7D02

POCKET REFERENCE

7D0O2

Word Recognition

Counters

NOT Word Recognition

Sequential Word Recognition

Data Comparison

Block Qualification

Data Qualification

Asynchronous Timing

Synchronous Timing

Table of Contents

Page

A Introduction 1
B Conventions Used Within

Manual 1
C 7D02 Programming Concepts . . . 2
D Data Qualification 6
E 7D02 User Language Syntax ... 7
F Problem Solving 1
G Microprocessor Control Lines .. 16
H General Programming 18
General Programming

Simple Word Recognition 18

Simple Range Recognition Using

DontCares 20

Trigger on the Occurrence of

Either Word A or Word B (Using

Brackets) 22

Triggering on the Occurrence of
Either Word A or Word B (Using

ORIF) i 24
Counting Events 26
Triggering on the Fifth Occurrence
ofaWord 28
Measuring Elapsed Time Between
TwoEvents 30
Triggering After a Specific Amount

of Time Has Elapsed 32
NOT Word Recognition 34
2-Word Sequential Word

Recognition 36
Sequential Word Recognition With
Counters 38
Establishing a Temporal

"Window" for Triggering 40
Triggering When a Time Period is
Less Than Expected 42

Firmware Performance Analysis . 44

7D02 Pocket Reference

Table of Contents (cont)

Locating the Source of an Page

Unknown Jump to a Subroutine . 46

Storage Memory Comparison for

Main Acquisition Data 48
Qualification

Block Qualification of Data—1 .. 50

Block Qualification of Data—2 .. 52
Block Qualification of Data—3 .. 54
3-Word Sequence Word

Recognition with Qualify 56
Data Qualification using a

Counter 58
Qualify Between Occurrences of 2
Words 60
Qualify Outside of Occurrences of
2Words oL 62

Timing Option

Asynchronous Word Recognition
and Triggering 64

Asynchronous Glitch Recognition
and Triggering 66
Main Section Triggers

Asynchronous Timing Option. .. 68

Arm the Timing Option from the
Main and Trigger on Word

Recognition 70
Trigger Main from Timing 72
Trigger Main from Timing and

Main 74
Trigger Main and Timing from a
Main Word Recognizer 76

Main Word Recognizer Trigger
Main and Arms Timing Option .. 78

Synchronous Operation of the
Timing Option 80

Synchronous Operation of the
Timing Option—No

Qualification 82
Block Qualification with the
Timing Option 84

ii 7D02 Pocket Reference

jr s s s umuuuny

INTRODUCTION

The 7D02 Pocket Reference Manual was
designed to serve as a "memory jogger”
from which an experienced user can
program a 7D02. The programming ex-
amples were developed using a 6802
System-Under-Test, but are applicable to
any microprocessor or bus-oriented
system.

The manual is split into three main sec-
tions: General Programming, Qualifica-
tion, and Timing Option examples. The
examples build in complexity from the
beginning of each sectiontothe end. Each
example is independent of the other ex-
amples.

CONVENTIONS USED WITHIN
THE MANUAL

Each example contains a title, a descrip-
tion of the condition that the program is
trying to find, a list of keystrokes used to

@ 7D02 Pocket Reference

program the example, and a description of
how the program works.

The keys actually pressed are printed in
bold type in the keystrokes column.
Beneath each keystroke s alist of required
numericfields or menu selections that also
must be entered.

NOTE
If a selection for a numeric field or
menu selection is not listed under
the keystroke, it is assumed to be
the POWER UP default (which may
be different from what the user
entered in a previous example).

The program, as shown, may not always fit
on the 7D02 screen at one time, but is
being shown complete for the sake of
clarity.

7D02 PROGRAMMING
CONCEPTS

The keys used to enter a program can be
broken into four groups: event keys, com-
mand keys, structure keys, and the "[]”,
"OR" and "NOT" keys. Some keys may
overlap into more than one group (for
example, the COUNTER key is both an
event key and a command key). The keys
in each group are usually located together
on the keyboard. The QUALIFY key is not
grouped with the command keys, but may
be used as a command. Pressing one of
these keys in a valid context will generate
one or more lines in the program.

EVENTS

An event is a condition, detectable by the
7D02, that is either TRUE or FALSE. A
simple event in the 7D02 consists of either
a word recognition (using one of the four
word recognizers) or a counter reaching a
user-defined value. A word recognizer
allows the user to detect the occurrence of

a specified value on the system under test
bus. A counter allows the user to detect a
user-defined length of time or to detect a
user-defined number of counts.

COMMANDS

A command is an action to be taken by the
7D02 when a particular event becomes
TRUE. These actions perform the tasks of:
acquisition completion (the TRIGGER
command), data storage (the QUALIFY
command), program sequencing (the
GOTO command) and counter control
(the COUNTER command). These com-
mands are used to acquire the data needed
to localize the problem or to transfer
program execution to the next part of the
sequence of conditions used to localize
the problem.

COMPOUND EVENTS

A compound event consists of one or more
simple events enclosed within brackets. If
more than one simple event is included

2 7D02 Pocket Reference @

within the brackets, each simple event
must be separated by an "OR" keystroke.
The compound event is enclosed within
brackets by pushing the "[]" key below an
“IF" prompt, an "OR IF" prompt, or a
"STORE ON" prompt and by pushing the
"[1" key again when all of the desired
simple events have been entered.

A compound event is either TRUE or
FALSE. It is TRUE whenever one or more
of the simple events withinitis TRUE. Itis
FALSE only when all of the simple events
within it are FALSE. Compound events
may not contain other compound events
(i.e., they may not be nested).

COMPLEMENTED EVENTS

A simple event within a compound event
may be complemented by preceding the
event with the NOT key. The com-
plemented event will be TRUE whenever
the simple event is FALSE. The NOT key
may be used with either a word recognizer
or a counter. Acompound event cannot be

complemented with the NOT key; i.e., the
NOT may not appear outside of a bracket.

If the NOT key precedes a word
recognizer, the complemented event will
become TRUE when any one or more of
the individual fields within the word
recognizer becomes FALSE. If the NOT
key precedes a counter, the com-
plemented event is TRUE until the counter
reaches its user-defined value.

COMPOUND COMMANDS

A compound command consists of one or
more commands enclosed within
brackets. All commands within a com-
pound command are executed together
(simultaneously) whenever the event
associated with them becomes TRUE.
Compound commands can not contain
other compound commands (i.e., they can
not be nested).

@ 7D02 Pocket Reference 3

IF-THEN-ELSE

The 7D02 user language uses an |IF-THEN-
ELSE syntax to condition the execution of
acommand on the occurrence of an event.
Events (the term event can refer to eithera
simple event or a compound event) are
entered under an "“IF" or an "OR IF”
prompt. Commands (simple or com-
pound) are entered under a "THEN DO"
prompt or under an "ELSE DO" prompt.

The "IF", "THEN DO", and "OR IF"
prompts are supplied automatically by the
7D02 whenever events or commands are
entered (following the syntax showninthe
example above). If an else clause is
desired it may be entered by pressing the
"ELSE" key whenever the cursorisresting
immediately below an "IF"” or an "OR IF”
prompt. This will cause the "IF" or "ORIF”
prompt to be replaced by the "ELSE DO"
prompt. The command associated withthe
ELSE clause can then be entered.

Whenever the event associated with an

"IF" prompt or an "OR IF" prompt
becomes TRUE (on a given state clock)
the command under the following "THEN
DO" prompt is executed. If more than one
event is TRUE on any particular state
clock, all of the commands associated with
those events are executed simultaneously.
If none of the events are TRUE on a state
cycle, then the command in the ELSE
clauseis executed (if one exists). The user
can have as many "OR IF"—"THEN DO"
clause pairs as necessary (subject to
memory limitations). Only one ELSE
clause may exist per TEST.

TESTS

When entering a program, a TEST is a
structure than encloses the IF-THEN-
ELSE syntax described above. The TEST
allows a program to contain up to four
separate |F-THEN-ELSE setups. Whenthe
program is run, each TEST will be either
enabled or disabled (all events and com-
mands within a disabled TEST are ig-

4 7D02 Pocket Reference @

nored). Only one TEST can be active at
any one time.

A TEST is automatically created when a
valid programming keystroke is entered
into an empty program, after an "END
TEST" keystroke or an "END QUALIFY”
keystroke. A TEST is completed when an
"END" keystroke is entered.

The number following the "TEST" prompt
and the number in the left column of the
screen indicate the TEST number. There
can be uptofour different TESTsin a 7D02
program. These TESTs are automatically
numbered from 1 to 4 as they are used.
Each TEST can contain completely
different combinations of events and com-
mands (subject to resource limitations).
Only one TEST can be active at a time
when a program is run. This means that if
TEST 1 is active and an event in TEST 2
becomes TRUE, then the command
associated with the event in TEST 2 will
not be executed. A TEST becomes active

by executing a GOTO command to that
TEST (this also deactivates the TEST
executing the GOTO command).

It is important to remember that all events
within a TEST are evaluated
simultaneously. Therefore, if a user wishes
to detect a sequence of events (for exam-
ple the execution of subroutine A followed
by the execution of subroutine B) two
TESTs must be used. The first TEST will
detect the occurrence of subroutine A.
The second TEST will detect the oc-
currence of subroutine Bandthen perform
the desired function (e.g., count or
trigger).

If a TEST containing no GOTOs is ac-
tivated, that TEST will remain active until
the 7D02 stops acquiring data.

A TEST may be empty (i.e., it may have no
events or commands defined within it). If
an empty test is ever activated, the 7D02
will do nothing except continue to acquire
data.

@ 7D02 Pocket Reference 5

A TEST may also contain only an ELSE
clause. In this case the command in the
ELSE clause will be executed on every
state clock in which that TEST is active.

DATA QUALIFICATION

A program may contain a data qualifica-
tion block. This can be entered by pressing
the QUALIFY key in an empty program or
after an "END TEST"” prompt. Only one
QUALIFY block is allowed in a program.
The event within the QUALIFY block may
be acompoundeventand may contain one
or more complemented events.

The qualify block controls the storage of
data into the Main Acquisition Memory
(andinto the Timing Option Memory if the
Timing Option is used synchronously).
Data is only stored in these memories on

state clocks in which the event in the
QUALIFY block is TRUE. The QUALIFY
block is independent of the tests in a
program (i.e., the QUALIFY block acts the
same regardless of which TEST is current-
ly active).

Data qualification can also be ac-
complished by using the QUALIFY key as
acommand within a TEST. In this casethe
data qualification is performed only when
the TEST is active and the QUALIFY
command is executed. If no QUALIFY
block is specified and no QUALIFY com-
mands are used, the 7D02 stores the data
present on all state clocks. If either the
QUALIFY block or the QUALIFY com-
mand is used, the 7D02 stores only when
either the QUALIFY command is executed
or the event within the QUALIFY block
becomes TRUE.

7D02 Pocket Reference @

7D02 User Language Syntax

TEST BLOCK
TEST QUALIFICATION
QUALIFY
EVENT
¢ EVENT
COMMAND
END
ORIF END
K_<_J 2915-1

7D02 Pocket Reference

IMMEDIATE MODE

IMMEDIATE
Y
DISPLAY PROGRAM STORE MEM
N
STORE MEM PROGRAM ACQMEM STORE MEM PROGRAM ACQ MEM
2915-2

7D02 Pocket Reference

EVENT WL
(|

WD REC COUNTER % NOT ELSE
WDiCCOqU%E:R——) WD REC COUNT
! OR
‘/‘ COMMAND
|
2915-3

7D02 Pocket Reference

COMMAND

QUALIFY

COUNTER

TRIGGER GOTO

.

L

)

// T
C o, 5
l COUNTER TRIGGER GC;TO QUALIFY
]

-

1

j)
2915-4

10

7D02 Pocket Reference

PROBLEM SOLVING

The ability to recognize events
simultaneously and to execute various
commands when these events become
TRUE is a powerful debugging tool. The
simultaneous recognition and execution
does not lend itself to flow charts,
however. The sequence of conditions
leading up to the detection of a problem
can usually be best expressed as a state
transition diagram. The state transition
diagram can then be translated directly
into a 7D02 program.

A state transition diagram is used to
describe a problem as aseries of decision-
making nodes or states. In each state the
set of possible inputs is the same. The
actions based on those inputs may vary
from one state to another. Each state is
independent of all of the other states in
regard to the actions it may take based on
the inputs. One of the actions taken may
be to transition to another state or to the
same state.

Each stateisrepresentedinthe diagram as
a bubble. Transitions between states are
shown as arrows from the old state to the
new; each arrow is labeled with the input
that causes the transition. Actions
associated with the input can be indicated
by having the arrow pass through alabeled
box on its way to its new state. All inputs
that are not explicitly indicated are assum-
ed to result in no action and no state
change.

For example, it might be desired to trigger
the Main Acquisition memory whenever
address F90E is detected within
100 milliseconds after address F8D6 is
detected.

The first step would be to define a statein
which the occurrence of F8D6 on the
address bus is looked for. When this
address is found, the counter would start
tocountthe 100-millisecond time window.

@ 7D02 Pocket Reference 1

The next step would be to look for address
FO0E. This must be done as part of a
separate state since it is only valid as a
triggering event when F90E is found after
F8D6 is found (if they were both looked for
in the same state, the trigger would occur
any time F90E was found). If 100
milliseconds pass before address FOOE is
found, it is necessary to go back to state 1
and start the sequence over again. If F8D6

is detected a second time while counting
the 100 millisecond time window, the
window count must be restarted.

The labels on the arrows are the events to
be looked for; the boxes are the actions to
be taken. When an arrow leaves one state
and enters a new one, a GOTO s
necessary.

12 7D02 Pocket Reference @

LOOK
FOR ADDRESS
F4FO
ADDRESS=

F4FO

START COUNTING
m$ FROM 0

ADDRESS=F82E

COUNTER=100m$

START COUNTING
FROM 0 AGAIN

LOOK
FOR ADDRESS
F82E

TRIGGER
ADDRESS=F4F0 AGAIN

2981-58

7D02 Pocket Reference

13

Translating the labelsintothe 7D02 syntax gives:

IF ADDRESS=
F4F0 (WR 1)

THEN DO

COUNTER 1 2-m$§
2-RESET AND RUN
GO TO 2

OR IF COUNTER=100m$
THEN DO

IF ADDRESS=F82E (WR 2) COUNTER 1 2-mS$S

2-RESET AND RUN

TRIGGER

OR IF ADDRESS=F4F0 (WR 1)

2981-59

14 7D02 Pocket Reference

@

The program can then be virtually read off the diagram to appear as follows:

TEST 1 I the counter reaches the 100 ms time limit. go back ngchggR °
1 2-MS
1IF to TEST 1 and start the sequence over
1 WORD RECOGNIZER # 1 2 2-RESET AND RUN
1 DATA=XX --— Beginning address of sequence. 20R IF
1 ADDRESS=F4FO 2 COUNTER # 1 = 00100 2-MS
1 /NIMI=X /IRG=X FETCH=X R/W=X 2THEN DO
1 BA=X INVAL OP=X EXT TRIG IN=X 2 6070 2
1 TIMING WR=X END TEST 2
1THEN DO
1
1| COUNTER # 1 2-MS ~a Whenthestarting addressis detected. start counting
1 2-RESET AND RUN the 100 ms time period and go to state 2 to look for
1({60T0 2 the second address in the sequence
1
END TEST 1
TEST 2
21IF

~a&— This is the second address in the sequence. If thisis
2 WORD RECOGNIZER # 2 found before the counter reaches 100 ms, trigger the
2 DATA=XX Main Acquisition Memory.

2 ADDRESS=FB2E

2 /NMI=X /IR@=X FETCH=X R/W=X

2 BA=X INVAL OP=X EXT TRIG IN=X

2 TIMING WR=X

2THEN DO

2 TRIGGER O-MAIN

2 O-BEFORE DATA

2 O-SYSTEM UNDER TEST CONT.

2 O0-STANDARD CLOCK QUAL

20R IF

2 WORD RECOGNIZER # 1 --&—fthebeginningaddressofthesequenceisdetected,

2 DATA=XX reset the counter to begin the 100 ms count again

2 ADDRESS=F4FO

2 /NMI=X /IR@=X FETCH-X R/W=X

2 BA=X INVAL OP=X EXT TRIG IN=X 2915-10
2 TIMING WR=X

@ 7D02 Pocket Reference 15

MICROPROCESSOR CONTROL
LINES

In addition to data bus and address bus
lines, microprocessors have control lines
that are monitored by the 7D02. These
control lines appear as part of the word
recognizer display and vary according to
the Personality Module attached to the
7D02.

Control lines can: (1) allow the
microprocessor to output signalsthat con-
trol memory or other peripherals, (2) allow
peripheral units to control the
microprocessor (e.g., halt it or request an
interrupt), or (3) identify the information
on the address and data buses.

16 7D02 Pocket Reference

Most instructions in a microprocessor’s
instruction set require several cycles to
execute. Usually each cycle corresponds
to one bus transaction, one transfer of
information into or out of the CPU. The
"type" of each cycle is indicated by the
values on the control lines. The first cycle
in an instruction’s execution is always a
Fetch cycle (FETCH=1), i.e., the retrieval
of an opcode for decoding and execution.
In the 6802, many instructions contain
more than one byte—the first is the op-
code and the following are the operands.
Additional read cycles (R/W=1) are need-
ed to get the operand bytes into the CPU.
Finally, Read (R/W=1) and Write (R/W=0)
cycles are needed to carry out the instruc-
tion when its effect is to write data to
and/or read data from memory.

SIMPLE WORD RECOGNITION

PROGRAM DESCRIPTION

TRIGGER when specified subroutine begins
execution.

PROGRAM NOTES

The word recognizer becomes TRUE when an opcode Fetch is
performed from address F8D6. The Main Acquisition Memory is
then triggered. After 240 more words are acquired, the 7D02 will
switch to Display mode

KEYSTROKES (v scouence)

WORD RECOGNIZER #1
Move cursor to address
field. Enter "F8D6"

Move cursor to Fetch
field. Enter "1"

TRIGGER
END

18 7D02 Pocket Reference

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=FBDé&
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1 TRIGGER O-MAIN

1 0-BEFORE DATA

1 0-SYSTEM UNDER TEST CONT

1 O-STANDARD CLOCK GUAL

END TEST 1

@ 7D02 Pocket Reference 19

SIMPLE RANGE RECOGNITION USING DON’T CARES

PROGRAM DESCRIPTION

Trigger the 7D02 when the processor executes
an instruction in the range O-FFF (out of its
normal program range).

PROGRAM NOTES

If the processor executes an instruction Fetch in an address
between 0000 and OFFF (thisis out of the normal ROM space), the
word recognizer becomes TRUE and the Main Acquisition
Memory will trigger. 15 locations will be stored after the trigger
(Trigger after data) and then the S.U.T. will halt.

KEYSTROKES (v scouence,
WORD RECOGNIZER #1
AD = 0XXX
Fetch = 1

TRIGGER
2 - After Data

20 7D02 Pocket Reference

TEST 1

1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=0XXX
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1 TRIGGER O-MAIN

1 2-AFTER DATA

1 0-SYSTEM UNDER TEST CONT

1 0-STANDARD CLOCK QUAL

END TEST 1

@ 7D02 Pocket Reference 21

TRIGGER ON THE OCCURRENCE OF EITHER WORD A OR
WORD B (USING BRACKETS)

PROGRAM DESCRIPTION KEYSTROKES /i~ sequence)

Trigger the 7D02 main acquisition section when [1
either word A or word B is recognized.
WORD RECOGNIZER #1
ADD = F872
FETCH =1

OR

PROGRAM NOTES WORD REC}%(;:IZER #2

ADD
FETCH = 1

If the processor executes an instruction Fetch from either of two
address locations (F872 or F89A) then one of the word [1
recognizers will become TRUE and the 7D02 will trigger. 240
locations will be stored after the trigger (Trigger before data) and TRIGGER

thenthe 7D02 will switch from Acquisition mode to Display mode. Before Data
S.U.T. continue

END

22 7D02 Pocket Reference

TEST 1
11IF

1
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=FB872
/NMI=X /IRG@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
OR
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=FB7A
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIGC IN=X

TIMING WR=X

1THEN DO

1 TRIGGER O-MAIN

1 0-BEFORE DATA

1 0-SYSTEM UNDER TEST CONT
1 O-STANDARD CLOCK QUAL
END TEST 1

@ 7D02 Pocket Reference 23

TRIGGERING ON THE OCCURRENCE OF EITHER WORD A OR
WORD B (USING OR IF)

PROGRAM DESCRIPTION KEYSTROKES (v scouence)
Trigger the 7D02 when either Word A or Word B | woRD RECOGNIZER #1
begins execution (another way to do Example 3). AD = F872
FETCH = 1
TRIGGER
WORD RECOGNIZER #2
AD = F89A
PROGRAM NOTES FETCH =1
If an instruction is fetched from address F872 the Main Acquisi- TRIGGER
tion Memory is triggered. END

If an instruction is fetched from address F89A the Main Acquisi-
tion Memory is triggered

Both addresses are looked for simultaneously.

24 7D02 Pocket Reference

TEST 1
1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F872
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIGC IN=X
TIMING WR=X
1THEN DO
1 TRIGGER O-MAIN
1 0-BEFORE DATA
1 O-SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL.
XOR IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F89A
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN DO
1 TRIGGER O-MAIN
0-BEFORE DATA
1 0-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL.
END TEST 1

@ 7D02 Pocket Reference 25

COUNTING EVENTS

PROGRAM DESCRIPTION

Count the number of passes through a program
loop until the program crashes.

PROGRAM NOTES

Any time that an opcode is fetched from address F89A (the
beginning address of aloop) the counterisincremented. When an
opcode is fetched from address F8D3 (this location is the crash
point) the 7D02 will trigger

KEYSTROKES (v sequence)
WORD RECOGNIZER #1
AD = F89A
FETCH =1
COUNTER
WORD RECOGNIZER #2
AD = F8D3
FETCH = 1
TRIGGER

END

26 7D02 Pocket Reference

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F89A
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1 COUNTER # 1 O-EVENTS

1 O-INCREMENT

10R IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F8D3
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1 TRIGGER O-MAIN

1 O-BEFORE DATA

1 0-SYSTEM UNDER TEST CONT

1 0-STANDARD CLOCK QUAL

END TEST 1

@ 7D02 Pocket Reference 27

TRIGGERING ON THE FIFTH OCCURRENCE OF A WORD

PROGRAM DESCRIPTION

Trigger on the fifth call to a specified program
routine.

PROGRAM NOTES

Increment the counter whenever the first location (F934) of the
routine is executed. On the cycle after the counter reaches 5,
trigger the Main Acquisition Memory.

KEYSTROKES (v scquence)

WORD RECOGNIZER #1
AD = F934
FETCH =1
COUNTER #1

COUNTER #1
00005

TRIGGER
2 - After Data

END

28 7D02 Pocket Reference

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F934
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN DO
1 COUNTER # 1 O-EVENTS
1 O-INCREMENT
10R IF
1 COUNTER # 1 = 00005 O-EVENTS
1THEN DO

1 TRIGGER O-MAIN
2-AFTER DATA
O-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL
END TEST 1

L

@ 7D02 Pocket Reference 29

MEASURING ELAPSED TIME BETWEEN TWO EVENTS

PROGRAM DESCRIPTION

Start a timer on the first occurrence of a word;
stop the timer and trigger on the first occurrence
of a different word.

PROGRAM NOTES

Counter #1 acts as a timer, counting microseconds. It is started
when Word Recognizer #1 detects an instruction fetch from F95A
(the start of the wait loop). When Word Recognizer #2 detects an
instruction fetch from F984 (the end of the wait loop), the counter
is stopped and the 7D02 is triggered. Note that a command has
been included to simultaneously transfer to Test 2, an empty test
This is to make sure that if Word Recognizer #1 comes TRUE
again after the trigger (while the final 240 words of data are being
stored) it will not reset the counter

KEYSTROKES i~ scouence;

WORD RECOGNIZER # 1
AD = F95A
FETCH - 1
COUNTER # 1
2 - Reset and Run
WORD RECOGNIZER # 2
AD - F984
FETCH -1
[]

COUNTER #1
1- Stop

GOTO
TRIGGER
[1

END Test 1
END Test 2

30 7D02 Pocket Reference

1

[OOSR

-

1
1
1
1

-

F O T T

TEST 1

IF

WORD RECOGNIZER # 1

DATA=XX

ADDRESS=F95A

/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X

TIMING WR=X

THEN DO

COUNTER # 1 1-uS

1-RESET AND RUN

OR IF

WORD RECOGNIZER # 2

DATA=XX

ADDRESS=F984

/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

COUNTER # 1 1-uS
1-STOP
GOTO 2
TRIGGER O-MAIN
O-BEFORE DATA
0-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL

END TEST 1
TEST 2
END TEST 2

s
G

7D02 Pocket Reference 31

TRIGGER AFTER SPECIFIED TIME

PROGRAM DESCRIPTION KEYSTROKES /v seaquence,
Trigger the 7D02 after a specific amount of time | COUNTER #1
has elapsed. 05000 2 - MS
TRIGGER
ELSE
COUNTER
PROGRAM NOTES no

Counter #1 will start on the first Qualified Clock. The counter will
run, and the 7002 will acquire data, until the counter reaches
5000 ms (5 seconds). Then the 7D02 wilt trigger

32 7D02 Pocket Reference

1 COUNTER # 1 = 00005 2-MS
1THEN DO

1 TRIGGER O-MAIN

1 O-BEFORE DATA

1 0-SYSTEM UNDER TEST CONT
1 O-STANDARD CLOCK QUAL
1ELSE DO

1 COUNTER # 1 2-MS

1 0—-RUN

END TEST 1

P s

@ 7D02 Pocket Reference 33

NOT WORD RECOGNITION

PROGRAM DESCRIPTION

Trigger when the data written to a particular
location is not what is expected.

PROGRAM NOTES

This program will trigger when any value other than 03 is written
to address 0004

"NOT Word Recognizer” #1istrue when a writetolocation 0004 is
not taking place. Word Recognizer #2 is true when the value on
the data bus is 03. The compound (bracketed) eventis, therefore,
true when 0004 is not being written to, or the value being writtenis
a 03

Since thereis only 1testinthe program,the "GOTO 1" command
associated with the event is essentially a "no-operation”.

Since the "trigger” command is associated with the "Else", it will
be executed when the compound event is not true; i.e., when a
write data is done to 0004 and the value on the data bus is not 03.
Note: This example takes advantage of DeMorgan's theorem
AAB = (A)\ (B) ie.,

(Write to 0004) and (data # 3) = (Write to 4) or (data = 3)

KEYSTROKES (v seauence)

NOT

WORD RECOGNIZER #1
AD = 0004
R/W =0

OR

WORD RECOGNIZER #2
DATA = 03

[1
GOTO
1
ELSE

TRIGGER
3 - Zero Delay

END

34 7D02 Pocket Reference

WORD RECOGNIZER # 1

DATA=XX

ADDRESS=0004

/NMI=X /IRG=X FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

OR

WORD RECOGNIZER # 2

DATA=03

ADDRESS=XXXX

/NMI=X /IR@=X FETCH=X R/W=X

BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1
1THEN DO

1 GOTO 1

1ELSE

1 TRIGGER O-MAIN

1 3-ZERO DELAY

1 O0-SYSTEM UNDER TEST CONT
1 O-STANDARD CLOCK QUAL
END TEST 1

7D02 Pocket Reference

35

2-WORD SEQUENTIAL WORD RECOGNITION

PROGRAM DESCRIPTION KEYSTROKES (v scouence)
Trigger when a particular word is detected any WORD RECOGNIZER #1
time following another word. AD SFe%s,
ETCH - 1
WORD RECOGNIZER #2
AD - F81C
FETCH = 1
PROGRAM NOTES TRIGGER
END

Word Recognizer 1comes true whenthe firstinstruction (address
F805) is executed. It causes Test 2, in which the second word in
the sequence is sought, to be activated

The 7D02 then triggers when Word Recognizer 2 detects the
execution of a transfer to address F81C

240 words of data are stored after the trigger. (We trigger “before
data”.)

36 7D02 Pocket Reference

TEST 1

11IF

1 WORD RECOGNIZER # 1

1 DATA=XX

1 ADDRESS=FB0S

1 /NMI=X /IRG=X FETCH=1 R/W=X

1 BA=X INVAL OP=X EXT TRIG IN=X

-

TIMING WR=X

1THEN DO

1 6070 2

END TEST 1

TEST 2

2IF

WORD RECOGNIZER # 2

DATA=XX

ADDRESS=F81C

/NMI=X /IRG=X FETCH=1 R/W=X

BA=X INVAL OP=X EXT TRIG IN=X

TIMING WR=X

2THEN Do

2 TRIGGER O-MAIN
0-BEFORE DATA

2 O-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL

END TEST

LVILSE N VIVE)

ﬁaﬂé

=

@ 7D02 Pocket Reference 37

e

L

B i

%

R

R e

SEQUENTIAL WORD RECOGNITION WITH COUNTERS

PROGRAM DESCRIPTION

Triggering on a specific iteration of a nested
loop.

PROGRAM NOTES

Counter 1 is incremented whenever the instruction at location
F966 is executed. This instruction is in the outer loop.

After 123 executions, the "GOTO" command causes Test 2to be
entered, to look for the next word in the sequence

Counter 2isincremented every time Word Recognizer #2 detects
an instruction fetch from F96B. This instruction is in the nested
loop.

After 69 executions of the nested loop. the 7D02 is triggered

KEYSTROKES
WORD RECOGNIZER #1
AD - FoB6
FETCH 1

COUNTER #1
0 - Increment

COUNTER #1
000123 0 - Events

GOTO

END

WORD RECOGNIZER #2
AD F96B
FETCH 1

COUNTER #2
0 - Increment

COUNTER #2
00069 0 - Events

TRIGGER
END

38 7D02 Pocket Reference

(IN SEQUENCE)

O-BEFORE DATA
O-SYSTEM UNDER TEST CONT
2 O-STANDARD CLOCK QUAL

END TEST 2

2
2

1 WORD RECOGNIZER # 1

1 DATA=XX

1 ADDRESS=F966

1 /NMI=X /IR@=X FETCH=1 R/W=X

1 BA=X INVAL OP=X EXT TRIG IN=X
1 TIMING WR=X

1THEN DO

1 COUNTER # 1 O-EVENTS

10R IF

1 COUNTER # 1 = 00123 O0-EVENTS
1THEN DO
1 GOTO 2
END TEST
TEST 2

2IF

2 WORD RECOGNIZER # 2

2 DATA=XX

2 ADDRESS=F96B

2

2

-

/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
2 TIMING WR=X

2THEN DO

2 COUNTER # 2 O-EVENTS

20R IF

2 COUNTER # 2 = 00069 O-EVENTS
2THEN DO

2 TRIGGER O-MAIN

A

e

R

@ 7D02 Pocket Reference 39

ESTABLISHING A TEMPORAL "WINDOW"” FOR TRIGGERING

PROGRAM DESCRIPTION

Trigger when the time spent in a subroutine
reaches a specified value.

PROGRAM NOTES

Test 1 looks for the beginning of execution of a subroutine. (An
instruction fetch from F8D6.) It starts a timer (Counter #1 in
millisecond mode) when the Word Recognizer comes true

Test 2 triggers (and goes to Test 3) if 17 MS elapse. If the end of
the subroutine is reached (fetch from FO0E) before the 17 MS
elapses. itreturnsto Test 1. (Note: Thereis notrigger commandin
Test 1—this effectively "closes” the triggering window.)

Note that if the Counter reaches 17 MS onthe same cycle that the
word recognizer comes true in Test 2, the "GOTO 3" will be
executed instead of the "GOTO 1" because the commands are
contradictory and the GOTO 3 appears first in the program.

Test 3 does nothing. This assures us the Counter will not be reset
in Test 1 after the trigger occurs, and data is still being acquired
(This is not strictly necessary in this example.)

KEYSTROKES (/v seouence

WORD RECOGNIZER #1
AD = F8D6
FETCH - 1
[1
COUNTER #1
2MS
2 - Reset and Run
GOTO
[]
END

COUNTER #1
00017 2 MS

[]
TRIGGER
GOTO
[]

40 7D02 Pocket Reference

WORD RECOGNIZER #2
AD - F90E
FETCH 1

GOTO 1

END

END

TEST 1
11IF
WORD RECOGNIZER # 1

DATA=XX

ADDRESS=F8D6&

/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

COUNTER # 1 2-MS
2-RESET AND RUN
GOTO 2

[

END TEST 1

TEST 2
2IF

2 COUNTER # 1 = 00017 2-MS
2THEN DO

TRIGGER O-MAIN
O0-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL
GOTO 3

NRNNND N

20RIF
2 WORD RECOGNIZER # 2
2 DATA=XX

R

R

2 ADDRESS=F90E
2 /NMI=X /IRQ@=X FETCH=1 R/W=X
2 BA=X INVAL OP=X EXT TRIG IN=X

2 TIMING WR=X
2THEN DO

2 GOTO 1

END TEST 2
TEST 3

END TEST 3

7D02 Pocket Reference 41

TRIGGER WHEN A TIME PERIOD IS LESS THAN EXPECTED

PROGRAM DESCRIPTION

Trigger if a particular subroutine finishes in less
than a specified period of time.

PROGRAM NOTES

In this program, Test 1 detects address F8D6, starts the counter
and enters Test 2. Test 2looks for address FOE, stops the counter
and enters Test 3. In Test 3, if the counter is not equal to 200 MS
(the normal time period for the subroutine to execute) the Main
Acquisition Memory is triggered. Otherwise, Test 1is entered and
the process starts over again

NOTE: The same condition would be detected by removing the
NOT before the counter and switching the GOTO and trigger
commands in Test 3

KEYSTROKES
WORD RECOGNIZER #1
Address = F8D6

Fetch = 1
[]
COUNTER #1
2 MS
2 - Reset and Run
GOTO
(1
END

WORD RECOGNIZER #2
Address = F90E

Fetch =1
[1
COUNTER #1
GOTO

[1

42 7D02 Pocket Reference

(IN SEQUENCE)

END

NOT

COUNTER #1
00200

[1

TRIGGER

ELSE

GOTO 1

END

1 WORD RECOGNIZER # 1

1 DATA=XX

1 ADDRESS=F8D&

1 /NMI=X /IRG=X FETCH=1 R/W=X
1 BA=X INVAL OP=X

1 TIMING WR=X

1THEN DO

1

1|COUNTER # 1 2-MS

1 2-RESET AND RUN
116070 2

1

END TEST 1

TEST 2

2IF

WORD RECOGNIZER # 2

DATA=XX

ADDRESS=F90E

/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X
TIMING WR=X
2THEN DO

2

2|COUNTER # 1 2-MS
2 1-8STOP

2|60T0 3

LV VR S VY V]

END TEST 2

A

EXT TRIG IN=X

EXT TRIG IN=X

TEST 3
3IF

3

3|NOT

3|COUNTER # 1 = 00200 2-MS
3

3THEN DO
3 TRIGGER O-MAIN
3 O0-BEFORE DATA

3 O-STANDARD CLOCK QUAL
3ELSE DO

3 €070 1

END TEST 3

R

7D02 Pocket Reference

3 0-SYSTEM UNDER TEST CONT

FIRMWARE PERFORMANCE ANALYSIS

PROGRAM DESCRIPTION

Measure the time spent in asubroutinein units of
time and as a percentage of the total time spentin
the calling routine.

PROGRAM NOTES

Address F872 is the start of a routine. When this address is
detected, start Counter #1 and go to Test 2.

Address F95A is the start of the routine which performs a wait
loop. Word Recognizer #2 will cause Counter 2 to start counting
time in the loop and then go to Test 3 to look for the end of the
loop.

Address F984 is the end of the wait loop. When this is detected,
Counter 2 is stopped, giving the elapsed time in the wait loop. A
gototo Test 4 is executed tolook for the end of the first routine.

Address F899 is the address of the end of the first routine. When
this address is detected, Counter 1 is stopped (giving the total
elapsed time) and the acquisition memory is triggered

KEYSTROKES (/v seQueNcE)

WORD RECOGNIZER #1
AD = F872
FETCH = 1
[1
COUNTER #1
1uS
0- Run
GOTO

[1
END

WORD RECOGNIZER #2
AD = F95A
FETCH =1

[1

COUNTER #2
1uS
0- Run

GOTO
[
END

WORD RECOGNIZER #3
AD = F984
FETCH = 1

44 7D02 Pocket Reference

[1
COUNTER #2
1uS
1 Stop
GOTO
[1
END
WORD RECOGNIZER #4
AD = F899
FETCH =1

[1
COUNTER #1
1uS

1- Stop
TRIGGER
(]

END

TEST 1

1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F872
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1

1{COUNTER # 1 1-uS
1 0-RUN
1|607T0 2
1

END TEST 1

TEST 2
2IF

WORD RECOGNIZER # 2

DATA=XX

ADDRESS=F75A

/NMI=X /IRQ=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

COUNTER # 2 1-uS
O-RUN
GOTO 2

VNIV VIV NV DV VL

END TEST 2

TEST 3
3IF

WORD RECOGNIZER # 3

DATA=XX

ADDRESS=F7824

/NMI=X /1RQ@=X FETCH=1 R/W=X

BA=X INVAL OP=X EXT TRIG IN=X

TIMING WR=X
3THEN DO
3

3 {COUNTER # 2 1uS
3 1-S10P
3{60T0 4

3

END TEST 3

TEST 4
41F

WORD RECOGNIZER # 4

DATA=XX

ADDRESS=F89%9

/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

COUNTER # 1 1-uS
1-STOP
TRIGGER O-MAIN
O-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL.

P e O L R R

END TEST 4

7D02 Pocket Reference

45

LOCATING THE SOURCE OF AN UNKNOWN JUMP TO A

SUBROUTINE

PROGRAM DESCRIPTION

Detect all fetches of instructions that cannot
validly jump to a subroutine. Trigger when one of
them is followed by a fetch from the first instruc-
tion in a subroutine.

PROGRAM NOTES

This program will trigger the Main Acquisition Memory whenever
the subroutine at address F90F is called from any address other
than F903. When Test 1 detects an Opcode fetch from address
F903, it transitions to State 2. This makes use of the fact that the
next fetch cycle after F903 will always be the beginning of the
subroutine. When the next fetch is detected, Test 2 transitions
back to Test 1. If the subroutineis called from anywhere but F303,
Test 1 will be active, will detect the call to the subroutine in Word
Recognizer #1, and trigger. Note that Word Recognizer #1 could
be used instead of Word Recognizer #3 in Test 2.

KEYSTROKES /n seQuence)

WORD RECOGNIZER #1
Address = FOOF
Fetch =1

TRIGGER

WORD RECOGNIZER #2
Address = F903
Fetch = 1

GOTO

END

WORD RECOGNIZER #3
Fetch =1

GOTO
1

END

46 7D02 Pocket Reference

2 TIMING WR=X
2THEN DO
1 WORD RECOGNIZER # 1 2 6070 1
DATA=XX END TEST 2
ADDRESS=F50F
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN DO
1 TRIGGER O-MAIN
1 0-BEFORE DATA
1 0-SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL
10R IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F903
/NMI=X /IRQ=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN Do
1 6OTO 2
END TEST 1
TEST 2
21F
WORD RECOGNIZER # 3
DATA=XX
ADDRESS=XXXX
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X

@ 7D02 Pocket Reference 47

STORAGE MEMORY COMPARISON FOR MAIN ACQUISITION

DATA

PROGRAM DESCRIPTION

Trigger on a write to an address. Store the
acquired data in the storage memory and com-
pare that data with a new acquisition.

PROGRAM NOTES

The Main Acquisition Memory is triggered when a write is
performed to address C000. When the 7D02 returns to displa
mode the keystroke sequence IMMEDIATE STORE MEM AC
MEM — will store the contents of the Acquisition Memoryintothe
Storage Memory. By entering format mode the user can enable
memory difference highlighting. By pressing START new data
will be acquired into the Acquisition Memory and any differences
will be highlighted on the display

KEYSTROKES

WORD RECOGNIZER
#1
ADDRESS = C000
R/W =0

TRIGGER
END
START 7D02

IMMEDIATE STORE
MEM ACQ MEM

FORMAT
Select "yes” for
highlight memory
differences

FORMAT
START 7D02

48 7D02 Pocket Reference

(IN SEQUENCE)

TEST 1

1IF

1 WORD RECOGNZER # 1

1 DATA=XX

1 ADDRESS=0000

1 /NMI=X /IR@=X FETCH=X R/W=0
1 BA=X INVAL OP=X EXT TRIG IN=X
1THEN DO

1 TRIGGER O-MAIN

1 O-BEFORE DATA

1 O-SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL
END TEST 1

@ 7D02 Pocket Reference 49

BLOCK QUALIFICATION OF DATA-1

PROGRAM DESCRIPTION KEYSTROKES (/v sequence)
Trigger when C000 is written to. Store only those WORD RECOGNIZER
cycles on which C000 is written to. # AD - 000
R/W ~ 0
TRIGGER
END
PROGRAM NOTES QUALIFY

Test 1 triggers as soon as a write to C000 takes place. :0/10RD RECOGNIZER

Inclusion of a Qualify block causes data to be stored into (use WR #1 again)

Acquisition Memory only when the event specified in the block END
comes true
FORMAT
We reused Word Recognizer #1, but any word recognizer could Set Highlight
have been used in the Qualification Block Memory

Differences to 1 -
NO

Set Data Display
field to 3 - ASCII

FORMAT
START

50 7D02 Pocket Reference

WORD RECOGNZER # 1
DATA=XX
ADDRESS=C000
/NMI=X /IR@=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
1THEN DO
1 TRIGGER O-MAIN
1 O-BEFORE DATA
1 0-SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL
END TEST 1
QUALIFY
QGSTORE ON
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=C000
/NMI=X /IRQ@=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
END QUALIFY

@ 7D02 Pocket Reference 51

BLOCK QUALIFICATION OF DATA-—-2

PROGRAM DESCRIPTION

Trigger on a write to C000; store data only when
CO000 is written to and bits 6—5 of the data are 10
or 01.

PROGRAM NOTES

Test 1 triggers the 7D02 as soon as a write to C000 takes place.

Inclusion of the Qualify Block causes datato be stored only when
the compound event in this block is true. Word Recognizer #1 is
true when data with bits 6-5 = 10 is written to C000. Word

KEYSTROKES (v seouence)

FORMAT
WORD RECOGNIZER
#1

AD = C000
R/W =0

TRIGGER

END

QUALIFY

[]

#WZORD RECOGNIZER

Recognizer #2 is true when data with bits 6-5 = 01 is written to)[()QTA X10XXX-
C000. The event is true when either Word Recognizer #2 or Word AD - C000
Recognizer #3 is true R/W = 0

OR
52 7D02 Pocket Reference

WORD RECOGNIZER
#3

DATA X01XXX-
XX
AD = C000
R/W =0
[1
END

1 WORD RECOGNZER # 1
DATA=XXXXXXXX
ADDRESS=C000
/NMI=X /IRQ=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
1THEN DO
1 TRIGGER O-MAIN
1 0-BEFORE DATA
1 O-SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL.
END TEST 1
QUAL.IFY
GSTORE ON
—
WORD RECOGNIZER # 2
DATA=X10XXXXX
ADDRESE=C000
/NMI=X /IRQ@=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
OR
WORD RECOGNIZER # 3
DATA=XO01XXXXX
ADDRESS=C000
/NMI=X /IRG=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

Q
]
Q
]
]
]
]
]
]
Q
Q
Q
Q
Q
Q

END QUALIFY

@ 7D02 Pocket Reference 53

BLOCK QUALIFICATION OF DATA—-3

PROGRAM DESCRIPTION

Trigger when 00011110 (binary is written to
C000). Store only those cycles on which C000 is
written to and bits 6-5 of the data are 10 or 01.

PROGRAM NOTES

This program is identical to that in the previous example, except
that the trigger occurs when a synchronizing control character
(1E) is seen, indicating the beginning of the message.

KEYSTROKES

Use the same
procedure as in the
previous example, ex-
cept set the Data Field
of Word Recognizer #1
to 00011110

54 7D02 Pocket Reference

(IN SEQUENCE)

1
1
1

PRPREREPRLRLLLPRRPRLOR O

1THEN DO
1 TRIGGER O-MAIN

END TEST 1
GQUALIFY
QSTORE ON

WORD RECOGNZER # 1
DATA=00011110
ADDRESS=C000
/NMI=X /IRQ@=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X

O-BEFORE DATA
O~-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL.

WORD RECOGNIZER # 2
DATA=X10XXXXX

IADDRESS=C000

/NMI=X /IRG=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

OR

WORD RECOGNIZER # 3
DATA=XO01XXXXX

ADDRESS=C000

/NMI=X /IR@=X FETCH=X R/W=0
BA=X INVAL OP=X EXT TRIG IN=X

END QUALIFY

TIMING WR=X

R e e e e

7D02 Pocket Reference

55

3-WORD SEQUENCE WORD-RECOGNITION WITH QUALIFY

PROGRAM DESCRIPTION

Trigger on a 3-word sequential word recognition
and store the occurrence of each of the word
recognitions.

PROGRAM NOTES

Inthis example, a sequence of three words is being detected. The
first word, an instruction fetch from address F82B, is the
beginning of a routine. When it is found, the word is qualified so
that it can be seen in the acquired data. Test 2 is then entered to
look for the occurrence of the second word, an instruction fetch

KEYSTROKES i~ sequence)

WORD RECOGNIZER #1
ADDRESS = F82B
FETCH = 1

[1

QUALIFY

GOTO

[1

END

WORD RECOGNIZER #2
ADDRESS = F89A

from address F89A. This is the beginning of aloop. Thisis also FETCH = 1
qualified. Test 3 is then entered to look for the third word, an
instruction fetch from address F8D3. This is the “crash point”in [
the program. This is also qualified, the Main Acquisition Memory
istriggered and Test 4 is entered. Test 4 stores all cycles until the QUALIFY
7D02 enters display mode
GOTO
[]
END
56 7D02 Pocket Reference

WORD RECOGNIZER #3
ADDRESS - F8D3
FETCH =1

[]

QUALIFY

TRIGGER

GOTO

[1

END

ELSE

QUALIFY

END

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F82B
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

1THEN DO

1

1|QUALIFY
1{e0T0 2
1

END TEST 1
TEST 2
2IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F89A
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

QUALIFY
GOTO 3

END TEST 2

NRNNRNRNRUNUNURNR

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

TEST 3
3IF
WORD RECOGNIZER # 3
DATA=XX
ADDRESS=F8D3
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

QUALIFY
TRIGGER O-MAIN
O-BEFORE DATA
0-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL
Q07O 4

END TEST 3
TEST 4
4ELSE DO

4 QUALIFY
END TEST 4

7D02 Pocket Reference 57

DATA QUALIFICATION USING A COUNTER

PROGRAM DESCRIPTION

Qualify data acquired after a counter reaches a
specific value.

PROGRAM NOTES

Address F849 is a location within a subroutine. When it is
detected, the data is qualified (causing each fetch from address
F849 to be stored in the Acquisition Memory) and the counter is
incremented. When the counter reaches 5, the Main Acquisition
Memory is triggered and all data (until storage is complete) is
qualified. This happens because once the counter reaches 5, it
becomes true and stays true until the 7D02 stops acquiring data
or the counter is reset (which does not happen in this program)

KEYSTROKES (/N seQuence)

WORD RECOGNIZER #1
ADDRESS = F849
FETCH =1

[1

COUNTER #1

QUALIFY

[1

COUNTER #1

[
TRIGGER
QUALIFY
[l

END

58 7D02 Pocket Reference

TEST 1

1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F84%
/NMI=X /IRG@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

THEN DO

COUNTER # 1 O-EVENTS
O-INCREMENT
QUALIFY

10R IF

COUNTER # 1 = 00005 O-EVENTS
1THEN DO

1

TRIGGER O-MAIN
O-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL
QUALIFY

END TEST 1

@ 7D02 Pocket Reference 59

QUALIFY BETWEEN OCCURRENCES OF 2 WORDS

PROGRAM DESCRIPTION

Store data only when a particular section of the
program is being executed.

PROGRAM NOTES

This program will store data between the execution of the
beginning of the routine (address F90F) and the execution of the
last address of the routine (address F913). Word Recognizer #1
detects the beginning of the routine, qualifies the first address,
triggers the Main Acquisition Memory and then enters Test 2. Test
2 detects the end of the routine. If it is found, it is qualified and
then Test 1 is entered (starting the process over). In Test 2 all
cycles are qualified by the else clause until the word recognizer
becomes true. This process is repeated after the trigger is
executed until 240 acquisition memory locations have beenfilled.
Note that the 7D02 will be in Test 1 whenever the display routineis
not being executed and will be in Test 2 whenever it is being
executed

Note also that the 7D02 can only be triggered once. Thus the
second and subsequent executions of the Trigger command in
Test 1 will be ignored, but the associated guallfy and Goto
execute normally

KEYSTROKES (v scouence)

WORD RECOGNIZER #1
ADDRESS = F90F
FETCH =1

[]

QUALIFY

TRIGGER

GOTO

[1

END

WORD RECOGNIZER #2
ADDRESS = F913
FETCH =1

[]

QUALIFY

GOTO
1

[]

60 7D02 Pocket Reference

ELSE
QUALIFY
END

TEST 1
11IF

WORD RECOGNIZER # 1

DATA=XX

ADDRESS=F9?0F

/NMI=X /IRG@=X FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

QUALIFY
TRIGGER O-MAIN
O-BEFORE DATA
O-SYSTEM UNDER TEST CONT.
O-STANDARD CLOCK GQUAL
GOTO 2

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

END TEST 1

TEST 2
2IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F%13
/NMI=X /IR@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
2THEN DO
2

2 |QUALIFY
26070 1

2

2ELSE DO

2 QUALIFY
END TEST 2

7D02 Pocket Reference

61

QUALIFY OUTSIDE OF OCCURRENCES OF 2 WORDS

PROGRAM DESCRIPTION

Always store data except when a particular
section of the program is being executed.

PROGRAM NOTES

This program waits for the beginning of a routine (address F805)
to be executed. When this is detected (Word Recognizer #1
becomes true) the Main Acquisition Memory istriggered, the first
address in the routine is stored and Test 2 is entered. Test 2looks
for the beginning of a loop to be executed (address F8D6). If itis
not (meaning the processor is not executing that loop) then the
data is stored by the qualify command in the else clause. If the

KEYSTROKES v sequence)

WORD RECOGNIZER #1
ADDRESS = F805
FETCH =1

[1

TRIGGER

QUALIFY

GOTO

[1

END

WORD RECOGNIZER #2
ADDRESS = F8D6

beginning of the loop is executed, Test 3 is entered. Test 3 waits FETCH =1

for the end of the loop to be executed. No data is stored while the

processor is executing the loop. When the end is detected, Test 2 GOTO

is entered so that data may again be qualified.
ELSE
QUALIFY
END

62 7D02 Pocket Reference

WORD RECOGNIZER #3
ADDRESS = F90E
FETCH =1

GOTO
2

END

TEST 1

1IF

1 WORD RECOGNIZER # 1

1 DATA=XX

1 ADDRESS=FB805

1 /NMI=X /IRQ=X FETCH=1 R/W=X

1 BA=X INVAL OP=X EXT TRIG IN=X
1 TIMING WR=X

1THEN DO

1
TRIGGER O-MAIN
O-BEFORE DATA
O-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL
QUALIFY
GOTO 2

END TEST 1
TEST 2
2IF
WORD RECOGNIZER # 2
DATA=XX
ADDRESS=F8D&
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

END TEST 2

WORD RECOGNIZER # 3

DATA=XX
ADDRESS=F90E

/NMI=X /IRQ=X FETCH=1 R/W=X

BA=X INVAL OP=X
TIMING WR=X
3THEN DO
3 6070 2
END TEST 3

7D02 Pocket Reference

EXT TRIG IN=X

63

ASYNCHRONOUS WORD RECOGNITION AND TRIGGERING

PROGRAM DESCRIPTION KEYSTROKES (v scouence)
Arm the Asynchronous Timing Option to per- ELSE
form its own word recognition and triggering. TRIGGER

1- Timing

Word Recognizer

11111111

Filter = 60 NS

PROGRAM NOTES END

Because no events are specified for the main section. the else
clause will be executed on the first 7D02 cycle, causing the
Trigger command to be executed. Because the Timing Option is
running asynchronously, the Trigger command merely arms the
Timing Option to trigger on its own word recognizer

The word recognizer runs asynchronously to the data sampling
The filter value selected here helps to assure that the data values
which cause the word recognizer to come true will actually be
sampled and stored

64 7D02 Pocket Reference

TEST 1

1ELSE DO

1 TRIGGER 1-TIMING

1 O0-BEFORE DATA
THRESHOLD V. = 0-PLUS 1.40
1-ARM ASYNC. TRIG ON WRJ
SAMPLE PERIOD 1 # 1-100NS
WORD RECOGNIZER=11111111
EXT TRIG IN=X
GLITCH RECOGNIZER=XXXXXXXX
FILTER=060 NS

END TEST 1

@ 7D02 Pocket Reference 65

ASYNCHRONOUS GLITCH RECOGNITION AND TRIGGERING

PROGRAM DESCRIPTION KEYSTROKES (v sequence)
Arm the Asynchronous Timing Option to trigger ELSE
on its own glitch recognition. TRIGGER
1- Timing
Sample Period —
2 uS
Word Recognizer
XXXXXXXX
PROGRAM NOTES Glitch Recognizer
XXTXXXXX

This program is identical to the previous one, except a different
sampling rate has been selected, andtriggeringis dependentona END
glitch being detected on channel 5

66 7D02 Pocket Reference

TEST 1

1ELSE DO

1 TRIGGER 1-TIMING

1 0-BEFORE DATA
THRESHOLD V. = O-PLUS 1.40
1~ARM ASYNC, TRIG ON WRJ
SAMPLE PERIOD 1 #* 2-1 uS
WORD RECOGNIZER=11111111
EXT TRIG IN=X
GLITCH RECOGNIZER=XX1XXXXX
FILTER=040 NS

END TEST 1

7D02 Pocket Reference

67

MAIN SECTION TRIGGERS ASYNCHRONOUS TIMING OPTION

PROGRAM DESCRIPTION

Trigger the Timing Option after a word recogni-
tion in the main section.

PROGRAM NOTES

The program arms the timing option when an opcode is fetched
from address F956. The timing option is running asynchronously
at 200 ns per sample. Since the timing option word recognizer
and glitch recognizer are set to all don't cares, the timing option
will trigger as soon as it is armed.

KEYSTROKES

WORD RECOGNIZER
#1

ADDRESS = F956
FETCH = 1

TRIGGER

1- Timing

Sample Period
200 NS

Word Recognizer =
XXXXXXXX

Glitch Recognizer
XXXXXXXX

END

68 7D02 Pocket Reference

(IN SEQUENCE)

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F956
/NMI=X /IRQ=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN DO
1 TRIGGER 1-TIMING
1 O-BEFORE DATA
THRESHOLD V. = 0-PLUS 1.40
1-ARM ASYNC, TRIG ON WRJ
SAMPLE PERIOD 2 # 1-100NS
WORD RECOGNIZER=XXXXXXXX
EXT TRIG IN=X
GLITCH RECOGNIZER=XXXXXXXX
FILTER=000 NS
END TEST 1

@ 7D02 Pocket Reference 69

ARM THE TIMING OPTION FROM THE MAIN AND TRIGGER ON
WORD RECOGNITION

PROGRAM DESCRIPTION KEYSTROKES (v scouence)
Arm the Timing Option on the occurrence of a WORD RECOGNIZER
. L X L - #
tmaln word recognition. Trigger the Timing Op ADDRESS - Fo56
ion when its word recognizer becomes true. FETCH = 1
TRIGGER

1- Timing

1 - Centered
PROGRAM NOTES Sample Cerlod =

o Word Recognizer =

This program will arm the timing option when an opcode is 00000000
fetched from address F956. Thetiming option will trigger when all Filter = 60 NS
0's are detected on the timing option probe for a minimum of
60 ns. END

F956 is the address of the instruction which clears the counter
connected to the timing option probe. The timing option will then
trigger when the outputs from the counter become all 0's

70 7D02 Pocket Reference

TEST 1
1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F956
/NMI=X /IRQ@=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
1THEN DO
1 TRIGGER 1-TIMING
1-CENTERED
THRESHOLD V. = O-PLUS 1. 40
1-ARM ASYNC, TRIG ON WR .|~
SAMPLE PERIOD 2 * 1-100NS
WORD RECOGNIZER=00000000
EXT TRIG IN=X

GLITCH RECOGNIZER=XXXXXXXX
FILTER=060 NS
END TEST 1

@ 7D02 Pocket Reference 7

TRIGGER MAIN FROM TIMING

PROGRAM DESCRIPTION KEYSTROKES (v seaquence)
Trigger the Main Acquisition Memory when the WORD RECOGNIZER
Timing Option word recognizer stays true for #
0 ns Timing Word
. Recognizer = 1
Word Recognizer
00000000
Filter = 300 NS
TRIGGER
PROGRAM NOTES
END
In this program the timing word recognizer bit in the main word
recognizer was set to 1. This “AND’s" the output of the timing
option word recognizer with the other fields of the main word
recognizer (all don't cares in this case). When the timing option
word recognizer becomes true (the 0 value must be valid for
300 ns for this to happen), the output of the word recognizer is
pulse stretched to the next 7D02 State clock. At this point the
main word recognizer becomes true, triggering the Main Acquisi-
tion Memory
72 7D02 Pocket Reference

1

1
1
1
1
1

TEST 1

IF

WORD RECOGNIZER # 1

DATA=XX

ADDRESS=XXXX

/NMI=X /IRG=X FETCH=X R/W=X

BA=X INVAL OP=X EXT TRIG IN=X

TIMING WR=1
THRESHOLD V. = 0-PLUS 1.40
1-ASYNC
SAMPLE PERIOD 2 * 1-100NS
WORD RECOGNIZER=00000000
EXT TRIG IN=X
GLITCH RECOGNIZER=XXXXXXXX
FILTER=300 NS

THEN DO

TRIGGER O-MAIN
0-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL

END TEST 1

7D02 Pocket Reference

73

TRIGGER MAIN FROM TIMING AND MAIN

PROGRAM DESCRIPTION

Trigger the main section when both a main word
recognition and an Asynchronous Timing Op-
tion word recognition occur.

PROGRAM NOTES

This program will trigger the Main Acquisition Memory when a
data value of 11111111 is detected on the timing option probe for
60 ns just prior to a state clock in which address 0001 is detected
by the main word recognizer.

KEYSTROKES

WORD RECOGNIZER
#1

Address = 0001

R/W =1

Timing Word

Recognizer = 1

Word Recognizer =
11111111

Filter = 60 NS

TRIGGER
END

74 7D02 Pocket Reference

(IN SEQUENCE)

TEST 1
1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=0001
/NMI=X /IRQ=X FETCH=X R/W=1
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=1
THRESHOLD V= 0-PLUS 1. 40
1-ASYNC
SAMPLE PERIOD 1 * 1-100NS
WORD RECOGNIZER=11111111
EXT TRIG IN=X
GLITCH RECOGNIZER:=XXXXXXXX
FILTER=060 NS
1THEN DO
1 TRIGGER O-MAIN
1 0-BEFORE DATA
1 0~SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL
END TEST 1

A R R s

@ 7D02 Pocket Reference 75

TRIGGER MAIN AND TIMING FROM A MAIN WORD RECOGNIZER

PROGRAM DESCRIPTION KEYSTROKES /v sequence)
A main word recognizer triggers both the main WORD RECOGNIZER
section and the Timing Option (asynchronous). "R -0

[1]

TRIGGER
PROGRAM NOTES TRIGGER

1 - Centered

This program will trigger the Main Acquisition Memory and the Sample Period
Timing Option Acquisition Memory when an IRQ interrupt is 00 NS

requested (the /IRQ lines go low)

[1
END

76 7D02 Pocket Reference @

WORD RECOGNIZER # 1

DATA=XX

ADDRESS=XXXX

/NMI=X /IR@=X FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

TRIGGER O-MAIN
0-BEFORE DATA
0-SYSTEM UNDER TEST CONT
0-STANDARD CLOCK QUAL
TRIGGER 1-TIMING
1-CENTERED
THRESHOLD V. = 0-PLUS 1.40
1-ARM ASYNC, TRIG ON WR I
SAMPLE PERIOD S5 % 1-100NS
WORD RECOGNIZER=XXXXXXXX
EXT TRIG IN=X
GLITCH RECOGNIZER=XXXXXXXX
FILTER=000 NS

END TEST 1

[T R

@ 7D02 Pocket Reference 77

MAIN WORD RECOGNIZER TRIGGER MAIN AND ARMS TIMING
OPTION

PROGRAM DESCRIPTION KEYSTROKES (/~ sequence)
A main word recognition TRIGGERS the main | WORD RECOGNIZER #1
section and ARMS the Timing Option pgdress = F909
(asynchronous). eten =
[]
TRIGGER
PROGRAM NOTES TRIGGER

1 - Centered

This program will trigger the Main Acquisition Memory and arm Sample Period
500 NS

the Timing Option Acquisition Memory when an Opcode is
fetched from address F909. The timing option will trigger when all Word Recognizer
channels on the timing option probe remain high for at least 11111111

300 ns Filter == 300 NS

[]
END

78 7D02 Pocket Reference @

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=F809

/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X

THEN DO

1

1

1

1

1

1

1

1

1] TRIGGER O-MAIN
1 O-BEFORE DATA

1 O~SYSTEM UNDER TEST CONT
1 0-STANDARD CLOCK QUAL

1 |TRIGGER 1-TIMING

1 1~CENTERED

1 THRESHOLD V. = 0-PLUS 1.40
1 1-ARM ASYNC, TRIG ON WR I~
1 SAMPLE PERIOD 5 # 1-100NS

1 WORD RECOGNIZER=11111111

1 EXT TRIG IN=X

1 GLITCH RECOGNIZER=XXXXXXXX
1 FILTER=300 NS

1

END TEST 1

S s

@ 7D02 Pocket Reference

79

SYNCHRONOUS OPERATION OF THE TIMING OPTION

PROGRAM DESCRIPTION

Using the Timing Option synchronously as an 8-
bit extension of the main section.

PROGRAM NOTES

In this program the Main Acquisition Memory and the Timing
Option Acquisition Memory will both be triggered when an NMI
interruptisrequested (this occurs whenthe /NMI channelintothe
main word recognizer goes low) AND all channels on the timing
option word recognizer go high. Thisis detected on the edge of a
state clock only. Note that when used in synchronous mode, the
timing option is not armed, but is triggered immediately. The
timing option is also subject to any qualification entered for the
Main Memory (only when used synchronously)

KEYSTROKES (v scouence)

WORD RECOGNIZER
#1

/NMI = 0

Timing Word

Recognizer = 1

0 - Sync

Word Recognizer
IRRRRRRA

[1
TRIGGER
TRIGGER

1- Timing

1 - Centered

[]
END

80 7D02 Pocket Reference

TEST 1
1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=XXXX
/NMI=0 /IRG=X FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=1
THRESHOLD V. = 0-PLUS 1.40
0-SYNC
WORD RECOGNIZER=11111111
THEN DO

TRIGGER O-MAIN
0-BEFORE DATA
0-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL
TRIGGER 1-TIMING
1-CENTERED
THRESHOLD V. = O0-PLUS 1 40
0-SYNC, TRIGGER IMMEDIATE

END TEST 1

@ 7D02 Pocket Reference 81

SYNCHRONOUS OPERATION OF THE TIMING
OPTION—NO QUALIFICATION

PROGRAM DESCRIPTION KEYSTROKES (/~ sequence)
Trigger the Main Acquisition Memory and the WORD RECOGNIZER
Timing Option Memory synchronously with no " JNMI = 0
clock qualification. Timing Word
Recognizer =1
0 - Sync
Word Recognizer =
11111111
PROGRAM NOTES 0
This program is the same as in the previous example except that TRIGGER
the clock qualification has been turned off. (It previously stored 1 - User Clock Qual
only on valid memory address cycles.) C6 = X
TRIGGER
1- Timing
1 - Centered
[1
END

82 7D02 Pocket Reference

TEST 1
1IF
WORD RECOGNIZER # 1
DATA=XX
ADDRESS=XXXX
/NMI=0 /IRG=X FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=1
THRESHOLD V. = 0-PLUS 1 40
0-SYNC
WORD RECOGNIZER=11111111
THEN DO

TRIGGER O-MAIN
O-BEFORE DATA
0-SYSTEM UNDER TEST CONT
1-USER CLOCK GUAL
1-FALLING EDGE OF CLOCK
C9-C4 (ANDED CLOCKS)=XXXXXX
TRIGGER 1-TIMING
1-CENTERED
THRESHOLD V. = 0-PLUS 1.40
0-SYNC, TRIGGER IMMEDIATE

END TEST 1

@ 7D02 Pocket Reference 83

BLOCK QUALIFICATION WITH THE TIMING OPTION

PROGRAM DESCRIPTION

Trigger the Main and Timing Option Memories
(running synchronously) from the Main. Qualify
using a block qualify.

PROGRAM NOTES

KEYSTROKES

QUALIFY
WORD RECOGNIZER #1
IRQ 0

END

WORD RECOGNIZER #2
ADDRESS - F953

FETCH — 1
This program will trigger the Main Memory and the Timing Option 1
Memory synchronously when an opcode is fetched from address
F953. The data is qualified by a block qualifier such that only TRIGGER
cyclesin which the /IRQ lineis low are stored in both memories
TRIGGER
1- Timing
0 — Sync
[1
END
84 7D02 Pocket Reference

(IN SEQUENCE

®

QUALIFY

WORD RECOGNIZER # 1
DATA=XX
ADDRESS=XXXX
/NMI=X /IRG=0 FETCH=X R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
END QUALIFY
TEST 1
1IF
WORD RECOGNIZER #2
DATA=XX
ADDRESS=F953
/NMI=X /IRG=X FETCH=1 R/W=X
BA=X INVAL OP=X EXT TRIG IN=X
TIMING WR=X
THEN DO

TRIGGER O-MAIN
O-BEFORE DATA
O-SYSTEM UNDER TEST CONT
O-STANDARD CLOCK QUAL
TRIGGER 1-TIMING
O-BEFORE DATA
THRESHOLD V. = 0~-PLUS 1.40
0-SYNC, TRIGGER IMMEDIATE

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

END TEST 1

e

@ 7D02 Pocket Reference 85

a4y ev ey 4B 08P U8 o8 &8 &5 2

- 7DO2

