INSTRUMENT REFERENCE BOOK

for the Tektronix type
564
storage oscilloscope

For all serial numbers

Most of the information here is a duplication of material already existing in the 564 IRB.

Because some Field Engineers and Field Maintenance Engineers want personal copies of the information and because we have never produced what might be called a formal New Instrument Training Package on the 564, this is it!

Additional material of this kind on the 564 will be piped only into the 564 IRB's.
(1), 1962, Tektronix, Inc., P. O. Box 500 Beaverton, Oregon. All rights reserved.

CONTENTS
General description
General parts information
General parts information
Electrical parts
Mechanical parts
T564 crt data sheet
Maintenance spares list
Field recalibration procedure
Factory calibration procedure
Capabilities
General theory
Schematics

SPECIFICATIONS	A- 1	
PARTS	B- 5	
PARTS	B- 25)	
ELECTRICAL	B- 27)	HPL:061-609
MECHANICAL	B- 38)	
T564	B-105	
SPARES	B-205	MSL:061-775
RECALIBRATION	C-551	FRP:061-666
CALIBRATION	C-805	FCP:061-570
CAPABILITIES	D-105	
THEORY	E- 25	
SCHEMATICS	F- 11	SCE:061-607

CORRESPONDENCE:

Send address changes or other correspondence to:
Tektronix, Inc.
Field Information
P. O. Box 500

Beaverton, Oregon

UPDATING:

We'll update this book as new information becomes available, sending it out as supplements issued at irregular intervals.

SUPPLEMENTS:

Supplements contain either additional pages or replacement pages. Throw away old pages that have been outdated and superseded by replacement pages.

SUPPLEMENT COVER LETTER:

The first page of each supplement is the supplement cover letter. It has several purposes:

1. Tells what IRB the supplement is to be filed in.
2. Summarizes the supplement's new information.
3. Tells how to file the information.
4. Contains a supplement code (to the left of "file" at the upper right-hand corner).

IS THIS IRB UP-TO-DATE?
Often you'll want to know whether or not you've received all of the supplements for this book or whether or not the page you're looking at is the latest one available.

Missing supplements:
You'll never know if a new supplement is on the way or in process, of course, but you can tell when you've missed a supplement:

1. Save the supplement cover letters (section G is a handy spot).
2. Occasionally cross-check the "supplements issued" information (next column) with the supplement codes on your cover letters. You can order missing supplements from us; specify the supplement code and the date.

Outdated pages:
Cross-check the page in doubt with the "current pages" information (next column). You can order updated pages from us; specify the IRB and the page number.

SUPPLEMENTS ISSUED:

The last supplement brings this book current through all FQD's, all FEI's, through FMR 169 8-8-62, ADR 104 5-25-62 and through the 1-25-63 FEN.
**A double asterisk indicates the supplement is current or partially current for this IRB.

$* *$ Z6	$3-26-62$	$* *$ CR0	$9-18-62$
${ }^{* * Z 7}$	$4-26-62$	Z12	$9-26-62$
${ }^{* * Z 8}$	$5-26-62$	$* *$ Z14	$11-26-62$
**Z10	$7-26-62$	${ }^{* *}$ CR1	$1-18-63$

CURRENT PAGES:

1 to 2		9-18-62
3		1-18-63
5		1-18-63
A- 1 to	4	1-18-63
A- 5 to	8	7-26-62
A- 9 to		5-26-62
A- 12		3-26-62
A- 13		4-26-62
B-		1-18-63
B- 25 to		11-26-62
B-105 to 1		1-18-63
B-205 to 20		1-18-63
C-551 to 5		11-26-62
C-555 to 5		11-26-62
C-567		11-26-62
C-805 to 8		1-18-63
D-105 to 1		1-18-63
E- 25 to	26	1-18-63
E- 28 to	31	1-18-63
F- 11 up		1-18-63

[^0]TYPE 564 (A-2127-2)
Pages A-1 to A-4

This cover sheet identifies unnumbered pages. Do not separate from attached information.
t
e n a t

i

NEW STORAGE OSCILLOSCOPE

LOW-COST SPLIT SCREEN

 TEKTRONIX TYPE 564

SPLIT-SCREEN DISPLAYS - with a single control for each half - in either storage or non-storage operation.

FOR STORAGE AND NON-STORAGE DISPLAYS

INPUT-OUTPUT WAVEFORMS
Display shows ability of the Type 564 to store similar waveforms for easy comparison.
Upper trace shows the trigger input to a multivibrator. Lower trace shows the output.

LOW-REPETITION-RATE SAMPLING

Display shows ability of the Type 564 (with sampling plug-in units) to record complete sampling waveforms at low repetition rates. Upper trace is stored. Lower trace is not stored. This capability for storing low-repetition-rate waveforms allows observation and analysis of the entire sampled display at one time.

SHOCK TEST

Display shows ability of the Type 564 to store consecutive events for comparison or photography. Waveforms indicate shock imparted by dropping sub-table weight of 5 lbs . from different heights. Drop of $5^{\prime \prime}=50.5 \mathrm{~g}$'s $; 10^{\prime \prime}=92.5$ g's; $15^{\prime \prime}=142$ g's $; 20^{\prime \prime}=181$ g's; 25" $=214$ g's. Sweep Speed is $2 \mathrm{msec} / \mathrm{cm}$. Accelerometer is ENDEVCO MODEL 2215.

CONVENIENT FEATURES

INDIVIDUAL CONTROLS FOR SPLIT-SCREEN DISPLAYS—include one for upper-half crt displays and erasure and one for lower-half crt displays and erasure. On either half, the control left permits non-storage operation . . . the control center permits storage operation . . . and the control right with spring return, erases the displays.
LOCATE BUTTON-when depressed, permits viewing starting point of the next trace to be stored. If it appears that the next trace will overlap the last stored trace, the starting point can be moved up or down by using the vertical position control.

INTEGRATE BUTTON—when depressed, permits storage display of repetitive high-speed signals faster than 25 centimeters per millisecond. Using the integration technique (storing charges from repetitive traces) permits storage displays much faster than stated writing rate of the crt.

OTHER CRT DISPLAY CONTROLS include those for changing focus, astigmatism, trace intensity, and scale illumination of the $8-\mathrm{cm}$ by $10-\mathrm{cm}$ display area, plus an adjustment for trace alignment.
CALIBRATOR—provides a convenient means for checking calibration of the amplifier and time-base units. The calibrator has 18 voltage settings, 1-2-5 sequence, from 0.2 millivolt to 100 volts, peak-to-peak-approximately 5 microsecond risetime at line frequency. The 0.5 -volt position (providing 0.1 volt into 50 ohms) can be used for calibrating the sampling plug-in units.
PLUG-IN COMPARTMENTS-accept the 2-Series and 3-Series Amplifier and Time-Base Units-which drive the crt deflection plates directly. The compartments can accept identical plug-ins for matched X-Y displays.

TEKTRONIX TYPE 564 SPLIT-SCREEN OSCILLOSCOPE

Highly versatile, the new Type 564 Oscilloscope features independent control of either half of the unique split-screen crt. Thus, the full screen can be used for storage or nonstorage displays. Or, one-half of the screen can be used for storage displays with the other half used for non-storage displays, or as a preview area.

Accepting a wide range of vertical and time-base plugin units, the Type 564 permits the type of performance demanded for particular applications. And, with approximately two-thirds of the circuitry housed within the plug-ins, servicing is easy and down-time is minimized.

FOR STORAGE AND NON-STORAGE DISPLAYS

The Type 564 has display capabilities for upper-half, lower-half, or full-screen storage or non-storage (with conventional crt operation in the non-storage mode).

The storage capability lends itself to single-shot displays at slow or medium speeds . . . and repetitive displays at fast speeds using the integration technique.
Single-trace writing speed is faster than 25 centimeters per millisecond. On repetitive traces, the integrate feature provides an increase in stored writing rate. For example, it is possible to increase the stored writing rate by at least 10 X on 12 repetitive traces. Storage time can be more than one hour; erase time approximately 250 milliseconds.

PLUG-IN UNIT CHARACTERISTICS

The Type 564 has display capabilities for differential, multi-trace, wide-band, delaying sweep, and sampling applications. Type and degree of performance depend upon 2-Series and 3-Series Amplifier and Time-Base Units used. The Type 3A75 Amplifier Unit and Type 2B67 Time-Base Unit appear in the illustration in a full-screen-storage display. Main characteristics of these two units - and nine other presently available plug-insappear in a chart on the back page.

Small-Size—only $141 / 2^{\prime \prime}$ high by $10^{\prime \prime}$ wide by $21 \frac{1}{8^{\prime \prime}}$ deep. Light Weight-less than 40 pounds, with plug-ins.

CRT CHARACTERISTICS

Rugged electrically and mechanically-because of its rectangular design and ceramic construction-the new split-screen tube is comparable to conventional Tektronix crt's.

The flat-face storage tube is the direct viewing, bistable type and has a parallel-ground glass face with full $8-\mathrm{cm}$ by $10-\mathrm{cm}$ display area.
Type 564 Storage Oscilloscope (without plug-in units) \$950
Type 3 A75 $50 \mathrm{mv} / \mathrm{cm}$ Amplifier Unit \$175
Type 2B67 Time-Base Unit with single sweep . . \$175

2-SERIES AND 3-SERIES PLUG-IN UNITS

A wide range of performance characteristics is provided by available plug-in units- from the simple single-channel Type 2A60 Amplifier to the dual-channel 0.4-nsec-risetime Type 3 S76 Sampling Unit. Also, the two latest plug-ins, the Type 3A1 Amplifier Unit and the Type 3B3 Time-Base Unit provide high-sensitivity wide-band dual-trace operation combined with calibrated sweep delay.
X-Y DISPLAYS: Types 2A60, 2A63, 3A72, 3A74 and 3A75 Amplifier Units operate equally well in the vertical and horizontal compartments of the Type 564, permitting X-Y displays using any combination of these plug-in units.

For medium and high-frequency X-Y operation, use of two units of the same type is recommended. Deflection-plate capacitances of the 564 are carefully standardized to minimize high frequency phase-shift between two plug-ins of the same type when operated $X-Y$.

STORAGE OF SAMPLED DATA: When used with Types $3 S 76$ and 3 T77 Sampling Plug-ins, flicker-free storage of low repetition rate, fast-rise signals can be achieved. A sampled and stored reference signal can be placed on one-half the screen, and subsequent signals can be compared on the other half of the screen.

AMPLIFIER UNITS				
TYPE	INPUT (ac or dc coupled)	\dagger PASSBAND (3-db down)	SENSITIVITY	PRICE
2A60	1 megohm paralleled by 47 pf 600 volts max.	dc-1 Mc.	$50 \mathrm{mv} / \mathrm{cm}-50 \mathrm{v} / \mathrm{cm}, 4$ decade steps, with variable control.	\$105
2A63 (50:1 rejection ratio)		dc-300 kc.	$1 \mathrm{mv} / \mathrm{cm}-20 \mathrm{v} / \mathrm{cm}$, 1-2-5 sequence, with variable control.	\$130
3A1—Dual Trace (Identical Channels)		dc-10 Mc. (each channel)	$10 \mathrm{mv} / \mathrm{cm}-10 \mathrm{v} / \mathrm{cm}, \quad 1-2-5$ sequence, with variable control. 6 cm Linear scan.	\$410
3A72—Dual Trace (Identical Channels)		dc-650 kc. (each channel)	$10 \mathrm{mv} / \mathrm{cm}-20 \mathrm{v} / \mathrm{cm}$, 1-2-5 sequence, with variable control.	\$250
3A74—Four Trace (Identical Channels)		dc-2 Mc. (each channel)	$20 \mathrm{mv} / \mathrm{cm}-10 \mathrm{v} / \mathrm{cm}, ~ 1-2-5$ sequence, with variable control.	\$550
3A75		dc-4 Mc.	$50 \mathrm{mv} / \mathrm{cm}-20 \mathrm{v} / \mathrm{cm}$, 1-2-5 sequence, with variable control.	\$175
3S76—Dual Trace Sampling (for use with 3T77)	50 ohms dc-coupled	equivalent dc-to-875 Mc. (0.4-nsec risetime)	$2 \mathrm{mv} / \mathrm{cm}-200 \mathrm{mv} / \mathrm{cm}, ~ 1-2-5$ sequence, with variable control.	\$1100

TIME-BASE UNITS			
TYPE	SWEEP FEATURES	TRIGGERING	PRICE
* 2B67	$1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}, 1-2-5$ sequence, variable between rates. 5X Magnifier. Single Sweep.	Internal, External, Line; Amplitude-Level Selection; AC or DC-Coupling; Automatic or Free-Run; \pm Slope.	\$175
3B1	Normal and Delayed Sweeps- $0.5 \mu \mathrm{sec} /$ cm to $1 \mathrm{sec} / \mathrm{cm}, 1-2-5$ sequence. 18 cali brated delay settings, $0.5 \mu \mathrm{sec}$ to 10 sec , variable between rates uncalibrated.	Internal or External; Amplitude-Level Selection; AC or DC-Coupling; Automatic; \pm Slope; for Normal Sweep. Same features (except no Automatic) for Delayed Sweep.	\$475
3B3	Normal and Delayed Sweeps- $0.5 \mu \mathrm{sec} /$ cm to $1 \mathrm{sec} / \mathrm{cm}, 1-2-5$ sequence. Continuously variable calibrated delay from $0.5 \mu \mathrm{sec}$ to 10 sec . Single Sweep for main sweep.	Internal, External, Line; Amplitude-Level Selection; AC or DC-Coupling; Automatic ${ }_{i}$ \pm Slope; for Normal Sweep. Same features (except no Line or Automatic) for Delayed Sweep.	\$525
$3 T 77$ Sampling Sweep (for use with 3S76)	Equivalent to $0.2 \mathrm{nsec} / \mathrm{cm}$ to $10 \mu \mathrm{sec} /$ $\mathrm{cm}, 1-2-5$ sequence, variable between rates. 10X Magnifier.	Internal or External \pm Slope.	\$650
\dagger Passband characteristics pertain to non-storage mode.		*Same as former Type 67 with addition of single-sweep feature.	

INE. overseas distributors in 27 countries and honolulu, hawall.
Tektronix Field Offices are located in principal cities throughout the United States. Please consult your Telephone Directory.
Tektronix Canada Ltd: Montreal, Quebec • Toronto (Willowdale) Ontario • Tektronix International A. G., Terrassenweg 1A, Zug, Switzerland.

GENERAL PARTS INFORMATION

We've added a fourth digit to the crt nomenclature to identify graticule type. The new numbering system went into effect with crt's produced in late December 1962, on.

T5640P- No internal graticule
T5641P- Internal graticule T5642P- Any other possible graticule configuetc. ration we may come up with.

HISTORY PARTS LIST

CONTENTS:

General parts information PARTS B-25
Electrical parts ELECTRICAL B-27
Mechanical parts MECHANICAL:

Publication:
061-609
November 1962

For all serial numbers.

ABBREVIATIONS:

SPECLAL NOTES AND SYMBOLS:

\pm

X000
approximate serial number

000X
*000-000
part remor fir
asterisk preceding Tektronix part number indicates manufactured by or for Tektronix, also Tektronix reworked or checked components
$\bmod w /$ modify with \qquad - Simple replacement is not recommended. Replace with part listed for later instruments and also modify the circuit symbol numbers listed after mod w/

Values are fixed unless marked Variable.

Ckt. No.	Tektronis Part Number		Description	S/N Range
		BULBS		
B601	150-001	Incandescent,	G.E. \#47	Graticule Light
B602	150-001	Incenndescent,	G.E.\#47	Graticule Light
B603	152-018	Incandescent,	G.E. \#12	Pilot Light
B856	150-025	Neon, NE-2E		'
B857	150-025	Neon, NE-2E		
B903	150-028	Neon, NEm83		

CAPACITORS

Tolerance $\pm 20 \%$ unless otherwise indicated. Tolerance of all electrolytic capacitors are as follows (with exceptions):

$$
\begin{aligned}
3 V-50 V & =-10 \%,+250 \% \\
51 V-350 V & =-10 \%,+100 \% \\
351 V-450 V & =-10 \%,+50 \%
\end{aligned}
$$

C611	285-510	$.01 \mu \mathrm{P}$	MT	400 v
C616	285-510	. $01 \mu \mathrm{f}$	Mr	400 v
C640A, B	*290-060	$160 \mu \mathrm{f} \times 10 \mu \mathrm{f}$	EMC	350 v
C642A, B	*290-061	$160 \mu \mathrm{f} \times 10 \mu \mathrm{f}$	EMC	350 v
c644	*290-133	$2 \times 125 \mu \mathrm{f}$	EMC	350 v
C646	*290-040	$2 \times 40 \mu \mathrm{f}$	EMC	250 v
C650	285-510	. $01 \mu \mathrm{f}$	MT	400 v
C667	290-002	$8 \mu \mathrm{f}$	EMT	450 v
c670	285-510	. $01 \mu \mathrm{f}$	MT	400 v
C720	290-1.66	$2 \times 2000 \mu \mathrm{f}$	EMC	25 v

CAPACITORS (Cont'd.)

6732	290-099	$1.00 \mu \mathrm{f}$	EMP		15 v
6737	283-026	. $.2 \mu \mathrm{f}$	Disc Type		25 v
C 757	290-015	$100 \mu \mathrm{f}$	EMI		25 v
C760	281-027	. $7-3 \mathrm{pf}$	Tub.	Var.	
C761	281-027	.7-3 pf	Tub.	Var.	
C762	283-003	. $01 \mu \mathrm{f}$	Disc Type		150 v
C801	283-006	. $02 \mu \mathrm{f}$	Disc Type		600 v
C803	283-000	. $001 \mu \mathrm{P}$	Disc Type		500 v
C807	285-502	. $001 \mu \mathrm{P}$	MT		1000 v
c822	283-071	. $0068 \mu \mathrm{f}$	Disc Type		5000 v
c830	283-036	. $0025 \mu \mathrm{f}$	Disc Type		6000 v
C832	283-036	. $0025 \mu \mathrm{f}$	Disc Type		6000 v
0837	283-036	. $0025 \mu \mathrm{f}$	Disc Type		6000 v
c842	285-519	. $047 \mu \mathrm{P}$	MTP		400 v
c842	283-071	. $0068 \mu \mathrm{f}$	Disc Type		5000 v
C848	285-501	. $001 \mu \mathrm{f}$	PTM		600 v
C853	283-036	. $0025 \mu \mathrm{f}$	Disc Type		6000 v
C876	290-025	$6.25 \mu \mathrm{f}$	EMT		300 v
c878	281-523	100 pp	Cer.		350 v
C884	281-524	150 pr	Cer.		500 v
C897	283-000	. $001 \mu \mathrm{P}$	Disc Type		500 v
C904	290-025	$6.25 \mu \mathrm{P}$	EMT		300 v
C916	285-527	$.1 \mu \mathrm{f}$	MPT		600 v
C918	285-527	$.1 \mu \mathrm{f}$	MPT		600 v
C935	290-164	$1 \mu \mathrm{P}$	EMT		150 v

DIODES

D640A, B, C, D	152-047
D642A, B, C, D	152-047
D644A, B, C, D	152-047
D646	152-047
D720	152'-035
D'721	152-035
D762	152-008
D763	152-061
D838	152-047
D839	152-047

D908	$152-066$
D911	$152-066$
D916	$152-066$
D918	$152-066$
D920	$152-066$

D926	$152-066$
D935	$152-066$
D937	$152-094$

FUSES
F601 159-005
F601 159-034
F720
159-023

RESISTORS

Resistoxs are fixed, composition, $\pm 10 \%$ unless otherwise indicated.

R601 ${ }^{\text {t }}$	**311-340	50Ω		Var.	WW	SCALE ILLUM.
R602	308-142	30Ω	3 w		WW	5\%
R609	302-106	10 meg	$1 / 2 \mathrm{w}$			
R610	302-104	100 k	1/2 w			
R611	302-102.	1 k	1/2 w			
R612	302-272	2.7 k	1/2 w			
8616	311-015	10 k		Var.	WW	-100 VOLTS
R617	308-186	80 k	1/2 w		WW	1\%
R618	308-226	10 k	1/2 w		WW	1\%
R619	302-224	220 k	1/2 w			
R624	302-473	47 k	1/2 w			
R625	302-222	2.2 k	1/2 w			
R626	302-184	180 k	1/2 w			
R627	302-102	1 k	1/2 w			
R628	308-176	4 k	20 w		WW	5\%
R632	302-102	1 k	$1 / 2 \mathrm{w}$			
R633	302-473	47 k	1/2 w			
R635	301-302	3 k	1/2 w			5\%
R640	304-100	10 ת	1 W			
R642	304-100	10Ω	1. w			
R644	304-100	10Ω	1 w			
R646	304-101	100Ω	1 w			
R650	309-101	330 k	1/2 w		Prec.	1\%
R651	309-162	250 k	$1 / 2 \mathrm{w}$		Prec.	1\%
R65?	302-102	1 k	1/2 w			

f(ianged with sW6O1. Furnished as a unit. $x * N \operatorname{low}$ item.

RESISTORS (Cont'd.)
$R 653$
R654
R655
R656 R657
$R 658$
R659 R663 R664 R666
R667
R670
R671
R672 R673
R675
R676
R677
R678

R679

8730

R732
R733
R734

302-225
302-474
302-685
311-068
$302-684$

302-273
302-333
302-102
302-102
308-176

308-176
309-156
309-053
302-102
302-105

302-825
311-068
304-224
302-39.4
302-333

311-068 309-104 310-115 302-564 302-334
2.2 meg $1 / 2 \mathrm{w}$ $470 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $6.8 \mathrm{meg} \quad 1 / 2 \mathrm{w}$ 500 k . 2 w Var. +125 VOLTS $680 \mathrm{k} \quad 1 / 2 \mathrm{w}$
$27 \mathrm{k} \quad \mathrm{l} / 2 \mathrm{w}$ $33 \mathrm{k} \quad \mathrm{l} / 2 \mathrm{w}$
$1 \mathrm{k} \quad 1 / 2 \mathrm{w}$
$1 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $4 \mathrm{k} \quad 20 \mathrm{w}$
$4 \mathrm{k} \quad 20$ w
$1.024 \mathrm{meg} \quad 1 / 2 \mathrm{w}$ $333 \mathrm{k} \quad \mathrm{l} / 2 \mathrm{w}$ $1 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $1 \mathrm{meg} \quad 1 / 2 \mathrm{w}$.
$8.2 \mathrm{meg} \quad 1 / 2 \mathrm{w}$ 500 k .2 w Var. +300 VOLTS 220 k 1 w $390 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $33 \mathrm{k} \quad \mathrm{I} / 2 \mathrm{w}$ $500 \mathrm{k} \quad .2 \mathrm{w} \quad$ Var. -12.2 VOLTS $2.05 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $15 \mathrm{k} \quad 1 \mathrm{w}$ $560 \mathrm{k} \quad 1 / 2 \mathrm{w}$ $330 \mathrm{k} \quad 1 / 2$ w

WW 5%

WW 5%
Prec. 1%
Prec. 1\%

Prec. 1\%
1%

RESISTORS (Cont'd.)						
R735	302-2'72	2.7 k	$1 / 2 \mathrm{w}$			
R737	302-151	150Ω	1/2 w			
8744	308-231	220 a	3 w		WW	5\%
R754	302-471	470Ω	1/2 w			
R759	302-104	100 k	1/2 w			
R762	316-473	47 k	1/4 w			
R763	316-105	1 meg	1/4 w			
R764	302-105	1 meg	1/2 w			
R781	316-470	47Ω	1/4 w			
R782	$316-470$	47Ω	1/4 w			
R783	316-470	47Ω	1/4 w			
R784	316-470	47 ?	1/4 w			
R801	306-681	680 』	2 w			
R802	302-562	5.6 k	1/2 w			
R803	306-273	27 k	2 w			
R806	302-104	100 k	1/2 w			
R807	302-472	4.7 k	$1 / 2 \mathrm{w}$			
18813	302-101	100Ω	1/2 w			
R815	$302-474$	470 k	1/2 w			
R816	302-102	1 k	I/2 w			
R831	302-104	100 k	1/2 w			
R832	302-106	10 meg	1/2w			
R833	311-043	2 meg		Var.		INTENSITY
R834	302-105	1 meg	1/2 w			
R835	310-591	30 meg	2 w			5\%

		RESIStors (C	nt'd.)		
8836	302-223	22 k	1/2 w		
R837	302-471	470 』	1/2 w		
R838	301-242	2.4 k	1/2 w		5\%
R839	302-104	100 k	$1 / 2$ w		
R840	301-125	1.2 meg	1/2 w		5\%
R841	311-042	2 meg	2 w	Var.	high voltage
R842	310-595	12 meg	2 w		Prec. 5\%
R844	311-121	5 meg		Var.	FOCUS
R846	302-225	2.2 meg	1/2 w		
R847	302-103	10 k	1/2 w		
R848	302-334	330 k	1/2 w		
R849	302-223	22 k	1/2 w		
R851	302-104	100 k	1/2 w		
R852	302-273	27 k	1/2 w		
R853	302-471	470Ω	1/2 w		
R854	302-105	1 meg	1/2 w		
R860	311-317	$2 \times 1 \mathrm{k}$		Var.	trace aligment
R861	302-680	68 』	1/2 w		
R864	311-206	250 k		Var.	ASTIGMATISM
R868	302-564	560 k	1/2 w		
R870	301-393	39 k	1/2 w		5\%
R871	311-159	20 k		Var .	CAL. AMPL.
R872	301-154	150 k	1/2 w		5\%
R873	302-103	10 k	1/2 w		

RESISTORS (Cont'd.)

R876	301-153	1.5 k	1/2 w			5\%
R877	301-183	18 k	1/2 w			5\%
R878	301-564	560 k	$1 / 2 \mathrm{w}$			5\%
R879	301-124	J.20) k	1/2 w			5\%
R883	305-223	22 k	2 พ			5\%
R885	309-121	9.5 k	1/2 w		Prec.	1\%
R886	309-119	6.375 k	1/2 w		Prec.	1\%
R887	309-117	2.1 k	1/2 w		Prec.	1\%
R888	309-116	1.025 k	1/2 w		Prec.	1\%
R889	309-113	610 』	1/2 W		Prec.	1\%
R890	309-073	200Ω	1/2 w		Prec.	1\%
R891	309-112	100Ω	1/2 w		Prec.	1\%
R892	309-067	60Ω	$1 / 2 \mathrm{w}$		Prec.	1\%
R893	309-066	40Ω	$1 / 2 \mathrm{w}$		Prec.	1\%
R896	309-045	100 k -	$1 / 2 \mathrm{w}$		Prec.	1\%.
R897	309-112	100Ω	$1 / 2 \mathrm{w}$		Prec.	1\%
R898	309-112	100Ω	$1 / 2 \mathrm{w}$		Prec.	1\%
R899	*308-090	1.14Ω	1 w		WW	
R903	302-333	33 k	1/2 w		4	
R:904	311-026	100 k	2 w	Var.		RAG
R906	311-374	250 k		Var.		-ST
R908	302-224	220 k	1/2 w			
R909	302-684	680 k	1/2 w			
R911	302-224	220 k	1/2 w			
R912	302-684	680 k	1/2 w			

5\% 5\% 5\% 5\% 5\%

Prec. 1\%
Prec. 1\%
Prec. 1%
Prec. 1\%
Prec. 1\%

Prec. 1\%
Prec. 1%
Prec. 1%
Prec. 1\%
Prec. 1%.

Prec. $\quad 1 \%$
Prec.

WW

STORAGE LEVEEL

NON二STORAGE LEVEL

SWITCHES (Cont'd.)
$\begin{array}{ll}\text { SW911 } & * * 260-510 \\ \text { SW948 } & * * 260-507\end{array}$

TK601 260-157

T601 ***120-296
T801 *120-275

	TRANSISTORS	
Q624	$151-087$	J3138
Q734	$151-040$	$2 N 1302$
Q744	$151-042$	$2 N 1378$
Q757	$151-060$	$2 N 1545$
		ELECTRON TUBES
V609	$154-291$	OG3
V627	$154-307$	7233
V634	$154-187$	$6 D J 8$
V654	$154-022$	$6 A U 6$
V667	$154-020$	$6 A S 7$
V674	$154-022$	$6 A U 6$
V800	$154-167$	6CZ5
V814	$154-046$	$12 B H 7 A$

Lever LOWER (Display)
Push-Button INIEGRATE

THERMAL CUTOUTS
Thermal Cutout 160°

TRANSFORMERS
Low Voltage
High Voltage

TRANSISTORS
J3138
2N1302
2N1378
2N1545

ELECTRON TUBES

OG3
7233
6DJ8
6AU6
6AS7

6AU6
6CZ5
12BH7A
**New Itiem。
***New Tek-made item。

ELECTRON TUBES (Cont'd.)

V822	$154-051$	5642		
V832	$154-051$	5642		
V859	***154-4.10	T564	CRT	P1
Standard Phosphor				
V884	$154-278$	6BL8		
V923	$154-041$	I2AU7		

***New Tek-made item。

FRONT

Ref.	Part No.	Quan.	Description
1.	$334-829$	1	Tag, Sertal, Blank
2.	334-679	1	Tag, Serlal Number
3.	210-413	2	Nut, Switch Mounting Washer Lockwasher Solder Lug
	210-840	2	
	210-012	2	
	210-207	2	
4.	366-215	2	Knob, Lever Switch
5.	366-117	1	Knob, Large Charcoal Nut, Pot Lockwashex
	210-413	1	
	210-012	1	
6.	131-064	1	Connector, Coaxial Bracket, Coaxial Insulator Solder Lug Washer, Fiber Lockwasher Nut
	406-244	1	
	210-224	1	
	210-812	2	
	210-004	2	
	210-406	2	
7.	366-148	4	Knob, Small Charcoal Nut, Pot Washer Lockwasher Solder Lug
	210-413	4	
	210-840	4	
	210-013	4	
	210-207	2	
8.	136-047	1.	Socket, Pilot Light Holder
9.	358-010	1	Bushing, Pane 1 Lockwasher Nut
	210-013	1	
	210-494	1	
10.	131-148	2	Connector, Female Amph. Screw Tube, Aluminum Spacer Lockwasher Nut
	211-014	4	
	166-029	4	
	210-004	4	
	210-406	4	
11.	122-107	2	Ang1e, Aluminum Frame Screw Nut
	212-039	8	
	210-458	8	
12.	351-038	2	Guide, Plug-in Rail
	211-541	4	Screw

FRONT (Cont.)

Ref.	Part No.	Quan.	Description
13.	387-723	1	Plate, Bottom Cover
	212-039	4	Screw
	210-458	2	Nut
14.	333-720	1	Front Panel
	004-160	1	Protective Cover
15.	200-426	1	Cover, Graticule
	210-571	4	Nut, Graticule Cover
	337-540	1	Shield, Reflector (located under graticule cover)
	352-049	1	Holder, Reflector Shield
16.	331-097	1	Graticule

REAR

Ref.	Part No.	Quan.	Description
1.	441-464	1	Chassis, Calibrator
	211-510	1	Screw, Chassis to Top Rail
	211-507	5	Screw, Chassis to Chassis \& Plug-in Housing
	210-457	2	Nut
2.	210-413	5	Nut, Pot
	210-840	5	Washer
	210-012	5	Lockwasher
3.	210-583	8	Nut, Mini. Pot
	210-940	8	Washer
	210-223	3	Solder Lug
	210-046	2	Lockwasher
4.	213-044	2	Screw, Themo Cutwout Mounting
5.	212-037	3	Screw, Resistor Mounting
	210-808	3	Washer, Centering
	210-462	3	Nut, Resistor Mounting
	212-004	3	Screw, Resistor to Chassis
6.	352-031	1	Holder, Fuse
	211-510	1	Screw
	210-006	1	Lockwasher
	210-407	1	Nut
7.	348-031	2	Gronmet, Plastic Snap-in
8.	385-137	1	Rod, Delrin
	213-041	1	Screw
9.	385-097	2	Rod, Nylon
	385-124	1	Rod, Aluminum
	210-006	1	Lockwasher
	211-507	3	Nut
	337-529	1	Shield, H.V. (not-shown)
	211-507	3	Screw, Shield to Rods
	210-803	1	Washer
	343-001	1	Cable Clamp
	214-210	1	Solder-Spool Assemb1y
	361-007	1	Spacer
10.	343-043	2	C1amp, Neon
11.	346-001	1	Strap, Transformer
	210-004	2	Lockwasher
	210-406	2	Nut

RIGHT SIDE (Cont.)

Ref.	Part No.	Quan.	Description
12.	136-015	6	Socket, Tulue
	213-044	12	Screw
13.	387-726	1	Plate, Gusset
	212-023	2	Screw, Plate to Rall
	211-538	2	Screw, Plate to Rear Subpanel
	210-457	2	Nut
14.	136-095	3	Socket, Transistor
	213-113	6	Screw
15.	211-510	2	Screw, Transistor Mounting
	210-006	1	Lockwasher
	210-202	1.	Solder lug
	210-407	2	Nut
16.	136-008	3	Socket, Tube
	213-044	6	Screw
17.	136-013	1	Socket, Tuta
	211-538	2	Screw
	210-006	2	Lockwasher
	210-407	2	Nut
18.	200-237	1	Cover, Fuse
19.	343-008	1	Clamp, Capacitor
	210-863	1	Washer
	210-006	1	Lockwasher
	210-407	1	Nut:
20.	348-042	2	Foot, Rubber
	212-071	4	Screw
	210-458	4	Nut
21.	179-689	1	Cable, Power Chassis
22.	406-881	1	Bracket, Transformer
	210-564	4	Nut, Transformer Mounting
	210-010	4	Lockwasher
23.	406-893	1.	Bracket, Pot
	211-507	2	Screw
24.	210-201	2	Solder Lug
	213-044	2	Screw
25.	352-015	1	liolider, Nylon
	213-045	1	Screw

Ref.	Paxt No.	Quan.	Description
26.	348-003	2	Grommet, 5/16"
	348-006	1	Grommet, 3/4'
27.	179:691	1	Cable, F\& I
28.	348-004	1	Grommet
29.	179-692	1	Cable, Calibrator Chassis
30.	441-463	1	Chassis, Power
	212-039	5	Screw, Chassis to Bottom
	210-007	5	Lockwasher
	212-040	4	Screw, Chassis to Back Plate
	212-023	1	Screw, Chassis to Rail
	211-559	3	Screw, Chassis to Front Subpanel.
31.	406-880	1	Bracket, Right Plug-in Housing
	211-559	3	Screw, Bracket to Chassis
	210-457	5	Nut
	211-538	5	Screw, Bracket to Chassis \& Subpanel
	212-039	,	Screw, Bracket to Bottom
	210-458	1	Nut
32.	385-099	1	Rod, Nylon
	211-538	1	Screw
33.	200-247	1	Cover, Pot
34.	200-269	2	Cover, Pot
35.	348-012	1	Grommet
36.	387-725	1	Plate, Right Side

LEFT SIDE

Ref.	Part No.	Quan.	Description
1.	387-727	1	Plate, Rear Subpanel
2.	381-073	2	Bar, Retaining
3.	136-147	$\begin{gathered} 1 \\ \text { Aval.ab } \\ 387=393 \\ 213-086 \end{gathered}$	```Socket, CRT, Assembly le Separately: 1 Plate, Socket Back 2 Screw```
4.	354-147	1	Ring, CRT Clamping
	211-560	1	Screw, Clamping
	210-407	1	Nut
	211-576	2	Screw, Ring to Nut-
	210-949	2	Washer, Flat
	214-207	1	Nut, CRT Securing
5.	406-878	1	Bracket, CRT
	211-507	2	Screw
6.	211-543	2	Screw, Capacitor Mounting
	210-006	2	Lockwasher
	210-407	2	Nut
	386-254	1.	Plate, Fiber Flange
	200-258	1	Cover, Capacitor
7.	344-047	1	Clip, Deflection
8.	200-261	1	Cover, Capacitor
	210-952	1	Washer, Insulating
9.	211-534	2	Screw, Capacitor Mounting
	210-006	2	Lockwasher
	210-407	2	Nut
	386-252	1	Plate, Fiber Flange
	200-256	1	Cover, Capacitor
10.	381-213	1	Bar, Handle
	212-039	4	Screw
11.	179-705	1	Cable, 5 Pin Connector
12.	343-006	2	Cable Clamp
	211-538	2	Screw
	210-803	2	Washer
	210-006	2	Lockivasher
	210-407	2	Nut

LEFF SIDE (Cont.)

Ref.	Part No.	Quan.	Description
13.	337-551	1	Shield, CRT
	406-877	1	Bracket, Top CRT Shield
	406-875	1	Bracket, Bottom GRT Shield
	211-510	4	Screw, Brackets to Shield
	211-538	4	Screw, Brackets to Subpanel
14.	352-044	1	Holder, Coil Form
	211-011	1	Screw
	210-004	1	Lockwasher
	210-406	1	Nut
15.	136-152	2	Socket, Lamp
	211-538	2	Screw
	210-803	2	Washer
	210-457	2	Nut
16.	179-690	1	Cable, 110 Volt
17.	384-611	1	Rod, Spacer
18.	387-724	1	Plate, Front Subpanel
19.	348-042	2	Foot, Rubber
	212-071	4	Screw
	210-458	4	Nut
20.	406-879	1	Bracket, Left Plug-in Housing
	211-538	2	Screw, Bracket to Subpanel
	210-457	2	Nut
	211-541	3	Screw, Bracket to Chassis
	212-039	1	Screw, Bracket to Bottom
	210-458	1	Nut
21.	210-201	1	Solder Lug
	213-044	1	Screw
22.	352-015	1	Holder, Nylon
	213-045	1	Screw
23.	343-074	1.	Clamp, Tube
	355-070	1	Stud, Tube Clamp
	210-008	2	Lockwasher
	210-409	2	Nut
24.	211-532	2	Screw, Capacitor Mounting
	210-006	2	Lockwasher
	210-407	2	Nut
	432-044	1	Base, Capacitor Mounting
	386-254	1	Plate, Fiber Flange
	200-259	1	Cover, Capacitor

LEFT SIDE (Cont.)

Ref.	Part No.	Quan.	Description
25.	211-534	2	Screw, Capacitor Mounting
	210-407	2	Nut
	386-255	1	Plate, Metal Flange
26.	348-012	1	Grommet
27.	179-704	1	Cable, CRT
28.	387-725	1	Plate, Left Side

The Tektronix Type $T 564$ is a 4×5 inch rectangular flat-faced cathode-ray tube with electrostatic focus and deflection. The T564 is designed primarily for use in the Tektronix 564 storage oscilloscope.

MECHANICAL SPECIFICATIONS:

Deflection polarity

Positive voltage on DJ1 deflects beam toward pin No. 1
Positive voltage on DJ3 deflects beam toward pin No. 4
Geometry (measured under typical operating conditions):
Minimum useful scan DJ1-DJ2-------------------- 8 cm

Centering of undelfected spot with respect to Geometric center

(Deflection electrodes connected to Grid No. 5)
Raster distortion-----------------------1. 1.3% Max.

Viewing gun:

Heater voltage	12.6 volts DC
Heater current (total)-	$0.3 \pm 10 \%$ amperes DC
Capacitance, interelectrodes (typical values)	
A Grid No. 1 to all other electrodes--------	$16.4 \mu \mu \mathrm{f}$
B Grid No. 1 to all other electrodes---.----	$17.4 \mu \mu \mathrm{f}$
Grid Nos. 2 and 3 to all other electrodes---	$75.6 \mu \mu \mathrm{f}$
Grid No. 4 to all other electrodes------m-	$100 \mu \mu \mathrm{f}$
Grid No. 5 to all other electrodes----------	$150 \mu \mu \mathrm{f}$
Grid No. 6 to all other electrodes---------	$125 \mu \mu \mathrm{f}$
Grid No. 7 to all other electrodes----------	$240 \mu \mu \mathrm{f}$
STB No. 1 to all other electrodes	$162 \mu \mu \mathrm{f}$
	$165 \mu \mu \mathrm{f}$
STB No. 1 to STB No. 2--------------------------------	$19 \mu \mu \mathrm{f}$
	$19 \mu \mu \mathrm{f}$

MAXIMUM RATINGS:

Writing gun (all measurements taken with respect to the writing gun cathode)
Accelerator and deflection system----------------- 4000 volts Max.
(Screen, lst anode, blanking plates, 2nd anode deflection plates, isolation shield ${ }^{1}$)

Focus electrode:

Maximum current to focus electrode----------- $\pm 10 \mu \mathrm{a}$
Peak voltage between electrodes:
Plateto-plate-------------------------------- 500 volts Max.
Plate to all other electrodes in the accelerator and deflection system--------- 500 volts Max.

Between any two electrodes in the accelerator and deflection system---.------ 500 volts Max.

Grid No. 1 voltage
Negative bias value------------------------ 150 volts Max.
Positive bias value------------------------ 0 volts Max.
Positive peak value----------------------- 2 volts Max.
Peak heater - cathode voltage
Heater negative with respect to cathode----- 125 volts Max.
Heater positive with respect to cathode------ 125 volts Max.
Maximum electrode power dissipation
1st anode and blanking plate------------------ 3 watts
Viewing gun (all measurements taken with respect to the viewing gun cathode)
STB No. 1 and STB No. 2 voltage
Bias value---------------------------------- 500 volts Max.
Peak value---------------------------------- 1000 volts Max.
Accelerator and collimation system--------------- 500 volts Max.
(Anode and collimation electrodes G3, G4, G5, G6, G7)

Peak voltage between electrodes
Between any two electrodes in the acceleration and collimation systems------. 500 volts Max.

Collimation electrodes, G3, G4, G5, G6, G7

Grid No. 1 voltage

Positive peak value--------------------------. 2 volts Max.
Peak heater - cathode voltage
Heater negative with respect to cathode----- 125 volts Max.
Heater positive with respect to cathode----- 125 volts Max.
Maximum electrode power dissipation
Collimation electrodes G3, G4, G5, G6, G7---- 2 watts Max.

Writing gun - viewing gun bias
Viewing gun cathode positive with respect to writing gun cathodes--------------------------- 3500 volts Max.

PICAL OPERATING CONDITIONS:
Writing gun (all measurements taken withrespect to the writing gun cathode)

Electrode designation
Isolation shield voltage----- Eg6 3500 volts DC^{1}
Average of deflection plates-- $\quad 3500$ volts DC
Accelerator voltage
Grid No. 5 (astigmatism)-- Eg5 3350 to 3650 volts DC
Grids No. 2 and 3 (1st anode) and Blanking plate

Eg2,3)
Bj 1)

Grid No. 5 (astigmatism)--	$\operatorname{Eg} 5$	3350 to 3650 volts DC
Grids No. 2 and 3 (1st anode)	$\operatorname{Eg} 2,3)$	3500 volts DC
and Blanking plate	Bj 1	

Deflection factors (nominal)

$$
\begin{aligned}
& 19.5 \text { volts } / \mathrm{cm}
\end{aligned}
$$

$$
\begin{aligned}
& 18.4 \text { volts/cm }
\end{aligned}
$$

Useful scan

Deflection blanking voltage (BJ1 to BJ2)

Viewing gun (all measurements taken with respect to the viewing gun cathode)

Electrode designation
Storage target backplate No. 1
Storage target backplate No. 2
Collimator voltage

Grid No. 7	Evg 7	10 to 75 volts
Grid No. 6	Evg 6	70 to 125 volts
Grid No. 5	Evg 5	125 to 240 volts
Grid No. 4	Evg 4	245 volts
Grid No. 3	Evg 3)	125 to 245 volts 2
Grid No. 2	Evg 2)	

Grid No. 1 voltage (contro1) Evg $1 \quad 0$ to -100 volts 3

$8 \times 10 \mathrm{~cm}$

Writing gun - viewing gun bias
Viewing gun cathode positive with respect to

NOTES:

1. The writing gun isolation shield, viewing gun anode, and collimation Grid No. 3 are internally connected.
2. Their potential is adjusted to optimize writing gun geometry, and collimation is adjusted with $\operatorname{Evg} 4,5,6,7$, with respect to this geometry adjust.
3. Grid No. 1 bias is adjusted to get precise coverage of the tube faceplate.

MAINTENANCE SPARES LIST

Publication:
061-775
January 1963

This is a list of parts in a kit designed to maintain one instrument on an emergency basis. Order kits through your nearest Tektronix Field Office; specify:

060-622 564 maintenance spares kit

ABBREVIATIONS:

cer	ceramic
comp	composition
emc	electrolytic, metal cased
emt	electrolytic, metal tubular
gmv	guaranteed minimum value
h	henry
k	kilo (10 ${ }^{3}$)
k	kilohm
m	milli (10^{-3})
ma	milliamp
meg	megohm
mh	millihenry
mpt	metalized, paper tubular
mt	mylar, tubular
mv	millivolt
μ	micro (10^{-6})
$\mu \mathrm{f}$	microfarad
$\mu \mathrm{h}$	microhenry
$\mu \mathrm{sec}$	microsecond
	nano (10^{-9})
nsec	nano second
Ω	ohm
p	pico (10^{-12})
pbt	paper, "bathtub"
pce	paper covered can
pf	picofarad ($\mu \mu \mathrm{f}$)
piv	peak inverse voltage
pmc	paper, metal cased
poly	polystyrene
prec	precision
pt	paper, tubular
ptm	paper, tubular molded
sn or S/N	serial number
tub	tubular
v	working volt, dc
var	variable
w	watt
WW	wire wound

NOTES:
qty in kit: Quantity of parts in kit. Quantity is each, unless noted otherwise.
qty in inst: Total number of parts, of that Tek number, that are used in the instrument. Quantity is each, unless noted otherwise.
*running spare: An asterisked item indicates the item is a "running spare" as defined by Signal Corps drawing SC-D-93392; i.e., a plug-in part or a part that doesn't require a soldering iron for installation.

qty		qty	
in	Tek	in	
kit	number	inst	description

B BULBS:

$* 1$	$150-001$	2	$\# 47$	incandescent
$* 1$	$150-018$	1	$\# 12$	incandescent
1	$150-025$	2	NE-2E	neon
1	$150-028$	1	RT2-32-1A	

C CAPACITORS:

1	$285-501$	1	$.001 \mu \mathrm{f}$	600 v	mt
1	$285-502$	1	$.001 \mu \mathrm{f}$	1000 v	mt
1	$285-510$	4	$.01 \mu \mathrm{f}$	400 v	mt
1	$285-519$	1	$.047 \mu \mathrm{f}$	400 v	mt
1	$285-527$	2	$.1 \mu \mathrm{f}$	600 v	mpt

D DIODES:

| 1 | $152-008$ | 1 | T12G | germanium | | |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 1 | $152-035$ | 2 | lN1563A | | | |
| 1 | $152-061$ | 1 | 6061 | silicon | 100 ma | |
| 2 | $152-066$ | 23 | 1N3194 | silicon | | |
| 1 | $152-094$ | 1 | zener | $3 / 4 \mathrm{w}$ | 50 v | 10% |

F FUSES:

$* 5$	$159-005$	1	3 Amp	3 AG	Slo-Blo
$* 5$	$159-023$	1	2 Amp	3 AG	Slo-Blo
*5	$159-034$	1	1.6 Amp	3 AG	Slo-Blo

L INDUCTORS:

1. 108-255 1 Beam rotator

Q TRANSISTORS:

$* 1$	$151-040$	1	2N1302
${ }^{1} 1$	$151-042$	1	2N1378
1	$151-060$	1	2N1545
*1	$151-087$	1	J3138

[^1]| qty | | qty |
| :--- | :---: | :---: |
| in | Tek | in |
| kit | number | inst |

R RESISTORS:

1	308-090	1	$1 / 4 \Omega$	1 w	10\%	WW	
1	308-142	1	30Ω	3 w	5\%	WW	
1	308-176	3	4 k	20 w	5\%	WW	
1	308-186	1	80 k	1/2w	1\%	WW	
1	308-226	1	10 k	1/2w	1%	WW	
1	308-231	1	220Ω	3 w	5\%	WW	
1	309-045	1	100 k	1/2w	1\%	prec	
1	309-053	1	333 k	1/2w	1\%	prec	
1	309-066	1	40Ω	1/2w	1\%	prec	
1	309-067	1	60Ω	1/2w	1%	prec	
1	309-073	1	200Ω	1/2w	1%	prec	
1	309-101	1	330 k	1/2w	1\%	prec	
1	309-104	1	2.05 k	1/2w	1%	prec	
1	309-112	3	100Ω	1/2w	1\%	prec	
1	309-113	1	610Ω	1/2w	1\%	prec	
1	309-116	1	1.025 k	1/2w	1%	prec	
1	309-117	1	2.1 k	1/2w	1\%	prec	
1	309-119	1	6.375 k	1/2w	1%	prec	
1	309-121	1	9.5 k	1/2w	1\%	prec	
1	309-156	1	1.024 meg	$1 / 2 \mathrm{w}$	1\%	prec	
1	309-162	1	250 k	1/2 w	1%	prec	
1	310-115	1	15 k	1 w	1\%	prec	
1	310-591	1	30 meg	2.w	5%	prec	
1	310-595	1	12 meg	2w	5\%	prec	
1	311-015	1	10 k	WW	var		
1	311-018	1	20 k	comp	var		
1	311-023	1	50 k	comp	var		
1	311-026	1	100 k	comp	var		
1	311-042	1	2 meg	comp	var		
1	311-043	1	2 meg	comp	var		
1	311-068	5	500 k	. 2 w	20\%	comp	var
1	311-121	1	5 meg	comp	var		
1	311-159	1	20k	10\%	comp	var	
1	311-206	1	250 k	20\%	comp	var	
1	311-317	1	$2 \times 1 \mathrm{k}$	20\%	comp	var	
1	311-340	1	50Ω	10\%	WW	var	
1	311-350	1	500 k	3/4 w	10\%	comp	var
1	311-374	1	250 k	20\%	comp	var	

qty		qty	
in	Tek	in	
kit	number	inst	description

T TRANSFORMER:
$1 \quad 120-275 \quad 1 \quad$ HV power supply

V TUBES:

*1	154-020	1	6AS7G
*1	154-022	2	6AU6
*1	154-041	1	$12 \mathrm{AU7}$
*1	154-046	1	12BH7
1	154-051	2	5642
*1	154-167	1	6CZ5
*1	154-187	1	ECC88/6DJ8
*1	154-278	1	ECF/80
*1	154-291	1	0G3
*1	154-307	1	7233
${ }^{*} 1$	154-410	1	7548

[^2]
CONTENTS:

General	$\mathrm{C}-551$
Circuit specifications	$\mathrm{C}-553$
Recalibration	$\mathrm{C}-555$
Certification	$\mathrm{C}-565$
Check sheet	$\mathrm{C}-567$

INTRODUCTION:

This recalibration procedure is intended for Tektronix Field Repair Center use.

For all serial numbers. procedure as simple and as fast as possible, and yet complete enough for a first-time recalibration. To accomplish this, each step was arranged in two parts.-- Setup and Adjustment; detailed setup procedures were replaced in many cases with general statements. Block diagrams or circuit diagrams were included in certain steps to help locate the adjustment and show what the adjustment does to produce the desired results to aid in troubleshooting. A simplified adjustment procedure was called out next to each adjustment on the block diagram or circuit diagram to help speed up the recal once a person becomes familiar with the instrument, and waveforms were shown where needed.

The blank column on the right of the page is for notes on troubleshooting hints and general information concerning the recal. It will befilled in as we receive feedback from the Field or further information from the factory.

The "Certification Procedure" shows what part of the instrument may be certified and what is required to perform the certification. Forms may be obtained from Customer Service.

A Recal check sheet has been included for those persons who have become familiar enough with the recal procedure to use it.

Since this procedure is for the Field, we hope all Field personnel will help us improve it. Address your communications to Field Technical Support. No suggestions will go unnoticed.

ABBREVIATIONS:

a	amp	min	minimum
, ac	alternating current	mm	millimeter
approx	approximately	mpt	metalized, paper tubular (capacitor)
b	base	msec	millisecond
bulb	light, lamp, etc.	mt	mylar, tubular (capacitor)
c	collector	mv	millivolt
ccw	counterclockwise or full counterclockwise	μ	micro (10^{-6})
cer	ceramic	$\mu \mathrm{f}$	microfarad
cm	centimeter	$\mu \mathrm{h}$	microhenry
comp	composition (resistor)	$\mu \mathrm{sec}$	microsecond
cps	cycles per second	n	nano (10^{-9})
crt	cathode ray tube	nsec	nanosecond
cw	clockwise or full clockwise	Ω	ohm
db	decibel	p	pico (10^{-12})
dc	direct current	pbt	paper, "bathtub" (capacitor)
div	division	pcc	paper covered can (capacitor)
e	emitter	pf	picofarad ($\mu \mu \mathrm{f}$)
emc	electrolytic, metal cased (capacitor)	piv	peak inverse voltage
fil	filament	pme	paper, metal cased (capacitor)
freq	frequency	poly	polystyrene
-			
gmv	guaranteed minimum value (capacitor)	pot	potentiometer
gnd	chassis ground	prec	precision (resistor)
h	henry	pt	paper, tubular (capacitor)
hv	high voltage	ptm	paper, tubular molded (capacitor)
inf	infinity	ptp	peak-to-peak
int	internal	sec	second
k	kilo (10^{3})	sn	serial number
k	kilohm	term	terminal
m	milli $\left(10^{-3}\right)$	tub	tubular (capacitor)
ma	milliamp	unreg	unregulated
max	maximum	v	volt
mc	megacycle	var	variable
meg	megohm	w	watt
mh	millihenry	WW	wire wound
midr r	midrange or centered	x-former	transformer

CIRCUIT SPECIFICATIONS:

Factory circuit specifications are not guaranteed unless they also appear as catalog or instruction manual specs. Factory specs are usually tighter than advertised specs. This helps insure the instrument will meet or exceed advertised specifications over several years use.

The numbers listed beside the specifications are the calibration procedure steps where the check or adjustment is made.

POWER SUPPLIES:

le All supplies must regulate under full load and no load conditions as the line voltage is varied from 105 to 125 vac . Ripple and tolerance specifications are as follows:

SUPPLY	TOLER-	RIPPLE (MAX)	
	ANCE	Full Load	No Load
	adi.		
-100.0 v	$\pm 0.5 \%$	5 mv	5 mv
+125.0 v	$\pm 0.5 \%$	10 mv	5 mv
+300.0 v	$\pm 0.5 \%$	80 mv	5 mv
- 12.2 v	$\pm 0.5 \%$	5 mv	5 mv

CALIBRATOR:

3c Calibrator symmetry must be within $\pm 20 \%$ at line voltages from 105 to 125 vac .

3d Accuracy must be within $\pm 2 \%$ at all calibrator positions.

CATHODE RAY TUBE:

4c Electrical center: $\pm 0.3 \mathrm{~cm}$ of vertical graticule center $\pm 0.6 \mathrm{~cm}$ of horizontal graticule center
8e Geometry: Vertical line may have $\pm 1 \%$ (1.3 mm) max tilt in 8 cm of vertical deflection. Vertical bowing of the horizontal trace must not exceed 1.0 mm .
8 f Focus: Vertical lines 1 mm apart and focused in the center must not overlap anywhere within the middle 8.8 horizontal cm of graticule.
If Vertical sensitivity: $18.5 \mathrm{v} /$ div to $20.5 \mathrm{v} / \mathrm{div}$.
10d Horizontal sensitivity: $17.5 \mathrm{v} / \mathrm{div}$ to $19.3 \mathrm{v} / \mathrm{div}$.
lld, lle Bandwidth: At least 1 mc with Type 60 Plug-in.
18e Writing rate $\left(R_{W}\right)$: At least $25 \mathrm{~cm} / \mathrm{ms}$ (in store position).

EQUIPMENT REQUIRED

1 Type 531 Oscilloscope with Type H Plug-in, or equivalent
1 Type 180A Time-Mark Generator
1 Type 190 Constant Amp. Sig. Generator
1 Type 105 Square-Wave Generator
1 Type 60 or 2 A 60 Plug-in
1 Type 67 or 2B67 Plug-in
1 Type 3B1 Plug-in (not essential)
1 Type TU-75 or TU-76 Line Voltage Control (Special, FMS)
2 Type TU-4 Test Load Units (Special, FMS)
1561 CRT Capacitance Standardizer (Special, FMS)
$150 \Omega 10 X T$ Attenuator (TEK 011-031)
150Ω Terminator (TEK 011-045)
150Ω Coax Cable (TEK 012-001)
1 Voltmeter, 20,000 Ω /volt, 3\% accuracy
BASIC FRONT PANEL CONTROLS
Type 564
CALIBRATOR - - - - - OFF
INTENSITY $-\cdots$ CCW
DISPLAY - - - - NON-STORE

1. LOW VOLTAGE POWER SUPPLIES

Setup
a) Insert a TU-4 test load into each plug-in compartment.
b) Set test loads as follows: SUPPLY SEL. $=-\quad-100$ POSITION - - . mid-range LOAD - - - NO LOAD INDICATOR - - - 561
c) Connect shielded cable from RIPPLE and PERCENT DC ERROR connector of either test load to H unit input (. $01 \mathrm{v} / \mathrm{cm}, \mathrm{dc}$).
d) Find zero reference on test scope by pushing PUSH FOR GND REF on test load.

RECALIBRATION

1. Low Voltage Power Supplies (con'd)

Adjustment
e) Check tolerance of voltages by pushing PUSH TO REMOVE RIPPLE button on the test load and noting the deviation of the test scope trace from zero reference. If voltage is out of tolerance, set for zero indication on test scope with indicated adjustment.

SUPPLY SEL.	TOLERANCE	$\frac{\text { RIPPLE }}{\text { Full Ld }}$	$\frac{(\mathrm{MAX})}{\text { NoLd }}$	Adi.
-100.0 v	$\pm 0.5 \%, \pm 0.5 \mathrm{c}$	5 mv	5 mv	-100
				(R616)
+125.0 v	$\pm 0.5 \%$, $\pm 0.5 \mathrm{c}$	10 mv	5 mv	+125.0v
				(R656)
+300.0v	$\pm 0.5 \%, \pm 0.5 \mathrm{c}$	80 mv		$+300.0 \mathrm{v}$
				(R676)
$-12.0 \mathrm{v}$	$\pm 0.5 \%, \pm 0.5 \mathrm{~cm}$	5 mv	5 mv	-12.2v

Check each supply for regulation and ripple as line voltage is varied from 105 to 125 v ac under no load and full load conditions.
Check line indicating neons on test load front panels. With upper neons only on, line polarity is correct. If both upper and lower neons are lit, line polarity is reversed.

2. HIGH VOLTAGE ADJ

Setup
a) Connect DC voltmeter to CRT cathode.

Adjustment
b) Set High Voltage Adj (R841) for a reading of -3300 v on the meter.
c) Defocus spot and check regulation with INTENSITY cw.
3. SET CALIBRATOR AMPLITUDE AND CHECK CAL ATTENUATORS

Setup
a) With CALIBRATOR turned off, connect voltmeter to pin 7, V884.

NOTES

For full load conditions both test load units must be switched to FULL LOAD and vice versa.

Junction of R852 (27 k) and C854 (. $0025 \mu \mathrm{f}$), at notch 12 of top ceramic strip near hv cover.

The lower lead on rear wafer of Cal switch is the same point as pin 7, V884.
3. (con'd)

Adjustment
b) Adjust Cal Amp (R871) for +100 v on the voltmeter.
c) Turn CALIBRATOR on. The voltmeter must now read between 40 and 60 volts to be within the 20% calibrator symmetry spec at line voltages from 105 to 125 vac .
d) Connect the CAL OUT to the test scope INPUT and check all positions of the CAL switch for within $\pm 2 \%$ accuracy.
4. CRT ELECTRICAL CENTER

Setup
a) Turn the INTENSITY control cw until a dot appears on the CRT. Adjust FOCUS.
b) Short the vertical deflection plates together and the horizontal deflection plates together.
Check
c) The spot should be centered within $\pm 0.3 \mathrm{~cm}$ vertically and $\pm 0.6 \mathrm{~cm}$ horizontally.
5. CRT ALIGNMENT

Setup
a) Remove the right-hand test load and install a Type 67 plug-in.
b) Obtain a trace on the CRT.

Adjustment
c) Adjust TRACE ALIGNMENT so trace is parallel to center horizontal graticule line.
6. ALTERNATE SWEEP

Setup
a) Set vertical test load to DUAL TRACE.
b) Obtain a trace on CRT.

Check
c) Check for alternate sweep operation.

RECALIBRATION

7. DUAL TRACE BLANKING

Setup
a) Connect a jumper between the SIGNAL INPUT and Z AXIS INPUT of the TU-4.
b) Switch TU-4 from DUAL TRACE to NORMAL.
c) Apply 1 cm of 100 kc square wave from the 105, unterminated, to the SIGNAL INPUT.

Check
d) Set CRT CATHODE SELECTOR switch to DUAL TRACE CHOPPED BLANKING while observing the CRT display. The upper portion of the square wave should disappear while the lower part gets brighter.

8. GEOMETRY AND CRT CHECK

Setup
a) Replace TU-4 in left plug-in compartment with a Type 60.
b) Set Type 67 to $1 \mathrm{msec} / \mathrm{cm}$.
c) Apply 1 msec and $100 \mu \mathrm{~s}$ time markers from the 180 and obtain a stable display of 6 cm amplitude.
d) Adjust FOCUS and ASTIGMATISM controls for the sharpest display.
Adjustment
e) Short CRT vertical plates together, then measure voltage to ground (approx. 180 v). Connect meter to arm of Geometry Adj (R940) and set to voltage observed above.
f) Check focus for no overlapping of time markers within the middle 8.8 horizontal cm of the graticule.
9. CRT VERTICAL COMPENSATION AND SENSITIVITY
Setup
a) Install a CRT capacitance standardizer behind the Type 60. Apply 6 cm of 10 kc square wave from the 105. The 105 should be terminated in a 50Ω 10XT, 50Ω cable and 50Ω terminator, in that order.
b) Set the Type 67 for a stable display.

NOTES
NOT

RECALIBRATION

Adjustment
c) Despress INTEGRATE button and adjust C760 for best square wave display on the CRT.
d) Remove the input signal and connect a voltmeter across the vertical deflection plates.
e) Note the change in meter reading while moving the trace 6 cm .
f) Divide the change in meter reading by 6 to find the vertical sensitivity. It must be between $18.5 \mathrm{v} / \mathrm{div}$ and $20.5 \mathrm{v} / \mathrm{div}$.

10. CRT HORIZONTAL COMPENSATION

 AND SENSITIVITYSetup
a) Interchange plug-ins. The 67 will be in the left side and the Type 60 with capacitance standard will be in the right side.
b) Connect the voltmeter across the horizontal deflection plates.

Adjustment

c) Note the change in meter reading as the trace is moved 10 cm .
d) Divide the change in meter reading by 10 to find the horizontal sensitivity. It must be between $17.5 \mathrm{v} / \mathrm{cm}$ and $19.3 \mathrm{v} / \mathrm{cm}$.
e) Remove the voltmeter from the horizontal plates and apply 8 cm of 10 kc square wave to the Type 60 input.
f) Set Type 67 for a stable display.
g) Adjust C761 for best square wave. (no need to depress INTEGRATE)

11. FREQUENCY RESPONSE

Setup
a) Remove the CRT capacitance standardizer and re-insert the Type 60 in the right-hand plug-in box.
b) From a Type 190 terminated in 50Ω, apply $200 \mathrm{mv}(4 \mathrm{~cm})$ of 50 kc signal to the Type 60 input.
Check
c) Change the 190 to 1.0 mc . Don't change the 190 amplitude.
d) There must be at least 2.8 cm of deflection on the CRT (-3 db point).
e) Reverse plug-ins and check response of other axis, using same procedure.

NOTES

Before adjusting C760, check that vertical deflection plate leads are uniformly spaced ($3 / 4 \mathrm{in}$.) . Depressing the INTEGRATE button presents the proper load to the CRT vertical deflection plates for setting C760.

Before adjusting C761, check that horizontal deflection plate leads are uniformly spaced ($1 / 2 \mathrm{in}$.).
12. LINE TRIGGER PHASING

Setup
a) Connect an $\times 10$ probe to the Type 60 input.
b) Touch the other end of the probe to the ac line leading to the fuse holder.
c) Set the 67 TRIGGER on ' + ' Line.
d) Adjust TRIGGER LEVEL for a stable display.
Check
e) Switch TRIGGER SLOPE from ' + ' to ' - ' and check display for triggering on proper slope.
f) Reverse plug-ins and repeat above operation.
g) Re-install the Type 60 in left compartment and 67 in right compartment.
13. EXT CRT CATHODE

Setup
a) Remove ground strap from EXT CRT CATHODE input on scope rear.
b) Apply 10 v of CAL signal from test scope to EXT CRT CATHODE.
c) Set CRT SELECTOR switch to EXT CRT CATHODE.
d) Set Type $67 \mathrm{TIME} / \mathrm{CM}$ to 1 ms .

Check
e) Check trace for intensity modulation.
14. CRT INTENSIFIED CIRCUIT (see Step 15)

Setup
a) Remove Type 67 and replace with a 3B1.
b) Set the 3BI TIME/DIV and DELAY TIME RANGE to 1 msec .
c) Set 3B1 MODE switch to NORM and NORMAL SWEEP TRIGGERING to AUTO. There should be a sweep on the CRT.
Check
d) Set 3B1 MODE switch to INTEN.
e) Check for an intensified portion of the sweep display.

With the sweep plug-in in the left compartment, the trace moves from bottom to top of the screen and ' + ' slope of waveform is to the right.

RECALIBRATION

15. CRT INTENSIFIED CIRCUIT (alternate method)
If a 3 BI is not available, the INTENSIFIED CIRCUIT can be checked by the following method:
Setup
a) Turn the 564 power off and remove the Type 67 plug-in.
Adjustment
b) Use VOM in $\times 10$ position and measure the forward resistance from pin 14, right hand interconnecting socket to junction of D838, D839. Should be about 35Ω.
c) Check reverse resistance for open circuit (VOM, X100k).
d) Measure forward resistance from GND to junction of D838, D839. Should be about 35Ω.
e) Check reverse resistance from D838, D839 junction to GND. Should be about 2.4 k .
f) Under operation (67 installed) check voltage at junction of D838, D839 for approximately 0.5 v .

STORAGE CIRCUIT

IMPORTANT: Be certain to press and release ERASE occasionally during any check or adjustment of the storage circuit to assure proper appearance.
16. A AND B FLOOD GUN BIAS

Setup
a) Replace Type 3 B1 with a Type 67.
b) Set DISPLAY switches to STORE.
c) Set TRIGGERING LEVEL for no sweep.

Adjustment
d) Hold DISPLAY switches in ERASE position and adjust A and B Flood Gun Bias (R946-R944) for most uniform (brightest) screen coverage.

NOTES

D838, D839 are located on ceramic strips directly below high voltage cover. Some Preproduction instruments may have R837 (470Ω) located between D838 and D839. If so, this is an error. Correct as per schematic and proceed with Step b.

Do not use old tentative schematic for reference because of circuit changes.

If instrument appears to function erratically in STORE position, problem may be poor contact between CRT and contacts on inside of CRT shield. Slight CRT re-alignment may cure problem.

PORTION OF CAL CHASSIS

STORAGE CIRCUIT (con'd)

17. COVERAGE 2

Setup
a) Set DISPLAY switches to STORE.
b) Connect meter to arm of Coverage 2 (R938).
Adjustment
c) Adjust Coverage 2 to just below the point where a definite increase is noted in background brightness. Nominally 130-150v.

18. STORAGE LEVEL

Setup

a) Set DISPLAY switches to NON-STORE. Display $100 \mu \mathrm{sec}$ markers from 180. With VARIABLE, set TIME/DIV to $40 \mu \mathrm{sec} / \mathrm{cm}$ (4 markers in 10 cm). Obtain stable display.
b) Remove input signal. TRIGGER SOURCE to INT, free run, INTENSITY full cw, focus trace.
c) Set TRIGGERING LEVEL to "0". DISPLAY switches to STORE. Turn Storage Level (R904) ccw. Connect voltmeter between ground and V923, pin 3.

CAUTION: Set meter for 300 v range.
Adjustment
The object of the following adjustment is to find the "stable range" of the storage tube and then to set the "operating level" midway between those points.
d) Alternately cause a "single sweep" (by rotating the TRIGGER LEVEL knob about the zero level) and increase Storage Level (R904) until one "single trace" will store anywhere (when positioned vertically to various points) within the $8 \times 10 \mathrm{~cm}$ graticule area, with maximum "breaks" in the trace of 1 mm . This point will be called the "Writing Threshold" (WT). ERASE, then check to see that Storage Level is WT. Record this voltage as WT.

NOTES

The effect of this adjustment may be easier to see if you depress ERASE while adjusting Coverage 2.

The speed of the beam at this point is $25 \mathrm{~cm} / \mathrm{ms}$. Do not change TIME/DIV controls.

Single sweep can be effected using a Type 2B67 if available.

The following is a typical example of results for Step 18 for a new CRT. As the CRT ages, higher readings may be obtained when properly adjusted.

```
Writing Threshold (WT) }17
Fade-Positive (FP) 225
Operating Level (OL) 200
    (midway between WT and FP)
```

18. Adjustment (con'd)
e) Continue to increase Storage Level until single trace appears to blend into background or until two single traces (0.025 in . apart) appear to run together, causing poor resolution. Record this voltage as FP. Turn Storage Level (R904) ccw midway between WT and FP. Record this voltage as OL.
19. COVERAGE 1

Setup
a) Set TRIGGERING LEVEL for no sweep.
b) Set DISPLAY switches to STORE.
c) Connect meter to juncture of R931 (100 k) and R932 (33 k).

Adjustment
d) Adjust Coverage 1 (R930) for best overall appearance of screen. Nominally 75 v .
20. NON-STORAGE LEVEL

Setup
a) Set UPPER DISPLAY switch to NONSTORE.
b) TRIGGERING LEVEL to FREE RUN.
c) Set trace to non-storing half of CRT screen.
d) Set INTENSITY full cw and adjust FOCUS.

Adjustment
e) Press and release LOWER ERASE.
f) Adjust Non-Storage Level (R906) for best screen division between "stored" and "non-stored" halves.
g) Set DISPLAY switches to NONSTORE. CRT should go dark immediately. If it doesn't, or background level is too bright, adjust NONSTORE (R906) slightly ccw until it does.
21. LOCATE

Setup
a) Set DISPLAY switches to NON-STORE.
b) TRIGGERING LEVEL to FREE RUN.
c) Set start of trace to first graticule line.

With R904 set at proper OL, the 564 (with tin oxide CRT screen) should at least meet the $25 \mathrm{~cm} / \mathrm{ms}$ Writing Rate (R_{W}) spec when focused at max intensity.
Typically, for a tin oxide screen, the R_{w} is approximately $33 \mathrm{~cm} / \mathrm{ms}$ (three $100 \mu \mathrm{~s}$ markers in 10 cm) when focused at max intensity.
If desired, R_{w} can be increased by turning R904 toward the FP voltage, but with reduced contrast.

Located on Cal chassis near V884.

Non-Storage Level should be adjusted to a point below WT, so CRT screen will not store a repetitive trace in NON-STORE position, yet as high as possible to reduce voltage across gap between upper and lower screen halves.

RECALIBRATION
NOTES
21. LOCATE (con'd),

Check
d) Press LOCATE to check that start of trace moves into preview area at left side of screen then intensifies.
22. INTEGRATE

Setup
a) Set TRIGGERING LEVEL for no sweep.
b) Set DISPLAY switches to STORE.

Check
c) Press INTEGRATE to check that screen appears dark, similar to NON-STORE position.
d) Check all functions of DISPLAY controls. will not store. Then depress INTEGRATE

The LOCATE switch (when pressed slowly) should have a stepping sequence, where the start of trace moves to left before intensifying.

INTEGRATE may be checked further by decreasing INTENSITY until a "single sweep" while several "single sweeps" are actuated, thus allowing the energy of several sweeps to combine to produce a trace.

CERTIFICATION PROCEDURE

The following portion of the 564 may be certified:

FUNCTION
Square-Wave Calibrator
100 volts to 0.1 volt

STANDARD TEST EQUIPMENT

Standard Calibrator
from (FMS)

In order for the certification to be valid, the following conditions will have to exist:

1) The STANDARD CALIBRATOR used will have to be traceable to NBS and have a certificate on file verifying its certification.
2) Record of customer's instrument certification must be recorded and placed on file. The record should include the bench numbers or description and s / n of the standard test equipment used to certify the 564 .
3) A certificate (TEK 001-810) should be filled out and returned to the customer with the instrument. The instrument as whole is considered certified.

CALIBRATION CHECK SHEET

1. Check Power Supplies:

	Ripple	Adjust
-100.0v		
$+125.0 \mathrm{v}$		
+300.0v		
- 12.2 v		

2. High Voltage Adi \qquad R841
3. Calibrator \qquad
4. CRT Elect. Center \qquad
5. CRT Alignment \qquad
6. Alternate Sweep \qquad
7. Dual Trace Blanking \qquad
8. CRT Check:
a) Geometry, 1.3 mm tilt in 8 cm

1 mm max bowing in $8 \times 10 \mathrm{~cm}$ area \qquad
b) Focus, middle 8.8 cm \qquad
9. CRT Vertical Compensation \qquad
CRT Vertical Sensitivity
$18.5 \mathrm{v} / \mathrm{cm}$ to $20.5 \mathrm{v} / \mathrm{cm}$ \qquad
10. CRT Horizontal Compensation \qquad
CRT Horizontal Sensitivity
$17.5 \mathrm{v} / \mathrm{cm}$ to $19.3 \mathrm{v} / \mathrm{cm}$ \qquad
11. Frequency Response, 1 mc both sides \qquad
12. Line Trigger Phasing, right side \qquad
left side \qquad
13. Ext CRT Circuit \qquad
14 or 15. CRT Intensified Circuit \qquad
16. A and B Flood Gun Bias \qquad
17. Coverage 2 \qquad
18. Storage Level. WT \qquad FP \qquad OL \qquad

FACTORY CALIBRATION PROCEDURE

CONTENTS:

General
Factory circuit specifications
Factory calibration procedure and notes

INTRODUCTION:

This isn't a field recalibration procedure as is the procedure in your instruction manual. This is a guide in calibrating brand-new instrontents, just assembled instruments that have meken beentynned on before. Therefore it calls qut mant prosedures and adjustments that are rapelyrequiced for subsequent recalibration.

Even though we wrote his poocedury primarily for our own factory test deparyment, it's valuable to others also if used with some crution:

1. Special 《est equipment, if mentioned, is not available front Tektronix unless it's listed also in our curyent katiog. Nbls special equipment is used in our tent department to speed calibration. Usually you cor either duphicate its function with standard equipment in your facility, devise alternate approaches, or build the special test equipment yourself.

Publication:
061-570
January 1963
Supersedes
July 1962

For all serial numbers.
2. Factory circuit specifications are not guaranteed unless they also appear as catalog or instruction manual specifications. Factory circuit specs usually are tighter than advertised specs. This helps insure the instrument will meet or exceed advertised specs after shipment and during subsequent field recalibrations over several years of use. Your instrument may not meet factory circuit specs but should meet catalog or instruction manual specs.
3. Presetting internal adjustments, if mentioned, usually is unnecessary. This is helpful for "first-time" calibration only. If internal adjustments are preset, you'll have to perform a 100% recalibration. So don't preset them unless you're certain a "start-fromscratch" policy is the best.
4. Quality control men steps. Factory calibration procedures are for our test department calibrators who first calibrate the instrument. Quality control men then check the initial calibration and perform additional fine points such as trimming resistor leads, installing shields, etc. In some cases a factory calibration procedure instructs the calibrator not to perform these fine points. You'll ordinarily have to include these fine points in your calibration.

In this procedure, all front panel controls for the instrument under test are in capital letters (SENSITIVITY) and internal adjustments are capitalized only (Gain Adj).

ABBRE VIATIONS:

a	amp	min	minimum
ac	alternating current	mm	millimeter
approx	approximately	mpt	metalized, paper tubular (capacitor)
b	base	msec	millisecond
bulb	light, lamp, etc.	mt	mylar, tubular (capacitor)
c	collector	mv	millivolt
ccw	counterclockwise or full counterclockwise	μ	micro (10^{-6})
cer	ceramic	$\mu \mathrm{f}$	microfarad
cm	centimeter	$\mu \mathrm{h}$	microhenry
comp	composition (resistor)	$\mu \mathrm{sec}$	microsecond
cps	cycles per second	n	nano (10^{-9})
crt	cathode ray tube	nsec	nanosecond
cw	clockwise or full clockwise	Ω	ohm
db	decibel	p	pico (10^{-12})
dc	direct current	pbt	paper, "bathtub" (capacitor)
div	division	pcc	paper covered can (capacitor)
e	emitter	pf	picofarad ($\mu \mu \mathrm{f}$)
emc	electrolytic, metal cased (capacitor)	piv	peak inverse voltage
fil	filament	pmc	paper, metal cased (capacitor)
freq	frequency	poly	polystyrene
gmv	guaranteed minimum value (capacitor)	pot	potentiometer
gnd	chassis ground	prec	precision (resistor)
h	henry	pt	paper, tubular (capacitor)
hv	high voltage	ptm	paper, tubular molded (capacitor)
inf	infinity	ptp	peak-to-peak
int	internal	sec	second
k	kilo (10^{3})	sn	serial number
k	kilohm	term	terminal
m	milli (10^{-3})	tub	tubular (capacitor)
ma	milliamp	unreg	unregulated
max	maximum	v	volt
mc	megacycle	var	variable
meg	megohm	w	watt
mh	millihenry	WW	wire wound
mid r	midrange or centered	x-form	transformer

[^3]
TYPE 564 OSCILLOSCOPE

FACTORY CALIBRATION PROCEDURE (Tentative)

The following instruments and equipment are needed:
1 V.O.M.
1 Type 60 Plug-In
1 Type 3B1 Plug-In (Optional)
1 Type 67 Time Base
2 Type TU-4 Test Loads
1 Type 190 Constant Amplitude Signal Generator)
$1 \quad$ Type 180 Time Mark Generator
2 5:1 T Pad (B52T5)
1 CRT Capacitance Standardizer
$1 \quad 52 \Omega$ Terminating Resistor
18 cm Graticule Plate
1 Calibrated Photometer
1 Type 531 Oscilloscope with Type H Plug-In or equivalent
Type 105 - use a 52Ω cable terminated with a 52Ω terminating resistor
Type 190 - Attenuator head should be terminated with a 5:1 T Pad (B52T5)
The CRT Capacitance Standardizer is in the form of an adapter. It is mounted between the Indicator connecting plug and a Type 60 Plug-In. The Standardizer is set by a special method not outlined in this calibration procedure.

PRELIMINARY INSPECTION:

Check for long ends, unsoldered joints, wire dress and check controls for smooth mechanical operation. Set Type 564 controls as follows:

FOCUS	Mid-range	ASTIGMATISM	Mid-range
DISPLAY	Non-storage	ALIGNMENT	Mid-range
INTENSITY	ccw	CALIBRATOR	OFF
POWER	OFF		

All internal adjustments to Mid-range .

1. CHECK POWER SUPPLY RESISTANCE TO GROUND:

Supply	Approx. Res.	Supply	Approx. Res.
-100 v	10 k	+65 Unreg.	10 k
+125	15 k	+190 v Unreg.	5.5 k
+300	60 k	+380 v Unreg.	65 k
*-12 v	* 135Ω	+475 v Unreg.	35 k

[^4]2. CHECK VOLTAGES RIPPLE AND REGULATION:

Insert TU-4 Test Loads into plug-in compartments. Set the Test Loads as follows: SUPPLY, -100 v ; POSITION, Mid-range; LOAD, FULL LOAD; INDICATOR, 564. Turn POWER ON.

Connect a shielded cable from the RIPPLE and DC ERROR CONNECTOR of either TEST LOAD to the INPUT on Type H Unit. Set Type H VOLTS/DIV to . 01 and the INPUT SELECTOR to DC. Type 531 TIME/CM to 5 msec , LLINE, AUTO. Each Test Load is capable of half-loading the supplies when the LOAD switch is on FULL LOAD, therefore, in order to check the supplies under full load conditions for regulation both TEST LOADS should be switched to FULL LOAD. The PUSH TO REMOVE RIPPLE button removes the ripple so that a more accurate reading may be obtained. By depressing the PUSH FOR GROUND REFERENCE button, a zero error reading may be obtained on the test scope.

Set the - $100 \vee$ Adj. for a zero indication on the test scope. Each division on the test scope represents a 1% error in supply voltage. When switching the test load to the other supplies, the display must be adjusted within $\pm .5$ divisions ($\pm .5 \%$) of the zero reference.

Check each supply for regulation and ripple as the line voltage is varied from 10 j to 125 $\vee A C$ under full and no load conditions. Re-adjust the line voltage to 117 v AC. Make certain +475 v unregulared is present.
3. CHECK LINE POLARITY NEONS:

Check to see if UPPER NEON is on in test load units. UPPER NEON, ON, with LOWER NEON, OFF indicates correct line polarity to interconnecting plugs. If both neons are on, line polarity is reversed. Check both sides of Indicator.
4. SET CAL. AMP:

With the CALIBRATOR OFF, adjust Cal. Amp. for 100 v at pin No. 7 of V884. Turn CALIBRATOR ON: voltage must read between 40 and 60 volts with any setting of the calibrator voltage switch. Calibrator symmetry $\pm 20 \%$.

5. SET HIGH VOLTAGE:

Connect a voltmeter to the CRT filament end of R853 (100 k). Set the HV Adj. for -3300 v 。 Remove the voltmeter connections. With the INTENSITY control set at maximum intensity position (cw), check HV supply for regulation as the line voltage is varied from 105-125 v AC. Re-adjust the line voltage to $117 \vee A C$.
6. CHECK ALTERNATE SWEEP:

Remove the right hand Test Load and install a Type 67. Set 67 TRIGGER LEVEL to FREE RUN and Test Load to DUAL TRACE and check for dual trace. Interchange Type 67 and Test Load Unit. Check alternate sweep operation.
7. CHECK DUAL TRACE BLANKING FROM PLUG-IN: (Left side only)

Apply a 100 kc signal from Type 105 to SIGNAL INPUT conn. on Test Load. Set Type 105 amplitude control to obtain one major division of display on CRT. Adjust intensity control for normal intensity. Connect a jumper from the SIGNAL INPUT to the Z AXIS

INPUT. With the CRT CATHODE SELECTOR set at DUAL TRACE CHOPPED BLANKING, the upper portion of the CRT display should disappear while the lower portion gets brighter. Remove the signal from the input.

8. CHECK SCALE ILLUM CONTROL AND SET CRT ALIGNMENT:

Install bezel and tighten CRT clamp. Check the SCALE ILLUM control to see that there are no open spots in the pot and that the lights are brightest when the control is full right (cw). With the Type $67 \mathrm{setat} 1 \mathrm{msec} / \mathrm{DIV}$ and the TRIGGER LEVEL to FREE RUN, position the trace on the CRT and set the ALIGNMENT control to align the trace with the horizontal graticule lines.
9. CHECK CALIBRATOR VOLTAGE STEPS:

Check calibrator voltage steps against a known accurate Type 63 or a test scope vertical amplifier.

CALIB.	VOLTS/DIV	DEFL.	CALIB.	VOLTS/DIV	DEFL.
100	20 v	5 div	.1 v	20 mv	5 div
50 v	10 v	5 div	50 mv	10 mv	5 div
20 v	5 v	4 div	20 mv	5 mv	4 div
10 v	2 v	5 div	10 mv	2 mv	5 div
5 v	1 v	5 div	$5 . \mathrm{mv}$	1 mv	5 div
2 v	. 5 v	4 div	2 mv	1 mv	2 div
1 v	. 2 v	5 div	1 mv	1 mv	1 div
. 5 v	. 1 v	5 div	. 5 mv	1 mv	. 5 div
(. 12 v into 50Ω)					
. 2 v	50 mv	4 div	. 2 mv	1 mv	. 2 div

10. CHECK VERTICAL SENSITIVITY AND VERTICAL CRT ELECTRICAL CENTER:

Remove Type 63 (if it was used in the previous step) and install Type 60 into the lefthand compartment. Connect a meter across vertical deflection plates. Set trace to an extreme graticule line. Note meter reading. Move trace 8 divisions, note meter reading. Divide the difference in meter readings by 8 and this will be its vertical sensitivity. It must be between $18.5 \mathrm{~V} /$ DIV and $20.5 \mathrm{~V} /$ DIV. Connect a shorting strap to the vertical CRT plates. The trace must be within .3 major divisions of graticule center. With shorting strap in place, measure voltage from plates to ground. Adjust G2, 3 to this.
11. CHECK GEOMETRY: (use the 8 cm graticule plate)

Apply 1 msec markets to INPUT. Set Type 67 to $1 \mathrm{msec} /$ DIV and adjust TRIGGERING LEVEL for stable display. Adjust the amplitude until the markers reach from the top to the bottom of the graticule. Adjust the ASTIG. control in conjunction with the FOCUS control for fine trace. Check Geometry.
12. ADJUST VERTICAL CRT PLATES COMPENSATIONS AND CHECK INTERNAL TRIGGERING:

Install a CRT Capacitance Standardizer in the left-hand compartment behind a Type 60 Plug-In. Apply a 10 kc signal from Type 105 to INPUT (use 4 major divisions of display). Set Type 67 for +SLOPE, AC COUPLING and INT SOURCE. Adjust the TRIG. LEVEL for a stable display. Press INTEGRATE button; set CRT plate compensation, C760, for
best square wave. Check internal trigger lead by switching AC-DC-GND switch to GND. The sweep should disappear.

13. CHECK HORIZONTAL SENSITIVITY AND HORIZONTAL CRT ELECTRICAL CENTER:

Interchange plug-ins so that the Type 67 is now in the left-hand compartment and the Type 60 in the right. Connect a meter across the horiz. defl. plates. Repeat procedure for checking sensitivity in Step No. 10, but use ten divisions. Horiz. sens. must be between $17.5 \mathrm{~V} /$ Div, and 19.3. Connect a shorting strap to the horiz. CRT plates. The trace must be within . 6 major div. of graticule center.

14. ADJUST HORIZONTAL CRT PLATES COMPENSATIONS AND CHECK INTERNAL TRIGGERING:

Install a CRT Capacitance Standardizer in the right-hand compartment behind a Type 60 Plug-In. Apply a 10 kc signal from Type 105 to INPUT (use 4 major div. of display). Set Type 67 for +SLOPE, AC COUPLING and INT. SOURCE. Adjust the TRIG. LEVEL for a stable display. Set CRT plate compensation, C761, for best square wave. Check internal trigger lead by switching AC-DC-GND to GND. The sweep should disappear.

15. CHECK FREQUENCY RESPONSE:

With a Type 60 in the right-hand compartment, set the VOLTS/DIV switch to .05 and the AC-DC-GND to DC. Apply 200 mv of 50 kc signal from Type 190 to the INPUT (four maj. div.). Tune Type 190 to 1 mc . Do not change Type 190 OUTPUT AMPLITUDE. There must be at least 2.8 maj. div. of defl. remaining. (3 db point) Reverse plug-ins, checking response on other axis using same procedure.
16. CHECK LINE TRIGGER PHASING (both compartments):

Connect a 10X probe to the Type 60 INPUT. Connect the probe to the AC line at the fuse holder. Check that the Type 67 triggers on the proper phase \pm.

17. CHECK EXTERNAL CRT GRID INPUT:

Remove EXT CRT CATHODE ground strap from rear of scope and insert a 10 y signal from test scope SQUARE WAVE CALIBRATOR to EXT CRT CATHODE. Set the CRT CATHODE SELECTOR to EXT CRT CATHODE and check the sweep for intensity modulation. Remove the signal and replace the ground strap.

18. CHECK CRT INTENSIFIED CIRCUIT:

Remove the Type 67 Plug-In from the right-hand compartment and install a Type 3B1
Plug-In. Set the Type 3B1 as follows: TIME/DIV and DELAY TIME RANGE, 1 mSEC; MODE switch at NORM and NORMAL SWEEP TRIGGERING COUPLING, AUTO. The sweep should appear on the CRT. Set the MODE to INTEN and check for an intensified portion of the sweep.

Where 3B1 is not available, check anode of D835 for . 3 volt.

STORAGE CIRCUIT

1. Depress ERASE button. Adjust flood gun grids for most uniform (brightest) coverage of screen. R935-937. Release button.
2. Adjust wall band 5 (R938) until a definite increase is noted in background brightness ($\approx 150 \mathrm{v}$)
3. Attach common lead of meter to ground; VOA lead to lowest notch on strip at rear of cal. chassis. Set DISPLAY switches to STORAGE. Adjust storage level pot to OL given on CRT dara card. (If OL data is not available, procedure is:) 564 set as in Cal. Procedure. Intensity, full $\mathrm{cw} .2 \mathrm{~B} 67,40 \mu \mathrm{sec} / \mathrm{cm}$; SINGLE SWEEP; FREE RUN: Main storage level, ccw.

NOTE: To arrive at $40 \mu \mathrm{sec} / \mathrm{cm}$ in step 3, use four $100 \mu \mathrm{sec}$ markers (from type 180) for 10 cm .

Alternately depress SINGLE SWEEP and increase STORAGE LEVEL pot, R904, until one single trace will store anywhere in usable portion of screen with maximum "breaks" of 1 mm 。

Record meter reading as WT. Continue procedure until single trace appears to blend in m to background or spread causing poor resolution .025". Record this voltage as FP.
4. Adjust pot ccw until reading is halfway between WT and FP. This is recommended OL.
5. Adjust wall band 6 and 7 for best appearance of screen (No. $6, \approx 75 \mathrm{v} ;$ No. $7 \approx 50 \mathrm{v}$).
6. Turn $1 / 2$ screen display to NON STORAGE. Press and release ERASE. Adjust NON STORAGE pot, R906, for best screen division between "stored" and "non-storage" halves. Make sure repetitive sweep will not store in non-store position.

NOTE: When making any adjustment of storage circuit, No. 1 through No. 7 above, the ERASE button should be pressed after each change to assure proper appearance.

NOTE: If wall bands 2 and 3 are changed, the store level may have to be readjusted.
7. Check all functions of DISPLAY and ERASE controls.
8. Set start of free running trace to left graticule mark. Turn sweep off (single sweep 2B67). Press LOCATE button. Stationary dot should appear to left of first graticule mark.
9. Press INTEGRATE button, Screen should appear completely dark, much like NON STORE.

CAPABILITIES

FEATURES AND LIMITATIONS

December 28, 1962

We've built several T564's with an initial writing rate of $200,000 \mathrm{~cm} / \mathrm{sec}$ but this writing rate decreases progressively with age:
mode
writing rate decrease

```
non-stored
stored - not written
stored - written
```

least
appreciable
greatest

It's possible to retrieve some of the writing rate loss by operating the tube for an hour with the back plate voltage advanced to maximum.

Life: 6 months
We're trying to be conservative in our expectations of operating life at this time because we haven't sufficient operation time on these tubes. We had 400 hours on one tube, when the test ended with a catastrophic failure, but we did learn something:

Beginning with a stored writing rate of $200 \mathrm{~cm} / \mathrm{ms}$ and periodically recovering writing rate by operating the tube for an hour with back plate voltage advanced to maximum, the defined end point of 25 $\mathrm{cm} / \mathrm{ms}$ occurred in 6 months by extrapolation from 400 hours.

Warranty -- a problem
The results of the life test imply that under our standard warranty we'd have to replace the crt at least once during the warranty period. Marketing is extremely reluctant to assign a limit of 6 months to the warranty on the storage feature.

Double screen causes problems
If you make a practice of storing in one half and operating conventionally in the other, the half used for storage will eventually decrease in writing rate to the extent that the Operating Level must be raised too high for satisfactory operation of the non-stored half. We may be able to correct this by providing separate Operating Level adjustments on each half.

LOCATE button -- a big convenience
Don't overlook the convenience of the LOCATE button. It allows the spot to appear at the left edge of the crt, after which you can position the beam vertically before storing a trace.

Programmable erase -- relay best bet for now
The only convenient (for us) programmable erase method at this time is to mount an old-fashioned electro-mechanical relay in the scope. A relay can be wired up for a relatively low voltage remote control but piping the 400 volts around creates a safety hazard as well as cross talk and time constant problems. An electronic solution is the most desirable and we'll probably have to design one in time.

INTEGRATE button increases writing rate
The INTEGRATE button opens the flood-gun cathode circuits:
a. Writing is stored more effectively on repetitive traces.
b. Stored writing rate of repetitive traces becomes more than ten times as fast.

When the crt stored writing rate has decreased well below the $25 \mathrm{~cm} / \mathrm{ms}$ figure, it's still possible to store a single trace in the integrate position and read it out. You can probably more than double the single-shot writing rate by holding down the INTEGRATE button a half-minute or so before the event is recorded (an extra thumb is useful).

016-217 bezel, for adapting $\mathrm{C}-12, \mathrm{C}-13$ and $\mathrm{C}-19$ cameras to $8 \times 10 \mathrm{~cm}$ rectangular crt scopes

Plastic insert for glass-envelope crt's
A hard plastic insert in the bezel provides an ambient light seal for glass-envelope rectangular crt's--remove it when the bezel is used on scopes equipped with ceramic-envelope crt's.

564 rectangular ceramic crt. Use 016-217 bezel, remove plastic insert.

The plastic insert will butt against the face plate of

PLUG-IN COMPATIBILITY
a ceramic-envelope crt and prevent the bezelfrom seating flush to the scope front panel. If you then try to bring the bezel into contact with the scope front panel by tightening the bezel mounting nuts, you'll exert excessive and dangerous pressure against the crt faceplate.

Removing plastic insert
Use a small blunt probe or screwdriver to remove the plastic insert. Looking at the front of the bezel, insert the tool through the small rectangular openings and gently apply pressure to the plastic retaining ears. You can reinstall the plastic insert if you ever need to.

The following plug-ins are directly compatible with the 564:

2 A 50	63	3 A 74
51	67	3 S 76
59	3 C 66	3 T 77
2 A 61	72	3 B 1
60	75	3 Al

GENERAL THEORY

STORAGE DISCUSSION

Non Store:

In the NON STORE position the scope behaves like the 561 A . The back plates are held about 100 volts above ground and the flood guns remain operating.

Store:
When the display is changed to STORE, the back plates are reduced to zero momentarily, then rise to the operating level (OL) which is around 200 volts.

Erase:

The ERASE position is spring-loaded and first lifts the back plates to more than 400 volts, then, as the switch flips back, the back plates fall to zero and RC back up to around 200 volts for the STORE position. While the switch is in the STORE position momentarily, the last two collimator rings (coverage) rise to approximately 60 volts.

Depending on the particular CRT, the non-storage level will vary between 100 and 115 volts. The operating level will vary between 150 and 200 volts.

Erase-cycle characteristics; pulse applied to back plate. 200 volts/div; $50 \mathrm{~ms} /$ div.

Locate:

When you push the LOCATE button, you remove +125 v from one deflection blanking plate; this unblanks the beam, You also connect +335 v to R 763 and R764, which allows the left-hand deflection plate to assume a small positive increment in addition to the left-hand reference point determined by the position control. A non-storing margin remains on the left-hand edge of the CRT. If the trace is positioned just to the edge of the store area, the LOCATE spot will appear about $1 / 8$ inch to the left.

Nomenclature	Abbrev.	Definition
Background Light Level	BL	The average brightness of the light emitted by the storage target when completely erased, with the storage target backplate set at a given voltage.
Brightness Uniformity Ratio	BR	The ratio of the brightest to the dimmest spot when the target is fully written.
Collimation Lenses		An electrostatic low-voltage lens used to adjust the trajectories of the viewing-gun electrons.
Contrast Ratio	CR	The ratio of stored brightness to background light level, with the storage target backplate set at a given voltage.
Fade Positive	FP	The storage-target-backplate voltage at which an unwritten area fades up as bright as a written area anywhere within the quality area.
Operating Level	OL	A point within the operating range where the tube gives optimum performance; usually the midpoint of the operating range.
Operating Range	OR	The storage-target-backplate voltage range within which information can be stored at writing speeds in excess of a specified value (fade positive minus writing threshold).
Retention Threshold	RT	The lowest storage-target-backplate voltage at which written information can be stored anywhere within the quality area.
Stable Range	SR	The storage-target-backplate voltage range within which information can be stored (fade positive minus retention threshold).
Storage Target	ST	A film having the ability to store information when bombarded by an electron beam.
Storage Target Backplate	STB	A conductive surface physically supporting, and electrically coupled to, the storage target.
Stored Brightness	SB	The average brightness of stored information, with the storage target backplate set at a given voltage.
Viewing Gun	VG	A low-energy electron gun giving a wide-angle beam used to irradiate the entire screen in the storage mode.
Writing Gun	WG	A high-energy electron gun giving a narrow focused beam. This beam can be electrostatically deflected and is used to write the information to be stored.
Writing Speed	WS	The speed, in $\mathrm{cm} / \mathrm{sec}$, at which the writing beam will register stored information when scanning the storage target, with the storage target backplate set at a given bias within the stable range.
Writing Threshold	WT	The lowest storage-target-backplate voltage at which a signal of fixed writing speed can be completely stored.

STORAGE MODE TECHNICAL DISCUSSION

Certain added elements of the CRT make storage possible: the flood guns, wall bands, storage target backplate, and the storage target. When the correct voltage is applied to each of these elements, the CRT becomes a storage rube. When these voltages are changed, the CRT reverts to a conventional type.

Storage Target Backplate

This is a transparent conductive coating on the inside of the CRT faceplate that is divided into upper and lower halves by a narrow insulating line. When both DISPLAY switches are in STORE, a store voltage is applied to both halves and a low background illumination is seen. If either switch is moved to NON STORE, the voltage on the nonstored half drops to a nonstore value and the background illumination on that half disappears. If either switch is moved to ERASE, the erased half becomes uniformly bright until the switch is released.

Storage Target (viewing screen).

The storage target is a special insulating layer containing phosphor.

Flood Guns

The flood guns are a high current source of low-velocity electrons. When the target and wall band voltage are properly adjusted, the electrons from these flood guns are directed to cover the CRT faceplate evenly. This results in a slight background illumination.

Wall Bands

The voltages applied to the wall bands control and shape the flood gun electron beam for even illumination of the storage target.

Integrate

Two things happen when the INTEGRATE button is pushed. First, the flood gun cathodes are ungrounded, and second, R848 in the CRT high voltage circuit is grounded. This causes the flood guns to cut off, and also adjusts the high voltage to compensate for the change in deflection sensitivity when the flood guns are turned off. The flood guns introm duce a loading effect on the deflection plates because the deflection plates capture some of the electrons from the flood guns. The loading will affect the vertical system more critically because of the location of the vertical plates, also the load on the vertical plates will change somewhat with different plugs. Consequently the high voltage shiff cannot compensate both vertical and horizontal optimum.

NOTE! If you display an integrated trace and then superimpose a regular stored-mode frace, they will not coincide.

Storage Tube Circuirs

Almost all of the circuits that control the storage tube are voltage dividers that need no description. The exception is the upper and lower screen voltage. Since the target current changes as the CRT is written (stored), the voltage to the CRT must be stabilized. Two cathode followers with large cathode resistors serve as constant voltage sources for both upper and lower screens.

The grid-driving voltage for both cathode followers comes from R904 (STORAGE LEVEL) which is connected between +125 and +355 volt sources.

When the display switch is moved to NON STORE, the grid driving voltages for the cathode followers comes from R906 (NON STORAGE LEVEL) which is connected between a +250 volt source and ground.

When either DISPLAY switch is moved to ERASE, a large positive pulse couples through C916 and C918 and drives the upper and lower screen through the cathode followers. At the same time, voltage on grid no. 6 is lifted from around 75 volts to around 150 volts,

Erase-cycle characteristics; pulse applied to back plate. 200 volts/div; $50 \mathrm{~ms} /$ div.
grid no. 7 is lifted from about 40 volts to about 125 volts. Note that these bands draw some current through R930, etc. The result is that the flood guns increase current and the screen becomes fully written. When either DISPLAY lever is released from the ERASE position, a negative going pulse is applied to the appropriate screens and the screen returns to a condition where storage is possible (operating level). At the same time the correct voltage is returned to the wall bands.

Locate

When you push the LOCATE button, you remove +125 v from one deflection blanking plate; this unblanks the beam. You also connect $+335 v$ to R763 and R764, which allows the left-hand deflection plate to assume a small positive increment in addition to the left-hand reference point determined by the position control. A non-storing margin remains on the left-hand edge of the CRT. If the trace is positioned just to the edge of the store area, the LOCATE spot will appear about $1 / 8$ inch to the left.

SCHEMATIICS

Publication:
061-607
January 1963
Supersedes
September 1962

POWER SUPPLY
CALIBRATOR
STORAGE SYSTEM
CRT CIRCUIT
INTERCONNECTING SOCKETS

For all serial numbers.

print symbol	schematic date
--	$2-6-63$
--	$8-10-62$
--	$12-19-62$
--	$12-3-62$
--	$11-8-62$

ABBREVIATIONS:

cer	ceramic
comp	composition
emc	electrolytic, metal cased
gmv	guaranteed minimum value
h	henry
k	kilo (103)
k	kilohm
m	milli (10^{-3})
ma	milliamp
meg	megohm
mh	millihenry
mpt	metalized, paper tubular
mt	mylar, tubular
mv	millivolt
μ	micro (10^{-6})
$\mu \mathrm{f}$	microfarad
$\mu \mathrm{h}$	microhenry
$\mu \mathrm{sec}$	microsecond
17	nano (10^{-9})
nsec	nano second
Ω	ohm
p	pico (10^{-12})
pbt	paper, "bathtub"
pcc	paper covered can
pf	picofarad ($\mu \mu \mathrm{f}$)
piv	peak inverse voltage
pmc	paper, metal cased
poly	polystyrene
prec	precision
pt	paper, tubular
ptm	paper, tubular molded
sn or S/N	serial number
tub	tubular
v	working volt, dc
var	variable
w	watt
WW	wire wound

[^5] Beaverton, ()regon. All rights reserved.

12-19-62 564 STORAGE SYSTEM

[^0]: **Current

[^1]: *running spare

[^2]: *running spare

[^3]: © ${ }^{\text {© }}$ 1963, Tektronix, Inc., I'. (). Box 500
 Beaverton, Oregon. All rights reserved.

[^4]: * Common (+) lead connected to ground.

[^5]: ©. 190,3, Tektromix, Inc.. I. (). Box 500

