18, 18-30

## Inter-Office Communication

Yo: WILL MARSE

From: KERM FIECK

Date: May 8, 1960


Subject: 175

Dear W111:
We have received comments from at least three different groups lately which could concern our 175.

In addition to extra current being made available, there sue several groups which could conceivably use this unit if we had which higher collector voltage available in the order of 1000 volta and appropriately reduced current. The 1000 volts collector apply would have applications in testing controlled rectifiers.

Mr. Pete Sylvan, who is pretty well known to Norm and John kobe, presents us with the enclosed Patent Disclosure tetter concerning single Cycle and Multiple Cycle Firing Create for Billon Controlled Rectifiers. Pete peels it may be something which we would like to build into the ifs.

Beat regards,

$\mathrm{KF} / \mathrm{men}$
ar
Kenin Fleck TRK Syracuse
Dick Winn for Customer Service (your IOC to Chris Christensen 6/3/60)
Higher Collector Volts for 575 June 13, 1960

## Hello Kemm,

Thanks again for your feedback----we really do appreciate it.
We haven't anything in the mill for this mod at the present time----in fact this is the first request, for this much collector voltage, that we've received.

The high voltage rating of semi-conductors seens to be going higher and higher all the time, so we'll prohably be receiving more requests in the future. If we do we'11 definitely consider a field mod.

I've forwarded a copy of your letter to Chuck Nolan in case he might have something to add.

So long,

Dick
DW: ls

GENERAL ELECTRIC COMPANY
Semiconductor Products Dept
Application Engineering
(7-217, Electromes Park
Syracuse, New York
March 14, 1980

## sUBJECT:

Patent Disclosure Letter
Single Cycle and Multiple Cycle Firing CIrcuits for Sillcon Controlled Rectifiers
cc: F.W. Gutcwiler-Auburn
R. A. Staslo:-Syracuse
H. R. Lowry-Syracuse
E. E. Von Zastrow-Syracus:
D. V. Jones-Syracuse
J. Harnden-GEL-Schencetad

E ManteuifeldMED-Ithaca
D. Borst L ESD-Philacielphis
L. Foote, $1 C D-$ Roanole
M. Goldenvere, SCE. Waynes

TO: $\quad$| J。J. Zaskalicky |
| :--- |
| Patent Attorney |
| Semiconductor Products Dept |
|  |
| Bldg. Room 222 |
|  |
|  |
|  |
| Electronics Park |
|  |

## ABSTRACT:

This patent disclosure letter describes a magnetic firing cireut for SCRe (Silicon Controlled Rectifiers and similar solld state devices) which con fire a 50 s for any desired number of half cycles of the AC lire. The firing sequepres initiated by closing a switch or relay contacts and the SCR will be fired at the scme ghase angle regardless of when the contacts are closed. The operation of the iring circutis is unaffected by contact bounce in the switch or relay:

## PRIOR ART:

The circults described in this disclosure make use of the baste wasnetic firing circuits described in the patent disclonure letrex of $F$. W. Gutawher and T. P. Sylvan dated December 23,1953 asslqned docket number $34.645-258$, The comments on prior art made in that letter will also pertain to the civerts bescriget in this letter.

SINGLE CYCLE FIRING CIRCUIT:
The circuit used to fire an SCP for a gingle hall cqele of the a-c dine is shown in Figure 1. The firing action in tuktater by closing the ran bublen switch SW1.

ground shown in the Figure) curcent will flow theough DS wat



core of T1 will be driven to positive saturation. The impedance of winding $1-2$ will then drop to a low value and the capacitor whll be discharged rapldy through winding 1-2 and R1. A positive pulse will be generated across R1 thus firing SCR1 which will conduct for the remainder of the postive hat cycle.

If the core of Tl is in positive saturation at the beginning of the positive half cycle winding $1-2$ will present a low impedance to the current through D3 and R2. The capacitor C1 will not be charged and SCR1 will not be fired provided that the voltage divider ratio of R1 and R2 is small enough to satisfy the condition:


Where $V$ is the maximam peak value of the a-c line voltage.

Due to diodes D1 and D3, current can only flow through winding $1-2$ in one direction so that normally the core of T1 will be in positive saturation and SCRI will not be fired. Wben SW1 switch is closed, current will flow through C2, R3, D2 and winding $3-4$ during the negative balf cycle of the a-c line. The core of TH is thus reset so that SCR1 will be fired on the following positive half cycle. Since the resetting of the core of T can take place only during the negative half cycle, the SCR will fire at the same phase gngle $\theta_{\text {Fio }}$ regardless of when the smitch SW1 is cloged. If the switch is closed between $0^{\circ}$ and $180^{\circ}$ (see Figure 1) the core will be reset between $180^{\circ}$ and $360^{\circ}$ and SCR1 will fire at $360^{\circ}+\theta_{F}$. If the switch is cloged between $180^{\circ}$ and $360^{\circ}$, the core will be reset between the time the swltch closes and $380^{\circ}$ and SCR1 will fire at $360^{\circ}+\theta$. If the switch is closed slightly before $380^{\circ}$ the line voltage may not be adequate to reset the core in which case the core will be reset between $540^{\circ}$ and $720^{\circ}$ and SCR1 will fire at $720^{\circ}+9$. If the switch 18 closed between $0^{\circ}$ and $270^{\circ}$, the capacitor C2 will be charged through $D 2$ to the peak of the line voltage at $270^{\circ}$. Once the capactor $C 2$ is charged to the peak of the $\mathrm{a}-\mathrm{c}$ line voltage no additional reset current can low through winding 3-4 of Tl during the negative half cycles so that SCRI will not be fired on more than one positive half cycle. On opening switch SCR1, capacitor C2 will be discharged through R4 so that subsequent operation will be possible. The value of R4 should be large enough so that the core of $T 1$ will not be reset between single cycles of the a-r line when the switch SW1 remains closed. This contion will be satisfied if:

where $V_{\text {PK }}$ is the peak voltage of the a-c line, I $m$ is the magnetizing current of winding $3=4$ and $f$ is the line frequency.

If the switch SW1 is closed between $270^{\circ}$ and $380^{\circ}$ the core will be reset but capacitor C2 will not be charged to the peak voltage of the a-f line. Thus SCRI will
fire at $360^{\circ}+\theta_{\mathrm{F}}$, the core will be reset again between $540^{\circ}$ and $720^{\circ}$ when C4 is charged to the' peak voltage of the a-c line at $630^{\circ}$ and SCR1 will fixe a second time at $720^{\circ}+8 F^{\circ}$ Diode D4 is used in the circugt to prevent this from happening. If the switch SWF is closed between $270^{\circ}$ and $360^{\circ}$. SCR1 will fire at $360^{\circ}+\theta_{\text {F }}$ and capacitor C2 will be charged to the peak voltage of the a-c line through D 4 at $450^{\circ}$. Since the current through D4 does not flow through winding 3-4, the core of T1 will not be reset a second time and SCR1 can oniy be fired once each thene the switch SW1 is closed.

The repetition rate of the circuit of Figure 1 is limited by the time constant C2R4. If a fast operating rate is desired. a SPDT switch can be substituted for SW1 arranged so that C 4 is shorted out with the switch at the standby position. It is important that the center pole of the switch used should not bounce between one contact and the other, otherwise erratic firing will occur.

Diode D1 is used to prevent any ringing of the LC circuit when the core of T1 saturates. This diode can be eliminated in many cases.

## MULTIPLE CYCLE FIRING CIRCUIT

The circuit used to fire an SCR for more than a single half cycle is shown in Figure 2. The operation of this circuit is similar to that of the preceding circuit with the following difierences.

No diode is used in series with R6 so that the core of T2 will be reset by the current through R6 during the negative half cycles. If the core of T3 is saturated bowever, winding 1-2 of T3 will present a low impedance to the current through ph during the positive half cycles and prevent C3 from being charged so that SCR2 can not befired. If the core of T3 is reset by closing switch SW2 winding 1-2 of r3 will present a high impedance to the current through R6 and thus will allow C3 to be charged and SCR2 to be fired through the normal operation of R6, CS, T2 and R5 The number of cycles that SCR1 is fired will depend on the volt-time capacity of winding 1-2 of T3 with respect to winding 1-2 of T2. If T3 has slightly more than five times the volt-time capacity of T2, SCR2 will fire for five cycles after awitch SW2 is closed. On the sixth positive half cycle, the core of T3 will saturate and capacitor C3 will be discharged through winding 1-2 of T3 before T2 has saturated. The number of cycles that SCR2 is fired can be varied by switching the number of turns on whading 1-2 of T3. Since the number of cycles that SCR2 is fired is determined primarily by the relative characteristice of the two cores and the relative number of turns on the windings this circuit should be very stable with respect to changes in ambient temperature, line voltage, and with the. The effect of the diode D5 can be compensated to a large extent by ineans of two diodes connected in parallel opposition in series with T2

Full wave versions of beth the circuit of Pigura 1 and Figure 2 are possibie by the use of suitable slaving circuits using the same basio if. ing circulte

## DOCUMENTATION:

The circuit shown in Figure 1 was built and successfully tested on March 12, 1960. Operation was witnessed by Dr. R. A. Stasior. This circuis is recorded on page 80 of my patent notebook \#238 dated March 13, 1960.

TPא:fw

Witnessed: $\qquad$
Date:

Signed:
Date:
T. P. Sylvan

Bldg. \#7, Room 217
Electronics Paris
Syracuse, New York



Fig. 2 MULTIPLE CTEIE FIRNE CIRCU
$\qquad$
T

```
Meat Chris:
```


breakbown applicumious.






wh romas woold he quite suffictent.
at regeras.
/
管


## Kerm Fleck

TEK Syracuse
Dick Winn for Customer Service (your IOC to Chris Christensen 7/8/60)

Higher Collector Volts for Type 575

## Hello Again Kerm,

Sounds like the G.E. people are real hot for this H. V. MOD. I sure wish we could help them out.

Chuck Nolan tells me that his group is working on a H. V. Mod that will go up to 1 or 1-1/2 KV. They're kind of limited on how far up they can go because of the arcing problems with the binding posts. DND C. F. Difieicuntics

If this mod that Chuck is working on can be used as a Field Mod and we get some more feedback from other areas, we'11 bring it up before the Field Mod Panel for consideration.

So Long

Dick
DW: ls
ce: Chuck Nolan

## Inter-Office Communication

To: Chuck Nolan<br>From:

Subject:
Modified Type 575

Dear Chuck,
I have a request from John Szafranski, a project engineer for Bendix Aviation, for a higher collector voltage Type 575.

His request is to extend the voltage range between 500 to 1,000 volts with the current rating of 20 milliamps. This would be used to check high voltage, semi-conductor diodes.

If this is a possibility, he's in rather a rush since present means of making this test are rather crude.

I recall on my trip to Portland that Deane Kidd was working on a different voltage, which may fit in with this request.

Hoping to hear from you soon,
Regards,


HUA/mal
CC: Scotty Pyle

Herry Allison
August 28, 1958

Chuck Nolan

Type 575
Your IOC of August 18

## Dear Harry:

Regarding your request for high volts on a 575 , it is not impossible, and you were right, Deane was working on a different voltage; but that turns out to be 400 volts, and this will probably be made available within six months. However, in the voltage range, 500 to 1000 volts, it would require specially designed transformer, additional rectifiers and switches, and the mere cost of parts for this mod may run well over $\$ 150$.

We certainly couldn't rush through this mod no matter what, since we are moderately crowded at the moment with specials. If 400 volts, however, will not satisfy him, this latter could probably be done at a fairly high cost. But if he is in a hurry for it, we might run into some difficulties.

Let me know if we can do any more for you.
Best regards,

Chuck
CaI/dvm
ce: Scotty Pyle
BB/FAT
WM
...5075:500-10.0 v wllectur

I A Atmarle Listf $100 \%$ din adolef. Hlop VoctJ/Div

$$
\begin{aligned}
3 \text { lost } & \text { Rect } 32,00 \\
& \text { sw (PealVott) } 10,00 \\
& \sin (\text { att }) 10.00
\end{aligned}
$$

