REFERENCE
 GUIDE

S
 T
 E

M

S-3260
Execution Times of
TEKTEST III Statements

TEKTRONIX

Copyright (C) 1975,1976 , by Tektronix, Inc.
All rights reserved
August 1977

INTRODUCTION

This Reference Guide lists the execution times for TEKTEST ${ }^{\text {TM }}$ III statements. Execution time depends upon the nature of the statement itself (basic execution time), the complexity of expressions and pinlists used within the statement (expression and pinlist evaluation times), and the numeric value of the data processed. Generally, execution time is the sum of the basic execution time, the expression evaluation time, and the pinlist evaluation time. That is,

statement execution time $=$ basic time + expression time + pinlist time

Execution times given are typical and may vary with the data processed, memory speed, processor speed, and UNIBUS length. Timings do not include the additional overhead which results from using the TRACE option.

Listed under "Expression Evaluation Times" are the execution times for operators, system functions, and reserved variables (for example, multiplication, SQRT, and CURRENT). To determine total expression execution time, take the sum of the times for all operators, functions, and reserved variables in the expression.

Listed under "Pinlist Evaluation Times" are the execution times for evaluating indexed pinlists.

Listed in alphabetical order under "Basic Execution Times" are the execution times for TEKTEST III statements. Not included are nonexecutable statements, such as ARRAY, and user-time-dependent statements, such as ACCEPT.

Execution times listed are guidelines, not system specifications. Because software and hardware improvement is a continuing process, Tektronix reserves the right to change without prior notice any execution time listed in this Guide.

Expression Evaluation Times

ITEM	TIME
System Functions	
ABS	$40 \mu \mathrm{~s}$
AND (Function)	$245 \mu \mathrm{~s}$
ATAN	$570 \mu \mathrm{~s}$ (Minimum)
	$920 \mu \mathrm{~s}$ (Maximum)
COS	800μ s (Minimum)
	$890 \mu \mathrm{~s}$ (Maximum)
EXP	$720 \mu \mathrm{~s}$
GETBUS	$160 \mu \mathrm{~s}$
INT	$75 \mu \mathrm{~s}$ (Minimum)
	$110 \mu \mathrm{~s}$ (Maximum)
LOG (Base e)	$785 \mu \mathrm{~s}$
LOG10	$800 \mu \mathrm{~s}$
OR (Function)	$245 \mu \mathrm{~s}$
SETBUS	$245 \mu \mathrm{~s}$
SIN	780μ s (Minimum)
	$870 \mu \mathrm{~s}$ (Maximum)
SQRT	$335 \mu \mathrm{~s}$
XOR (Function)	$240 \mu \mathrm{~s}$

Expression Evaluation Times

ITEM	TIME
Using Array Variables and Common Variables	
ARRAY Variables	
Singly Subscripted	$150 \mu \mathrm{~s}$
Doubly Subscripted	$240 \mu \mathrm{~s}$
COMMON Variable	$10 \mu \mathrm{~s}$
IARRAY Variable	$235 \mu \mathrm{~s}$
Using Reserved Variables	
ADVANCE	$30 \mu \mathrm{~s}$
AUTOV	
100 mV Range	4.2 ms
1 V Range	0.9 ms
10 V Range	0.9 ms
100 V Range	1.5 ms
(Take the sum of the times for all ranges used. Then add 1 ms for each range change when using automatic ranging.)	
CLOCK	95μ s

(Continued)

ITEM	TIME
Using Reserved Variables (Continued)	
CURRENT	
100 nA Range (from driver)	25.2 ms
$1 \mu \mathrm{~A}$ Range (from driver)	9.2 ms
$10 \mu \mathrm{~A}$ Range (from driver)	6.2 ms
$100 \mu \mathrm{~A}$ Range (from driver)	0.7 ms
1 mA Range (from driver)	0.2 ms
$10 \mathrm{~mA} \mathrm{Range} \mathrm{(from} \mathrm{driver)}$	0.2 ms
100 mA Range (from driver)	0.2 ms
100 nA Range (not driver)	25.2 ms
$1 \mu \mathrm{~A}$ Range (not driver)	8.2 ms
$10 \mu \mathrm{~A}$ Range (not driver)	1.7 ms
$100 \mu \mathrm{~A}$ Range (not driver)	0.5 ms
1 mA Range (not driver)	0.2 ms
10 mA Range (not driver)	0.4 ms
100 mA Range (not driver)	1.7 ms
450 mA Range (not driver)	10.2 ms
ERROR	$20 \mu \mathrm{~s}$
INDEX	$95 \mu \mathrm{~s}$
TIME	$80 \mu \mathrm{~s}$
VOLTAGE	
100 mV Range	4.2 ms
1 V Range	0.9 ms
10 V Range	0.9 ms
100 V Range	1.5 ms

Pinlist Evaluation Times

ITEM		TIME
Singly Indexed Pinlist Doubly Indexed Pinlist (Add 38μ s for each pin in the pinlist.)		$320 \mu \mathrm{~s}$

(8)

STATEMENT NAME AND COMMENTS	TIME
COMPARE pins WITH	
$\left\{\begin{array}{l}\text { ONE } \\ \text { ZERO } \\ \text { PATTERN } \\ \text { TOGGLE ONE AND ZERO } \\ \text { TOGGLE ZERO AND ONE } \\ \text { ALTERNATE PATTERN AND ONE } \\ \text { ALTERNATE PATTERN AND ZERO }\end{array}\right\}$ And the number of groups (W, X, Y, Z) is: $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right\}$	$\begin{aligned} & 150 \mu \mathrm{~s} \\ & 175 \mu \mathrm{~s} \\ & 195 \mu \mathrm{~s} \\ & 220 \mu \mathrm{~s} \end{aligned}$
$\left\{\begin{array}{l} \text { variable } \\ \text { TOGGLE variable } \\ \text { ALTERNATE PATTERN AND variable } \end{array}\right\}\left\{\begin{array}{l} \text { Add } 50 \mu \text { for each " } 1 \text { " bit, } 15 \mu \mathrm{~s} \\ \text { for each imbedded " } 0 \text { " bit, and } \\ 25 \mu \text { for each group. Do not add } \\ \text { any pinlist time. } \end{array}\right\}$	$475 \mu \mathrm{~s}$

Statement name and comments		TIME
$\begin{aligned} & \text { CONNECT . . . TO } \\ & \left.\qquad \begin{array}{l} \text { REGISTER } \\ \text { SECTOR } \\ \text { DBUS } \\ \text { EBUS } \\ \text { COMPUTER } \end{array}\right\} \\ & \\ & \\ & \left.\begin{array}{l} \text { SCOPE1 } \\ \text { SCOPE2 } \\ \text { AUX1 } \\ \text { AUX2 } \end{array}\right\} \\ & \\ & \\ & \left.\begin{array}{l} \text { COMPARATOR } \\ \text { DRIVER } \\ \text { LOAD1 } \\ \text { LOAD2 } \\ \text { PHASE } \\ \text { DATAPHASE } \\ \text { GROUND } \end{array}\right\} \end{aligned}$		
	And the number of groups (W, X, Y, Z) is $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right\}$	$\begin{aligned} & 68 \mu \mathrm{~s} \\ & 75 \mu \mathrm{~s} \\ & 82 \mu \mathrm{~s} \\ & 88 \mu \mathrm{~s} \end{aligned}$
	Without the ;ND (no delay) element: With the ;ND (no delay) element:	126 ms 0.19 ms
	Without the ;ND (no delay) element, and the number of groups ($W, X, Y, Z)$ is: $\left\{\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right\}$	$\begin{aligned} & 1.15 \mathrm{~ms} \\ & 1.16 \mathrm{~ms} \\ & 1.18 \mathrm{~ms} \\ & 1.19 \mathrm{~ms} \end{aligned}$

STATEMENT NAME AND COMMENTS	TIME
CYCLE $=$ period	
(1) If period is a constant:	$115 \mu \mathrm{~s}$
(2) If period is not a constant:	$280 \mu \mathrm{~s}$
DATAPHASE $=$ start FOR duration	
(1) If both start and duration are constants:	$155 \mu \mathrm{~s}$
(2) If either start or duration is not a constant:	$480 \mu \mathrm{~s}$
DISCONNECT . . FROM	
$\left\{\begin{array}{l}\text { SCOPE1 } \\ \text { SCOPE2 } \\ \text { AUX1 } \\ \text { AUX2 }\end{array}\right\}$ Without the ;ND (no delay) element:	1.17 ms
$\left\{\begin{array}{l}\text { SCOPE1 } \\ \text { SCOPE2 } \\ \text { AUX1 } \\ \text { AUX2 }\end{array}\right\} \quad$ With the ;ND (no delay) element:	$110 \mu \mathrm{~s}$

(Continued)

Statement name and comments	TIME
	$\begin{aligned} & 180 \mu \mathrm{~s} \\ & 212 \mu \mathrm{~s} \\ & 239 \mu \mathrm{~s} \\ & 272 \mu \mathrm{~s} \end{aligned}$
$\left\{\begin{array}{l} \text { variable } \\ \text { TOGGLE variable } \\ \text { ALTERNATE PATTERN AND variable } \end{array}\right\}$ Add 50μ s for each " 1 " bit, $15 \mu \mathrm{~s}$ for each imbedded "0" bit, and $25 \mu \mathrm{~s}$ for each group. Do not add any pinlist time.	$475 \mu \mathrm{~s}$
$\text { GO TO }\left\{\begin{array}{l} \text { linenumber } \\ \text { (expression) linenumber, linenumber } \end{array}\right\} \quad \begin{aligned} & \text { (Simple GO TO) } \\ & \text { (Computed GO TO) } \end{aligned}$ (1) Transfer of program flow occurs: (2) Expression too large. No transfer of program flow occurs:	$\begin{gathered} 35 \mu \mathrm{~s} \\ \\ 155 \mu \mathrm{~s} \\ 135 \mu \mathrm{~s} \end{gathered}$

Statement name and comments				TIME
IS1 = current, limit		Both current and limit are same as before.	Power supply polarity is same as before.	Power supply polarity is changed.
	Both current and limit are constants.	0.1 ms	2.65 ms	3.45 ms
	Either current or limit is not a constant.	0.56 ms	3.15 ms	3.95 ms
IS2 = current, limit		Both current and limit are same as before.	Power supply polarity is same as before.	Power supply polarity is changed.
	Both current and limit are constants.	0.1 ms	2.65 ms	2.95 ms
	Either current or limit is not a constant.	0.56 ms	3.15 ms	3.45 ms

Each LOOP statement creates code at two places: the start of the loop and after the last statement in the loop. The code at the start of the loop is only executed once - when the loop is entered. The code at the end of the loop is executed repeatedly until program flow transfers out of the loop.

Time to enter the loop if all loop values are constants:
Time to enter the loop if any loop value is not a constant:
Time for execution of the code at the end of the loop each time the loop is iterated:

MASK Timings are the same as for COMPARE (see above).
(8)

STATEMENT NAME AND COMMENTS				TIME
	(Δt_{0} is the time between two consecutive t_{O} 's.)	Cycle \& phases not changed since last MOVE	Changed $\Delta t_{0}<16 \mu s$	Changed $\Delta t_{O}>16 \mu \mathrm{~s}$
	Simple MOVE REGISTER	$\begin{aligned} & 260 \mu \mathrm{~s} \text { to } \\ & 275 \mu \mathrm{~s} \end{aligned}$	$475 \mu \mathrm{~s}$	$625 \mu \mathrm{~s}$
	MOVE with TIMEOUT clause	$\begin{aligned} & 385 \mu \mathrm{~s} \text { to } \\ & 520 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 600 \mu \mathrm{~s} \text { to } \\ & 750 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 750 \mu \mathrm{~s} \text { to } \\ & 880 \mu \mathrm{~s} \end{aligned}$
	MOVE with NO CONNECTS clause	$\begin{aligned} & 230 \mu \mathrm{~s} \text { to } \\ & 275 \mu \mathrm{~s} \end{aligned}$	$460 \mu \mathrm{~s}$	$605 \mu \mathrm{~s}$
	MOVE R2942	$\begin{aligned} & 390 \mu \mathrm{~s} \text { to } \\ & 500 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 600 \mu \mathrm{~s} \text { to } \\ & 710 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 750 \mu \mathrm{~s} \text { to } \\ & 850 \mu \mathrm{~s} \end{aligned}$
	Simple MOVE CORE $\triangle t_{O}<10 \mu \mathrm{~s}$	$430 \mu \mathrm{~s}$	$655 \mu \mathrm{~s}$	
	Simple MOVE CORE $\triangle t_{O} \geqslant 10 \mu \mathrm{~s}$	$\begin{aligned} & 485 \mu \mathrm{~s} \text { to } \\ & 635 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & 525 \mu \mathrm{~s} \text { to } \\ & 630 \mu \mathrm{~s} \end{aligned}$	$885 \mu \mathrm{~s}$ to $985 \mu \mathrm{~s}$

(2)

(Continued)
(2)

Statement name and comments	TIME
(Continued)	
SETUP	
to measure voltage	
Single pin	1.78 ms
Single pin AT RANGE	1.87 ms
Two pins AT RANGE	2.0 ms
TO FORCE CURRENT	
Positive current	3.8 ms
Negative current	4.6 ms
TO FORCE VOLTAGE	VS3 or
	$+1.75 \mathrm{~ms}$
to measure time	
ON pin TO pin	1.8 ms
FROM REFERENCE	1.65 ms

STATEMENT NAME AND COMMENTS					TIME
(Continued) UNSET					
TO FORCE CURRENT If IS1 was positive: if IS1 was negative:					$\begin{aligned} & 3.8 \mathrm{~ms} \\ & 2.0 \mathrm{~ms} \end{aligned}$
$\left\{\begin{array}{l} \text { VS1 } \\ \text { Vs2 } \\ \text { VS3 } \\ \text { VS4 } \end{array}\right\}=\text { voltage, limit }$					
			Both voltage and limit are same as before.	Power supply polarity is same as before.	Power supply polarity is changed.
		Both voltage and limit are constants.	0.1 ms	2.65 ms	4.66 ms
		Either voltage or limit is not a constant.	0.66 ms	3.23 ms	5.24 ms

STATEMENT NAME AND COMMENTS	TIME
WAIT	0 to $100 \mu \mathrm{~s}:$ Above $100 \mu \mathrm{~s}:$
WHEN ERROR	$110 \mu \mathrm{~s}$ Programmed value WHEN ERROR OR OVERFLOW WHEN OVERFLOW WHEN PASS

Notes

Notes

Notes

Notes

