Here is a typical example of a program which handles SRQ interrupts:

188 ON SR@ THEN So®

110 REM HAIN BODY OF PROGRAM

120 WBYTE @78,96:

138 RBYTE ¥sY:Zs0,H4R

218 REM

228 REM

230 REM

350 END

568 REM INTERRUPT SERVICE ROUTINE
510 POLL MsH3E33i5

528 IF N=65 THEN 579 -
538 IF H=81 THEN 578 :
548 PRINT "ERROR OCCURRED AT "iN

558 PRINT "WHERE 1=ADDRESS 63 2=ADDR. 3; 3=ADDR. S"

560 PRINT "ERROR STATUS = “iN —
578 RETURH ‘

The POLL statement is executed in response to a service request
from a peripheral device on the GPIB. Two numeric variables are specified as
parameters in the POLL statement followed by a series of I/O addresses. The
BASIC interpreter polls the first I/O address in the list, then the second 1/O
address, then the third, and so on, until the device requesting service is
found. It is imperative that the I/O address of the device requesting service

is in the list, or program execution will be halted.

After the peripheral device requesting service is found, the
device's position in the list is assigned to the first variable specified in the
POLL statement. The status word of the device is then sent over the GPIB

and assigned to the second variable specified in the POLL statement.

In the program above, line 100 enables the program to
acknowledge interrupts. Nothing actually happens at line 100, but it prepares

the controller to respond to SRQ interrupts when they occur. Let's assume

that an SRQ occurs when the program is executing line 210. When the
computer completes executing 210 it jumps to line 500 (based on the ON SRQ
statement) as though a GOSUB 500 had occurred (i.e., the controller
remembers that it should return to line 220). The POLL statement executes a

serial poll which returns a status byte from the instrument into variable N.

In this program, we only check for power-up conditions (status 65
and 81 — see Table II, Chapter 1V), in which case program control simply —
returns to the program following the point of the interrupt, line 220. If any
other status byte is sent, this routine prints it and returns. Although this isn't

very elaborate, it is frequently sufficient when debugging programs.

VI-44

TAPE COMMANDS

There are a few commands to use the internal magnetic tape

that you are likely to encounter or use.

FIND

Assuming that you have a program to store or retrieve on tape,
the first thing you have to do is position the beginning of the desired file at
the recording head. This is done with the positioning command.

FIND numeric expression
For example:

FIND 5

FIND N+2
The numeric expression refers to the file number you are requesting. To
position the read/write head at the beginning of the tape (rewind), type FIND

0. This instructs the tape drive to position the tape at the load point, which
is the beginning of the tape. (You can also do this by pressing the REWIND
key. The only difference between the two methods is that one is

programmable, the other is not.)

File 0 does not actually exist. You cannot store anything in file
0; it is used only to indicate the beginning of the tape. However, once you
have "found" file 0 (the beginning of a tape), you are then able to create a file

that can store a program.

MARK

Files are created with the MARK statement:
MARK numeric expression, numeric expression

The first numeric expression (parameter) refers to the quantity of files you

VI-45

want to set up, and the second indicates the length in bytes of the file or files

being created.

If you want to create one file with a length of 1000 bytes, enter:
MARK 11,1000
Similarly, if you want to create 5 files, each with a length of 1200 bytes,
enter:
MARK 5,1200

Typically, however, you only create files one at a time, as they are needed.

It is a good idea to set up files that are larger than necessary;
this way room remains in the file to accommodate any later additions to the
program being stored. To determine the approximate amount of storage that
a given program requires, a good "rule of thumb" is to figure 40 bytes per line
of code. (This is a rough approximation--some lines take more, and some

lines take less.)

Now, suppose you have written a program and it is currently
residing in the random access memory. You want to store it on a brand new
tape. You have determined that the program requires, say, 1500 bytes of
storage. Enter:

FIND 0
and the beginning of the tape is positioned at load point. Now, to create the
file, type:

MARK 1,2000
and the Graphic System sets up one file with sufficient length to contain the
program plus some additional space. (The 2000 was chosen arbitrarily.) This
file now exists with a physical length of 2000. It currently has a logical
length of 0 because, as yet, nothing has been stored there. Before the
program can be stored in this newly created file, the tape must be positioned
at the beginning of the file. To do this, just type:

FIND 1
and the tape drive positions the tape at the beginning of the file.

VI-46

SAVE

The actual storing, or "saving," operation is initiatd by another
directive.
SAVE (line number(,line number))

SAVE used by itself causes the entire program currently in
memory to be stored on tape in ASCII code. (SAVE with one line number
stores only the specified line number. SAVE with two line numbers stores
only the part of the program bounded by and including the two specified line

numbers.)

As soon as you type SAVE and press RETURN, the system

records a copy of the program in memory on the tape. (It will record those
statements which are preceded by a line number.) The file now has, in
addition to its physical length, a logical length. In this case, the physical
length is 3000 bytes as established by the MARK statement, and the logical
length is 1500 bytes, because the program saved was 1500 bytes.

Before going any forther, let's review what has happened thus far:

e FIND 0 positioned the tape at the beginning load point.

e MARK 1,3000 created a file with a physical length of
3000 bytes.

e FIND I positioned the tape at the beginning of the file.

e SAVE caused the machine to make a copy of the

program in memory on the tape in file 1.

VI-47

OLD

Now let's suppose that, after performing some unrelated

operations, you want to run an ASCII program previously saved on file 1

Retrieving the program is facilitated with the following statement:

OLD —
To get the program back into memory, enter:

FIND 1

OLD

FIND 1, again, positions the tape at the beginning of file 1. OLD

causes the Graphic System to first delete everything in memory (as though a
DELETE ALL statement is executed), and then copy the logical contents of -
the file into memory.

When you want to save another program on tape, the process is
essentially the same. Assuming that you have already utilized file 1 as in the
previous discussion, the first thing to do is to type:

FIND 2
The machine is able to locate file 2 because the process of "marking" file 1
also marks the beginning of file 2. Now, suppose you want to establish one
file with a length of 2000 bytes. Enter:

MARK 1,2000

and the file is created. (Do not confuse the file number with the number of

files specified by the MARK statement.) You can now store a program in the

second file by entering:
FIND 2
SAVE

and the system saves the program in memory on the tape, in file 2.

The TLIST Statement

At this point, it should be apparent that you need the ability to

determine how many files exist on the tape, and the status of each file. This

VI-48

capability is provided by the additional directive:
TLIST
The TLIST statement lists out (on the screen) information about the tape that

is in the tape drive assembly. This listing is typified by the following:

TLIST

1 ASCIIl PROGRAM 3840
2 ASCU PROGRAM 1792
3 ASCIl PROGRAM 4096
4 ASCII PROGRAM 1230
5 ASCII PROGRAM 3840
6 ASCII PROGRAM 768
7 NEW 768
8 NEW 1024
9 LAST 768

The numbers in the left column indicate the number of the file.
The center column identifies the type of file. In this case, the first six files
contain programs. Files 7 and 8 are "NEW", indicating they are "empty" and
available for use. The "LAST" file (file 9) is self-explanatory; it is the next
one to be MARKed and used. The column of numbers on the right indicates

the file size, in bytes, of each file, and is always a multiple of 256.
Note: If you "re-mark" a file, then the file following the one

that is "re-marked" always becomes the "LAST" file. Any files

that may have been beyond the "re-marked" file are lost.

USER DEFINABLE KEYS

The 10 user definable keys on the upper left of the keyboard
allow the user to branch to any of 20 specified BASIC program locations. Ten

locations are available by pressing each of the 10 user definable keys; ten

VI-49

more are available by holding down the SHIFT key while pressing each user
definable key.

The user definable keys provide a convenient means of
interrupting the main program to perform a subroutine already placed in

memory by the user. (The 4050 finishes executing the current BASIC line
before performing the subroutine.)

To write a program that uses the user definable keys, begin with
line number 100, One of the early program statements must be the SET KEY
statement which allows the 4050 to respond to the user definable keys while
the program is executing. Pressing one of the user definable keys is the same
as executing a GOSUB statement. The main program is interrupted and
program control is transferred to the line number that is four times the
number of the user definable key pressed. These numbers are fixed and
cannot be changed. Figure 6.1 shows the line number to which program
control is transferred when each user definable key is pressed (in a program
with SET KEY established).

The subroutine begins with the statement to which control is
transferred and continues to execute statements in sequential order until an
END, STOP, or RETURN statement is found or until the BREAK key is
pressed. If none of these occur before line number 100 is reached, the system
continues into the main program (which begins at line number 100). When a
user defined function ends with a RETURN statement, program control is

transferred back to the interrupt point in the main program.

VI-50

User Definable
Key

Line
Number

12

16

2g

28

32

36

40

User Definable
Key

11

Line
Number

44

48

52

56

60

64

68

72

76

Fig. 6.1. The User Definable key program control transfer table.

VI-51

Control can be passed from one subroutine line to another

subroutine (for example, to a larger one) with a GOSUB statement. Figure

6.2 shows how this looks:

- 28] Gosue sgg 48
21| RETURN
22
23
508
55

MAIN
PROGRAM

INTERRUPT
POINT

SUBROUTINE

RETURN

Fig. 6.2. Transferring control between subroutines.

User Definable Key 5 transfers program control to line number
20, a GOSUB 500 instruction. Line 20 then transfers control to line 500, the
beginning of a larger subroutine. When the larger subroutine is finished

executing, a RETURN statement transfers program control back to line 21,
which is also a RETURN statement. Line 21 then transfers program control

back to the interruption point in the main program. Here's a program

example, type in and run it:

VI-52

118 PAGE

120 RENM PROGRAM USING-USER DEFINABLE KEYS-(UDK’s)
138 PRINT “"UDK’S HELP PEOPLE ‘OPERATE’ THE 4852"
148 PRINT "-ALL AN OPERATOR NEEDS TO KHOW IS *
158 PRINT "-NHAT UDK TO DEPRESS AND THAT “KEYS~*
168 PRINT "-THE PROGRAM TO DO A4 SPECIAL THING"
170 PRINT * IF-THE-PROGRAMMER-HAS-PROVIDED"

188 PRINT " FOR-THIS-TO-HAPPEN 1111

198 PRINT

208 PRINT "LET’S LOOK AT AN EXAMPLE"

218 PRINT

220 PRINT “UDK#1 HAS BEEN PROGRAMMED TO JUMP TO*
230 PRINT * A SPECIAL MESSAGE, TRY IT,PUSH #1i"
240 END

300 PRINT "GGGGG"

310 PRINT

320 PRINT

330 PRINT "s3%% I JUST DEPRESSED UDK#1 !!! ¥¥%x"
335 PRINT

340 PRINT '(IF YOU“RE WONDERING WHAT CAUSED THE"
338 PRINT * /BELL‘ TO BEEP LIST THE PROGRAM AND®

3608 PRINT * CHECK THE PRINT INSTRUCTION WHICH"
378 PRINT * HAS ‘PRINT -GGGGGY "

380 PRINT * (“BELL’ IS MADE BY HOLDING DOWN THE *
390 PRINT * “CTRL’ KEY WHILE DEPRESSING “G’"
400 PRINT * —-IT’S CALLED “CONTROL G’>*

418 PRINT " ~e-o~- TRY IT IN IMMEDIATE MODE"

420 PRINT "---BUT FIRST REMEMBER THIS-~~"

425 PRINT "AFTER USING IMMEDIATE MODE PUSH UDK#2*
426 PRINT "--REMEMBER. UDK#2"

427 PRINT

428 PRINT * ¢ PRINT’GGGGGY > HOTE: “MEANS QUOTES"
429 END

430 PAGE

435 PRINT "BUT NOW BACK TO UDK-S"

448 PRINT

438 PRINT "THERE ARE 18 UDK ‘KEYS® AND EACH HAS"

460 PRINT " A DUAL FUNCTIOM-NORMAL AND SHIFTED"

470 PRINT "~THIS MEANS 10 KEYS PERMIT 20 SELECTIONS."
488 PRINT “LIST PROGRAM LIHES i THRU 168, ‘LIST 1,397
498 PRINT “-NOW NOTICE THAT LINE i GOTO IBB.

560 PRINT "-LINE 4 GDTO 360"

518 PRINT *-LINE 8 GOTO 43"

520 PRINT

338 PRINT "EACH UDK IS PREDEFIMED WITH A LINE NO."
540 PRINT " UDK#1 WITH LINE NO. 4,UDK#2 WITH LINE 8"
5350 PRINT * AND SO OM. WHAT LINE NO. NUULD UDK#5"
560 PRINT " BE ASSOCIRTED WITH?"

MISCELLANEOUS

There are just a couple more commands that would be useful to

know.

VI-53

The COPY command is used to generate an automatic hard copy
under program control. Of course, you need to have either a 4631 or 4611
Hard Copy Unit attached for this to do anything.

And finally, the HOME command is used if you want to reposition

the cursor to the upper-left screen position without erasing the page. PAGE
is used to erase the screen and to return the cursor to the "home" position.

VI-54

BIBLIOGRAPHY

Other books on BASIC:

Alcock, Donald. Nlustrating BASIC
Cambridge University Press, Cambridge, 1977. An excellent short

primer.

Coan, James. Basic BASIC
Hayden Book Comapny, Rochelle Park, 1978. Thorough but a little dry.

Albrecht, Robert, et.al. BASIC: A Self-Teaching Guide
John Wiley, New York, 1978. An excellent programmed instruction
book.

Schoman, Kenneth. The BASIC Workbook
Hayden Book Company, Rochelle Park, 1977. This is a workbook with

many good exercises; it has almost no text about BASIC.

PLOT 50 Programming in BASIC
Tektronix; Beaverton, 1978. A good comprehensive programming text
for the 4050-Series BASIC.

VI-55

11.

12,

13.

VI. SELF-TEST (continued)

Using the following program, fill in the blanks:

RINT "ENTER THREE NUMBERS"
NPUT A,B,C
R

(A+B+L) -3
INT "RESULT IS "32
TOP
a. The numbers 100, 110, 120 are called and they establish
the of execution.
b. The letters A, B, C, and Z are called .
c. In the third line from the top, (A+B+C)/3 is called an .

d. In one brief sentence, describe what the above program

accomplishes.

List the five numeric operators and the appropriate keyboard symbol for .

each.

Write the 4050 statement(s) which would send a FREQ A command to a
programmable counter with GPIB address 18.

VI-56

14, Describe briefly what the following program does. Describe specifically
the function of lines 100 and 500.

190 ON SRQ@ THEN 3500

110 FOR I=1 TO t@ee

128 NEXT 1

130 G0 TO 110

S8@ POLL M,N313233

510 PRINT *"SR@ OCCURRED ON DEVICE"jM3"™ STATUS "N
520 RETURN

VI-57

APPENDIX A

ASCIl & IEEE 488 (GPIB) CODE CHART

87 1 1 1
i | %0 | %0, [%1 |94 0 0 1"
B5 9 1) 1 0 1) 1
8ITs NUMBERS
84 B3 B2 Bl CONTROL SYMBOLS UPPER CASE LOWER
o 17 a0 60 100 120 "0\ 60
olelolol NuL | DLE | s | 0 | @ P p
0 10)/10 (16)|20 (32)|30 (48s)fe0 i64)[50 (80)60 (9e)[70 (112}
1 BTLIZ0 LLo[a1 ' 61 101 121 7] 61
o|8|o|1| SOH DCi : 1 A a q
1 minn anlzr Galar wear esis1 snler enln (113
73 @z~ |62 02 122 142 62
pla|1]0] STX DC2 2 B R r
2 212 efzz (34|32 (50|42 (ee)52 8D|62 (9m)|7z (114}
3 23 a3 63 103 123 13 163
oj@|1]1] ETX [0c3 | # 3 c s
3 313 (9|23 (38)[33 (51){43 (67)[53 (83)|63 (99)|73 (115
4 [cL |44 64 104 124 144 164
o|1|olo| eo?"| ocd| $ | 4 D t
':_x W (200 :54 (3G)P_4 (52|44 (68)[54 (84)[6a (100)|74 (116)
5 PPC PPU 0 65 105 126 145 165
@|1|0|1] ENQ NAK % 5 e u
5)15 (2u]|zs (@7|3s (s3)les (e9)|56 (85)|65 (10m]75 (117)
75 46 66 106 126 146 166
ol1|1]e] AcK [syn | & v
6)16 (22){26 (381|326 (54)a6 (70){58 (86)|66 (102)]76 (118)
A 67 107 127 47 167
@|1]1]1]| BEL ETB 7 G w
7 17 @27 @e)|3r (ss)ar (70|57 (8|67 (odf77 (119
10 GET SPE |50 70 10 130 150 170
110|0(0| BS 8 H X
8 Bas (24/28 (40)38 (56|48 (72)[58 (smlee (108)|78 (120)
n TCT [31 NdNE 71 m 13 151 7
1010 |1 HT EM g | Y I y
9 o1s 260|290 (anfe 51| (7nlse (sv)|69 (10B)7e (121
12 32 13 72 T2 132 152 72
11811 (0] LF SuB * . d Z J z
A 1o1a (2628 (a2)]3a (s8[aa (78)|sA (90)eA (108)f7A i122)
13 = 53 73 3 133 153 73
1lel1]1] vt | esc | + ; K [{
B Unj1B (27728 a3fas " (se)las (7m)|8B (91)|es (107|78 (123
T 34 54 74 714 134 154 74,
1[110|0] FF FS) < \ | i
c uajic @ef2c wa]ic eojac esc elec om]re (124)
15 35 155 75 15 135 155 75
1(1le{1] crR | @S - = M] m }
b (130 (2|20 @sf3ap eulap nlso w3aleo sl 1128
6 36 56 76 716 136 156 176
1[1{1|e] so RS . > N A n
E (a1e @026 wel3e 62ee (78)5E (sa)ee (110)7E (126
17 37 67 77 UNL |17 137 yNT|157 1 RUBOUT
111]1] sl us / ? - 0 ¥ e
FE o osiF (312F @anfar 83|aF 9 sF es)er (11n|7F (127
\-—-\lx—-/ eempm— — N - AN g
ADDRESSED COMMANDS SECONDARY ADDRESSES
TALK ADDRESSES OR COMMANDS

UNIVERSAL COMMANDS

octlll

KEY TO CHART

|25

hex—|

156

PPU-

NAK—

j——GPIB code

LISTEN ADDRESSES

| ASCIl| character

2n-

|=— decimal

—

APPENDIX B

ANSWER KEY
CHAPTER 11 SELF TEST

1. instruments keyboard
controller display

mass storage

Instruments

Computer Display

Keyboard

Mass Storage

3. Instruments:
492P, 7612D, 7912AD, 468, 5223, 7854.
Mass Storage:
4924, 4907, tape cartridge in 4050 series
Keyboard and Display

4006, 4010, 4014, 4024, 4025, and keyboard/display of 4050.
Controllers
4051, 4052, 4054, and 4041.

4, multi-function interfaces or multiplexers

5. plotters, e.g., 4662 or 4663

B-1

10.

11.

12.

13.

memory size, speed of computation, speed of GPIB 1/0O, available

peripherals, ease-of-programming, built-ins

hard disks, floppy disks, cassette tapes, and large mag tapes

Applications software

Implementation language - high level language

Device-Dependent codes

A compiler converts an entire program to machine code before

execution. An interpreter translates and executes only one line of the

application program at a time.

Need to know processor's detailed architecture, very time consuming to

write, difficult to modify, and requires extensive documentation.

No. They are both codes which execute identically.

Because manuals provide the user the detailed command set and syntax

with which to write his application.

a.

Reduce labor costs by speeding up test operation therefore

requiring less labor /piece tested. Also by reducing skill level
because of computer control.

Release engineers from drudgery because the computer is able to

do repetitive tasks without an operator.

Provide insight by coupling analysis with measurement by having

the computer do mathematics computations before documenting
results.

Reduce human error and increase measurement accuracy and

consistency because digital instruments are typically more
accurate and more consistent than several operators making the

same measurement.

B-2

10.

11.

12.

13.

ANSWER KEY

CHAPTER 11 SELF TEST

the connector and the cable

(see page III-1)

The ATN line is asserted during interface messages; it is unasserted

during device-dependent messages.

The rate of the slowest device involved in a transmission.

Asynchronous. The rate can change to accommodate both fast and slow

devices.

At any time without regard to any of the other signals.
None. For others see page III-8.

20 meters, active device at every 2 meters

A total of 15 including the controller.

Two-thirds of connected devices.

Proper handshaking and some data communication.

a. non-prograrﬁmable

b. programmable

¢. distributed-processing

d. keystroke-programmed
See III-15 thru I1I-18 for explanation.

B-3

14. Throughput and software enhanced calibration.

15. (See page I1I-22)

B-4

7.

9.

ANSWER KEY

CHAPTER 1V SELF TEST
Establishes a common message structure, describes communications
elements, defines control protocol, defines status bytes for error
handling, standardizes features important to T & M systems.
device-dependent messages
FUNC? or
PRINT @n:"FUNC?" or
SET?
the semicolon (;)
SET?
ERR?
Numbers, Strings, Binary blocks, and End blocks.
with the EOI line
Writing systems software easier, self-documenting programs, system

change and expansion easier, training time shorter, development time is

faster, debug time is shorter.

B-5

3.

7.

10.

11,

12,

13,

ANSWER KEY
CHAPTER V SELF TEST

a. (4.25-1.78)/(6.23*9E2) = 4.405207776E-4
b. 7.5/(3.2-8.8 1 2) = -0.101023706897

Interrupts or aborts a running program.

RETURN

Deferred mode (program mode) has line numbers in front of each
statement and must be executed using the RUN command. Immediate

mode uses no line numbers and executes as soon as the RETURN key is
pressed.

SQR ((73.6+13.2)/(14.6-8) 1 2))

Allows a lower skilled operator to interact with the 4050 without having
to understand BASIC or programming. Allows a user to activate a

function using one key rather than many.

Page-to-page tutorial
Menu selectable features

Specific Application Demo
UDK 10

The R07 and RO8 Signal Processing ROM packs, or possibly a hard copy
unit.

Hard copy units (4611,4631); plotters (4662, 4663); auxiliary mass storage
devices (4907, 4924)

ANMSWER KEY

CHAPTER VI SELF-TEST

T 'INPUT PERIOD"

T Pt . P s
& G I O
[-1.-1.-1.-1.-}
Thoms “Vo=s
EZDZ
e P bt =t
\NCXE -4

pr]

p
PRINT "FREQUENCY = "jF

INIT

INPUT R{
RISDR(R1?2+R2T2)

P Pt Pubs gubd Pl
B OIN s D
[.-1-1.-1.-1.]

208 SET DEGREES
ig P=ASN(A-B)

PRINT * VEhter vaLues

IF U(-U THEN iv@
PRINT “VALUE TDO HIGH"
160 GO TO 120

170 IF VU=)>L THEN 200

188 PRINT “VALUE TOO LOW"

208 PRINT "UALUE IN RANGE"
216 GO TO 120

WIN = Qe

2=N

PRINT "ENTER EACH VALUE,
INPUT U

178 S=S+V

180 N=N-1

198 IF N>@ THEN 168

200 PRINT "AVERAGE IS *3S-2Z

P P gt g oot P $=8
NA RGN - D
1--1.-1.-7.-%.-1.-]

PRINT “PHASE SHIFT = "}jP

PRINT 'ENTER RISETIME OF PROBE AND SCOPE*

PRINT "SYSTEM RISETIME = “)R

INIT
PRINT "ENTER LENGTHS A AND B"

) PR;N; ‘ENTER UPPERy, THEN LOWER BOUNDARIES*®

NIT
ﬁgu ;HOH MANY NUMBERS DO YOU WANT TO AVERAGE"

ONE RT A TIME®

10.

1.

12,

13,

108 FOR I=1 TO i3
110 PRINT I
120 NEXT

@ PRINT "ENTER NUMBER OF VALUES TO BE ENTERED"
@ INPUT N
8 S=9
0 S2=8
@ PRINT 'ENTER VALUES, ONE AT A TIME"
1358 FOR I={ TO N
160 INPUT V
178 S=S+y
180 S2=52+U12
NEXT 1

280 PRINT "MEAN= °}S-N
210 U1=52-512/N
220 PRINT *UARIANCE = "jV1

DZ
o
-

INT "INPUT PERIOD"
ur p

140 PRINT "FREQUENCY = “;F
PRINT

160 PRINT "D0 YOU WANT TO RUN THIS AGAIN?"
170 INPUT As
180 é:DR$='YES' THEN 119

g §§I5¥ “SET UP FRONT PANEL, THEN PRESS RETURN®
@ PRINT 016‘“SET7“

@ DIM B$(130)

8 INPUT @16:B$

@ PRINT Bs$

WBYTE @ 17:
a. line numbers, order or sequence
b. variables

c. expression

d. averages 3 numbers

PRINT @ 18:"FREQ A"

B-8

/—‘.

14, Waits for interrupts and prints the address and status when an interrupt
occurs. Line 100 enables the 4050 to respond to interrupts. Line 500

determines which device caused the interrupt and gets the status byte.

B-9

—

address

AH

ALGOL

ANSI

ASCII

assembly
language

ATN

BASIC

BCD

APPENDIX C
GLOSSARY

A unique number (between 0 and 30 inclusive) identifying a
specific instrument in a GPIB system.

Accepter Handshake. The GPIB interface function providing
a device with the capability to guarantee proper reception of
remote multiline messages.

Algorithmic Language, or Algebraically Orientated
Language. A high-level language of European origin designed
principally for scientific calculations.

American National Standards Institute. An organization
chartered with the development of standards.

American Standard Code for Information Interchange. A
character set of 128 binary codes (seven bit positions)
representing the numerals, upper and lower case alphabet,
punctuation and other symbols and control functions, used in
communications between computers and other digital
devices. Also termed USASCII and ANSCII.

A low-level, machine oriented system of coding in which
programs may be written with mnemonics and labels instead
of instruction codes and memory locations. There is usually a
one-for-one relation between mnemonics and machine
instructions.

Attention. One of five GPIB interface signal lines used by a
controller to specify how data on the eight data lines are to
be interpreted and which devices must respond to the data.

Beginners' All-purpose Symbolic Instruction Code. A
"conversational" high-level language developed at Dartmouth
College for ease-of-use and ability to perform calculating
machine tasks. Usually implemented on general purpose
machines as an interpreter.

Binary Coded Decimal. The representation of decimal
numbers by groups of four binary bits.

binary

bit

BREAK

byte

codes

codes and
formats
standards

compiler

controller

CR

DAV

The lowest level of data representation in digital logic
consisting of two-state values, i.e., ones and zeroes.

Binary digit. A unit of information content, the smallest unit
in the binary system having logic states true and false.

One of the keys on the 4050 alphanumeric keyboard allowing
a user to interrupt, or stop the program being executed.

A set of binary digits usually six to nine bits long, considered
and operated on as a unit. It is most frequently applied to
eight bit units as character representations.

The form in which numbers, data, and messages must appear.

A Tektronix standard which augments the IEEE 488
(1978) standard by specifying in rigorous detail the

codes and formats of device-dependent messages between
instruments and/or the controller.

A program which accepts as input another program written in
a high-level language (e.g., FORTRAN) and produces, as
output, instructions in machine code for a particular
computer.

A device in a GPIB system which can address other devices to
listen or to talk. In addition, this device can send interface
messages to command specified actions within other devices.
A device with only this capability neither sends nor receives
device-dependent messages. (A computer is often used for
this task.)

Carriage Return. The ASCII code normally used to terminate
input, usually followed by a line feed (LF). CR literally
returns the cursor back to the left column.

Data Valid. One of three GPIB interface signal lines used to
effect the transfer of each byte of data on the eight data
lines from a talker or controller to one or more listeners.
DAV is used to indicate the condition (availability and
validity) of information on the eight data lines.

C-2

T

device
dependent
message

digitize

disk

distributed
processing

DUT

EBCDIC

EQI

firmware

floppy disk

formats

FORTRAN

A message used by the devices interconnected via the
interface system that are carried by, but not used or
processed by, the interface system directly.

To convert analog data to binary bits (digital data) so it can
be stored, processed, or transmitted by a digital device. Only
digital data can be transmitted on the GPIB.

A storage device in which binary information is stored on one
or both sides of rotating disks by selective magnetization of
portions of the surface.

The ability of computers and other intelligent devices
to share processing tasks.

Device Under Test. In a GPIB system, the device on which
the measurements are made.

Extended Binary Coded Decimal Interchange Code. An
eight-bit character code used mainly in IBM equipment and
giving 256 possible characters.

End Or Identify. One of five GPIB interface signal lines used
(by a talker) to indicate the end of a multiple byte transfer
sequence or, in conjunction with ATN (by a controller), to
execute a polling sequence.

Software programs stored in ROM which cannot be
dynamically altered.

A moving head disk storage device whose magnetic surface is
removable and flexible.

The order, syntax, and control protocol used by
device-dependent messages.

Formula Translation. A high-level language of U.S. origin,
designed mainly for scientific and engineering applications.

GPIB

handshake

high-level
language

HP-IB

[EC

IEC 625-1

IEEE

IFC

interface
messages

interpreter

1/0

General Purpose Interface Bus. The IEEE Standard 488
(1978), IEEE Standard Digital Interface for Programmable
Instrumentation, which deals with systems that use a
byte-serial bit-parallel means to transfer digital data among
a group of instruments and system components.

The process by which an acknowledgment signal is sent from
acceptor to source to indicate receipt of information.

A generalized method of writing a computer program

which allows the programmer to express problems in a simple
and convenient fashion in forms similar to mathematical
expressions or natural (English) language.

Hewlett-Packard Interface Bus. Hewlett-Packard's
implementation of IEEE 488 (1978).

International Electrotechnical Commission. An international
standards organization.

The international counterpart to IEEE 488 (1978).

The Institute of Electrical and Electronics Engineers, Inc.
U.S. sponsor of GPIB.

Interface Clear. One of five GPIB interface signal lines used
(by a controller) to place the interface system, portions of
which are contained in all interconnected devices, in a known
quiescent state.

GPIB messages used to manage the interface system
itself.

A program which converts instructions written in a high-level
language to machine code and causes the computer to check
these for syntactical errors and/or execute the instructions
immediately. BASIC is a language which is normally
implemented as an interpreter.

Input/Output. Data transferred between devices, or the
process of performing this transfer.

C-4

keystroke
programmable

LEARN mode

LF

listener

machine code

mass storage

multiplexer

NDAC

NRFD

operating
system

The ability of a device to store a sequence of
instructions, perform 1/0, and choose between alternative
actions based on input or processed information.

The capability of using the front panel of an instrument for
developing a set-up program in the controller. The SET?
query provides this capability to Tektronix' customers.

Line Feed. The ASCII character used by some devices to
terminate a transmission.

A device on the GPIB which can be addressed by an interface
message to receive device-dependent messages from another
device connected to the interface system.

Instructions expressed in binary form and capable of being
processed by a computer.

A device using media such as magnetic tape or disk for
permanent storage of large quantities of data.

A switching network for analog or digital signals which
selects one of several inputs for onward transmission from its
single output.

Not Data Accepted. One of three GPIB interface signal lines
used to effect the transfer of each byte of data on the eight
data lines from a talker or controller to one or more
listeners. NDAC is used to indicate the condition of
acceptance of data by device(s).

Not Ready For Data. One of three GPIB interface signal
lines used to effect the transfer of each byte of data on the
eight data lines from a talker or controller to one or more

listeners. NRFD is used to indicate the condition of readiness
of device(s) to accept data.

A program which controls the execution of other
programs, often providing scheduling, debugging, I/O control,
accounting, storage management and related functions.

C-5

PAGE

parallel

PASCAL

peripheral

poll

programmable
instruments

query

RAM

REN

RETURN

ROM

serial

SH

One of the keys on the 4050 which erases the screen and
positions the cursor at the upper left corner of the screen.

Simultaneous handling of all bits in a group of bits. GPIB
transmits eight bits in a parallel manner.

An ALGOL-based high-level language containing many data
handling constructs.

Various devices such as hard copy units, plotter, magnetic
tape drives, etc., used to input data, output data, and store
data.

Invite other devices to transmit signals.

Those instruments whose functions or settings can be
controlled via the GPIB.

A command requesting information from an instrument.

Random Access Memory. Usually applied to semiconductor
memory into which programs and data can be written for
temporary storage.

Remote Enable. One of five GPIB interface signal lines used
(by a controller in conjunction with other messages) to select
between two alternate sources of device programming data.

One of the keys on the 4050 which is used to terminate input.
This key issues a CR.

Read Only Memory. Any type of storage to which data
cannot be written by the system in which it exists. Usually
applied to non-volatile semi-conductor memory used for
permanent program (firmware) storage.

Mode of operation in which items are treated sequentially.
Opposite of parallel. GPIB transmits bytes serially.

Source Handshake. The GPIB interface function providing a
device with the capability to guarantee the proper transfer of
multiline messages.

software

software
maintenance

SRQ

talker

UDK

waveform
digitizer

A program, or sequence of instructions written in a
programming language for execution on a computer.

Debugging and enhancing software programs after they
have been "completed."

Service Request. One of five GPIB interface signal lines used
by a device to indicate the need for attention and to request
an interruption of the current sequence of events.

A device on the GPIB which can be addressed by an interface
message to send device-dependent messages to another
device connected to the interface system.

User Definable Key. Ten keys on the 4050 keyboard which
allow the user to branch to any of twenty specific BASIC
program locations.

An instrument which converts an analog waveform to its
digital representation. This is required to transmit any
waveform over the GPIB.

Cc-7

